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Abstract: In recent years, the rapid evolution of transportation electrification has been propelled
by the widespread adoption of lithium-ion batteries (LIBs) as the primary energy storage solution.
The critical need to ensure the safe and efficient operation of these LIBs has positioned battery
management systems (BMS) as pivotal components in this landscape. Among the various BMS
functions, state and temperature monitoring emerge as paramount for intelligent LIB management.
This review focuses on two key aspects of LIB health management: the accurate prediction of the
state of health (SOH) and the estimation of remaining useful life (RUL). Achieving precise SOH
predictions not only extends the lifespan of LIBs but also offers invaluable insights for optimizing
battery usage. Additionally, accurate RUL estimation is essential for efficient battery management
and state estimation, especially as the demand for electric vehicles continues to surge. The review
highlights the significance of machine learning (ML) techniques in enhancing LIB state predictions
while simultaneously reducing computational complexity. By delving into the current state of research
in this field, the review aims to elucidate promising future avenues for leveraging ML in the context
of LIBs. Notably, it underscores the increasing necessity for advanced RUL prediction techniques and
their role in addressing the challenges associated with the burgeoning demand for electric vehicles.
This comprehensive review identifies existing challenges and proposes a structured framework to
overcome these obstacles, emphasizing the development of machine-learning applications tailored
specifically for rechargeable LIBs. The integration of artificial intelligence (AI) technologies in
this endeavor is pivotal, as researchers aspire to expedite advancements in battery performance
and overcome present limitations associated with LIBs. In adopting a symmetrical approach, ML
harmonizes with battery management, contributing significantly to the sustainable progress of
transportation electrification. This study provides a concise overview of the literature, offering
insights into the current state, future prospects, and challenges in utilizing ML techniques for lithium-
ion battery health monitoring.

Keywords: lithium-ion battery; transportation electrification; energy storage; electric vehicle; deep
learning; state-of-health; machine learning

1. Introduction

Energy storage plays a pivotal role in the transition toward a low-carbon, sustainable
future. The capacity prediction of lithium-ion batteries (LIBs) is particularly crucial for
effective energy storage management in applications ranging from electric vehicles (EVs) to
electricity grid management. In recent years, LIBs have experienced widespread adoption
across diverse industrial sectors, including automotive (cars and EVs), power tools, and
medical devices.
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Rechargeable LIBs have swiftly become a leading energy storage solution, especially
in the realm of electric vehicle applications. Their appeal lies in a combination of high
specific energy, decreasing costs, and acceptable cycle life, contributing significantly to their
popularity. However, despite these advantages, accurately predicting the parameters of
these intricate and nonlinear battery systems remains a formidable challenge.

This challenge is further compounded by factors such as diverse aging mechanisms,
cell-to-cell variations, and dynamic operating conditions, making it imperative to fore-
cast battery performance under realistic scenarios. The intricate nature of LIBs and their
sensitivity to various environmental and usage factors underscore the need for precise
prediction methods. This becomes especially critical given the increasing significance of
battery states and parameters across various application contexts.

In the contemporary landscape, LIBs stand as pivotal energy-storage devices, influ-
encing a wide array of societal applications. In this context, understanding and accurately
predicting the behavior of these batteries becomes paramount for ensuring efficient and
sustainable energy storage solutions.

Despite the remarkable progress, LIBs still face challenges in terms of performance
and cost, particularly concerning energy density, power density, cycle life, safety, and
other critical aspects. Traditionally, the enhancement of battery performance has relied on
time-consuming “trial-and-error” experiments.

In response to these challenges, computational chemistry, and artificial intelligence
(AI) emerge as promising solutions to accelerate research and development efforts toward
improved battery systems. This review delves into a diverse spectrum of AI technologies
applied to predict and discover battery materials, as well as estimate the state of the
battery system.

A notable contribution to this field is the work of Tran et al. [1], who conducted an
extensive examination, assessment, categorization, and comparison of adaptable mathemat-
ical frameworks related to deep learning algorithms used in predicting the remaining useful
life (RUL) of batteries. Their study identified attributes crucial for modeling proficiency
and employed them to categorize these adaptable predictive approaches. To evaluate vari-
ous modeling precisions within the deep learning computation process, rigorous criteria
were established. The key aspects of successful life prediction were then used to derive
pertinent findings and recommendations. Notably, the study identified the high-precision
deep convolutional neural network—extreme learning machine algorithm as particularly
effective in ensuring consistent and reliable prediction of the RUL of LIBs. This selection
highlights the potential for specific AI algorithms to play a crucial role in advancing the
accuracy and reliability of life predictions for battery systems.

To offer a comprehensive understanding of the role of deep learning in the prognostics
and health management (PHM) of Li-ion batteries, Mou et al. [2] conducted an insightful
overview based on current research. Their work outlines three fundamental stages in the
application of deep learning to Li-ion battery PHM: data collection, the implementation of
deep learning methods, and performance assessment. The article begins by introducing
prevalent data types and relevant publicly available datasets, providing a foundational
understanding of the information utilized in Li-ion battery PHM. Subsequently, it suc-
cinctly explains various deep learning techniques employed in this field, encompassing
auto-encoders, deep neural networks, deep belief networks, convolutional neural networks,
recurrent neural networks, and generative adversarial networks (GANs). The review not
only details the application of these deep learning techniques but also outlines standard
evaluation criteria essential for assessing their efficacy in the context of Li-ion battery
PHM. This critical analysis allows for a comprehensive understanding of the strengths and
limitations of each technique, aiding researchers, and practitioners in selecting suitable ap-
proaches for their specific applications. A concluding statement in the review summarizes
the key insights gleaned from the exploration of deep learning in Li-ion battery PHM. Fur-
thermore, the paper discusses the future potential of employing deep learning approaches



Batteries 2024, 10, 204 3 of 43

in this field, providing a forward-looking perspective on the ongoing advancements and
opportunities for further research and application.

In a comprehensive examination by Meng et al. [3], prevalent equivalent circuit and
electrochemical models, commonly used for predicting battery states, are scrutinized.
The review underscores that machine learning and deep learning methodologies stand
out as effective contributors to formulating efficient and precise data-derived models for
forecasting battery performance. This encompassing analysis delves into the complexities,
advantages, and limitations of these methodologies, providing a nuanced understanding
of their applications.

Moving forward, Zhang et al. [4] categorize contemporary techniques for estimat-
ing the SOC using deep learning into two distinct categories: structured adjustment and
unstructured improvement. The article accentuates the dynamic trends in network archi-
tecture applications over time. The critical aspects of implementing deep neural network
methods are explored, including feature engineering, data augmentation, learning rate
strategies, optimization functions, and optimal hyperparameters. The review not only
surveys the theory and essential techniques of existing methods but also analyzes the
outcomes of these estimation approaches, compactly summarizing their effectiveness. Im-
portantly, the paper concludes by delving into potential directions for future developments
in state-of-charge estimation methods specifically tailored for LIBs in EVs. This forward-
looking perspective provides valuable insights for researchers and practitioners, guiding
the ongoing evolution of methodologies in the dynamic field of battery state estimation.

2. Transformer-Based Models and Variants
2.1. Transformer-Based Models

Han et al. [5] proposed a method to predict the RUL of LIBs using a transformer-based
neural network that leverages denoising auto-encoders (DAE) to reduce noise in capacity
data, leading to improved prediction accuracy. The denoising transformer network for
RUL prediction is illustrated in Figure 1. Hu et al. [6] focused on state-of-health (SOH)
prediction using electrochemical impedance spectroscopy (EIS) data. They utilized feature
extraction to enhance information from EIS measurements, leading to a substantial reduc-
tion in prediction error. Tian et al. [7] introduced a comprehensive approach integrating
data pre-processing and a convolutional neural network (CNN) transformer framework for
SOH prediction. They achieved high accuracy in SOH estimation by minimizing feature
redundancy and normalization. Hu et al. [6] used vision transformer networks (VITs) to
predict SOH, focusing on discrete charging data within a predetermined voltage range
and incorporating transfer learning principles. Their method showed superior prediction
accuracy compared to existing deep learning methods. The algorithm flowchart, trans-
former structure, and structure of VIT for SOH estimation are illustrated in Figure 2. These
advancements signify promising strides in refining SOH prediction methodologies for
enhanced battery health management. Fu et al. [8] introduce a method for predicting SOH
using discrete charging data and a VIT model. The unique aspect of their approach is the
incorporation of transfer learning principles, which involves training the prediction model
on source task LIB data and fine-tuning it on target task LIB data. This process enhances
prediction precision and tailors the model’s capabilities to the specific characteristics of
the target LIBs. Their method demonstrates superior prediction accuracy and transfer
effects compared to existing deep learning methods. However, this method may also
require significant computational resources. Finally, Ye et al. [5] proposed a multi-winding
transformer-based cell equalizer for cell equalization, eliminating complex control strate-
gies while maintaining scalability and efficiency. Overall, these methods offer various
advantages, such as improved prediction accuracy, reduced computational complexity,
enhanced information extraction, and scalable and efficient cell equalization. However,
they also have disadvantages like the need for extensive training data, high computational
requirements, and limited applicability to specific battery types or conditions. Further
research is needed to address these limitations and develop more versatile and effective
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battery monitoring and management methods. The calculation process for attention weight
is illustrated in Figure 3.
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Figure 1. Denoising transformer network for RUL prediction [5]. Figure 1. Denoising transformer network for RUL prediction [5].

These methods have their advantages and disadvantages. The transformer-based
neural network approach offers high accuracy in RUL prediction but may require extensive
data and computational resources. EIS-based methods provide valuable insights but
require specialized equipment and complex data collection processes. CNN-Transformer
frameworks offer high accuracy but can be computationally intensive. VITs demonstrate
superior performance but require significant computational resources. Multi-winding
transformer-based cell equalizers simplify equalization but are limited to specific battery
configurations. In summary, each method has its own unique advantages and limitations,
and the choice depends on factors such as computational resources, data availability,
and the specific requirements of the battery monitoring application. Further research is
necessary to develop more versatile and efficient battery health management methods.
Figure 4. Demonstrate the hyperparameters of self-attention transformer model [8].
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2.2. Bidirectional Encoder Representations from Transformers

Liang et al. [9] introduced an advanced AI-based approach integrating self-attention
and autoregression for predicting the SOH of LIBs. They demonstrated superior per-
formance over current state-of-the-art (SOTA) methods on NASA and CALCE datasets,
achieving significant reductions in root mean square error (RMSE) and mean absolute
percentage error (MAPE). In contrast, Liu et al.’s [10] BERT-tery approach focuses on
precise estimation of the state-of-charge (SOC) using time-resolved data from LIBs. It
achieved highly accurate SOC estimations suitable for real-world applications, showcasing
the potential for improved battery management. Additionally, Shi et al. [11] proposed a
cloud-based AI-enhanced framework for co-estimating SOC and SOH, emphasizing the
potential for enhanced battery management and performance forecasting under realistic
operational conditions. Overall, the advantage of these AI-based approaches is their po-
tential to significantly improve battery prediction accuracy and reliability, leading to more
efficient battery health monitoring and management. However, they may require substan-
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tial computational resources and may not be universally applicable due to variations in
battery system configurations and conditions, limiting their scalability. The effectiveness
of these methods can also be influenced by the quality and quantity of the data used for
training. Further research is needed to explore their generalizability across different LIB
systems and conditions.

2.3. Attention Mechanisms

Several approaches have been proposed in recent research to improve the management
and efficiency of LIBs. Yang et al. [12] presented a deep learning model with a dual-stage
attention mechanism for accurately estimating the SOC in LIBs, particularly in electric vehi-
cle (EV) applications. Their approach integrates domain knowledge about LIBs, including
current, voltage, and temperature, to build an effective SOC estimation model. The model
utilizes an encoder–decoder network based on gated recurrent units (GRUs) to capture
temporal dependencies in sequential data. Wang et al. [13] focused on predicting the RUL
of LIBs, which is crucial for effective management systems in various industrial applica-
tions. They proposed a model called the Bidirectional LSTM with Attention Mechanism
(Bi-LSTM-AM), which incorporates continual parameter updates and employs a sliding
window method for multi-step-ahead predictions of SOH based on normalized capacity.
Hong et al. [14] addressed the prediction of temperature in LIBs in EVs, which is essential
for ensuring safety and longevity. They proposed a clustering-based data partitioning
method and a spiral self-attention neural network to capture complex dependencies and ac-
curately predict temperature variations. Tian et al. [15] developed a two-stage optimization
model to predict the SOH and RUL of LIBs using graph convolutional networks (GCNs)
with attention mechanisms. Zhang et al. [16] proposed a hybrid neural network model,
CNN-CBAM-LSTM, to predict the SOH of LIBs, which includes a CNN, convolutional block
attention module (CBAM), and LSTM neural network. Xie et al. [17] combined an attention
mechanism with a bidirectional LSTM network to predict the RUL of LIBs. Marri et al. [18]
combined a bidirectional LSTM neural network with an attention mechanism to estimate
the SOH in LIBs. Finally, Bao et al. [19] proposed a novel approach to predicting the health
state of LIBs by integrating variational mode decomposition, an integrated filter, and a
LSTM network with a self-attention mechanism. They decomposed LIBs capacity data into
residual and intrinsic mode function components using variational mode decomposition,
where the former encapsulates the global degradation trend while the latter captures local
random fluctuations. The experimental results validated the effectiveness and stability
of the proposed method, showcasing commendable prediction accuracy and promising
avenues for accurately prognosticating the health status of LIBs.

2.4. Transformers for Time Series Analysis

Wan et al. [20] assessed the Convtrans model’s efficiency in multi-step time series
forecasting, particularly in predicting LIB temperature, demonstrating improved perfor-
mance over traditional algorithms in terms of accuracy and trend prediction. Ge et al. [21]
proposed a novel method that integrates wavelet threshold denoising and the transformer
model to predict the RUL of LIBs, achieving accurate and generalized predictions even in
the presence of data measurement noise. Nie et al. [22] developed an innovative SOH esti-
mation methodology that combines advanced data preprocessing techniques with a fusion
of CNN and the Transformer paradigm, achieving remarkable accuracy in SOH estimation.

Comparing the methods, all three address crucial aspects of LIB management and
health estimation, including temperature prediction, RUL prediction, and SOH estimation.
While Wan et al.’s [20] approach is specific to temperature forecasting, Hu et al.’s [6]
focus on RUL, and Shi et al.’s [11] target SOH estimation, collectively they contribute to
comprehensive LIB health monitoring and management. Moreover, they leverage advanced
machine learning techniques such as Convtrans, wavelet threshold denoising, CNNs, and
the Transformer model, indicating the growing trend of using sophisticated models to
enhance LIB management.
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However, each method has its limitations. For instance, Wan et al.’s [20] Convtrans
model may have increased computational demands for multi-step forecasting over longer
periods. Hu et al.’s [6] method may require careful selection of wavelet threshold denoising
parameters to ensure accurate noise reduction. Shi et al.’s [11] approach could be affected
by the quality and diversity of the input dataset, and further evaluation across a wider
range of LIB conditions may be necessary to ensure its generalizability. These limitations
highlight the need for continuous research and refinement in the fields of LIB management
and health estimation.

3. Machine Learning Techniques
3.1. Unsupervised Learning

Zhang et al. [22] have made a significant contribution to the field of LIBs forecast-
ing by developing an innovative forecasting system that combines EIS with Gaussian
process machine learning. EIS, which is known for its real-time and non-invasive measure-
ment technique, contains substantial information relevant to LIBs diagnosis, which the
authors utilized to its fullest potential. The authors curated a vast dataset comprising over
20,000 EIS spectra from commercial Li-ion batteries, which spanned various states of health,
states of charge, and temperatures, making it one of the largest datasets in the domain. The
Gaussian process model they developed takes the entire EIS spectrum as input, eliminating
the need for additional feature engineering. The model autonomously identifies relevant
spectral features corresponding to degradation, showcasing its adaptability and robustness.
An impressive aspect of Zhang et al.’s work is that their model can accurately predict the
RUL of LIBs, even in cases where comprehensive information about the battery’s past oper-
ating conditions is not available. This demonstrates the effectiveness of utilizing EIS signals
in LIBs management systems and underscores the power of Gaussian process machine
learning in providing precise forecasts of the SOH and RUL of Li-ion batteries. The findings
of this study hold great promise for advancing LIBs technologies in various applications. By
effectively leveraging EIS data and harnessing the capabilities of Gaussian process machine
learning, this research enhances the performance, reliability, and overall effectiveness of
LIB technologies, contributing significantly to the evolution of battery management and
forecasting systems.

3.2. Meta-Learning

Jeong et al. [23] have introduced an innovative approach to estimating the SOC
of Li-ion batteries by combining the concept of meta-learning with deep learning tech-
niques. They developed a meta-learning SOC estimation algorithm that relies less on both
pre-training and target battery data, leading to enhanced adaptability and a more rapid
algorithm adaptation to the target battery. Their method achieved significantly lower SOC
estimation errors compared to traditional transfer learning methods, showcasing strong
performance under challenging conditions. Wang et al. [24] introduced the meta thermal
runaway (TR) forecasting neural network (Meta-TRFNN), a data-driven approach aimed at
accurately forecasting the TR state at the cell-level of LIBs. The Meta-TRFNN combines
both high-dimensional thermal images and low-dimensional temperature and voltage
data, capturing a comprehensive thermal profile and demonstrating strong performance in
forecasting despite constrained historical data. Bai et al. [25] have taken a novel approach to
enhance SOH estimation by applying meta-learning techniques. They developed a scalable
and robust method for estimating the remaining capacity of LIBs solely based on data,
significantly improving the accuracy and efficiency of SOH estimation for LIBs. To tackle
the inherent data deficiency issue, the authors employed a meta-learning framework, as
illustrated in Figure 5.
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In comparison, the meta-learning-based SOC estimation algorithm introduced by
Jeong et al. [23] stands out for its ability to reduce reliance on specific target battery data
and adapt quickly to target batteries. The Meta-TRFNN developed by Wang et al. [24]
is notable for its robust performance in forecasting the TR state in LIBs despite data
limitations, and Bai et al. [25] approach is significant for enabling continuous monitoring
of SOH in EV batteries without extensive cycling and capacity measurements. Despite
their strengths, all methods may have computational costs and limited generalizability,
requiring further research to validate their scalability and effectiveness across different LIB
systems and conditions. Further, the Meta-TRFNN developed by Wang et al. [24] and the
meta-learning-based SOC estimation algorithm introduced by Jeong et al. [23] demonstrate
potential for practical applications and promise in enhancing battery health monitoring
and management.

3.3. Adversarial Training

Ye et al. [26] developed a novel deep domain adversarial network (DDAN) to estimate
the SOH of LIBs. This approach utilizes adversarial training and unsupervised feature align-
ment metrics, improving the accuracy and practicality of SOH estimation for real-world
applications. Additionally, Ren et al. [27] proposed a strategy that combines adversarial
learning and feature selection to enhance deep learning-based lifespan estimation for LIBs.
Their study effectively improved the accuracy of lifetime estimation through adversarial
feature selection strategies. Zou et al. [28] introduced a regression GAN approach for SOH
estimation. Their research focuses on creating a generalized model tailored to batteries
with specific specifications, considering the challenges associated with measuring real
SOH during battery operation. The method uses a generator that automatically creates
auxiliary training samples with distributions similar to actual samples and a discriminator
that learns the distribution of authentic samples. Moreover, Ardeshiri et al. [29] focused
on developing a novel prognostic architecture for predicting the degradation of LIBs and
estimating their RU, crucial for battery management systems. The proposed method uti-
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lizes a least-squares generative adversarial network, with a gated recurrent unit as the
generator and a multi-layer perceptron as the discriminator. This approach aims to learn
the probability distribution of future values through adversarial training, giving more
weight to large errors and mitigating the vanishing gradient problem during training. To
enhance prediction accuracy, time-domain features are extracted using statistical formulas,
and the most significant features are selected using the random forest algorithm. These
features are then fed into the network as a multivariate input set. The performance of
the method is evaluated using a dataset from NASA’s Prognostics Center of Excellence,
as well as experimental data from lithium-ion cells tested at different current rates. The
results indicate that the proposed model achieves a low prediction error of 2.63% and a
maximum absolute error of 0.02, demonstrating its effectiveness in predicting the RUL of
LIBs. Lastly, Nandhini et al. [30] introduced an unsupervised methodology using GANs
to extract reliable latent variables from EIS data, showcasing accurate capacity estimation
results when compared to traditional methods. Furthermore, Zhao et al. [31] combined
GAN-conditional latent space (GAN-CLS) with bidirectional long short-term memory
(BLSTM) to predict the state of rechargeable LIBs, achieving reduced time requirements
and enhanced accuracy.

Overall, the different methodologies presented in the studies address various chal-
lenges related to LIB health diagnostics, ranging from SOH estimation, lifespan estimation,
and RUL prediction to capacity estimation and state prediction. They leverage advanced
techniques such as adversarial learning, feature selection, and GANs to improve the accu-
racy and efficiency of battery diagnostics, demonstrating promising results across different
working conditions and datasets. However, each method also has its limitations. For
example, the regression GAN approach may struggle with complex data scenarios, while
unsupervised methodologies may require substantial computational resources for training.
Figure 6 illustrates GAN architecture.
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3.4. Neural Architecture Search

Hannan et al. [32] address the critical task of accurately determining the SOC in
LIBs commonly found in EVs. The authors enhance the back-propagation neural net-
work (BPNN) model by integrating the backtracking search algorithm (BSA) optimization
technique. This optimization method fine-tunes key parameters such as hidden layer
neurons and learning rate within the BPNN, significantly improving the model’s accuracy
and robustness. The approach is rigorously evaluated using various driving profiles and
temperature conditions, including the dynamic stress test and the Federal urban driving
schedule. The enhanced BPNN model, compared to other neural network models like the
radial basis function neural network and generalized regression neural network, outper-
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forms in SOC estimation accuracy across different driving profiles and temperatures. This
study highlights the effectiveness of the BPNN model augmented with BSA optimization
in enhancing SOC estimation accuracy for LIBs used in EVs.

3.5. Self-Supervised Learning

The studies by Hannan et al. [32], Che et al. [33], and Hannan et al. [34] focus
on improving the SOC and SOH estimation for LIBs, particularly in EV applications.
Hannan et al. [32] introduced a novel deep learning-based transformer model trained us-
ing self-supervised learning (SSL) techniques for SOC estimation. The model demonstrates
high accuracy in SOC prediction, even in variable ambient temperature conditions, and
exhibits robustness to temperature variations. Additionally, the learning weights from
the SSL training process exhibit transferability, enabling the model to perform well on
new LIBs with different chemistries. Che et al. [33] proposed a self-supervised learning
framework for SOH estimation. Their approach uses filter-based data preprocessing and
an auto-encoder–decoder network to learn aging characteristics from unlabeled data. The
framework achieves accurate SOH estimations across various LIB chemistries, formats, and
operating conditions with only three labeled data points, showcasing its efficiency and
accuracy in estimating SOH. Hannan et al. [32] presented another deep learning-based
transformer model for SOC estimation, which demonstrated exceptional performance
with the lowest RMSE at 1.2% and an MAE of just 0.7% on the test dataset. Like Hannan
et al. [32], this model was also trained using self-supervised learning principles and main-
tained high accuracy even in varying ambient temperatures. Overall, the three studies
highlight the effectiveness of deep learning approaches, especially when combined with
self-supervised learning techniques, in improving the accuracy, efficiency, and adaptability
of SOC and SOH estimation for LIBs in EV applications. Figure 7 illustrates the Architecture
of a Bi-LSTM with attention mechanism.
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3.6. Capsule Networks

Jonathan et al. [35] enhanced the efficiency of predicting the RUL of LIBs, crucial
for their second-life classification. The article introduces a capsule network architecture,
leveraging transfer learning, for swift battery RUL prediction. This method accurately
forecasts a cell’s RUL after just one charging and discharging cycle, making it exceptionally
rapid. By employing images that encapsulate complete cycles and even numerical data,
the model reduces preprocessing efforts and human-induced biases. This innovation
will benefit second-life battery classification, aid in developing health-conscious charging
protocols, and enhance battery management systems.

3.7. Differentiable Neural Computers

The works by Sun et al. [36] and Navega et al. [37] both contribute innovative method-
ologies for enhancing the monitoring and management of LIBs, specifically focusing on
thermal fault detection and SOC estimation, respectively.

Sun et al. [36] proposed a neural network-based approach for thermal fault detection
in LIBs, utilizing a long short-term memory (LSTM) neural network, which is a type of
recurrent neural network (RNN) known for capturing long-term dependencies in time-
series data. The incorporation of a modified walk-forward technique and a residual monitor
serves to enhance the accuracy and real-time detection capabilities of the approach. The
design’s simplicity and adaptability to various datasets make it practical for handling
real-world scenarios effectively.

On the other hand, Navega et al. [37] introduced a dual neural network fusion model
for SOC estimation, consisting of a linear neural network LIBs model and a backpropagation
(BP) neural network. This model is trained using dynamic stress test (DST) data to establish
the relationship between open circuit voltage (OCV) and SOC, enabling accurate SOC
estimations under various operational conditions. The integration of electrochemical
behavior representations and OCV-SOC relationship estimate ion enhances the efficiency
and effectiveness of LIBs management and control systems.

Overall, both methodologies contribute to the advancement of LIBs monitoring and man-
agement, with Sun et al. [36] focusing on real-time thermal fault detection Navega et al. [37]
concentrating on accurate SOC estimation. Both approaches offer promising solutions to
challenges faced in LIBs applications and hold potential for practical implementation in
real-world scenarios.

3.8. Continual Learning

Sun et al. [36] investigated various regularization strategies within the context of
continual learning, specifically focusing on LIBs degradation datasets. Their study aimed
to evaluate and compare different approaches to continual learning within regularization
strategies using authentic LIBs degradation data. They implemented and thoroughly as-
sessed multiple regularization strategies, comparing them based on task characteristics and
the sequence of task execution. The study found that the approach known as online elastic
weight consolidation demonstrated the most promising outcomes among the evaluated
strategies. Performance was observed to be influenced by the specific characteristics of
tasks and the sequence in which tasks were executed. Figure 8 in the study illustrates the
architecture of the base algorithms’ deep neural networks for non-regularized regression
and regularized classification tasks. The findings provide insights into the effectiveness of
different regularization strategies in the context of continual learning for LIBs degradation,
highlighting online elastic weight consolidation as a particularly promising approach.
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3.9. Reinforcement Learning

Cao et al. [38] have developed a groundbreaking methodology for accurately estimat-
ing the degradation cost of LIBs to optimize their participation in the energy arbitrage
market. This model-free deep reinforcement learning (DRL) approach frames the control
challenge as a Markov decision process (MDP), using noisy networks to acquire an opti-
mized control policy for charging and discharging strategies, considering LIBs’ degradation
patterns. The integration of CNN and LSTM architectures for forecasting electricity prices
contributes to improved decision making in energy arbitrage. By comprehending the inher-
ent uncertainty in LIBs’ degradation patterns, the DRL approach ensures energy arbitrage
actions do not harm their health. Validation using historical U.K. wholesale electricity
market prices demonstrates the framework’s superior performance and efficacy compared
to traditional methods. This methodology has the potential to enhance LIBs’ participation
in the energy domain, improving economics and viability.

3.10. Multi-Task Learning

The methodologies proposed by Li et al. [39], Bao et al. [40], and Che et al. [41] all
aim to enhance LIB management and health estimation through advanced data-driven
approaches. Li et al. [39] developed a multi-task learning framework to predict concurrent
degradation of capacity and power in early-life stages of LIBs, demonstrating robust per-
formance and superiority over single-task learning methods. Bao et al. [40] introduced a
multi-task learning network (MTL) for estimating LIBs’ SOC and state-of-energy (SOE),
achieving impressive accuracy and efficiency compared to other multi-task learning models.
Che et al. [41] proposed a method for online end-to-end state monitoring using transferred
multi-task learning with a CNN, showcasing superior accuracy and computational ef-
ficiency across diverse application scenarios. These approaches collectively represent
significant advancements in data-driven prognostics and state estimation for LIBs, offering
improved accuracy and efficiency in LIB management. However, potential limitations
of these methods may include the need for extensive computational resources, specific
data requirements, and challenges in real-world implementation and validation. Further
research and development are needed to address these limitations and fully exploit the
potential of data-driven approaches in LIB management. Figure 9 shows the proposed
multi-task learning network.
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3.11. Memory-Augmented Neural Networks

Fei et al. [42] have developed an innovative approach to predict the RUL of LIBs
using a modest dataset sourced from only 10 incomplete cycles. Their proposed “attention-
assisted temporal convolutional memory-augmented network” (ATCMN) framework, a
sophisticated deep learning architecture, addresses the challenge of RUL prediction with
limited data. A key aspect of their approach is the introduction of a three-dimensional
tensor input structure that incorporates temporal, capacity, and temperature dimensions
from the limited data. An attention module assigns weights to LIBs parameters, time
steps, and aging cycles for efficient information assimilation, while a temporal convolution
module learns latent spatial-temporal features. A memory-augmented module enhances
latent feature representation through a reconstruction process rooted in historical data,
and a prediction module crafts nonlinear mappings based on acquired latent features
for accurate LIBs RUL predictions. Computational evaluations show that the ATCMN
framework offers superior prediction precision and speed compared to state-of-the-art
methods. It also exhibits enhanced adaptability across different LIBs chemistries and
operational conditions. Fei et al.’s ATCMN framework marks a paradigm shift in LIBs RUL
prediction by efficiently navigating the constraints of limited data from incomplete cycles,
setting a new benchmark for prediction accuracy and efficiency compared to established
methodologies. This pioneering solution offers accuracy and efficiency even with a limited
dataset, showcasing adaptability across diverse operational conditions.

3.12. Generative Models for Data Augmentation

The data augmentation methodologies proposed by Cui et al. [43] and Zhao et al. [44]
both aim to improve LIB health prediction by enhancing the accuracy of SOH and other
critical parameters such as SOC. by Cui et al. [43] leverage the quantum assimilation
algorithm to construct a potential energy landscape, allowing for a unique exploration
of the feature space and more accurate SOH predictions, especially for LIBs with distinct
degradation trajectories. On the other hand, Zhao et al. [44] introduce a GAN-based
approach to generate synthetic time-series data, aiming to expand sparse datasets and
improve the learning capabilities of neural networks in estimating SOC and SOH. Both
methodologies offer innovative solutions to enhance the accuracy and reliability of LIB
health prediction, with potential implications for battery management systems. However,
potential limitations of these methods may include the need for extensive computational
resources or specific data requirements, as well as challenges in real-world implementation
and validation. Further research and development are needed to address these limitations
and fully exploit the potential of data augmentation strategies in LIB management.
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Both approaches offer innovative solutions to improve the accuracy and reliability of
LIB management and health prediction. Cui et al. [43] quantum assimilation-based method
focuses on refining SOH prediction in LIBs with complex degradation patterns, providing
insights into complex battery behaviors, and outperforming traditional methodologies. On
the other hand, Zhao et al. [44] GAN-based approach addresses the challenge of sparse
data in battery parameter estimation by generating synthetic data, thus enhancing the
robustness and accuracy of battery state estimation models. While both methods have
the potential to revolutionize the field of battery health prediction, they may also have
their limitations, such as the need for extensive computational resources or specific data
requirements. Further research and development are needed to address these limitations
and fully exploit the potential of data augmentation strategies in LIB management.

3.13. Logistic Regression

References [45,46] are provided as sources for information on logistic regression as a
statistical classification technique. Reference [47] is mentioned specifically for insights into
the application of logistic regression in fault detection and diagnosis in the LIB system.

Logistic regression (LR) is a statistical technique commonly used in binary classi-
fication tasks but can be adapted for multi-class classification, such as categorizing the
condition of LIBs. LR is straightforward and interpretable, but it may not capture com-
plex nonlinear relationships effectively. While LR is useful for categorical classification,
it is recommended to explore more advanced methods like neural networks or decision
trees, depending on the complexity of the monitoring challenge. The paper highlights
LR’s simplicity and effectiveness in two-class classification tasks but suggests that it has
been underutilized in LIB fault detection and diagnosis. Researchers are encouraged to
consider alternative machine learning algorithms beyond LR to address more complex
monitoring scenarios.

4. Specific Applications
4.1. A Machine Learning-Based Digital Twin

Sidahmed et al. [48] have presented a sophisticated battery digital twin framework
that relies on data-driven models trained using historical data to accurately represent
the real-time dynamics of a battery. This framework incorporates a SOH model that
estimates the battery’s capacity degradation and a SOC model that accounts for aging
effects, offering a comprehensive representation of battery behavior over time. The authors
have demonstrated the effectiveness of this digital twin by applying it to a publicly available
dataset, showcasing its high accuracy and compatibility with onboard execution. Sidahmed
et al.’s battery digital twin framework represents a significant advancement in real-time
battery modeling with potential applications in EVs and energy storage systems, offering a
robust solution for dynamic and accurate battery behavior representation.

4.2. Digital Twins for Electric Vehicle SoX Battery Modeling

Zhao et al. [49] conducted a comprehensive review of the existing state and challenges
related to battery systems and introduced a digital twin framework specifically designed
for accurately capturing the SOC during runtime operations. The digital twin framework is
built upon data-driven models trained using historical battery performance data, with an
emphasis on accurately handling complex nonlinear behaviors of batteries. The framework
includes periodic retraining of models to account for battery aging effects and was applied
to two publicly available datasets, with practical examples illustrating its utility and
effectiveness. The study encourages the adoption of the digital twin framework for batteries,
highlighting its capabilities in accurately representing battery behavior and enhancing
adaptability to real-world performance.
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4.3. A Brain-Inspired Spiking Network Framework Based on Multi-Time-Step Self-Attention

While artificial neural networks (ANNs) have been effective in monitoring battery
health, they suffer from drawbacks such as high energy consumption and limited general-
ization. In contrast, recent advancements in brain-inspired spiking neural networks (SNNs)
offer promising features like efficient spatiotemporal feature learning similar to biologi-
cal brains, with low power consumption. Wang et al. [50] introduced a novel approach
called Multi-Time-Step Self-Attention Spiking Neural Network (MSSA-SNN) for battery
monitoring. Specifically, the SNN-based self-attention module captures comprehensive
spiking features globally and optimizes synaptic weights from a holistic perspective. Ex-
periments conducted on two datasets of coin Li-ion batteries demonstrate that MSSA-SNN
accurately detects trends in battery degradation with remarkably low energy consumption.
This capability makes MSSA-SNN particularly suitable for energy-constrained consumer
electronics applications.

4.4. Applications of Random Forest (RF) Classifier

Random forest classifiers were used for various applications, including vehicle tra-
jectory prediction, image classification, facial expression recognition, fault diagnosis, and
sleep stage classification [51–56]. The random forest (RF) classifier is a supervised machine
learning method that has shown effective performance in a variety of classification tasks,
including those listed in Table 1.

Table 1. Different applications of Random Forest (RF) Classifiers.

Applications Characteristics Ref.

Sleep stage classifications from
electroencephalography (EEG) data. • Enhanced robustness through collaboration among

trees in random forest (RF).
• Random Forest is characterized as a linear classifier.
• Demonstrates reduced computational complexity

compared to certain other widely used classifiers.
• Well-suited for lightweight algorithms, facilitating

real-time operations.
• Convenient feature scaling is supported.
• Enables parallel operation, complementing the

primary usage of the system.

Bakmeedeniya, et al. [55]

Bearing fault identification from vibration data. Hu et al. [57]

Facial expression detection from video data. Maschler et al. [58]

Crop type classification from hyperspectral images. Wang et al. [59]

Lung vessel segmentation from computed
tomography (CT) images. Zhao et al. [60]

Mention of many more applications. Zhang et al. [61]

5. Graph-Based Models
5.1. Graph Neural Networks

Both Wang et al. [62] and Wei et al. [63] propose innovative approaches that utilize
advanced machine learning techniques to address key challenges in LIB management, such
as accurate capacity estimation, SOH prediction, and RUL prediction. Wang et al. [62]
leverage a graph neural network (GNN) to estimate LIB capacity by integrating diverse
sensor measurements into a graph-like structure. They use neural architecture search
to select data aggregation and feature fusion operations, improving model adaptability.
Wei et al. [63] employ graph convolutional networks (GCNs) with attention mechanisms
to enhance the prediction accuracy of SOH and RUL. They construct an undirected graph
using optimal graph entropy to capture intricate relationships among various features in
the LIB system. Both approaches demonstrate superior performance compared to existing
data-driven methodologies, showcasing impressive predictive accuracy and robustness.

These approaches offer several advantages, such as enhanced prediction accuracy,
adaptability, and robustness in noisy environments. By leveraging advanced machine
learning techniques, they overcome the limitations of conventional methods and improve
LIB health management applications. However, these methods may also have some limi-
tations. For example, they may require large amounts of data for effective training, and
the performance of these models can be influenced by the quality and quantity of the
input data. Additionally, the computational complexity of these techniques may be high,
requiring significant computational resources for training and inference. Nevertheless, the
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proposed approaches represent promising tools for LIB health management and safety,
offering improved accuracy and reliability compared to existing methods.

Wang et al. [62] have made a transformative breakthrough in the realm of LIB ca-
pacity estimation with their pioneering approach. Traditional methods for LIB capacity
estimation have been hindered by hand-crafted feature engineering or complex data-driven
approaches requiring intricate network designs and laborious trial-and-error iterations.
However, Wang et al.’s ingenious solution ingeniously organizes LIBs measurements from
multiple sensors into a complex graph structure. This architectural foundation, combined
with the powerful capabilities of graph neural networks (GNNs), facilitates a holistic and
dynamic data fusion process, enhancing the network’s capacity and contributing to im-
proved estimation accuracy. Moreover, they incorporate neural architecture search, which
automates optimization, streamlines manual network design, and fortifies the network’s
adaptability and resilience. The extensive validation using two publicly available datasets
confirms the efficacy of their approach, demonstrating not just promising but revelatory
results. Their in-depth analysis highlights the intrinsic potential of GNNs and the critical
role played by architecture searching in ensuring robustness and dependability, particularly
in noisy environments. This amalgamation of GNNs and neural architecture search is a piv-
otal turning point, ushering in heightened efficiency and pinpoint accuracy in LIBs health
management through remarkably improved capacity estimation. Wang et al.’s innovative
approach represents a significant advancement in accurately estimating the capacity of
LIBs, with potential implications for enhancing LIBs health management overall.

5.2. A Physics-Informed Machine Learning

The model structure of the pre-trained CNN model, is illustrated in Figure 10. The
methodologies from Cho et al. [64], Li et al. [65], Wang et al. [66], El-Dalahmeh et al. [67],
and Tan et al. [61] all focus on improving the performance, efficiency, and accuracy of
battery technologies, specifically in predicting temperature for LIB cells, streamlining CNN
models for better estimation performance with limited datasets, estimating the capac-
ity of lithium-ion (Li-ion) cells, diagnosing degradation of LIBs through time-frequency
image (TFI) analysis and transfer deep learning algorithms, and predicting the SOH in
LIBs, respectively. The structure of the DCNN-ETL model is demonstrated in Figure 11.
Cho et al. [64] utilize physics-informed neural networks (PINNs) to accurately predict LIBs’
temperature without requiring extensive training data or explicit physics equations, while
Li et al. [65] introduce a framework that strategically combines transfer learning and net-
work pruning to create streamlined CNN models with enhanced estimation performance.
The architecture of one among n DCNN-TL models constituting the proposed DCNN-ETL
mode is illustrated in Figure 12. Wang et al. [66] employ a cutting-edge methodology
that leverages transfer learning and ensemble learning to estimate the capacity of Li-ion
cells, and El-Dalahmeh et al. [67] propose a pioneering methodology that combines time-
frequency image (TFI) analysis with a transfer deep learning algorithm to extract diagnostic
attributes related to LIBs’ degradation. Lastly, Ye et al. [68] focus on predicting the SOH
in LIBs by addressing the issue of limited training data through transfer learning. Each
methodology has its advantages and disadvantages. Flowchart of the proposed model for
TFI capacity estimation is demonstrated in Figure 13. Cho et al. [64] offer a method that
does not require extensive training data or explicit physics equations but may not be as
accurate as methods that utilize more data. Li et al. [65] and Wang et al. [66] utilize transfer
learning and ensemble learning to improve estimation performance but may require a
large source dataset for pre-training. El-Dalahmeh et al. [67] use TFI analysis and transfer
deep learning to accurately predict the capacity of LIBs, but this may require more compu-
tational resources. Ye et al. [68] overcome the limitations of training data by integrating
knowledge from one task to improve predictions in a related task, but this approach may
have limitations in certain scenarios where there is not a strong foundation for transfer
learning. A comparison between different studies is described in Table 2. The architecture
of LSTM-FC is shown in Figure 14.
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Figure 11. The structure of the DCNN-ETL model [59]. The ith row and jth column of kth output of
the convolutional layer lconv can be expressed as Zlconv

i,j,k = C(X, K)i,j,k = Σkh
r=1Σkw

s=1Σkc
t́=1xí, j́, t́.kr,s, t́,k + bk;

í = (i − 1).sh + r; j́ = (j − 1).sw + s; where kr,s, t́,k and bk represent the weights and bias of the kth kernel in

the convolutional layer, respectively. The outputs of n individual DCNN-TL models, ẐlFC
n , were obtained

by a fully connected ensemble layer. This layer was used to assign the model weights, βn
lFC , to ẐlFC

n and
compute an estimated target for the input sample, ŷlFC = βn

lFC ẐlFC
n [66].
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Table 2. A comparison between different studies.

Investigation/Methods Advantages Disadvantages Contribution Ref.

Precise estimation of the
SOC using time-resolved

data from LIBs

Achieves highly accurate
SOC estimations suitable for

real-world applications

May have computational
demands

Offers potential for improved battery
management especially in real-world

scenarios but may require careful
consideration of computational

resources

[3,4]

Transformer-based Neural
Network with De-noising

Auto-Encoders

Offers high accuracy in RUL
prediction

Requires extensive data and
computational resources

Proposed a Transformer-based
neural network combined with

De-noising Auto-Encoders (DAE) for
improved RUL prediction of LIBs

[5,6]

Integrated wavelet
denoising and transformers

for RUL prediction

Accurate and generalized
predictions even with data

measurement noise

Wavelet threshold denoising
parameters must be carefully

selected for accurate noise
reduction

Accurate RUL prediction with
wavelet denoising and transformers [6]

CNN-Transformer
Framework

Offers high accuracy in SOH
prediction

Can be computationally
intensive

Introduced a comprehensive
approach integrating data

pre-processing and a
CNN-Transformer framework for

high-accuracy SOH estimation

[7,11]

Combined data
preprocessing CNNs and

Transformers for SOH
estimation

Remarkable accuracy in
SOH estimation innovative

approach

May be affected by input
dataset quality and diversity
further evaluation across a
wider range of conditions

may be necessary for
generalizability

Precise SOH estimation with
CNN-Transformer fusion [7,11]

Bi-LSTM-AM for RUL
Prediction

Effective for multi-step
ahead predictions of SOH;

continual parameter updates

Requires ongoing parameter
tuning; may have

computational demands

A model combining bidirectional
LSTM with attention mechanism for

RUL prediction
[7]

Proposes a cloud-based
AI-enhanced framework for
co-estimating SOC and SOH

Shows potential for
enhanced battery
management and

performance forecasting

May have computational
demands and may not be

universally applicable

Offers potential for improving
battery management but may require

careful consideration of
computational resources and

applicability

[11]

Dual-Stage Attention
Mechanism for SOC

Estimation

Effective SOC estimation
particularly in EV

applications

Complexity may affect
computational efficiency

A deep learning model integrating
domain knowledge and attention

mechanisms for SOC estimation in
LIBs

[12]

Utilizes self-attention and
autoregression for SOH

prediction of LIBs

Demonstrates superior
performance over existing

methods such as significant
reduction in RMSE and

MAPE

Requires substantial
computational resources and

may not be universally
applicable due to variations

in battery system
configurations and

conditions

Offers potential to significantly
improve battery prediction accuracy
and reliability but requires careful

consideration of computational
resources and applicability

[13]

Neural Network-Based
Thermal Fault Detection

Real-time detection
capability simplicity and
adaptability to various

datasets

May require substantial
computational resources;
further validation needed

for generalizability

A neural network-based approach
using LSTM for thermal fault

detection in LIBs
[14]

Combines meta-learning
with deep learning

techniques for estimating
SOC of Li-ion batteries

Achieves significantly lower
SOC estimation errors

compared to traditional
transfer learning methods

Limited scalability and
generalizability; may require
a large amount of training

data

Demonstrates potential for practical
applications and promise in

enhancing battery health monitoring
and management

[23]

Least-Squares GAN and
Gated Recurrent Unit

Uses GAN and GRU for
more accurate RUL

predictions; applies larger
penalties to larger errors

May have limitations in
handling complex data

scenarios

Offers potential for improving RUL
prediction accuracy but may require
further investigation for scalability

and effectiveness across different LIB
systems and conditions

[25]

Employed GANs for data
augmentation in health

prediction

Addresses the challenge of
sparse data improves

accuracy of battery state
estimation models

Extensive computational
resources may be needed
specific data requirements

Augmented LIB data for better
health prediction with GANs [26,29]

Bidirectional LSTM with
Attention Mechanism for

SOH Estimation

Improved SOH estimation
accuracy; robust feature

selection

Computational demands;
potential generalizability

concerns

A model integrating bidirectional
LSTM with attention mechanism for

SOH estimation
[27]

Backtracking Search
Algorithm (BSA) Optimized

Back-propagation Neural
Network

Enhances SOC estimation
accuracy for LIBs in EVs;

shows effectiveness in
various driving profiles and

temperature conditions

May not be suitable for all
battery chemistries; requires

a considerable amount of
training data

Offers potential for improving SOC
estimation accuracy but needs

further validation for generalizability
and adaptability

[32]
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Table 2. Cont.

Investigation/Methods Advantages Disadvantages Contribution Ref.
Self-supervised learning

framework for SOH
estimation in LIBs for EVs

reduces labeled data
reliance

Efficient SOH estimations
across LIB chemistries

Sole focus on SOH excludes SOC
estimation

Improves EV battery management
efficiency safety and longevity [33]

Deep Learning-based
Transformer model

trained with
Self-Supervised Learning

(SSL) improves SOC
prediction in LIBs for EVs

even in varying
temperatures

Transformer captures
long-range dependencies
SSL reduces labeled data

reliance

Focus on EVs resource-intensive
Enhances SOC accuracy and

robustness in EVs reducing labeling
requirements

[34]

DL-based transformer
model for SOC estimation
in LIBs for EVs with SSL
training high accuracy

Low RMSE MAE; SSL
reduces labeled data

reliance

Focus on EVs computational
demands

Enhances SOC estimation accuracy
reliability efficiency and adaptability

in EVs
[34]

Dual Neural Network
Fusion Model for SOC

Estimation

Accurate SOC estimations
under various conditions

Requires dynamic stress test
(DST) data for training; may not

be universally applicable

A model using a combination of
linear neural networks and

backpropagation neural networks for
SOC estimation in LIBs

[37]

Deep Reinforcement
Learning (DRL) for LIB

Degradation Cost
Estimation

Robust Control Strategy:
DRL approach ensures

energy arbitrage actions
do not harm LIB health by

comprehending the
inherent uncertainty in

LIBs’ degradation patterns

Computational Complexity:
High computational resources
may be necessary for training

and forecasting

Implementation of a DRL approach
for estimating the degradation cost

of LIBs to optimize their
participation in the energy arbitrage

market

[38]

Introduces a multi-task
learning network

Impressive accuracy and
efficiency compared to

other multi-task learning
models

Specific data requirements
potential challenges in

real-world implementation and
validation

Efficient SOC and SOE estimation
with MTL [40]

Developed a multi-task
learning framework

Robust performance and
superiority over

single-task learning
methods

Extensive computational
resources may be needed

Robust capacity and power
degradation prediction [39,40]

Develops a scalable and
robust method for

estimating the remaining
capacity of LIBs solely

based on data

Improves the accuracy
and efficiency of SOH

estimation for LIBs

Requires a large amount of
historical data for training

Represents a significant
advancement in estimating the
remaining capacity of LIBs and

enhances battery management and
forecasting systems

[39,40]

Proposes a cloud-based
AI-enhanced framework

for co-estimating SOC and
SOH

Shows potential for
enhanced battery
management and

performance forecasting

May have computational
demands and may not be

universally applicable

Offers potential for improving
battery management but may require

careful consideration of
computational resources and

applicability

[41]

Leveraged quantum
assimilation for SOH

prediction

Refines SOH prediction
provides insights into

complex battery behaviors

Extensive computational
resources may be needed specific

data requirements

Improved SOH prediction with
quantum assimilation [43]

Introduces a sophisticated
battery digital twin

framework

Offers a comprehensive
representation of battery
behavior over time with

high accuracy and
compatibility with
onboard execution

Requires a large amount of
historical data for training

Represents a significant
advancement in real-time battery

modeling with potential applications
in EVs and energy storage systems

[48,49]

Graph Neural Network
(GNN) for Capacity

Estimation

Robust Adaptability:
Utilizing neural

architecture search for
selecting optimal

operations improving
model adaptability

Data Demands: May require
substantial data for training to

maintain optimal model
performance

Utilization of a GNN to estimate LIB
capacity by integrating diverse

sensor measurements into a
graph-like structure

[62]

Physics-Informed Neural
Networks (PINNs) to

accurately predict LIBs’
temperature without
requiring extensive

training data or explicit
physics equations

Accurate prediction of
LIBs’ temperature without
needing extensive training

data or explicit physics
equations

May not be as accurate as
methods that utilize more data

Offers a method that does not require
extensive training data or explicit

physics equations for accurate LIBs’
temperature prediction

[64]
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Table 2. Cont.

Investigation/Methods Advantages Disadvantages Contribution Ref.

Proposed a method using
transferred CNN for state

monitoring

Superior accuracy and
computational efficiency

across diverse application
scenarios

Extensive computational
resources may be needed specific
data requirements challenges in
real-world implementation and

validation

Superior state monitoring using
transferred CNN [65]

Developed a framework
combining transfer

learning and network
pruning to create

streamlined CNN models
for improved estimation

performance

Combines transfer
learning and network

pruning to create
streamlined CNN models
with enhanced estimation

performance

May require a large source
dataset for pre-training

Develops a framework that improves
CNN models’ estimation

performance by combining transfer
learning and network pruning

[67]

Combined time-frequency
image (TFI) analysis with
a transfer deep learning
algorithm to diagnose
degradation of LIBs

Uses time-frequency
image (TFI) analysis and a

transfer deep learning
algorithm for accurate

LIBs’ degradation
diagnosis

May require more computational
resources

Proposes a methodology that
improves LIBs’ degradation

diagnosis through TFI analysis and
transfer deep learning

[67]

Focused on predicting
SOH in LiBs through
transfer learning to

address limited training
data

Addresses the issue of
limited training data by

utilizing transfer learning
for SOH prediction in LiBs

May have limitations in
scenarios where there is not a
strong foundation for transfer

learning

Focuses on predicting SOH in LiBs
and offers a method that overcomes

the limitations of training data by
integrating knowledge from one task
to improve predictions in a related

task

[68]

Deep Domain Adversarial
Network

Uses adversarial training
and unsupervised feature

alignment metrics
potentially improving

SOH estimation accuracy
for real-world applications

May require substantial
computational resources and

may have limitations in
handling complex data scenarios

Shows promise in improving SOH
estimation but requires further
investigation for scalability and
effectiveness across different LIB

systems and conditions

[68]
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6. Other Models and Techniques
6.1. Energy-Based Models

In LIB health monitoring (BHM), accurately estimating the SOH is a significant chal-
lenge, particularly when complete discharging curves are not readily available [46]. Ad-
dress this issue by exploring energy-based features for precise and reliable SOH estimation,
recognizing that incomplete discharging conditions often disrupt the accuracy of conven-
tional aging features extracted from full cycle processes. Their Enhanced Gaussian Process
Regression (GPR) model introduces several enhancements, including features from direct
measurement curves, a multidimensional linear mean function, and a novel covariance
function designed to adapt to data fluctuations. Experiments conducted on batteries from
the NASA dataset with varying initial health states demonstrate the model’s effectiveness
and superior performance, with a mean root mean squared error (RMSE) of only 0.97%
in the testing set. This research represents a significant step forward in battery health
estimation, particularly under incomplete discharging conditions, and holds promise for
more precise SOH monitoring in lithium-ion BHM.

As shown in Figure 15. Cai et al. [69] have devised an innovative approach that
leverages energy-based features and an enhanced GPR model to tackle the challenge of
accurate SOH estimation under incomplete discharging conditions. Their model’s strong
performance and ability to outperform other methods highlight its potential for enhancing
LIB health monitoring and management [69].
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6.2. Discussion

Table 3 discusses the significance of accurate state-of-health (SOH) estimation for LIBs,
especially in the context of EVs and consumer electronics. It highlights the challenges asso-
ciated with forecasting SOH and RUL and the role of machine learning (ML) in addressing
these challenges. In addition, it delves into a more comprehensive explanation of different
key points.
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Table 3. Significance of accurate SOH estimation for LIBs.

Applications Description Ref.

Advancements in Battery
Technology

Over the past decade, there have been significant strides in battery technology, with a
notable focus on LIBs. These advancements have played a crucial role in
revolutionizing the development of EVs and other technologies that depend on
efficient energy storage.

He et al. [70]

Importance of SOH Estimation
Precise estimation of the state-of-health (SOH) in LIBs holds paramount importance.
The SOH serves as a measure of a battery’s health and condition, significantly
influencing its reliability, safety, and long-term cost-effectiveness.

Wang et al. [71]

Challenges in SOH and RUL
Forecasting

Despite notable technological progress, accurately forecasting the state-of-health
(SOH) and RUL of Li-ion batteries poses a considerable challenge. This limitation
serves as an impediment to the advancement of technologies such as EVs and
consumer electronics.

Xia et al. [72]

Consumer Electronics and LIBs

LIBs are extensively utilized in diverse consumer electronic devices, playing a vital
role in the expansion of industries associated with smartphones, laptops, and other
portable devices. Safeguarding the health of these batteries is imperative to mitigate
safety concerns, such as the risk of explosions or fires.

Arora et al. [73]

Capacity Prediction Techniques

Conventional methods for predicting battery capacity frequently depend on extracting
features from measured signals acquired under specific operating conditions.
However, these approaches may not consistently deliver accurate predictions across
all scenarios.

Peng et al. [74]

Monitoring SOH in EVs

Monitoring the state-of-health (SOH) of electric vehicle (EV) batteries poses specific
challenges due to the labor-intensive and time-consuming processes involved in
battery cycling and capacity measurements necessary for creating precise SOH
estimation models.

Shah et al. [75]

RUL Prediction
Precise forecasting of the RUL of LIBs is essential for extending battery lifespan and
ensuring safety. Nevertheless, the limited number of charge and discharge cycles in
LIBs may require additional historical data to enhance prediction accuracy.

Yao et al. [76]

Degradation in LiBs
LIBs experience degradation over time due to factors such as usage and exposure to
environmental conditions. This degradation affects their energy storage capacity and
power supply capability, posing a challenge for accurate prediction.

Kabir et al. [77]

Machine Learning in LIB State
Estimation

Machine learning (ML) techniques have become increasingly popular in various fields,
including LIB state estimation. These ML methods are employed to improve the
accuracy of predicting the state of LIBs while simultaneously reducing the
computational burden.

Chandran et al. [78]

Balancing Factors in LIB Design
The design of LIBs requires a delicate balance of multiple factors, encompassing
chemistry, materials, and manufacturing processes. Effectively achieving accurate
state estimation while considering these intricacies poses a challenge.

Iraola et al. [79]

The accurate estimation of the state-of-health and RUL of LIBs is crucial for the
safety, reliability, and longevity of batteries used in EVs and consumer electronics. While
challenges exist, machine learning offers a promising avenue for improving the accuracy of
these predictions and addressing the complexities inherent in battery design and operation.
Table 4 provides a range of topics related to the implementation of AI in various aspects of
battery management and energy storage systems. In addition, it breaks down and provides
more comprehensive explanations for each of the different topics. Table 5, demonstrate
deep learning methods for health monitoring of LIBs.

Over the past decade, there have been significant advancements in battery technology,
particularly in the context of LIBs, which have revolutionized the development of electric
vehicle (EV) technologies. These advancements have opened up new possibilities for
clean and sustainable transportation. One critical aspect of the effective use of LIBs is
accurately estimating their state-of-health (SOH). The SOH of a battery is a measure of
its overall condition and performance and is vital to ensuring the reliability, safety, and
cost-effectiveness of LIBs over the long term. Accurate SOH estimation is particularly
crucial in applications like EVs, where battery failure can have significant safety and
economic consequences.
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Table 4. The implementation of AI in various aspects of battery management.

Applications Description Ref.

Machine Learning Applications
in Property Prediction

Machine learning is employed to predict various properties of materials, and this
includes properties of materials utilized in batteries, such as capacity, conductivity, or

thermal properties.
Hu et al. [6]

Online Health Diagnostics for
LIBs

AI is employed for real-time diagnostics of battery health, particularly in EVs, utilizing
data from both cloud and edge computing. Ensuring the accuracy and robustness of

these diagnostics is crucial for effective battery management.
Tian et al. [7]

Modeling Multiphysics and
Multiscale Electrochemical

Systems

This encompasses the intricate process of employing AI to model and predict
electrochemical systems in batteries, often necessitating complex calculations for

accurately simulating these systems.
Fu et al. [8]

State-of-Health (SOH)
Estimation for LIBs

State-of-health (SOH) estimation is crucial for evaluating the health and reliability of
LIBs over time. It provides insights into how well a battery can perform in comparison

to its original condition.
Liang et al. [9]

Battery State Prediction
Forecasting the state of batteries, such as the SOC, is essential for ensuring safe and
efficient operation, particularly in EVs. This helps prevent issues like unexpectedly

running out of power.
Liu et al. [10]

Integrated Framework for AI in
Battery Management

An integrated framework likely denotes a comprehensive approach to integrating AI
into battery management systems, wherein various AI techniques and components

collaboratively function seamlessly.
Shi et al. [11]

Deep Learning in SOH
Estimation

Deep learning techniques, such as CNN and recurrent neural networks (RNNs), are
applied for state-of-health (SOH) estimation. Nevertheless, there might be untapped

potential in these methods that warrants further exploration.
Wang et al. [13]

LIBs Capacity Estimation
Precisely estimating the capacity of LIBs is crucial for effective management. AI,

particularly CNN, is being investigated for this task, although the challenge of data
collection persists.

Tian et al. [15]

Correlation Among Features in
Predictive Models

Identifying and leveraging correlations among features can enhance the accuracy of
predictive models for battery-related tasks. This, in turn, can result in more efficient and

reliable predictions.
Zhang et al. [16]

Distribution Discrepancies in
Training and Testing Data

This pertains to the challenge of ensuring that AI models trained on one dataset can
effectively generalize to different working conditions or datasets. Xie et al. [17]

Data-Driven Fault Prediction
AI is utilized for predicting faults or issues in batteries. Continual learning is being

explored as a method to adapt models to changing operational or environmental
conditions.

Marri et al. [18]

Single-Scale Feature Limitations
Challenges emerge when attempting to predict the health of batteries, attributed to
factors such as capacity regeneration and random fluctuations. These elements can

restrict the accuracy of predictions based on single-scale features.
Bao et al. [19]

Temperature Monitoring of LIBs
Monitoring the temperature of LIBs is essential for both their performance and safety. AI
techniques, such as convolutional transformers, are applied for multi-step time series

forecasting of temperature in this context.
Wan et al. [20]

Battery Discovery and
Electrolyte/Electrode Materials

AI is utilized to explore and identify new battery materials, encompassing both
electrolyte and electrode materials. This application contributes to the development of

more efficient and durable batteries.
Zhang et al. [22]

Challenges in Deploying AI in
Real-World Scenarios

Despite the promise of AI in battery management, implementing it effectively in
real-world scenarios poses significant challenges. These challenges may encompass

issues such as data availability, computational resources, and model robustness.
Zhao et al. [31]

Spiking Neural Networks
(SNNs)

Spiking Neural Networks (SNNs) are a type of neural network inspired by the human
brain. They are being explored as an energy-efficient alternative for specific

battery-related tasks.
Hannan et al. [32]

Transfer Learning for Digital
Battery Twins

Transfer learning is a technique wherein pre-trained models can be adapted for new
tasks. In the realm of battery management, this approach can save time in training

models for different battery aging states.
Hannan et al. [34]

AI Implementation in Battery
Management

This pertains to the application of AI techniques for optimizing and managing batteries,
especially in EVs and grid energy storage systems. AI has the potential to improve

battery performance, extend longevity, and enhance safety.
Che et al. [41]

Regression GAN
GANs are employed to create models capable of generating data that closely resembles

real-world data. In this context, GANs are utilized to develop models for batteries,
taking into account factors such as noise and sensor failures.

Zhao et al. [44]
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Table 5. Deep learning methods for health monitoring of LIBs.

Method Purpose Advantages Considerations Ref.

Auto-encoders Detecting deviations from
normal battery behavior.

Can identify anomalies without
explicit labels.

Requires a well-defined definition
of normal behavior Hu et al. [6]

Recurrent Neural Networks
(RNNs), particularly

LSTM networks

Predicting SOC and SOH
over time.

Effective for handling sequential
battery data.

Requires time-series data and
may need significant training data Che et al. [33]

Gated Recurrent Units (GRUs)
Analyzing voltage, current,

and temperature
time-series data.

Suitable for capturing temporal
dependencies.

Data quality and preprocessing
are crucial Liu et al. [56]

CNN Analyzing microscopic
images for defect detection

Effective for
image-based monitoring

Requires image data and
specialized hardware for

image capture
He et al. [70]

Multimodal Deep Learning Combining data from
various sensors

Provides a holistic view of
battery health

Requires synchronization and
alignment of diverse data sources

Garcia-Ceja et al. [80],
Gaw et al. [81]

Transfer Learning with
pretrained models

Fine-tuning models for
battery health tasks

Can leverage pretrained
knowledge and require less

labeled data

Domain adaptation may
be needed

Ni et al. [82],
Ma et al. [83]

Reinforcement Learning
(RL) agents

Optimizing battery
management decisions

Can learn to maximize battery
lifespan and performance

Complex to implement and may
require simulation environments

Li et al. [84],
Subramanya et al. [85]

Interpretable Models
alongside deep learning

Providing insights into
model decisions

Ensures transparency and
understanding of AI-driven

decisions

May involve trade-offs between
accuracy and interpretability

Zhao et al. [86],
Ying et al. [87]

Models adapted to
streaming data

Real-time monitoring and
decision making

Immediate responses to changing
battery conditions

Resource-intensive and requires
continuous data streaming

Liu et al. [88], Li et al.
[89]

Synthetic data generation,
e.g., GANs

Augmenting limited
training datasets

Increases robustness
and generalization

Requires additional
computational resources for

data generation
Naaz et al. [90]

Accurate SOH estimation is a challenging task that has far-reaching implications. It
is not limited to EVs but also extends to the broader use of LIBs in consumer electronic
devices. In the context of consumer electronics, monitoring the health of LIBs becomes
crucial because any potential instability in these batteries can lead to dangerous incidents
such as explosions or fires. Traditionally, techniques for predicting the capacity (the amount
of energy a battery can store) of LIBs have relied heavily on analyzing features extracted
from measured signals obtained under strict operating conditions.

Predicting the SOH of LIBs, especially in the context of electric vehicle batteries, is
particularly challenging due to the time-consuming and labor-intensive process involved in
battery cycling and the capacity measurements needed to create an accurate SOH estimation
model. Furthermore, accurately forecasting the RUL of LIBs is essential for extending
battery lifespan and ensuring safety. However, due to the limited number of charge and
discharge cycles that LIBs can undergo before they degrade significantly, having sufficient
historical data is a major challenge that can impact the accuracy of these predictions.

LIBs naturally degrade over time due to usage and exposure to environmental condi-
tions. This degradation affects their ability to store energy and deliver power effectively.
Accurately predicting the capacity and power fade of LIBs cells is especially challenging
because of the inherent manufacturing variations in battery cells and the complex nonlinear
aging processes they undergo.

Given the importance of accurate LIBs state estimation, it has become an area of great
interest for researchers. However, designing LIBs involves balancing multiple factors, such
as energy density, safety, and cost-effectiveness, making it a complex task. To address these
challenges, machine learning (ML) has gained prominence as a tool to improve the accuracy
of LIB state estimation. ML techniques can handle large datasets and complex patterns in
data, thus aiding in more precise predictions while reducing the computational burden
on researchers. Table 6 demonstrates key features for transformer-based models for LIB
health prediction and state estimation. A categorization and summary of the key insights
and implications of different methods for health monitoring and state estimation in LIB is
shown in Table 7.
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Table 6. Transformer-based Models for LIB health prediction and state estimation.

Key Features Description

Improved Accuracy:

Transformer-based models are proficient at forecasting RUL, SOH, and SOC.
Transformer-based models consistently exhibit enhanced precision when predicting RUL, SOH, and SOC in LIBs.
These models are adept at capturing temporal patterns and extracting features from sequential data, resulting in
more dependable predictions.

Noise Reduction:

Integrating Denoising Auto-encoders (DAE) diminishes the influence of noise.
The integration of Transformer-based models with preprocessing methods such as Denoising Auto-encoders
(DAE) proves effective in minimizing the impact of noise on battery capacity data, leading to increased accuracy
in predictions.

Advanced Features:
Performance is boosted through feature extraction from EIS data and the utilization of VITs.
The enhancement of LIB health prediction models is achieved by incorporating sophisticated features and
techniques, including the extraction of features from EIS data and the integration of VITs.

Simplicity and Scalability:
Innovative equalizer designs streamline battery management.
The simplification of battery management is facilitated by novel equalizer designs, which eliminate the necessity
for intricate control strategies. This results in reduced system costs without compromising efficiency.

AI Integration:
Self-attention and autoregression enhance prediction accuracy.
The integration of AI techniques such as self-attention and autoregression not only improves prediction accuracy
but also holds the potential to revolutionize LIB health prediction.

Multiphysics and Multiscale
Systems:

Cloud-based AI-enhanced frameworks for jointly estimating SOC and SOH.
The implementation of cloud-based AI-enhanced frameworks for the simultaneous estimation of SOC and SOH in
multiphysics and multiscale LIB systems shows potential for improving battery management and forecasting
performance under realistic operational conditions.

CNNs have demonstrated effectiveness in monitoring battery health through image-
based analysis. This includes tasks such as examining electrode microstructures and
detecting damage in separators [91].

LSTM networks [92] are well-suited for analyzing time-series data, making them
suitable for monitoring battery discharge and charge cycles. In contrast, recurrent neural
networks (RNNs) [93] are beneficial for analyzing sequential data, enabling the prediction
of battery degradation, SOC, and SOH by analyzing historical data.

Auto-encoders, as unsupervised deep learning models, can be employed for feature
extraction and the detection of anomalies [94]. They excel at identifying subtle changes in
battery behavior and anomalies in voltage, current, or temperature data.

Reinforcement learning (RL) techniques [95] can be utilized to optimize battery man-
agement and control strategies, extending battery life by adapting charging and discharging
policies based on real-time battery health and usage patterns.

Hybrid models, which integrate various deep learning methods, show promise for
enhancing overall performance [96]. These models leverage the strengths of different deep
learning techniques, such as CNNs for image analysis and LSTMs for time-series data,
providing a comprehensive perspective on battery health.

7. Navigating Challenges in LIB Health Prediction

This section explores the intricate challenges associated with accurately predicting the
state-of-charge (SOC) and state-of-health (SOH) of LIBs for EVs. The discussion encom-
passes various aspects, including multiphysics modeling, deep learning for SOH estimation,
online diagnostics, capacity estimation, data-driven methods, temperature monitoring,
alternative approaches, correlation challenges, distribution discrepancies, fault prediction,
and advanced techniques. The narrative underscores the potential of innovative solutions,
emphasizing the impact of advanced techniques on practical applications in EVs and energy
storage systems. The accompanying table highlights some features related to advancements
in LIB health prediction.

Challenges in Battery Modeling: Precisely estimating the state-of-charge (SOC) of
batteries is vital for ensuring the safe and efficient operation of EVs, particularly in complex
loading scenarios. Accurate modeling and forecasting of multiphysics and multiscale
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electrochemical systems under realistic conditions using first-principles and atomistic
calculations have presented challenges [97].

State-of-health (SOH) Estimation: The accurate estimation of the state-of-health (SOH)
in LIBs is crucial for ensuring the safety and reliability of EVs. Deep learning for SOH
estimation has mainly relied on CNNs and recurrent neural networks (RNNs), not fully
exploiting the method’s potential. Transfer-learning could be employed in the training
process of digital battery twins to enhance data and computational efficiency [98,99].

Online Health Diagnostics: The application of deep learning in LIB online health
diagnostics, using cloud and edge computing with big data, has seen widespread imple-
mentation. Challenges include improving diagnostics’ accuracy, robustness, and real-time
applicability, particularly considering degradation feature trajectories’ differences between
training and testing domains [100,101].

Capacity Estimation: Online estimation of LIBs capacity is crucial for LIBs manage-
ment systems in EVs and grid energy storage applications. CNNs show promise in this
task, but collecting aging data is time-consuming and costly [102,103].

Data-Driven Methods and Challenges: Accurate SOH estimation using data-driven
methods is challenging due to the difficulty of measuring real SOH during actual LIBs
operation and noise or sensor failures. Regression GAN could be used to develop a general
model for batteries [104].

Temperature Monitoring: Monitoring the temperature of LiBs is crucial for improving
performance and mitigating the risk of TR. A convolutional transformer (Convtrans) could
be used for multi-step time series forecasting [105,106].

Alternative Approaches: spiking neural networks (SNN) present an alternative to
traditional artificial neural networks, known for their excellent simulation of spatiotemporal
feature learning abilities and low power consumption [107].

Table 7. Advancements in LIB Health Prediction [108].

Key Features Perspectives

Practical Applications The combined results underscore the significant influence of advanced techniques on predicting the health of
LIBs, positioning them as promising candidates for practical applications in EVs and energy storage systems.

Effectiveness of Advanced
Techniques

Research indicates the efficacy of transformer-based models, particularly when integrated with preprocessing
methods like DAE, EIS data analysis, and innovative cell equalizers. The incorporation of cloud-edge computing
and advanced deep learning techniques, such as self-supervised transformer neural networks, holds promise for
tackling complexities in multiphysics and multiscale systems.

Advanced Techniques for
Prediction

Transformer-based models and bidirectional encoder representations from transformers (BERT) are emphasized
for their role in improving the prediction of LIB health and state estimation. These techniques exhibit promise in
tackling challenges associated with RUL, SOH, and SOC prediction for LIBs.

Challenges in Fault Prediction The early prediction and thorough comprehension of faults in LIBs could markedly enhance product quality.
Continual learning holds the potential for flexibility by adapting previously acquired knowledge to new tasks.

Distribution Discrepancies
and Generalization

Numerous existing methods operate under the assumption that training and testing data adhere to the same
distribution. This can result in models that prove ineffective when applied to datasets operating under distinct
working conditions.

Correlation and Feature
Aggregation

Current prediction methods frequently fall short in uncovering correlations among features, thereby affecting the
accuracy of predictive models.
Identifying these correlations can assist in recognizing features with high similarities, enabling their aggregation
to enhance the accuracy of predictive models.

8. Determination of Battery Parameters in EVs

Analytical Models: Engineers frequently employ mathematical models to simulate the
behavior of LIBs, which are extensively used in EVs and energy storage systems (ESS). These
models account for variables such as cell chemistry, temperature, charging/discharging
rates, and the impacts of aging. Some popular models include the equivalent circuit
model, which represents the battery as an electrical circuit with resistors, capacitors, and
voltage sources; the Doyle–Fuller–Newman (DFN) model, which considers electrochemical
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reactions within the battery; and the pseudo-2D and 3D models, which offer more intricate
representations of the battery’s inner workings [109].

Empirical Data: Battery manufacturers and researchers often conduct experiments to
assess the performance of LIBs under varying operational conditions, such as
charge/discharge cycles, temperature fluctuations, and aging. By scrutinizing this ex-
perimental data, engineers can determine critical parameters like capacity, voltage, internal
resistance, and self-discharge rate [110].

Real-Time Monitoring: Modern EVs and ESS commonly include battery management
systems (BMS) that monitor each battery cell’s SOC, SOH, and state of function (SoF). The
BMS utilizes sensors and algorithms to estimate parameters such as SoC (the remaining
percentage of a full charge), SoH (the overall condition of the battery and its remaining
lifespan), and SoF (the battery’s power delivery capabilities under different conditions). Ad-
vanced BMSs might also incorporate machine learning algorithms to enhance the accuracy
of these estimations over time by analyzing real-world data [111].

AI and Machine Learning: AI and ML techniques are increasingly utilized to op-
timize battery performance and enhance battery management strategies. For instance,
reinforcement learning algorithms can learn optimal charging and discharging strategies to
minimize degradation and improve efficiency. Predictive maintenance algorithms can also
forecast potential battery failures and suggest preemptive measures. AI and ML methods
can likewise enhance the accuracy of analytical models and empirical data by identifying
patterns and correlations within extensive datasets.

It is important to note that battery technology and methodologies for determining
battery parameters are continually evolving, and new AI and ML-based techniques are
likely to emerge in the future. As of my last update, AI and ML applications were not yet
widely integrated into commercial EVs and ESS, but ongoing research and development in
this domain was occurring [112,113].

Vinay Vakharia et al. [114] introduced an enhanced explainable AI (Ex-AI) framework
designed for forecasting battery discharge capacity. Figure 16 illustrates the Ex-AI method-
ology to estimate Li-ion battery discharge capacity. Initially, three deep learning (DL)
models, namely stacked LSTM networks (stacked LSTMs), GRU networks, and stacked
recurrent neural networks (SRNNs), were constructed using six input features. Ex-AI was
utilized to discern pertinent features and optimize its operational parameters, leveraging
the jellyfish metaheuristic optimization technique. The findings indicate that employing
the jellyfish-Ex-AI model resulted in superior discharge capacity predictions. Remarkably
low RMSE of 0.04, mean absolute error (MAE) of 0.60, and MAPE of 0.03 were achieved
with the Stacked-LSTM model, underscoring the efficacy of our proposed methodology.

Su et al. [115] introduced a deep learning neural network and a fine-tuning-based
transfer learning approach aimed at precise and robust SOH estimation for diverse battery
types. Figure 17 illustrates the procedures to build an ML-based SOH estimation method.
Firstly, they proposed a universal high-frequency (HF) extraction method to derive four
highly relevant HFs. Subsequently, they constructed a deep learning neural network
incorporating LSTM and fully connected layers to model the correlation between the
HFs and SOH. Thirdly, they employed a fine-tuning-based transfer learning strategy for
SOH estimation across different battery types. Their proposed methods were thoroughly
evaluated using three open-source datasets. Experimental findings indicate that the deep
learning neural network, coupled with the HFs, accurately estimates SOH within a single
dataset, yielding a mean absolute error (MAE) and RMSE of 1.21% and 1.83%, respectively,
without resorting to the transfer learning strategy. Moreover, for transfer learning across
various aging datasets, the overall MAE and RMSE are restricted to 1.09% and 1.41%,
underscoring the efficacy and reliability of the fine-tuning strategy.
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9. Estimating the Health of LIBs under Dynamic Conditions
Electrochemical Impedance Spectroscopy (EIS)

Xiong et al. [116] discussed the significance of efficiently estimating the health state of
LIBs for performance monitoring and economic evaluation. It emphasizes the challenge of
online health state estimation and highlights the use of data-driven techniques, particularly
artificial neural networks (ANNs) like the Elman neural network (ENN). The paper pro-
poses an improved ENN method, called the EIS-CS-ENN model, utilizing EIS and cuckoo
search (CS) algorithms. Comparative analysis demonstrates the superiority of the EIS-CS-
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ENN model over other ANN methods. It stresses the importance of selecting appropriate
health indicators (HIs) for efficient state estimation and presents evaluation results and
suggestions based on mathematical modeling and state requirements. Additionally, the
robustness of the EIS-CS-ENN model for LIB health state estimation is verified.

Li et al. [117] addressed the challenge of assessing the SOH of LIBs for second-life
(SL) applications without intrusive testing. They proposed using experimental EIS data
and neural networks (NN) to evaluate SoH, along with a novel dimensionality reduction
approach to streamline EIS measurements. Validation with datasets of LiBs under SL condi-
tions shows promising results, with low RMSEs obtained for both lithium iron phosphate
(LFP) and lithium nickel manganese cobalt (NMC) cells. The proposed methodology offers
advantages over conventional capacity tests, including non-invasiveness, shorter processing
time, and lower energy consumption, thus facilitating the SL market for retired LiBs.

Wang et al. [118] addressed the challenge of accurately estimating the SOH for LIBs
due to their complex degradation mechanisms. It proposes an EIS-based method that
combines an improved equivalent circuit model (ECMC) with data-driven techniques.
By identifying parameters from EIS data and using them as inputs for gaussian process
regression (GPR), the proposed method achieves accurate SOH estimation with an average
RMSE of only 1.77%. This approach demonstrates promising results even under different
temperatures, indicating its effectiveness in estimating LIBs’ SOH.

10. Voltage and Current Profiling

Li et al. [119] introduced a method for estimating the SOH of LIBs based on their
constant-current charging curve, aiming to improve both the accuracy and stability of the
estimation. It utilizes a multi-objective optimization extreme learning machine (MOWOA-
ELM) approach, where a logit polynomial fitting model is employed to extract relevant
features from the charging curve. The MOWOA-ELM model, optimized using a modified
whale search algorithm, achieves low RMSE (0.43%) and standard deviation (0.28%) in
SOH assessment. Experimental results validate the effectiveness and feasibility of the
proposed framework.

Ko et al. [120] addressed the lack of exploration into constant voltage (CV) charging
for LIBs compared to constant current (CC) charging. It introduced the concept of the
differential current curve (dQ/dI curve) in CV charging and utilized it as a feature to
identify battery states. Through qualitative interpretation with an equivalent circuit model
and fitting with Gaussian process regression (GPR), the relationship between dQ/dI values
and battery states is established. Using 4836 sets of CV charging data, the paper achieves
excellent SOH estimation with a mean absolute error (MAE) of 0.18%. Additionally, a novel
experimental approach for SOC estimation is introduced, reducing SOC prediction MAE to
about 0.88%. These findings suggest that the dQ/dI curve is a promising tool for accurate
battery state estimation.

11. Coulomb Counting

Das et al. [121] emphasized precise state-of-charge (SOC) estimation for electric ve-
hicle dashboards, utilizing battery modeling and parameter estimation for lithium-iron-
phosphate (LFP) batteries. It introduces a modified Coulomb counting (CC) method and
validates the battery modeling by comparing it with physical battery terminal voltage
profiles. The approach aims to improve initial SOC determination and enhance overall
accuracy in SOC estimation for EVs.

Li et al. [122] proposed a model-based fault diagnosis algorithm to address challenges
in real-time SOC estimation for LIBs using Coulomb counting. This algorithm effectively
diagnoses three typical faults without extra measurements or prior battery knowledge. It
can be implemented intermittently or remotely alongside Coulomb counting to ensure
real-time estimation. Experiments validate the algorithm’s effectiveness, achieving 100%
true-positive rates in diagnosing faults.
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12. Kalman Filtering and State Estimation

Wu et al. [123] proposed an improved particle filter-based method for accurately esti-
mating battery parameters and state values to prevent overcharge and discharge accidents.
The method incorporates unscented transformation and multi-innovation techniques to
optimize particle distribution and update status values. It jointly estimates battery SOC and
SOH by considering parameter variation over different time scales. Experimental validation
demonstrates the algorithm’s high accuracy in real-time SOC and SOH estimation, with an
average SOC error of less than 0.5%.

13. Thermal Imaging and Thermography

Wu et al. [124] presented an optimized LIB thermal fault diagnosis model using a
modified mask region-based convolutional neural network (LBIP). The model accurately
identifies and locates problematic batteries by processing thermal images of battery surfaces.
LBIP-V2, the improved version, outperforms LBIP-V1 in most cases. Testing on various
datasets demonstrates LBIP’s recognition accuracy exceeding 95%. Additionally, real-time
fault diagnosis simulations on 1P3S battery packs show LBIP’s effectiveness in responding
to online faults with over 98% confidence.

14. Model-Based Prognostics

Mishra et al. [125] aimed to diagnose Li-ion batteries using real-world NASA data
and sensor fusion algorithms, primarily focusing on voltage and current measurements to
assess battery health. Models were parameterized using recursive least squares filters, with
batch-wise proving more reliable. These models, along with Kalman filters, tracked internal
resistance increase and SOC. While successful in health tracking, Kalman filters could not
refine SOC estimation, revealing a limitation. Nevertheless, the study demonstrated the
viability of model-based approaches and sensor fusion algorithms for meaningful battery
health tracking.

15. Frequency Response Analysis (FRA)

Fan et al. [126] presented a novel method utilizing experimental NFRA measurements
to identify LIB aging history. A regression model trained on simulated NFRA data effec-
tively quantifies degradation modes without prior knowledge of battery duty, highlighting
the significance of multiple OCVs and frequencies for comprehensive characterization. The
approach demonstrated promise for enhancing battery management strategies and second-
life applications, with the potential for further improvement through robust regression
analysis and expanded testing conditions.

Kim et al. [127] integrated time-domain and frequency-domain aging features for
estimating the SOH of LIBs to comprehensively assess internal degradation. Extracting
information such as the incremental capacity curve and electrochemical impedance spec-
troscopy, the approach addressed challenges like disappearing IC peaks and captured both
time- and frequency-domain aging behaviors. Utilizing sparse spectrum Gaussian process
regression, the model achieves low mean absolute error (MAE) and RMSE on NCA battery
datasets across varying temperatures, demonstrating its effectiveness in SOH prediction.

16. Summary

The provided paper contains information related to the application of transformer-
based models and BERT for LIB health prediction and state estimation, as well as various
machine learning and AI techniques applied to battery management. Some of the key
features of the LIB health study are described in Table 8. Different methods for health
monitoring and state estimation in LIB are described in Table 9.
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Table 8. Some of the key features of the LIB health study.

Key Features Characteristics

Advances in Battery
Technology

• Notable progress has been made in battery technology in the last decade, with a focus on LIBs.
• Transformed the landscape of electric vehicle (EV) technologies.
• Unlocked fresh opportunities for environmentally friendly and sustainable transportation.

Importance of State-of-Health
(SOH) Estimation

• Precise assessment of the state-of-health (SOH) of LIBs is essential.
• SOH serves as a comprehensive gauge of condition and performance, ensuring reliability, safety, and

cost-effectiveness, particularly in EVs.
• Its significance also encompasses broader applications in consumer electronics, preventing potential

hazardous incidents.

Challenges in SOH Estimation

• Estimating the state-of-health (SOH) presents challenges, requiring time-consuming and labor-intensive
procedures.

• This task is particularly arduous in EVs due to restricted charge and discharge cycles, affecting the
availability of historical data.

• Conventional methods depend on analyzing features derived from measured signals under stringent
operating conditions.

Forecasting RUL
• Precise prediction of RUL is crucial for prolonging battery lifespan and ensuring safety.
• The challenge lies in accurate RUL forecasts when faced with limited charge and discharge cycles.

Natural Degradation of LIBs
• LIBs undergo natural degradation over time due to usage and environmental conditions.
• This degradation has an impact on both energy storage and power delivery.

Challenges in Predicting
Capacity and Power Fade

• Forecasting the capacity and power fade of LIB cells is challenging, given manufacturing variations and
intricate nonlinear aging processes.

Interest in LIBs State
Estimation for Researchers

• Researchers place significant emphasis on precise state estimation of LIBs.
• The design of LIBs entails balancing considerations such as energy density, safety, and cost-effectiveness.

Role of Machine Learning
(ML)

• Machine learning (ML) is increasingly recognized for addressing challenges in LIB state estimation.
• ML techniques adeptly manage large datasets and intricate patterns, enhancing accuracy and efficiency.
• This approach holds promising solutions for the future of battery technology.

Summary

• Precise estimation of state-of-health (SOH) and RUL is crucial for diverse applications.
• Challenges in this endeavor encompass constraints such as scarce historical data, intricate aging processes, and manufacturing variations.
• The growing application of machine learning is contributing to improved accuracy and efficiency in LIB state estimation, presenting

promising solutions for the future.

Table 9. Different methods for health monitoring and state estimation in LIB.

Methods Characteristics

Transformers for Time
Series Analysis

• Convtrans showcases precise predictions for RUL, particularly in multi-step forecasting, and exhibits resilient
generalization capabilities across diverse datasets.

Machine
Learning-based Digital

Twin

• Employing real-time modeling to capture battery behavior.
• Leveraging historical data to construct SOH and SOC models with exceptional accuracy.
• This framework is designed for real-time modeling of battery behavior, incorporating data-driven models trained

on historical battery data, including accurate SOH and SOC models. It demonstrates high precision and suitability
for onboard execution.

Unsupervised Learning
• Integrates EIS with Gaussian process machine learning to achieve precise forecasting of LIBs.
• The combination of EIS and Gaussian process machine learning is employed for accurate forecasting of LIBs,

providing reliable predictions of RUL and SOH based on a substantial dataset that includes EIS spectra for LIBs.

Meta-Learning
• Employs data from numerous batteries in pre-training, facilitating rapid adaptation.
• Introduces a novel strategy for SOC estimation, leveraging pre-training with data from multiple batteries to

achieve swift adaptation and high accuracy in SOC estimation.

Adversarial Training

• Applies adversarial training to enhance SOH estimation accuracy.
• Implements adversarial training for SOH estimation, incorporating a feature alignment metric for

domain-invariant features. This approach enhances feature learning, facilitates knowledge transfer, and ultimately
improves the accuracy of SOH estimation.

Generalized SOH
Model

• Suggests a regression GAN approach tailored for batteries with distinct specifications.
• Introduces a regression GAN approach designed for batteries with specific specifications, aiming to develop a

generalized model. This approach enhances the accuracy and robustness of SOH estimation.
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Table 9. Cont.

Methods Characteristics

Adversarial Learning
for Lifespan Estimation

• Integrates adversarial learning and feature selection to estimate lifespan.
• Combines adversarial learning and feature selection techniques for lifespan estimation, specifically addressing

variations in degradation feature trajectories. This approach enhances deep learning-based battery
health diagnostics.

GAN-CLS and BLSTM
for State Prediction

• Combines GAN-conditional latent space (GAN-CLS) with BLSTM to decrease modeling time and boost prediction
accuracy for LIBs.

Attention Mechanisms
• Introduces an innovative method for precise SOC estimation in LIBs by employing a dual-stage attention

mechanism within an encoder–decoder network.

Continual Learning
• The utilization of online elastic weight consolidation is identified as a promising approach, with its effectiveness

influenced by task characteristics and the sequence of tasks.

Graph Neural
Networks

• Structures data into a graph-like format for the estimation of LIBs’ capacity.
• Integrates data from diverse sensors into a graph-like structure within a graph neural network, improving

adaptability and performance in estimating LIBs’ capacity, even in noisy environments.

Reinforcement Learning
• Takes into account a precise degradation model, demonstrating superior performance in energy arbitrage.
• This approach considers both a detailed degradation model and uncertainties in the degradation patterns of LIBs,

showcasing better performance in energy arbitrage compared to conventional methods.

Digital Twins for
Electric Vehicle SoX
Battery Modeling

• Achieves precise SOC capture in real-time through data-driven models.
• A digital twin framework effectively captures the SoC during runtime operations by employing data-driven

models trained with historical battery performance data.

Brain-Inspired Spiking
Network Framework

• Integrates spiking neural networks (SNN) with self-attention modules for effective battery monitoring.
• Combines spiking neural networks (SNN) with self-attention mechanisms to achieve efficient battery monitoring,

accurately identifying battery degradation trends with minimal energy consumption.

Energy-Based Models
• Applies Gaussian process regression for enhanced SOH estimation.
• Utilizes Gaussian process regression (GPR) along with improved modeling to enhance the effectiveness and

precision of SOH estimation.

17. Current Problems and Challenges

1. Data Distribution Discrepancies: Existing methods often assume consistent data
distribution for training and testing, leading to inefficiencies when applied to datasets
under different working conditions [123].

2. Limited Historical Data: Accurate estimation of the state-of-health (SOH) and RUL
of LIBs is hindered by limited historical data availability, especially considering the
complex aging processes and manufacturing variations [124].

3. Complexity of Multiphysics and Multiscale Systems: Modeling and forecasting multi-
physics and multiscale electrochemical systems, particularly under realistic conditions,
pose formidable challenges due to their inherent complexity [125].

4. Interpretability of Deep Learning Models: Deep learning methodologies, while show-
ing promise in simulating LIBs, often lack interpretability, making it difficult to
understand model decisions and results [126].

5. Adaptability to Operational Changes: Current data-driven fault prediction approaches
struggle to adapt flexibly to changes in operational or environmental parameters,
hindering their effectiveness in real-world scenarios [127].

18. Future Development Directions and Prospects

1. Enhanced Training Processes: Transfer learning emerges as a valuable tool to enhance
the training process of digital battery twins, offering increased data and computational
efficiency [128].

2. Advanced AI Techniques: Transformer-based models and bidirectional encoder repre-
sentations from transformers (BERT) show promise in enhancing LIB health prediction.
Coupled with preprocessing methods and innovative equalizers, they offer significant
improvements in RUL, SOH, and SOC estimation [129].

3. Cloud-Edge Computing: Utilizing cloud-edge computing, along with self-supervised
transformer neural networks, holds potential for addressing the complexities of
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multiphysics and multiscale systems, thereby enhancing battery management and
performance forecasting [130].

4. Continued Research and Development: Continued efforts in research and develop-
ment are essential to overcome current challenges and fully realize the potential of
AI in revolutionizing battery technology. This includes addressing data distribution
discrepancies, improving adaptability to operational changes, and enhancing the
interpretability of deep learning models [131].

19. Conclusions

The review analyzes successful examples of AI implementation, discusses challenges
faced in deploying AI in real-world scenarios, and proposes an integrated framework.

State-of-the-art research on machine learning (ML) applications in property prediction
and battery discovery, encompassing electrolyte and electrode materials, is summarized.
Additionally, the prediction of battery states is discussed.

This exploration delves into the transformative impact of advanced techniques, partic-
ularly transformer-based models and bidirectional encoder representations from transform-
ers (BERT), on predicting the health of LIBs. The integration of preprocessing techniques,
such as DAE and EIS data analysis, along with innovations like self-supervised transformer
neural networks, proves effective in addressing challenges related to RUL, SOH, and SOC
prediction. The study underscores the applicability of these advancements in practical
domains such as EVs and energy storage systems. Despite the promises, challenges per-
sist, including the need for continual learning to enhance fault prediction and addressing
distribution discrepancies in training and testing data, ultimately aiming to improve the
accuracy of predictive models.

Accurate estimation of the state-of-health (SOH) and RUL of LIBs is critical for the reli-
ability, safety, and cost-effectiveness of various applications, including EVs and consumer
electronics. This is a challenging task due to factors such as limited historical data, complex
aging processes, and manufacturing variations. To overcome these challenges, machine
learning techniques have been increasingly applied to improve accuracy and efficiency in
LIB state estimation, offering promising solutions for the future of battery technology.

In summary, this comprehensive review has systematically examined successful in-
stances of AI implementation, delved into challenges encountered in real-world AI deploy-
ment, and proposed an integrated framework. The survey of state-of-the-art research in
machine learning applications, specifically in property prediction and battery discovery,
highlighted the critical aspects of electrolyte and electrode materials. Furthermore, the pa-
per extensively covered battery state prediction, emphasizing the importance of accurately
estimating state-of-charge (SOC) for safe and efficient electric vehicle (EV) operation.

Addressing the challenges in modeling and forecasting multiphysics and multi-
scale electrochemical systems, particularly under realistic conditions, has proven to be a
formidable task. While deep learning, particularly through CNNs and recurrent neural
networks (RNNs), has gained popularity for state-of-health (SOH) estimation, the full
potential of these methods remains underutilized.

Transfer learning emerges as a valuable tool to enhance the training process of digital
battery twins, offering increased data and computational efficiency. Despite its success in
achieving a mean SOH deviation of 0.05%, the need for including pauses in the dataset for
accurate SOH estimation is underscored.

The application of deep learning in LIB online health diagnostics, using cloud and
edge computing with big data, has seen widespread adoption. However, challenges persist
in improving the accuracy, robustness, and real-time applicability of these diagnostics.
Notably, the oversight in degradation feature trajectories between training and testing
domains affects the precision of the trained model’s estimation.

CNNs have demonstrated promise in online LIBs capacity estimation, but the require-
ment for significant aging data poses challenges. Efficient data collection in real-world
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applications, coupled with the demand for extensive memory storage due to numerous
parameters, remains a practical concern.

Accurate SOH estimation of LiBs using data-driven methods faces challenges due to
operational constraints and sensor failures. The utilization of regression GANs emerges as
a potential solution to develop a general model for batteries with precise specifications.

Temperature monitoring in LiBs is crucial for performance improvement and risk
mitigation. Leveraging convolutional transformers (Convtrans) for multi-step time series
forecasting shows promise in addressing the temporal aspect of LIBs temperature.

Despite the success of artificial neural networks (ANNs) in the domain, their limi-
tations in energy consumption and generalization prompt exploration of brain-inspired
spiking neural networks (SNNs) as an alternative approach.

Ensuring the safety and reliability of LiBs requires accurate prediction of SOH and RUL.
Existing prediction methods often fall short of revealing feature correlations, hindering
optimal results. Establishing these correlations can enhance the predictive model’s accuracy.

The paper underscores the challenges of existing methods, which assume consistent
data distribution for training and testing. This assumption proves ineffective when applied
to datasets under different working conditions due to distribution discrepancies.

Estimating LIBs capacity is vital for health management, with traditional methods
relying on time-consuming handcrafted feature engineering. Data-driven methods, while
effective, pose practical challenges in real-world applications.

Early prediction and understanding of LIBs faults are crucial for product quality.
Current data-driven fault prediction approaches provide good results but struggle to adapt
flexibly to changes in operational or environmental parameters. Continual learning offers
the promise of automatic adaptation to new tasks.

In conclusion, the paper positions transformer-based models and bidirectional encoder
representations from transformers (BERT) as powerful tools for enhancing the prediction of
LIB health and state estimation. The integration of these advanced techniques with prepro-
cessing methods and innovative equalizers demonstrates significant improvements in RUL,
SOH, and SOC estimation. Cloud-edge computing, coupled with self-supervised trans-
former neural networks, holds promise for addressing the complexities of multiphysics and
multiscale systems, enhancing battery management, and performing performance forecast-
ing. The collective findings emphasize the substantial impact of advanced techniques on
LIB health prediction, positioning them as promising candidates for practical applications
in EVs and energy storage systems.

The review also highlights the attention garnered by deep learning approaches in
simulating LIBs, attributed to their ability to understand intricate relationships within
battery systems and improve predictive accuracy. Challenges in this field include the need
for large and diverse datasets, the interpretability of deep learning models, and ensuring
model transferability across various battery chemistries and operating conditions. While
deep learning methodologies show potential, integration with physics-based models is
crucial, leading to the exploration of hybrid models as an actively researched area.

In conclusion, this paper has provided a thorough analysis of successful AI implemen-
tations, discussed the challenges encountered in real-world deployment, and proposed
an integrated framework for addressing these challenges. The review of state-of-the-art
research in machine learning applications, particularly in property prediction and battery
discovery, has shed light on critical aspects such as electrolyte and electrode materials,
as well as battery state prediction, emphasizing the importance of accurately estimating
state-of-charge (SOC) for safe and efficient electric vehicle (EV) operation.

However, challenges persist in modeling and forecasting multiphysics and multiscale
electrochemical systems, especially under realistic conditions. While deep learning methods
like CNNs and recurrent neural networks (RNNs) have gained popularity for state-of-health
(SOH) estimation, their full potential remains underutilized. Transfer learning offers a
promising approach to enhancing the training process of digital battery twins, although
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challenges such as the need for including pauses in datasets for accurate SOH estimation
are underscored.

The application of deep learning in LIB online health diagnostics, utilizing cloud and
edge computing with big data, has shown widespread adoption but faces challenges in
improving accuracy, robustness, and real-time applicability. CNNs hold promise in online
LIBs capacity estimation, but efficient data collection and storage present practical concerns.
Additionally, ensuring the safety and reliability of LiBs requires accurate prediction of
SOH and RUL, which current methods often struggle to achieve due to assumptions of
consistent data distribution.

Furthermore, while artificial neural networks (ANNs) have shown success in the
domain, their limitations in energy consumption and generalization prompt exploration
of brain-inspired spiking neural networks (SNNs) as an alternative approach. However,
challenges remain in establishing feature correlations for optimal predictive model accuracy
and adapting flexibly to changes in operational or environmental parameters.

In light of these challenges, transformer-based models and bidirectional encoder
representations from transformers (BERT) emerge as powerful tools for enhancing LIB
health prediction. Integration with preprocessing methods and innovative equalizers
has shown significant improvements in RUL, SOH, and SOC estimation. Cloud-edge
computing, coupled with self-supervised transformer neural networks, holds promise in
addressing the complexities of multiphysics and multiscale systems, thereby enhancing
battery management and performance forecasting.

In summary, this review underscores the substantial impact of advanced techniques on
LIB health prediction, positioning them as promising candidates for practical applications
in EVs and energy storage systems. However, continued research and development are
essential to overcome current challenges and fully realize the potential of AI in revolution-
izing battery technology.

Despite the promising advancements in AI implementation for LIBs, several chal-
lenges hinder their widespread adoption and optimal performance in real-world scenarios.
One critical issue lies in the assumption of consistent data distribution for training and
testing, which proves ineffective when applied to datasets under different working condi-
tions. Moreover, the limited availability of historical data poses challenges in accurately
estimating the state-of-health (SOH) and RUL of LiBs, especially considering the complex
aging processes and manufacturing variations inherent in these systems.

Additionally, the complexity of multiphysics and multiscale electrochemical systems
presents formidable challenges in modeling and forecasting, particularly under realistic
conditions. Furthermore, while deep learning methodologies show promise in simulating
LiBs, their lack of interpretability complicates understanding model decisions and results.
Furthermore, current data-driven fault prediction approaches struggle to adapt flexibly
to changes in operational or environmental parameters, hindering their effectiveness in
real-world scenarios.

However, there are promising avenues for future development in addressing these
challenges. Integrating deep learning methods with physics-based models offers the
potential to enhance predictive accuracy and interpretability through hybrid models. Trans-
fer learning presents an opportunity to enhance the training process of digital battery
twins, improving data and computational efficiency. Advanced AI techniques such as
transformer-based models and bidirectional encoder representations from transformers
(BERT) hold promise in enhancing LIB health prediction, offering significant improve-
ments in RUL, SOH, and SOC estimation when coupled with preprocessing methods and
innovative equalizers.

Furthermore, leveraging cloud-edge computing and self-supervised transformer neu-
ral networks could address the complexities of multiphysics and multiscale systems,
thereby enhancing battery management and performance forecasting. Continued research
and development efforts are crucial to overcoming current challenges, including address-
ing data distribution discrepancies, improving adaptability to operational changes, and



Batteries 2024, 10, 204 38 of 43

enhancing the interpretability of deep learning models. These endeavors are essential to
fully realizing the potential of AI in revolutionizing battery technology and enabling its
practical applications in EVs and energy storage systems.

The literature review presents a diverse array of methodologies aimed at estimat-
ing the health state and SOH of LIBs. Techniques such as EIS are leveraged alongside
data-driven approaches like neural networks to efficiently estimate LIBs’ health states,
highlighting the importance of selecting appropriate health indicators. Voltage and current
profiling methods explore constant-current (CC) and constant-voltage (CV) charging curves,
demonstrating promising results in SOH estimation and suggesting different charging
profiles offer valuable insights into battery health. Coulomb counting approaches focus
on precise state-of-charge (SOC) estimation, with modified methods and fault diagnosis
algorithms contributing to improved accuracy and real-time monitoring, crucial for electric
vehicle applications.

Furthermore, model-based prognostics and frequency response analysis (FRA) offer
sophisticated means of tracking battery health. Model-based approaches utilize real-world
data and sensor fusion algorithms for health tracking, while FRA techniques provide
insights into battery aging history and SOH estimation through comprehensive charac-
terization and integration of time and frequency domain features. Additionally, thermal
imaging and thermography methods present innovative ways of diagnosing battery faults
based on thermal images, showcasing high recognition accuracy and responsiveness to
online faults. Integrating these diverse methodologies and considering different battery
characteristics could lead to a more accurate and comprehensive battery health assessment,
which is essential for ensuring optimal performance and longevity in various applications.
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