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Abstract.The process of achieving balance among sequentially connected cells is crucial to pre-
vent excessive charging or discharging, and it also improves the overall energy capacity. This 
article discusses various algorithms created for equalizing cell charge within a battery manage-
ment system (BMS). Proper cell balancing is indispensable for upkeeping lithium-ion battery 
(LiB) packs. Within the BMS, identifying faults is of utmost importance. This encompasses de-
tecting, isolating, and estimating faults. To prevent batteries from operating in unsafe ranges, it 
is vital to ensure the accurate functioning of current, voltage, and temperature sensors. Accurate 
fault diagnosis is pivotal for the optimal operation of battery management systems. In the context 
of electric vehicle battery management systems, precise measurement of current, voltage, and 
temperature is greatly relied upon to estimate the State of Charge (SOC) and overall battery 
health. Swiftly identifying early failures can mitigate safety hazards and minimize damage. Nev-
ertheless, effectively pinpointing these initial failures using genuine operational data from elec-
tric vehicles remains a intricate task. This paper presents an analysis of different algorithms for 
detecting balancing-related faults, covering both methods based on models and those not reliant 
on models. The strengths and weaknesses of the evaluated algorithms, along with upcoming 
challenges in the realm of balancing and fault detection for LiBs, are also discussed in this doc-
ument.

1.  Introduction  
LiBs find extensive application in new energy vehicles (NEV) due to their crucial role as sub-
stantial energy storage systems (ESS). For effectively managing and controlling such a vast 
number of cells, a precise and versatile battery management system (BMS) is absolutely essen-
tial. Within electric vehicles (EVs), LiB packs hold immense significance as a foundational 
element. These packs are composed of numerous cells interconnected using series and parallel 
setups to provide the necessary power and energy for the vehicle's operation.

In order to improve the effectiveness of techniques for diagnosing battery faults, Wang et al. 
[1] introduced a method for detecting faults in LiBs utilized within electric vehicles. This ap-
proach integrates multiple data-driven strategies to achieve a comprehensive analysis. Initially, 
deviations are eliminated, and initial fault assessments are conducted using a combination of t-
distribution random neighborhood embedding (t-Sne) and wavelet transform denoising. Subse-
quently, significant vehicular attributes that have a notable impact on battery faults are identi-
fied through factor analysis. These critical attributes that lead to faults are then extracted using 
a combination of a two-way long and short-term memory network and a convolutional neural 
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network. Finally, a self-learning Bayesian network is deployed to recognize and diagnose bat-
tery faults. Experimental results indicate that this method enhances the accuracy of fault diag-
nosis by approximately 12% when validated with various vehicle data. When compared to other 
approaches, this method not only achieves higher precision in fault diagnosis but also reduces 
the time required for fault identification. Furthermore, its performance surpasses that of graded 
fault systems, making it more closely aligned with real-world engineering applications [1].

Cai et al. [2] have introduced a multi-fault detection approach for battery packs connected 
in series. This technique incorporates elements of Attentional Mechanisms and Domain Adap-
tation Neural Networks, enabling the detection of various types of faults (specifically, voltage 
imbalance, internal short circuit, sensor anomalies, sensor drift voltage, and random fluctua-
tion). By combining the advantages of both Attentional Mechanisms and Domain Adaptation 
Neural Networks, this innovative method, referred to as the Category-Reinforced Domain Ad-
aptation Network, demonstrates effectiveness. It possesses the ability to diagnose multiple types 
of faults within battery packs. Through validation on a real-world platform encompassing three 
distinct operational scenarios, the approach showcases its capability. It enhances the model's 
ability to adapt across various battery pack contexts and notably contributes to the successful 
identification of multiple faults within battery packs [2].

Kosuru et al. [3] put forth a comprehensive framework for battery data analysis, with a spe-
cific focus on LiBs. This framework harnesses deep learning to detect and classify faulty battery 
sensor readings and transmission information. The study commences with the collection of sen-
sor data, followed by preprocessing that involves z-score normalization. Subsequently, feature 
extraction is conducted using sparse principal component analysis (SPCA), while feature selec-
tion is facilitated through the enhanced marine predators algorithm (EMPA). A novel approach 
called the Incipient Bat-Optimized Deep Residual Network (IB-DRN) is introduced to enhance 
the safety and reliability of the BMS. This approach forms the foundation for identifying and 
categorizing erroneous battery data. The research employs MATLAB along with a combination 
of statistical analysis, machine learning techniques, and a deep learning toolbox. Experimental 
investigations are also conducted to demonstrate and evaluate the effectiveness of the proposed 
strategy. The results indicate that the suggested methodology surpasses conventional tech-
niques, exhibiting superiority across various aspects.

Liu et al. [4] presented a solution in the form of a toggleable indicator designed to enhance 
the balancing of a battery pack connected in series. This is achieved by integrating a bypass 
equalizer with distinctive attributes including a compact topological structure, high efficiency, 
and intrinsic fault tolerance capabilities. The proposed toggleable indicator allows for the auto-
matic selection of balance indicators, enabling a smooth transition between voltage and SOC 
based indicators. This inventive approach sets the stage for the development of a new balancing 
strategy that makes optimal use of the capabilities of the toggleable indicator. To validate the 
effectiveness of this approach, the proposed method undergoes both simulation and experi-
mental testing using a LiB pack [4].

Fan et al. [5] introduced an MPC approach with rapid balancing to tackle inconsistency in 
LiB packs, optimizing energy transfer and minimizing SOC differences. Their MPC-based 
equalization algorithm aimed to efficiently reduce SOC variations, complemented by a quick-
solving strategy to enhance computational efficiency. The method showcased superior perfor-
mance in achieving swift equalization and minimizing energy wastage, with a key highlight 
being the avoidance of unnecessary battery cycling. This approach not only improved balancing 
accuracy but also demonstrated enhanced computational effectiveness compared to conven-
tional techniques.
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2.  Balancing of LiBs 
Figure 1 demonstrates an instance of battery cells being unbalanced. Several possible arrange-
ments have been suggested to achieve balance in a battery bank, as described in various pro-
posals [6]. All of these arrangements adhere to three fundamental methods, as shown in Figure 
2. The first method involves discharging excess energy from battery cells. The next approach 
revolves around redistributing energy from cells with higher charge levels to those with lower 
charge levels. The last strategy involves controlling the charging or discharging current of each 
cell to ensure consistent SOC levels across all cells [7]. 
 

 

Figure 1. Unbalanced battery cells. 
 

A highly reliable and efficient BMS is of great significance for applications powered by elec-
trochemistry. Among the crucial features of a BMS, the aspect of cell balancing emerges as 
paramount. The purpose of cell balancing techniques is to ensure a fair distribution of energy 
among battery cells. The absence of proper cell balancing would lead to the wastage of capacity 
or energy within the battery array, a concern that becomes more pronounced in extended battery 
strings subject to frequent charge-discharge cycles. Qi et al. [7] categorizes several well-estab-
lished cell balancing methods, organizing them based on their approach to managing excess 
energy within battery cells [7]. 
 

 

Figure 2. Cell Balancing Topologies Category [7]. 
 

Piao et al. [8] utilized a distance-based outlier detection method that relies on two main param-
eters—voltage and SOC—to calculate unusual values for individual cells. This enables the de-
tection of unbalanced cells. By means of an online clustering approach, the algorithm differen-
tiates between battery cells that are normal and those that are abnormal. To address the imbal-
ance, bleeding circuits were applied to the cells identified as abnormal. The simulation results 
illustrate that the proposed balancing algorithm significantly improves the usable capacity of 
the battery pack, achieving a notable 9.5% increase compared to situations where balancing 
was not implemented [8]. 

Chowdhury and colleagues [9] introduced a novel strategy to achieve equilibrium in the 
State of Health (SOH) among interconnected LiB cells using DC/DC converters. SOH has be-
come a significant gauge of battery health, alongside SOC, internal resistance, and conventional 
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metrics. The adjustment of SOH balance is crucial for effectively utilizing battery cells that 
have varying capacity characteristics due to aging. They presented a simplified configuration 
to balance SOH in LiB cells linked via DC/DC converters, providing power to a shared load. 
Their uncomplicated approach was especially fitting for situations with limited battery mainte-
nance access. The adoption of the proposed SOH balancing technique had the potential to elon-
gate the overall operational lifespan of the battery storage unit and curtail replacement expenses. 

Bonfiglio and colleagues [10] presented an active method for equalizing cells within stacks 
of LiBs. It is a widespread practice to balance the charge of individual cells in multi-cell LiB 
stacks to prevent harm and improve battery longevity. At present, the majority of battery stacks 
utilize a passive cell balancing approach that dissipates charge as heat through a resistor. In 
contrast, their approach utilizes a flyback converter to transfer charge between cells, leading to 
minimal energy wastage and a slight increase in cost compared to conventional passive systems. 

McCurlie and his colleagues [11] introduced an advanced continuous-time fast model pre-
dictive control (MPC) method. This approach utilizes performance measures to establish an 
equilibrium in the SOC among battery pack components. Simulation outcomes illustrate that 
the MPC strategy achieves singular-point convergence of SOC, surpassing the performance of 
a traditional rule-based algorithm. This development enhances the efficiency of power electron-
ics and extends the operational lifespan of battery cells by reducing frequent transitions between 
cell charging and discharging. Experimental results highlight a redistributive battery balancing 
system that rapidly accomplishes equilibrium by combining fast MPC with readily available 
microcontrollers found in today's market. 

Zhang and co-authors [12] introduced a dynamic method for actively balancing the charging 
and discharging of LiB packs based on the average SOC. Two distinct active balancing strate-
gies were developed to manage the varied charging and discharging conditions of the LiB pack. 
For charging, a balancing strategy was implemented that focuses on cells with SOC higher than 
the average SOC of the LiB pack, thereby enhancing the overall charging capacity. Conversely, 
during discharging or periods of rest, a different balancing strategy was employed, targeting 
cells with SOC lower than the average SOC of the LiB pack, thus improving the overall dis-
charging capacity. Experimental findings confirm the effectiveness of this proposed active bal-
ancing approach. It showcases a reduction in energy discrepancies among battery cells and an 
improvement in both the charging and discharging capabilities of the LiB pack. 

In contrast to prior studies, the maximum allowable current for cell equalization is adjusted 
to vary in accordance with changes in the external current of the battery pack. Ouyang and 
colleagues [13] aimed to prevent cell currents from surpassing their predetermined limits, as 
opposed to using a constant maximum value. By employing adaptive quasi-sliding mode ob-
servers to accurately SOC, they introduced a discrete-time quasi-sliding-mode-based strategy 
that integrates limited equalization currents. This strategy coordinates the collaborative opera-
tion of converters to efficiently achieve SOC equalization among cells. Through mathematical 
analysis and supported by experimental results, they demonstrated that the actual SOC discrep-
ancies among cells can swiftly converge within an acceptable range centered around the origin. 

To thoroughly investigate the influence of load cycles in conjunction with different BMS, 
Ziegler and co-authors [14] conducted a comprehensive assessment of individual cells. The 
findings of the study indicate that active balancing leads to a maximum improvement of 2% in 
usable capacity compared to passive balancing. Furthermore, active balancing alleviates incon-
sistencies among cells in terms of capacity and internal resistance. Notably, the study demon-
strated that the additional stress caused by frequent energy redistribution in active balancing 
systems does not result in detrimental aging effects on cells when compared to passive balanc-
ing approaches. 
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Räber and collaborators [15] provided a theoretical examination that details an approach for 
evaluating the benefits of cell-to-cell active charge balancing circuits compared to passive bal-
ancing alternatives, with a specific focus on energy preservation and capacity improvement. 
The assessment involves the utilization of variable parameters, including battery system con-
figuration and distribution characteristics of cell capacity. Their study computed the inefficien-
cies linked to passive balancing within a battery system, while also approximating the overall 
energy conservation achievable through the use of cell-to-cell active balancing. The increase in 
capacity of a battery system utilizing active balancing, relative to a passive equivalent, was 
determined to fall in the range of 1.06 to 1.01. 

Hua et al. [16] aimed to present a reliable and accurate method for assessing the SOC and 
SOH of battery packs that consist of multiple cells linked in a series configuration, utilizing 
passive balance control. In the initial stages of their research, the authors introduced the notions 
of individual cell-level and overall pack-level states. They provided clear explanations of how 
the conditions of individual battery cells are interconnected with the overall state of the battery 
pack. Subsequently, they formulated a multi time-scale approach to predict the SOC/SOH of 
the battery pack. Within this framework, the evaluation of SOH (which relates to gradual 
changes) is conducted over extended time periods, while SOC (which involves rapid changes) 
is estimated in real-time. To put their approach into practice, they adopted a non-linear predic-
tive filter (NPF) as the estimation algorithm, which significantly enhanced the accuracy of SOC 
and SOH assessments. To validate their findings, the researchers performed experiments using 
a battery pack under specific driving cycles, confirming the effectiveness of the proposed meth-
odology. The experimental results underscore the capability of the methodology to precisely 
gauge both the SOC and SOH of the battery pack. 

3.  Fault diagnostic of LiBs 
The causes of battery deterioration at the anode and their consequences are depicted in Figure 
3. Wu et al. [17] provided a comprehensive overview of the most recent research and progress 
in comprehending the mechanisms behind the aging of LiBs. By gaining insights into the ori-
gins and indications of battery malfunctions, this review encompasses the predominant factors 
that contribute to aging, along with the corresponding effects and results. Through the imple-
mentation of aging tests, the intricate relationship between performance and aging components, 
as well as their interconnected consequences, can be accurately gauged. The article concludes 
by summarizing recent advancements in diagnostic technologies for detecting battery malfunc-
tions, accompanied by a fair assessment of their pros and cons. Ultimately, the paper proposes 
innovative strategies for diagnosing faults and outlines the enduring challenges that persist in 
this field [17]. 
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Figure 3. Causes for battery ageing at anode and their effects [17]. 
 

A basic diagram illustrating the algorithm used for identifying faults via state estimation is 
presented in Figure 4. Diverse categories of battery models are accessible, including those re-
lated to electrochemical, electrical, thermal aspects, and interdisciplinary variations such as 
electro-thermal combinations [18]. Figure 5 demonstrates transformations in a diagnostic sys-
tem. The selection of a model for aiding in fault detection relies on the specific requirements of 
the LiB application. Model-based approaches are commonly preferred for fault detection due 
to their simplicity and cost-effectiveness. These approaches encompass techniques like state 
estimation, parameter estimation, parity equations, and structural analysis [20]. The categori-
zation of diagnostic algorithms for identifying faults in LiBs is depicted in Figure 6. Diverse 
industries utilize a range of approaches for diagnosing faults. Yet, concerning LiB applications, 
the presence of both internal and interconnected faults often renders many conventional tech-
niques from other domains inapplicable. Within the scope of LiBs, methods for diagnosing 
faults can be divided into two main groups: those that utilize models and those that don't rely 
on models [19]. This section will showcase recent progress in the realm of fault diagnosis, 
addressing concerns related to both internal and external issues associated with LiBs. Broadly, 
the process of making diagnostic decisions can be conceptualized as a sequence of conversions 
or mappings applied to process measurements. Figure 5 illustrates the distinct transformations 
that process data undergo throughout the diagnostic process. 

 

 

 Figure 4. A simplified schematic of state estimation fault diagnosis [20]. 
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Figure 5. Transformations in a diagnostic system [19]. 

 

 Figure 6. The classification of LiB fault diagnostic algorithms [20]. 
 
Xiong et al. [21] introduced a direct and efficient model-based strategy for detecting faults in 
sensors. Their method was specifically tailored to detect and isolate malfunctions in current or 
voltage sensors within an interconnected LiB pack. To differentiate between faults in sensors 
and faults in battery cells, a temperature sensor (assuming its proper operation) is utilized. This 
allows for distinguishing between a malfunction in a current or voltage sensor and a fault in a 
battery cell. Consequently, defective current or voltage sensors can be recognized by comparing 
the residual values of each cell with a predetermined threshold. The effectiveness of this pro-
posed approach for diagnosing sensor faults is verified through both experimental tests and 
simulations, affirming its practical viability. 

Zheng et al. [22] introduced an innovative technique to identify faults in voltage and current 
sensors within a LiB pack system. This approach integrates hybrid system modeling with the 
unscented particle filter, providing an efficient solution to this significant issue. By conducting 
experiments on a battery pack with a serial-parallel configuration, different fault scenarios con-
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cerning voltage and current sensors were evaluated. The results showcase that the method pro-
posed in this study excels not only in precisely monitoring the system's state but also in accu-
rately diagnosing faults within the sensors of the LiB system. 

To extract insights related to faults from real-world electric vehicle usage data, Fan et al. 
[23] introduced an innovative approach involving the development of a generalized dimension-
less indicator (GDI) along with a tolerance factor. The GDI is carefully crafted for the purpose 
of this study. By plotting these dimensionless indicators on a two-dimensional plane, the evolv-
ing patterns of voltage anomalies are visually displayed. To distinguish the changing anomaly 
patterns, the Local Outlier Factor (LOF) algorithm is utilized. This algorithm assists in recog-
nizing the progression of anomalies, isolating malfunctioning batteries, and pinpointing the ex-
act time of a fault occurrence. To mitigate the influence of cell variations on diagnostic accu-
racy, a differential technique is implemented. The effectiveness of the proposed method is val-
idated through experiments conducted using real-world vehicle data. The results of the experi-
ments emphasize the method's capability to effectively detect early-stage battery failures, show-
casing both precision in fault identification and overall robustness. 

Ma et al. [24] introduced an innovative dual-Kalman filter diagnostic method through a com-
prehensive analysis of the features of external soft-short circuit faults in series-connected LiB 
packs. The experiments were carried out for two main objectives: to understand the nature of 
the fault and to validate the effectiveness of the diagnostic algorithm. The suggested diagnostic 
technique exhibits remarkable capability in identifying external soft-short circuit faults, thereby 
highlighting its potential for precise fault detection and diagnosis. 

Qiu et al. [25] utilized the local outlier factor (LOF) technique to conduct fault diagnosis on 
energy storage systems relying on LIB ESSs. The authors proposed two distinct algorithms for 
input generation within the LOF method: the multiple factors at a single time step input gener-
ation (MFST) algorithm and the single factor at multiple time steps input generation (SFMT) 
algorithm. To model various degrees of internal short circuit (ISC) severity, an ISC model was 
integrated into an electrical-thermal coupled model for an air-cooled LIB ESS. The perfor-
mance of the LOF method was evaluated in detecting different levels of ISC severity, with 
assessments based on simulated data from the air-cooled LIB ESS and experimental data from 
a water-cooled LIB ESS. 

Zhang et al. [26] presented a novel online multifault diagnosis approach that combines 
model-based and entropy methods to effectively detect and isolate various types of faults. These 
encompass faults in current, voltage, and temperature sensors, along with short-circuit faults 
and connection faults. To distinguish voltage sensor faults from battery short-circuits or con-
nection faults, an interleaved voltage measurement topology is implemented. Leveraging a 
comprehensive battery model, structural analysis is employed to design diagnostic tests tailored 
to different fault categories. The extended Kalman filter is used for residual generation, fol-
lowed by statistical inference for residual assessment, enabling the identification and isolation 
of sensor faults. Subsequently, sample entropy is employed to further differentiate between 
short-circuit faults and connection faults. The efficacy of the proposed diagnostic approach is 
validated through multiple fault tests involving various fault types and magnitudes. Importantly, 
the results highlight the method's resilience in managing noise and discrepancies in SOC and 
temperature data. 

Lin et al. [27] introduced a comprehensive fault diagnostic strategy grounded in hybrid sys-
tem theory, specifically designed to address common issues in LiB packs, including sensor and 
relay faults. This method utilizes automata, constructed on the principles of hybrid systems, to 
effectively incorporate the continuous and discrete dynamics inherent in battery packs. To man-
age computational complexity, a distributed diagnostic structure is employed, eliminating the 
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necessity for a global battery pack model. The core of the approach lies in a dual extended 
Kalman filter algorithm, facilitating the estimation of crucial parameters like terminal voltages 
and SOC for individual battery cells within the pack. Residuals from current, terminal voltage, 
and SOC serve as foundational components for executing distinguishability analysis, which 
aids in identifying faults. The diagnostic process combines event observation with distinguish-
ability analysis based on continuous dynamics. The efficacy of this diagnostic approach is ver-
ified through validation on a battery pack configuration comprising two series-connected bat-
teries and two parallel-connected branches. Validation is conducted using the Federal Urban 
Driving Schedule driving cycle, affirming the robustness and practicality of the proposed 
method. 

Xiong et al. [28] focused on online fault diagnosis specifically targeting External Short Cir-
cuits (ESC) in LiB packs. They conducted experimental investigations to gather and compare 
ESC characteristics between an NMC battery pack and a single cell. Utilizing the insights from 
experimental analysis, they formulated a two-step equivalent circuit model to describe the ESC 
process. An online model-based approach was then developed for diagnosing ESC faults within 
battery packs. The effectiveness of this approach was evaluated using experimental data. The 
results showcase its capability to precisely diagnose ESC faults within 3.5 seconds of occur-
rence, with a terminal voltage error of under 25 mV. Notably, the proposed method demon-
strates robust generalization capabilities, successfully diagnosing ESC faults in battery packs 
with varying numbers of cells connected in series and in scenarios where current information 
is unavailable. In these cases, the terminal voltage error remains below 48 mV and 60 mV, 
respectively. 

Jiang et al. [29] introduced a fault diagnosis technique for power LiBs, utilizing the isolated 
forest algorithm. The approach involves several key stages. Initially, the original voltage data 
undergo signal processing and decomposition, separating the data into static components, which 
exhibit strong correlations with aging inconsistencies, and dynamic components, which capture 
abnormal patterns. Subsequently, characteristic parameters are extracted from these static and 
dynamic components. These parameters are then fed into the isolated forest algorithm, which 
performs anomaly detection to identify cells with abnormalities. The proposed method was ex-
tensively tested using voltage data from four vehicles with defective batteries. The results of 
these tests confirm the method's ability to effectively detect both gradual and sudden failures. 
This validates its suitability for diagnosing power LiB faults and underscores its potential for 
real-time implementation in actual vehicles. 

Shang et al. [30] introduced a real-time multi-fault diagnosis technique designed to detect 
early battery failures, utilizing a modified Sample Entropy approach. By analyzing the modified 
Sample Entropy of cell-voltage sequences within a moving window, the method effectively 
identifies and predicts various early battery faults, including short-circuit and open-circuit 
faults. Additionally, it can estimate the timing of fault occurrences. Experimental results, along 
with comparisons against traditional methods, validate the effectiveness of this proposed ap-
proach. It showcases robustness, reliability, and computational efficiency, all while bypassing 
the necessity for an exact model. In summary, this multi-fault diagnosis strategy demonstrates 
feasibility and potential in real-world electric vehicle applications, addressing the intricate na-
ture of LiBs and offering early detection and prediction of faults. 

Li et al. [31] introduced an inventive fault detection method that merges Empirical Mode 
Decomposition (EMD) with Sample Entropy (SE) to adeptly identify battery faults across di-
verse operating conditions. The proposed approach initiates by extracting relevant fault features 
using the EMD technique. This involves decomposing battery voltage signals and mitigating 
noise interference during voltage sampling. Through experimentation, the significance of fault 
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features extracted by EMD is quantified. Subsequently, utilizing these extracted fault features, 
Sample Entropy values are computed. These values contribute to accurate fault detection and 
localization. Furthermore, a framework for evaluating the detected faults is devised to indicate 
the severity of battery faults. The efficacy of the method is then established using real-world 
data collected from electric vehicles, spanning scenarios involving routine and abrupt faults. 
This validation underscores the effectiveness of the proposed methodology in precisely detect-
ing and diagnosing battery faults within varying operational contexts. 

4.  Challenges in Fault Detection and Balancing 
Advancements in LiB fault detection include sophisticated BMS, integrating data analytics and 
machine learning for accurate fault prediction, enhanced sensor technologies, efficient thermal 
management systems, redundancy and diagnostics, and continuous condition monitoring. How-
ever, challenges persist in addressing complex failure modes, integrating advanced technolo-
gies seamlessly, balancing cost-effectiveness, ensuring data security, achieving scalability, and 
considering the full lifecycle of batteries. Overcoming these challenges requires collaborative 
efforts to develop standardized and cost-effective solutions, emphasizing ongoing research and 
development to ensure the safe and reliable use of lithium-ion battery technology across various 
applications. 
Identifying issues and maintaining equilibrium are crucial aspects of effectively managing LiBs 
to ensure their safety, efficiency, and longevity. These batteries are widely used in various ap-
plications, from portable electronics to electric vehicles, and are susceptible to developing de-
fects or inconsistencies over time that can compromise their performance and safety [32].  

Here is a summary of fault detection and balancing in the context of LiBs: 
Fault Detection: Detecting malfunctions in LiBs involves monitoring various parameters and 

characteristics to identify abnormal behavior [33]. Common malfunctions include excessive 
charging, extreme discharging, thermal escalation, capacity deterioration, and internal short cir-
cuits. Approaches to fault diagnosis include: Continuous Voltage and Current Monitoring: Per-
sistent tracking of voltage and current during charging and discharging can reveal irregularities, 
such as abrupt spikes or plunges in voltage indicating problems [34]. 

Temperature Monitoring: Temperature sensors within the battery assembly can identify in-
stances of overheating, a critical safety hazard [35]. 

Impedance Spectroscopy: Measuring the battery's impedance at different frequencies pro-
vides insights into changes in its internal structure and state [36]. 

Voltage Hysteresis: Monitoring voltage hysteresis during charge and discharge cycles can 
uncover capacity reductions or discrepancies [37]. 

SOC and SOH Estimation: Advanced algorithms can estimate the battery's SOC and SOH 
based on various parameters, helping discern deviations from normal behavior [38]. 

Balancing: Cell balancing involves equalizing the charge and discharge capacities of indi-
vidual cells within a battery assembly [39]. Due to variations in production and operation, cells 
may have different capacities and voltage levels, leading to imbalances. Balancing is essential 
for maintaining consistent cell performance and extending the overall lifespan of the assembly. 
Various balancing strategies exist: 

Passive Balancing: This strategy uses resistors or bleed circuits to disperse excessive charge 
from cells with higher voltages. It is simple but may be inefficient and generate heat [40]. 

Active Balancing: Active balancing incorporates additional circuitry to redistribute charge 
across cells, proving more effective and reducing heat production [41]. 

Cell Transfer Balancing: Physically transferring charge between cells is an alternative 
method, although less common due to its complexity [42]. 
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Voltage Threshold Balancing: Balancing activates when a cell's voltage exceeds a specific 
threshold. This approach is efficient but requires monitoring circuitry for each cell [43]. 

Energy Transfer Balancing: Energy is transferred between cells using capacitors or induc-
tors, proving more efficient and faster than some other methods [44]. 

To implement these techniques proficiently, battery management systems (BMS) play a cru-
cial role [45]. A BMS oversees and regulates the battery's charging, discharging, and balancing 
processes. It collects data from individual cells and controls charging and discharging rates to 
prevent faults and imbalances. 

Figure 7 illustrates the design of the Battery Management System (BMS) along with certain 
limitations. A significant challenge associated with the offline BMS is the inconsistency of state 
estimation algorithms [47]. Additionally, a notable drawback in the existing BMS is the absence 
of dependable real-time fault diagnosis algorithms [48]. Various battery faults encompass sen-
sor malfunctions, cell connection issues, internal short circuits, external short circuits, over-
heating, and thermal runaway [49]. 

Figure 7. Battery management system design and functions [46]. 

5.  Discussion 

5.1 Introduction to LiBs and Challenges 
LiBs have garnered increased attention as a dependable energy storage solution with extended 
operational lifespan and improved energy and power density. However, the natural aging of 
batteries leads to performance decline and potential system malfunctions, posing risks such as 
thermal runaway or explosions. Challenges arise from diverse production and operational con-
ditions of connected cells, making it challenging for the BMS to ensure the safe operation of 
each cell. 

5.2 Battery Balancing and Variability 
Energy storage systems employing LiBs require cell balancing due to inherent manufacturing 
differences, varying self-discharge rates, disparities in internal resistances, and temperature var-
iations among cells. Inconsistencies in LiB cell conditions can result in uneven residual capac-
ity, risking cell damage due to overcharging or overdischarging. 

5.3 Fault Diagnosis and Safety 
Ensuring the safety and reliability of advanced battery management systems is a complex chal-
lenge, especially in diagnosing external soft-short circuit faults. Safety is paramount for LiBs, 
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considering the potential for fire accidents under faulty conditions. Fault diagnosis involves 
detecting abusive conditions and identifying faulty batteries early to prevent escalation into 
thermal runaway. The LiB system faces various faults compromising performance and safety, 
and traditional fault-diagnosis methods struggle to identify early-stage issues without clear ab-
normality signs. 

5.4 Challenges in Battery Management and Fault Detection 
Voltage signals during battery operation are susceptible to noise interference. In electric vehi-
cles, even minor malfunctions in power batteries can lead to accidents. Progressing safely in 
electric vehicles depends on swiftly identifying and accurately differentiating battery pack 
faults. Identifying fault characteristics within LiB packs, which vary in types and health sta-
tuses, presents challenges. 

5.5 Sensor Data and BMS Robustness 
Gathering and transmitting battery sensor data are crucial for BMS. Inaccuracies in battery data, 
stemming from sensor issues, communication problems, or cyber intrusions, can jeopardize 
BMS integrity and applications like electric vehicles. Hence, evaluating the robustness of bat-
tery sensor and communication data within BMS is critical. Sensor data underpin all BMS op-
erations, and effective detection of sensor faults is pivotal for ensuring battery system sustain-
ability and security in electric vehicles. 

5.6 Battery Pack Balancing and Uniformity  
Maintaining balance in battery packs is vital for their BMS. Insufficient balance limits overall 
battery pack performance to the capability of the weakest cell. Although Battery SOC is valu-
able for achieving balance, SOC estimation accuracy is not guaranteed, introducing uncertain-
ties hindering balance optimization. Preserving LiB pack uniformity is essential for extending 
battery lifespan, maximizing capacity utilization, and ensuring safe electric vehicle operation. 

Addressing these challenges requires collaborative efforts from researchers, industry stake-
holders, and regulatory bodies to develop robust and standardized solutions for fault detection 
and balancing in lithium-ion batteries. Continuous research and development will play a crucial 
role in overcoming these challenges, ensuring the safe and reliable use of lithium-ion battery 
technology across various applications. 

6.  Conclusion  
The LiBs has gained increasing attention due to its potential as a dependable storage solution, 
with extended operational longevity and improved energy and power density. However, the 
battery's operation leads to inevitable aging, causing a decline in performance and potential 
system issues. These consequences not only bring inconvenience but also pose significant risks 
such as thermal runaway or even explosions. The Battery Management System (BMS) performs 
vital functions, including estimating battery state, equalizing cell voltages, managing thermal 
conditions, and diagnosing malfunctions. Challenges arise due to the diverse production and 
operational conditions of series and parallel-connected cells, making it difficult for the BMS to 
ensure the safe operation of each individual cell. 

Energy storage systems utilizing LiBs require cell balancing due to inherent manufacturing 
variations, differing self-discharge rates, disparities in internal resistances, and temperature dif-
ferences among individual cells. Variations in the conditions and parameters of LiB cells can 
lead to inconsistencies in remaining capacity among cells, potentially resulting in cell damage 
due to overcharging or overdischarging. Active charge balancing has gained recognition as an 
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effective approach to create more energy-efficient and environmentally-friendly setups for 
LiBs. 

Dealing with the variability among cells within battery packs for electric vehicles (EVs), 
accurately estimating the SOC and SOH of battery systems poses a significant challenge, espe-
cially within the computational limits of battery management systems. The reliable operation 
of electric vehicles heavily relies on the proper function of LiB packs. Early detection of po-
tential failures in LiB packs is crucial to ensure the safe and reliable operation of these vehicles. 

Ensuring the safety and reliability of advanced battery management systems is a complex 
challenge, especially in diagnosing external soft-short circuit faults. This specific issue remains 
intricate and unresolved. The safety of LIBs is of utmost importance, particularly due to the 
potential for fire accidents when they are faulty or operate under abnormal conditions. Ensuring 
the safety of LIBs is a critical requirement for their widespread use. 

One method to achieve this is through fault diagnosis, involving the detection of abusive 
conditions and identification of faulty batteries at an early stage to prevent them from progress-
ing to thermal runaway. The LiB system is vulnerable to various faults that can compromise its 
performance and safety. Detecting these early faults is difficult, and false alarms can occur due 
to similarities in fault characteristics. A dependable fault diagnostic method is essential to en-
sure battery system performance and safety. 

Ensuring battery safety is crucial when using LiBs in all-climate electric vehicles. Issues like 
short circuits, overcharging, and overheating are prevalent. Incidents of electric vehicle safety 
stemming from LiB failures have become more frequent in recent years. Notably, voltage data 
from a malfunctioning battery often show abnormal patterns before a safety incident. These 
abnormal voltage changes are more pronounced in progressive failures, while sudden failures 
may involve subtler voltage shifts. Conventional fault-diagnosis methods struggle to identify 
battery faults early on when no obvious abnormalities are present. This challenge arises due to 
the complexity, nonlinearity, and time-varying nature of LiBs, compounded by inherent cell 
inconsistencies. 

Fault detection is a critical aspect of LiB operation in electric vehicles. Voltage signals dur-
ing battery system operation are susceptible to noise interference. Power batteries are central 
components in electric vehicles, and even minor malfunctions can lead to accidents. Therefore, 
ensuring accurate diagnosis of battery issues holds great importance. 

Ensuring the intelligent advancement and safe operation of electric vehicles largely depends 
on swiftly identifying and accurately distinguishing various battery pack faults. However, pin-
pointing fault characteristics within LiB packs, which vary in battery types and health statuses, 
proves challenging. In this context, domain-adapted neural networks show promise. 

Collecting and transmitting battery sensor data is of paramount importance in Battery Man-
agement Systems (BMS). Inaccuracies in battery data due to sensor malfunctions, communica-
tion errors, or even cyber intrusions can pose significant threats to both BMS integrity and 
applications dependent on BMS, such as electric vehicles. Thus, evaluating the resilience of 
battery sensor and communication data within BMS is a critical endeavor. 

Sensor data underlie all BMS operations. Effectively detecting sensor faults is pivotal for 
ensuring the sustainability and security of battery systems in electric vehicles. Maintaining bal-
ance within a battery pack is crucial for its Battery Management System (BMS). When not 
adequately balanced, the overall performance of the battery pack is limited by its weakest cell. 
While Battery SOC is a useful indicator for achieving balance, the accuracy of SOC estimation 
is not always assured, introducing uncertainties that can hinder balance optimization. Maintain-
ing uniformity in LiB packs is highly important to prolong battery lifespan, optimize capacity 
utilization, and ensure the safe operation of electric vehicles. In conclusion, fault detection and 
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balancing are essential for ensuring the secure and optimal performance of LiBs. Regular mon-
itoring, appropriate use of balancing techniques, and the application of advanced battery man-
agement systems all contribute to extending battery life and reducing safety hazards. 

In conclusion, the widespread adoption of LiBs in energy storage and electric vehicles comes 
with challenges, particularly in ensuring safety and optimal performance. The Battery Manage-
ment System (BMS) plays a crucial role in addressing issues such as cell balancing, fault de-
tection, and accurate estimation of battery state. Challenges include the diverse conditions of 
connected cells, manufacturing variations, and the complexity of fault diagnosis. Active charge 
balancing and advanced fault diagnostic methods, including domain-adapted neural networks, 
show promise in enhancing energy efficiency and safety. Additionally, the resilience of battery 
sensor and communication data within BMS is vital. Overall, continuous advancements in mon-
itoring, balancing techniques, and BMS applications are essential for extending battery life and 
reducing safety hazards in the dynamic landscape of LiB technology, particularly in electric 
vehicles. 
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