KIT | KIT-Bibliothek | Impressum | Datenschutz

Enhancing Battery Voltage Prediction with Deep Learning: A Comparative Analysis of LSTM and Traditional Models

Niakan, Masoumeh Rostam; Hajihosseini, Mojtaba; Madani, Seyed Saeed 1; Ziebert, Carlos ORCID iD icon 1
1 Institut für Angewandte Materialien – Angewandte Werkstoffphysik (IAM-AWP), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

The growing demand for efficient energy storage solutions has sparked increased interest in precise battery voltage prediction. In this study the Long Short-Term Memory networks, are applied in the time series forecasting, to improve battery voltage prediction compared to conventional models. The developed forecasting system includes three main parts: Pre-processing, modeling, and evaluation. In the pre-processing, the voltage and current time series are normalized, and divided to the test and train subsets. Then the windows of consecutive samples are generated for both train and test subsets. The forecasting LSTM models are learnt from training data set, in the modeling phase. Finally, the Mean Absolute Error (MAE) is used as the evaluation criterion. This model is compared to two other neural network models. The study concludes that LSTM outperforms the other models, highlighted by a significantly lower MAE. With a comprehensive methodology and successful experimental framework, this paper demonstrates the efficacy of LSTM in predicting battery voltage, indicating its superiority over simple neural networks for time series forecasting.


Postprint §
DOI: 10.5445/IR/1000173231
Veröffentlicht am 22.10.2024
Originalveröffentlichung
DOI: 10.1109/AUTEEE60196.2023.10408405
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Materialien – Angewandte Werkstoffphysik (IAM-AWP)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 15.12.2023
Sprache Englisch
Identifikator ISBN: 979-8-3503-0563-0
KITopen-ID: 1000173231
HGF-Programm 38.02.02 (POF IV, LK 01) Components and Cells
Erschienen in 2023 IEEE 6th International Conference on Automation, Electronics and Electrical Engineering (AUTEEE), Shenyang, China, 15-17 December 2023
Veranstaltung 6th IEEE International Conference on Automation, Electronics and Electrical Engineering (AUTEEE 2023), Shenyang, China, 15.12.2023 – 17.12.2023
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 491–495
Projektinformation HELIOS (EU, H2020, 963646)
Nachgewiesen in Dimensions
Scopus
Globale Ziele für nachhaltige Entwicklung Ziel 7 – Bezahlbare und saubere Energie
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page