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Abstract

Since the invention of modern computers, people have dreamed of making them able
to learn and think autonomously. Modern machine learning (ML) algorithms are
bringing this dream within reach. A major milestone in this endeavor was the inven-
tion of Deep Neural Networks (DNNs). Numerous applications such as autonomous
driving or robotics would be unthinkable today without DNNs. Despite their versatil-
ity and very good prediction accuracy for problems that were impossible to describe
with traditional algorithms, they are very computationally intensive. Convolutional
Neural Networks (CNNs), a subcategory of DNNs that are indispensable for image
processing, are particularly challenging. For example, to perform high-resolution
image processing, tens of billions of computations must be performed, which could
only be realized thanks to the modern and powerful computing hardware of recent
years.

Despite the progress made in hardware solutions for CNNs, there are still many
unanswered questions, specifically with regard to embedded systems and their re-
quirements. Not only performance, but also energy efficiency, latency, reliability
(safety) and algorithmic accuracy play an important role here. This becomes clear by
exemplary means of autonomous vehicles: Environment perception must be efficient,
accurate, and safe.

Over the last two decades, various hardware accelerators, tools and optimization
strategies have been introduced to cope with the increasing complexity of CNNs.
The search for optimal CNN topologies and accelerators has been automated by
Neural Architecture Search (NAS). In addition, quantization and pruning were
investigated in order to achieve higher energy efficiency. The first method involves
the reduction of computing precision, while the second involves the omission of
computing operations that have little impact on the overall result. Such approaches
work particularly well in the context of CNNs, as they can inherently tolerate certain
computational inaccuracies. Great progress has also been made in the robustness of
CNNs. Despite the large amount of previouswork, there are still many open questions
and challenges to deploy CNNs in an energy-efficient and safe way, especially with
regard to demanding applications such as autonomous driving.

In this thesis, we therefore introduce three new approaches that simplify the design
of a CNN accelerator and algorithm, as well as increase their energy efficiency and
performance. First, we introduce the cycle-accurate simulation tool FLECSim-SoC and
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an analytical counterpart. These tools make it possible to systematically investigate
the influence of various architecture parameters of the CNN accelerator on its energy
efficiency, chip area, and performance. The two tools are not opposing but comple-
ment each other. A cycle-accurate simulation is highly accurate, but time-consuming,
and the analytical modeling is slightly less accurate but significantly faster. In two
case studies we showed that the two simulation tools provide valuable insights into
the impact of different accelerator configurations and thus help to guide the design
process.

To further optimize the energy efficiency of the designed accelerators, we conceived,
developed, and evaluated a novel pruning method subsequently. It analyzes regular
regions in intermediate results of CNNs. Such regions can be pruned efficiently by
the CNN accelerator if they match the dimensions of the accelerator. Since these
regions rarely occur in CNNs, we designed, in addition to the hardware architecture,
a tool, which determines thresholds that decide whether a region is pruned. Our
pruning method is able to reduce the operations by 20% and saves up to 19% of
energy. Thereby, the corresponding hardware extension requires significantly less
chip area than comparable work.

In the context of robust and efficient execution of CNNs, we finally investigatedmixed-
precision quantization, which allows to set the precision of operands in a fine-granular
manner. This can optimize the compromise between model accuracy and energy
savings. Since CNN accelerators, which support mixed-precision, often have high
latency, we first introduce a novel and area-efficient hardware architecture. With the
help of mixed-precision inference, we cannot only reduce energy consumption, but
also increase the robustness of the CNN, for examplewhen an environment perception
has to cope with perturbed input images. By dynamically increasing the operand’s
precision in such a case, we could show that the original model accuracy of modern
workloads could be restored. At the same time, about 45% of the energy-intensive
memory accesses were saved.
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Zusammenfassung

Seit der Erfindung von Computern träumt der Mensch davon, ihnen selbstständiges
Lernen und Denken beizubringen. Moderne Algorithmen des maschinellen Lernens
(ML) rücken diesen Wunsch in greifbare Nähe. Die Erfindung der tiefen neuronalen
Netze (Deep Neural Networks, DNNs) ist dabei ein wichtiger Meilenstein. Zahlreiche
Anwendungen wie autonomes Fahren oder Robotik sind heute ohne DNNs undenk-
bar. Trotz ihrer Vielseitigkeit und ihrer sehr guten Vorhersagegenauigkeit für bisher
algorithmisch schwer beschreibbare Probleme sind sie sehr rechenintensiv. Besonders
rechenintensiv sind die Convolutional Neural Networks (CNNs), eine Unterkategorie
der DNNs, die für die Bildverarbeitung unentbehrlich sind. Beispielsweise erfordert
die Verarbeitung von hochauflösenden Bildern Milliarden von Berechnungen, die
erst durch die modernere und leistungsfähigere Hardware der letzten Jahre in die
Praxis umgesetzt werden konnten.

Trotz der Fortschritte bei den Hardwarelösungen für CNNs gibt es noch viele offene
Fragen, insbesondere in Bezug auf eingebettete Systeme und deren Anforderungen.
Hierbei spielen nicht nur die Performance, sondern auch die Energieeffizienz, die La-
tenz, die Ausfallsicherheit (Safety) sowie die algorithmische Genauigkeit (Accuracy)
eine Rolle. Dies wird am Beispiel autonomer Fahrzeuge deutlich: Eine Umgebungser-
kennung muss effizient, genau und zuverlässig durchgeführt werden.

In den letzten zwei Jahrzehnten wurden verschiedene Hardwarebeschleuniger, Tools
und Optimierungsstrategien vorgestellt, um der zunehmenden Komplexität von
CNNs gerecht zu werden. Die Suche nach optimalen CNN-Strukturen und Beschleu-
nigernwurde durchNeural Architecture Search (NAS) automatisiert. Zudemwurden
Quantisierung und Pruning untersucht, um eine höhere Energieeffizienz zu erzielen.
Beim ersten Verfahren handelt es sich um die Reduzierung der Rechengenauigkeit,
beim zweiten um das Auslassen von Rechenoperationen, die das Gesamtergebnis
nur wenig beeinflussen. Solche Ansätze funktionieren insbesondere im Umfeld von
CNNs sehr gut, da sie gewisse Ungenauigkeiten inhärent tolerieren können. Auch im
Rahmen der robusten Ausführung von CNNs wurden in den letzten Jahren große
Fortschritte erzielt. Trotz der Vielzahl an vorausgegangenen Arbeiten, gibt es noch
viele offene Fragen und Herausforderungen, um CNNs energieeffizient und sicher
einsetzen zu können, speziell im Hinblick auf anspruchsvolle Anwendungen wie
dem autonomen Fahren.
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Die vorliegende Arbeit präsentiert drei neue Ansätze, die den Entwurf von CNN-
Beschleunigern und Modellen vereinfachen und gleichzeitig deren Energieeffizienz
und Leistung während der Ausführung steigern. Zunächst wird das zyklenakkurate
Simulationswerkzeug FLECSim-SoC vorgestellt, sowie eine analytische Alternative.
Diese Werkzeuge ermöglichen es, den Einfluss verschiedener Architekturparameter
des CNN-Beschleunigers auf dessen Energiebedarf, Chip-Fläche und Performanz
systematisch zu untersuchen. Die beiden Werkzeuge ergänzen sich gegenseitig und
sollten nicht als gegensätzlich betrachtet werden. Eine zyklenakkurate Simulation
ist hochgenau, aber langwierig, während die analytische Modellierung leicht un-
genauer, dafür aber deutlich schneller ist. In zwei Fallstudien wurde gezeigt, dass
Simulationstools wertvolle Einblicke in die Auswirkungen verschiedener Beschleuni-
gerkonfigurationen geben und somit den Entwurfsprozess vereinfachen können.

Um die Energieeffizienz der Beschleuniger weiter zu optimieren, wurde darauffol-
gend eine neuartige Pruning-Methode entworfen und untersucht. Dabei werden die
Zwischenergebnisse von CNNs analysiert und Bereiche identifiziert, die mit den
Dimensionen des Beschleunigers übereinstimmen und so besonders effizient durch
diesen geprunt werden können. Da diese Regionen selten in CNNs vorkommen, wur-
de zusätzlich zu der Hardwarearchitektur noch ein Werkzeug entwickelt, welches
Schwellenwerte bestimmt ab denen eine Region geprunt wird. Insgesamt konnten so
mit dieser Pruning-Methode über 20% aller Berechnungen und 19% der Energie ein-
gespart werden. Die entsprechende Hardware-Erweiterung benötigt dabei deutlich
weniger Chip-Fläche als vergleichbare Arbeiten.

Im Rahmen der sicheren und effizienten Ausführung von CNNs wurde abschlie-
ßend Mixed-Precision-Quantisierung untersucht. Diese ermöglicht es, die Präzision
von Operanden feingranular einzustellen, um den Kompromiss zwischen Modell-
genauigkeit und Energieeinsparung zu optimieren. Da CNN-Beschleuniger, welche
Mixed-Precision unterstützen, oft eine hohe Latenz aufweisen, wird zunächst eine
neue und platzsparende Hardwarearchitektur entwickelt. Durch die Verwendung
von Mixed-Precision kann nicht nur die Energie reduziert, sondern auch die Robust-
heit von CNNs erhöht werden. Im Rahmen dieser Arbeit wurde gezeigt, dass durch
eine dynamische Erhöhung der Berechnungspräzision bei Eingangsbildern gestört
durchWettereinflüsse, die ursprünglicheModellgenauigkeit moderner CNNswieder-
hergestellt werden konnte. Gleichzeitig konnten etwa 45% der energieaufwendigen
Speicherzugriffe eingespart werden.
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Chapter1
Introduction

T he last 70 years were defined by exponentially rising advances in comput-
ing technology, which opened increasing technological possibilities. One
important technology that is currently moving into humanity’s reach are

self-learning and Artificial Intelligence (AI) systems. Implemented using highly
sophisticated algorithms they start to show tremendous performance in an increasing
number of areas, from autonomously driving vehicles, over personalized and targeted
medical treatment to improved and more comfortable user interfaces. Although AI
research already started in the 1950s with the advent of computing technology, it took
another 60 years and many technological leaps to make AI algorithms applicable to
real-world problems. Nowadays, most AI systems are carried out as Deep Neural
Networks (DNNs), which resemble the structure of biological brains. Millions of
neurons, with billions of connections enable DNNs to solve increasingly challenging
tasks. In most, they even outperform human capabilities by orders of magnitude.

This trend is notably highlighted by the advances in Computer Vision (CV). A com-
mon benchmark is image classification, using the dataset provided by the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC). It features 1000 classes of images
with over one million training samples. In 2015, for the first time a DNN model
achieved human-level performance in distinguishing those image classes [1]. Since
then, the classification accuracy is rising steadily with the development of more so-
phisticated DNNs. DNN classification performance is measured as Top-1 accuracy,
which gives the percentage of unambiguously correct classification results. The recent
development of DNNs from 2014 until today is shown in Figure 1.1. It also reveals
by what means the growing accuracy is achieved. The bubbles depict the amount
of Floating-Point Operations (FLOPs) it takes to compute a single classification re-
sult. Vision-Transformers [2] reach just over 90% Top-1 accuracy, but one prediction
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Figure 1.1: Development of the parameter count and FLOPs required for a single
inference for different CV neural networks, which were presented from
2014 until 2022; visualization adopted from [4].

requires 5270million FLOPs. In comparison, the network that first outperformed
humans in image classification, GoogLeNet [3], achieves about 70% accuracy, with
3 million FLOPs, 1750× fewer operations. However, applications like robotics or
autonomous vehicles require very accurate and reliable results to operate as expected
and to eventually gain acceptance by customers.

Modelling and executing DNN models with hundreds of million connections and
neurons, requires a vast number of computations and huge amounts of memory. The
current development pace builds on a computational performance doubling in every
six-month period [5]. At the beginning of DNN model development, shrinking rates
of transistors and the associated performance and energy efficiency gains could keep
pace with the growing demands of the algorithms. However, Dennard Scaling poses
a major challenge to modern silicon technology. Compressing an immense number
of transistors onto a single chip, yielded diminishing returns over the years. The tight
integration of all the switching transistors, opens two major issues for the next genera-
tion computing systems. All newly added transistors are hard to utilize efficiently, and
the miniaturization leads to massive heat accumulation, which must be dissipated.
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This creates a so-called utilization wall. To compensate for the diminishing returns of
silicon integration, a paradigm shift happens for DNN systems. Around 2010, the
computation of DNN models moved from General-Purpose Processors (GPPs) to
Graphics Processing Units (GPUs), since frequency increases of Central Processing
Units (CPUs) slowed down and GPUs offered great support for parallelization of the
highly independent operations in DNNs. A couple of years after, DNN computation
moved to dedicated hardware platforms with accelerators that utilize the available
transistors and power budget even more efficiently.

Today, a wide range of different compute platforms for DNNs are available, from
modern smartphone System-on-Chip (SoC) with neural processing engines for better
user experience [6] to high-performance datacenter units. These achieve a throughput
far beyond 10 million million FLOPs per second [7], depending on the complexity
of the DNN model. However, complex engineering challenges, like autonomous
vehicles or humanoid robots, still require more efficient hardware platforms. While
the algorithms for those tasks are not ready yet, if we have a look at Figure 1.1, it
is foreseeable that the requirements for energy efficiency and throughput will rise
further.

1.1 Motivation and Context

The recent development progress of DNN models shows a clear trend towards larger
and more comprehensive, but also more performant models. Execution of those
complex workloads is heavily supported by dedicated DNN accelerators, of which
multiple hundreds were presented in the recent decade. All approaches try to over-
come the utilization wall by adding smart optimization techniques. These start with
novel scheduling methods for DNN workloads, which are referred to as tiling and
mapping, and end with quantization and pruning. The latter two leverage one par-
ticularly interesting characteristic of DNNs, namely their probabilistic nature. For
example, an image classifier tells us the likelihood that an input image falls into a
specific category. Now, if due to approximate computations, this likelihood slightly
differs, but the class of the prediction remains the same, the algorithm continues to
work as intended. Quantization and pruning introduce this kind of computational im-
precision that make many operations simpler with only little effect on the prediction
accuracy.
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Due to Dennard Scaling, simply adding more processing units to DNN accelera-
tors became infeasible to increase throughput. Consequently, the interplay of DNN
model optimization techniques, hardware architectures and DNN model accuracy,
is currently vigorously researched. Huge leaps in overcoming the utilization and
power walls could bemade with efficient DNN accelerators that feature, e.g., dynamic
online pruning, mixed-precision quantization or reconfigurable computational units.
Obviously, a high throughput DNN computation is highly relevant for large-scale
datacenter applications. However, we have left embedded systems like platforms
for autonomous vehicles aside for now. Besides a reasonable throughput, they pose
many other requirements on DNN accelerators. First and foremost, energy consump-
tion and latency, as they are often battery powered, and have to, e.g., perceive the
environment within a constant and short amount of time. Especially this environment
perception is often done using Convolutional Neural Networks (CNNs), a subtype
of DNNs for CV tasks, which have a vast memory footprint for their intermediate
feature maps. This characteristic makes the design of an efficient accelerator even
more challenging. In addition to this, other requirements like a reliable and safe
inference are eminently important for, e.g., autonomous robots or vehicles.

Of course, many research works already tried to find answers to the big question
on how does an efficient CNN model and a corresponding accelerator for highly
constrained embedded systems looks like. Although, great progress was made and
is currently ongoing, some questions are still yet unanswered.

1.2 Challenges, Proposed Solutions and Contributions

In this thesis, wewill discuss some key challenges for DNN accelerators in constrained
embedded systems. Thereby, we will address them by optimizing the DNN inference.
Although, a good deal of research in the area has already been carried out, there are
still a lot of open questions. For example, how to design an efficient DNN accelerator
in terms of throughput, energy efficiency, latency, and chip area. This accelerator
also has to keep pace with the rising parameter count, which is still growing to
unforeseeable sizes. However, hardware development is much more time-intensive
than model design and training. Moreover, it is still unsolved how we can make DNN
predictions more reliable both from an algorithmic and hardware perspective. Finally,
we have to figure out how to lay out a DNN model well-suited for a given accelerator
that delivers high accuracy and reduces at the same time the parameter count.
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All those questions open ways for many solutions, approaches and starting points.
Consequently, the current research community is following different ways to achieve
the same goal. With the work that was carried out and is described in this thesis, we
make three general contributions to the current state of the art. All our contributions
focus on embedded systems and respect the associated constraints like area limitations
or strict energy budgets. As a result, each of our approaches aims to optimize the
trade-off between energy efficiency to throughput. In particular, we looked at how we
can reduce the numerous energy demanding off-chip memory accesses. To see this in
action, we focused ourwork especially on CNNworkloads, as they have largememory
footprints and offloading to external memories happens often. Therefore, we chiefly
investigated hardware methodologies and stuck to commonly used benchmark CNN
workloads, which also allows for a better comparison to state-of-the-art works. Hence,
altered model topologies or approaches like Neural Architecture Search (NAS) are
only touched briefly.

Algorithm and accelerator co-design In our first contribution, we tried to answer
the question on how we can design a DNN accelerator tailored for a given model and
set of requirements. Therefore, we introduced two simulation platforms to assess
DNN accelerators in terms of Performance, Power and Area (PPA), and to perform a
Design Space Exploration (DSE) to identify accelerator configuration well-fitted for
the target workload. First, we presented a cycle-accurate simulation framework called
FLECSim. It allows modelling entire SoC designs using SystemC or Register Transfer
Level (RTL) modules to enable a quick time to market and an early verification of
possible designs before actual chip production. Second, we describe our analytical
model approach, which generates PPA estimates much quicker, since it uses the
Roofline model instead of time-consuming cycle-accurate simulation. This is feasible
because DNN workloads have a highly homogenous dataflow. Both simulation tools
are demonstrated with common benchmark workloads. Here, we also proved that
our models reflect real-world performance numbers. For the analytical model, the
deviation is less than 1% off, but with orders of magnitude faster execution time.
With our two approaches, we finally conducted two case studies, which showed
their flexibility and revealed useful insights about how various DNN accelerator
characteristics affect the PPA figures. For example, FLECSim was used to lay out
an embedded Field Programmable Gate Array (eFPGA) design and our analytical
model for camera-based environment perception.

More in Chapter 4. Relevant publications: Hot+20; Hot+21; Hot+22b; Hot+23c.
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Exploitation of regular sparsity in activation feature maps of CNNs In this and
the next contribution we investigated ways to make the actual DNN inference more
efficient in terms of energy and throughput. One promising method is pruning of
activations that only contribute little to the model’s result. Therefore, we designed a
modern regular activation pruning method. Our approach targets sparsity in the
input feature map in the form of blocks that have the same size as the underlying
hardware accelerator. Thus, we can prune with only little extra hardware, which
makes the pruning highly efficient compared to index-based irregular pruning
schemes. Since sparsity in regular blocks is only rarely present in modern CNNs, we
introduced a technique and tool to increase it by using threshold-based magnitude
pruning. Our tool Spex explores the search space of accuracy and number of sparse
blocks automatically and yields a favorable magnitude pruning threshold for each
layer. With this we can prune all activations that contribute nothing or only little to
the result with our hardware extension Sparse-Blox, which aims to have only a small
hardware overhead. In comparison to state-of-the-art irregular pruning approaches,
Sparse-Blox hereby requires up to 5× less area. Pruning those activations allows us
to skip unnecessary Multiply-Accumulate (MAC) operations and memory transfers,
which result in large energy savings. Considering a ResNet-50, we can, e.g., prune
about 20% of all activations. This saves about 800million MAC operations and over
19% of the inference energy.

More in: Chapter 5. Relevant publications: Hot+22a; Hot+23a.

Increasing robustness and energy efficiency using mixed-precision inference In
the third contribution, we analyzed how quantization can be utilized for increased
efficiency and robustness. Especially mixed-precision inference was shown in
multiple studies to settle at a sweet-spot between model accuracy and energy
efficiency. Parts of the model that are sensitive to quantization may, for example, be
executed with higher precision. In turn, others are run with less precision to save
energy. To determine the sweet-spot, we extended Spex to search also for per-layer
precision. Since mixed-precision is typically hard to implement in hardware, we
also presented a new method for arbitrary precision quantization without the need
to alter the entire DNN accelerator. Our approach uses a reconfigurable fabric,
present in most modern SoCs, to host a quantization and dequantization unit.
These units compress data moving from or to the off-chip memory to save energy
during costly memory accesses. The introduced mixed-precision is evaluated with
state-of-the-art image segmentation CNNs. We found that it can save up to 6%
energy with negligible resource consumption on the reconfigurable unit. Besides that,
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we investigated how adjusting the precision can restore the model accuracy in case of
perturbed inputs. This is of particular importance, when considering safety-critical
embedded systems like environment perception in autonomous vehicles. Therefore,
we evaluated image datasets corrupted with environment conditions like rain or fog
and demonstrated that mixed-precision can support the robustness of CNNs in these
scenarios. We demonstrated, e.g., that severe rain can be mitigated by increasing the
precision slightly. In this case, we can still save up to 45% energy by compressing
off-chip memory transfers, since only the perturbation sensitive part of the model is
executed with higher precision.

More in: Chapter 6. Relevant publications: Hot+23b.

To enable subsequent work and transparency on the results, our model exploration
and optimization tools are made available as open-source to the public, under the
following link: https://github.com/itiv-kit/dnn-model-exploration.

1.3 Outline

To get an overall impression and understand of the topic, the next chapter (Chap-
ter 2) will introduce all required principles. Here we will cover DNNs and CNNs,
their function and building blocks, popular datasets and DNN models, as well as
basics of hardware architecture design and finally how to utilize dedicated hardware
architectures to make DNNs more efficient. When the principles are explained, we
can dive deeper into the state of the art, which is covered in Chapter 3. This chapter
introduces notable DNN hardware accelerators along with common optimization
techniques that are today widely used to increase the inference efficiency. In addition,
we will talk about the software ecosystem that is also essential for highly efficient
DNN computation.

In Chapter 4 we will tackle one of the most challenging questions in DNN accelerator
design, which is what accelerator configuration is the best for a given application.
Therefore, we present FLECSim, a cycle-accurate simulation SoC framework and its
companion, an analytical approach. In combination, both can support the design
process and help to figure out how certain design decisions impact the inference
performance. To increase the performance further, Chapter 5 introduces Spex and
Sparse-Blox, a tool and hardware extension to increase and prune regular activation
sparsity in DNNs. With this method, we can save up to 20% of all computations
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and inference energy in a model. Quantization is also a great way to boost the
efficiency. Hence, Chapter 6 shows how mixed-precision cannot only reduce energy
consumption of the hardware architecture, but also help to increase the robustness
against perturbed inputs. Using this approach, we can restore the accuracy of a CNN
with inputs perturbed by severe rain and at the same time reduce energy-expensive
off-chipmemory accesses by 45%. Finally, Chapter 7wraps up ourwork and discusses
potential future research paths.
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Chapter2
Basic Principles and Fundamentals

T his chapter introduces basic principles as well as theoretical concepts that
are necessary for further understanding of this thesis. First, we give a brief
overview of Machine Learning (ML) in general, before diving deeper into

neural networks and especially Deep Neural Networks (DNNs) with all their com-
ponents and building blocks. A particular focus is put on Convolutional Neural
Networks (CNNs) and how they leverage spatial information and thus work very
well in Computer Vision (CV) tasks like image classification, object detection or
semantic segmentation. We then introduce commonly used benchmark network
topologies and datasets in the world of DNNs. With an agreed set of benchmarks,
results of different architectures can be compared among each other. In the second
half, this chapter will cover the foundations of hardware architectures and hardware
accelerated neural network computation. Therefore, we first present an overview of
common hardware architectures as well as general hardware development methods
such as design automation and hardware / software co-design. This chapter closes
with hardware accelerators for DNNs and why dedicated DNN accelerators support
faster and more energy-efficient computation.

2.1 Introduction and History

Recent advances in computational capacity have enabled execution of highly de-
manding algorithms such as complex real-time simulations or multidimensional
optimization in a reasonable amount of time. This led to the development of novel
ML algorithms like Artificial Neural Networks (ANNs). In general, the idea behind
self-learning systems is not entirely new. The first approaches towards machines that
can adapt to situations based on experience came up around 1960 by pioneers like
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Arthur Samuel, Marvin Minsky, or Frank Rosenblatt. They introduced, for example,
the first perceptrons [8] or self-learning applications [9]. However, early machine
learning research had to face the limits of computational performance at that time.
As a result, the effectiveness of machine learning algorithms was questioned. After
a period of diminished interest, Artificial Intelligence (AI) development regained
attention in the mid-1980s with the discovery of the backpropagation algorithm [10].
It helps to determine the complex estimation of weights in neural networks. How-
ever, for larger networks it is highly computationally challenging. Hence, given the
computational requirements of backpropagation, AI research fell out of favor once
again due to a lack in computational performance at the end of the 1980s [11].

Although, some few researchers continued to follow the AI research path, it took
yet another twenty years until further progress on the topic was made. Around
2010 neural networks and the backpropagation algorithm became popular again,
benefitting from the rise of widely available and powerful Graphics Processing Units
(GPUs). GPUs also gave a head-start to deeper and more complex neural networks.
This started and coined the term deep learning around that time [12]. Since the last
decade it allows solving a growing amount of increasingly difficult tasks. Today’s
exemplary applications range from healthcare over robotics to autonomous vehicles.
CV algorithms for medical imaging based on DNNs outperform human doctors in
detecting skin cancer [13]. Face recognition algorithms based on CNNs enable robots
to interact with the elderly in a personalized and human-friendly way [Wal+21].
Even data acquisition systems can benefit from DNNs. For example, in the large
scale physics experiments Belle-II, a DNN detects and compresses data from particle
collisions [14]. These mere three applications already show the wide range of appli-
cations that can be covered with DNNs. In general, it is conceivable to deploy DNNs
in almost any application, especially when modelling the problem with traditional
algorithms is too complex and enough data for training and validation is available.

2.1.1 Artificial Intelligence and Machine Learning

ML is one of the most important subfields of the more general field Artificial Intelli-
gence. The general goal of ML is to build an algorithm that can understand a given
dataset [16]. An algorithm might predict results of unknown data or extract valuable
information from given input data. We can divide machine learning algorithms into
three categories based on the nature of the data and on the way the algorithm is
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Figure 2.1: Overview of the distinct types of machine learning and the typical work-
loads that can be solved using the given type, according to [15].

trained: Supervised, unsupervised and reinforcement learning. An overview of the
different types and their classification is given in Figure 2.1.

Supervised learning algorithms require input data that has target labels, which repre-
sent an expected prediction. The aim of supervised learning is to determine a function
that maps inputs to the associated target labels. Once an algorithm is trained on a
large set of labeled data, it can be applied to unknown data to predict an output that
matches the trained labels. Based on the output either classification or regression can
be performed [16]. The first aims to group inputs into distinct classes, whereas the
latter tries to find the relation between inputs and outputs, and determines regres-
sion coefficients, which describe a linear or even more complex regression function.
Hence, supervised learning is an extremely popular way to tackle challenges like
image classification, natural language processing or object detection.

Unsupervised learning, in contrast, operates on unlabeled data. Its goal is to extract
information or find patterns in large unstructured datasets. One common type of
unsupervised learning algorithms are clustering methods. Examples are centroid
basedmethods like k-Means [17] or density-basedmethods like DBSCAN [18], just to
name two. Even different algorithms put emphasis on various aspects of the data, all
aim to group unstructured data into clusters based, e.g., on their Euclidean distance.
Besides clustering, dimension reduction methods like Principal Component Analysis

BASIC PRINCIPLES AND FUNDAMENTALS | 11



x0

x1

x2

...

xi

w0j

w1j

w2j

...

wij

Σ

bj

+ ϕ oj
netj

Activation
function

Figure 2.2: Overview of a single artificial neuron, featuring a set of inputs andweights,
one bias from which an output is computed; visualization from [21].

(PCA) [19] help to extract information from unstructured data by mapping data with
high a number of dimensions to fewer based on their variance. This class of algorithm
can eliminate features that contain none or only little relevant information.

Reinforcement Learning (RL) [20] works slightly different compared to the other
algorithms. The main principle of RL is that an intelligent agent interacts inside an
environment and thereby learns beneficial actions that it can take in this environment.
A reward function guides the entire process towards a beneficial outcome. The agent
tries to maximize the reward, and therefore tests different actions in a trial-and-error
fashion. RL does not require labeled data, instead it learns a general set of rules based
on the defined environment. Common applications of RL are robot control or playing
games since the environment for those applications can be well described.

2.1.2 Artificial Neural Networks and its Building Blocks

ANNs are nowadays the most popular type of machine learning algorithm due to
their versatility. Supervised, unsupervised and reinforcement learning tasks can
all be tackled with ANNs. Already in the late 1940s first approaches to mimic the
organization of biological brains and neuron structures were presented [22]. Even
though biological brains are not fully understood up to the present day, some basic
principles are known and were brought into computer science to form an artificial
counterpart. As stated before, the idea of ANNs is not entirely new, however, only
modern computer hardware is capable of handling multiple million neurons. A
single artificial neuron that resembles a biological neuron to some extent is shown in
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Figure 2.3: Four common and modern examples of activation functions for ANNs,
according to [23].

Figure 2.2. In principle, a neuron with an index j computes an output oj . Therefore,
a set of inputs x0, . . . , xi is multiplied with the corresponding weights w0j , . . . , wij .
The product of inputs and weights is then summed up. The result represents a linear
combination of all inputs based on their weight. Hence, it allows to construct a curve
in two-dimensional space, which is parametrized by the weights. To shift this curve
representation on the y-axis, a bias bj is added, yielding the neuron value netj .

However, ANNs should represent complex non-linear functions. Hence, at the end a
non-linear activation function is applied to netj . For various applications, different
activation functions are available. A selection of commonly used functions in shown in
Figure 2.3. One of the first successfully deployed activation functions is the Logistic or
Sigmoid activation [24] (see Figure 2.3a). It is frequently used in statistics. The main
benefit is a constrained range (0, 1), which limits the overall result of an individual
neuron. In addition, Sigmoid smoothens input values around zero in contrast to a
simple step function. Similar to Sigmoid, a hyperbolic tangent can be used to create
similar behavior, but allowing for negative values (see Figure 2.3b). Many state-of-the-
art neural networks nowadays use the Rectifier Linear Unit (ReLU) activation [25; 26]
(see Figure 2.3c). Although, it neither limits the range nor smoothen the output value,
its benefits become apparent when millions of neurons have to be processed in large
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networks, as their computation is very straightforwardusing a simple comparison [27].
The traditional ReLU activation can, however, create difficulties in very large and
deep networks, since negative intermediate results are neglected during the training
process, which may lead to a non-converging network training. Hence, very recent
networks use modifications of ReLU, like the Swish function [26] (see Figure 2.3d). It
is still simple to compute, but also allows for negative activations.

Putting all components of an artificial neuron together, we can compute its output oj
as follows using Equation 2.1:

oj = ϕ(netj) = ϕ

(
N−1∑
i=0

(xi ∗ wi) + bj

)
(2.1)

To form a complex neural network, we can now simply put multiple of these simple
neurons together. In ANNs neurons are grouped together into layers, based on which
neurons provide the inputs for the next. Layers can be stacked upon each other,
in which the output of a layer Ln represents the input of the next layer Ln+1. The
connections in between layers, can be varied: Fully Connected networks connect
each output to all neurons of the subsequent layer and sparse networks only connect
selected neurons. Connections do not necessarily need to follow a straight acyclic
directed graph. As a result, besides feed forward networks, Recurrent Neural Net-
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works (RNNs) exist, which also feature cyclic connections back to preceding layers.
Networks with multiple layers are often called either MLPs or DNNs. Layers of the
network itself, are considered hidden layers. Besides them input and output layers
represent external data input and the final network output, respectively. An example
of a simple fully-connected MLP with an input and output layer is given in Figure 2.4.
Looking at the computation of a single Fully Connected (FC) layer, we can represent
the weights, inputs, biases, and outputs as matrices. Equation 2.2 shows the general
equation for a single layer with i inputs and j outputs. In this example, the network
is fully-connected, however, sparse connections can be represented by zeros in the
weight matrix.

[
net0 net1 · · · netj

]
=

[
i0 i1 · · · ii

]
×


w00 w01 · · · w0j

w10 w11 · · · w1j

...
...

. . .
...

wn0 wi1 · · · wnj

+
[
b0 b1 · · · bi

] (2.2)

Each neuron in the output layer of a regression ANN contains a parameter of the as-
sociated regression function. However, for classification some further considerations
have to be considered. It does not work with continuous output values, as ambiguous
result can occur. To solve this, classification networks each output neuron represents
a specific class. This is referred to as one-hot-encoding. Here, an optimal prediction
would contain maximum activation at a neuron that represents the target class, while
all others show no activation. To achieve this, the SoftMax activation function is used
for the output layer. It limits the continuous output of each neuron to a range of [0, 1]
with a sum of 1 over all output neurons. As given in Equation 2.3: With K classes,
SoftMax weights the output netj of neuron j according to all output activations. As
a result, the output of each neuron can be interpreted as probability that a prediction
falls into a specific category.

ϕ(neti) =
eneti∑K
j=1 e

netj
(2.3)

With multiple layers ANNs started to solve more complex problems. For example,
in 1989 a network with three hidden layers was able to recognize handwritten ZIP

BASIC PRINCIPLES AND FUNDAMENTALS | 15



codes with less than 1% error rate [29]. Over time and with more sophisticated
hardware support for neural networks, the number of feasible layers in deep learning
grew massively [30], enabling more challenging tasks like image classification or
speech recognition. Therefore, in the 2010s many other forms of neural network layers,
connection pattern and neuron behaviors were introduced. For instance, CNNswhich
apply convolutions on the inputs and consider spatial information, Long-Short Term
Memories (LSTMs), a sub-category of RNNs, which show a very good performance
in prediction of time-series data, due to their build-in memory or Transformer models,
which are the backbone for large languagemodels that show tremendous performance
on Natural Language Processing (NLP).

2.1.3 Training of Artificial Neural Networks

ANNs have to be trained beforehand to predict expected results. The goal is to
optimize all weights and biases of the ANN so that they match the expected result as
close as possible [23]. As discussed before, individual neurons in a neural network
represent linear functions, which in combination can form complex mappings from
inputs to outputs. Hence, training of ANNs can also be formulated as a multivariable
function optimization problem, well-known in theworld of stochastic optimization. In
general, the search space of modern DNNs is quite complex. Mathematicians already
found solutions to keep this design space in bounds, using effective algorithms like
gradient decent. Usually, neural networks are initialized with random parameters.
These weights are now iteratively optimized in a training loop that tunes the network
towards its target function.

The current status of the training process and closeness to the optimization goal is
formulated as cost or loss function C, which in simple terms gives a measure of the
network’s error. Loss functions are chosen based on the task. For regression tasks
Mean Average Error (MAE) and Mean Squared Error (MSE) are used (Equation 2.4).
Both compare the predicted outputs of a neuron oj to the expected target outputs tj .
The first function weights the resulting error on average over all values and the latter
penalizes greater errors stronger by squaring the difference.

MAE =

∑j=1
n |oj − tj |

n
MSE =

1

n

j=1∑
n

(oj − tj)
2 (2.4)
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Classification problems are normally trained with Cross-Entropy (CE) loss (see Equa-
tion 2.5 left). It penalizes wrong classification results with a logarithmic magnitude,
leading to a higher error for predictions further apart from the target and smaller
error for closer predictions. For one-hot encoding tj only has one non-zero value at
the location where the target is. Considering this and replacing oj with the SoftMax
activation function, we can simplify Equation 2.5 to compute the loss value for a
neuron at a given position p (see right part).

CE = −
K∑

j=1

tj log(oj) CE = −log

(
enetp∑C
j=1 e

netj

)
(2.5)

Now that we can quantify the model’s error on a given input, we can proceed with the
next step, optimizing the network parameters towards a good prediction performance,
i.e., minimizing the loss. As stated before, this kind of optimization problem can
be solved by gradient-based optimization algorithms. A quite simple example is
gradient decent. Besides that many other optimization algorithms appeared over the
last years, some especially for ANN training [31; 32]. The loss function of every neural
network spans an n-dimensional plane that has at least one optimal solution, which
represents an optimal set of parameters. Now, the objective is to find this solution
and not getting stuck in local minima. Calculus can tell us in which “direction” along
the n-dimensional loss plane we have to move to get closer to the desired optimal
solution. Therefore, we have to compute the derivate of the loss function at a given
position and subtract the magnitude from the parameters to obtain a new set of
parameters. However, determining the derivate of the loss function regarding each
weight becomes a series of nested terms for large and deep ANNs.

To overcome this complexity while computing the derivate, an algorithm called
backpropagation [10] is employed. It computes the gradient and derivate of the loss
function for each weight in an iterative manner, denoted as ∂E/∂wL

ij . The advantage
is that we can break the derivate into individual steps with partial derivates, as given
in Equation 2.6. All parts can be computed separately and be reused for other weights.
This works analogous to the forward pass as shown in Figure 2.2 but the other way
round: E.g., the first term is the derivate of the loss functionwith respect to the network
output, the next is the derivate of the weighted sum, and so on. Backpropagation now
reuses terms, which were already computed for each weight instead of computing all
partial deviates individually, making the entire process much more efficient.
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∂E

∂wij
=

∂E

∂oj
· ∂oj
∂netj

· ∂netj
∂bj

· ∂bj
∂wij

(2.6)

If we extend the example of a single layer to an entire MLP, we can apply the chain
rule to append all layers. To avoid duplicate computation of the layer outputs the
backpropagation algorithm reuses their outputs as well and propagates only an error
vector for each layer. Therefore, intermediate outputs computed during the forward
pass have to be cached. Hence, for large models a lot of memory has to be provided
for training.

Finally, updating the weights to minimize the error is done by subtracting the partial
error with respect to a given weight. However, this will lead to a non-converging
optimization as too steep weight changes are applied. Hence, a learning rate η scales
the magnitude of the weight update. Typical learning rates are chosen somewhere
between 0.01 to 0.0001; usually the learning rate is lowered during the training process
to support fine-tuning at the end [33]. Combining all those parameters results in the
following equation, showing how an individual weight is updated:

∆wij = −η
∂E

∂wij
(2.7)

Learning rate is considered as hyperparameter. Hyperparameters define the structure
and properties of a DNN. The most notable hyperparameters are the number and
kind of layers, and neurons per layer. Sometimes the term is even defined more
broadly and includes aspects like the selected optimization algorithm or the type of
activation function.

Besides learning rate, other methods to support fast convergence and proper fitting
to the training dataset are applied: First to mention are regularization strategies
that prevent the network from overfitting, e.g., early stopping [34], which tracks the
training progress and stops when the network performance starts to worsen. Second,
batch normalization to limit the magnitude of gradients and errors that result in large
networks [35]. Among others, those two methods are routinely used for fast and
goal-directed DNN training.
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2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a class of ANNs that chiefly consist of
Convolutional (CONV) layers instead of FC layers. They work especially well on input
data that features spatial information, like images or videos. The first basic structure
of a CNN the neocognitron was presented already in 1980 [36] and was inspired by
the visual cortex of mammals. However, it took another ten years for LeNet-5 [37] to
appear, which outperformed traditional MLPs in handwritten bank check number
recognition. Although, CNNs demonstrated their performance, computational power
was simply not sufficient at that time to solve large image recognition tasks. As a result,
research in CNNs almost came to a stop, until in 2006 the first GPU supported CNN
implementation was presented by Chellapilla et al. [38]. This fast implementation,
gave rise to more sophisticated models like AlexNet [39] in 2012. Training this model
with eight layers was only made possible through the advances in GPU utilization.
AlexNet, as a result, won the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC), an image classification challenge hosted by Microsoft, with about 15%
error rate. Over the last decade, even deeper models with today over 150 layers [40]
paved the way to an error rate of only a few percent, which outperforms humans.

The applications of CNNs include nearly all conceivable tasks, which involve temporal
or spatial information. In computer vision, CNNs are used for image classification [40;
41; 42], object detection [43; 44] as well as instance [45; 46; 47] and semantic seg-
mentation [48; 49; 50]. CNNs, in general, can work with data of any dimension.
Using one dimensional signals they detect anomalies or extract data, e.g., in Elec-
tro Cardio Grams (ECG), where they help to identify arrhythmic heart beats [51].
Two-dimensional inputs are usually images. Application examples range from health-
care, where CNNs help to identify disease from chest X-Ray images [52] or in skin
cancer detection, in which the algorithms already outperform human doctors [53].
Other important domains are autonomous driving or autonomous robots. CNNs
as object detection networks and segmentation networks play a significant role in
environment perception [50; 54]. For example, a CNN can detect pedestrians for
autonomous vehicles [55] or evaluate and fuse data from multiple sensors like cam-
eras and LiDARs [56]. A third popular domain for two-dimensional CNNs is face
recognition. For example, FaceNet [57], which extracts essential information from any
given face and hence can be generalized to new faces quickly, or DeepFace [58], which
outperforms humans in distinguishing persons. These three application examples
only give a glimpse into the domains that can be addressed by two-dimensional
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CNNs. Three-dimensional CNNs are found to process video data, e.g., for human
pose estimation [59]. Input data for pose estimation usually has both temporal and
spatial information, which is extracted by the three CNN dimensions.

Modern approaches of neural networks in CV nowadays typically combine several
types of ANNs. For example, a combination of LSTMs andCNNs layers is beneficial to
take both spatial and temporal information into account, with less overhead compared
to three-dimensional CNNs. FC layers are added for classification tasks, to combine
information that at the end of the CNN into classification results.

2.2.1 Convolution Layer

Themain component of CNNs are CONVs layers. In contrast to either fully or sparsely
connected layers, which have individual weights for each connection, CONV layers
are typical sparsely connected and share weights with different connections. Weights
are grouped in convolution kernels, which consist of stacked filters. Weight sharing
happens though the convolution operation, in which a kernel is moved along the
spatial dimensions of the input. In each movement step, a so-called receptive field
of the input is pointwise multiplied with the filter, creating an output value. On
this a bias and an activation function is applied, analogous to other types of ANNs.
The resulting output value is then placed at the corresponding position in an output
feature map. Filters are reused for the whole input, which leads to fewer parameters,
compared toMLPs. A simplified example of a two-dimensional convolution operation
as it is performed in CONV layers is given in Figure 2.5. Here, a two-dimensional
3×3 kernel moves along the width and then the height dimension of the input feature
map. The first receptive field of the input data and the corresponding output is shown
in blue, the second in green. The size of convolution kernels is typically much smaller
than the size of the input. Common sizes are 3× 3, 1× 1 or any odd number. Odd
numbers cover an uneven portion of the input feature map with a clear center point
for the output feature map, which is favorable for CNNs.

With this basic principle, CONV layers can extract information from inputs that are
spatially close to each other. Due to the fewer weights, they can be trained efficiently.
FC layers, in contrast, combine information from all inputs at once and have many
more weights. Training MLPs for image classification thus takes a lot of time, and
it tends to overfit because many small weights are created. CNNs regularize the
training by reducing the overall number of connections.
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Figure 2.5: Principle of a two-dimensional convolution with input i, weights w and
output o, according to [21].

Modern CNNs for image processing feature multiple CONV layers. Why multi-
layer CNNs work especially well, can be easily understood: After successful training,
the first couple CONV layers usually extract simple vertices and edges from the
input image. Hereby, they also discard noise or brightness differences. In doing so,
pretrained kernels filter input images and are hence also referred to as convolutional
filters. To extract diverse types of vertices and edges, a CNN has multiple filters that
are applied to the same input, but with different weights. Going deeper into the
CNN, CONV layers condense information from intermediate results. Different simple
vertices are put together to form more complex shapes. The higher an activation
after a CONV operation, the higher the probability for the presence of a learned
feature. Since, the filter is moved across the input, spatial information is preserved. In
instance segmentation or object detection tasks, this information is used to determine
the position of an object. Image classificators, however, drop this information, but
combine the likelihood of different complex shapes to determine the image class.
This last step is usually done by one or two fully connected layers, which combine
information from all inputs into a single output.
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Figure 2.6: Convolution operation and nomenclature in typical CNNs using batched
inputs and multiple filters, following the nomenclature propsed in [60].

From a computational perspective, CONV layers require more operations than FC
layers. However, they have fewer weights and thus have a smaller memory footprint
for parameters [61]. For real-world applications, we have to extend the simple CONV
layer example, as depicted in Figure 2.6. In this thesis, we will use the parameter
naming introduced by Sze et al. [62], which are listed in Table 2.1. As stated before, a
CONV layer typically has multiple filters (M), to represent distinctive features. The
spatial dimensions of a filter are assigned the shape parameters R and S. In addition,
inputs have multiple channels (C), for example three channels for each color of an
RGB image. Filters that are applied to an input feature map have to match the channel
count. Multiple images might be processed at the same time in batches (N). Putting
this together, we will use the following CONV layer notation throughout this thesis:

ILfm︸︷︷︸
Input

feature map

∗ WL︸︷︷︸
Weights

+ BL︸︷︷︸
Bias

⇒ OL+1
fm︸ ︷︷ ︸

Output
feature map

with

Ifm ∈ RN×C×H×W

W ∈ RM×C×R×S

B ∈ RM

Ofm ∈ RN×M×P×Q

(2.8)
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Index Meaning

N Batch size of the input; Stays the same through the whole
network.

M Number of filters, determines the number of channels in
the output feature map.

C Channels, depth of the input. Filter depth has to match
the channels in the input feature map.

R / S Width and height of a filter. Also, referred to as kernel
size.

P / Q Output width and height
W / H Input width and height
U Stride
Wpad / Hpad Padding for width and height
Wdil / Hdil Dilation for width and height

Table 2.1: Parameter nomenclature for CONV layers used in this thesis.

Besides the dimensions, a CONV layer has modifiers like stride, dilation, and padding.
The stride (U) of a convolution filter determines the step size of movement along the
input featuremap. Afilterwith a stride of two, for example, skips every other receptive
field while sliding over the input. Hence, a stride can be used to down-sample the
input or to compress information. Some networks apply dilation (Hdil and Wdil,
often Hdil = Wdil) in a convolution operation to widen the receptive field of a kernel.
For example, a dilation factor of two only takes every other input pixel into account.
By increasing the receptive field, more information can be considered. However, by
simply increasing the kernel size, more weights are added to the network. This can
be circumvented with dilation. Padding (Hpad and Wpad, often Hpad = Wpad) can
be applied to put the same attention to the edges of an input as to the center parts.
When the filter is moving along an input, pixels at the border of an image are only
passed once by A kernel, while pixels in the middle are seen more frequently by it.
Padding compensates for this effect by artificially enlarging the input along all four
corners. The added pixels can be filled with zeros (zero-padding) or with the same
value as neighboring pixels (same-padding).

Equation 2.9 gives the computation for an output of a CONV layer. An algorithmic
form can be found in Listing 2.2. The size (P and Q) of the output feature map is
influenced by the size of the input, the kernel size, and the stride. The computation
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Figure 2.7: Principle of Max- and Average-Pooling. Shown with a two-dimensional
input and a 2× 2 pooling filter; visualization adopted from [28].

involves seven nested for-loops that iterate over all dimensions of the input feature
map and the filters. As we will see later, in a hardware realization these loops can
be executed in parallel and shuffled, since there is almost no data dependency. This
increases data reuse and thus boosts inference performance.

o[n][m][p][q] = σ

(
C−1∑
c=0

R−1∑
r=0

S−1∑
s=0

i[n][c][Up+ r][Uq + s]× w[m][c][r][s]

)
+ b[m]

P =
H −R+ 2 ·Hpad + U

U
Q =

W − S + 2 ·Wpad + U

U
(2.9)

2.2.2 Pooling Layer

Pooling layers are a key component of CNNs. They help to compress spatial infor-
mation, which is especially desirable in image processing. Although CONV layers
do this as well, they require a vast number of Multiply-Accumulate (MAC) opera-
tions, which is growing with the dimensions of the input image. Consequently, it is
beneficial for the computational load and the training process to drop input pixels
that contain only little information. Pooling works like a convolution operation using
a sliding receptive field, but instead of pointwise multiplication, it simply pools all
values in the field. Different kinds of pooling are available, of which the two most
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Figure 2.8: Typical tasks of CNNs.

common are shown in Figure 2.7 using a two-dimensional example. Max-Pooling
looks for the maximum activation in the receptive field and drops all others, while
Average-Pooling computes the average of all activations in the receptive field. The
first looks for activations that contain the most information, and the latter can be
applied to smoothen the CONV output. The size of the receptive field and a stride
of a pooling operation can be parametrized. Usually, stride is set to the same size
as the receptive field to create non-overlapping pools. For data reduction pooling
is preferred over large convolution filters with strides, since it is simple to compute
and does not add any weights. Hence, pooling is found in most CNNs after a set of
CONV layers, typically one to three.

2.2.3 Evaluation Metrics

Typically, three types CV tasks are addressed with CNNs: Classification, object
detection and segmentation. Examples are given in Figure 2.8. The latter can be
subdivided into semantic and instance segmentation. We will now look at each task
and how the performance can be measured, which is essential to check whether the
model training converges.

Classification (example in Figure 2.8a) is one of the most common tasks for a CNN.
The output of a given network should tell which category an input belongs to. This
is realized with a SoftMax activation in the last layer and One-Hot encoded labels.
Classification problems are usually evaluated with a Top-1 or Top-5 accuracy score.
The first metric tells how many predictions made by the CNN equal the label exactly.
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Similarly, a Top-5 accuracy, gives a percentage of how many of the actual labels are
among the highest five prediction results for a single classification. Top-5 accuracy can
be generalized to a Top-K accuracy, to see if a the highest K predictions are amoung
the label.

Object detection (Figure 2.8b) has the goal to identify the position of an object in an
image. Therefore, CNNs are trained to output the coordinates along with the size and
class of all objects present in an image. As an evaluation metric for object detection
tasks, we can combine the classification accuracy for the predicted labels and the
Intersection over Union (IoU) for the predicted position. In general, IoU gives the
ratio of the intersecting area of target and prediction regarding the total area of label
and prediction. E.g., if prediction and label do not overlap at all, the IoU returns 0,
if they exactly match, the IoU computes to 1. With IoU, another metric called mean
AP (mAP) can be computed. Only detected objects with an IoU above a defined
threshold, are considered valid detections, others are false predictions. Based on the
valid or true positive and true negative predictions, one can calculate Precision and
Recall of the task. The area under the precision recall curve then yields the Average
Precision (AP). Taking the average of each class Average Precision (AP), gives finally
the mAP. This metric has the advantage that it considers each object’s class, and the
threshold prevents ambiguous results from showing up.

Segmentation can be divided into instance and semantic segmentation. Figure 2.8c
shows an example of semantic segmentation, in which each pixel is classified individ-
ually. Instance segmentation, in contrast, aims to identify contiguous regions which
belong to the same instance of a class. Hereby, a single class can be present multiple
times, e.g., other cars in a driving scenario.

A very straightforward metric to evaluate segmentation results is pixelwise accuracy.
For this metric, each individual pixel is compared to the label and then the ratio of
correct predictions in relation to total pixels yields the pixel accuracy. However, this
metric might be misleading, when one class, e.g., background is overrepresented in
an image. Therefore, more often IoU or mean IoU (mIoU) is used. In contrast, to
IoU in object detection, here it is computed on pixel level. Hence, correctly classified
pixels for each class are summed up and compared to all falsely predicted pixels. In
doing so, we get the individual IoU for a given class. By averaging all classes, we
can compute the mIoU. The main advantage of this metric is that it represents the
accuracy of each class evenly. Similar to objection detection, mAP is also frequently
found in segmentation tasks.
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2.3 Benchmark Datasets and Models

We have seen in the previous chapter that computation and training of any kind of
ANN can have ample complexity. To cover some of this complexity under a hood of
reusable functions, many software tools and libraries were presented. Besides the
training itself, comparability to other works became more important. Hence, today
a wide range of established datasets and network topologies for a large variety of
applications and domains exists, from environment perception in autonomous driving
over medical imaging data to networks and datasets aimed for audio recognition.
This section will give an overview of popular networks and datasets, and introduces
the widely used ANN framework PyTorch, which is used throughout this thesis.

2.3.1 PyTorch

PyTorch [63] is one of the largest available library and framework for any task dealing
with ML. Despite its relatively recent initial release in 2016, it quickly grew to become
a widely used framework alongside another large framework, TensorFlow. The open-
source library is used and supported by large companies and research facilities like
Uber and Tesla. PyTorch provides a simple Python and C++ interface for handling
complexworkloads in a simplemanner, with dedicated parts enabling straightforward
acceleration using GPUs. It also features a wide range of tools to load and manipulate
data, as well as a large selection of pre-trained models. Currently, in its 2.0 release,
PyTorch offers various modules for training, optimization, and setup of ANNs.

2.3.2 Popular Benchmark Datasets

With ANNs becoming more popular, the need for benchmark datasets to achieve
comparability of different ANNs grew. As of today, a variety of benchmark datasets
are available to train and evaluate all kinds of network topologies. Modern datasets
feature many million samples and are labeled with outrageous effort by human
dataset creators. Here we focus on CV datasets, of which the most popular are listed
in Table 2.2. It has to be noted that the table only shows the tip of the iceberg and
many others are available. For example, for more narrow tasks many more datasets
are available, e.g., X-Rays of patients with lung diseases [64], classification of different
dog breeds [65], etc.
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(a) Examples from the ImageNet dataset with over 1 000 000
samples arranged into 1000 classes.

(b) Examples from the
CIFAR-10 dataset.

Figure 2.9: Example images of ImageNet and CIFAR-10, which are two of the most
popular image classification datasets [1; 67].

Image classification is one of the most widespread challenges for ANNs. Hence,
many datasets were published in the last few years. Most notably are MNIST [37]
from 1998, ImageNet [66] from 2009 and CIRAR-10 [67] also from 2009. Sample
images of the two latter datasets are shown in Figure 2.9. MNIST and CIFAR-10
are elementary datasets, with each 60 000 annotated images categorized into ten
classes. ImageNet, in contrast, has more than 10million samples grouped into 20 000
classes. About 1 400 000 samples (1 281 167 training, 50 000 validation and 100 000
test samples [1]) with 1000 classes are publicly available as ImageNet-1K. The dataset
features some extremely hard to distinguish image classes like, e.g., 90 different dog
breeds. Hence, in 2012 ImageNet-1K was released to host a challenge referred to as
the ImageNet Large Scale Visual Recognition Challenge (ILSVRC). Over time, the
challenge boosted network performance tremendously. Starting from over 15% error
rate in 2012, it ended with an accuracy score over 97% in 2017, outperforming the
empirically determined human classification performance, which is has an error rate
of about 5% [1].

For object classification, themost popular datasets are COCO [69] byMicrosoft, which
stands for “common objects in context” and Pascal Visual Object Classes (VOC) [70].
It has to be noted that all object detection datasets mentioned in the table, in addition,
contain labels for instance and semantic segmentation. Some extra data is available
as well, e.g., COCO features data for human pose estimation and Pascal VOC data for
action classification. Similar to ImageNet, the creators of both datasets also hosted a
competition to push new network architectures beyond the former boundaries. The
Pascal VOC challenge ended in 2012 with improvements in detection AP, starting
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Dataset Year Samples Description / Classes

Image classification
MNIST [37] 1998 60 000 28x28 grayscale images of

handwritten digits
CIFAR-10 [67] 2009 60 000 32x32 color images showing 10

different image classes
ImageNet [1] 2009 1 431 167 RGB images with 1000 classes
ObjectNet [68] 2019 50 000 313 classes

Object detection
COCO [69] 2014 330 000 80 classes of bounding boxes
Pascal VOC 2011 [70] 2011 11 530 20 classes of bounding boxes
DOTA [71] 2018 11 268 18 classes of bounding boxes

Semantic segmentation
CityScapes [72] 2016 25 000 Segmentations of driving

situations from 50 cities with 30
classes

BDD-100k [73] 2020 ∼10m 50 000 driving scenes with 40s at
30 fps

KITTI [74] 2012 400
DAVID [75] 2020 10 767 driving scenes generated by the

car simulator CARLA

Table 2.2: Popular machine learning datasets tasks with their size and domain.

from below 0.3 in 2008 and ending at over 0.4 in 2012. COCO’s challenge started in
2015 with submissions achieving 0.41 detection AP. It is still ongoing and current
submissions yield 0.591.

While all object detection datasets also contain data for semantic segmentation, some
datasets have established themselves especially for segmentation tasks. All the above-
mentioned datasets are intended for autonomous driving situations. The first three
datasets from the table contain recorded video sequences from actual test vehicles,
while the DAVID dataset consists of simulation-generated images from CARLA [75].
CityScapes [72] is one of the most popular datasets for autonomous driving, recorded
in 50 different cities spread over Germany. It features 5000 fine annotated images

1 https://cocodataset.org/#detection-leaderboard accessed 2023-04-18
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together with 20 000 coarsely labeled samples. In addition, metadata like vehicle
odometry data, position information or stereo camera images are provided. The
dataset has 19 semantic classes and high-resolution images with 2, 048× 1, 024 pixels.
Similarly, BDD-100k [73] from Berkeley is considered the largest available segmenta-
tion dataset with over 10million samples, of which every tenth is annotated, recorded
inmultiple cities in theUS. Features of BDD-100k contain annotations for lanemarking
and drivable area, as well as full frame segmentation. It also comes with additional
metadata and features samples under different weather conditions. The creators even
hosted a challenge on notable conferences. The KITTI [74] dataset was released in
2012 and received a major update in 2015 [76]. It features driving sequences recorded
in the mid-sized city of Karlsruhe in Germany. Besides the raw segmented image data,
it contains much other data relevant for autonomous driving like LIDAR, RADAR,
stereo camera, and metadata information. Hence, it is until today one of the most
influential datasets for the autonomous driving community.

2.3.3 Benchmark Convolutional Neural Networks

Together with datasets, many neural network topologies, especially CNN models,
have been presented by numerous research groups. Most of the network architectures
were propelled by the competitive environment created through the challenges called
by dataset creators. An overview of very impactful works that showed breaking
results is given in Table 2.3. Needless to say, that this selection represents just a tiny
fraction of networks that were proposed in the last ten to twenty years. However,
each listed network set a new milestone through achieving higher accuracy, reducing
the number of parameters or by lowering computational complexity.

LeNet-5 [29] presented in 1989 is considered the first sophisticated CNN. Featuring
seven layers, of which two are CONVs layers, it is deployed for recognition of hand-
written digits based on the MNIST dataset. Due to is small footprint size and thus
fast training and inference speed, LeNet-5 is commonly used for experimentation by
beginners. However, LeNet-5 shows only limited benchmarking capability, as more
complex image classification tasks demand for larger model topologies.

In the early 2010s, rising GPU performance and novel software tools, kicked off the
development of more complex CNNs. AlexNet [39] introduced by Krizhevsky et al.
in 2012, was the first network to show great prediction results on ImageNet and won
the ILSVRC in the same year with a Top-5 test error rate of 15.3%. Five CONV layers
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Model Year Parameters Computations
millions GFLOP

Image classification
LeNet† [29] 1989 0.06 0.42
AlexNet∗ [39] 2012 61.10 0.71
VGG-16∗ [77] 2014 138.36 15.48
GoogLeNet∗ [3] 2015 13.00 1.50
ResNet-50∗ [40] 2016 25.56 4.09
SqueezeNet∗ [41] 2016 1.25 0.82
DenseNet-169∗ [78] 2018 14.15 3.36
MobileNet-v2∗ [79] 2017 3.50 0.30
ShuffleNet-v2-x?∗ [80] 2018 3.50 0.30
EfficientNet-v2-m∗ [42] 2018 54.14 5.36

Object detection
SSD300-VGG16§ [81] 2016 35.64 34.88
FasterRCNN-ResNet50§ [82] 2016 41.76 177.64
RetinaNet-ResNet50§ [83] 2018 34.01 206.07
YOLO‡ [43] 2015 271.72 20.30
YOLOv5§ [84] 2020 21.17 18.36
YOLOv7§ [85] 2022 36.91 39.26

Image segmentation
YOLACT§ [45] 2019 50.16 81.57
YOLOP§ [86] 2022 7.64 11.56
U-Net§¶ [47] 2015 7.76 64.15
DeepLabV3-ResNet50§ [48] 2017 39.64 191.69
†input size 1 × 32 × 32, batch size 1; ∗input size 3 × 224 × 224, batch size 1;
‡input size 3× 448× 448, batch size 1; §input size 3× 640× 480, batch size 1;
¶U-Net is available with a wide range of different backbones. As reference, we
used the implementation from [87].

Table 2.3: Overview of popular CNN models with the year of presentation, the num-
ber of parameters and their computational complexity. The numbers are
derived using the torchinfo package and the corresponding PyTorch im-
plementation.
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and grouped convolutions allow AlexNet to be mapped on multiple GPUs for faster
training. However, they concluded in their paper that for better model accuracy, they
have to wait for faster GPUs.

Shortly afterward, in 2015, VGGNet [77] by Simonyan and Zisserman was presented.
The model has more layers (11-19) and proved that deeper CNNs have better predic-
tion accuracy. VGG models are available in different configurations, with VGG-16
being the most popular. This heavyweight network has about 132million parameters
and took several weeks of training using at that time state-of-the-art GPUs. Their
result show also that addingmore CONV layers increases network complexity quickly,
leading to exploding training durations, but also to unacceptable inference times. In
addition, deeper networks tend to show overfitting.

The creators of GoogLeNet [3] tried to mitigate this issue by adding Inception blocks
into their model. They feature convolution operations with different kernel sizes
running in parallel, which widens the network instead of solely deepening it. Each
kernel size learns unique features of the input feature map, allowing for a higher
prediction accuracy. In total, GoogLeNet has a depth of 22 CONV layers. To limit
feature map sizes and parameter count, the authors add a 1× 1 CONV and a pooling
layer before each 3× 3 convolution operation, which in turn reduces the computa-
tional complexity. GoogLeNet won the ILSVRC in 2014 with a Top-5 Error of 6.67%.
However, the depth of the network made another challenge apparent during training:
vanishing gradient, i.e., minimal errors during backpropagation lead to much slower
training convergence.

In 2016, the authors of ResNet [40] addressed vanishing gradings using skip connec-
tions in between a group of CONV layers. Those groups with a skip connection are
referred to as residual block. Depending on the configuration of CONV layers, they are
either specified as Bottleneck or Basic blocks. Multiple of these blocks are coupled to
achieve a network that is both deep and converges fast during training. A complete
setup of ResNet is depicted in Figure 2.10. It consists of a head or stem (a single 7× 7

CONV layer with MaxPooling) and tail (Dense layer with SoftMax activation for
classification), as well as four ResNet stages. Each features a configuration dependent
number of residual blocks. In each stage, the first residual block has a downsampling
feature to compress the input feature map, which is realized by inserting a 1 × 1

convolution into the skip connection branch, as shown in the figure. The research
paper introducing ResNet, proposes five different configurations that determine the
number and types of residual blocks in each stage. ResNet-50, for instance, has 3, 4, 6
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Figure 2.10: Overview of ResNet’s general structure along with detailed cutouts for
the two types of residual blocks, according to [40].

and 4 residual blocks in each stage: In total, 50 CONV layers in all stages. In total,
ResNet-50 has 52 CONV and one dense layer counting head and tail as well. Accord-
ing to the results presented by the authors, ResNet-34, ResNet-50 and ResNet-101
archive Top-1 classification error rates in ImageNet of 21.53%, 20.74% and 19.87%,
respectively. As a result, it won the ILSVRC in 2015. Today, many variants of ResNets
exist, e.g., FCN-ResNet [88], in which the tail is replaced by CONV layers to obtain
segmentation results.

Inspired by the design of GoogLeNet and ResNet, SqueezeNet [41] was presented in
2016. The authors had the goal to create a model that has much fewer parameters
compared to the comparability large models that were used until then. SqueezeNet
achieves the claim of fewer parameters through Fire modules, as shown in Figure 2.11.
Similar to Inception modules, they offer two paths for data to pass; results are then
concatenated. This scheme is called expand and squeeze. SqueezeNet achieves a Top-
5 classification accuracy of 80.3%, which about 500 times fewer parameters compared
to AlexNet. With compression techniques, its size can be reduced even further.
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Figure 2.11: Overview of the SqueezeNet [41] architecture, with a detailed zoom into
the fire modules, which perform the expand and squeeze operations of the
network.

A summary of the above-mentioned classification CNNs and their computational
requirements is given in Table 2.4. One notable aspect, if we look at the development
over the last few years, is a clear shift from MLP layer to CONV layers. This aspect is
visible in both the number of weights and required MAC operations. For example,
VGG-16 requires 8.4× more computations to process its three MLP layers, compared
to all CONV layers together. In contrast, ResNet-50 reduced the number of MLP
layers to one, and now spends less computational budget on MLP layers. In absolute
numbers, ResNet-50 achieves a better prediction accuracy, although it requires fewer
operations in total compared to VGG-16.

Besides the more extensively explained topologies, many other classification architec-
tures exist. Some are still worth mentioning here: DenseNet [78] from 2018 achieves
prediction accuracy similar to ResNet, but with fewer Floating-Point Operations
(FLOPs). MobileNet [79] is a network especially designed for highly energy con-
strained mobile applications. Therefore, the network uses so-called Depthwise Sepa-
rable Convolution. While common CONV layers, as introduced in Subsection 2.2.1,
combine the results along the input dimensions in a single step, those convolutions
split the filtering and combination of dimensions into two steps, resulting in fewer
computations. MobileNet achieves a higher accuracy than GoogLeNet, but with about
2.5× less computation time. ShuffleNet [89] introduced in 2018, has an optimized
network architecture aiming for faster inference rather than bare reduction in number
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of operations. It factors the actual computation on a computation device, since it
considers, e.g., memory accesses or datamovement. The successor, ShuffleNet-v2 [80]
achieves a 22.8% error rate on ImageNet-1K with as few as 2.3GFLOPs. It features
164 layers and achieves 60 FPS on an ARM Central Processing Unit (CPU).

AlexNet VGG-16 GoogLeNet ResNet-50

Source [39] [77] [3] [40]
Top-5 error [%] 16.4 7.4 6.7 5.3
Input size 227× 227 224× 224 224× 224 224× 224

Year 2012 2014 2015 2016

# CONV layers 5 13 57 53
Filter sizes 3,5,11 3 1,3,5,7 1,3,7
Number of channels 3–256 3–512 3–832 3–2,048
Number of filter 96–384 64–512 16–384 64–2,048
CONV weights 2.3 M 14.7 M 6.0M 23.5 M
CONV MACs 666 M 15.3 G 1.43 G 3.86 G

# MLP layers 3 3 1 1
MLP weights 58.6 M 124 M 1 M 2 M
MLP MACs 58.6 M 124 M 1 M 2 M

CONV:MLP MACs 1:25.5 1:8.4 6:1 11.7:1
CONV:MLP weights 11.4:1 123.4:1 1430:1 1930:1

Table 2.4: Selection of popular CNNs for image classification. The trend clearly shows
that CONV layers became more popular over time.

With the increased availability of more powerful computation platforms, more com-
plex CV tasks like object localization and image segmentation became conceivable.
Until today, a myriad of new architectures was added to the model zoo. First steps in
the direction of CNNs for object detection, were made with region proposal networks
like Region-CNN (R-CNN) [90]. This network type first extracts regions of interest,
which can differ in size and dimension. Then a second step tries to discard falsely
identified regions and classifies the remaining. Although methods like Fast-R-CNN
or Faster-R-CNN [82] were presented shortly afterward, today new and even faster
methods are available. Feature Pyramid Networks (FPNs) [91] are today a com-
monly used method for object detection. Inside the network, features are extracted
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at different scales at the same time, similar to a pyramid. This allows an FPN to
recognize objects at various sizes much faster than networks that propose different
bounding boxes. Hence, they achieve about 20% improvement in AP and a 3 times
speedup compared to region proposal networks. To improve the performance further,
RetinaNet [83] uses focal loss, obtaining another 10% AP increase. Similarly, single
shot detectors, like SSD [81], outpaced the performance of region proposal networks
quickly. Those networks conceptually follow a similar procedure as region proposal
networks. However, the main distinction is that an input image is first split into
smaller parts, which are classified. In the meanwhile, bounding boxes are generated.
The corresponding class label for a given bounding box is finally picked based on the
IoU of the bounding box and the classified input image portions. This also allows
discarding falsely found bounding boxes.

One of the most popular single shot detection networks is YOLO (You only look
once) [43]. Although Faster-RCNN outperformed the first version of YOLO with
about 10 points more mAP on the Pascal VOC 2007 dataset, YOLO is one of the
first real-time detectors. It runs at 45 FPS on a GPU, 3× faster compared to Faster-
RCNN. Over the years, YOLO went through multiple evolution steps, increasing the
performance and accuracy [92; 93]. In its seventh version from 2022, YOLOv7 [85]
achieves, e.g., a 120% speedup compared to YOLOv5 and 2 points more AP on the
COCO dataset.

The high performance of YOLO was in the meanwhile transferred to segmentation
tasks. For example, YOLACT [45] replaces the YOLO head with a multi-head that
returns bounding boxes, classes, and segmentations at the same time. As backbone
YOLACT deploys a ResNet-50 as FPN. Even though YOLACT yields three metrics
simultaneously, it outpaces YOLOv3 in bounding box prediction accuracy and speed.
Another very recent variant of YOLO for autonomous driving tasks is YOLOP [86]
from 2022. It also uses a multi-head approach to detect lane markings, road objects
and drivable area in a single forward pass.

Another early candidate for image segmentation is U-Net [47] from 2015. It is built
as lightweight segmentation CNN for medical application, however, it can also be
modified to work in other domains, like road recognition [94]. Figure 2.12 gives
the basic architecture of U-Net. The network consists of a contracting path, which
follows the common structure of CNNs with CONV and MaxPooling layers, and an
expanding path, which uses up-convolutions to enrich and expand input featuremaps.
In contrast to fully convolutional networks like FCN-ResNet [88], U-Net merges data
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Figure 2.12: Structure of U-Nets [47]. Input feature maps are compressed through
MaxPooling layers and then expanded with upsampling layers. High
performance of U-Net is achieved by concatenating upsampled and com-
pressed inputs.

from the contraction path into the up-convolution operations in the expansion path.
This allows U-Net to segment features at all complexity levels and saves memory for
large feature maps during up-convolution.

In the area of semantic image segmentation, the DeepLab series also made great
contributions. With their first version presented in 2017 [48], they introduced atrous
convolution operations that enable an enlargement of the field-of-view for a sin-
gle up-convolution operation. Using a ResNet-101 backbone, the authors achieve
70.4 mIoU and 79.7 mIoU on CityScapes and Pascal VOC 2012, respectively. In the
following years, improvements to the network were presented with DeepLab-v2 [95]
and DeepLab-v3 [96]. The latter achieves 81.3 mIoU on CityScapes.
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2.4 Hardware Architecture Development

The presentation of the first silicon transistors around 1950 marked the beginning
of a journey towards integrated digital circuits, which gradually replaced vacuum
tubes [97]. Researchers and engineers quickly invented circuits entirely made of
transistors and discrete electronic components that solve mathematical problems.
One key technology that enabled this progress is the Complementary metal-oxide-
semiconductor (CMOS) fabrication process, which allows for low-power consump-
tion and has a high immunity to noise. Subsequently, simple circuits evolved into
more sophisticated architectures of silicon circuits, capable of performing arbitrary
mathematical tasks many times faster than any human can. The integration of tran-
sistors into chips continued at an unprecedented pace, with millions of transistors
fitting into a single integrated circuit today. This trend is shown in Figure 2.13. The
depicted progress follows Moore’s Law, postulated by the founder of Intel in 1965,
which states that each year the number of transistors that fit into the same chip area
doubles. Despite some contradictory opinions, it holds true for most cases until today.
This tremendous increase in transistor density was made possible through immense
efforts in chip manufacturing and handling, which enabled continuous shrinkage
of a transistor’s size. From a 10µm technology node in one of the first integrated
circuits around 1970, the size of a single transistor gradually decreased to way below
10nm. As of 2023, modern state-of-the-art System-on-Chips (SoCs) like Apple’s M3
Max chip accommodate over 92 billion transistors [98], each with a mere size of 3 nm,
10 000-times smaller than a human hair.

Besides the bare number of transistors that fit in a single silicon chip, smaller inte-
gration of transistors also allowed for higher clock speeds. This directly results in
higher operational throughput of processors, as single instructions simply take less
time to compute. But there is a flip side to the ever-smaller integration: with higher
clock speeds also the dissipated power rises that is emitted while transistors switch.
We can see the trend of rising power (shown in orange) and clock frequency (blue)
in Figure 2.13. However, if one looks at the power dissipation of a single transistor,
we observe that along with transistor shrinkage, the power goes down. This is due
to lower voltages and currents that can be used for smaller silicon circuits. Hence,
for a constant area the power density stays the same, which is referred to as Dennard
Scaling [99]. However, dissipated power from ever faster switching transistors even-
tually became a problem, which led to the breakdown of Dennard Scaling around
2005, which is also clearly visible in the figure above. As one can see, the amount of
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Figure 2.13: Evolution of the number of transistors, the maximum frequency, and
the typical power consumption in microprocessors from 1970 until now.
Data source: [100].

power hit a boundary at the same time as the clock speed gains did. At that time,
dissipated power from the circuit overshoots the capabilities of chip cooling, causing
a thermal runaway and possibly damage to the chip.

Since then, an interplay of various techniques allowed us to move forward towards
today’s highly sophisticated chips. First—at least for now—unrestrained shrinkage
of transistors allows hosting an increasing number of transistors on the same chip
area. Hence, parallelization of tasks became much more favorable than waiting for
faster silicon. In addition, modern Hardware/Software Co-Design approaches allow
developing hardware circuits together with the application they later compute, lead-
ing to Application-Specific Integrated Circuits (ASICs) tailored to solve a particular
task very efficiently. Moreover, dedicated hardware accelerators for a specific task are
added to integrated circuits, rendering complex but efficient heterogeneous systems
that often integrate many CPUs, Field-Programmable Gate Arrays (FPGAs), inter-
face controllers, and so forth into a single SoC. Over time, the process of designing
and creating well-functioning circuits is increasingly aided by modern Hardware
Design Languages (HDLs) to make complex designs more manageable. In addition,
subsequent processes in chip design were automated to accelerate deployment even
further. In the following, we will give a brief overview of the tools, methods, and
technologies used in state-of-the-art chip design.
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2.4.1 Design Languages, Automation, and Tools

Highly sophisticated HDLs and design automation tools, as well as tools in general,
are essential for the design of modern integrated circuits. Tools not just support the
architecture design itself, but also the later integration and verification process. Both
are essential to ensure correct and reliable behavior for the chip.

In the first days of chip design, circuits were created by placing individual transistors
manually. While this is feasible for simple processor designs, rising demands and
hence growing design complexity renderedmanual design soon inefficient and uneco-
nomical. As a consequence, in the 1970, the development of HDLs stated. HDLs work
similar to programming languages and describe the logic and behavior of a circuit in
a formal way. Their development gained pace when new tools for automated circuit
synthesis were presented. These tools transform the behavioral description of a circuit
into a netlist consisting of a list of gates and their connection among each other. From
the many introduced languages, today the largest two could establish themselves:
VHSIC Hardware Description Language (VHDL) [101] and Verilog [102]. Both were
introduced in the 1980s, are standardized by the IEEE and went through multiple
versions until today. Because both languages are relatively old, also new concepts
were proposed, like Chisel [103], a Scala dialect introduced in 2012.

Formal description of digital circuits with HDL, also enabled tools to parse this input.
Today, awide range of them is available for hardware designers. Starting by simulation
tools that support the behavior verification of circuits before they are hardened in
silicon. Circuit simulators use testbenches, which define input stimuli and expected
outputs for the circuit under test, allowing for automated testing. Synthesis tools
are another crucial tool. They transform HDLs input into netlists. To do so, today’s
synthesis tools employ highly sophisticated algorithms to optimize the user input
towards an efficient netlist. Modern synthesis tools also take aspects like fan-out,
i.e., the number of endpoints a gate output has, into account to achieve better power
efficiency. With implementation tools, netlists can be mapped onto silicon devices.
One straightforward method is to make use of standard cells. For a given technology
node, typically a library of standard cell is provided by the fab, which contains pre-
made designs for common gates. Those pre-made designs are like building blocks
that can be placed onto the chip area. Power supply inputs in standard cells are
located at the same end of a cell to ensure less complex wiring. Regardless of whether
standard cells are used, implementation tools nowadays take care of complex tasks
like placing the cells or transistors and routing the connections among them. Finally,
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Figure 2.14: Simplified building blocks of a CPU, visualization taken from [104].

tools for verification of an implemented design or tools to simulate power dissipation
are crucial to test and evaluate circuit designs before the costly chip manufacturing
process is stated. Summarizing, today’s increasingly complex designs are only made
possible through serious progress in tools supporting the designers.

2.4.2 CPUs, GPUs and FPGAs

Some of the most notable achievements enabled through the described advances in
silicon technology and design methodologies are highly sophisticated processors
and Intellectual Property (IP) macros. Today, processors have inevitably become
indispensable for many applications and are hence considered the brain of a computer.
That’s also why they are referred to as CPUs. General-Purpose Processors (GPPs),
a kind of CPU, can solve almost any workload that can be described as a series of
commands or instructions. This series is then transformed into a program using a
compiler. The encoding of individual instructions is hardwired into the CPU’s logic
and is referred to as an instruction set. Figure 2.14 shows the basic components of a
simple CPU. A local memory stores a sequence of instructions and data the processor
is currently working on. Dedicated memory controllers with Address Generation
Units (AGUs) and Direct Memory Accesses (DMAs) allow accessing large off-chip
memories. Inside the CPU, arithmetic computation happens inside an Arithmetic
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/ Logic Unit (ALU), which executes simple logical and mathematical operations,
like additions or bitwise and. A set of registers stores intermediate results of the
ALU for fast access. Moreover, dedicated registers keep track of the program status,
e.g., a program counter. The ALU itself is driven by a control unit. It moreover
handles data movement, i.e., loading the right data and instruction from the main
memory. Another key characteristic of a CPU is that it can respond to conditions.
Those conditional program paths, are also taken care of by the control unit. If, for
example, a conditional expression evaluates positive, it triggers a jump to a specified
location inside the program by updating the program counter register.

While the description elaborated above paints only a basic picture, it holds true for to-
day’s muchmore intricate and advanced CPUs. In novel CPUsmemories got replaced
by multilevel caches that employ smart methods to keep data that is likely to be used
soon already close to theALU.Modern control units, use very sophisticated techniques
to predict conditional code execution and to preload the corresponding sequence of
instructions beforehand. Techniques like Pipelineing and Superscalarity [105] allows
ALUs to perform individual steps of a single instruction in an interleaved manner to
increase clock speed and throughput. Moreover, ALUs started to implement vector
instructions to operate on multiple data using the same instruction and leverage
parallelism in applications [106]. This is referred as Single Instruction Multiple Data
(SIMD) according to Flynn’s taxonomy that clusters computer architectures [107].
Finally, Floating Point Units (FPUs) in CPUs enable hardware accelerated processing
of floating-point arithmetic.
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With the rise of personal computers and more dedicated graphic interfaces, Graphics
Processing Units (GPUs) were introduced. They feature large memories to buffer
output images and units to process specialized instructions for graphics in parallel.
GPUs are coprocessors to CPUs, as they receive their instructions from the CPU.
Modern GPUs have multiple units realized in hardware to support polygon computa-
tion, texture mapping and video rendering. Besides that, GPUs were opened also
for general purpose workloads that can benefit from massively parallel computation.
This General-purpose computing on graphics processing units (GPGPU) approach,
e.g., boosts the performance of tasks like image processing [108] or databases [109].
The openness to general purpose workloads makes GPUs also a key component in
efficient DNN computation. Since then, better accessibility to GPUs was addressed
by the manufacturers with libraries like CUDA or cuDNN by NVIDIA or ROCm2 by
AMD. Today, GPUs are readily programmable and deliver tremendous performance
with great efficiency, as shown by the recent advances in performance (Figure 2.15).

Another notable piece of hardware are Field-Programmable Gate Arrays (FP-
GAs) [110]. FPGAs are themselves fixed hardware blocks, however, they allow
hosting other generic hardware designs on top of them. In contrast to ASICs, they
are not hardened once, but the hardware circuit can be changed even during runtime.
This is made possible through their reconfigurable and flexible structure, of which
a simplified version is depicted in Figure 2.16. An FPGA leverages a characteristic
of arbitrary digital circuits, which is that it can always be represented by a set of
Look Up Tables (LUTs), flip-flops, and multiplexers. All these basic building blocks
are found in FPGAs. They are pooled together as Logic Block (LB), which are
connected with very flexible routing infrastructure. This allows FPGAs to map
arbitrary hardware circuits on them. To actually map a given digital circuit onto
an FPGA, sophisticated tools emerged that translate a given netlist into a LUT and
flip-flop representation. Besides that, modern FPGAs adopted to the requirements of
faster and more versatile possibilities for circuit design by adding dedicated Digital
Signal Processors (DSPs) and local memories. All of those additional building blocks
are attached to the routing infrastructure as well. Today, FPGAs are used in many
domains, from behavioral circuit testing to accelerators for highly parallel workloads.
Modern SoCs even feature embedded Field Programmable Gate Arrays (eFPGAs)
enabling extendability and flexible acceleration.

2 https://github.com/RadeonOpenCompute/ROCm
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Figure 2.16: Overview of an FPGA with a detailed cutout of a LB, which allows an
FPGA to represent any arbitrary digital circuit, according to [104].

2.4.3 Hardware Acceleration and Co-Design

Over decades, programmers and application engineers could rely on mere advances
in silicon technology to yield more performance and better energy efficiency of in-
tegrated circuits. But gradually this trend came to a halt, as demand for more com-
putational capabilities drifted apart from the progress silicon made (refer also to
Figure 2.13). One technique to circumvent this is integration of dedicated accelerators
into SoCs or systems in general [111]. A notable example are the aforementioned
GPUs, which are added to offload graphics computation.
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Figure 2.17 gives an overview of various processing units, which can be categorized
based on their flexibility and efficiency. While dedicated accelerators deliver a superior
performance per silicon area and power, they forfeit flexibility for changingworkloads
and applications. In addition, it can be challenging to design them efficiently. On the
other end, General-Purpose Processors (GPPs), like CPUs, severe a wide range of
applications, but suffer performance in some applications.

As a consequence, modern integrated circuits feature a selection of different processing
units. However, laying out a well-balanced overall system design with the right
accelerators is not an easy task. Just adding accelerators for every task will likely
overrun energy and area budgets. Hence, depending on the application, it has to be
understood whether it is worth spending the development effort and chip resources
to add an accelerator. Therefore, it is important to thoroughly understand the kind of
computation that is later executed on the platform. This is typically done by in-depth
tracing of the data and control flow. As a result, not all parts of a computation may
benefit from a dedicated hardware accelerator. For example, many branches in the
program bloat the hardware accelerator dimensions, or inefficient memory access
pattern may lead to underutilization of the accelerator. Moreover, applications with
much data movement might not necessarily benefit, as it consumes too much time
and cancels the acceleration gains. In contrast, applications that can benefit the most,
have homogenous data movement, only little branching and offer high potential for
parallel execution. Hence, DNN workloads are a perfect candidate for large-scale
hardware acceleration, which will be covered in-depth in the following section.
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2.5 Hardware Accelerators for DNNs

As we have seen so far, DNNs became extremely popular for a wide range of ap-
plications, since they show great performance in accomplishing a myriad of tasks.
However, the computational complexity of DNNs, CNNs and especially large lan-
guage models is huge [113]. To put this into perspective, a single inference of a
3× 224× 224 image using ResNet-50 [40] requires already 4.09GFLOPS. In addition
to the computational complexity, memory requirements for current DNNs are vast,
e.g., a ResNet-50 inference requires 177.83MBmemory to store all intermediate results
of a single image considering 32-bit floating-point precision. While one can argue that
modern computation platforms are well capable of handling those workloads, the
major challenge lies in the requirements some applications impose on inference speed,
energy efficiency and reliability. These aspects highlight what computation systems
face when executing inference of DNNs, not to mention to immense computational
complexity of the DNN training process. In this section, we will introduce first how
DNNs are computed in general, before diving deeper into dedicated platforms, which
can process DNNs efficiently.

2.5.1 Evaluation Metrics and Theoretical Background

Looking at the sheer number of computations required for a ResNet-50 inference, it
seems hard to design efficient hardware for such workloads. But, before looking at
actual hardware platforms that can tackle DNN computation, we have to untangle
what exactly efficient refers to. To make a discussion on efficiency objective, we can
look at the following five different metrics, which are usually used to evaluate DNNs.

Throughput describes the raw number of operations that can be processed within a
given time span. Typically, throughput is denoted as operations per second or
in the case of floating-point operations as FLOPS per second.

Energy consumption is the energy required, e.g., for an individual operation or
inference. It is frequently composed of static and dynamic energy, which
depends on the architecture and theworkload, respectively. However, it is often
reported as energy demand per inference. In correlation with the throughput,
one can compute the power, whichmakes it easy to compare different hardware
platforms by looking at the Operations per Watt.
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for x in range(H - R):
for y in range(W - S):

# get receptive field for
all channels

patch = I[:, x:x+R, y:y+S]
# then transform into a row
out[x*(W-S)+y,:] = \

flatten(patch)

(a) im2col

for m in range(M):
# Transform single row back

into 3-D tensor
out[m, :, :] = \

reshape(inp[:,m], (C,R,S))

(b) col2im

Listing 2.1: Python-like pseudocode implementation of im2col and col2im.

Latency describes the time it takes until the computation of an operation or inference
has finished. It becomes especially important in control tasks like autonomous
driving when a computation shall have real-time behavior.

Scalability, Flexibility and Reconfigurability are essential metrics when a great
variation of DNN task will be computed. For example, training poses dif-
ferent requirements on the hardware than a pure inference application.

Accuracy is not really a hardware metric itself, but rather refers to how good the
algorithm performs on a given task. However, we will later discuss how the
model’s accuracy can play an essential role when it comes to more efficient
hardware accelerators, as some methods to increase throughput or energy
efficiency have an accuracy impact.

In general, there is no clear answer to how important a given metric is, but it depends
on the application where the DNN accelerator will be deployed. For example, data-
center applications may prioritize raw throughput over energy consumption, while
mobile environments like smartphones require much more focus on energy efficiency.

From a computational standpoint, we have already discussed in Section 2.1 that
the basic operations of an ANN are multiplication and addition operations with
corresponding weights and inputs as operands. For MLPs, they can be written as
vector-matrix multiplication, of which the vector represents the inputs (1× ninputs)
and the weights are denoted as matrix (ninputs × noutputs). If we consider multiple
inputs computed at the same time, this batch of inputs can also be written as ma-
trix (N × ninputs), which turns the computation of one layer into a matrix-matrix
multiplication. Multiple layers then create a chain of matrix multiplications.
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While the connection scheme between neurons in MLPs makes it easy to use simple
matrix multiplications to compute them, the connection scheme of CNNs looks much
different. CNNs, in contrast, have fewer weights connecting inputs to outputs in a
sparsemanner and individual weight filters are slid along the three-dimensional input
feature map. Processing them happens in a seven-fold loop. However, we can apply
a smart transformation, called im2col (“image to columns”), to break down the seven-
fold loop in aCONV layer [38]. A pseudocode implementation is shown in Listing 2.1a.
Therefore, four-dimensional input feature maps and parameters of CONV layers are
reshaped into two-dimensional matrices, which can be computed as straightforward
matrix-matrix multiplication. This requires the same number of operations like
computing the seven-fold loop. After matrix multiplication, col2im (“columns to
image”) transforms an output feature map back into the four-dimensional form (see
Listing 2.1b). However, it can also stay two-dimensional for the next convolution
operation. A simple example of how operands and outputs look like after they
underwent im2col transformation is given in Figure 2.18. Colors and parameter
identifiers follow Figure 2.6. Four-dimensional filters and kernels are broken down
into rows, each representing an entire convolution filter. Similarly, input feature
maps are transformed into columns. It has to be noted that the figure only shows a
three-dimensional input, however as indicated by the identifiers, we can compute
entire input batches (N) by stacking them together.

In summary, all typical layers of DNNs can be computed using matrix multiply opera-
tions. This is very advantageous, sincematrixmultiplications are very straightforward
to compute and a wide range of implementations for various platforms are already
available.

2.5.2 DNN Computation, Memory Hierarchy and Data
Orchestration

Now that all DNN layers are present in matrix form, we can discuss how they are
computed and where the challenges are. If we look at how a single result of a matrix-
matrix multiplication is computed (oij = ai0 × a0j + . . . + ain × bnj), we can see
that at center are only multiplication and addition operations, which can be fused
into MAC operations. Each MAC operation thereby takes an input, a weight, and the
previous partial sum as inputs. Then it computes the next partial sum, as shown in
Figure 2.19.
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inputs for CONV layers into two dimensions in order to compute them
using generic matrix multiplication; visualization adopted from [38].

As we only need two kinds of operations, the complexity in computing DNN work-
loads does not originate from the individual operations, but rather in the immense
number of computations that have to the processed. Looking at the trend of modern
CNNs (see Table 2.4), the network architecture is moving towards more CONV layers
and less FC layers. Image segmentation networks even omit all FC layers. At the
same time, CONV layers require by orders of magnitude more computations than FC
layers. However, they also have fewer weights. For example, the three FC layers of
AlexNet account for 58.6million weights and MAC operations. In contrast, AlexNet’s
CONV layers only require 2.3million weights, but 666million MAC operations. With
deeper CNNs this trend intensifies, ResNet-50 requires 3.86 billion MAC operations
to process its 52 CONV layers, but only 2million for the FC layers, a ratio of 1930:1.
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DNN inference, according to [21].

The enormous number of computations in CONV layers originates from multidi-
mensional filters that are slid over an input feature map. In general, given two
matrices with dimensions L×M andM ×N the computational complexity results to
O(L ·M ·N). Consequently, considering matrices that grow in each dimension cause
a cubical increase in MAC operations. Looking again at ResNet-50 for reference and
example, we can pick one of the computationally most complex layers: the second
convolution in the first bottleneck block. It has the following shapes: a 1×64×56×56

input feature map, considering batch size 1, 64×64×3×3weights and with padding
of 1 consequently a 1× 64× 56× 56 output feature map. If we apply im2col to trans-
form this problem shape, we end up with a 576× 3126 input matrix and a 64× 576

weight matrix. Multiplying those matrices requires 115 605 504 MAC operations.

Those billions of MAC operations for just a single inference give a first impression
on how computationally demanding CNNs can become. However, there is one
major advantage that we can exploit when computing matrix multiplications. DNN
computation is considered an embarrassingly parallel workload. That means in basic
terms that it is simple to identify many independent computation steps, which can
all be executed in parallel. In particular, in matrix multiplications each cell in the
result matrix is entirely independent of all others, hence the example from above
allows for 3126 · 64 = 200 064 independent computations. To leverage this massively
parallel nature, we can, e.g., deploy multiple processing units that can compute MAC
operations in parallel. However, solely adding more MAC units to a given hardware
architecture shows slowly diminishing returns. As shown in Figure 2.19 each MAC
operation requires oneweight, one input, the previous partial sum (psum) and returns
an updated partial sum; four load / store operations perMAC.Considering the billions
of MACs in recent CNNs, we face a new challenge: computation of ever-increasing
CNNs becomes a so-calledmemory bound problem, as we struggle to move themassive
amounts of data into and from the accelerator chip.
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are memory or computaionlly bound [114].

To get an impression of memory vs. compute bound problems, we can take a look
at the Roofline model [114], which is shown in Figure 2.20. It offers a generalized
way of evaluating computational problems. A given problem is considered compute
bound (orange area) whenever computational capabilities (comppeak) of a system
are lower than the amount of data that can be provided from memories and com-
munication networks. In contrast, memory bound problems are constrained by data
supply from memories (blue area). As a result, computation resources will suffer
from underutilization. An optimal workload settles at the transition point. Here,
memory capabilities match the computation capabilities, resulting in theoretically
full utilization of available resources.

In general, a DNN inference is very hungry for data, since matrix multiplications
barely need any control flow and are marked out mostly by dataflow [116]. If we look
at DNN accelerators, computational capabilities are merely limited by the number of
available MAC units. Limits set through data supply are, however, more complex to
determine. A very simple accelerator, similar to what is shown in Figure 2.19, may
load every single operand and partial sum from a memory and store the resulting
partial sum back to this memory. While this is not only very inefficient (4 load /
store operations per MAC), associated memories have to be huge and fast for a high-
throughput inference. As a reference, ResNet-50 [40] then requires 15.45 billion load
and store operations, which equals to 61.8GB data movement considering 32-bit
floating-point numbers, and the network requires at least 3.1MB memory to store the
largest intermediate feature map. To put this into perspective, with modern silicon
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Figure 2.21: Energy breakdown of common instructions that appear in DNN inference
or training. Evaluated using 45 nm CMOS with 0.9V supply voltage.
Data originates from Horowitz et al. [115].

technology we can have hundreds of MAC units running at fast speeds over 500MHz
on a single chip3. However, local on-chip memories, which are capable of holding all
required data for this network, have to be massive in terms of area. While off-chip
memories have larger capacities, they are often not as quick and energy-efficient
as required. Looking at Figure 2.21 we can see that a 32-bit load from an off-chip
memory realized as Dynamic RandomAccess Memory (DRAM) requires about 100×
more energy than a 32-bit load from a local on-chip Static Random Access Memory
(SRAM).

To address this, we can employ smarter techniques. Matrix multiplications offer
besides independent operations the possibility to reuse data. For example, one row
of the first operand matrix can be reused with all columns of the second operand to
compute the first row of outputs. Based on this characteristic, we can start to think
about hierarchical memories and thus combine the advantages of large but slow
off-chip and smaller but faster on-chip memories. This concept is already successfully
in use for hierarchical CPU caches. A typical SoC memory hierarchy with a DNN
accelerator is given in Figure 2.22. Usually, the accelerator itself is made of some

3 For example, a Xilinx Zynq 7020 device already has 220 [117] DSPs on a relatively small die.
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Figure 2.22: Typical memory hierarchy and components of an exemplary output sta-
tionary DNN accelerator embedded into a SoC, following [21].

hundreds MAC units. Each has a small buffer, oftentimes a simple register, e.g., for
accumulation of intermediate results or to reuse a weight or input. A MAC unit
together with those small bits of storage form a so-called Processing Element (PE). An
array of PEs typically builds a DNN accelerator that has another local memory, which
can be used to preload weights or inputs for the next batch of computations, enabling
fast update of the PE’s buffers. The DNN accelerator with its PEs and local memory
may now be integrated into an SoC that features a large local memory shared with
other components. From here, a high-speed connection to an off-chip memory for
offloading of intermediate results and fetching weights of layers other to the one that
is computed right now, is available. Memory sizes usually become larger and chip
area per memory unit becomes smaller the further away they are from an actual MAC
unit, but they also get gradually slower. Therefore, it is crucial for an efficient DNN
accelerator to carefully lay out a well-optimized memory hierarchy, as larger local
buffers boost the processing speed but at the same time draw from the energy and
area budget. Moreover, it is important to identify an efficient mapping strategy. The
mapping of a DNNworkload basically determines, which data is reused, andwhich is
offloaded. Wewill talk in detail aboutmapping tools and strategies in Subsection 3.2.1.
Here, we have to keep in mind, that defining the memory hierarchy has to happen in
accordance with characteristics of the DNN workload and requirements given by the
use case.
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2.5.3 General Purpose Hardware Platforms

Now that we discussed how DNNs are theoretically computed, we can now look into
actual platforms able to process workloads presented by DNNs. Readily available
libraries support processingMACoperations in a fast manner on almost any hardware.
Hence, training and inference of DNNs is very accessible for generic computation
devices like CPUs. A very common software implementation for linear algebra like
matrix multiplications occurring in DNN workloads is provided by Basic Linear
Algebra Subprograms (BLAS) libraries [118]. They have been ported to a manifold
of different compute platforms and were developed to become highly efficient [119].

On CPUs for instance, BLAS leverages SIMD instructions for efficient DNN computa-
tion and dispatches the workload to multiple available CPU cores in parallel. Due
to their simple programmability and availability, first DNNs around the 2000s were
computed exclusively on CPUs. Until then, DNN workloads still had a manageable
size and complexity, for which CPUs offer sufficient performance. However, with
rising complexity and the advent of CNNs the performance was unable to keep pace
and innovative technologies were demanded.

As a result, around 2010 the processing of DNNs moved from CPUs to GPUs [38].
In contrast to vector units in CPUs, which usually work on 8 or 16 data in parallel,
GPUs achieve much higher degrees of parallelization. Originally meant for graphics
processing, GPUs feature many more processing units that compute MAC operations.
However, those compute units are hard to use efficiently for other workloads than
graphics tasks. The breakthrough of GPUs for DNN computation was then onlymade
possible through GPGPU (see Subsection 2.4.2). In fact, the increased use of GPUs
for general purpose tasks, gave spark to the most recent advances in DNNs, which
until then were hindered by the limited computational resources. DNN benefit from
the many thousand SIMD streaming processors in GPUs, which can compute matrix
multiplication in a massively parallel way. The aforementioned transformations and
GPGPU programming, enabled CNNs like AlexNet [39] to distinguish 1000 different
image classes in the first place. Today, GPUs are widely supported byML frameworks.

Until today, GPUs play a significant role when it comes to DNNs, especially for
training of large models, as modern GPUs offer large local and off-chip memories.
However, slowly but steadily requirements for DNN inference and training drifted
apart from the capabilities of even modern GPUs. Especially in embedded systems,
GPUs are sometimes not the right choice, since they require too much energy [120].
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To address the rising demand, also for embedded applications, GPU manufacturers
introduced new architectures, faster interconnects, and larger memories. For example,
NVIDIA started to add Tensor Cores in their Volta architecture [121] in 2017, which
enable fast and more efficient computation of DNNs. Similarly, embedded GPUs
like NVIDIA’s Jetson entered the marked for more energy constrained environments.
However, after all, GPUs kept the ability for computing graphics tasks like ray tracing
or rendering screen output, which are all realized in hardware. Those hardware units
are not in use when training or inference of a DNN workload happens. Hence, to
build even more efficient hardware platforms for DNNs they can be omitted.

2.5.4 Systolic Arrays and Tensor Processing Units

Today, the most powerful hardware platforms for both DNN inference and training
are systolic arrays and Tensor Processing Units (TPUs) [122; 123]. Those architectures
focus only on computing matrix multiplications and got rid of the ability to process
general purpose workloads. To compute matrix multiplications efficiently, they are
solely composed of MAC units. Registers or small buffers are typically added to each
MAC unit to enable data reuse and eliminate unnecessary memory loads and stores.
With modern silicon technology, multiple hundred computational units are placed
onto a single DNN accelerator. Thus, they deliver high computational performance
and consume only little energy compared to more generic computation devices.

A typical example and structure of a systolic array is given in Figure 2.23. As shown
in the cut-out, a set of registers and a MAC unit are pooled as Processing Elements
(PEs). Here, the PEs are arranged and connected in a two-dimensional mesh. Other
topologies are also conceivable, but for DNN computation, two-dimensional is the
most common. The figure highlights how data in a systolic array is reused: Since all
PEs are connected in a two-dimensional mesh, an operand is shared with a neighbor-
ing PE after it got used inside the PE, which is referred to as spatial reuse of data. In
other words, after one computation cycle, one operand is passed from left to right and
the other operand from top to bottom. The example shows in particular an Output
Stationary (OS) systolic array. This type of dataflow refers to the characteristic that
intermediate results or outputs stay in each PE until the computation has finished.
Hence, the PE has an accumulator register that holds the partial sum, which is then
reused in the same PE. This is an example for temporal reuse.
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A cutout shows the insides of an output-stationary processing element,
with registers for weights, inputs, and accumulation as well as the com-
ponents of the MAC.

If one thinks about the nature of matrix multiplication, we see that it can be repre-
sented as a three-fold nested loop, in which each loop is independent of each other.
Hence, besides OS, we can also implement Input Stationary (IS) and Weight Station-
ary (WS). While an OS arrays keep the output, an IS or WS reuses a weight or input
temporally [124]. Likewise, an IS or OS array passes intermediate results from one PE
to the next and adds its intermediate result to the partial sum. Figure 2.24 visualizes
how individual PEs are supplied with data from a global buffer, and which operand
is held stationary in a local register. Operands which are stationary have the least
load and store operations from a buffer. As a consequence, this operand also has the
smallest impact on the energy budget. Hence, it is hard to tell whether one or another
data loading pattern is more efficient, but it depends on the workload. As specific
example Listing 2.2 gives a pseudocode implementation for CONV layer computation
with all three taxonomies. CONV layers are known for their large input and output
feature maps but have fewer weights, however, one cannot immediately exclude WS.
In fact, multiple filters may be the evaluated in parallel, achieving a high utilization
of the array, which is also done in many well-established accelerators [7; 125].

Besides these three straightforward taxonomies, over the years different other data
loading patterns and kinds of systolic arrays were presented. Typically, they employ a
larger PE buffer to store not only a single operand for the next operation, but multiple.
One notable example for such dataflow is the Eyeriss series [60; 126] by Chen et al.
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# Hold m, p, q
stationary as
long as possible

for m in range(M):
for p in range(P):
for q in range(Q):

for c in range(C):
for r in range(R):
for s in range(S):

o[m,p,q] +=
i[c,p+r,q+s] *
w[m,c,r,s]

(a) Output Stationary

# Hold m and c
stationary as
long as possible

for m in range(M):
for c in range(C):

for r in range(R):
for s in range(S):
for p in range(P):
for q in range(Q):

o[m,p,q] +=
i[c,p+r,q+s] *
w[m,c,r,s]

(b) Weight Stationary

# Hold c, p, q, r, s
stationary as
long as possible

for c in range(C):
for p in range(P):
for q in range(Q):
for r in range(R):
for s in range(S):

for m in range(M):
o[m,p,q] +=

i[c,p+r,q+s] *
w[m,c,r,s]

(c) Input Stationary

Listing 2.2: Python-like pseudocode implementation of different dataflows to com-
pute CONV layers. The computation itself stays the same, only the loop
order is changed. Here N is set to 1, for N > 1 another loop has to be
added.

They introduced a row stationary dataflow. Here, they preload a row of, e.g., a 3× 3

filter into the local buffer of a PE to reuse an entire row of a convolution filter. In
the next chapter, we will discuss in detail various state-of-the-art accelerators, their
dataflow and why they in particular perform well for a given workload.
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Figure 2.24: Different types of dataflows, which are commonly seen in DNN accelera-
tors, according to [28].
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Chapter3
State of the Art in Deep Neural
Network Acceleration and
Optimization

T he following chapter gives an overview of the current state of the art in the field
of hardware accelerated deep learning. First, we will review some of the most
notable accelerators that were presented by industry and academia. However,

for ubiquitous Deep Neural Network (DNN) deployment many challenges like fast
inference, low-power consumption and high accuracy remain [127]. Therefore, the
next part of this chapter will introduce design methods and tools such as Neural
Architecture Search (NAS), advanced techniques for mapping DNN workloads onto
accelerators, and approaches for algorithm/accelerator co-design. All aim to realize
efficient DNN topologies and fast inference on the corresponding accelerators. Finally,
wewill look deeper intoDNNs and howwe can exploit their over-parametrized nature
to make the inference faster, more resource efficient and less energy consuming.
Therefore, we will give an overview of quantization and pruning and how they can be
implemented efficiently in hardware accelerators. This chapter closes with remaining
open questions for efficient DNN accelerator design, of which some are in-depth
studied and addressed in this thesis.

3.1 Popular DNN Hardware Accelerators

As the entire field of DNNs gained massive attention in 2010, many novel hardware
architectures to address the huge computational workloads were proposed. In the
background section, we already covered the basic principle of hardware-aided DNN
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Figure 3.1: Overview of recent DNN accelerators grouped by platform and whether
they are a commercial product or research accelerator. Data from [129].

inference and training. Moreover, we discussed that, up until today, many tasks are
served by Graphics Processing Units (GPUs). As GPUs start to fail to deliver sufficient
performance, dedicated accelerators become increasingly important, especially when
one considers highly constrained systems like embedded or battery-powered devices.
To address this, the frequently updated survey works by Reuther et al. [128] and
Guo et al. [129] give a great overview of currently available accelerators. In this
section, we will introduce some of the most impactful works. Starting with com-
mercial accelerators that can already be purchased and continuing with works from
research. The academic section will of course only cover some few of the hundreds
presented approaches. Accelerators that focus on optimization strategies like pruning
or quantization will be covered in the next section when these terms are introduced.

To get a first impression of the huge range of accelerators, Figure 3.1 shows an overview
of recent architectures [129]. For each accelerator, the operational speed, and the
associated power consumption, as well as whether they originate from industry or
academia, is shown. As reference to compare individual accelerators, the efficiency
in terms of operations per watt is shown with diagonal lines. From the plot, it can be
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seen that only a few works have surpassed the 100TOPS/W mark yet. Moreover, we
can observe that works from academia are rather on the energy-efficient end, while
commercial architectures focus rather on higher throughput. This is because most
research focuses on efficient systems and most commercial products cover the large
datacenter market for training infrastructure.

3.1.1 Commercial DNN Accelerators

Commercial architectures provide the large backbone infrastructure, which is nec-
essary to train large-scale networks. Hence, this section will start with those large
architectures for datacenters and then moves right down to embedded accelerators.
Most of the training and large-scale inference workload is addressed by datacenter-
grade GPUs. To fulfill the rising need for faster computation of ever-growing DNN
topologies, NVIDIA, one of the leading companies for GPUs, started to integrate ded-
icated TensorCores into their cards. Those cores, which are essentially systolic arrays,
enable the most recent GPU generation to compute DNN tasks fast and efficient [121;
130]. Similarly, Field-Programmable Gate Array (FPGA) manufacturers stated to
integrate more sophisticated Digital Signal Processors (DSPs) and even dedicated
DNN accelerators into their chips. For example, Xilinx’s most recent Versal generation
features dedicated AI cores for efficient computation of large matrix operations, as
they occur in DNNs [131].

To address the market demand for even faster model training, Google released their
Tensor Processing Unit (TPU), a dedicated datacenter accelerator [7]. Already their
first version from 2017 surpassed GPUs with an inference speed-up of 15× and 70×
increase in efficiency, respectively. The TPU is essentially a systolic array with a
Weight Stationary (WS) dataflow. Google evolved their datacenter accelerator over
four generations and even presented an embedded version, the Edge TPU. Today,
version four has twice as much memory, more memory bandwidth and can be linked
together with more units to significantly increase the performance compared to the
first generation. Unfortunately, Google has not released detailed information on the
internal architecture of their latest TPU.

Another example, of a datacenter accelerator is the chip proposed by the European
Processor Initiative [132]. Their heterogeneous multicore architecture will cover a
wide range of applications from traditional High-Performance Computing (HPC)
workloads to energy-efficient DNN computation using, for example, optimizations
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such as variable precision. The race for fast and efficient DNN accelerators, also
attracted some newly founded start-ups. Notable companies are Graphcore with their
Colossus architecture that delivers up to 280T FLOP [133], and Cerebras Systems
who presented a wafer-scale DNN accelerator [134].

Moving more into the embedded domain, Tesla introduced their Full Self-Driving
Chip (FSD) [135] in 2019. Their System-on-Chip (SoC) features, besides 12 Central
Processing Unit (CPU) cores and a GPU, a two core Neural Processing Unit (NPU)
operating at 2GHz. The NPU is arranged as a matrix of 9216 Multiply-Accumulate
(MAC) units coupled with 32MiB Static Random Access Memory (SRAM) and
dedicated units for pooling and activation [136]. The chip with 6 billion transistors is
manufactured in 14 nmanddelivers 36.68 TOPSperNPUusing 8-bit integer precision,
while consuming only 36W. With their FSD, Tesla offers a platform for their future
autonomous vehicles. Besides Tesla, NVIDIA also has a series of embedded DNN
accelerators. NVIDIA’s Jetson [137] series is available in a wide range of different
configurations. The large AGX Orin, e.g., delivers over 275 TOPS. While the smallest
modules, like the Jetson Nano or Jetson TX2, show great cost and power efficiency.

In the last few years, DNN accelerators moreover found their way into modern
smartphones. For example, Apple’s A16 processor [6] features a 16-core NPU that
delivers about 17 TOPS. Another example is Qualcomm’s current Snapdragon 8
Version 2 architecture [138] that yields 4× better DNN performance with 4-bit integer
precision, manufactured in a 4 nm process.

3.1.2 Academic and Research DNN Accelerators

With the first presentation of sophisticated DNN models like AlexNet [39] in 2012,
the interest for fast computations of those homogenous workloads rose in academia.
One of the first accelerators that specifically targets the computation of DNNs is
DianNao [139] from 2014. The accelerator uses an Output Stationary (OS) dataflow
(see Subsection 2.5.4). It features 256 16-bit multipliers with adder trees and achieves
a performance of 452GOPS at a power consumption of 0.48W. This performance
has been enhanced over three generations: DaDianNao [140], ShiDianNao [141]
and PuDianNao [142]. The latter two enabled support for Convolutional Neural
Networks (CNNs) and seven other Machine Learning (ML) algorithms. Those four
accelerators form the DianNao family, which is considered a pioneering work in DNN
acceleration and is often used as baseline for other accelerators [143].

62 | POPULAR DNN HARDWARE ACCELERATORS



Figure 3.2: Block diagram of NVDLA [146].

Other notableOS architectures are theworks byGupta et al. [144] orMoons et al. [145].
Both accelerators are systolic arrays and reuse activations across columns and weights
across rows of MAC units. As a result, they can process multiple Convolutional
(CONV) filters and inputs at the same time. In contrast, DianNao processes convo-
lution operations one channel at a time. Gupta et al. implement a 28 × 28 systolic
array on an FPGA, achieving 37GOPS/W using a comparably small Kintex K325T
device. While the work by Moons et al. is an example of an Application-Specific
Integrated Circuit (ASIC) design. They integrated 16× 16 MAC units, achieving up
to 2.6 TOPS/W, which can run AlexNet at 47 FPS.

Besides OS some works from academia followed the approach of a WS dataflow.
For example, Origami [147] presents a scalable WS DNN accelerator for Computer
Vision (CV) applications. They implemented their design into an ASIC that achieves
369GOPS/W, which is comparably to workstation GPUs at that time but with much
less energy consumption. NVIDIA’s Deep Learning Accelerator NVDLA [125] is
a very popular work that implements a WS dataflow. A block diagram is given in
Figure 3.2. It is available as open-source and comes in two configurations: large and
small, which determine the number of modules and the accelerators’ complexity
and capabilities. Additionally, NVDLA offers many more options for configurability.
Everything from the used data format, over the number of MAC units and their
arrangement, to the buffer and Direct Memory Access (DMA) sizes might be adjusted.
Hence, it is used in many works as a reference or basis. The basic principle of the
NVDLA was developed further by Shao et al. to their Simba accelerator [148]. Simba
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is a large-scale accelerator that integrates multiple MAC units arranged as vector
processors into chiplets, which in turn are combined into a large silicon device. They
demonstrate that an accelerator design with 36 chiplets can process ResNet-50 with
1988 FPS and achieves an efficiency of 6.1 TOPS/W.

In 2021, Genc et al. presented Gemmini [149], which is a DNN accelerator generator.
With Gemmini systolic arrays with either OS or WS dataflow can be generated. The
generated accelerator is integrated into the Chipyard [150] ecosystem. As a conse-
quence, one can build entire SoCs quickly and test them in simulation or even on
FPGAs. Since Gemmini is available as open-source software and comes with an entire
ecosystem, it serves as a great research platform for accelerator modifications.

In addition to the introduced WS and OS dataflows, an example of an accelerator
that implements an Input Stationary (IS) dataflow is SCNN [151]. Here, data from
the input feature map is reused across the CONV filters. The Eyeriss series by Chen
et al. [60] proposes a row stationary dataflow. This dataflow stores a row of input
and filter data locally. A row thereby matches the dimensions of the filter. Hence,
each Processing Element (PE) has registers to store and entire row of data. The
authors argue that this kind of dataflow maximizes data reuse across inputs, weights,
and partial results at the same time, resulting in a high overall energy efficiency.
Furthermore, both works support pruning that increases their efficiency. Hence, they
will be described more in detail in the next section.

Some recent works even explore the potential of supporting multiple dataflows
simultaneously by using flexible interconnects that connect the PEs and memories.
The goal is to unify the advantages of all presented dataflows and to achieve an
unprecedented utilization. FlexFlow [152] is one example of an accelerator that
supports a large range of different tiling strategies and dataflows. They are able to
reduce the number of energy expensive Dynamic Random Access Memory (DRAM)
accesses per operation significantly. As a result, they demonstrate a 2.5 to 10× power
efficiency increase over Eyeriss and DianNao by testing six workloads. MAERI [153]
proposes a flexible dataflow accelerator that eliminates some restrictions of FlexFlow
like fixed dataflows within layers or the support of only CNNs. Their PEs can be
configured at runtime though switches that route the dataflow. The authors evaluate
their accelerator against systolic arrays, showing a 6.3× reduction in SRAM reads, and
a speed-up of 72.4% compared to the row-stationary dataflow proposed by Eyeriss.
In total, MAERI shows an 8 to 459% better utilization across multiple workloads and
static dataflows.
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So-far we have only discussed DNN accelerators that build on traditional, design
patterns and Complementary metal-oxide-semiconductor (CMOS) technology. How-
ever, this excludes a hole body of research that was carried out besides that. Some
recent works explored near-memory or in-memory computing [154], which shifts the
computational units into the large memory banks that are required for DNN compu-
tation. Near-memory computing hereby aims to build smarter memories that reduce
memory transfers on the fly, while in-memory approaches build on analog memories
that can for example accumulate data directly inside a memory cell. The goal in both
is to reduce the energy consumption for data movement. However, modern dataflows
in particular for CNNs leverage the large potential for data reuse in the accelerator,
which makes a conventional accelerator without in-memory computing faster. Hence,
in-memory computing can be considered for data-hungry workloads like Multilayer
Perceptrons (MLPs) [155]. Novel memory technologies like non-volatile memories,
which are not cleared when power is removed, allow for new strategies of DNN
computation [156]. For example, weights can be stored in such memories, which
allows for fast online training and eliminates the need to download weights before
inference.

Worth mentioning are moreover neuromorphic architectures that extend in-memory
computing approaches with analog computation [157]. The idea here is to mimic
biological brains closer than the presented Artificial Neural Networks (ANNs). In
neuromorphic systemsMACoperations are realized in the analog-worldwith resistors
that add together voltages. This operation is orders of magnitude more energy-
efficient compared to a digital MAC unit. However, analog computers still lack
efficient and fast analog to digital converters. Moreover, noise from the digitalization
accumulates over layers. While specifically designed DNN topologies can compensate
for the inaccuracies, this is still a large challenge for analog computers. Other popular
examples of neuromorphic hardware are Spiking Neural Networks (SNNs). They
encode data not in binary representation, but as pulses with different frequencies
depending on the activation, which is similar to the encoding of signals in biological
brains. To support this multiple hardware platformswere presented in the last decade,
for example SpiNNaker [158] or Neurogrid [159]. However, SNNs are currently
lacking sufficient and fast training algorithms like backpropagation used for DNNs.
In addition, designing fast inference hardware for SNNs is challenging, as the timing
and quick sampling of individual spikes play an important role [160]. Hence, a
combination of digital and analog hardware is heavily investigated to make fast SNNs
feasible and to benefit from increased energy efficiency.
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As we have seen, the last decade was marked by numerous remarkable works to
accelerate DNN workloads. However, what kind of dataflow, accelerator structure,
interconnect andmemory technology results in the best energy-performance trade-off
is still an open research question [62]. After all, to build an efficient DNN accelerator
one has to systematically analyze the myriad of different design possibilities.

3.2 Design Methodologies for DNN Accelerators

The previous section gave an overview of the vast range of different DNN accelerators.
A key characteristic of the presented accelerators is the dataflow. Obviously, there is
no single dataflow that works best for all kinds of DNN workloads and performance
requirements. In contrast, one has to carefully tune the accelerator to the expected
workload. This makes a co-design between both indispensable [161]. Consequently,
over the last few years many works have been presented to address this algorithm and
accelerator co-design, an efficient workload mapping and Design Space Exploration
(DSE) of different design options. This section will broadly cover all aspects starting
from mapping and compilation methods to NAS and DSE tools.

3.2.1 Mapping

In addition to an efficient DNN topology, a well-tuned mapping is also crucial to
efficient DNN inference and training. A mapping describes which PE of a DNN
accelerator executes which kind of instruction at a given time. Sometimes a mapping
is also referred to as scheduling and a mapper as a compiler. The analogy is not
by chance, a mapper works similar to a compiler that creates machine code for a
given Instruction Set Architecture (ISA). An overview of the inputs and exchange
formats of a mapper for DNNs is shown in Figure 3.3. As input, a mapper takes the
specification of the workload like its dimensions, as well as implementation details
and constraints of the target DNN accelerator. These include, e.g., the capabilities of
the accelerator or the number of available PEs and their arrangement. Output of the
mapper are not only the mapping itself, but also configuration parameters for the
DNN accelerator. With a mapping, the accelerator is instructed which input data and
weights it should request from external memory, when it is replaced in the internal
memory and how often it is reused. Especially, the reuse factor of individual pieces
of data has a substantial impact on the energy efficiency, as data movement draws
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Figure 3.3: Mapping process of a DNN workload onto a given DNN accelerator. A
mapper generates a mapping based on the constraints of an accelerator.
This mapping is a sequence of instructions that the accelerator processes.
Figure adopted from [162].

heavily from the energy budget. Tiling also plays a significant role for the efficiency
of the mapping. As described in section Subsection 2.2.1, individual loops, e.g., of a
CONV operation are independent of each other and can be swapped or split to fit
in the available memory and be unrolled or fused to reduce the loop-depth. This is
referred to as tiling.

Based on these degrees of freedom, a mapper usually generates a set of feasible
mappings, called the map space. Figure 3.4 shows the internals of a mapper. The map
space is constructed by the accelerator and workload specification and constraints.
Then found mappings from the map space are iteratively evaluated using an architec-
ture model, which provides figures like energy, latency or throughput. Depending
on the complexity of the DNN accelerator and the workload’s degrees of freedom,
finding an efficient mapping can be an extensive endeavor. For some small workloads,
it might be possible to exhaustively explore the entire search space, but for modern
workloads the search space has to be constrained to make an exploration feasible.
Heuristics can help to drop inefficient mappings and select the most efficient ones.

To address the complex mapping process, today a range of tools are available [164].
Some of the most popular mappers are TVM [165] from 2018, DLVM [166] from
2018, Timeloop [163] from 2019 and MLIR [167] from 2021. To support the myr-
iad of different DNN architectures, topologies and frameworks, all mappers take
standardized input formats. Mappers typically extract the DNN topology from an

STATE OF THE ART | 67



Map Space

m0

m1

mn

Analysis Arch.
model

Energy

Performance

Area

Optimization & Search

Arch. & Workload
specification

Constraints
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to find the best fitting mapping. Figure based on [163] and [28].

Open Neural Network Exchange (ONNX) file [168], which can be generated by all
commonly used DNN frameworks. An architecture description is given in a template
form. Even though there is no established format, the templates look similar across
tools and describe all elements of the architecture, like the memory hierarchy and
the PE’s capabilities. From these input formats, the mapper tools can generate the
map space, which is usually encoded using a custom representation [28]. Search
heuristics to identify the best mapping in the map space may vary across the tools.
For example, Timeloop uses random parallel search and TVM simulated annealing.
Energy, performance, and latency estimation works also slightly different among
various mappers. To get an estimate, TVM uses a dedicated DNN model to predict
the metrics, which is quick and accurate. However, DNN models lack flexibility for
new and yet unknown architectures. Hence, another approach is to use analytical
models. For example, Timeloop can be coupled with the tool Accelergy [169], which
estimates energy and area consumption based on an architectural template and the
associated action counts. For DNN accelerators, those action counts, e.g., how many
bytes were read from a given memory, can be generated automatically.

3.2.2 Data Orchestration

As stated in Subsection 2.5.2, accessing data from an external memory accounts for
the largest share of the accelerator’s energy budget. However, we cannot store all
required data locally. As a consequence, hierarchicalmemories established themselves.
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Designing them are a crucial step for efficient execution of a DNN workload on a
given accelerator. Thus, the way buffers are organized and controlled is besides
an appropriate dataflow an essential design characteristic. According to [21] who
in-depth investigated the impact of different organization taxonomies, an efficient
DNN accelerator design should focus on the following aspects: All data should be
transferred just before it is needed, this data should overlap with the data that is
currently in use, and finally it should be replaced exactly when it is no longer needed.
In addition, this data movement should be achieved in a fast buffer that only adds a
minimal synchronization overhead.

While CPUs bank on caches to keep upcoming data and instructions local, integration
the very same caches into DNN accelerators may not be advisable. For the highly
regular data access pattern of DNN workloads the heuristic replacement policies of
caches are not required and add unnecessary overhead. Instead, a more explicit and
unmanaged form of data buffering can be applied [170]. Hence, a broad range of
DNN accelerators like GPUs rely on scratchpad memories, which are essentially local
buffers that are filled and flushed on request. The utilization and what kind of data
is loaded into the buffer is, as a result, part of the workload mapping. In addition,
decoupling the initiator of a memory request and the local memory itself supports
the accelerator’s performance [171]. This allows to reduce the latency as each unit
can run at its own clock speed. Today, most modern DNN accelerators follow an
Explicitly Decoupled Data Orchestration (EDDO) pattern to manage local inputs,
parameters, and intermediate results. For example DaDianNao [140], SCNN [151]
and the accelerator by Fowers et al. [172] implement EDDO.

3.2.3 Neural Architecture Search and Design Space Exploration

As we have seen so far, there are multiple design option that can heavily influence
various DNN accelerator metrics. Neural Architecture Search (NAS) is a method
that basically describes an automated way to design a DNN topology [173]. Leaving
hardware aspects aside for now, designing a DNN topology, i.e., the number of
layers, kernel sizes etc., for a given task is mostly up to the developers’ knowledge
and experience. However, this can lead to superfluous kernels or layers and thus
unnecessary parameters and computations. Hence, pioneer works in NAS like NAS-
RL [174] orDARTS [175] help to automatically generateDNN topologies that achieved
state-of-the-art classification accuracy in CNNs using Reinforcement Learning (RL)
or gradient descent methods, respectively. Fast NAS is recently also enabled by
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supernetworks, which is a DNN whose outputs reflect the structure and parameter
of a target DNN. Approaches like Auto-DeepLab [176] or SqueezeNAS [177] can
significantly reduce the search time for image segmentation topologies that also show
better performance and efficiency.

However, hardware aspects play a key role when a DNN workload is deployed in
real-world applications. Looking at hardware architectures that have some degrees of
freedom like an adjustable memory size, designers typically perform a Design Space
Exploration (DSE). The goal of this exploration is to identify architecture configu-
rations that yield the best outcome. Depending on the design objectives, a wanted
outcome might be, e.g, to find the smallest memory size that still achieves a given
throughput. One DSE method that returns a globally optimal solution is exhaustive
search. However, it is usually impossible to explore all options for huge design spaces
like the one for DNN accelerators [178]. More goal-directed methods like simulated
annealing sample random architecture configurations and keep solutions that im-
prove the objective. In addition, based on a probability parameter, in case of simulated
annealing a temperature, worse solutions are also kept for breaking out of local op-
tima. Genetic Algorithms (GAs) are another popular kind of optimization algorithm
for DSE. They are inspired by evolution processes as they happen in nature [179].
Here randomly selected design points are assessed and by recombination of the best
performing ones, the GA yields optimal solutions after a couple of iterations. A more
detailed description will be given in Section 5.4. GAs can, for instance, be used to
optimize the scheduling and loop nesting of DNN workloads [180]. Besides the two
mentioned, approaches like Bayesian optimization that utilizes Bayesian ML methods
or RL are often found for DSE problems.

Considering the importance of the right DNN hardware accelerator, mapping and
topology, many works investigated a combination of DSE for hardware architec-
tures and NAS. This is referred to as Hardware-Aware Neural Architecture Search (HW-
NAS) [181]. In addition to traditional NAS, HW-NAS also considers hardware aspects
like available PEs and hardware costs like latency, implementation area or energy
consumption. The topic gained attention in the past five years, when algorithms
eliminated the need to train and evaluate each proposed topology [182]. Instead,
today it is possible directly predict the model accuracy. First works dealing with HW-
NAS extended RL approaches with hardware aspects. For example, MONAS [183],
a framework that targets GPUs, incorporates a reward function that combines accu-
racy and energy consumption, resulting in an efficient DNN topology for a given
hardware.
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HW-NAS is especially popular for constrained embedded systems like smartphones.
The authors of MnasNet [184] proposed the first automated method for mobile DNN
design by optimizing towards accuracy and latency, derived from actual devices to
get proper results. FBNets [185] by Wu et al. improved the approach of MnasNet
with differentiable NAS that speeds up the search process. They achieve a slightly
worse performance than MnasNet, but with 420× less search cost. This performance
was increased by Gupta et al. [186] who extended the search space and found that
depthwise convolution operations as they are used in MobileNet can lead to under-
utilization in systolic arrays. Their work focuses Edge TPU devices and outperforms
traditional ResNet-50 and MobileNet in terms of latency and accuracy. Another do-
main of resource-constrained systems are microcontrollers that only have limited
memory. Therefore, recent works like µNAS [187] optimize DNN workloads for such
systems. With their approach, they can create an MNIST model with less than 0.5 kB
parameters and still over 99% accuracy.

Besides those mobile applications, HW-NAS today plays also an important role
when DNNs are deployed to datacenters or while designing accelerators for FPGAs.
EfficientNet-X [188], for example, focuses on optimization of workloads for TPUs or
modern GPUs with TensorCores. They define a set of accelerator-friendly measures
and demonstrate a version of EfficientNet that runs twice as fast as off-the-shelf
EfficientNet on the TPUv3 or NVIDIA’s V100 GPU. For FPGAs designs, Fan et al. [189]
apply differentiable NAS to find a suitable CNN topology. Their approach yields
a 1.14× accuracy and a 12.4× speed improvement on CIFAR-10 compared to RL
methods. Targeting multiple architectures, another notable work for HW-NAS is
AutoTVM [190], a framework to automatically determine inference schedules that
outperform hand-tuned ones.

Determining the energy, area, and performance of a dedicated hardware accelerator,
typically relies on synthesis of each individual architecture, which is very inefficient
and time-consuming. As a result, cost models for hardware architectures became
popular, especially considering the homogenous dataflows, which occur in DNNs.
For example, works like MAESTRO [191] or Timeloop [163] are capable of mapping
DNN workloads on a given hardware description to estimate performance and uti-
lization of the accelerator. Tools like Accelergy [169] or the tool by Yang et al. [192]
were introduced to estimate energy and area of given hardware designs. While the
latter two tools are not entirely limited to DNNs, they are widely used for HW-NAS.
Especially, Accelergy is widely used for DNN accelerator architecture search. A high-
level overview of the tool is given in Figure 3.5. As input, it takes an architecture
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Figure 3.5: Overview of the Accelergy approach presented in [169].

description that lists all components, a library of those components, and an action
count file. The latter lists all activity in each component and is thus used to estimate
the energy by summing up the energy for active and idle phases in each component.
Action counts may be generated during execution of a workload or through analytical
computation. The component library is typically generated by synthesis tools and
contains information like how much energy, e.g., an 8-bit adder needs per addition
and howmuch area it consumes. But Accelergy also provides some component library
to start with, e.g. a 45 nm library generated by Aladdin [193], that is also often used
in HW-NAS works. Accelergy allows, moreover, adding plugins like CACTI [194] for
energy estimation of memories. CACTI offers a wide range of models for DRAMs and
SRAMs with different technology nodes. In combination with the plugins, Accelergy
can accurately tell which component consumes how much energy and area.

3.3 Methods to Optimize Neural Network Inference and
Training

While many hardware accelerators for DNN workloads and tools to map them effi-
ciently onto those accelerators were introduced, research has found other means to
further accelerateDNNs computation. Depending on theDNN input some activations
are irrelevant. Instead of straightforward computation of all associated operations and
loading all operands, the methods introduced in the following look exactly at those
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operations and check whether they have to be computed. In addition, some methods
exploit the fact that DNN are not returning exact results, but probability distributions.
As a consequence, smaller network imprecision can be tolerated, and the result may
change only a little or not at all. First, we will discuss different number formats that
allow for a more efficient utilization of the memory associated with weights and
inputs. Next, the closely related topic quantization is touched. Quantization allows
compressing parameters and intermediate results using less precise representations
and allows for less energy-intensive operations. Finally, we will deal with pruning,
which identifies operands that are zero and skips the corresponding computations
to save energy and computation time. All these methods need support from the
tools, the network topology, and the accelerator itself. Hence, a selection of impactful
corresponding works will be presented as well.

3.3.1 Number Formats

As stated before, DNNs can allow imprecision in operands, without losing its re-
sult significance. One of the most commonly used approaches to leverage this for
increased energy efficiency and faster computation is the right choice of number
format. Traditionally, DNNs are trained and computed using mathematically precise
computations. Since digital computer systems cannot represent an arbitrary number
precision and are usually limited to integers, computer architects found a representa-
tion that allows to encode a large range of real numbers, which is the floating-point
number format [195]. A floating-point number consists of a sign bit (s), a mantissa
(m) and an exponent (e). The first tells whether the number is negative or positive.
The actual value of the number is then determined by the mantissa and exponent, as
follows: x = s ·m · be. Here, b is the number basis, which is usually 10. The number of
bits that are invested into the mantissa and exponent define the precision and range
of a floating-point number. While all level of precision are possible, some few have
established themselves and are specified in the IEEE standard 754 [196]. Popular are
single (FP32) and double precision (FP64) formats with 32 and 64 bits for the entire
number, respectively.

The distribution of exponent, mantissa and sign bits for common floating-point
formats used in DNN computation are shown in Figure 3.6. Single precision numbers
(FP32) have 23 mantissa bits and 7 exponent bits, which allow them to represent
fractional numbers very accurate. However, in DNN inference, where imprecision
can be accepted, a lower precision may be applied. Fewer exponent and mantissa
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Figure 3.6: Examples of different established and modern number representations.

bits directly result in a lower memory footprint of the network. Hence, the inference
energy is lower since fewer data has to be moved around. For example, a combination
of FP32 for accumulation and FP16 for weights and activations even supports the
model accuracy [197]. While FP16 is also specified in the IEEE standard, bfloat16,
which was especially designed for efficient DNN training and inference [198], allows
to get rid of FP32 entirely. It features two more exponent bits at the expense of two
fewer mantissa bits. This allows bfloat16 to cover a larger number range by sacrificing
precision. For reference, FP16 can only represent a range of ± 65 504, bloat16 extends
this to 1.18× 10−38 . . . 3× 1038. This distribution of exponent and mantissa bits was
shown beneficial for fast convergence of DNN training [199]. Thereby, it maintains the
16-bit alignment, which enables compatibility with data buses of common hardware
platforms. Putting this compatibility aside, NVIDIA also introduced their TensorFloat
format that extends the mantissa by two bits, which allows for increased precision.

However, floating-point arithmetic is computationally challenging and the required
energy for a floating-point operation is comparably high (see Figure 2.21). Hence,
many low-cost and low-energy General-Purpose Processors (GPPs) do not support
floating-point operations at all. For example, during a multiplication, mantissa and
exponent have to be computed individually, and finally themantissa has to be adjusted
in accordance to the new exponent. To address this, fixed-point number became
popular in DNN computations [200]. In contrast to floating-point numbers, they
work with a scale factor that determines howmany of the available bits are considered
fraction bits. Therefore, to convert a number into decimal representation, a given
number is simply divided by two to the power of the scaling bits. For example, 10 with
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2 scaling bits, becomes 10/22 = 2.5. The advantage of fixed-point numbers becomes
apparent in computations. Especially multiplications, which are predominantly
present in DNNs, can be done with simple integer arithmetic [105]. The resulting
scaling factor is subsequently the product of the operand’s scaling factors. Although
some few works have proven that DNN training works with fixed-point number
as well [144], they are mostly limited to DNN inference. This is because the linear
scaling cannot represent the necessary precision for gradients to propagate backwards
through the network. In addition, choosing the correct scaling factors is not a simple
task.

DNN inference can also be computed using pure integers. Analogous to fixed-point
numbers, integer operations are efficient in hardware and all CPUs support it. In this
case, the scale factor is neglected, and all operands and results are scaled with the
same factor. The result of, e.g., a multiplication is simply bitwise shifted to normalize
the result to the common scaling. However, pure integer implementations also suffer
precision, even slightly more than fixed-point implementations with arbitrary scale
factors. As a consequence, they can mainly be found in inference application [127].

Besides those three very popular options, another notable number format in the field
of DNNs is Posit [201]. This number format extends the range by adding a regime
next to sign, exponent and mantissa. The regime works similar to the exponent
but has a different base that depends on a seed value useed = 2Emax , which is
determined by the maximum exponent bits Emax. In comparison to IEEE-754 FP16,
which has a range of 6 · 10−8 . . . 7 · 104, posits with Emax = 1 can cover a range of
4 · 10−9 . . . 3 · 108. For DNN computation, posits claim to deliver a 2× to 4× training
acceleration, due to a simple computation of activation functions [202]. In addition,
the mix of high precision and a high dynamic range that posits offer support DNN
computation [203]. But, similar to floating-point arithmetic, posits require additional
hardware effort. As a result, research is actively investigating various methods for
efficient Posit operations, especially for DNN workloads [204].

Besides all the presented number formats, many others with special focus on DNN
training, inference or both were presented [205]. However, floating-point remains
one of the most popular formats for its wide availability in hardware architectures.
Today, the optimized format bfloat16 is often used for training since most GPUs offer
great support. Inference, however, tolerates more imprecision than training. As a
result, it relies on integer and fixed-point formats, which unify sufficient precision
with quick and low-energy arithmetic.
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Figure 3.7: Steps required for quantized DNN inference. First, a model has to be
calibrated to obtain the operand range. Then the model parameters are
quantized. With this model, a quantized inference can be done.

3.3.2 Quantization

Mapping weights, biases and feature maps to less precise number formats is referred
to as quantization. Similar to quantization used in signal processing, a value continuous
input value is projected to a value space with discrete steps. Aggressive quantization
works especially well with DNNs because they are usually over-parameterized [206],
which was already noticed by the authors of AlexNet [3]. One of the most important
aspects of quantization is the relation between original and quantized values, and the
number of quantization steps that are used for quantization. These parameters heavily
influence the quantization error, which has to be minimized to achieve good results.
The quantization error is simply the difference between original and quantized values.

In a more formal way, quantization can be denoted as an original value x that is
quantized by a quantization function Q(·), which returns the quantized value x̂.
Thereby, the number of quantization levels is defined as L and the corresponding
set of quantization steps as qi with i ∈ [0, L]. Putting this together, the quantization
function maps an input x to the respective quantization step qi.

Figure 3.7 shows the steps of DNN quantization [127]. Before the model parameters
can be quantized, a calibration has to be performed. In this step, activations and
intermediate results of a fraction of the dataset samples are tracked while passing
through the network to determine range boundaries for quantization. Excessive
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Figure 3.8: Example of clipping during quantization, shown as histogram with all
activations of 1000 samples after the first CONV and Rectifier Linear Unit
(ReLU) operation in a pretrained ResNet-50 and the 99.99th percentile as
well as the absolute maximum.

values are usually dropped to not waste quantization steps for those large values,
which is referred to as clipping. Clipping may happen based on a quantile, e.g., the
99.99% or 99.9% quantile or based on entropy to preserve as much information as
possible [207]. As a reference, Figure 3.8 shows the distribution of activations of
the first ResNet-50 CONV layer4. It can be seen that there are only a few excessive
activations, which are dropped. The boundaries are denoted as α and β and clamp
inputs and intermediate results of the network. They may be picked with −α = β or
−α 6= β, which is referred to as symmetric or asymmetric quantization, respectively.
With this information, parameters of the network can be quantized and finally a
quantized inference can be performed. Therefore, the inputs have to be quantized as
well and results have to be converted back into original values.

For actual quantization, multiple methods have been proposed over the recent years.
A straightforward method is uniform quantization, in which qi is equally spaced. As
a result, the quantization function boils down to Q(x) = Int(x/S) − Z, where S is
a scale factor, Z is a zero offset [208], and the function Int is a proxy to convert a
floating-point number into an integer representation. The scale factor for uniform
quantization computes as follows:

S =
β − α

2b − 1
(3.1)

4 Data generated using a pretrained ResNet-50 model provided by PyTorch and 1000 randomly
selected samples of the ImageNet-1K dataset

STATE OF THE ART | 77



2 4 6 8 10 12 14 16

0

20

40

60

80
FP32 accuracy

Bit-Width

A
cc

ur
ac

y
[%

]

Figure 3.9: Impact of quantization on the accuracy of ResNet-50. Tests performed
with same quantization for all parameters and activations. Shown is the
Top-1 accuracy determined using the ImageNet-1K validation dataset.

With the corresponding boundaries determined by calibration, and b being the bit-
width of the target quantization. It has to be noted that in case of symmetric quanti-
zation, we can use Z = 0, which makes implementation of a conversion even simpler.

Besides uniform quantization, non-uniform quantization may be used. In this case,
the step size of quantization levels is not constant. A non-uniform distribution of
quantization levels can depend, e.g., on a logarithmic function. This example was
proven by Miyashita et al. [209], who achieved a 7× compression on AlexNet. Their
quantization scheme also allows for a straightforward implementation in hardware.
For example, Gudovskiy et al. are able to reduce the power consumption on FPGAs
by a factor of four compared to an 8-bit fixed-point implementation [210]. Other
more recent approaches use search methods to optimize the quantization steps for
the given DNN workload [211]. Some works also investigated learnable quantization
steps during the DNN training process using either iterative optimization [212] or
gradient descent [213; 214]. Learning those parameters supports the minimization of
quantization error, and quantization steps are automatically fine-tuned.

AlthoughDNNs are robustness to imprecision as introduced by quantization, rigorous
quantization results in a severe model accuracy degradation. Figure 3.9 presents
this relation with exemplary means of a ResNet-50 [40] network5. The network is
quantized with integers only, and the same quantization is applied to all parameters
and activations. We can observe that quantization up to eight bits has only mere
impact on the accuracy, which was also shown, e.g., by Gysel et al. [215]. From there
5 The data is collected using a pretrained ResNet-50 model provided by PyTorch and using the entire
ImageNet-1K dataset. Quantization is done using NVIDIA’s TensorRT library.
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on, the accuracy degrades heavily, dropping to about 5% with six bits and close to
0% with less than five bits. However, many measures to enable further quantization
without such a huge accuracy loss were presented by researchers over the last decade.

A simple countermeasure to the strong accuracy impact is applying quantization at
different granularity. From a hardware standpoint, quantizing all parameters and
activations at the same level allows for the simplest implementation. However, it is also
conceivable to quantize parts of the network with different quantization levels [216].
With this approach, parts of the network, which are sensitive to quantization can be
computed with a higher precision and less sensitive parts may be quantized stronger.
This unifies model accuracy and energy efficiency. Quantization granularity can be
grouped along two dimensions. First, depending on the operand, e.g., quantization
of parameters, activations, or both. Second, depending on the operation itself. For
example, quantization can happen individually for each layer [217], for each CNN
channel [218] or based on groups in the inputs. Works like DRQ even propose an
individual quantization levels for regular sub-layer blocks [219]. With DRQ the
authors can achieve 92% performance gains compared to Eyeriss [60] with only 1%
accuracy loss. When various quantization levels are employed at different stages, it is
commonly referred to as mixed-precision DNN inference [220].

Besides adjusting the quantization granularity, working with dynamic quantiza-
tion is another common method to boost the model accuracy. The above-described
calibration is referred to as static quantization. Dynamic quantization, in contrast,
determines the clipping range during DNN training in accordance with the weights.
As a result, weights are fine-tuned to yield results that are most of the time inside the
clipping bounds. With this approach, works like PACT [221] or LQ-Nets [212] can
quantize networks to four bits with almost negligible accuracy degradation.

Obviously, dynamic quantization requires hardware support. However, arithmetic
units for variable precision are hard to realize. One method is to clock gate some
parts of a larger MAC unit to eliminate the energy consumption for unused parts.
This was investigated by Moons et al. [222]. Although they were able to reduce the
energy consumption by 30×, extra chip area for large MAC units had to be spent. An-
other widely explored approach is bit-serial computation. Those accelerators operate
on a stream of bits that can be of arbitrary length. Thereby, each bit is multiplied
consecutively, and multiplication can simply stop when all bits are transmitted over
the line. For example, Stripes [223] from 2016 presents one of the first bit-serial accel-
erators, with fixed 16-bit weights and arbitrary activations from 1- to 16-bit. Their
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accelerator increases the energy efficiency by 57% and only adds 32% area to realize
arbitrary precision arithmetic. Loom [224] from 2018 extends Stripes by adding
support for CONV layers. In addition, their approach increases the performance by
1.87×. UNPU [225] from 2019 is another notable work for bit-serial accelerators. The
authorsmanufactured their design into a 65 nmASIC. Their accelerator canworkwith
arbitrary weight precision and fixed 16-bit activations. UNPU achieves a performance
of up to 50.6 TOPS/W with 1-bit weights, or 3.08 TOPS/W using 16-bit weights. In
addition, implementations on FPGAs, which have outstanding performance on binary
and flexible operations, were presented. BISMO [226], for example, introduces a
vectorized bit-serial multiplier that can be reconfigured. On a comparably small
PYNQ-Z1 board, the authors successfully demonstrate a performance of 6.5 TOPS.

Dynamic quantization also touches the training process. More accurate quantized
networks can be created when it is directly trained and fine-tuned in quantized
form. This is referred to Quantization Aware Training (QAT) [227; 228], while the
previously described methods fall into the category of Post-Training Quantization
(PTQ). Similar to the idea of determining the quantization steps during network
training, QAT fine-tunes the weights and activations during training to fit better
into the corresponding quantization steps. Therefore, some training iterations are
performed with quantized weights and inputs. During the backward pass, gradient
computation still happens using floating-point to have sufficient precision. Then
during each weight update, weights are immediately quantized, which targets to
minimize the quantization error. While QAT supports the accuracy of a quantized
model, it obviously takes more effort compared to PTQ. Usually, multiple hundreds
of fine-tuning iterations are required to restore the original accuracy. Hence, PTQ is
still relevant for fast network deployment.

Beyond integer quantization, extreme quantization down to ternary or even bi-
nary weights and activation was proven beneficial for extreme low-power applica-
tions [229]. BinarizedNeural Networks (BNNs) use single bit weights and activations
that needmuch less memory. Instead of expensive matrix multiplications, BNN layers
may be computed with simple XNOR and Popcount operations [230]. However, such
extreme quantization leads to a much higher information loss and subsequently to a
lowermodel accuracy. To overcome this, many techniques have been explored tomake
BNNs feasible. Notable are, fine-grained scaling factors for quantization [231] or
other learning approaches that put more emphasis on the sharp binary quantization
steps, like IR-Net [232] or RBNN [233]. Other methods include altering the model
structure to work better with binarized weights and activations [234]. To benefit from
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Figure 3.10: Histogram of all weights in a pretrained ResNet-50 [40] in a range of
−2.5 . . . 10 with 250 bins on a logarithmic scale. It can be observed that
most of the weights are distributed around zero.

the low-energy consumption of BNNs, tools like FINN [235] were presented to allow
for a straightforward implementation on FPGAs. Today, BNNs can cover nearly the
same scope as traditional DNNs. They are especially interesting for very constrained
platforms that can tolerate the associated model accuracy drop.

Quantization presents a great opportunity to reduce the memory footprint and com-
putational complexity of a DNN. As a result, the topic was intensively researched
in the recent decade and several approaches were presented to lessen the accuracy
degradation, improve the computational performance or to enable fast deployment of
quantized DNNs. As we will see in the next section, however, the hardware support
for quantization should not be neglected.

3.3.3 Pruning

Pruning is an important technique to optimize DNN inference and training towards a
faster andmore energy-efficient execution [161]. It removes redundant or insignificant
parameters or activations during inference or training [236]. To understand the basic
concept of pruning, we can take a look at Figure 3.10, which shows the distribution of
weights in a pretrained6 ResNet-50 [40]. We can observe that a large share of weights
is actually zero, or at least close to zero. This is again due to the over-parametrization
of DNNs. Since the predominant operations in DNN inference are multiplications,

6 https://pytorch.org/vision/main/models/generated/torchvision.models.resnet50.html weights V2
are used
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Figure 3.11: Weight pruning shown as graph and weight matrix representation.

we can eliminate those with weights that are zero. This pruning method referred
to as weight or connection pruning, i.e., pruning removes unnecessary connections
between neurons and makes the weight matrix sparse, as shown in Figure 3.11.

Similar to quantization, pruning approaches can be classified according to the operand
they are targeting and the granularity. The granularity of sparsity that can be achieved
by pruning is an important design parameter, as it highly impacts the efficiency and
design of the network topology and accelerator architecture. This again underpins
the aforementioned statement, that co-designing algorithm and accelerator is cru-
cial. The simple example in Figure 3.11 shows unstructured weight pruning. The
resulting unstructured sparsity allows for a maximal exploitation of zero weights and
subsequently a high reduction in computations [237].

However, efficient storage of irregular sparse matrices requires extra information that
represent the location of non-sparse elements. Common methods store non-sparse
elements using Compressed Sparse Column (CSC), Compressed Sparse Row (CSR)
or run-length encoding formats [238]. Adding this information can lead to a doubling
in storage requirements for networks like AlexNet [239]. To circumvent this extra
memory usage, numerous research was carried out on structured pruning. Therefore,
pruning may be applied to individual convolution filters [240] or to entire feature
maps [241], reducing, e.g., computational cost by 38% on ResNet-110 or by more
than 70% on a network for CIFAR-10, respectively.
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Figure 3.12: Activations of ResNet-50 [40] using the ImageNet-1K validation dataset.
Shown as histogram in a range of−1 . . . 20with 108 bins on a logarithmic
scale. Due to the ReLU activation function, most intermediate results are
zero or small.

Sparse weights usually occur in irregular patterns across layers, filters, and kernels.
Pruning, i.e, skipping computations with those sparse weights, results in no different
network output and is consequently the most straightforward approach [242]. In
contrast, magnitude pruning [243] assigns each weight an importance to the model
output, on which we can decide with a threshold if it is pruned or not. This process is
also called sparsification and leverages again the robustness of DNNs to imprecision.
For example, ThiNet [244] aims to find superfluous convolution filters and prunes
them, achieving a 16× compression of VGG-16 with only 0.52% Top-5 accuracy loss.
To increase sparsity during training other metrics were proposed as well. Lin et
al. [245] use Markov chains to identify sparse activations, achieving a 10× inference
speed-up. RL methods were investigated by Chen et al. [246]. They optimize for
efficient usage of the availablememory using pruning and demonstrate a performance
improvement over static pruning. Metrics like Markov chains [245] To increase the
amount of sparse weights in a DNN, sparse training was proposed [247]. In contrast
to the previously described methods, this approach adds sparsity as another metric
to the training loop. For example, Sun et al. [248] propose and train a CNN for face
recognition that achieves a 33% better accuracy and has 88% fewer parameters than
state-of-the-art models.

So far, we have covered pruning and sparsification methods for weights in DNNs.
However, modern approaches likeNAS combinedwith iterative pruning already yield
very compact and dense network topologies [249]. While networks from a decade
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Figure 3.13: Basic principle of magnitude activation pruning.

ago could easily be pruned to 90% sparsity [250], modern networks would suffer
from huge information loss. But pruning is still a highly relevant topic since it can
also be applied to activations. Most network topologies until recently mostly relied
on the ReLU activation function. Besides its simple computation, ReLU has another
useful characteristic, which is that all negative activations become zero, i.e., sparse
values in the output feature map [27]. As reference, Figure 3.12 shows a magnitude
distribution of input feature maps in ResNet-507. Note the peak in the bin that covers
the range from 0 to 0.2. Counting only the exact zero activations during inference, we
can observe that in this example 48.05% of all activations are zero. Activation pruning
leverages them in the next layer, because again one operand of a multiplication is zero.
Hence, the computation can be skipped analog to weight pruning. Since, especially
in CNNs feature maps are huge, activation pruning can significantly improve the
energy efficiency [251] or reduce the memory footprint [252].

Yet, two challenges reside in activation pruning. First, the location of sparse values is
not fixed, but strongly depends on the network input, second activation sparsity is not
present in any regular form. Pruning irregular forms of sparsity during inference can
draw disproportionately from the energy budget, since the hardware architecture has
to decide on the fly, which operation can be skipped [253]. As a result, for example, a
sparse AlexNet is 25% slower on an off-the-shelf GPU [254]. To increase the amount
of sparse activations and their regularity, similar to weight pruning, a threshold can
be applied as shown in Figure 3.13. For example, Reagen et al. [255] first added a
hand-picked threshold to increase the activation sparsity of a three layer MLP and
can reduce the energy consumption by 50%.

7 The data is retrieved using a pretrained ResNet-50 network provided by PyTorch and the entire
ImageNet-1K validation dataset
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Besides all the mentioned challenges, activation pruning combined with NAS offers
enormous potential to make DNN inference more efficient, in terms of energy, latency
and throughput. For example, Eyeriss from 2017 [60] is one of the first architectures
to support activation pruning, by power-gating individual PEs, saving 45% of the PE
power. While just skipping MAC operations is sometimes not worth the extra logic to
identify sparse activations, compressing pruned activations for optimized memory
usage pays off much faster, especially for energy efficiency. Looking, for example,
at the energy required for an 32-bit floating-point MAC operation in comparison to
loading 32 bit from external memory (see Figure 2.21) we see that memory movement
is 173× more energy intensive. Considering the vast intermediate feature maps of
CNNs, selective activation pruning can cut the energy consumption drastically. For
example, Alwani et al. [256] can reduce the required memory for intermediate result
by 95% in a VGGNet.

As stated before, hardware support for different pruning mechanisms is key to a bene-
fit from the favored energy savings. Hence, over the last few years, many accelerators,
which implement various approaches to pruning, were presented. SIMGA [257],
Extensor [258] and Gamma [259] are examples for accelerators that support sparse
General Matrix Multiply (GEMM) operations. SIGMA, for instance, can save up to
3× energy compared to a TPU [7]. Gamma improves the performance further and
outperforms other sparse GEMM accelerators by an average of 2.1× and reduces
memory expensive transfers by up to 13×.

Looking atDNNworkloads, Zena [260] applies skipping of operations to bothweights
and activations, showing up to 9× speed-up compared to Eyeriss [60]. Cnvlutin [261],
introduces a new co-designed data encoding scheme to benefit even more from
compression and allow for parallel pruning. With their sparse row compression
method, they show a 1.37× performance increase by removing operations with zero
compared to by then state-of-the-art accelerators. Moreover, they report 44% sparsity
in a wide set of DNN algorithms. Compression through arranging dense values
in input matrices using a stride has been explored by Anwar et al. [241]. With
their method, they can prune 70% of a network for the CIFAR-10 dataset with only
slight accuracy degradation. The Cambricon series from 2016 and 2018 is another
notable example of sparse DNN accelerators. Cambricon-X [262] aims to prune
irregular weight sparsity, and the successor Cambricon-S [263] also includes a co-
design approach that groups sparse activations into regular patterns, resulting in
overhead reduction for encoding mechanisms. The latter work can achieve a 6.43×
better energy efficiency compared to the accelerator DianNao [139]. Also, the authors
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of Eyeriss presented in 2019 a successor of their accelerator. Eyeriss v2 [126] adds a
hierarchical mesh with PEs that can operate directly on compressed data format to
reduce the logic overhead for decoding data. They improve their initial work by 2.5×
and 12.6× in terms of energy efficiency and speed, respectively.

Another notable and quite recent sparse DNN accelerator is Flexagon [264]. Their re-
configurable accelerator can adjust to the sparsity andworkload that is current present
to switch to the dataflow that has the best efficiency. With their dataflow, the au-
thors report an 18% better performance to area efficiency compared to Gamma [259]
over eight evaluated DNN workloads. In addition to ASICs, some works focus on
accelerating sparse workloads on FPGAs. For example, Niu et al. [265] are able to
reduce data offloading through compression in VGG-16 by 42%, resulting in an effi-
cient utilization of the available DSPs. Besides accelerators for DNN inference, some
works investigated sparse DNN training. For example, Procrustes [266] can shrink
the energy for training ResNet-18 and MobileNet-v2 by 3.26× or 2.39×, respectively.
Also, NVIDIA’s Ampere micro-architecture supports pruning of blocks consisting of
four values with up to 50% sparsity [121].

As we have seen in this section, pruning is a very well-implemented method to
make DNN workload more energy-efficient. With the proper hardware support,
especially activation pruning can drastically reduce the memory footprint of a CNN
and the associated energy-expensive memory movements. As a result, modern
embedded platforms for efficient DNN inference require not only sophisticated DNN
architectures, but also support for online activation pruning.

3.3.4 Combined works

Most works, even some presented before, combine pruning, quantization and often
compression algorithms to maximize the energy efficiency. These methods may be
combined with sophisticated HW-NAS methods, leading to an end-to-end design
process, as shown in Figure 3.14. First, a DNN workload is optimized using quanti-
zation and pruning. Once the parameters are sufficiently reduced, we can start the
accelerator tuning. Here hardware parameters are adjusted to optimize Performance,
Power and Area (PPA) figures towards the design objectives.

One of the first works that introduced a careful combination of pruning, quantization
and compression is the very influential work by Han et al. [239]. Using unstructured
magnitude-based pruning, arbitrary precision quantization and Huffman coding to
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Figure 3.14: Principle and steps of Design Space Exploration for DNN hardware
accelerators. First the workload itself is optimized using pruning and
quantization. Then the hardware configuration is iteratively optimized.

compress the data, the authors can reduce the memory requirements significantly. On
an AlexNet and a VGG-16 workload using ImageNet the memory footprint shrinks
by 35× and 49×, respectively, without accuracy drop. This allows a model to fit into
an on-chip memory, which drastically reduces energy consumption, and allows for
inference on mobile devices. Based on their approach, the author presented their
accelerator EIE [238] a year after. By combining pruning, CSC compression, sparse
matrix-vector multiplications, and weight sharing, they demonstrate a 189× and 13×
faster inference on CPU and GPU, respectively, compared to the same uncompressed
DNN. Chen et al. [267] present a work that compresses parameters of a DNN using
Tunstall encoding and argue that it can be implemented in a straightforward manner.
To prove this, they present hardware implementations for fast decoders on an FPGA
and demonstrate a 6.23× speed-up compared to Huffman coding on ResNet-50, while
consuming significantly fewer resources.

Besides accelerator design, many works investigated how to apply quantization and
pruning at the same time. CLIP-Q [268] proposes such an approach. The authors show
an improvement of state-of-the-art quantization or pruning works on a wide range
of CNNs. Their approach can also, compress already efficiently designed networks
like MobileNet by 7.6×. The work by Yang et al. [269] combines all above-mentioned
techniques in an automated framework that removes the need for setting compression
factors for each layer manually. With their tool flow, they can compress AlexNet
trained on ImageNet by 205× without accuracy loss. HFPQ [270] moreover includes
hardware aspects into the compression pipeline. They first prune the network, retrain
it, and finally quantize it. By considering the number of Floating-Point Operations
(FLOPs) while compression, they can, for example, compress ResNet-50 by 15×,
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reduce the number of FLOPs by 72.6% and only drop the accuracy by about 3%,
which outperforms other state-of-the-art works. More recently, Krieger et al. [271]
looked at combined quantization and pruning for constrained embedded systems.
Their approach involves a RL agent, which tries to minimize the inference latency
measured on an actual device. Using a ResNet-18 to classify CIFAR-10, they can
reduce the inference latency by 5×, without notable accuracy loss.

3.4 Summary, Challenges and Contributions to the State
of the Art

In this chapter we have found that a large body of research exists around the topic
of DNNs. Since modern DNN workloads are growing quickly in computational
complexity, they pose a huge challenge on the target computing hardware. Small
grayscale images showing only single characters eventually became high-resolution
camera images from an autonomous vehicle and recognition of ten different characters
became recognition of pedestrians along the street, which has to be done very accurate,
quick and reliable. As of the shelf hardware cannot fulfill the computational demands,
many people stated to search for an answer to the growing computational demand.
Thus, over the past two decades, a vast range of different accelerators, tools and
optimization techniques have been proposed.

Today, modern DNNs are highly optimized for a given application using methods
like NAS, knowledge distillation or parameter sharing. To execute those workloads
efficiently on underlying hardware structures, it is crucial to have sophisticated map-
pers at hand. For strongly constrained environments like embedded systems, it is also
recommended to use HW-NAS or co-design the algorithm with the accelerator. This
allows to create tailored accelerators and DNNs that can work seamlessly together.
Finally, one can consider pruning, quantization and compression to leverage two
important aspects of DNNs: their over-parametrized nature and the characteristic
that they tolerate imprecision during inference. With all these methods in place, appli-
cations like environment perception on autonomous vehicles, real-time face-detection
on smartphones or large language models for chatbots became feasible.

However, there are still some unanswered questions and challenges ahead. The design
of a DNN, its deployment, its optimization, and the underlying hardware accelerator,
affect the performance, latency, energy consumption and model accuracy. As a result,
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the search space of different parameter combinations is infinitely large, and no single
configuration fits it all. Besides the algorithmic challenges themselves, which are not
covered in this thesis, there is still a myriad of problems to solve considering hardware
platforms, architectures, tools, and memories. Regarding the current state-of-the-art,
we have identified some major open challenges for efficient deployment of DNNs to
constrained embedded systems:

1. How does a holistic simulation platform look like that can estimate the energy,
latency, and performance impact of the various design parameters? And can
we design such a platform to automatically explore all design opportunities to
get the best DNN accelerator design for a given workload?

2. Once we have an efficient DNN accelerator, can we optimize it further using
regular pruning? And what forms of regular pruning can be implemented
with only small hardware overhead and still yield a high utilization of sparsity?

3. How sensitive is a DNN which benefits from online pruning and quantization
to weather perturbations like rain, fog, or snow? And how can we mitigate
the impact of such weather conditions at run-time to have an efficient and at
the same time safe DNN inference?

Of course several aspects of these questions to varying degrees have been addressed
by researchers. To answer the first question, simulation tools and HW-NAS frame-
works were introduced. For instance, MAGNet [272] helps to explore the impact of
different systolic array design configurations on various performance figures. This
concept was further extended by works like SMAUG [273], STONNE [274] and the
subsequent Flexagon [264]. These works feature end-to-end simulation for more
versatile DNN accelerator structures. They even consider various scheduling options
and come with their own mapping and tiling tools. As a result, their approaches
reveal extensive information to guide the design process. In addition, significant
research has been carried out in the field of FPGAs. The works by Motamedi et
al. [275] and by Abdelfattah et al. [276] are popular examples. They introduced NAS
and co-design techniques to design DNN accelerators tailored for FPGAs. This is
achieved by assessing precise area and energy estimates obtained from High Level
Synthesis (HLS).

All the studies mentioned share a common feature: they perform cycle-accurate
evaluations. Although this method is time-consuming, it provides the highest level
of accuracy. However, some works looked into approximate and analytical models to
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speed the simulation up. For example, SCALE-Sim [277] which estimates bandwidth
and inference cycles for systolic arrays. Timeloop [163] takes this a step further by
extending the estimations to a wider range of DNN accelerators, and includes tools for
estimating energy and area. In addition, works likeMAESTRO [191] andZigZag [278]
made large progress in the richness of mapping problems and simulation speed.

Beyond the works mentioned in this brief overview, we will investigate the first
question and the associated state of the art further in Chapter 4. Therefore, we
introduce FLECSim, a platform for end-to-end cycle-accurate SoC simulation that
helps to evaluate and test a large range of configurable accelerator designs in terms of
their energy and area efficiency. The chapter will also present an analytical approach
based on the systolic array generator Gemmini. Our analytical approach considers all
layers in a DNN, yielding faster and more exact estimates. In addition, a real-world
use case is demonstrated. Here, an embedded FPGA design is explored to allow for
an energy-efficient inference of a face recognition algorithm.

Regarding the second research question, some works have thoroughly looked into
leveraging activation sparsity. Important state-of-the-art examples comprise, for ex-
ample, SCNN [151]. The authors use an efficient and novel index-based compression
method to save energy and reduce the number of computations. In their hardware
implementation they can report an up to 2.3× better energy efficiency. Cambricon-
S [263] aims to increase the performance further using coarse-grained pruning in
the shape of contiguous blocks. Since feature maps have often different degrees
of sparsity, STICKER [279] proposed to use nine different compression modes for
efficient inference, which balances high exploitation of sparsity and model accuracy.
Their work achieves a 1.8× energy efficiency improvement over the state of the art. To
make compression and decompression faster, the authors of SNAP [280] introduced
a novel parallel associative search to identify non-zero operands in unstructured
input data. This helps to reduce memory accesses by 22× and yields an efficiency of
3.61 TOPS/W.

To extend this body of research further, we will look in Chapter 5 into various design
options for activation sparsity. This contribution discusses variousmethods of pruning
in detail and why regular sparse blocks that match the dimensions of the hardware
accelerator can be pruned efficiently. To bring this into effect, we introduce Spex and
Sparse-Blox, a tool to increase this kind of regular sparsity and a hardware extension
to prune sparsity during inference.
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Considering the third research question, some research already explored hardware
accelerators that support mixed-precision instead of fixed bit-width quantization.
HAQ [281] explores quantization using RL and demonstrated that mixed-precision
can significantly improve the energy efficiency. A more accurate quantization scheme
can be achieved using GA, as shown by AnaCoNGA [282], which uses HAQ as
baseline. To make support for mixed-precision less area expensive, BitBlade [283]
uses bitwise summation and a modern tiling scheme to increase the utilization. The
efficiency and model accuracy were further improved by the structured, dynamic and
fine-granular quantization approach presented by Huang et al. [284]. This recent
work underscores the potential of mixed-precision quantization for better accelerator
efficiency.

Moreover, a range of studies have investigated how quantization impacts the robust-
ness of DNNs. For instance, Wijayanto et al. [285] introduced a compression method
for classification tasks that also takes into account the model error rate. Khalid et
al. [286] examined in particular adversarial attacks on CNNs and used quantization
to enhance the robustness against these attacks by inserting quantization layers at
the input. By focusing on outliers during training and quantization, Zhao et al. [287]
can improve the robustness of various DNN models compared to other robustness-
aware quantization schemes. Besides these works, the robustness against different
weather conditions was addressed by models that, e.g., remove rain, such as Semi-
MoreGAN [288] or the work by Wang et al. [289].

A combination of mixed-precision inference on hardware combined with robustness
evaluation, which is currently missing the state of the art, is discussed in Chapter 6.
This chapter analyzes the impact of quantization applied to common CNN workloads
for image segmentation in the automotive domain regarding energy efficiency and
robustness.

To foster further research the work that has been carried out in the last two chapters
is made available as open-source to the public8.

8 https://github.com/itiv-kit/dnn-model-exploration
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Chapter4
Algorithm and Hardware Accelerator
Co-Design for Efficient Hardware
Accelerator Design

A lready while discussing the background of Deep Neural Network (DNN)
acceleration and the current state of the art it immediately becomes clear
that there is a myriad of different design parameters that influence various

metrics of the accelerator. This wide range of available accelerators, dataflows and
memory management strategies highlights that there is no single accelerator design
that fits all DNN models and applications. Of course, some design configurations
can cover a larger range than others. But sometimes, we also need a very efficient and
tailored accelerator for a particular application.

The contribution that is covered in this chapter helps to explore DNN accelerator
design options and systematically assess them regarding the models that it runs.
Therefore, we introduce FLECSim [Hot+21], a simulation environment that helps
to estimate the efficiency of a DNN accelerator accurately. It uses a cycle-accurate
SystemC simulation and contains modules for Central Processing Units (CPUs) and
memories, allowing for fast integration and evaluation of new DNN accelerators. To
underline the flexibility of the simulation tool, we perform a Design Space Explo-
ration (DSE) of a Convolutional Neural Network (CNN) accelerator running on a
highly configurable embedded Field Programmable Gate Array (eFPGA) [Hot+22b;
Hot+20]. Since entire cycle-accurate simulation can be time-consuming, we further-
more investigate ways of analytical cycle and energy estimation [Hot+23c], since the
dataflow of common DNN accelerators is very homogenous and predictable.
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4.1 Overview, Introduction and Motivation

The huge advancement in Deep Learning and subsequently DNNs was only made
possible by tremendous effort on accelerators to train and execute these workloads.
As a consequence, today there is an array of different DNN accelerators available.
Most of them distinguish themselves by incorporating various dataflows, memory
sizes, data orchestrations, arrangement of computing nodes or interconnectivity, just
to name a small set of possible design parameters. Besides that, there are accelerators
that bank on optimization strategies that we discussed in Chapter 3 like pruning or
quantization. Although pruning shows great potential for making DNN accelerators
more energy-efficient, it is currently mostly investigated in research accelerators.
Modern commercial accelerators on the other side usually feature quantization to
have both energy efficiency and a high degree of flexibility for all kinds of DNN
workloads. Besides the bare energy efficiency, considerations like real-time capability
or safety requirements add another dimension of complexity to the question of how
does the best DNN accelerator for a given application looks like.

One generally strives to simultaneously optimize for high throughput, low power
consumption, a small area and so on. Obviously, a higher throughput may be realized
by adding more Processing Elements (PEs) or a more performant memory interface.
However, this affects energy consumption and chip area. Besides that, the DNN
accelerator design strongly depends on the DNN topology, which is later runs on this
accelerator. An Output Stationary (OS) dataflow might work well for one application,
while another benefits from Input Stationary (IS) orchestration. As a consequence,
different design parameters have substantial impact on the performance metrics.

As we can see, various applications pose different challenges and requirements to
the underlying DNN accelerator. For example, an embedded accelerator may em-
phasize a low power consumption and real-time capable latency, while data-center
accelerators require high throughput instead. Hence, it is important to consider the
different adjustments one can make to an accelerator during the system design phase
to meet all design and performance requirements. To achieve this, a tool is needed to
systematically observe the outcome of small changes in the accelerator’s configuration.
In particular, this tool should be utilized as early in the design process as possible to
save cost. Additionally, it should deliver fast and accurate results for an automated
exploration of the large design space that opens upwhen considering the vast number
of design parameters.
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Figure 4.1: Basic concept of our simulation platform. An accelerator and SoC model
represents the later chip architecture. During simulation of a DNN work-
load, various metrics, like energy, cycles and area are collected and then
used for an automated design space exploration.

An appealing concept to build such a tool is to use a simulation environment, in
which various parameters can be changed and then the impact on the accelerator
is observed. Using common hardware simulation tools like Register Transfer Level
(RTL) simulation, moreover, enables to check functional correctness of a design.
However, an entire RTL simulation may run multiple days even for medium-sized
DNN workloads and accelerators. Instead, a more approximate form of simulation is
worth looking at.

Over the course of this chapter we will sketch such a simulation platform that fulfills
all mentioned requirements. A basic concept is shown in Figure 4.1. It consists chiefly
of a simulation environment and modules for evaluation and simulation control. The
simulation environment itself has to feature a representation of the accelerator and all
remaining parts of the System-on-Chip (SoC). During simulation, each component
reports how they effect the design metrics. Those metrics may encompass perfor-
mance aspects like latency, number of cycles per inference or efficiency aspects like
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power and area, which can be computed using an architecture model. Once pruning,
compression or quantization are included, model accuracy becomes an additional
design metric. The entire simulation platform may be extended by a DSE for an
automated architecture optimization. This component takes all design metrics and
assesses them in accordance to a set of user constraints and design requirements.
Based on this assessment, the base configuration is updated and fed back into the
simulation platform to generate an updated set of design metrics. The DSE should
happen in a goal oriented way, e.g., using an optimization heuristic that tunes design
parameters towards the user goals.

In the following of this chapter, we will now fill this high level concept with actually
implemented components. Therefore, we discuss two kinds of simulators: A very
precise cycle-accurate but also relatively slower platform and an analytical model that
offers a slightly less precise performance estimation but runs orders of magnitude
faster. First, we will dive into FLECSim, our cycle-accurate simulation framework.
Then, we have a detailed look at analytical forms of behavior modelling of a DNN
accelerator. When considering combining both ways of simulation, we can also
combine the best of both worlds: In the first step, we can narrow the large design
space down using our fast analytical evaluation and then have a look at the remaining
design parameters using FLECSim.

4.2 Related Work

Over the last decades supervised Machine Learning (ML) approaches like CNNs,
Recurrent Neural Networks (RNNs) and Transformer networks have established
themselves in an increasing number of applications, as they are able to solve more
complex tasks. However, to do this, also the computational complexity of the model
grew heavily, especially when looking at the large number of operations in modern
CNNs for image processing tasks. Although, research has yielded more efficient
model implementations such as EfficientNet-v2 [42], the hardware accelerators that
execute them have to keep pace. As a consequence, many highly performant DNN
hardware accelerators were presented by numerous research groups, most of which
were covered in Chapter 3. The many flavors of DNN accelerators that exist today,
highlight the fact that there is not a single accelerator that works for all kinds of DNN
models, but that its design requirements depend on the application and domain.
In response to that, many tools, simulation frameworks and especially co-design
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approaches to assess DNN accelerators were introduced by research teams in past
couple years. We will now have a look at this body of research to see what questions
in this field are still left unanswered.

In general, we can classify the current state of the art in accelerator algorithm co-design
based on how specifically they are tuned for a given application or target platform.
Usually, the more specific a tool is, the more accurate it is, but it also becomes less
flexible, e.g., to support different dataflows or various accelerator dimensions. Besides
that we can also distinguish tools that aim for end-to-end and hardware-aware Neural
Architecture Search (NAS) and those that predict performance characteristics of the
accelerator.

Some prominent hardware-aware NAS and DSE tools, were already presented in
Subsection 3.2.3. In addition, we would like to introduce some more HW-NAS ap-
proaches that target efficient design of DNN accelerators. Yang et al. [290], for
example, are the first to investigate the impact of Network-on-Chips (NoCs) in dis-
tributed DNN accelerators. Therefore, they couple a NoC search with traditional
NAS for the network topology. For their evaluation, they looked at 1 × 1 to 3 × 3

clusters of DNN accelerator tiles, showing a significant throughput increase over
standalone a NAS. On CIFAR-100 their found network architecture shows a 2× to
4× improvement compared to FBNet [185]. Since, they look at comparably small
NoC sizes and analyze only the system latency and not the energy and area figures,
which are also crucial design parameters, they continued their research shortly after
and presented a co-exploration approach for heterogeneous Application-Specific
Integrated Circuits (ASICs) [291]. This work also includes assessment of energy
and area besides latency. The corresponding numbers are taken directly from ASIC
synthesis results. For evaluation, they investigated NVDLA and ShiDianNao, two
distinct DNN accelerators with CIFAR-10 and CIFAR-100 datasets, and ResNet-9
as model. With their NAS method that immediately targets ASICs, they generated
architectures that offer twice the energy efficiency and half the area compared to
separated ASIC design and NAS steps. Thereby, they report only minor accuracy
degradation. However, their approach still requires a fairly long exploration time.

The recently presented NAS approach aw_nas by Ning et al. [292] delivers an exten-
sible framework for various platforms. Therefore, their open-source tool is build in
modular way and covers a wide range of datasets and search parameters. To integrate
hardware cost models, aw_nas offers a method to profile the target hardware using a
profiling network. Each element of this network is evaluated directly on an actual
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target platform. With all this information, the tool sets up a database. They verify
their energy and latency estimation using Field-Programmable Gate Arrays (FPGAs),
CPUs and Graphics Processing Units (GPUs) and with three different DNN layers.
Although this approach requires much time for the initial database setup, it promises
a fast evaluation of the subsequently proposed models.

When focusing on the impact of architectural factors a large body of research has
emerged around simulation of hardware structures especially for DNN inference.
Simulation tools for hardware are generally widely used to verify the behavior of RTL
designs. However, such tools require exact RTL code, which adds a lot of additional
complexity and overhead for SoC or DNN accelerator designs that can often reuse
large portions of already established designs like CPUs or memories. One of the
first approach to make simulation of large accelerator designs simpler is PARADE by
Cong et al. [293]. Even though their tool does not only focus on DNN accelerators, it
reuses, for instance, communication infrastructure, caches or large x86 out-of-order
CPU cores to quickly and accurately model entire SoC designs.

As DNN topologies become more complex and hit a power wall, more tools are being
introduced to assess and model DNN accelerators [294]. For example, MAGNet by
Venkatesan et al. [272] aims to explore the impact of various design parameters, like
number of PEs, sizes of memories or arithmetic precision, on the Performance, Power
and Area (PPA) of a systolic array. Therefore, they first introduce their architecture
and a dedicated mapper to explore various dataflows. Then they optimize found
design configurations using Bayesian optimization. PPA figures are generated using
synthesis from a configurable SystemC model. Across a large set of architecture
configurations andDNNmodels, includingResNet-50 andAlexNet, they generated an
architecture that delivers 2.8 TOPS/mm2 with 4-bit weights and activations. However,
this design sacrifices about 18% accuracy. A more conservative configuration still
delivers 2.3 TOPS/mm2 with and less than 1% accuracy loss.

The authors of SMAUG [273] followed a similar approach. Their end-to-end simula-
tion framework helps to observe how power, accuracy and performance are affected
by various scheduling and architecture considerations. Tomodel the DNN accelerator
and its peripheral components they use the gem5 [295] simulation framework. As
accelerator, they focus on systolic arrays, modelled in gem5. Moreover, their tool
supports RTL designs using Aladdin [193]. With all components in place, SMAUG
optimizes and preprocesses a DNNworkload and performs amapping and tiling. The
actual hardware simulation happens in gem5. During that, energy and performance
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Figure 4.2: Overview of the cycle-accurate DNN accelerator evaluation framework
STONNE proposed in [274].

figures are generated by Aladdin and DRAMPower, which allows for many inter-
esting insights about the workload and the accelerator. With their tool, the authors
demonstrate an up to 5× performance increase through fine-tuning interfaces and
the software stack. However, simulation of a ResNet-50 with ImageNet takes about
five hours, which makes the tool barely feasible for large scale DSE.

To address this issue, STONNE by Muñoz-Martínez et al. [274] extends SMAUG.
At first glimpse, it also aims to accurately model the behavior of a DNN accelerator.
Therefore, they focus on MAERI [153] as accelerator, which is highly configurable.
But they are not limited to only that particular architecture. In contrast to SMAUG,
they claim that their tool offers more degrees of freedom and allows for faster evalua-
tion of individual designs. Their framework is shown in Figure 4.2. Taking a network
configuration directly from Caffe, a ML framework, they can configure their architec-
ture model and estimate performance and accuracy. Similar to the aforementioned
tools, STONNE is also equipped with a large database of reusable building blocks,
such as memories. STONNE is evaluated with five different DNN workloads such
as ResNet-50 or SqueezeNet, showing its flexibility and that the cycle prediction is
very close to a baseline accelerator implementation in Verilog. For all workloads, the
authors report interesting findings like accelerator utilization. Moreover, since it is
open sourced, subsequent works, e.g., Flexagon [264], use STONNE as cycle-accurate
microarchitecture simulator. However, the authors do not report the time required
for the cycle-accurate DNN evaluation and by now they have not included energy
and area estimation.

One of the largest drawbacks of the up until now mentioned simulation tools is the
long evaluation time. This is due to cycle-accurate execution or very demanding
RTL simulation, which of course has the highest precision but also the longest run
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time. As a consequence, some researchers looked into approximate or analytical
models to make the assessment of various design parameters much faster, allowing
for large-scale DSEs. SCALE-Sim by Samajdar et al. [277] is such a simulation tool that
enables fast cycle and bandwidth estimation of DNN accelerators. To decrease the
search space it limits itself only to systolic arrays, which also increases the simulation
accuracy as only one accelerator model has to be accounted for. Using a configuration
interface, different array and memory sizes can be defined. The memory hierarchy
inside SCALE-Sim consists of two input memories for activations and weights, and a
separate memory to store results. SCALE-Sim supports all common dataflows for
systolic arrays: Weight Stationary (WS), IS and OS. To evaluate the impact to different
mappings, SCALE-Sim also offers a mapper, which automatically determines the best
one for a given workload. The simulator works on individual layers and runs each
workload in a cycle-accurate fashion, but lacks RTL simulation. Hence, SCALE-Sim
tries to settle between very accurate RTL simulation and fast analytical execution,
bringing the evaluation time down to the order of minutes not hours. The authors
evaluate their tool with a large range of different workloads and show design insights,
like which dataflow suits best or required memory bandwidths. However, SCALE-
Sim focuses mainly on Multiply-Accumulate (MAC) operations and neglects, e.g.,
pooling, which also contributes to the overall cycle-count. Moreover, it does not report
the accelerator’s area requirements.

Timeloop by Parashar et al. [163] is another very popular tool to perform analytical
modelling of awide range of DNNarchitectures. The flexible tool enables tomodel the
underlying architecture through a set of primitives. To allow for systematic assessment
of different accelerators, Timeloop has two main components: a mapper and an
estimator for energy, area and performance. As inputs for those modules, Timeloop
takes the workload description of a single layer and an architecture description, which
fixes some components like the Dynamic Random Access Memory (DRAM) size or
the number of PEs. The integrated mapper then explores the mapspace automatically
and yields for each configuration corresponding PPA figures. During mapping,
action counts are generated, which are then converted by Accelergy [169] into energy
and area estimates. Although, Timeloop can represent all different kinds of DNN
workloads, it still does not take operations for pooling and activation into account.
Moreover, the mapspace has to be described in advance, which requires knowledge
about the dataflow, arrangement and number of PEs and so on. Hence, it does not
provide a layer to perform a DSE, but is limited to assessment of individual accelerator
configurations.
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Figure 4.3: Overview of the DNN analysis tool MAESTRO presented in [191].

Similar to Timeloop, Eyexam [126] introduces a custom simulation model that accu-
rately reflects characteristics of the DNN workload and the underlying accelerator.
The tool does not try to optimize all factors at once as most NAS approaches do, but
works in a step-by-step fashion. Thereby, each architectural decision in each step
is annotated with the associated performance impact. Eyexam aims to maximize
the number of active and utilized PEs. To measure the performance impact of each
optimization decision, it uses the widely-established Roofline model. Each stepmoves
the ratio of operational intensity to performance in the Roofline model closer to an op-
timal accelerator. By using the Roofline model, Eyexam can estimate the PPA figures
of DNN workloads and various accelerators very quickly and enables fast insight
generation, e.g., to identify performance bottlenecks. However, such an analytical
approach usually remains effective only for the specific accelerator it was designed
for.

Amore versatile accelerator assessment tool isMAESTRObyKwon et al. [191]. In their
work, they introduce a formal description for DNN workloads and dataflows. Based
on this, they then present their analysis framework MAESTRO, which is shown in
Figure 4.3. The tool breaks largeDNNs down andmaps them onto a set of PEs. A huge
range of dataflows can be analyzed in the next step using cluster analysis. The resulting
numbers are translated into accelerator performance in terms of inference cycle count.
Energy and area figures are either generated by their own energy model, or, similar
to other works, using Accelergy and CACTI. The accuracy of their analytical model is
benchmarked against RTL simulations of MAERI [153] and Eyeriss [296], showing a
mere 3.9% absolute error. In two case studies the authors demonstrate the capabilities
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of their tool. Overall such an analytical model allows for rapid evaluation of designs.
In particular, MAESTRO can evaluate up to 0.17million designs per second, about
1000 to 4000× faster than RTL simulation, allowing for comprehensive and extensive
DSE. This is demonstrated in a subsequent work, ConfuciuX by Kao et al. [178], which
integrates MAESTRO into a DSE process guided by Reinforcement Learning (RL)
and a Genetic Algorithm (GA) for fine-tuning. ConfuciuX can evaluate a large set of
DNN workloads and accelerators, and yields optimal design configurations quickly.
Using various benchmark workloads and objectives they can accelerate the design
space exploration by up to 24×.

Another recent tool to analyze the performance and efficiency of DNN accelerators is
Interstellar by Yang et al. [297]. It not only focuses on CNNs, but also supports Multi-
layer Perceptrons (MLPs) and Long-Short Term Memories (LSTMs). To represent all
kinds of loop nesting and dataflow needed for almost all DNN operations, they use
Halide’s scheduling language and built a tool that transforms it via an intermediate
representation into microcode that is executed on the corresponding DNN accelerator.
With their approach they demonstrate an energy efficiency improvement of up to
4.2× for MobileNet and up to 1.6× for an LSTM network.

However, MAESTRO and Interstellar still have some design limitations when it comes
to the hardware design space and the kinds of supported mappings. To address this
issue, shortly after Mei et al. introduced ZigZag [278]. Their DSE framework claims
to explore the design space even faster and thus can overcome the aforementioned
design limitations. In particular, they can cover all mappings by supporting uneven
mappings with various memory hierarchies. According to their findings, uneven
mappings, which refers to mapping input and output activations to different levels
in the memory hierarchy, enhances energy efficiency by up to 20%. Their latency-
optimized analytical hardware cost estimator takes energy and area into account by
counting actions and summing up the area cost of each small component, similar
to Accelergy. Performance and cycle count are estimated using a sophisticated set
of equations that accumulate the cycles for each loop of a convolution operation.
The mapping tool, then tries to optimize the mapping based on this set of equations.
Finally, ZigZag can generate a memory hierarchy that serves an energy-efficient
inference. In three case studies they evaluate their tool flow and present mappings
that are up to 33% more energy-efficient than the mappings generated by state-of-
the-art works like Timeloop or Interstellar.
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Modelling and simulation did not stop at generic DNN accelerator structures. To
make the exploration faster and more feasible, shrinking the search space is a great
method. For example, when only focusing on FPGAs as target platform. Hao et
al. [298] give a comprehensive overview of approaches to build a fast NAS framework
for simultaneous FPGA accelerator and DNN workload co-design. Over multiple
stages those tools optimize the workload to both minimize accuracy and performance
loss. For instance, Motamedi et al. [275] introduced in 2016 an approach for quick
DSE targeting FPGAs. They are able to find a suitable design by evaluating all feasible
solutions using a computational Roofline model. With their approach they can report
a 1.9× improvement in computation speed compared to state-of-the-art works at that
time.

Besides the more general NAS techniques that we discussed so far, some works have
reduced the large search space by focusing on only one platform. HAO by Dong et
al. [299] from 2021 presents a fast and accurate NAS approach particularly for FPGAs.
Their tool flow leverages flexibility in weight and activation precision that can be
realized in FPGAs. However, they do not focus on energy but rather on the relation
between accuracy and latency. In 2020 Abdelfattah et al. [276] introduced their NAS
methodology for FPGAs using High Level Synthesis (HLS). They use RL to optimize
both architectural andmodel parameters. Their work is based on the CHaiDNNDNN
library [300] by Xilinx. Instead of running a HLS for each proposed architecture
and DNN model they also rely on a model database, similar to aw_nas. Using their
tool, the authors evaluated a huge design space with 3.7 billion configurations, of
which about 2000 are actually synthesized. This gave a lot of insight on how various
buffer sizes affect latency and power. Compared to state-of-the-art works they report
a co-designed model consisting of ResNet blocks that improves efficiency by 41%
using CIFAR-100 as dataset. However, their approach needs many hundreds GPU
hours to explore the design space and train all models.

The large body of research that we have covered in this section highlights the fact
that the design of an efficient DNN accelerator is not an easy task, but requires a lot
of fiddling and tweaking on the myriad of parameters. Luckily, there were already
many tools and frameworks to support this presented. Most of them are available as
open-source, to make this co-design process more accessible. In the next sections, we
will first introduce our cycle-accurate and then our analytical model that builds on
top of the already carried out research.
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Figure 4.4: Overview of FLECSim. The SoC simulation happens in a SystemC simula-
tion environment, which is controlled by a Python simulation framework
and automation layer.

4.3 An Accurate and Flexible End-to-End Co-Design
Simulation Framework for System on Chips:
FLECSim-SoC

Based on the concept presented in Figure 4.1, FLECSim enables systematic assessment
of various DNN accelerator design parameters regarding selected design metrics. The
goal while designing FLECSim is to have high flexibility and straightforward ways to
integrate new accelerators. Moreover, it should provide all necessary infrastructure
to test and evaluate accelerators quickly. Figure 4.4 shows an overview of FLECSim.
Froma coarse grained perspective, it consists of three layers: a simulation environment
that hosts models of all SoC components, a simulation framework, which controls
and evaluates the SoC, and finally a DSE component for automated architecture
search. The next subsections will give an in-depth description of all layers and their
components.
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4.3.1 SystemC Simulation Environment

At its core FLECSim features a simulation environment, which is based on SystemC.
This allows for a cycle-accurate simulation of all hardware components and easy
integration of new components. SystemC combines precise hardware simulation
and the high flexibility of C++. For example, SoC components like memories or
accelerators are specified in SystemC, while file handling and gathering of results
can be implemented in C++.

A more detailed view of the simulation environment of FLECSim is given in Fig-
ure 4.5. As stated before, the goal is to have a high degree of flexibility and a simple
integration of new accelerators. Therefore, FLECSim features a built-in CPU model
and a configurable memory hierarchy that can either be accessed directly or via Di-
rect Memory Accesses (DMAs). All components are connected via a Transaction
Level Modeling (TLM) crossbar, which makes every component accessible from the
CPU in a memory mapped way. Using this infrastructure, a new accelerator can be
easily hooked up to a set of DMAs to provide dataflow. In addition, it can be directly
connected to the crossbar, which enables access to configuration registers. The simu-
lation environment is configured using a JSON configuration file. It contains, e.g.,
information about the accelerators and their setup or the memory hierarchy and its
layout. Each component collects performance statistics like the amount of data moved
or the number of processed operations. These statistics are used to estimate energy
consumption. Moreover, it allows identifying performance and energy bottlenecks.
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A crucial bottleneck during SoC design is the mutual dependency of hardware ar-
chitecture, API and software, which leads to an increased development time and
consequently a long time to market. To address this bottleneck, we chose to add
an entire CPU model to our simulator. This offers a high flexibility for different
applications, workloads and types of accelerators as well as provides all necessary
infrastructure for easy integration of new accelerators. This CPU can set up the
accelerator and data movement according to the needs of the accelerator. Since the
CPU can access configuration registers of all other components, it can likewise adjust
memories, DMAs and other peripheral components. Our approach to model an entire
CPU enables to port an application that is designed with the support of FLECSim to
the later target platform without major changes.

While all other components of our simulation environment are computed cycle-
accurate to deliver precise information, the CPU model execution should be fast.
Hence, FLECSim uses an instruction-accurate Instruction Set Simulator (ISS), which
runs a program using instruction translations, instead of executing each part of the
CPU in a cycle-accurate manner. As a result, an instruction-accurate CPU model
is much faster, which allows us to run a huge range of applications on the CPU
from simple C programs to entire operating systems. Currently, there are some ISS
available. For example, gem5 [295] or Imperas OVPsim [301]. In FLECSim we settle
on Imperas OVPsim, since it inherently offers TLM ports to communicate with other
simulator components. Additionally, it features a wide range of peripherals and
processor models like RISC-V, ARM or MIPS cores. Hence, multiple CPU models
can be evaluated, while the CPU firmware stays the same. Since arbitrary software
may be executed, we can also support common DNN frameworks. For example,
the light-weight bare-metal framework Darknet [302], which is entirely written in C.
Besides that, we can run Open Neural Network Exchange (ONNX) models, exported
from more complex frameworks like PyTorch or TensorFlow, with an ONNX runtime.

As stated before, each SystemC component inside the simulation environment is ex-
posed to the CPU as a memory mapped device. This allows for simple and fast config-
uration of components, similar to how it is implemented in actual SoCs. Transmitting
read and write commands between the instruction-accurate ISS and cycle-accurate
simulated components is realized through SystemC TLM version 2.0 [303]. Since
the ISS usually executes multiple hundred instructions in the timespan of a single
cycle-accurate simulation cycle, communication between those components has to be
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carefully designed. The ratio of ISS cycles compared to cycle-accurate cycles can be
adjusted by a quantum and instructions per second value. Hereby, the quantum pe-
riod specifies the time a processor instance has to wait before it can continue. Typical
TLM-2.0 core interfaces, as they are offered by OVPsim, are implemented as blocking
transports. Hence, in case of a read access, they stop the ISS. To mitigate this behavior,
FLECSim sends those commands via a TLM analysis port, which immediately sends
data. This approach leads to a significant total simulation time reduction, as thou-
sands of instructions can be simulated without an interrupt by the SystemC scheduler.
With our CPU model, early estimates about the overall execution time and efficiency
of software and API in interaction with the hardware accelerator can be made.

From a user’s perspective, the CPU model is specified using the simulator config-
uration file as shown in Listing 4.1. The user can specify the CPU type and the
corresponding firmware with optional arguments. In addition, all quantum parame-
ters have to be provided.

Listing 4.1: Example of a CPU configuration in FLECSim.
1 "cpu": {
2 "cpu_type": "RISCV32",
3 "cpu_mips": 100,
4 "cpu_firmware": "PATH",
5 "cpu_firmware_args": [],
6 "cpu_quanta": {
7 "q_global": 1000,
8 "q_low": 1,
9 "q_high": 1000

10 }
11 }

Accelerator Interface

With the provided infrastructure of FLECSim, accelerators can be easily integrated into
the simulation environment. A new accelerator model can be directly connected to
the standardized TLM communication bus. Then, all required data sinks and sources
can be hooked up to the memory hierarchy using DMAs for fast data movement. In
addition, small memory accesses might be handled directly using TLM data packets.
FLECSim is not limited to DNN accelerators. In fact, any kind of accelerator that
supports computation on a heterogeneous SoC might be modelled and integrated.

The number of accelerators in FLECSim is not limited to a single accelerator, but
multiple can be instantiated, also of the same kind. To account for different kinds of
accelerators, FLECSim offers a SystemC accelerator base class from which specific
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accelerators are inherited. This base class provides one TLM port for configuration
and status register access as well as a configurable number of DMA ports for large
data movement. In addition, it already offers a set of built-in functions, like a clocked
process that is called each cycle, a method to update traces that will be recorded, and
a setup function, which is called at simulation start.

An exemplary configuration file snippet for an accelerator is given in Listing 4.2.
Individual accelerators are identified via an accelerator name. Then each accelerator
has a module address that represents the memory mapped configuration registers.
Those registers might also be populated to default values using a registers entry in
the configuration. Finally, fixed_args sets hard-coded parameters of the accelerator,
for instance, dimensions of a systolic array as shown in Listing 4.2.

Listing 4.2: Exemplary accelerator configuration in FLECSim.
1 "accelerators": {
2 "os_array": {
3 "accelerator": "OSArray",
4 "module_address": 0xA0000000,
5 "registers": {},
6 "fixed_args": {
7 "XDIM": 32,
8 "YDIM": 32,
9 "ApproxPEs": 1,

10 # ...
11 }
12 },
13 "submodules": {
14 "process_elements": {
15 "submodule": "Module",
16 "quantity": 1024,
17 # ...
18 }
19 },
20 # ...
21 },

The use of SystemC also comes with natural support to execute C++ code. To open
FLECSim to a larger range of accelerator models, it also integrates an interface to the
open-source tool Verilator [304]. Verilator converts Verilog or SystemVerilog RTL
models into C++ and SystemC. Together with a wrapper that connects a Verilator
model to FLECSim, we can run RTL models in addition to bare SystemC implementa-
tions. This eliminates the need to manually convert SystemC models into RTL or vice
versa. For example, a new accelerator can be sculpted and tested using RTL or Sys-
temC. However, for ASIC synthesis, the latter has to be manually translated into RTL.
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Here, we can use FLECSim to verify that both the SystemC and RTL model behave
identical. As a consequence, a designer does not need to maintain two accelerator
models.

Memory Model and Stream Data Movement

A crucial component, especially in SoCs that incorporate a DNN accelerator, is the
memory hierarchy, since huge amounts of data is required to process novel CNN
topologies. In addition, near locality of data is key to an efficient inference. Hence,
in such SoC designs, a highly flexible and accurate memory model that supports
various hierarchies, memory types and interfaces is needed to design a highly efficient
DNN accelerator. FLECSim features a simple but highly adjustable memory model
that collects important metrics. The memory is represented in SystemC as a large
memory mapped array that can be annotated with delays for read and write accesses.
During simulation, each memory component monitors the utilization and read /
write accesses. With this data, the memory itself can be optimized towards a high
utilization and subsequently high energy efficiency. Multiple individual memories
may be chained together to form a memory hierarchy.

Listing 4.3 shows an exemplary configuration of memories and DMAs. To instantiate
a memory, one has at least to specify its size and starting address in the memory
mapped address space. Memories can additionally be preloaded with data from
binary or numeric files. This is, for example, interesting for DNN workloads. Here,
weights for each layer can be loaded into the memory before an actual simulation
starts to accelerate the simulation process significantly. An example is also given in
the following listing.

Listing 4.3: Memory configuration example in FLECSim.
1 "memories": {
2 "dram": {
3 "module_address": 0xB0000000,
4 "length": 0x40000000
5 },
6 # ...
7 }
8 # ....
9 "files": {

10 "input_file": {
11 "file": "FILE PATH",
12 "data_type": "float",
13 "data_representation": "binary",
14 "data_organization": "sequential",
15 "address": 0xB0000000,
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16 "items": 10,
17 "memory": "dram",
18 "operation": "file_to_memory"
19 },
20 # ...
21 }
22 # ...
23 "dmas": {
24 "acc_supplier_a": {
25 "direction": "to_module",
26 "module_address": 0x90000000,
27 "source_module": "dram",
28 "destination_module": "os_array",
29 "destination_port": "in1",
30 "port_size": 1024
31 },
32 # ...
33 }

DMAs are configured by providing a source and a destination, for example, by giving
the name of the destination accelerator port or memory port name. The port_size
parameter tells how many bits can be transferred per cycle. An instance of a DMA
can later be configured in a fine-granular way by the CPU firmware. Each DMA
supports a scatter gather memory access pattern with jump widths and block sizes.
This enables again a high degree of flexibility to meet the requirements of any kind of
accelerator. For very specific data access patterns, the DMA provided by FLECSim
may also be extended or altered in SystemC to have the highest configurability. To
make this extension simple, the memory interface mimics an AXI-Stream interface
with the corresponding handshaking mechanisms.

Implementation

As described before, the simulation environment of FLECSim is implemented using
SystemC and C++. Figure 4.6 gives a brief overview of how FLECSim is implemented
and how auxiliary component are set into function. All components that are actually
simulated derive from the type SimModule. This class provides, for example, amethod
that is called in each simulated clock cycle and can be overloaded in the corresponding
child classes. In addition, all SimModule objects are observed by a registry. It gets,
e.g., notified every time data is moved or processed in the module or when other
metrics are available. The registry collects all information, compresses it and makes it
available for later evaluation. For instance, it may be converted into a cycle-accurate
activity diagram that shows for each module which operation ran how often and
when. This reveals possible performance bottlenecks and gives the utilization of
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Figure 4.6: Implementation details of FLECSim, showing the individual models and
how they interact.

each monitored simulation component. As described before, accelerators themselves
derive from an accelerator base class that offers an additional abstraction layer and
already offers necessary function prototypes. To create specific accelerator objects
when the simulation is started, the base class implements a factory pattern. Based on
the name given through the JSON configuration file, it instantiates all accelerators
and connects them.

Additional components encompass chiefly a JSON interpreter, a file handling module
and finally the main simulator class. The latter is instantiated directly by the main
function and is entry point for a simulation. It first triggers the JSON interpreter to
read the configuration file. Then it creates a simulation environment according to this
configuration. Hereby, all components are created and connected to the TLM and
memory infrastructure. Once every component is initialized it proceeds by starting
all components including the simulated clock. During the simulation, all components
can provide trace information that is gathered and stored afterward as a timing
diagram. In addition, utilization and operation statistics are collected to compute the
required energy consumption.
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To test and verify all components of the simulation environment, FLECSim also
features unit tests for most components using the Google Test9 framework. Besides
that, logging and handling of command line arguments are handled by third party
libraries as well. Finally, we use cmake to have a modern build automation system
that resolves all library dependencies while compiling the executable simulator. Now,
FLECSim can be started directly from command line with a set of arguments like the
configuration file or whether wave form traces should be captured.

4.3.2 Python Simulation Framework

On top of the SystemC simulation environment, builds a simulation framework
written in Python. This allows to automate all steps required to run a SoC simulation.
Moreover, Python enables direct integration into common ML frameworks. For
example, a DNN can be trained first and then weights for the cycle-accurate SoC
simulation can be exported. To make automation possible, the simulation framework
of FLECSim has two main components: First a test case environment and then a
module that computes area and energy consumption of the SoC under test.

Test Case Automation

In FLECSim a SoC designer can either configure the architecture by using the afore-
mentioned JSON configuration files using a Python abstraction layer. Here a specific
application is represented by a test case that runs on a simulated SoC. The main
advantage of this simulation framework is that all steps needed for a simulation can
be automated. For example, a simulation does not only require the JSON file, but
also a CPU firmware, data for the accelerators and means to verify results generated
during simulation. For further automation, multiple test cases can be grouped into a
test suite, which runs in parallel to accelerate the design process.

The simulation framework as it is implemented in FLECSim is shown in Figure 4.7.
Each test case consists of a series of steps (right side inside the test case box) and a
list of components, like memories and accelerators (left side inside the test case box).
When a test case is started, it first walks through the component list and checks for
dependencies or conflicts. Then the steps are executed sequentially. Typically starting
by cleaning old results, building the simulation environment if necessary and setting
up input data. Another step takes care of building the CPU firmware. Hereby, a test

9 https://github.com/google/googletest

112 | ACCURATE AND FLEXIBLE END-TO-END SIMULATION OF SOCS

https://github.com/google/googletest


TestCase
Accelerator
description

Memory
hierarchy

Simulator
setup

Additional
steps

Simulator
executable

FILE-ALT
Configuration

CODE
Firmware

FILE-ALT
Results

Chart-bar
Visualization

builds & starts

builds

generates

generates

Figure 4.7: Test infrastructure of FLECSim.

case can provide a set of constants, which will be build into the firmware, for example,
the memory addresses. Hence, a software engineer only has to change the component
mapping in one place. Then a step generates the required configuration file from the
component list, including additional parameters like the path to the CPU firmware.
Finally, another step starts the actual simulation. Thereby, it constantly monitors the
log file for potential error messages. Additionally, a timeout can be set, since some
simulations might get stuck. At the end of a simulation, several verification steps may
be added. They can either look for specific keywords in log files or compare output
data, which got dumped from the simulated memory, with golden data.

Performance, Energy and Area Estimation

After the simulation has successfully finished, FLECSim outputs various metrics.
Those metrics are important to properly assess the SoC architecture and hence are
crucial for a DNN algorithm accelerator co-design. As we discussed in the back-
ground chapter, common important metrics to evaluate DNN accelerators are energy
consumption, latency, required chip area and total throughput. In addition, the
model accuracy can be considered, when optimizations like pruning, quantization or
compression are included to the design space.

Our objective is to produce all those metrics directly from FLECSim. The number
total number of cycles for the simulation is derived from the SystemC clock. However,
this information only gives a total number of cycles and no detailed information about
whether a specific module was idle or actively working on a task. Therefore, we use in-
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formation provided by OVPsim for the CPU and the data collected during simulation
by the registry for all other components that are simulated cycle-accurately. OVPsim
itself already reports various metrics such as the number of executed instructions and
the overall simulation time. It also offers traces to capture each executed instruction.
Data collected by the registry from all cycle-accurate components is analyzed in our
Python simulation framework. It can, e.g., create visualizations that show the activity
of each module over the simulation time or do a static calculation of each component’s
utilization. Furthermore, plotting the memory accesses over time helps to identify
patterns to arrange data more efficiently in memory, and a distribution of operation
types shows what operation can benefit from acceleration. All those visualizations
and analysis steps may be run separately after the simulation has finished. Since all
registry data, action counts and activity data is stored, it can always be reevaluated
without running the entire simulation again.

Insights about energy consumption and total chip area are generated byAccelergy (see
Subsection 3.2.3). Therefore, our simulation framework converts data collected by the
registry into action count files for energy estimation, and the JSON configuration file
into a component specification for the area estimation, respectively. For most of our
experiments, we use the 45 nm primitive component library provided by Accelergy
and also the according memory models from CACTI. However, other technology
libraries may be used. The overall system power consumption is then computed in
combination with the results from the ISS and the TLM interfaces.

4.3.3 Design Space Exploration

Closing the loop of iterative architecture optimization is taken care of by a DSE layer
in FLECSim. Here, the core component is an exploration algorithm, which tunes
the design parameters so that a set of objectives functions are maximized. Objective
functions encompass constraints like upper power or area bounds and ranges for
individual design parameter, but also more loose constraints like a design goal which
maximizes throughput. Multiple objective functions may be combined and weighted
by factors to achieve, e.g., an architecture that favors both energy efficiency and
throughput FLECSim comes with algorithms for exhaustive search and goal-directed
search using GAs. The latter is provided by Pymoo [305], which also provides other
optimization algorithms. While an exhaustive search does not yield a fast architecture
search, it certainly helps to directly understand the impact of different design aspects
on the evaluated metrics. When the search space is sufficiently understood, adequate
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Figure 4.8: Design flow using FLECSim. An optimized DNN workload is fed into
the framework. Using metrics as results, a design space exploration can
search for an optimal hardware structure for a given workload.

constraints for metrics and design parameters can be set and thus a GA can explore
the search space faster. To revisit already evaluated architecture configurations, each
successfully ran simulation is saved. These can be reevaluated later, without the need
to rerun the entire DSE. Design parameters that the exploration algorithm can alter
are exposed by each accelerator under test as fixed parameters. Exemplary options
are the number of PEs, available memory bandwidth or the size of local memories.
Obviously, there are countless conceivable design parameters. Hence, a designer has
to pick a set of interesting parameters to enable a fast architecture search.

How an actual design flow with all three layers of FLECSim looks like is sketched in
Figure 4.8. An optimized DNN model is given to FLECSim, which provides accuracy
for co-designing quantization and pruning. With an accelerator model, energy and
area is estimated and fed back into FLECSim. These metrics are then considered by
the exploration algorithm for goal-directed parameter optimization.

4.4 Analytical Modelling of Systolic Arrays for Rapid
DNN Accelerator Assessment

Cycle-accurate models are very accurate and provide valuable insights about which
component or operation requires the longest processing time or accounts for the
largest share of the total energy. But there is one major drawback in cycle-accurate
simulation, namely the long time it takes to simulate every single cycle of a device
under test. For small designs this is usually nothing to worry about, but for large
DNN accelerators it quickly becomes adverse to a point at which a DSE is rendered
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Figure 4.9: Overview of our DNN accelerator evaluation tool flow with our analytical
model of a systolic array at its center.

unfeasible. However, there is one substantial characteristic in DNNs that we can
leverage to compute the required operations and the number of cycles it takes to
process a workload. As we already highlighted in the background chapter, DNNs
have a very homogenous dataflow, no jump statements and have a relatively small
number of different operations. With these characteristics, we can conceive an analyt-
ical modelling approach. This model estimates the number of cycles and operations
using merely workload parameters like input dimensions and architectural charac-
teristics. Instead of computing each time step and monitoring changing signals, this
approach uses a set of equations to directly compute the desired performance metrics.
Obviously, this model is largely dependent on the underlying accelerator and may
offer less flexibility compared to the previously introduced cycle-accurate approach.
However, by focusing on one of the most common types of accelerator and keeping
the design extendable, we can still achieve a high degree of flexibility coupled with
fast estimation. Running a cycle-accurate simulation with design space constraints
found by an analytical evaluation even allows to combine the best of both worlds. A
fast, but rough, assessment of an accelerator gives first insights on relevant design
parameters, which can then be fine-tuned using FLECSim.
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In the next subsections we will take a look into how such an analytical model is
constructed and how we can use it to accelerate the search for an optimal DNN
accelerator. Figure 4.9 shows an overview of our DSE tool with the analytical model
at its center. It models one of the most common accelerator type: systolic arrays.
Based on a workload and accelerator description we create a design space with all
possible configurations. In combination with an area and energy estimation, similar
to FLECSim, we can then evaluate each accelerator configuration. To use FLECSim for
subsequent architecture fine-tuning, we kept the output and input formats compatible.

4.4.1 Analytical Accelerator Model

The core of our analytical assessment approach is an analytical accelerator model.
As input, it gets an acceleration configuration, which is taken the design space of
possible accelerator configurations, and a workload description. With this it computes
important output metrics like the number of operations in terms of action counts
and the number of cycles needed for an inference. Our analytical model enables fast
and systematic exploration of a systolic array DNN accelerator to find the best-fitting
configuration for a given workload in a huge design space. Since many parameters,
like buffer sizes, the number of PEs and the interface bandwidths have a large impact
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on the performance, our analytical model has to deliver accurate and fast estimates
of the accelerator’s metrics. Therefore, it is based on the well-established Roofline
model [114] (see Figure 2.20) to determine the number of cycles it takes to process a
workload. Energy and area estimation is, similar to the cycle-accurate model, done
by Accelergy [169]. This tool combination allows us to design a highly abstracted
model of the underlying hardware architecture. Figure 4.10 gives a brief overview of
its components, which will all be explained in-depth in the following subsections.

Operation Unroll Engine & Action Count Calculation

The first component of our analytical model is the operation unroll engine. It splits
large input problem matrices into smaller tiles that match the accelerator dimensions.
Therefore, it takes two inputs, which are necessary to compute the tiling factors: First,
a description of the current DNN layer that defines the dimensions of the currently
evaluated input, weight and output tensor. Second, an architecture description
that contains the systolic array’s dimensions and the size of the memories such as
scratchpads or the PEs buffers. The tiling factors depend on the PE rows and columns,
which we define as DIMx ×DIMy .

Once the number of required tiles is computed, we can give this output directly
to the action count calculation module. It chiefly derives action counts, which are
given to Accelergy for energy estimation. They represent how often a given action is
performed by a component, for example, the number of memory accesses.

Computation and Data Movement

The objective of the subsequent computation anddatamovementmodule is to estimate
the number of computational and data movement operations required to process a
given workload. As input, it takes the tiling done by the operation unroll engine. In
terms of operations all computational cycles of a DNN are caused by MAC operations.
Their amount can be derived from a matrix-matrix multiplication between an l ×m

matrix A and an m× n matrix B performed in the systolic array. In case of a DNN
layer the matrix A might be considered as input feature map and matrix B as weights.
Obviously, for Convolutional (CONV) layers the matrices are first transformed using
im2col, which is necessary to process them efficiently on systolic arrays. In total,
this accounts for l · m · n MAC operations. However, this only works when the
matrix dimensions exactly fit the accelerator dimensions, which is usually not the
case. Instead, we have to take care of mapping fragmentation.
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Assuming an extreme scenario with two 129 × 129 input matrices, 2 146 689 MAC
operations are needed for matrix multiplication. However, a 128× 128 systolic array
requires four passes, resulting in total 16 277 216 MAC operations. Although this is
one of the worst problem shapes for such an accelerator, it makes clear how mapping
fragmentation impacts the cycle count estimation. The just explained phenomenon is
called temporal fragmentation. More generally speaking it always occurs when a di-
mension of an input matrix is greater than the systolic array’s dimensions, and not an
integer multiple for it. Considering a simpler example, where a 24× 16matrix is com-
puted on a 16× 16 systolic array. After one fully utilized pass, eight columns remain
and the array is only 50% utilized, resulting in an overall utilization of 75%. To con-
sider this, we introduce a scaling factor δ. It computes to δ = dmdim/adime·adim/adim

with adim representing a dimension of the systolic array and mdim the corresponding
matrix dimension. Looking at our example, we get δ = d24/16e·16/24 = 2·16/24 = 4/3.

A second mapping fragmentation effect that can occur is spatial fragmentation. This
happens when a dimension of an input matrix A or B is smaller than the systolic
array’s dimensions. In this case, the array is not fully utilized and some PEs are idle
during processing. Hence, the matrix has to be padded to fit its dimensions. For
example, a matrix multiplication in which A and B are 8×8 on a 16×16 systolic array
results in 25% utilization. To factor in this effect, we add another scaling coefficient
η = adim/mdim. In the example above this coefficient would compute to η = 16/8 = 2.
It has to be noted that η has to be computed for both dimensions of the array.

Putting everything factors together, we can compute the actual number of MAC
operations required to compute an arbitrary DNN layer on a given systolic array:

macsscale = l ·m · n · η · δ (4.1)

Besides the number of computational operations, data movement between the accel-
erator and associated local memory has a major impact on the performance figures.
Hence, for an accurate analytical modelling it is crucial to consider them as well. The
performance of data movement strongly depends on the available bandwidth, deter-
mined by the bus-width. In general, data movement is arranged as block transfers
into the accelerator. Those blocks can be treated as transfers of individual matrix
rows with the dimensions memrows ×memcols, representing the rows and columns
of data elements that are transferred. Similar to the computational cycles, we have to
consider the case when a row of data moved through the bus is smaller or greater
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than the bus capacity. Then, again fragmentation happens. For example, even if only
1B is transferred over a 256-bit bus, it still effectively blocks the full bus-width. In
this case, we have to pad bus transfers. As a result, every bus transfer is scaled to
match the maximum bus-width, which we denote as bwpeak. The associated scaling
overhead is considered with a factor α, which basically covers additional unused data
that is transferred. Obviously, large data transfers and individual rows have to be
split into multiple transfers when they are larger than the bus-width. In addition,
idle periods of the bus have to be accounted for as well. This occurs, every time when
data has been moved into a local memory and the systolic array is busy processing
this data and is not directly requesting new data from the off-chip memory. Com-
bining the factor for padding and idle phases we can compute the actual number of
transmissions datascale that are required for a DNN workload, as follows:

Nbw =

⌈
col

bwpeak

⌉
· row

datascale = Nbw · bwpeak · α
(4.2)

Roofline Evaluation

Once we know the number of MAC operations and memory transfers required to
compute a workload, we can determine the cycle count. This happens in the roofline
evaluation module, which hosts equations for the Roofline model, on which our
analytical model is build on. In general, the Roofline model can be applied to make
estimates about all kinds of computational tasks. It gives the relation of an application
between performance in terms of operations per second and the operational intensity,
namely how much data is needed for an operation. With this relation one of the
most important thing we can determine with the Roofline model is the break-even
point between compute-bound and memory-bound execution. This break-even point
represents the sweet-spot for a given application as memory bandwidth exactly
meets the requirements and the number of operations per second is maximized.
Besides that break-even point, the Roofline model also yield the maximum memory
bandwidth requirement for the application. To put the Roofline model into effect, two
application and architecture characteristics have to be known: the peak computational
performance, denoted as comppeak and the peak bandwidth, denoted as bwpeak. The
goal of our analytical model is to identify this break-even point. Since, this can be
done through a set of equations rather than cycle-accurate simulation, computing it
is much faster.
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With scaled data movements and MAC operations, we can directly use the Roofline
model to determine the actual cycle count that a given DNN accelerator takes to
compute a presented workload. The two architectural characteristics comppeak and
bwpeak, which are crucial inputs to the Roofline model, are provided by the number
of available MAC units in the systolic array and by the bandwidth of the bus between
accelerator and off-chip memory, respectively. Now we have all variables in place to
calculate the performance using a set of equations given in Equation 4.3. opintensity is
determined by the quotient of scaled MAC operations and data movement, since it is
effectively the number of data that can be provided per MAC operation. To transform
this into cycles, we take the total number of MAC operations and divide it by the
performance, which is provided by the Roofline model. Here we consider a latency of
one cycle per MAC operation. If a MAC operation takes longer, the number of cycles
can be scaled accordingly.

opintensity =
macsscale
datascale

performance = min (opintensity · bwpeak, comppeak)

cycles =
macsscale

performance

(4.3)

Estimation of Energy and Area

As described before, we can estimate the required energy per inference and the chip
area of a given systolic array using Accelergy. This allows us to have comparable
results to FLECSim and other works as Accelergy is frequently used. For energy and
area estimation we need the action counts from the analytical model, an architecture
description, and a technology model. Action counts are generated by our analytical
model in the corresponding module based on the total number of performed MAC
operations. In terms of memory accesses, which strongly influence the energy es-
timation, so far out analytical model only outputs the number of accesses, but not
the memory size or how memory accesses look like. However, we can keep this
architecture specific parameter open for now to keep our model flexible. Later, we
will fix this parameter (Subsection 4.4.3), where we adjust our model to analyze an
actual systolic array. Based on the accelerator structure and all architecture specifics,
we can derive an architecture description to estimate the area. A technology model
has to be provided externally. With all three inputs in place, we can launch Accelergy.
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4.4.2 Design Space Exploration

The main goal of our analytical modelling approach is to accelerate the DSE process
and at the same time to yield accurate results. To systematically explore and evaluate
all feasible and viable design configurations, we first have to construct the architectural
design space. Similar to the cycle-accurate simulation, our design space is derived
from a DNN workload description and a set of design constraints. This happens as
first step in the array configuration generation module. It discovers and constructs
the entire design space for the given problem and architecture. More specifically, it
generates a set of formal descriptions that are then evaluated in the analytical model
itself. Those formal descriptions are essentially combinations of different architec-
ture parameters, for example, permutations of all systolic array dimension with all
available memory and bandwidth sizes. The complete DNN workload is broken
down into individual layers, since our analytical model computes each individually.
To compute the total latency, we simply accumulate each layer’s cycle count. Since
evaluating each element of the design space for all layers may consume a lot of time, it
is typically sufficient to just run a subset of all layers of a given DNN workload. After
a feasible architecture is found, an evaluation with the entire workload can follow.

The entire design space can be generated, by providing all elementary parameters of
the systolic array accelerator, like the number and arrangement of PEs or the size of
on-chip memories. To construct the actual design space with all possible accelerator
configurations, the array configuration module generates all permutations of PE rows
and columns and their arrangement. Then for each combination, it picks all feasible
memory configurations. For example, a large 128× 128 systolic array need at least a
certain amount of memory to run properly. Once the design space, which can easily
consist of multiple thousand configurations, is constructed, invalid configurations are
discarded. Such configurations may, for example, break design objective provided
by the user or accelerator constraints. The set of design goals is described in the
constraint file, similar to FLECSim. For example, a user can optimize towards a highly
energy-efficient architecture that still delivers a certain throughput.

Starting from the vast design space, we can now apply different optimization algo-
rithms. Since the analytical evaluation is quite fast, even exhaustive search becomes
feasible This gives also a very good overview of the impact different design charac-
teristics have. In this case, we can even accelerate the process by running multiple
evaluations in parallel. The resulting PPA figures are then post-processed and eval-
uated regarding their cost. Post-processing involves mainly a check for constraint
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violations, like too much consumed energy or a too large area requirement. From a
set of ran configuration, our DSE tool can compute the Pareto front with regard to
area, power and performance. User specified goals can then be found in the Pareto
front. Finally, the DSE tool can visualize the found solution space and the associated
costs.

4.4.3 Implementation using the Systolic Array Generator Gemmini

Until now, we have intentionally described our analytical model in a generic form.
However, at some point we have to fix some design aspects to model a specific flavor
of DNN accelerator and get real-world accurate cycle estimates. This is typically
done by setting the right constraints. In the following, we will elaborate how such an
adjustment is done by exemplarymeans of the Gemmini [149] systolic array generator.
Gemmini is chosen since it is available as open-source implementation and thus gives
a lot of flexibility and insights about its internal structure. Moreover, it is highly
configurable and supports a wide range of DNN workloads, for which a software
infrastructure including an ONNX runtime is available.

Figure 4.11 gives an overview of Gemmini and its auxiliary components required to
control and use it in a SoC. Gemmini is part of the Chipyard framework [150] that
provides an ecosystem to design entire SoCs. In such an SoC, Gemmini is controlled
by a CPU, in particular, a RISC-V Rocket core [306]. With all these components,
Gemmini can execute various workloads through a rich software stack that is shipped
with the accelerator. The basic architecture of Gemmini consists of a scratchpad to
store operands, an accumulator memory in which results are stored and the systolic
array that performs the actual computations.

As stated before, we have to adjust a few parameters of our systolic array and consider
some design constraints, to integrate Gemmini into our systolic array analytical model.
First the operation unroll engine has to match Gemmini’s tiling and account for Max-
Pooling, which is performed during write-backs to the main memory. In addition,
we have to update the formulas of the Roofline model evaluation. In terms of design
constraints, the size of the systolic array and the number of rows in each memory has
to be a power of two, which is due to the Address Generation Unit (AGU) in Gemmini.
Moreover, the systolic array has to have a square shape. In the following, we thus
denote its size as DIM × DIM . To estimate performance, we can neglect the tile
structure of Gemmini for now, since for our analytical evaluation the total number of
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Figure 4.11: Overview of the Gemmini systolic array generator presented in [149]
and how it is integrated into a SoC using Chipyard, which provides all
required infrastructure to quickly design an entire SoC design.

MAC units is predominantly interesting. However, for energy and area estimation, we
have to keep them inmind. As next constraint, Gemmini fixes the available bandwidth
to 128 bit. Consequently, we can determine the needed architectural parameters for
the Roofline model as follows: peakcomp = DIM ·DIM and bwpeak = 128 bit.

To enable proper energy and area estimation, a couple of models for some compo-
nents are added to Accelergy. First, we added memory blocks for scratchpad and
accumulator memory. Both are modelled as Static Random Access Memory (SRAM)
banks with a configurable size and number of banks. In terms of their distribution,
Gemmini configurations must have a larger number of scratchpad banks compared
to accumulator banks. Accumulator memories additionally contain a set of adders to
perform dedicated accumulate-on-write operations. Gemmini’s execute controller
that hosts the systolic array itself, is modelled very close to the actual structure of
Gemmini, which is shown in Figure 4.12. In Accelergy, the systolic array is composed
of an array of tiles connected by registers with an adjustable delay. Each tile then
hosts a configurable set of PEs, each made out of a MAC unit and two registers.

Now that all required parameters and models for our analytical model are in place,
we can move on and compute the number of MAC operations and data movements
needed for a given workload. Therefore, we have to analyze all individual operations
Gemmini can execute. From this, we can also directly derive specific action counts of
each component, which is necessary for a detailed energy estimation. Our model of
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Figure 4.12: Detail view of Gemmini’s systolic array following [149] that consists of
tiles, which host the actual PEs. Each PE can be configured as weight or
output stationary.

Gemmini primarily focuses on fully-connected and convolutional layers as well as on
Max-Pooling operations, which account for all operations that occur in most CNNs.
Those layers can be scheduled efficiently on Gemmini by the on-chip loop-unroll
component. It has to be noted, that in particular Max-Pooling operations are not
considered by other state-of-the-art modelling tools, which can lead to a significant
deviation in cycle and performance estimation.

To get the actual number of computational operations, we have to look at two opera-
tions in Gemmini: compute_preload and compute_accumulate. Computing the total
sum of MAC operations follows the equations we introduced before as Equation 4.1.
To account for the aforementioned fragmentation effects we use the same scaling
factors, but adopted for Gemmini. For spatial fragmentation, we define η to scale m
and n so that their scaled values each match DIM . In doing that, we can model each
of these instructions to block the entire systolic array. Temporal fragmentation has to
be handled differently for the two compute instruction. In compute_accumulate, the
scaling factor is set to one as this effect does not occur here. When a compute_preload
operation is called, we have to scale l to match DIM as no other calculations can be
performed on the systolic array within l cycles. To analyze the data movement, we
can use Equation 4.2. Here all parameters stay the same. Putting everything together,
we can summarize all equations needed to estimate the cycles and performance of
Gemmini as follows:
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η =
DIM

m
· DIM

n

δpreload =
DIM

l

δaccumulate = 1

macsscale,preload = l ·m · n · η · δpreload

macsscale,accumulate = l ·m · n · η · δaccumulate

(4.4)

Besides performance and cycles, we also want to get information about the action
counts in order to estimate energy requirements. The number of MAC operations
can be taken from the equation above. Another driver for power consumption are
obviously memory transactions.

Specifically in Gemmini, datamovement to get all inputs for a GeneralMatrixMultiply
(GEMM) works as follows: Before compute operations take place, a weight matrix
of size m× n is preloaded, which is done using the preload instruction. Similar to
other data movement, this will result in n on-chip memory accesses. Data movement
between the L2 cache and the on-chip memories is initiated by the mvin and mvout
instructions. Depending on their arguments, we can determine how many on-chip
memory accesses are performed. As previously discussed, a rows× cols matrix can
be moved between external and on-chip memories. In terms of total data movement,
such blocks as a result cause a total of dcol/DIMe · row memory accesses, which is
also represents datascale from Equation 4.2. Considering the operations that are
performed, we have to distinguish between accesses to the scratchpad and to the
accumulator memory. Further, for the accumulator, we have to differentiate between
overwrite and accumulate-on-write operations. In the latter case, adders are used to
accumulate previously written results at a given address to a newly written value.

With this we have all parameters needed as input for the Roofline model and adjusted
them tomatch the behavior of Gemmini. In the next step, we can verify the introduced
analytical model, and then start to evaluate various DNN workloads and systolic
array configurations.
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4.5 Evaluation and Discussion

Now we have introduced two different implementations of DNN simulation and
assessment environments. In this section, we will take a deeper look at both and
perform a throughout evaluation. Important metrics here are the actual accuracy in
comparison to cycle-accurate simulation and simulation time. Therefore, we picked
representative accelerators and CNN workloads, which then undergo various tests.
We also performed two case studies, showing fields in which our simulation environ-
ments support a DNN accelerator design.

4.5.1 Design Space and Setup

Before evaluating our simulation environments, we had to fix some constraints to
restrict the design space for the accelerators. To verify our two concepts and make
them comparable, we chose a systolic array as accelerator for both simulation envi-
ronments. The static model is already fixed to a systolic array, while for FLECSim
we had to design a corresponding SystemC model. In both cases, the number of PEs
and size of the memories are adjustable. To get comparable energy and chip area
estimates from both the static model and FLECSim we use Accelergy with the same
technology model for both. In particular, estimates are based on a 40 nm reference
table for all memories and 65 nm for all remaining logic like the accelerator itself.

Besides things that are configured the sameway for both approaches, someparameters
and design decisions are unique. We start with FLECSim. Since we can simulate
an entire SoC, we used a 32-bit RISC-V processor model and a TLM memory, both
provided by Imperas. This RISC-V CPU is close to the Rocket core CPU used in
Gemmini, which in-turn is used in our analytical model. The DMAmodel is delivered
with FLECSim. For the analytical model, no additional architecture constraints than
those required by Gemmini, as discussed before, have to be considered.

In terms of the DNN workload, we focused on applications for embedded systems,
since they pose various challenges regarding energy efficiency and performance to
the DNN accelerator. More specifically, we chose small CNN classification networks.
Those small workloads are already highly optimized, e.g., through pruning or NAS
and have as a result a small memory footprint and comparably fewer MAC operations.
The first workload we selected is Tiny-Darknet [307], a CNN classifier network, that is
contained in the Darknet framework. Since Darknet is available as C implementation
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without dependencies, it can easily be integrated into the CPU simulation of FLECSim
and Tiny-Darknet’s topology can be modelled for our analytical model. Tiny-Darknet
consists of 16 CONV layers that account for 980million operations in total and has
a memory footprint of about 4MB. Second, we picked LeNet-5 [37], a very small
network that allows for a fast parameter exploration. Consequently, it is very suitable
to experiment with different architectural aspects. The thirdworkload in our portfolio,
is the well-established CNN classification network ResNet [40]. Its advantages are
that it offers various kernel sizes and channels dimension, which is useful to test the
precision of our simulationmodels. Moreover, it is available in different configurations
from embedded to datacenter applications. ResNet’s input size is 3×224×224, andwe
set the batch size to one. For a case study of ResNetwe chose aResNet-34 configuration,
which demonstrates good prediction accuracy while having a reasonable parameter
and operation count. To prove correctness, all workloads are launched with pre-
trained weight data, allowing us to evaluate the classification accuracy with potential
architectural optimizations such as dynamic input feature map pruning.

4.5.2 Cycle-accurate Simulation using FLECSim

Using the accelerator and SoC configuration described before, we ran multiple simu-
lations using FLECSim with different accelerator parameters to observe their effect
on the performance metrics. Therefore, FLECSim performs an entire cycle-accurate
simulation and monitors area requirements of all modules, simulation and execution
time, and energy consumption. Here, every step of the inference is simulated, includ-
ing weight and image loading, feature extraction and classification. We start with
Tiny-Darknet that ran in 32-bit floating-point precision.

Darknet uses the im2col transformation for its CONV layers to enable a mapping onto
a systolic array and a simpler memory access pattern. As our simulated accelerator
reassembles a systolic array, we can directly map the resulting matrix-matrix multiply
operation onto the array. The accelerator model performs this GEMM operation in
an output stationary manner. Hence, partial results of inner products are kept local
inside the PEs and input data is distributed among them. To match the accelerator
dimensions, input matrices of each layer are divided into multiple chunks that are
streamed from our memory hierarchy via DMAs to the accelerator. The CPU model,
which runs Darknet, initiates the processing. Each layer is executed individually. To
start the inference, the CPU firmware configures the corresponding DMA channels,
which then start streaming data into the accelerator. When sufficient data is available
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Figure 4.13: Comparison of Tiny-Darknet inference on an exemplary SoC for different
accelerator sizes.

the systolic array accelerator starts to process it. Results that have to be offloaded
into the memory hierarchy are moved by additional DMA channels, which are also
configured by the Darknet framework. All data movement between the memory hier-
archy and the accelerator is implemented using AXI-Stream and all communication
between the CPU and the peripherals with AXI-Lite, respectively.

The total execution time and cycle count was taken from the trace file that FLECSim
generates. We define it as the time of the last trace entry, which means that data
loading and classification by the CPU and feature extraction by the accelerator have
finished. Our RISC-V processor model ran at a speed of 40 MIPS, comparable to other
low-power processors used in mobile devices. For accurate simulation all compo-
nents and modules, we picked a quantum duration of 1µs according to the Imperas
OVPsim guidelines [301]. To avoid errors during simulation, the simulation clock
cycle duration of all SystemC modules must be higher than the quantum duration.
Therefore, we set the clock cycle of the processor peripherals to 10µs.

With a configuration of FLECSim ready for accelerator assessment we started to
evaluate first how different array sizes influence the performance and area. Then we
performed a small case study in which we explored the accelerator dimensions and
memory bandwidths, two of the major contributors the accelerator’s performance.
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Figure 4.13 shows the performance results in terms of execution time, area and energy
of Tiny-Darknet using different accelerator dimensions. We explored accelerator sizes
from 8×8 to 64×64, revealing trade-offs between execution time, energy consumption
and chip area. Obviously, the area of the accelerator depicted in Figure 4.13a increases
with the number of PEs. Looking at the simulated execution time, which is shown in
Figure 4.13b, we see that running this workload entirely using the CPU requires 653 s
with a CPU running at 40 MIPS. Adding even a relatively small 8× 8 systolic array
accelerator to the SoC significantly improves the inference time. With an increasing
number of PEs and exploiting higher spatial parallelization this improvement grows.
Due to increased data reuse inside the systolic array, less offloading per layer has
to happen. However, we also observe diminishing returns when increasing the
systolic array dimensions, since some important parts of the CNN workload are
handled exclusively by the CPU like data movement or the im2col transformation.
One drawback when increasing the number of PEs is not only an increased area
but also a higher energy consumption. This effect is shown in Figure 4.13c. As the
number of PEs and consequently data reuse increases, fewer energy intensive off-chip
memory accesses are performed. However, this can only partly compensate for the
static and dynamic energy demand of a larger number of PEs. As a consequence, a
16× 16 array is more energy-efficient than 8× 8 or 32× 32 arrays. An 8× 8 array, for
instance, needs more off-chip memory accesses and a 32× 32 array has more energy
demand due to the higher number of PEs.

So far, we looked at the core of FLECSim and ran a simple example by sweeping just
one parameter. The full potential of a simulation framework and DSE tool unfolds
when we want to determine best fitting DNN accelerator for a given application
systematically. To showcase this, we also performed a larger study that has the goal
to make the design space of a systolic array for LeNet-5 tangible. In this experiment,
we exhaustively searched the design space that is constructed by the systolic array
dimension and the available memory bandwidth. An exhaustive search looks at all
viable points in the design space but does not work in a goal-directed way. Hence, we
also conducted a search using a GA. In particular using the Non-dominated Sorting
Genetic Algorithm (NSGA)-II algorithm [308] provided by the Pymoo library [305].
The objective function of the GA tries to optimize all three performance metric at the
same time. Thereby, the parameter space consists of the array dimension and the data
bus width to the DRAM. These parameters are constrained to a range of 1 to 64. In
addition, the bus width has to be smaller than the array dimensions.
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Figure 4.14: Design space exploration performed with FLECSim using LeNet-5 as
workload. Solutions with minimal area, energy and latency are high-
lighted.

For our exhaustive search the design space has 216 configurations. All of them
were evaluated. Among them, we selected Pareto optimal points as best potential
accelerator designs. All Pareto points of the exhaustive search in terms of chip area,
consumed energy and latency are shown in Figure 4.14. Here, we can pick three points
of interest: configurations that optimize each performance metric. The configuration
that yields the smallest area (6669µm) is a 2× 2 array with a 64-bit bus. Obviously,
the fastest configuration (2.88 s) is a 64× 64 systolic array, but it requires 802 734µm
of area, about 120× as much as the smallest accelerator. However, it consumes less
energy compared to, e.g., a 62 × 62 array. This is due to efficient tiling of the layer
shapes, which fit better on a 64× 64 array. A configuration that performs an inference
with the lowest power (0.64mJ) can be found when using a 4× 4 systolic array with
a 128-bit bus. Similar to the Tiny-Darknet experiments, here the energy for memory
accesses and the static and dynamic energy for PEs settle at a good energy efficiency.

When applying an GA to this problem, of course we got the same performance
figures for a given problem, but we were able to find all needed Pareto much faster.
Each evaluation takes about 3 h, leading to over 840 h in total when using exhaustive
search. In our exemplary study with LeNet-5 running on a systolic array, we only
needed to evaluate 65 designs, almost 70% less compared to an exhaustive search.
Figure 4.15 gives an overview of the design space that is explored when we use the
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Figure 4.15: Pareto-optimal and best solutions for a LeNet-5 workload found by FLEC-
Sim using an NSGA-II algorithm.

NSGA-II as optimization algorithm. In contrast to Figure 4.14 this figure shows the
outcomes of different parameter combinations. All feasible solutions ( ) are also
Pareto optimal solutions, which deliver optimal solutions for the given objectives.
Those are configurations in which the interface width is smaller than the array’s
dimensions. This can be explained by the utilization. A large and less utilized DRAM
interface consumes a lot of energy and adds no performance to the system. The best
solutions ( ), i.e., a subset of all Pareto optimal solutions that maximize all objectives,
are found when the interface bandwidth is equal to the dimensions of the array.
Non-feasible solutions ( ) are solutions that perform worse than feasible solutions
and are generated by the GA on its way to optimal solutions.

4.5.3 Analytical Evaluation

Now, let us move over to our analytical model. As stated before, our main objective
was to significantly reduce the simulation time and still deliver accurate predictions.
Since the model is entirely implemented using Python, we can couple it directly with
PyTorch and start an accelerator assessment. To figure out how accurate our model
is, we compared it with a cycle-accurate execution similar to FLECSim and to the
state-of-the-art work SCALE-Sim [277]. We picked 8 × 8, 16 × 16 and 32 × 32 as
systolic array dimensions, as we target energy and area constrained applications like
embedded systems. Baseline generation in a cycle-accurate manner is done using
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Figure 4.16: Evaluation of different layer configurations across different array sizes
on a logarithmic scale. L1, L2 and L3 represent 7 × 7, 1 × 1 and 3 × 3
convolution operations, respectively.

Gemmini and Chipyard. Since it is implemented in Chisel, the accelerator with its pe-
ripheral components can be compiled into a SystemC model using Verilator. Running
the compiled SystemC model yields an accurate cycle count. All experiments, we
performed with the analytical model, are executed on a single AMD EPYC 7702P CPU
core running Rocky Linux, multiple cores may be used to run individual experiments
in parallel.

Estimation Accuracy and Simulation Time

The estimated cycles and the required simulation time are provided in Figure 4.16
and Table 4.1, respectively. Both show a comparison of our analytical model, a cycle-
accurate simulation of Gemmini and an evaluation using SCALE-Sim. The plot
focuses on the first three layers of ResNet, since they contain different convolution
kernel sizes: 7× 7, 1× 1 and 3× 3. Whereas Table 4.1 also looks at an entire inference
of ResNet-34. Moreover, the first three layers feature Max-Pool operations, which are
usually neglected in other simulation environments, but can have a significant impact
on the performance figures.

When looking at the three different array sizes and layers that are depicted in the plot,
we can see that obviously the cycle count decreases with larger array dimensions.
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Workload This Work SCALE-Sim [277] Cycle-Accurate

L1 1.8 s 165 s (55×) 9179 s (5099×)
L2 0.17 s 16 s (138×) 2201 s (12 947×)
L3 0.76 s 147 s (18×) 2667 s (3509×)
ResNet-34 28 s 1 h > 48h

Table 4.1: Simulation time comparison of our analytical model with cycle-accurate
simulation and SCALE-Sim on a 16× 16 systolic array.

Breaking the analysis down to individual layers, we observed large differences in the
first layer (L1) between a cycle-accurate simulation and SCALE-Sim. Our analytical
model, however, delivers similar cycle counts to the baseline. This can be explained by
the following: Layer 1 has, in contrast to the others, a Max-Pooling operation, which
is not modelled in SCALE-Sim. Consequently, they are not accounted for in the cycle
count. As such, the performance deviation between a layer with and without pooling
can be significant. In our experiments, we observed a cycle count difference of 23%
when comparing layers with and without pooling. For this reason, including Pooling
is crucial to accurately model performance. In addition, the underlying mapping also
plays a role. SCALE-Sim works with a different mapping than the one that is used in
Gemmini. In Gemmini, the first layer is unrolled over the number of input channels
across the systolic array, which leads to a low utilization due to the low number of
input channels. We are able to consider this effect in our flexible model, by setting the
right parameters. As a result, our analytical model yields a more accurate cycle count
during simulation than SCALE-Sim. Similar trends can be observed over different
array sizes. Looking at the second layer, which has a 1 × 1 convolution operation,
SCALE-Sim also returns a slightly inaccurate cycle count. The calculated values are
too low, since SCALE-Sim assumes a higher bandwidth thanwhat is actually available,
leading to fewer stalls compared to a real-world inference. This effect becomes very
visible in when a 32× 32 systolic array is used. In case of 3× 3 convolutions (L3), all
tools are able to represent the actual cycle count. This is also the most common type
of kernel size in CNNs. However, for a proper assessment of a DNN accelerator, we
definitely have to reflect all layer configurations that can occur in modern CNNs.

Besides the accuracy, the needed time to run a simulation is also an important metric.
In case of a design space exploration, a faster evaluation of design points aids quicker
design space search. Therefore, we again compared our approach with SCALE-Sim
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Figure 4.17: ResNet-34 cycle count (millions) for different memory configurations.

and a cycle-accurate simulation using the same array sizes and ResNet layers. It has
to be noted, that a cycle-accurate simulation of an entire ResNet-34 takes multiple
days, which makes cycle-accurate simulation using Verilator infeasible for a DSE.
Depending on the layer or workload, for our analytical model we found a speed-up
of up to 12 947× and 138× compared to cycle-accurate simulation and SCALE-Sim.
Moreover, we could observe a dependency of the simulation time and the simulated
array size. This because, of course, a cycle-accurate simulation of a larger model takes
longer. Our analytical tool mitigates this, since the Roofline model, that our model is
build upon, is independent of the number of components in a simulation. As a result,
our tool delivers results rapidly and finishes a simulation of individual layers in less
than one second on average. It evaluated an entire ResNet-34 inference in 28 s, which
is sufficient for a comprehensive DSE.

Impact of Memory and Array Size

We have shown that our analytical model quickly delivered the needed performance
figures and allows for fast adjustment of different design parameters. In the following,
looked at one of the largest challenges when designing a DNN accelerator, which is to
provide sufficient local memory. On-chip memory is very expensive in terms of area,
but increases data reuse and thus reduces the number of energy-intensive off-chip
memory transfers. Hence, it is advisable to carefully choose the memory sizes to
achieve a high efficiency. For our evaluation we assumed an off-chip memory with a
fixed latency, since Gemmini has an L2-cache in between the off-chip DRAM and its
local memories, making this memory hierarchy difficult to model. However, looking
at the local memories is still very important, since they have a significant area impact.
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Therefore, we ran ResNet-34 on a 16× 16 systolic array using several memory sizes.
The scratchpad and accumulator memory size was varied from 256 kB to 2048 kB
and from 64 kB to 1024 kB, respectively. Configurations with larger accumulator than
scratchpad memories are invalid in Gemmini and thus were not tested.

The impact of the different memory sizes is shown in Figure 4.17. In general, different
sizes affect tiling of data across the scratchpad and accumulator, and as such has
a minor influence on overall performance compared to the influence of a larger
systolic array. Of course, larger memories have a great impact on area and energy,
but we found that they only have a small impact on the performance in terms of total
cycles, as long as the memory size sufficiently utilizes the accelerator. Considering a
16× 16 array in which the memories are set to the largest configuration (2048 kB for
scratchpad and 1024 kB for acceleratormemory, respectively), we saw an area increase
of 7×. However, at the same timewe only gained 7.3% in performance, in comparison
to the smallest memory configuration tested. In comparison, increasing the array size
from 16×16 to 32×32with a fixed 256 kB scratchpad and 64 kB accumulator memory,
only added 73% area and significantly increased performance by 217%. Due to the
high area requirements, increasing the memory size might not always be the best
choice for optimization. But with larger systolic arrays, larger memories may yield
larger performance increases, since the available memory is better utilized for larger
matrices. However, as a rule of thumb, especially in area constrained embedded
designs, increasing the array size is the preferable choice to increase the performance.

Case Study: Design Space Evaluation of ResNet-34 on a Systolic Array

To showcase the insights our analytical model can generate, we deployed it for design
space exploration and performed a small case study therewith. As workload, we
analyzed ResNet-34 in an area constrained embedded environment. The objective is
to minimize energy consumption, while maintaining a high performance. For this
application we assumed a clock frequency of 700MHz. In our case study, accelerators
have to yield at least 30 FPS to be considered valid designs.

The DSE itself is limited though a set of architecture constraints. Besides the ones
that are already imposed by Gemmini, we limited the array sizes of dimensions of 8,
16, 32 and 64. In terms of memories, we applied more loose constraints. Scratchpad
memory sizes could be between 128 kB and 4MB and accumulator memory sizes
were allowed from 64 kB to 2MB. As the optimization target, we chose to minimize
the required energy.
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Figure 4.18: Pareto optimal array configurations running ResNet-34 with the associ-
ated FPS performance as well as area and energy requirements.

With the given constraints, the full design space consists of 57 points and 13 Pareto
optimal points. Figure 4.18 shows the Pareto points of our evaluated design space
with the corresponding required chip area, energy consumption and FPS. The latter
is derived from the cycle estimate. The performance for different design points ranges
between 34 and 117 FPS and from 53.9 to 82.5 FPS for all Pareto optimal solutions.
From the plot, we observed gaps in the performance domain instead of a continuous
trend. This is caused by Gemmini’s architecture constraints. Since array sizes cannot
be defined arbitrarily, we had to move, for example, from a 16× 16 array directly to a
32×32, resulting in a large performance jump. In terms of array size none of the 8×8

array configurations satisfied the performance requirement of 30 FPS. In general, our
evaluation showed similar to the memory evaluation, we performed before, that array
size is the main driver for performance.

Considering our envisaged use case, we found an energy efficiency to performance
sweet-spot with an array size of 32× 32, scratchpad memory of 256 kB and accumu-
lator memory of 64 kB. Notably is that the exploration did not immediately choose
the largest array configuration, since it adds too much area to the design. Moreover,
despite the findings from the memory evaluation, the sweet-spot solution did not
take the smallest scratchpad memory configuration. A 256 kB scratchpad memory im-
proved the performance tomeet the design goals compared to a 128 kB scratchpad. As
a result, for the found design configuration our analytical model estimated 3.25mm2

area and 14.17 J total energy consumption per inference. The design achieved a total
performance of 59 FPS.
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4.5.4 Case Study: Design of an eFPGA tile

To highlight that the two accelerator modelling tools support the design of all kinds of
DNNaccelerators, we performed an exemplary case study. In this, the goal is to design
an embedded Field Programmable Gate Array (eFPGA) that is placed into a large SoC
with different tiles. This large SoC is an endeavor pushed by the European project
European Processor Initiative (EPI) to build a fully-European High-Performance
Computing (HPC) chip. One of the applications that will later run on this eFPGA
is a low-power CNN accelerator. The overall objective is to design an eFPGA tile so
that it can fit the largest and most performant accelerator. However, the eFPGA tile
itself is on a strict area budget that has to be met. Designing this eFPGA involves not
only the DNN accelerator itself but also tools needed to generate the eFPGA matrix
as well as diverse tools to determine area and power figures. Therefore, in the next
few subsections, we will first introduce a highly configurable CNN accelerator design
and the eFPGA tools. Then we move on to a discussion about how the algorithm
accelerator co-design supports the eFPGA.

Accelerator Overview

To find a versatile eFPGA configuration, we choose a total of two distinct applications
for our exploration. First the aforementioned CNN accelerator, which will also be
the focus of this section, and a control-flow driven application, namely a CPU task
scheduler called Picos [309] (More details can be found here: [Hot+22b]).

Our CNN accelerator is designed towards good scalability with an adjustable number
of computation units, which enables a design space exploration. An overview of its
design is given in Figure 4.19. The computational intense convolution operations
are tackled in microkernel units. Their design and the used buffering scheme are
inspired by a work from Qui et al. [61], which is chosen as basis, since they show
great results using dynamic quantization for activations and weights with neglectable
accuracy loss. The original accelerator achieves an efficiency of 14.22GOPS/W with
an accuracy loss of 0.04% on a Xilinx Zynq-7000 device. We extended their approach
for our case studywith a coarse grained sparsity detectionmethodology, which reuses
weights and input features. Input feature data is provided as rows and gets stored
into a data line buffer, which aligns data for typical convolution kernel sizes like
3× 3. Corresponding weights for the filter are kept inside a large scratchpad memory,
which returns the required column of weights for each channel to the microkernels.
General aspects of a neural network might be configured dynamically during runtime
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Figure 4.19: Overview of the CNN accelerator architecture.

like workload dimensions, while others such as bit-widths or buffer sizes require a
reconfiguration of the eFPGA target platform with a newly generated accelerator.

As stated before, our architecture can exploit the large sparsity that is present in most
intermediate feature maps. Therefore, it monitors the flow of incoming data and
continuously computes the sum of a filter. Based on the derived sum, it is possible
to apply magnitude pruning to sparse input blocks in the input feature map. If we
detect a sparse block, associated MAC operations can be skipped. The corresponding
decision is made by the microkernel itself through comparison of the kernel sum with
a predefined threshold. In case of a skip, the control flow module tells the line and
weight buffer to omit the current column of data and to jump directly to the next one.
At the same time, it outputs zero as result through a multiplexer to the accumulator.
To process the next filter in a layer, this accumulator can also be preloaded.

One of the largest points to tweak area and energy are the actual number of MAC
units per microkernel. Considering a latency of one cycle, nine MACs in parallel can
compute a 3× 3 convolution each cycle, but only three increase the latency to three
cycles. Using fewer MACs units creates an artificial bottleneck, which we can mitigate
by skipping sparse blocks. Besides that we can obviously change the size of buffers
and the total number of microkernels. In addition, we can also consider uniform
quantization. Therefore, we can adjust the bit-width of weights, inputs and outputs.
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Workload and Parameter Exploration

As described before, one of the CNN accelerator’s objectives, sitting in the eFPGA,
is to run DNN applications using only little energy. The envisaged use-case is face
recognition. Therefore, we chose SqueezeNet [41] as base topology for the parameter
exploration, because of its low parameter count and small memory footprint. Picking
a network topology already specifies some design characteristics of the accelerator.
For example, the kernel size is 3× 3 and the input buffer size is set to 224, which is
the dimension of the largest input feature map. The buffer design and the MAC units’
design are also highly dependent on the width of the operands and accumulators.
With linear uniform quantization, which was often proved to allow for significant
bit-width reduction with only small precision loss [310], we can reduce the bit-width.
To apply quantization in the most effective way, we used SqueezeNet and trained it
from scratch using the CASIA-WebFace dataset [311]. From a baseline accuracy of
86% using 32-bit floating point, we were able to quantize the network using 10 bit
operations and still achieved an accuracy of 85%. Using 8 bit we still observed an
81% accuracy. An 8 bit design, moreover, lowers the memory impact of an inference
from 480 kB down to 135 kB. As a result, we chose an 8 bit version of SqueezeNet for
our accelerator evaluation and can thus set the MAC inputs and accumulator width
to 8 bit and 16 bit, respectively. For the later eFPGA design, all MAC operations will
be computed in Digital Signal Processor (DSP) cells. It has to be noted though, that
DSPs are very suitable for all dataflow driven applications but might not be the most
important eFPGA resource for control-flow applications. Hence, we have to keep in
mind to not focus only on DSPs, but also to leave spare eFPGA resources for other
workloads like control-flow or memory-intensive ones.

Now that the parameter space of our CNN accelerator and the eFPGA is sufficiently
constrained, we can move on to the actual parameter exploration. Figure 4.20 gives an
overview of our design flow that is applied to obtain the eFPGA specification. First,
the model is quantized to reduce its memory footprint. Then, we can utilize FLECSim
to generate and explore all remaining architecture parameters and their influence on
the performance and latency. With the parameters in place, we can in the next step
generate an architecture, which is synthesized using the eFPGA tools provided by
the company Menta10. Here, we can experiment with the number and distribution of
eFPGAbuilding blocks and how they impact the performance. For example, DSPsmay
be replacedwithmemories and the number of Look Up Tables (LUTs) can be adjusted.

10 https://www.menta-efpga.com/origami-programmer
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Figure 4.20: Overview of our architecture exploration design flow to design an embed-
ded FPGA (eFPGA) tile. First the DNN workload is quantized, and then
architectural parameters are explored using a combination of FLECSim
and the design tools for the eFPGA.

To assess their impact, the synthesis tools yield important characteristics like area,
static power consumption and maximum operating frequency. With both FLECSim
and the tools by Menta in combination, we can eventually provide the necessary PPA
figures to evaluate, explore and assess different architectural characteristics.

Exploration Results

With the previously described architecture exploration flow, we can systematically
optimize the target eFPGA design to meet the requirements of our two applications.
Thereby, both applications have to fit in an eFPGA design that consumes at most 1%
of the total chip area for the future EPI chip. The task scheduler application has to
have a high number of memories and the CNN accelerator requires as many DSPs
as possible. However, the eFPGA should always be capable of hosting future, yet
unknown applications.

Our found eFPGA architecture is detailed in Table 4.2. The upper half of the tables
shows the performance and the bottom part available eFPGA resources. With con-
sideration of the 1% area constraint, in a square shape, we can fit an overall of 38
columns and 40 rows of eFPGA tiles. Four of those columns are DSPs and four are
memories. The eFPGA layout is shown in Figure 4.21 with DSPs highlighted in teal
and memories in yellow. DSPs and memories are intentionally evenly distributed
over the eFPGA columns to allow for the highest routing flexibility and have LUTs
and Flip-Flops close by.
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Utilization

Parameter Value CNN Acc Picos [309]

Technology 7 nm - -
Matrix shape 38× 40 - -
Static Power 1.7393mW - -
Operating freq. [MHz] - 159 100

LUT6 9632 78% 51%
Flip-Flops 12 086 72% 29%
DSPs 52 × I16_32P 92% 0%
Memories 80 × 2Kx16 5% 46%
Inputs, Outputs 1242, 1244 - -
Clocks, Resets 2, 2 - -

Table 4.2: Overview of the dimensions, building blocks and static power of the found
eFPGA design. Including the utilization and operation frequency of the
two applications.

The total of 52 DSPs and 80 memories blocks offer enough resources for a wide
range of applications including our two applications used for architecture exploration.
Considering the CNN accelerator, we can host 16 microkernels, which utilize 48
DSPs. All buffers can be placed in fraction of the available memory cells, leaving
enough room for additional buffers that might be needed to handle backpressure to
outside connections. When the eFPGA runs at the maximum operation frequency
of 159MHz, we can achieve a full utilization of our accelerator when the available
bandwidth delivers 159MB s−1. Since most computations in a CNN are independent
of each other, different microkernels can operate on the same input data but with
a different set of weights. Refreshing the associated weights for the convolution
operation adds on average 1MB s−1 to this bandwidth. Due to the availability of a
high-performance NoC in the EPI chip and the high number of eFPGA I/Os, we can
project to satisfy this bandwidth requirement. However, at the point of writing this
thesis, the chip is not taped out, and we had to rely on simulation results. Putting
the results together, we can compute a forward-pass of the quantized and optimized
SqueezeNet for face detection in 150ms with a performance of 0.48GOPS/s. When
we take the static and dynamic power of in total 4.8mW into account, we reach an
efficiency of 99.375GOPS/W.
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Figure 4.21: Architecture segment of the eFPGA configuration, showing DSPs, I/Os
and memories highlighted in teal, white and yellow, respectively.

4.5.5 Discussion

During the evaluation we looked in-depth at the performance figures of our two
simulation tools. To get a better impression of how these works contribute to the
current research, we have to put them into perspective. FLECSim is designed to be a
very extendable and flexible tool that can handle a wide range of accelerator designs.
Therefore, wewent for themost versatile simulation approach, which is cycle-accurate
SystemC simulation. However, this accurate method comes with the drawback of
being fairly slow when running an entire simulation of a recent DNN model. A
comparison with other works in this domain is shown in Table 4.3. To mitigate the
long simulation time, FLECSim uses TLM to model data movement and an ISS for
the CPU. In contrast to works like PARADE [293] this increases the simulation speed,
but does not reduce the simulation precision of the DNN accelerator. Since FLECSim
offers a CPU simulation, we have the advantage of running versatile workloads and

Property MagNET STONNE SMAUG FLECSim

Flexible design space 7 3 3 3

CPU simulation 7 7 3 3

Software Co-Simulation 7 7 7 3

Automated exploration 3 3 3 3

End-to-end evaluation 3 3 3 3

Table 4.3: Comparison of cycle-accurate simulation frameworks for DNNs.
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are not limited to just one kind of accelerator likeMagNET [272] or STONNE [274]. In
addition, we can interface any DNN framework, either using an ONNX description or
through implementation of the corresponding drivers for, e.g., PyTorch to FLECSim.
This makes FLECSim also more flexible in comparison to other state-of-the-art works.
Similar to FLECSim, SMAUG also focuses on an end-to-end evaluation of SoCs with
DNN accelerators. In contrast to our work, they use gem5 as simulation framework
instead of bare-metal SystemC. In fact, gem5 can make some parts of the SoC design
simpler, but also allows fewer degrees of freedom. For example, direct integration
of RTL models via Verilator can become challenging, and so does early validation of
RTL designs. In summary, SMAUG and FLECSim play in the same league regarding
performance and flexibility, but both use slightly different tools and methods to
eventually reach the same goal.

However, one of the best methods to accelerate the performance assessment of DNN
accelerators, is to get rid of cycle-accurate simulation altogether. We can do this,
because DNN workloads have a very homogenous dataflow. Once a mapping is
figured out, a well-chosen set of equations can adequately describe the required
computational cycles, memory accesses and bandwidth for a given DNN workload.
This is exactly what analytical modelling approaches are trying to do. Our analytical
model is no different. Using a set of sophisticated equations and the Roofline model it
estimates the performance, energy and area of a systolic array that processes a DNN
workload. In contrast to SCALE-Sim [277], which does this estimate bymeans of cycle-
accurate prediction, our approach is thus much faster. Works like ZigZag, Interstellar
and Timeloop, however, follow a similar approach and introducemodelling languages
that can describe the workload and the DNN accelerator. Then they perform a
mapping and predict the needed compute cycles through an analytical model. But,
the design methodology and framework they use, often looks only at MAC operations
as they are themajor part of DNN computation. However, this neglects operations like
activation and Pooling, and consequently those models tend to estimate inaccurate
performance figures for accelerators that do these operations during the computation
of MAC operations. For such accelerators, like Gemmini, we observed a deviation of
up to 23%. Our model includes those operations and delivers estimates that closely
match a cycle-accurate RTL simulation. A quantitative comparison of the other works
with our analytical model is summarized in Table 4.4.

With various benchmark DNN workloads and two case-studies we showed the feasi-
bility of our two DNN accelerator performance assessment tools. Intentionally we
chose to first explore a cycle-accurate and then an analytical approach. Our analytical

144 | EVALUATION AND DISCUSSION



Property SCALE-Sim MAESTRO Timeloop ZigZag Ours

Flexible design
space

7 3 3 3 3

Simulation
speed

- o - o +

End-to-end
exploration

7 3 7 7 3

Metrics cycles PPA PPA PPA PPA

Table 4.4: Comparison of analytical DNN performance models.

model shows in comparison to the current state of the art, a very accurate and quick
performance prediction, which makes it usable for large-scale parameter exploration.
With a well-constrained set of design options, we can then start our cycle-accurate
approach FLECSim, to get highly precise PPA figures. Although the latter takes
relatively much time, considering a manageable design space it is still possible to
run a cycle-accurate simulation. The key to achieve a both accurate and fast DSE
ultimately lies in combination of accurate, but slow cycle-accurate simulation and
fast, but more imprecise analytical modelling.

4.6 Conclusion and Outlook

For many applications like embedded systems DNNs have to run highly efficient to
meet the design requirements. In the previous sections, we saw that tailored hardware
accelerators are necessary achieve this. However, only taking the right design deci-
sions leads to an efficient DNNaccelerator. Taking those decisions requires knowledge
about how they influence the performance metrics of the accelerator. Hence, simula-
tion environments to systematically explore and assess various design configurations
are crucial to obtain the most performant accelerator for a given application.

Besides the large body of research that was already carried out, we introduced two
concepts for such simulation tools. First, a cycle-accurate simulator, called FLECSim,
that can model entire SoC designs including DNN accelerators. We put a strong focus
on making FLECSim very easy to extend, so that new DNN accelerator models can be
integrated in straightforward a manner. Our cycle-accurate tool allows for end-to-end
evaluation of the aforementioned design decisions in terms of energy, performance
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and chip area. Using an exemplary workload, we could demonstrate how major
architectural aspects like memory sizes and the number of PEs influence the efficiency.
The flexibility of FLECSim is highlight by a case study that we conducted. Here, we
laid out an accelerator that is hosted on a configurable eFPGA.

Since the assessment of DNN accelerators with cycle-accurate simulators can consume
a lot of time, we proposed a second approach that harnesses the homogenous dataflow
of DNN workloads. This second method is an analytical model that describes the
workload and the accelerator with all their parameters using a set of equations, which,
e.g., directly yield the cycle count or the number of memory accesses. Our analytical
model can generate those numbers for an arbitrary DNN workload, which runs
on a configurable systolic array, orders of magnitude faster than a cycle-accurate
simulation. Thereby, we demonstrated that our model is more accurate than other
state-of-the-art works and less than 1% off compared to a cycle-accurate simulation.

The full potential of our simulation tools unfold, when combining both works, ulti-
mately making a DSE of DNN accelerators feasible. The huge design space that can be
constructed from all the various design options in DNN accelerators, is first explored
by our analytical model, either with optimization algorithms or using exhaustive
search. Consequently, this leave us with a reduced set of potential optimal DNN ac-
celerator configurations for a given set of constraints. These remaining configurations
can then be evaluated with FLECSim to get reliable numbers.

However, the research field of DNN accelerator modelling is by far not completed
yet. The topic still attracts a lot of attention, since the earlier and the easier a design
decisions can be made, the more money can be saved in the design process. Most
works, including our two solutions, have design limitations and still cannot reflect
all the various design decisions that can be made. In addition, our works have not
unleashed the full potential of an automated DSE. Both works have mainly focused
on an accurate and fast model. A DSE layer that uses RL instead of GAs or exhaustive
search, may yield better performance, similar to NAS approaches, in which RL is
established already today. In general, making even the analytical model more efficient
and faster opens up a possible combination of DSE and NAS. Both are closely related,
as some model topologies might work best on a dedicated hardware architecture.
Some few works have already explored this, showing promising results.
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Chapter5
Leveraging and Increasing Regular
Sparse Activations in CNNs for Energy
Efficiency

I n the previous sections, we have noted that one of the key challenges in computing
modern Convolutional Neural Networks (CNNs) efficiently lies not only in the
vast number of computations, but also in the corresponding numerous memory

transactions. Since memory requirements of modern networks exceed the capabilities
of local memories, data has to be offloaded, causing unwanted energy and latency
intensive off-chip memory transactions. This chapter presents an approach that
aims to reduce those off-chip memory transaction through coarse-grained regular
blockwise pruning. In contrast to traditional pruning methods, our method follows a
hardware-centric design, which allows us to prune sparse blocks with less hardware
overhead. To realize this, we first introduce a tool, Spex, that maximizes the number
of regular sparse blocks in each layer. Second, we present Sparse-Blox, our hardware
extension that harnesses found sparse blocks for memory and Multiply-Accumulate
(MAC) operation reduction. Our hardware extension works with most commonDeep
Neural Network (DNN) hardware accelerator architectures. Sparse-Blox thereby
adds 5× less area to the design than state-of-the-art accelerator extensions that operate
on irregular sparsity. With Spex, we can reduce the number of memory transfers in
ResNet-50 and Yolo-v5s by 18.9% and 12.6% with a 1% or 1 mAP accuracy drop,
respectively [Hot+23a].
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5.1 Overview, Introduction, and Motivation

CNNs have been successfully deployed in many domains and became ubiquitous in
many applications. While CNNs deliver tremendous results in image segmentation
or classification tasks, their computational complexity and memory requirements
grew massively in the last few years. This poses a major challenge to hardware and
systems architects, and an end of this trend is not foreseeable. Yet unsolved problems
like autonomous driving might even worsen this challenge. As a result, tailored
accelerators have established themselves, which addmultiple optimization techniques
like quantization and pruning to address the overwhelming energy and latency
constraints. However, combining high throughput and low-energy consumption is
still a major challenge yet to be solved.

In Subsection 2.5.2 we discussed that modern CNNs are very data-hungry and large
intermediate results have to be buffered during inference. Since, even state-of-the-art
silicon technology is incapable of hosting such large local memories with a reasonable
area investment, data is offloaded to cheaper but slower off-chip memories, like
Dynamic Random Access Memory (DRAM). This offloading from local Processing
Elements (PEs) to off-chip memories is one of the largest contributors to the energy
consumption [115] of CNN accelerators. Most offloading happens due to the large
intermediate feature maps present in CNNs.

Nevertheless, due to the Rectifier Linear Unit (ReLU) activation function, which
sets all negative activations to zero, CNN feature maps show large amounts of spar-
sity [312]. Sparse values that are present in output feature maps of different layers
of ResNet-50 [40] are shown in Figure 5.1. The shown data was generated using the
entire ImageNet-1K validation dataset, consisting of 50 000 samples. We can see that
the first convolution layer together with the ReLU activation function already yields
about 15% sparsity in its output feature map. Deeper into the network, after the first
to basic blocks (see Figure 5.1b and Figure 5.1c), we observe that the share of sparse
values is growing. Also, for other networks, like ResNet-18, studies have found that
feature maps have 20 to 80% sparse activations [313].

If we take a more profound look at the output feature maps of CNNs, we can see that
sparsity is not present in a regular form. Usually, sparse values are spread over all
dimension and obviously vary based on the network input. As an example for two
different inputs, this behavior is shown in Figure 5.2. The figure shows the first eight
channels of the output feature map of the first convolution layer, as well as of the first
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Figure 5.1: Distribution of the output feature map activations of different layers of
ResNet-50. The histogram shows 100 bins from 0 to 20, values above 20
are clipped into the last bin.

ResNet basic block. Values that are exactly zero are marked in black, small activations
in purple and large activations in red. Besides scattered sparse values, however, some
filters show an especially large sparsity, sometimes even in contiguous areas.

Activation pruning exploits this sparsity, saves many unnecessary operations, reduces
the memory footprint and finally decreases expensive off-chip memory transfers.
However, pruning irregular sparsity dynamically during inference is a non-trivial task.
First, non-sparse values have to be found in the large output feature maps. Afterward,
the exact position has to be encoded efficiently to achieve a high compression ratio.
Consequently, DNN accelerators that implement such pruning mechanisms, e.g.,
tend to have a comparably large hardware overhead due to the element indexing and
compression mechanisms.
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Figure 5.2: Output of the first layer and first basic block of ResNet-50 for two exem-
plary inputs. For each output the first eight channels are shown. The
magnitude of activations is shown in color from blue to red. Exact zero
values are depicted in black.

From a hardware perspective, recent works have proven that pruning approaches for
regular sparsity are easier to implement with less hardware cost [314]. Especially,
blockwise sparsity can considerably increase the energy efficiency compared to fine-
grained pruning methods [263] To leverage regular activation sparsity in CNNs, this
chapter proposes two components: First our DNN exploration tool Spex that increases
regular activation sparsity in CNNs by determining a set beneficial of thresholds for
each layer before deployment to the hardware. Second our DNN accelerator extension
Sparse-Blox, that enables resource efficient pruning of activation pruning, previously
found by Spex. Figure 5.3 gives an overview of how Spex and Sparse-Blox work
together to enable a blockwise activation pruning mechanism. Our approach divides
each activation feature map into blocks, whose dimensions match the underlying
hardware accelerator. Then, the sum of each block is compared to a threshold upon it
is decided whether a block can be pruned or not. Higher thresholds will prune more
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Figure 5.3: Overview of Spex and Sparse-Blox: A tool to increase and identify coarse-
grained sparse blocks in CNNs and a low-overhead hardware extension
to prune these blocks.

values, whichmay result in network accuracy degradation. This complex design space
that is spanned by the correlation of pruned blocks and network accuracy is explored
automatically by Spex. A found combination of thresholds for each layer is then used
in hardware by Sparse-Blox to efficiently prune entire blocks of low activations. This
makes compression of sparse values and skipping of MAC operations inexpensive in
hardware and saves off-chip memory transfers.

5.2 Principle of Sparse-Blox and Spex

Sparse-Blox and Spex enable systematic exploitation of structured sparsity that occurs
during DNN inference to save unnecessary computations and data movements. Sub-
stantial amounts of sparsity can be found in CNNs, due to the fact, that the filters are
trained to detect a broad range of features in images, which might not all be present
at the same time. In this case, most filters return negative activations, which become
zero after applying the ReLU activation function. In the next layer, we can prune
these zero values by skipping the corresponding MAC, since the result is already
known to be zero. Moreover, if sparse values are compressed, we can reduce the
memory footprint of the CNNs and finally even lower the number of off-chip memory
transfers, saving additional energy and processing time. As we have shown in the
motivation section, up to 80% of all activations are zero in recent CNNs [280].
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Figure 5.4: Principle of our blockwise regular pruning approach: An output feature
map is divided into smaller blocks that match the hardware accelerator’s
dimensions. These blocks are accumulated, and the sum is compared with
a previously determined threshold that determines whether a block get
pruned or not. This increases easy-to-prune regular sparsity in CNNs.

Especially, regular sparse patterns support compression and computation reduction.
Our hardware-centric approach enables inexpensive exploitation of structured spar-
sity in the form of blocks or squares in input feature maps. For example, if a full
8 × 8 block of sparse values is present in an output feature map, we can skip the
computation of this 8 × 8 block completely on a systolic array that has the same
size. In addition to that, we can compress this block in a straightforward manner by
simply pooling each sparse block. As a result, we do not need to store coordinates
for each non-sparse element, like Compressed Sparse Column (CSC) or Compressed
Sparse Row (CSR) approaches (see Subsection 3.3.3), but instead we can now store
the coordinates of entire blocks at once.

The general principle of our method that prunes sparsity in the form of squares or
blocks, that match the underlying hardware accelerator, is given in Figure 5.4. In our
case, output feature maps of a Convolutional (CONV) operation are either kept or
transformed into a two-dimensional matrix form, which is achieved by the im2col
transformation. Each activation feature map is then divided into smaller blocks that
match the target hardware accelerator, e.g., 16× 16 blocks for 16× 16 systolic arrays.
All elements in those blocks are then accumulated, to check the presence of a sparse
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block. However, as we have seen before, sparse values are usually present in irregular
patterns. Hence, entire sparse blocks are rarely present in out-of-the-box CNNs. To
increase the number of sparse blocks, our method introduces a threshold that is
compared to the sum of each block to determine whether a block can be pruned. If
the block sum is less than the threshold, all values in a block are considered sparse.

However, the magnitude of thresholds has, of course, an impact on the network
accuracy. Therefore, we present as the first part of our approach the exploration tool
Spex. It searches for thresholds that achieve the best trade-off between activation
compression, computation reduction and network accuracy impact. This search has
to be performed dynamic, since patterns of sparsity in feature maps are not static but
are highly dependent on the network’s input. Hence, Spex runs before the network is
deployed to an actual hardware accelerator and tunes the thresholds with a large test
dataset. Spex can determine individual thresholds for each layer. This enables us to
manage pruning-sensitive layers more carefully, while robust layers can be pruned
further to optimize the computation and memory savings.

Once a beneficial set of thresholds is found, we can deploy the network to a hard-
ware accelerator that has been extended with our low-overhead hardware extension
Sparse-Blox. Sparse-Blox reproduces the same behavior as Spex. During inference, it
computes the sum of a block, checks whether it can be pruned and compresses sparse
blocks. Accumulation, comparing to a threshold and pruning of blocks can be easily
implemented in hardware by only adding a small overhead. To reduce the number of
off-chip memory transfers and MAC operations, Sparse-Blox buffers sparse blocks
found in a layer until the computation of the next layer. Therefore, it features a small
cache that stores only the position of a sparse block and not all individual elements
of this block. Consequently, sparse blocks do not need to be transferred to off-chip
memory. Instead, when the DNN accelerator tries to attain this block, which was
found sparse in the previous layer, the computation can either be skipped entirely or
a block of zero can be loaded rather than loaded from the main memory.

Sparse-Blox along with Spex aims to boost the performance and energy efficiency of
CNN inference tremendously. Thereby, it adds only a small fraction to the hardware
area. The next two chapters will describe the two components of our approach
in-depth. Followed, by the results in terms of energy and computational savings.
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5.3 Related Work

A large body of research was conducted regarding pruning using different methods
and various kinds of sparsity. In general, sparsity in DNNs can be grouped into struc-
tured and unstructured or irregular sparsity and can be applied on weights (W) and
input activations (IA). Especially, pruning and sparsity exploitation of weights and ac-
tivations with small magnitudes has been addressed in several studies. Compared to
the state-of-the-art section, we will focus in this section only on works that investigate
structured sparsity. Also, wewill look specifically at sparsity in CNNs. Nonetheless, it
is worth mentioning that apart from CNNs, several studies have also showed positive
effects of Leveraging sparsity in Recurrent Neural Networks (RNNs). For example,
Narang et al. [315] performed blockwise pruning during the training of RNNs, result-
ing in significantly fewer parameters and noticeable speedup on Graphics Processing
Unit (GPU). From the tooling and training perspective, Jiang et al. [312] present their
regularization method, which looks at CNN channels. With their approach, they can
prove that sparsity in CNNs can be largely increased and grouped into regular forms.
On Resnet-50 with ImageNet, they demonstrate a 51.07% reduction in Floating-Point
Operations (FLOPs) with only 0.76% accuracy degradation.

Starting with improvements on Commercial-Off-the-Shelf (COTS) systems like Cen-
tral Processing Units (CPUs) or GPUs, Liu et al. [316] exploit sparsity in CNNs
for classification and object detection and report significant speedups and better
efficiency in inference. Lin et al. [317] also proposed an approach prune CNNs to
speedup inference on general-purpose CPUs. Their framework groupsN consecutive
output kernels with the same input channel into blocks and removes those consid-
ered insignificant. According to these results, weight sparsity exploitation leads
to a 56ms inference speedup, but also to reduced accuracy compared to applying
general weight pruning. Zhou et al. [318] presented in 2021 their approach to learn
fine-grained sparsity patterns of NxM blocks to maximize the compression ratio
and the performance increase on GPUs. They divided the number of operations and
parameters in a ResNet-50 by a factor of four, with only 2% accuracy drop. TETRIS
by Ji et al. [319] aims to find the best possible trade-off between sparsity, hardware
utilization and accuracy of networks running on GPUs. According to their evaluation
results, this can be achieved by reducing the irregularity of a matrix by clustering
unimportant elements together for structured pruning algorithms. However, TETRIS
adds overhead by rearranging and grouping feature map elements during runtime.
Moving from GPUs to Field-Programmable Gate Arrays (FPGAs), Zhu et al. [314] ex-
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Figure 5.5: Overview of PEs of the accelerator SCNN, proposed in [151], that support
sparse computation for weights and activations.

ploit structured sparsity with their FPGA-based accelerator, showing that structured
sparsity is much more hardware friendly than irregular sparsity, especially when
weights are trained to show structured sparsity.

As we saw, a lot of research was carried out for various COTS platforms. But, the
most interesting research was conducted on tailored DNN accelerators, as they allow
for the most design flexibility. To efficiently make use of sparsity in both weights
and activations, the hardware has to support runtime adaptive pruning. Sparsity
in activations can be exploited for power saving through gating or stalling of mul-
tiplications with zero. Kim et al. [260] demonstrate a 6× speed-up on VGG-16 by
skipping computations of sparse elements in input feature maps in hardware, which
outperforms Eyeriss [60] by 9× However, their approach does not save memory
transactions.

To save memory bandwidth, compression techniques that pool zero activations have
to be applied. Works with such modules are, for example, Cnvlutin [261] or the Cam-
bricon series [263], which were introduced in the state-of-the-art chapter. Both show
large performance advantages over the state-of-the-art works. Especially, Cambricon-
S shows a significant improvement using regular sparsity in form of 2 × 2 blocks.
Although those works show great improvements on the memory and computational
footprint, they have to add hardware resources to realize the compression.
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Index-based compression enables significant energy saving and reduces the number
of computations. One example for this is SCNN by Parashar et al. [151] from 2017.
An overview of their PEs is given in Figure 5.5. Their architecture uses a novel index-
based compression scheme, which is more efficient than CSR or CSC format, and
significantly reduces storage requirements. Compared to by then state-of-the-art
works, they apply compression to both weights and activations. To encode this, they
added extra modules to the architecture just before the PEs. In total, their encoding
mechanism adds 33% extra area. In their in-depth evaluation, they can show great
improvements on the energy consumption. For example, with 90% sparsity, only
6% the energy of a dense accelerator is required. However, a full dense network
running on their accelerator, needs 33% more energy. Nonetheless, their evaluated
image classification workloads, typically show large sparsity. Hence, they achieve
up to 3.52× performance improvement on a VGGNet. Thereby, they demonstrate an
increase in energy efficiency by 2.3×. In summary, they report an overall performance
increase using their architecture when the workload is less than 85% dense.

Looking at regular coarse-grained pruning in the form of blocks, Zhou et al. [263]
presented Cambricon-S in 2018. With their approach, the authors aim to address
one of the major problems in sparse DNN accelerators: irregularity of the sparse
activations. Either the indexing and compression of the irregular non-sparse elements
consumes a lot of energy, or it adds heavily to the area. In contrast, Cambricon-S
prunes contiguous blocks of sparse activations at once. For CONV layers four di-
mensional and for Fully Connected (FC) layers two-dimensional blocks are used.
Therefore, the authors experiment with various block sizes and report the correspond-
ing compression ratios. To increase the efficiency further they add local quantization.
For evaluation, Cambricon-S is implemented using a 65 nm technology node. With
16× 16 PEs the authors report a total area of 6.73mm2, of which 15.55% account the
for compression and pruning modules for weights and activations. Those modules,
feature sophisticated non-sparse masking methods, which enable online pruning,
help to reduce the inner bandwidth, and even exploit some remaining irregular
sparsity. Compared to DianNao [143] Cambricon-S achieves a 12.3× better energy
efficiency and a 13.56× better performance on CONV layers across a selection of eight
workloads, respectively.

STICKER by Yuan et al. [279] from 2020 follows a new route to exploit a high degree
of sparsity in weights and activations. A high-level overview of their architecture is
given in Figure 5.6. Their main driver to increase the efficiency is a multi-sparsity
control and dataflow module that allows to switch between nine different sparse
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Figure 5.6: Overview of STICKER’s architecture, a DNN accelerator that support
online pruning; visualization taken from [279].

operationmodes. Inmore detail their online adaptor detects the amount of sparse data
in weights and inputs and switches between four operation modes: dense, medium
dense, sparse, and all-zero. This operation mode is determined individually for small
chunks or blocks of data. In case of dense data, no compression happens, and no extra
energy is invested for that. When the data block is sparse, index-based encoding is
applied to benefit from compression. Like our proposed method, they can also work
with entirely zero blocks and skip them. However, they do not apply any method to
increase those sparse blocks. To make the operation mode switching work, they also
propose a reconfigurable memory hierarchy and multi-sparsity convolution PEs. The
authors taped out a chip with 16×16 PEs and 170 kB on-chip memory to demonstrate
their architecture. Using an AlexNet as workload, they can show an energy efficiency
of 2.82 TOPS/W, which is a 1.8 × improvement to the state of the art. Finally, they
also evaluated workloads with various degrees of sparsity. They found that their
architecture reaches and energy efficiency of 62.1 TOPS/W at a sparsity of 5% For
their unit that enables online operation mode switching, they report a total area share
of 5%.

Another notable accelerator that exploits unstructured sparsity is SNAP by Zhang et
al. [280] from 2021. An overview of its architecture is given in Figure 5.7. SNAP uses a
novel parallel associative search to look for non-zeroweights and input activation pairs
in compressed, unstructured input data. Using a highly efficient search algorithm,
they report an average compute utilization of 75%. To benefit from compression for
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Figure 5.7: System overview of SNAP, a DNN accelerator that supports weight and
activation pruning, according to [280].

increased energy efficiency, their PEs, which operate on a channel-first dataflow, can
be configured in two modes to cut the write-backs of partial sums. In total, they can
reduce the number of write-backs by 22× compared to state-of-the-art accelerators. To
assess their design the authors built a prototype using 16 nm Complementary metal-
oxide-semiconductor (CMOS) technology. It features, 252 PEs as 7×3 array. At 16-bit
operands, their prototype reaches an efficiency of 21.55 TOPS/W with 10% dense
workloads. Using pruned ResNet-50 model they report an efficiency of 3.61 TOPS/W,
which equals 90.98 FPS throughput, while dissipating only 348mW. With synthetic
workloads they show an effectual energy efficiency of 1.67, 5.06, and 21.55 TOPS/W
on dense, medium dense (40% dense) and sparse (10% dense) weight and input
matrices, respectively.

The above introduced and described accelerators use distinct method to leverage
as much sparse computations as possible. Although they can benefit many sparse
computations, compression techniques usually come with a hardware and scheduling
overheads. Therefore, novel systematic approaches to increase and prune structured
sparsity in dynamically changing activations have to be investigated.
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5.4 Spex Exploration Framework: A Tool to
Systematically Increase Regular Sparsity in CNNs

As we stated before, regular sparsity in the form of blocks is rare in CNNs. However,
we have many elements in output feature maps that are close to zero (as, for example,
in Figure 5.1). By introducing a threshold, we can increase the sparsity. Therefore,
each output of a convolution operation, is compared to the threshold after activation
and either set to zero or left unchanged. With a well-selected threshold, those close to
zero values that only contribute a small fraction to the overall result, can be pruned as
well, with just an insignificant impact on the network accuracy. In addition, choosing
the right thresholds for each layer, yields more regular sparse blocks during inference
and hence our sparsity approach can return a higher efficiency.

However, the amount of threshold combinations for a recent CNN can become mas-
sive. Assuming, for example, 100 distinct threshold values for each layer in ResNet-50
[40], we end up with 7.52 · 1096 permutations, which makes exhaustive search unfea-
sible. Moreover, they are typically hard to pick, since the model faces various inputs
that lead to changing feature maps [161]. Hence, some input samples are impacted
more by a given threshold than others. Spex has the goal to explore this large design
space that opens between the threshold combinations and the network accuracy sys-
tematically. After exploration, it aims to return a well-balanced set of thresholds that
satisfies the design requirements and maximizes the amount of leveraged sparsity.

An overview of Spex can be found in Figure 5.8. As input, Spex takes a workload
description file. The workload file contains all the required information for the
exploration: First the actual DNN is defined, then the validation dataset on which the
exploration operates is specified. In addition to that, the description file also contains
information about the underlying hardware accelerator, e.g., the spatial dimensions
or the storage size for sparse blocks. Based on those inputs, Spex can start to explore
the design space. This processing will be described in depth in the following. After
the exploration found viable solutions, Spex returns the found set of thresholds, along
with the achieved savings in memory transfers and MAC operations, as well as the
final network accuracy.
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Figure 5.8: Components of Spex and its inputs and outputs. The tool operates on
a given workload description and explores thresholds for each layer by
applying a genetic algorithm. Found solutions and results are presented
afterwards in a comprehensive visual and text form.

5.4.1 Design Space Exploration

The centerpiece of Spex is an exploration algorithm that generates a set of thresholds,
which are then evaluated. This algorithm tries to minimize a set of objective functions
fn(x) with are subject to another set of inequality constraints gi(x) ≤ 0 [320]. The
goal of the optimization algorithm is to find input variable vectors ~x from the decision
variable space Ω = {x ∈ Rn} that minimize all objective functions. Elements of an
input variable vector represent a list of thresholds for each layer in the network. This
set is then evaluated, and the evaluator returns actual values for all objective functions,
as well as the magnitude of constraint violation. The relationship of the objective
functions and viable solutions is often represented using Pareto optimal solutions.
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Thereby, each Pareto optimal solution represents an optimal solution to the given
problem. In general, Pareto optimal solutions are characterized by the fact that no
other ~x ∈ Ω exists that yields better results on a combination of the objective functions.
These solutions are also referred to as non-dominated solutions, as no other solution
dominates them in the objective space. All found Pareto solutions can be visualized
using a Pareto frontier. Therefore, all solutions in the decision variable space are
plotted using a scatter plot and Pareto optimal solutions may be highlighted.

To guide the search for a beneficial set of input variables, we choose a Genetic Al-
gorithm (GA) as optimization and exploration algorithm. This kind of iterative
optimization algorithm picks for each evaluation a specific input variable vector,
which is then iteratively optimized towards minimization of all objective functions.
The GA starts with a randomly initialized start population. Each individual in this
population has a genome that represents the input variables. Then all individuals
are successively evaluated and annotated with a fitness function that consists of the
objective functions and constraint violations. Based on the fitness score, a selection
of the best individuals is taken into the next generation, along with some randomly
selected ones to support the convergence into a global optimum. Then this selection of
individuals represents the parents for the next generation. In this breed or crossover
step, the genomes of two or more parents interleaved. Typically, for each value in the
genome the value is taken from a randomly selected parent. Before the GA evaluates
this next generation, some randomly selected individuals undergo mutation. During
mutation, values in the genome are altered slightly on a random basis. This aims to
support convergence. This entire process of evaluation, selection, and mutation is iter-
atively repeated for multiple generations, ideally resulting in a very well-performing
end generation. The GA may be terminated after a certain number of generations or
if there is no notable change in the genome or input variables.

Besides the exploration algorithm itself, the evaluator plays a significant role. To
maximize the regular sparsity in the form of blocks and the energy-saving achieved
by pruning them, we evaluate not only one metric but multiple.

f1(x) = −max(sparse blocks)

f2(x) = −max(accuracy)

f3(x) = Einference

g1(x) = accuracymin − accuracy

(5.1)
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The design space objective functions and constraints are given in Equation 5.1. First,
our evaluator determines the number of sparse blocks that were created during
inference regarding the given thresholds. Therefore, it runs the entire inference using
the validation dataset and monitors the number of sparse blocks that are present and
the number of created blocks by applying the threshold to the given layer. This number
of sparse blocks is fed into the first objective function f1(x), that tries to maximize
their number. It has to be noted that the optimization algorithm constantly tries to
minimize all objective functions, and hence it is negated. Secondly, the evaluator
reports the algorithm accuracy. Straightforward metrics like Top-1 or Top-5 accuracy
for classification tasks are supported, as well as pixel-accuracy or Intersection over
Union (IoU) for object detection or semantic segmentation tasks. Again, we aim to
maximize the accuracy using the objective function f2(x). Third, we analyze the actual
energy savings that are achieved during inference through pruning entire blocks in
the output feature maps. The total inference energy is subject to minimization and is
represented by the third objective function f3(x). Most of the saved energy originates
from fewer off-chip memory accesses, but also from fewer computations. This metric
requires a hardware model, since the energy consumption only correlates with the
number of created sparse blocks but is not exactly proportional. For example, if an
output feature map is small, a large share of it can be stored in the local memory,
resulting in fewer off-chip memory transactions in the first place. Finally, we add one
inequality constraint g1(x) to the design space to drop solutions that do not meet a
minimum accuracy accuracymin set by the designer.

Other claims and goals of our approach are already represented by the three objective
functions above or do need any exploration in advance. For example, the claim
that our hardware extension adds only little area to the overall accelerator design.
Most components of the architecture remain unchanged regardless of the exploration
results. But the local cache that stores the position of sparse blocks, may grow with
the number of sparse blocks per layer. However, its size is directly proportional to
the number of sparse blocks, represented by f1(x).

Based on the three objective functions and the one constraint, we set all the parameters
required for a directed parameter search. During evaluation, all three objective
functions are treated equally, however, it is also possible to weight them.
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5.4.2 Implementation details of Spex

Spex is entirely implemented in Python to ensure compatibilitywith commonmachine
learning and DNN frameworks. As stated before, Spex takes as input a workload
description file that contains all required information. An example of such a file is
given in Listing 5.1. Workload files are implemented using the data-serialization
language YAML, which makes reading for both humans and machines easy. Our
decoupled workload files, allow us to run multiple explorations with different pa-
rameters independently. Since the files can be generated automatically, we can, e.g.,
run parameter sweep to find the best GA parameters. First, the problem_function
defines that we are dealing with an exploration problem for regular sparsity. Most
interestingly are the model and exploration sections. The first describes the kind of
DNN workload that is used as basis for exploration. Here also the according function
to evaluate the accuracy is given. The latter defines all relevant parameters for the GA,
like the population size or parameters for mutation and crossover. This section also
defines the dataset on which the exploration is evaluated, the user-defined minimum
accuracy that is evaluated in g1(x) and a set of predefined parameters that create
individuals in the initial population with a given genome. The latter aims to accelerate
the optimization process by introducing individuals with known solutions. The user
can also provide a set of extra arguments, which will be passed to the problem when
it is initialized. Here, we can specify, for example, the block size or how the thresholds
picked from the variable space, to accelerate the exploration.

Listing 5.1: Exemplary workload description file.
1 workload:
2 problem:
3 gpu_id: 1
4 problem_function: sparsity_problem
5
6 model:
7 type: yolov5s
8 accuracy_function: detection_accuracy
9

10 exploration:
11 nsga: # Setup the parameters for your nsga algorithm
12 pop_size: 20
13 offsprings: 20
14 generations: 20
15 mutation_eta: 20
16 mutation_prob: 0.9
17 crossover_eta: 30
18 crossover_prob: 0.7
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19 ftol: 0.04
20 minimum_accuracy: 0.33 # accuracy constraint
21 predefined_parameters: [0.005, 0.01] # predefined threshold or

quantization bit
22 datasets:
23 exploration:
24 type: cifar10
25 sample_limit: null # number of validation to test
26 batch_size: 128
27 extra_args:
28 discrete_threshold_steps: 200
29 discrete_threshold_method: linear
30 threshold_limit: 0.15
31 block_size: [8,8]

At the start, the exploration script of Spex reads this workload file and sets up the
optimization algorithm. As exploration algorithm, we choose in particular the well-
established Non-dominated Sorting Genetic Algorithm (NSGA)-II [308], which is a
GA that shows great performance on continuous multi-objective optimization tasks.
The algorithm itself is taken from the Pymoo Python library [305]. Pymoo allows
selecting from a wide range of different optimization algorithms, which are available
in this library. In contrast to a traditional GA, NSGA features a modified survival and
crossover function that enables faster convergence. NSGA-II extends a traditional GA
with two aspects. First, it is elite-preserving, i.e., a set of non-dominated solutions will
always be kept for the next generation. Second, through sorting found solutions for
non-dominance the computational complexity is reduced from O(MN3) to O(MN2)

with M being the number of objectives and N the population size.

After the exploration algorithm is initialized, we can continue to set up the neural
network model. Within Spex, we support PyTorch models, since the framework
is extemely popular and supports a wide range of DNN operations and models.
To evaluate the trade-off between increased regular sparsity and model accuracy,
Spex has first to alter the PyTorch model. Therefore, we replace all DNN layers
in the model with counterparts that support our regular threshold-based pruning
flow. Each layer gets two new parameters that can be changed by the exploration
algorithm, namely the threshold value and the block dimensions. From a functionality
standpoint, in particular the forward function, which is called during inference in
PyTorch, is changed. This allows us to manage any DNN workload without the need
for expensive retraining. In contrast to the hardware implementation, we enrich the
regular sparsity before the layer is computed, which is implemented using PyTorch,
since CONV layers and ReLU layers are not fused.
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Altered DNN layers now perform the previously described process. Foremost, the
input feature map has to be present in a 2D matrix form. Hence, for CONV layers, an
im2col transformation is applied, while dense or Long-Short Term Memory (LSTM)
layers do need any transformation. Then the altered forward function divides this
matrix into blocks of a predefined size. In this process, batches are handled indepen-
dent of each other, since thresholds should be determined for each input separately.
If necessary, the 2D matrix is padded with zeros to ensure even tiling into blocks. In
the next step, the sum of each block is computed. Before each sum is individually
compared to the threshold parameter, the algorithm counts the number of already
present sparse blocks for later evaluation. Afterward, all blocks with a sum less than
the threshold are set to zero. With this altered forward function, we can directly
observe the impact of created sparse blocks during the inference process. For example,
how newly created sparse blocks, influence the performance of the next layer. By
changing merely the forward function, other layer types may be added later without
the need for substantial changes.

Now, that all components of Spex are initialized, we can start the actual parameter
exploration. The GA starts with an initial population. Individuals in this population
are evaluated one after another. During the evaluation, each layer is annotated with a
threshold value taken from the genome. Then, an inference of the provided dataset
with the altered DNN starts. Therefore, the exploration task calls for each individual
an accuracy function that is specified in the workload description. In addition, it
computes the energy consumed by the memory accesses for the inference and the
number of created sparse blocks.

These three variables provide all the required information for the GA to iteratively
find an optimal set of thresholds. Over multiple populations, the GA now tries
to minimize the three objective functions. The algorithm terminates either when
enough feasible solutions are found or when the input variable vector only changes
slightly. Finally, Spex stores all found solutions, the history with each generation’s
population and the corresponding objective function results in a results file, which is
a serialization of all data using Python’s pickle package.

As stated before, the entire design space for a modern CNN workload with typically
more than 50 layers is vast. Even using a GA, finding a viable set of thresholds
can consume a huge amount of time. Therefore, Spex supports various features to
accelerate the exploration itself and to systematically shrink down the design space.
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Since the inference of the entire dataset for each single individual in each population
can already take a huge amount of time, Spex can work with partial datasets. In
this case, only a subset instead of the entire validation dataset is used to determine
the accuracy. Thereby, Spex ensures that all classes of the dataset are covered and a
considerable number of samples per class is used. In addition, it shuffles the dataset for
each iteration to factor in a large variety of the dataset. On the bare computational side,
Spex supports inference on multiple GPUs. Moreover, it supports parallel inference
through spawning workers on several High-Performance Computing (HPC) nodes.
This is implemented with the widely used parallelization library Dask11.

Besides parallelization of the algorithm and individual explorations, we can also apply
thresholds among individuals using discrete steps. In general, this discretization
shrinks the design space and speeds up exploration. Steps can be applied in linear
or logarithmic form. The latter puts more emphasis or more discrete steps on small
thresholds. Looking at small thresholds more in detail is especially crucial, since
large thresholds applied to sensitive layers may immediately lead to large errors and
consequently low accuracy, as the error propagates through the entire DNN. Hence,
it is beneficial to explore those small threshold values in a more fine-grained way.
Besides discrete steps, we can also set an upper bound for the threshold values. This
can be determined empirically. For example, the limit may be set to a value where
the algorithm error becomes so large that the model accuracy is zero. This removes
all threshold combinations from the design space that will result in zero accuracy
anyway.

As another method to accelerate algorithm convergence, we can add individuals to
the starting population of the GA that have known solutions. For instance, we can add
an individual with thresholds set close to zero that result in a small degradation. This
individual then supports the convergence, as sensitive layers are already considered by
small threshold values. Whenmating with this individual happens, this characteristic
of sensitive layers might be carried on into the offspring. For less sensitive layers,
mutation and further mating will allow for finding the maximum possible threshold
in a bottom-up fashion. However, this has to be done carefully so that the algorithm
does not stick to these solutions and ultimately does not find a good set of thresholds.
Therefore, other parameters like the mutation and crossover rate have to be picked
well to allow the GA to break out of this initial solution.

11 https://www.dask.org/
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Exploration within Spex happens in 16-bit floating-point precision, which allows us
to use the inference provided by PyTorch without changing the underlying imple-
mentation. Most DNNs, however, utilize quantization to reduce the computational
complexity and memory footprint. Quantization has an impact on the number of
sparse blocks that can be found during inference. But quantization also increases the
number of already present sparse blocks. For example, activations that are already
close to zero, will become zero after quantization. Consequently, blocks with small
elements will become sparse. For all other elements in the output feature map, the
found thresholds have to be quantized as well. Here, the same quantization scheme
has to be used to ensure the expected behavior. This can be done after Spex has found
thresholds in floating-point precision.

After the exploration has terminated, Spex offers some tool for further evaluation and
visualization. Therefore, Spex features decoupled scripts, which read a given result
file. To visualize the results, Spex can generate various plots. Most interestingly are
scatter plots that show the correlation of the objective functions. This kind of plot
reveals, for example, how an increased number of sparse blocks impacts the network
accuracy or the energy consumption. Besides that, plots that show a breakdown of the
relative number of created sparse blocks per layer for all feasible solutions give details
about which layer is most tolerant to our pruning method. Similarly, we can also
investigate the magnitude of thresholds for each layer. In addition to visualization
tools for single explorations, Spex also offers scripts to merge multiple Design Space
Explorations (DSEs). For example, looking at runs with different block sizes can
support the hardware design process, by choosing an accelerator size that combines
a good pruning ratio with a high performance. Moreover, combining multiple runs
with different GA configurations helps to tune important parameters of the algorithm
like the mutation or crossover rate and probability.

5.4.3 Energy estimation using Timeloop and Accelergy

Two of the three objective functions f1(x) and f2(x) are covered by altering the
PyTorch forward function, as described in the previous section. However, the objective
function to reduce consumed energy during inference (f3(x)), is not considered yet.
While PyTorch can report model accuracy and the number of created sparse blocks,
it cannot estimate the inference energy, as this strongly depends on the underlying
hardware. Hence, it is determined by Timeloop [163] coupled with Accelergy [169].
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As stated before (see Subsection 3.2.1), Timeloop is a widely used tool to find an opti-
mal mapping of a DNN workload onto a given hardware accelerator. Since the actual
mapping of the workload has a strong impact on the number of memory accesses, the
mapping has to be fixed beforehand. The corresponding energy consumption caused,
among other things, by memory transactions is computed by Accelergy. Coupled
with the CACTI plugin, Accelergy can give a close estimate of the energy consumed
in memories. Accelergy and CACTI thereby use the 45 nm technology library, which
is provided as open-source.

The energy saved through our sparsification method in particular depends on the
size of the local memory. If more data can be kept local between layers, less offloading
happens and compressing sparse blocks has a smaller effect. In contrast, layers that
cause a lot of offloading yield larger energy savings from our approach, even if the
relative number of sparse blocks is the same.

To estimate the actual energy savings, Spex runs performs an entire mapping and
tiling process using Timeloop in advance. Since, Timeloop only supports mapping
of a single layer, Spex triggers a mapping for each layer individually. Timeloop then
reports for each layer valuable information for our energy estimation. First, the
number of off-chip and local memory accesses, but compute cycles required in the
PE array to process the DNN workload. Accelergy transforms these numbers into
the energy needed to perform the given action. All relevant energy information is
collected in a Comma Separated Values (CSV) file. When Spex evaluates the objective
functions of a threshold combination, this CSV file is read again to compute the energy
this specific pass consumed. Therefore, it deducts the number of created and present
sparse blocks form the number of off-chip memory transaction, if these values are
offloaded otherwise.

Sparse blocks that otherwise would have been stored in local memories may free
up resources in the local memory. However, this case is not covered by Spex and
Sparse-Blox, as this requires expensive changes to the scheduler. For example, the
accelerator then has to decide on the fly whether other data can be placed locally. This
is contrary to our design goal, which is to have a low-overhead hardware extension
rather than an overly complex one.

Besides the energy, Accelergy can also give an area estimation. Spex uses this estima-
tion to compute the area overhead the later hardware extension Sparse-Blox adds to
the design. Therefore, Spex adds all components of Sparse-Blox to the architecture
description. This includes the cache that stores found sparse blocks from on layer
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to the next, an adder tree and the threshold comparison. The cache is the largest
contributor the area overhead. Depending on the maximum number of sparse blocks
that are found in a layer, we can define the size of this cache. The area estimation itself
does not influence the exploration results, but it is useful to compare our approach to
other pruning methods in terms of the area overhead.

5.5 Sparse-Blox: A Hardware Extension to Prune Regular
Activation Sparsity

The advantage of our pruning approach becomes apparent when it is integrated in a
CNN hardware accelerator, e.g., for low-power embedded vision applications. Our
hardware extension Sparse-Blox can be added to common hardware accelerators
like systolic arrays or vector processors. As stated in Section 2.5, DNN inference is
dominated by a series of matrix-matrix multiplications. Hardware accelerators can
leverage their spatially independent computations by connecting hundreds of PEs
in mesh. This allows to reuse operands like weights or inputs in neighboring PEs,
reducing the number of expensive load and store operations. These operations cause
DRAM movements, which not only increase latency, but also have an impact on the
energy consumption.

Typical systolic array sizes are power of two such as 8×8, 16×16 and so on depending
on the available area and energy budget. Vector processors typically also feature, e.g.,
8 or 16 parallel lanes. But even if one works with a large array, e.g., of 64× 64, the
matrix multiplication of a convolutional layer must be broken down into smaller tiles.
As an example, the second convolution layer in the first residual block of ResNet-
50 [40], has the following dimensions for input and weight matrices: 576× 3136 and
576×512 This requires 3528 or 1 806 336 passes on 64×64 or 8×8 arrays, respectively.
Our activation pruning method aims at these numerous passes on a given hardware
accelerator. With the thresholds found by Spex and the hardware introduced by
Sparse-Blox, we can reduce the total number of passes by pruning them dynamically
during inference. In addition to fewer required computations, Sparse-Blox can also
compress those sparse blocks. This helps to use the limited and expensive local Static
Random Access Memory (SRAM) memory more efficiently and reduces off-chip
memory transactions, which in turn saves energy.
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Figure 5.9: Proposed hardware accelerator extension Sparse-Blox that enables our
regular activation pruning scheme to save off-chip memory transactions.
Only a few elements have to be added to an existing accelerator: a cache
to store sparse blocks, freeing up valuable storage in the local memory,
an adder tree to determine the block sum and a logic to compare the sum
with the threshold previously defined by Spex.

As we stated before, Sparse-Blox, the hardware extension to enable inexpensive
pruning of regular activations in CNNs, can work with most common hardware
accelerators. An overview of the hardware is given in Figure 5.9. Our hardware
accelerator leaves the typical components of hardware accelerators untouched, and
only adds a few components, which are highlighted in the figure. All components of
are Sparse-Blox are inserted into the data path from the PEs to the local memory. This
allows Sparse-Blox tomonitor themagnitude of intermediate results and consequently
prune entire blocks.

Its function is outlined in Pseudocode 5.2 and described in the following. At the
beginning, when the local cache that holds pruned blocks is empty, we compute the
matrix multiplication as usual. Thereby, a sum for each block is accumulated by an
adder tree, which is the first component that is added to the hardware accelerator.
This sum is compared to the threshold that has been defined by Spex beforehand.
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Pseudocode 5.2: Pseudocode representation of Sparse-Blox’s dataflow.
Data: Input feature map: Imap (im2col transformed)
Result: Output feature map: Omap

1 Iblocks ← split_in_blocks(Imap)
2 foreach block ∈ Iblocks do
3 if available_in_cache(block) then /* check whether block was pruned before */
4 Omap ← 0 /* Place 0-block in output */
5 continue
6 out = gemm(block, W) /* Do matrix multiply */
7 sum = compute_sum(out) /* Compute sum using adder tree */
8 if sum ≤ threshold then
9 store_to_cache(‘0-block’) /* Prune and add cache entry */

10 else
11 Omap ← out /* No pruning, store result */
12 end

Thresholds are stored in a simple register and are configured by the General-Purpose
Processor (GPP) that controls the accelerator via AXI-Lite. It is also conceivable to
add a buffer instead of a simple threshold register, to also prefetch thresholds for
upcoming layers. If the comparison of the sum is less than the threshold, pruning
happens. In this case, a multiplexer is set to output a ‘0’-entry. Additional control
logic, which is not shown in the figure, discards the partial results. Instead, an entry
in a dedicated cache, which stores all positions of sparse blocks, is created. Since, this
cache does not need to recall all elements in a block, but only its position, an entry
to this cache requires much less memory storage, than an entire block. This is how
Sparse-Blox can compress data on the fly during inference. For example, an 8×8 block
requires at least 64 words in the local memory, while one compressed ‘0’-block only
needs two words for the corresponding x and y coordinates in the two-dimensional
output matrix. A sparse block that is not stored in the local memory additionally
provides space for further data that would otherwise have been offloaded. As a
result, Sparse-Blox can also reduce the number of energy-expensive off-chip memory
transactions. Of course, we also need to adopt the control logic when the PE array
request data that is not present in the local memory but in the cache. Therefore, the
cache is logically located before the local memory. Consequently, a read request is
first addressed by the sparse block cache. If the requested data is found in the cache,
the entire computation can be skipped as all elements of this partial operand are zero.
By skipping entire computational blocks, Sparse-Blox can also reduce the number of
computations through straightforward regular pruning and speed up the inference.

LEVERAGING AND INCREASING SPARSITY IN CNNS FOR ENERGY EFFICIENCY | 171



If requested data is not available in the cache, the computation runs like without
modification by Sparse-Blox: Data is loaded from the local memory and computed in
the usual way.

5.6 Evaluation and Discussion

We evaluated the performance and energy saving that we could achieve with Spex
and Sparse-Blox extensively. As workloads, we chose Computer Vision (CV) tasks, in
particular, CNNs, since they are computationally expensive, have large memory foot-
prints and are crucial to many modern tasks like autonomous driving or automated
manufacturing. First, we will show how we use Spex to find optimal thresholds for
each layer that maximizes pruning and maintains a high accuracy. As stated before,
the design space can grow incredibly large, therefore, we show how we tuned Spex
to yield satisfactory results in a short amount of time. After that, we will discuss the
found threshold combination for various workloads in terms of their distribution and
magnitude. Once we found feasible thresholds, we will move on to the hardware
part. Here, we will look at the area aspects of Sparse-Blox in comparison to other
accelerators.

5.6.1 Selected Workloads

Most applications that require sophisticated environment perception need some form
of CV to process camera inputs. Currently, one of the most accurate methods are
CNNs. However, these neural networks are not only computationally demanding, but
their memory requirements are also huge. Due to the rich information that is encoded
in images, multiple filters have to run in parallel over the same image all producing
intermediate feature maps, requiring memory. Typically, these large intermediate
feature maps have to be, at least partially, offloaded into an off-chip memory, causing
many energy expensive transactions. Since our pruning approach aims at reducing
those transactions, CNNs are a perfect candidate workload for Spex and Sparse-Blox.

As specific workloads, we chose networks and corresponding datasets that are com-
monly used as benchmarks: ResNet-50 and YOLOv5s. We picked these CNNs in-
tentionally for comparability with other works, although the overall sparsity can be
much larger depending on the application. For instance, far-range LIDAR evaluation
shows a lot of sparsity in feature maps [49]. Details on both workloads can be found
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Parameter ResNet-50 [40]
with ImageNet-1K [1]

YOLOv5s [84]
with COCO [69]

# Explored Layers 52 213
# Parameters 25.56million 7.23million
Input size 3× 224× 224 3× 640× 480

Filter sizes 3× 3, 1× 1, 7× 7 3× 3, 1× 1, 6× 6

Largest feature map 111× 111× 64 320× 240× 32

Baseline accuracy 80.86% (Top-1) 37.4 mAP val(0.5 : 0.95)

Table 5.1: Workload details used for evaluation with Spex and Sparse-Blox.

in Table 5.1. The first network, is extremely popular in the area of image classification
and is trained on the ImageNet-1K dataset. The ResNet-50 model is a pretrained
version, which is provided with PyTorch, allowing for great comparability. It achieves
a baseline Top-1 accuracy of 80.858%. YOLOv5s makes a great addition, as it is a
CNN for objection detection rather than image classification. The small configuration
of YOLOv5 is selected for its great accuracy at a reasonable size. It is trained using
the COCO dataset. Since, COCO has fewer classes than ImageNet, it might be harder
to exploit large amounts of sparsity in YOLOv5s. Similar to ResNet-50, a pretrained
version of YOLOv5s is used from Ultralytics12. Our exploration will analyze the
mean Average Precision (AP) (mAP) in the IoU confidence interval 0.5 to 0.95 as
accuracy metric. The network’s baseline accuracy is 37.4 mAP. In all experiments, we
set an appropriate lower accuracy bound, which maintains a high model accuracy
and maximizes pruning.

5.6.2 Evaluation Setup

We performed extensive experiments using Spex to understand the vast design space.
Therefore, we investigated the impact of different block sizes, threshold combinations,
GA parameters and CNN workloads. To cover a range of hardware architectures we
looked at block sizes of 4× 4, 8× 8 and 16× 16, to represent embedded and edge
systolic array accelerators, as well as at 1× 16 with is common for vector processors.

12 https://github.com/ultralytics/yolov5/ Tag: v7.0, Accessed 2023-10-17
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In total, we analyzed over 400 individual experiments. Our results are generated with
the support of a cluster system that features ten NVIDIA Ampere A100 GPU nodes.
The total runtime for all experiments summed up to about 160 hours.

Algorithm Constraints

The main objective of our exploration using Spex was to find a set of threshold values
that meet two criteria: to keep the accuracy as high as possible, but at least over a
given lower bound, and to maximize the number of sparse blocks created overall.
Although these factors are contradictory, the goal is to find sweet spots in the complex
design space. In order for the exploration to yield viable solutions in a reasonable
amount of time, we have to constrain and shrink the design space.

As stated before, DNNs may be extremely sensitive to large threshold values, since
errors propagate through the network. At first, we added a constraint to limit the
threshold maximum. To identify this, we gradually increased the threshold value for
all layers in both workloads and observed the point at which the network delivers
zero accuracy on the validation dataset. Based on this, we left a 50% margin on top of
the threshold to allow for higher thresholds in less sensitive layers. As a result of this
process, we set the upper threshold limit for ResNet-50 to 0.8 and for YOLOv5s to 0.1.
For block sizes of 4× 4 we increased the threshold limit for both workloads by 50%,
since smaller blocks can handle higher threshold values. In terms, of discretization
of the threshold steps, we decided to use logarithmic steps. Since they, as described
previously, help to explore small threshold values more in-depth. In our experiments,
we used 400 discrete thresholds steps.

To reduce the exploration time, we utilized the possibility of Spex to introduce indi-
viduals to the stating population of the GA. We picked individuals with the following
threshold value with the corresponding accuracy for all layers: For ResNet-50 we
chose individuals with thresholds of 0.15 and 0.25, resulting a Top-1 accuracy of
73.8% and 55.6% when using 8 × 8 as block size and in 70.0% and 31.5% using
16× 16 blocks. For YOLOv5s we picked 0.005 and 0.01 yielding scores of 32.53 and
23.65 mAP using 8 × 8 blocks and scores of 29.05 and 16.31 using 16 × 16 blocks,
respectively. The first individual for each workload yields a comparability good accu-
racy and the last a not acceptable accuracy degradation. As a result, those individuals
form an upper and lower bound for potential threshold values. However, these are
not hard bounds, as the algorithm can still break out using mutation and crossover.
Only the aforementioned upper threshold bound represents a hard limit.
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375).

Figure 5.10: Result space for mutation and crossover parameters of the GA with 15
individuals and 25 generations. Evaluated on a ResNet-50 with 16× 16
blocks.

Finally, to speed up the evaluation of individuals, a subset of the validation dataset
is used in Spex. Hence, we set the sample limit to 4096 validation data samples for
ResNet-50 and 2048 for YOLOv5s. Those sample limits cover all classes that are present
in the corresponding datasets. It has to be noted that a randomly selected subsetmight
accidentally pick samples, which are more or less robust to created sparsity, leaving a
small uncertainty in the accuracy. However, a subset of the validation dataset still has
a statistical significance, and we can evaluate selected non-dominated points with the
entire dataset.

NSGA-II Tuning

Once the design space is sufficiently constrained, we can tune the GA to achieve
feasible solutions quickly. GA parameters typically encompass factors, such as mu-
tation and crossover rate and probability. But also straightforward parameters like
the population size and the number of offsprings per crossover have an impact on
the convergence speed. In addition, the termination criterion plays an important
role. The algorithm should be able to terminate, when the found set of thresholds
only changes slightly among generations. To determine adequate values for those
parameters, we first perform an exhaustive search. Therefore, we run a sweep with
different GA configurations and observe how long it takes for the GA to converge.

The results of this sweep are shown in Figure 5.10. For four different mutation factors
and two crossover probabilities, we show the number of generations it takes for all
individuals to be considered as valid and the total number of feasible solutions after 20
generations with 15 individuals. Individuals are considered valid when the accuracy
is one percent point below the baseline. All those experiments are performed with the
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measures described above to speed up the exploration. In general, a larger mutation
factor results in less deviation from the individual’s original genome. At first glance,
we saw that a larger mutation factor and a smaller crossover probability, yielded
better results. These results can be explained by the artificially introduced feasible
individuals to the starting population, which then stick with the population until
the end. Hence, with a lower mutation factor and smaller crossover probability, the
algorithm focuses more on these individuals and in the worst-case sticks with them
until the last generation. However, these individuals make the convergence much
faster and allow the GA to produce valid solutions in a short amount of time.

As a result, we set the following parameters, which balance convergence speed and
diversity of solutions: the mutation factor is set to 20 and the crossover probability
to 0.9. This configuration is applied for all following experiments. In addition, in all
experiments our GA evaluated a population of 20 individuals over 25 generations, in
total 500 individuals. The number of offsprings was fixed to 20 so that the population
is not growing. This equalizes runtime and allows numerous distinct solutions.

Hardware Model

To see how our pruning method increases the energy efficiency, we have to look at
the energy consumption of an architecture that uses Sparse-Blox. Moreover, to prove
our claim that Sparse-Blox adds fewer area to the DNN accelerator compared to other
sparsification methods, we have to investigate its area utilization. To get both values,
we added a hardware model in Timeloop [163] of a systolic array, which has the same
number of PEs as it is configured in Spex. The systolic array itself features an on-chip
buffer memory with 256 kB, a register for each PE and 128 24-bit accumulation buffers.
Timeloop is coupled with Accelergy [169] to get area and energy estimates. For our
experiments, we picked Timeloop together with Accelergy instead of our approaches,
which were introduced in the previous chapter (Chapter 4), to allow for comparison
and benchmarking with other works. Besides the systolic array itself, we added all
necessary components of Sparse-Blox: A configurable cache, whose size is determined
by the used benchmarks and systolic array size as well as by the maximum number
of found sparse blocks per layer by Spex. Furthermore, we added an adder tree for
sum computation and the decision logic.

With all the components in place, Timeloop can compute an efficient mapping for
the given DNN layer. This also yields the number of required off-chip memory
transactions and the utilization of the local memories, which are both particularly
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interesting when we want to investigate how much energy our pruning method can
save during inference. Therefore, we looked into the number of sparse blocks Spex
can create for a given layer. To assess the energy consumption with our method in
place correctly, we had to keep one consideration in mind. We cannot simply reduce
the number of off-chip transfers by the number of sparse blocks, but also have to
look at the local memory. Sparse blocks do not take any space in the local scratchpad
memory and consequently blocks that would otherwise have been offloaded can stay
in the local memory. To account for that, we effectively ran Timeloop twice, once
with the entire workload and then with a workload whose dimensions are shrunk
by the number of found sparse blocks. When running Accelergy in the second run,
we added extra accesses to the cache for each access to the local scratchpad, and for
each write into the scratchpad we counted an action in the adder tree and decision
logic. By doing that we could investigate the energy using estimates, without the
need to synthesize the architecture and run an entire Register Transfer Level (RTL)
simulation, which makes the design process much faster.

5.6.3 Number of Found Sparse Blocks and Savings in during
Inference

The most relevant finding of Spex is the number of sparse blocks created with a given
set of thresholds and how this impacts the model accuracy. More created sparse
blocks allow skipping more computations and are saving more memory transfers
during inference. However, we did not want to sacrifice too much prediction accuracy,
therefore, Pareto-optimal points have to be evaluated regarding the requirements
of the application. For ResNet-50 and YOLOv5s all feasible solutions are shown in
Figure 5.11a and Figure 5.11b, respectively. The figure shows the average number of
created blocks during inference of the entire validation dataset, using a block size
of 8× 8. The Pareto frontier is shown through the non-dominated solutions in light
blue.

Both plots reveal findings that support our initial hypothesis: The correlation between
created sparse blocks and the drop in accuracy is not linear, but there are sweet spots.
Looking at the commonly used image classification CNN ResNet-50, which has in
total 345 400 8 × 8 blocks per inference, Spex could create on average 52 349.4 new
sparse 8× 8 blocks per inference. This equals to 15.2%. Thereby, the accuracy of the
algorithm dropped by merely 2.5 percent points. Before our pruning approach was
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(a) Solutions for ResNet-50 with block size 8 × 8 tested on 4096 samples. An accuracy
constraint of 70% yields an average of 52 349.37 blocks per inference created with an
accuracy of 78.34%, which is marked in the plot. The accuracy constraint of 70% is shown
with a dashed line.
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(b) Solutions for Yolo-v5s with block size 8×8 tested on 2048 samples. An accuracy constraint
of 0.3 mAP yields an average number of 15 728.78 blocks created per inference with an
mAP of 0.341 The accuracy constraint of 0.3 mAP is shown with a dashed line.

Figure 5.11: Pareto optimal solutions, showing the accuracy over the amount of sparse
blocks created per layer.
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applied, ResNet-50 already has on average 4.1% sparse blocks. Considering all sparse
blocks, an inference of ResNet-50 yielded on average 19.3% regular sparsity, with 8×8

blocks. As a result, we could save 814million MAC operations on average in a single
inference. Looking at thememorymodel, we reduced transfers to the off-chipmemory
from 53.6million down to 43.2million. This equals an absolute of 41.37MB read and
stores considering a 32-bit floating point format. For YOLOv5s, with a total of 945 560
8× 8 blocks, Spex could create 15 729 or 1.7% sparse blocks with an accuracy drop of
1.2 mAP . Combining this with the already present sparsity, our pruning approach
saved in total 112million or 1.81% of all MAC operations. The corresponding off-chip
memory transactions on an 8× 8 systolic array could be lowered from 71.96million
to 70.74million, resulting in 4.89MB fewer data movement.

Besides the memory transactions and MAC operation savings, we also have to look
at the energy savings. Therefore, we looked at the energy estimation Accelergy
provides when applied to Timeloop’s mapping. We then added Sparse-Blox to the
architecture description and accounted for the reduced number of MAC operations
and memory transfers. For ResNet-50 Accelergy estimated on an 8× 8 array, a total
energy of 9.96mJ. Sparse-Blox could lower this to 8.06mJ, saving 19.1%. Considering
YOLOv5s mapped on the same 8× 8 array, with a total inference energy of 15.84mJ,
our approach reduced the energy by 1.76% down to 15.6mJ.

For ResNet-50 the relative amount of sparsity is close to the number of saved memory
transfers. However, in YOLOv5s shows a gap. This can be explained with the size of
the intermediate feature maps. Since YOLOv5s has smaller feature maps, more inter-
mediate results can be kept local to the accelerator, and during a ResNet-50 inference
more data has to be offloaded. Here we could benefit more from compression of this
offloading. However, this finding indicates that we can also choose a hardware archi-
tecture with smaller local memories. Then we can benefit from a smaller accelerator
area, and Sparse-Blox prunes and compress more off-chip memory transfers.

Besides 8 × 8 blocks, we analyzed other block sizes for common accelerators. Fig-
ure 5.12 shows the number of sparse blocks that are present before and after sparsifica-
tion with Spex for our two workloads and four different block sizes. We observed that
the smaller the block size is, the more sparsity Spex could create. This is because in
this case the feature map can be divided into smaller and considerably more portions.
Each of them in turn stores less information and pruning them leads to less impact
on the resulting accuracy. Hence, smaller blocks are more robust to sparsification
and pruning.
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Figure 5.12: Average sparse blocks per layer that were present before and after thresh-
olds were applied by Sparse-Blox. Independent of the workload, a higher
amount of sparse blocks is observed the smaller the block sizes become.

For example, when comparing 4 × 4 and 16 × 16, each block covers 16 and 256
elements, respectively, 16× more. However, in terms of sparsity before sparsification
on a ResNet-50 workload, 4 × 4 blocks yielded 12.01% and 16 × 16 0.88% sparse
blocks of the total share of blocks. Even after the threshold search by Spex with a
1% accuracy constraint, 16× 16 could only prune 13.86% of all feature maps, while
4× 4 achieved up to 40.60%. Looking at block sizes suitable for vector processors like
1× 16, we saw that this block size even outpaces 4× 4 blocks, despite covering the
same number of elements in the feature map. This observation can be again explained
by the block size. Narrower blocks in the flattened or im2col transformed feature
maps affect less information dense portions of the whole feature map.

Finally, to get an impression in which layer our sparsification method is the most
beneficial and what layers were more robust to pruning, we also looked at the distri-
bution of sparse blocks for each layer. Like Figure 5.12, Figure 5.13 shows the number
of sparse blocks present without sparsification with Spex and the number of blocks
Spex was able to create. Here, we looked at all Pareto-optimal solutions of ResNet-50
with a block size of 8 × 8 that adhere a 1% accuracy constraint. Very clearly, we
can see big differences in between layers. Some showed large sparsity, while others
did not. The same goes for the created sparsity through Spex. When looking at the
layer characteristics, we saw that the layers with large sparsity predominantly have
3× 3 convolution kernels, and the ones with less sparsity have kernel sizes of 1× 1.
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Figure 5.13: Breakdownof naturally occurring and created sparse 8×8 blocks itemized
by layer for ResNet-50.

This can be explained by the underlying im2col transformation. With smaller kernel
sizes, one dimension of the transformed feature mapmatrix is significantly smaller, as
kernel size contributes squared. Dividing smaller matrices into blocks results in fewer
blocks overall. In addition, each of these blocks contains more information. Thus,
8× 8 sparse blocks impact many results at once, resulting in either lower thresholds
and fewer sparse blocks or worse accuracy.

In summary, the designer still has to carefully determine the size of the blocks de-
pending on the hardware architecture and the network topology. Spex, with all the
insights it can generate, helps to make this design decision. Since the size of sparse
blocks is equal to the size of the accelerator array, smaller blocks and arrays might
lead to a reduced performance. At the same time, more sparsity that can be achieved
by smaller blocks require more cache memory and thus more area.

5.6.4 Comparison to state-of-the-art Sparse DNN Accelerators

The main claim of our approach is a straightforward integration into common hard-
ware accelerators, as well as a relatively small area overhead. To prove this, we
performed an area overhead comparison of Sparse-Blox with other DNN accelerators
working on irregular sparsity. We selected the well-established work SCNN [151]
from 2017, as well as the more recent accelerators STICKER [279] and SNAP [280].
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SCNN [151] STICKER [279] SNAP [280]

Sparsity module
Reference 24.8% 4.76% 12.5%
Sparse-Blox 4.95% 1.73% 4.81%

Overhead reduction 5.01× 2.75× 2.59×

Table 5.2: Area overhead comparison of Sparse-Blox against other state-of-the-art
sparse DNN accelerators.

Those related works offer a wide range of different combinations. However, as none
of them are available as open-source, we modelled each accelerator in Accelergy [169]
to get an impression of the area consumption. As area model, Accelergy uses the
same 45 nm component library as for the energy estimation above. Memory energy
and area are generated with CACTI.

To get the area overhead Sparse-Blox adds to state-of-the-art accelerators, we first
modelled the base accelerator in Accelergy according to the paper. Then we added the
components of Sparse-Blox, a cache, an adder tree, and the corresponding decision
logic. We matched the size of sparse blocks to the organization of PEs in the reference
accelerator. The size of the cache that holds sparse blocks was set according to the
results of the explorationwith Spex, since thenwe can estimate the space requirements.
The results of this qualitative comparison can be found in Table 5.2. We present the
overhead in terms of percent it added to an accelerator without any sparsification
method in place. The reference overhead was taken directly from the paper.

Since all three accelerators work on different PE array dimensions and feature different
sizes of on-chip memories, which largely contribute to the area, we give the relative
numbers in the table for better comparison. SNAP, the most recent work in our study,
requires 12.5% for their sparsification method. To determine the size of the caches,
we then explored the impact to regular pruning on the accuracy. Considering the
multiple 3× 7 PE arrays of SNAP, we could find a solution that pruned 24.1% of all
blocks in ResNet-50 with 1% accuracy drop. In total, this equals to about 312 000
blocks for an entire inference or about 6000 per layer. Consequently, we set the cache
size to hold 6144 entries. With this cache in place, Sparse-Blox can enable pruning in
this PE configuration while using about 2.5× less area. As a result, the area overhead
is only 4.81%.
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Looking at STICKER, its sparsification module accounts for 4.76% area overhead. The
accelerator features a 16× 16 PE configuration. As we saw before, the found number
of blocks that can be pruned for ResNet-50 is lower compared to smaller block sizes.
However, we could still prune about 500 blocks per layer. Hence, we added a cache
with 512 entries to our model for comparison, and Accelergy returned 1.73% extra
area, 2.75× less. The third reference accelerator, SCNN, has a compression module
that adds 24.8% area. With its 4× 4 PE array, we found a threshold combination that
leverages 348 764 sparse blocks in ResNet-50 or 6707 per layer. This configuration
results in 26.6% pruned sparsity with only 1% accuracy degradation. With a cache
that stores up to 8196 entries, we estimated the area overhead of Sparse-Blox using
SCNN’s accelerator configuration to be only 4.95%, which equals to 5× less.

Looking at the area breakdown, the largest share of Sparse-Blox accounts for the cache,
since it has to hold all sparse block positions in between layers. To have sufficient
space, the caches for SNAP, STICKER and SCNN, can store up to 6144, 512 and 8196
16-bit positions, respectively. Even if regular activation sparsity exploits slightly
less compared to irregular sparsity, we demonstrated a reduction in the number
of computations and memory transfers by on average 25%. At the same time our
approach, has 5× less area overhead compared to three state-of-the-art accelerators.

5.6.5 Discussion

Looking at the evaluation results, we gained a lot of insights on CNN workloads
regarding sparsity and the effects of pruning. We saw that, for example, ResNet-
50 can benefit largely from accelerators that leverage the present regular activation
sparsity. However, YOLOv5s showed much less sparsity, due to the much smaller
dimension of feature maps. As a result, the information in this feature map is denser,
and the corresponding layer is more sensitive to pruning. But we also saw during
our evaluation that our threshold-based method to increase the sparsity can improve
the efficiency. With our tool Spex, we were able to increase this regular activation
sparsity systematically, while maintaining accuracy.

To bring our contribution in linewith the state-of-the-art works that looked at dynamic
pruning of sparse input activations, we carried out a qualitative analysis of all works,
which is given in Table 5.3. Throughout all studies, positive effects of pruning on
energy efficiency and performance were reported. Most works focus on irregular
sparsity, since it yields the biggest performance gains, especially when it can be
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Pruning
Threshold

Kind of
Compression Notes

Cnvlutin [261] 3 none
EIE [238] 7 irregular Only MLPs
SCNN [151] 3(only W) irregular Index-based encoding

overhead
Cambricon-S [263] 3 2× 2 blocks
STICKER [279] 3 irregular Thresholds for sparsity

modes
SNAP [280] 7 irregular Sophisticated encoding

through search
Ours [Hot+23a] 3 arbitrary blocks Adjustable per-layer

thresholds

Table 5.3: Comparison of different DNN accelerators that support dynamic pruning.

compressed to reduce memory transfers. Obviously, there are works not listed here
that investigated various forms of regular pruning [241; 321]. Only Cambricon-
S [263] from the related work investigated, how sparsity in regular blocks impacts
the performance. But, since they can apply different block sizes for each layer, their
decoding mechanism adds a lot of chip area. Our caching approach only prunes
blocks of a fixed size. However, it reduces the architectural complexity significantly.

This could also be shownwhile looking at the area distribution of state-of-the-art DNN
accelerators using irregular sparsity compared to the same architecture with Sparse-
Blox in place. Here we saved around 25% of all computation while demonstrating
a 5× lower area overhead. However, it has to be noted, that the irregular sparse
accelerators may prune more activations. For reference, an unmodified ResNet-50
has around 53% irregular sparse activation values. Considering these results, we saw
that, even if the amount of sparsity exploited is about 2× less, we only had to add a
fraction of the area overhead. Depending on the tolerable accuracy degradation, the
exploited sparsity can, however, be increased.

To investigate this complex pruning threshold to accuracy trade-off, we also intro-
duced Spex. It is typically not covered by the state-of-the-art works, how exactly the
thresholds were defined. Our work covers this optimization problem in-depth, by
using Spex for all kinds of workloads with different regular pruning mechanisms. To
allow for further research we open-sourced Spex and Sparse-Blox.
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5.7 Conclusion and Outlook

The high energy consumption of modern DNN topologies is one of the most challeng-
ing obstacles for bringing them to embedded systems. As a result, many optimization
strategies have been explored in numerous studies. One promising technique is
pruning, that eliminates unnecessary computations with weights or activations that
are close to zero and hence do not contribute to the result.

In this chapter, we investigated one specific pruning technique thoroughly, namely
dynamic and regular activation pruning. Since regular sparsity can be leveraged in
hardware in a simple manner and activation pruning yields the best energy efficiency
gains. Therefore, we presented Spex and Sparse-Blox, a tool and a hardware exten-
sion to prune regular activation sparsity in DNNs. We focus on regular sparsity in
the form of blocks that match the dimensions of the hardware accelerator. Hence,
online pruning inside a hardware accelerator can be realized in a straightforward
and inexpensive way. To increase regular sparsity, Sparse-Blox can prune blocks of
activations based upon a per-layer threshold.

Since increasing sparsity and pruning it has an impact on the accuracy, we also pre-
sented Spex. It explores the large design space of threshold values that opens up
for state-of-the-art DNN workloads. With Spex, we can get a lot of insights of the
workload, like which block size is favorable, which layer can tolerate more prun-
ing or what dataflow is the most efficient. Once a beneficial threshold combination
is found by Spex and pruning in hardware realized by Sparse-Blox, we can profit
from structured pruning. It saves many MAC operations and, more importantly,
energy expensive off-chip memory transfers. With the two contributions, we con-
ducted extensive experiments on benchmark state-of-the-art CNNs. Considering
a ResNet-50, for example, we could create up to 15.2% new sparse blocks using a
block size of 8 × 8. In combination with already present sparsity this equals to a
reduction of 814million MAC operations and 19.1% of the total inference energy. We
also compared our introduced hardware overhead for exploiting regular sparsity
by Sparse-Blox with state-of-the-art DNN accelerators that exploit irregular sparsity,
showing a 2.5 to 5× smaller area overhead. Sparse-Blox offers an innovative design
methodology between exploited sparse operations and area overhead.

For the future, there are still some open questions when it comes to pruning and
sparsity in DNNs. For example, it is conceivable to increase the number of sparse
blocks even further when training in particular for this kind of sparsity. Many studies
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have already investigated regularization methods [161] to increase regular sparsity.
As a result, we project that one can benefit even more from this kind of pruning.
Moreover, one can think of more advanced methods to compress the sparse blocks.
For example, a smaller block size may be applied, and the accelerator and framework
extended to support clustering or merging of individual small blocks.
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Chapter6
Exploiting Mixed-Precision CNN
Inference to Increase Robustness and
Energy Efficiency

S o far we looked at various aspects of Deep Neural Networks (DNNs) and
how we can make them more efficient in terms of energy consumption and
throughput. Co-Designing accelerator and workload as well as leveraging and

increasing present sparsity in workloads both appear to be great choices to achieve
those goals. Yet, we have not really discussed another very popular optimization
strategy for DNNs: quantization.

Like pruning sparse areas in feature maps, quantization can save energy by compress-
ing the numerous off-chip memory transactions and by making Multiply-Accumulate
(MAC) computation simpler. Quantization has been shown to open large opportuni-
ties for efficiency boosts, while only having small impact on the network accuracy,
consistently over multiple studies. The contributions covered in this chapter, will
investigate two interesting aspects of quantization. First, we elaborate how quan-
tization can actually reduce the energy consumption of DNN inference, especially
when applying mixed-precision. Moreover, we look at robustness in quantized Con-
volutional Neural Networks (CNNs), e.g., how a quantized network that delivers a
high accuracy reacts to perturbed inputs like rain. In case the accuracy is impaired
by the perturbation, we introduce a systematic method to recover the accuracy to
baseline [Hot+22a; Hot+23b].
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6.1 Overview, Introduction and Motivation

The major advancement of DNNs in the past two decades have made those algo-
rithms indispensable for a myriad of modern applications. Assistant robots or con-
sumer products rely on CNNs. Even strongly safety-critical tasks like autonomous
driving [Hoe+23b] use them for camera based environment perception, since it is
impossible to fully specify a traditional algorithm. For example, there are just too
many representations of a single vehicle that is present on a road. CNNs learn this
representation from a reasonable number of samples. However, to deploy them into
constrained embedded system still two challenges persist today. The first challenge
was already discussed at multiple spots in this thesis, namely the vast number of
computations and energy-intensive memory transactions [115] that make it hard
to achieve real-time behavior. Considering image segmentation tasks using CNNs,
which are essential to environment perception, the computational load is even higher
compared to classification task.

The second challenge, however, has not been touched yet, which is a trustworthy
inference. Trustworthiness by itself comprises two parts [322]. First, security, which is
to protect the system from intentionally provoked unwanted behavior and prevention
of unauthorized information extraction. Second, dependability, which is the ability
of a service to fail less often than acceptable [322]. Dependability again has multiple
attributes like availability, reliability or safety, which is defined by the ISO standard
26262 [323]. According to the standard, functional safety can be formulated as
‘absence of unreasonable risk due to hazards caused by malfunctioning behavior of
E/E systems’ [323, Definition 3.67, p. 14]. A further component of dependability is
Safety Of The Intended Functionality (SOTIF). Following to the ISO standard 21448,
it is defined as ‘absence of unreasonable risk due to hazards resulting from functional
insufficiencies of the intended functionality or its implementation’ [324, Definition
3.25, p. 8].

Especially for autonomous systems that act in the real-world exist many cases in
which we have to ensure that, e.g., a fully camera-based perception works as indented
by the specification [325]. As hard as it is to formally describe all representations of
an object, it is also hard to cover all situations in a training dataset for a DNN. For
example, when it is raining, the camera-based environment perception system should
nonetheless detect all potential obstacles and all other entities [326]. This is referred
to as robustness, which is defined by the ISO 26262 for hardware as following: ‘robust-
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ness is the ability to be immune to environmental stress and stable over the service
life within design limits’ [323, Definiton 1.100, p. 14]. Regarding Machine Learning
(ML) algorithms like CNNs the ISO 21448 norm specifies robustness especially as
the occurrence of inputs that were not present in the training dataset. This is the case
when the CNN input is corrupted by environmental factors, like weather conditions
or brightness variations. In contrast, if it is maliciously created, it is referred to as
adversarial attack and thus a security issue. While the human vision with semantic
context is very robust to such input corruptions, CNNs are still struggling with that
and result in less model accuracy.

To address the computational load of CNNs, one can apply common approaches
like pruning or algorithm and accelerator co-design, which we both introduced and
thoroughly discussed in the previous chapters. Furthermore, another method to
compress CNN inference and reduce the computational complexity is quantization.
In the state-of-the-art section, we already discussed that quantization if an effective
method to improve the efficiency of DNNs. Usually, those workloads tolerate im-
precise computation of operations with only a slight accuracy degradation. Instead
of computing everything in 32-bit floating point, we can use, e.g., 8-bit fixed-point
integers and hence save energy and area during the computation. Additional energy
can be saved during inference when we compress off-chip memory transactions [281].
Moreover, we can use the local memories more efficiently, since the memory footprint
of, e.g., eight over 32 bits reduces significantly. The freed local memory may now, be
used to keep more data local to the accelerator. However, strong quantization like
strong pruning has of course an impact on the accuracy. To benefit even more from
this compression and mitigate the accuracy degradation, we can use mixed-precision
quantization schemes that allow to apply any precision on a layer-granularity, even
individually for weights and intermediate results. Typically, some layers are more
sensitive to radical quantization, while others can tolerate less precise computation.
Those layers may be computed with less precision, while quantization sensitive layers
may be executed more accurately. As a result, we can achieve a high compression
and a high model accuracy at the same time. This kind of compression allows us to
save numerous off-chip memory stores and reads.

However, the two aforementioned challenges are somewhat interlinked. Quantiza-
tion with mixed-precision achieves high compression with only a slight accuracy
degradation. While this can be tolerated in some applications, the robustness of a
DNN can be troubled by the imprecision quantization or pruning superadd. This
effect worsens when the input gets corrupted, e.g., by unforeseen changes in bright-
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Figure 6.1: Overview how our tool finds an optimal set of bit-widths for mixed-
precision DNN inference in an embedded HPC SoC with a bfloat16 accel-
erator.

ness or weather conditions. To mitigate this effect, adjusting the precision may be
leveraged. For example, the network may be executed with a higher precision when
it is subject to those input corruptions or perturbations to restore the initial model
accuracy. According to the robustness definition, mixed-precision might allow us to
move some inputs from a hazardous operation into the non-hazardous area.

In summary, we project that dynamically adjusting computational precision enables
more flexibility while quantizing a DNN and hence allows bringing together a high
accuracy with an increased robustness and energy efficiency. Energy can be saved
by compressing off-chip memory transaction, as shown by other state-of-the-art
works. While using mixed-precision only for more energy-efficient inference is not
entirely novel, looking at robustness at the same time has not been investigated so
far. Robustness is increased by adjusting the precision depending on perturbation.
For example, we can work with a higher degree of quantization when facing clear
weather conditions to benefit from higher compression. In turn, we can apply less
quantization when dealing with uncertain situations, e.g., fog or heavy rain, to regain
model accuracy and still benefit from compression.

In the following sections, we will first have an in-depth look on how we modified
Spex to also explore the impact of quantization with perturbed inputs on the model
accuracy. Then we discuss the design of our hardware number converter that is
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hosted on a reconfigurable fabric. An overview of how those two components interact
and how our envisaged design flow looks like is given in Figure 6.1. An optimizer
based on Spex looks for the best quantization bit-widths for each layer that maximizes
model accuracy and energy consumption. The validation dataset can be artificially
corrupted to also evaluate the quantization effects on perturbed inputs. Then the
quantized network can run on a target platform that has a converter unit connected
in between the DNN accelerator and the off-chip memory, to make the increase of
robustness and energy savings possible. To demonstrate that mixed-precision in
fact supports the model robustness as well as the energy efficiency, we evaluated
our approach with three image segmentation CNNs under the influence of various
weather conditions.

6.2 Our Mixed-Precision Concept for Increased
Robustness and Energy Efficiency

As we saw during the motivation, especially mixed-precision quantization looks
promising to address the two major challenges of bringing CNN inference to au-
tonomous and embedded systems. In this section, we will sketch our mixed-precision
concept to increase robustness and energy efficiency of modern embedded platforms
with fixed DNN accelerators. Significant energy savings can be achieved by com-
pressing integer values and thus reducing the off-chip memory transfers. Moreover,
in such an envisaged Computer Vision (CV) system that is responsible for a safety
relevant task like environment perception, we have to ensure robustness towards
corrupted and perturbed inputs.

The goal of our approach is to respond dynamically and quickly to changing con-
ditions. Compared to traditional approaches like deraining techniques, which add
many more computations to the workload [327], we project that we can leverage
mixed-precision inference to increase the network robustness. If our system, for
example, receives such an input, we can use a set of weights with a higher precision
and apply less quantization to intermediate results going to the off-chip memory.
Since the memory consumption of CNN weights in comparison to its intermediate
results is moderate [328], we can easily store multiple sets of weights in a reasonable
large off-chip memory. In short, the network can run with a higher precision, in case
the input is affected by perturbations. At the same time, we can still benefit from
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Figure 6.2: Overview of our envisaged dataflow. A number converter enables mixed-
precision DNN inference to increase robustness and energy efficiency
through compression of off-chip memory transactions. Therefore, the
DNN accelerator itself does not need to be altered.

the energy reduction through compression. It has to be noted, that in the case of
very severe weather conditions, we may have to add a deraining method as well.
However, in this case, we may also be able to save energy in the computations of less
quantization sensitive layers.

As stated before, our target platform is an embedded high-performance System-
on-Chip (SoC), which can manage tasks like autonomous driving. Such platforms
systems typically offer Central Processing Units (CPUs), a DNN accelerator and a
reconfigurable fabric to allow for further extension, like e.g. AMD’s Versal [329] or
the SoC build by the European Processor Initiative [132]. However, mixed-precision
or even just two quantization steps are rarely supported in Commercial-Off-the-Shelf
(COTS) systems, since they add heavily to the hardware resource budget. Approaches
like bit-serial accelerators [223; 226] are one method to implement mixed-precision
with support for arbitrary precision, but add much to the latency. More often we can
find accelerators that support, for example, bfloat16 as number format, which offers a
great trade-off between efficient inference and the capability for training DNNs.

Yet to enable mixed-precision in such systems, we can harness exactly this reconfig-
urable fabric. Therefore, we introduce our hardware extension and Design Space
Exploration (DSE) tool that bring high-efficient CNN inference and robustness against
perturbed inputs closer together. Our concept and how we alter the dataflow for
the DNN inference is shown in Figure 6.2. Quantization is enabled by a number
converter that has access to the on-chip communication network. It dynamically
quantizes and dequantizes dataflowing between the on-chip DNN accelerator and
the off-chip memory. In particular, the off-chip memory stores integer values with
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arbitrary precision and the DNN accelerator operates with bfloat16 operands. The
flexible precision adjustment balances model accuracy, robustness, and energy effi-
ciency. As a result, we also preserve the capability of online network fine-tuning in
bfloat16, when bypassing the number converter. This approach increases flexibility
and can bring mixed-precision inference to many platforms, without changing the
DNN accelerator itself.

Formixed-precision inference, we also have to identify the right degree of quantization
that maximizes energy efficiency and accuracy. This process has to be done for
different perturbations to study whether the right precision can restore the original
model accuracy. Hence, we also present our DSE tool to automatically determine
the precision levels. Since the exploration is to some degree similar to the sparsity
exploration we looked at in the previous chapter, we base and integrate our tool into
Spex (see Section 5.4). This allows also for combination of quantization and pruning.

6.3 Related Work

As stated before mixed-precision and more generally quantization is a very active
research field, with numerous published works looking into the various aspects. The
state of the art is surveyed more generally in Subsection 3.3.2. In this section, we will
particularly focus on architectures that supportmixed-precision to optimize the energy
efficiency, tool to identify the best quantization scheme, as well as on approaches to
increase the robustness of CNN inference when it encounters perturbed inputs.

6.3.1 Hardware Architectures for Mixed-Precision Inference

Mixed-precision inference is a well-known method to optimize the energy efficiency
of DNN inference by compressing those off-chip memory transfers [330]. Common
CNN hardware accelerators typically only support a fixed bit-width and therefore
cannot put the energy efficiency gains achieved by variable quantization into effect.
Approaches presented by Han et al. [239] or Chen et al. [267] combine trained quan-
tization with compression methods to achieve a better inference efficiency. However,
their early works add large additional hardware resources for implementation and
do not support per-layer quantization.
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Figure 6.3: Overview of the Processing Elements (PEs) in BitBlade presented in [283]
that realize multipliers with variable precision.

A few hardware accelerators have been proposed to support arbitrary precision CNN
inference. Bit-serial accelerators are a straightforward method to implementation
mixed-precision. Notable examples are Stripes [223], Loom [224] and UNPU [225],
which are all Application-Specific Integrated Circuit (ASIC) implementations, as well
as BISMO [226], an implementation for reconfigurable devices. The latter outperforms
Graphics Processing Units (GPUs) with about 6.5 TOPS on a small Xilinx PYNQ-
Z1 board. Although bit-serial architectures provide a simple interface for different
bit-widths, they introduce additional hardware overhead and, in particular, suffer
from lower energy efficiency compared to non-bit-serial architectures [331]. Besides
bit-serial accelerators, some works have investigated architectures that allow for
flexible rerouting or power-gating of individual multipliers. Envision [332] uses
dynamic-voltage-accuracy-frequency scaling (DVAFS)which allows disabling parts of
multipliers based on the targeted bit-width. With their approach they can switch from
16- down to 4-bit and significantly reduce the energy consumption. However, this
approach suffers from a significant underutilization of MACs and not all quantization
levels are available. Bit Fusion’s [333] architecture consists of multiple single bit PEs
that can be connected to build arbitrary bit-widths. In comparison to the bit-serial
accelerator Stripes, BitFusion can reduce the energy consumption and increase the
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performance by 4.0× and 2.6× on a ResNet-18 workload, respectively. However, their
flexible routing infrastructure to enable connection of individual PEs adds area to the
architecture and thus can be outperformed by traditional accelerators. BitBlade [283]
tries to address the issue of underutilization and area overhead by using a bitwise
summation and a tiling scheme, which improves the utilization of multipliers and
makes the fetching from off-chip memories more efficient. Figure 6.3 shows the
precision-scalable PEs of BitBlade, which allows grouping of single-bit multipliers
for arbitrary precision. The accelerator is based on the Bit Fusion architecture, but
the authors apply a series of algorithmic and architectural optimizations to overcome
area and power overheads. With BitBlade they report 52% less area compared to
Bit Fusion and 4× the throughput. In comparison with other hardware accelerators,
they show 7.7× performance and 1.6× energy efficiency improvement across three
workloads with different configurations.

As stated before, hardware support is only one step to mixed-precision inference, but
the actual bit-width for each layer has to be determined. Hence, multiple studies
investigated the interplay of hardware and quantization. HAQ [281] by Wang et
al. explores per-layer quantization for bit-serial accelerators using Reinforcement
Learning (RL). With their approach they show a reduction in latency of up to 1.9×
with almost no accuracy loss compared to uniform and equal quantization for each
layer. While HAQ supports only a limited space of precision, ReLeQ [334] by Elthakeb
et al. allows for more bit-widths and achieves a 1.22× performance improvement
over Stripes. However, ReLeQ is limited to weight quantization only. Both, HAQ and
ReLeQ are tailored to bit-serial accelerators and cannot be applied to other hardware
architecture without modifications or additional components.

To address this, Wu et al. [335] use gradient descent with is more efficient than RL
methods. Their work can also be applied to any kind of accelerator. The authors
use a super network to sample network topologies in which Convolutional (CONV)
layers are quantized and analyze their number of FLOPS and accuracy. A ResNet-34
workload trained on the ImageNet dataset can be compressed 19× with less than 1%
accuracy loss. For increased computational efficiency in searching the best bit-widths,
Chen et al. [336] state the search problem as constrained optimization problem.
By approximation with Taylor expansion and efficient computation of the Hessian
matrix, they can quantize a ResNet-50 by 12.24× and 8× for weights and activations,
respectively. This outperforms approaches like HAQ or PACT [221].
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Figure 6.4: Overview of the Structured Dynamic Precision (SDP) accelerator, pre-
sented in [284].

Someworks looked into co-design approaches that take both the hardware accelerator
and the search for quantization levels into account. For example FILM-QNN [337] by
Sun et al., which focuses on an implementation on Field-Programmable Gate Arrays
(FPGAs) using High Level Synthesis (HLS). Their approach leverages efficient value
packing into the available Digital Signal Processors (DSPs). FILM-QNN realizes
per-layer mixed-precision and achieves accuracy comparable to a 32-bit inference.
Thereby, it can achieve up to 537 FPS for MobileNetV2 on a ZCU102 platform, outper-
forming state-of-the-art works. Another co-design work looking at HW-NAS with
focus on quantization and targets FPGAs is AnaCoNGA [282]. Their work uses a
Genetic Algorithm (GA) to determine per-layer precision for a bit-serial accelerator.
Compared to HAQ, AnaCoNGA can improve the accuracy considering the same
workloads. In addition, the exploration of the design space takes about 24% less time.

For more generic architectures the recent work by Huang et al. [284] introduces
Structured Dynamic Precision (SDP), which is a co-design approach for fine-granular
mixed-precision to increase the accuracy and speed up the inference. Their work is
inspired by fine-granular but regular magnitude pruning approaches. Similarly, the
authors try to identify important regions in feature maps and compute only those.
Therefore, they are quantized to 8-bit and grouped into 4-bit blocks, which are selected
based on a non-zero Top-K algorithm. Since their quantization method is highly
specific, they also present a corresponding modified systolic array accelerator, which
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is shown in Figure 6.4. With their approach the authors demonstrate almost baseline
accuracy, higher than previous works like DRQ [219]. Looking at the inference
performance of a ResNet-18, the SDP approach shows about 29% improvement over
DRQ. Due to reduced precision, SDP can also reduce Dynamic Random Access
Memory (DRAM) accesses by up to 45.7%.

6.3.2 Robustness-aware Quantization of CNNs

Robustness towards perturbed or corrupted inputs is one of the main challenges that
still exists before CNNs can be deployed in safety-critical systems such as computer
vision tasks in autonomous driving vehicles [338]. Hence, some research has been
carried out to address robustness issues of CNNs using various strategies at different
system levels. Zendel et al. [339] surveyed in-depth potential hazards in CV systems.
In particular, Kamann et al. [326] give a great overview of mitigation strategies for
image corruptions.

Leaving hardware aside for now,most studies have looked at increasing the robustness
of CNN models against adversarial attacks [340]. However, some research also
investigated common image corruptions. Geirhos et al. [341] investigated how CNNs
and human vision respond to twelve different corruptions. Thereby, they found that a
large ResNet-152 is more robust than GoogLeNet. Vasiljevic et al. [342], in particular,
looked at blurry inputs to segmentation and classification CNNs and found that they
make unreliable predictions in this case. To mitigate this, they demonstrated that
retraining a few iterations with unsharp inputs boosts the robustness of common
network topologies. Another frequently addressed topic is rain removal, as this is
one of the most common perturbations that occur in real-world scenarios. Obviously,
there are many ways to handle rain [343], but we will focus on methods that employ
Deep Learning and target single images, similar to our approach. For example, the
deep detail network (DDN) by Fu et al. [344], which improves a prior work of the
same authors that proposes a CNN that learns a mapping between clean and rainy
inputs. This networkmay then be used to restore the original input. Their work shows
large improvements over other deraining techniques in terms of execution time and
restoration quality. However, a major issue in such approaches is often unpredictable
pattern of rain and especially rain streaks. To address this, Wang et al. [289] present
a two-parted approach. First a method to build a comprehensive dataset that covers
various rain aspects and second the spatial attentive network (SPANet), which aims
to reduce the rain in such inputs. Their approach outperforms up till then state-of-the-
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art deraining techniques. Today, modern methods often use Generative Adversarial
Networks (GANs) for rain removal, like Semi-MoreGAN [288] by Shen et al. Their
network reaches up to 58.9GFLOPS and thus is quite fast. For evaluation, it is assessed
using synthetic and real-world samples, and thereby outperforms state-of-the-art
works.

With focus on aspects like compression or quantization,Wijayanto et al. [285] explored
the impact of compression on CNN robustness through quantization. Thereby, they
use adversarial training to mitigate corresponding attacks. Their algorithm achieves
high compression rates for classification tasks, up to 90× for AlexNet, and also
reduces the error rate of the model compared to other methods. Similarly, Khalid
et al. [286] use quantization to increase the robustness of CNNs against adversarial
attacks. The presentedDNN is quantized both statically before inference and trainable,
which iteratively is applied during the training phase. Therefore, they add additional
quantization layers at the CNN input. For CIFAR-10 they can demonstrate up to 50%
better classification accuracy when the inputs are perturbed. Besides those works,
Zhao et al. [287] increase the robustness of a DNN through outlier-aware quantization
during training. In particular, they look at the non-maximum suppression stage of
oriented object detection networks. On aMobileNet-SSD trained on the Airbus remote
sensing dataset, they can demonstrate a better performance on outliers compared to
post-training quantization methods.

6.4 Toolchain to find the Best Precision for Robust
Mixed-Precision CNN Inference

Our approach enables quantized DNN inference on state-of-the-art heterogeneous
platforms like AMD’s Versal or the SoC that is developed by the European Pro-
cessor Initiative (EPI), which usually come with a fixed DNN accelerator. With
mixed-precision we aim to increase not only the energy efficiency of the otherwise
energy-hungry DNN inference, but also to increase the robustness to unforeseen
perturbations to the inputs. The latter is especially important in our envisaged domain
of application, namely CV based environment perception that has to deal with all
kinds of weather conditions, brightness changes and vision obstructions. However,
identification of the right precision for each layer is not an easy task. Similar to the
threshold based sparsification described in the previous chapter, a stronger quan-
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Figure 6.5: Overview of our tool to identify an optimal set of bit-widths for mixed-
precision DNN inference. Based on a given DNN model and architecture
design, the tool evaluates both themodel accuracy and the required energy.

tization of a given layer also affects the result of the subsequent layers in the DNN.
In addition, quantizing large layers have a higher impact on the energy needed for
memory transfers, as more offloading happens. Hence, we have to look at the entire
network and using a significant validation dataset. Only by running an inference and
observe the impact of different layer precision, we can determine the accuracy.

As indicated before, the problem description is quite like the dynamic pruning ap-
proach addressed by Spex and Sparse-Blox. Also, the objective to reduce the energy
needed for off-chip memory transfers is the same. Exactly this aspect is exploited
by us while designing a tool to determine the right level of quantization for each
layer in a large CNN. Many components of Spex can be reused for this quantization
problem like the DSE abstraction layers, accuracy estimation, energy estimation us-
ing Timeloop and Accelergy and to some extent the altering of models in PyTorch.
An overview of the tool is given in Figure 6.5. Obviously, it looks familiar to Spex.
However, we added a considerable number of components to the exploration tool.

6.4.1 Design Space Exploration

Like Spex, we use an exploration algorithm that suggests a set of bit-width with which
a base model is quantized and evaluated using a validation dataset. During inference,
our DSE algorithm tries to optimize two objective functions, while complying with
one inequality constraint. All of them are given in Equation 6.1. The first objective
function f1(x) aims to maximize the model accuracy, which is directly generated by
the evaluator. Accuracy is also checked by the first constraint g1(x) that dismisses all
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solutions that do notmeet a certainminimum accuracy that is set by the designer. Like
Spex’ objective functions, all objectives are negated as most optimization algorithms
minimize objectives than maximizing them. Second design objective is to minimize
the overall energy consumption. This is reported using a hardware model, which will
be explained later. The actual degree of quantization is not considered as optimization
objective since it is indirectly encoded in the inference energy.

f1(x) = −max(accuracy)

f2(x) = Einference

g1(x) = accuracymin − accuracy

(6.1)

Architectural characteristics of our number converter are not directly included in the
set of objective and constraints. As we will see later, the number converter is designed
to use only a small area and to add only little latency. Moreover, these aspects are in
general independent of the quantization degree.

To make a comprehensive DSE feasible, the evaluation of individual bit-width com-
binations has to be fast, goal directed and constrained in the right way. Especially,
since the design space for segmentation CNN workloads is typically much larger
than for the workloads evaluated for pruning. For example, a modern CNNs for
environment perception using semantic segmentation like YOLOP [86] features 102
convolutional layers. Considering individual bit-widths for weights and activations,
it has 204 values that have to be determined. Hence, a quantized inference should
only add very little to execution time. To shrink the design space from the beginning
on we should be able to set a maximum and minimum precision for each operand.

So far, we have looked at compression to increase the energy efficiency during in-
ference, but mixed-precision for increase robustness is not yet covered during DSE.
Therefore, we add another variable to the DSE that sets the kind and severity of a
perturbation to the input. When this variable changes, we have to rerun the optimiza-
tion process to find a Pareto-optimal precision for each layer that maximizes off-chip
memory transfer compression and model accuracy. The design variable that controls
the intensity and kind of input perturbation has to be explored exhaustively as we
have to see the impact of each. At the end, out tool returns quantized weights for each
perturbation with different severity. Those can be used depending on the quality of
the outputs. If for example, the accuracy degrades, we can load the corresponding
set of weights.
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However, it can happen that our exploration does not yield any solutions that meet
the required accuracy constraint, for example, when the perturbations are too strong.
For this case, we also added extra infrastructure that can performQuantization Aware
Training (QAT) after the exploration has finished. Since we only use Post-Training
Quantization (PTQ), retraining a selection of the best Pareto-optimal solutions over
a few epochs with the initial or an extended dataset helps to increase the accuracy,
when it is not sufficient. But it is also conceivable to retrain all other found solutions
and potentially reduce the precision even further to benefit from compression even
more.

6.4.2 Implementation details

The goal is to integrate determination of the quantization level seamlessly into Spex
without getting rid of any features needed to explore the possibilities of pruning. This
should allow us to combine both pruning and quantization in a single tool later. As
stated before, some components of Spex are left untouched, while others need to be
adjusted for the search of quantization levels.

Primarily, we need support for quantization in DNN workloads. To reflect bfloat16
computation, we set the model to half precision in PyTorch, which tells the GPU
used for infernce to use bfloat16 representation. Like Spex, we then alter a PyTorch
model and replace all layers with counterparts that feature a forward function that
enables quantization. In particular, we use uniform quantization as it is very simple
to realize in hardware, together with fake quantization, which is very quick in terms
of evaluation during inference, which allows us to test a quantization scheme with
many validation samples. Fake quantization keeps all values in the original half
precision format but splits the range of the floating-point numbers into bins according
to the number of quantization steps, which are available with a certain precision.
Corresponding scale factors and step widths are determined by a calibration process
that has to happen in advance to determine the numeric range of all feature maps and
weights. Since fake quantization represents a similar behavior as the actual quantiza-
tion in hardware and can be implemented using two simple number conversions, it is
easy to integrate into our tool. For that, we use the quantized layer implementations
from the TensorRT library13 by NVIDIA.

13 https://github.com/NVIDIA/TensorRT/tree/release/9.1/tools/pytorch-quantization, accessed
2023-10-27
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With this DNN model that support arbitrary precision on a layer-granularity, inde-
pendent for weights and activations, we can start with the actual DSE. To allow for
compatibility with Spex and with the exploration of sparsity, we kept the inputs to
the tool the same. One has to provide the base DNN model together with a validation
dataset on which the exploration happens. Next, a workload description file has to be
given, which is also kept similar (see Listing 5.1 for reference), since most parameters
like the settings of the exploration algorithm or the minimum accuracy are still used.

To reuse Spex for the layer precision search, we change the problem_function at the
beginning of theworkload description file. When this is set to quantization_problem
instead of sparsity_problem the initialization of Spex works slightly different. The
given input model is updated with fake quantization layers instead of counterparts
that support pruning. As bit-widths for activations and weights have of course to be
natural numbers the decision variable space has to be initialized with those numbers
only to yield only natural input variable vectors for the evaluation function. As a
result, we have to ensure that ~x ∈ Ω = {x ∈ N}. To allow for more flexibility, we also
add a bit weighting function that can for example shift the focus for quantization
from weights to activations. This is especially worth considering when looking at
CONV layers that have orders of magnitude larger feature maps than the number of
weights. Hence, more compression can be achieved by putting more emphasis on
the activations. This feature, as well as a range of bit-widths that constrains x into a
certain interval can be controlled using the extra_args in the workload description
file.

Since we want to look into the energy savings during inference and not solely at
number of bits, we have to add another step before starting the exploration process.
Reducing just the number of bits can result in misleading results, for example, when
not all intermediate results have to be offloaded. Instead, a non-negligible share of
values can stay in the local memory and be reused later. Hence, we have to figure out
how many actual off-chip memory transactions are performed in a given layer and
DNN workload. Therefore, we first create a mapping of the DNN workload onto the
bfloat16 DNN accelerator using Timeloop [163]. Timeloop is an established tool that
aims to find an ideal mapping. Since Timeloop can only evaluate a single layer, we run
all layers in a row and collect the relevant figures, like the off-chip memory transfers
and the corresponding energy consumption. Based on this it reports energy for all
kinds of operations, including the needed off-chip memory transfers. Obviously,
the used hardware model and libraries for Timeloop determine the accuracy of the
energy estimation. To make the results comparable, we use the same model as for
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Spex (see Subsection 5.4.3), with an energy estimation generated by Accelergy [169]
coupled with CACTI [194]. With the energy, which is required for bfloat16 operation
and memory transactions, we can estimate the energy for quantized inference. For
example, when a layer can work with 6-bit weights and 8-bit activations, we can
multiply the baseline energy at bfloat16 with the ratio of quantization. The resulting
energy for all weight and activation transfers are accordingly 6/16 · Elayer

weight_move and
8/16 · Elayer

offload.

Once we have the mapping result, we can proceed with the actual search for a set of
bit-widths that optimizes accuracy and energy savings. Therefore, we use, just as
for the sparsity threshold search described in the previous chapter, a GA. Most parts
of the actual exploration are then quite similar. The algorithm starts with an initial
population of individuals, each element in their genome represents a bit-width for
activations or weights of a specific layer. Using goal-oriented recombination the GA
runs overmultiple generations and ideally settles at an optimal precision for each layer.
Thereby, each proposed solution of the GA is evaluated using a significant fraction
validation dataset to get the model accuracy. In addition, based on the mapping and
the scaling, the required DRAM accesses for a single inference are computed.

When the exploration has terminated, we can evaluate the results using various
visualizations like plotting the objective functions. Moreover, we can select a number
of the best solutions and perform QAT to increase the model accuracy further. Here
the quantized model is fine-tuned using the training dataset and a comparability
small learning rate to not accidentally worsen the accuracy.

To account for various perturbations and to prove our claim that quantization also
supports the model robustness, the exploration does not stop with a single evaluated
and retrained model. On the contrary, we run the entire DSE process for various
perturbations with different intensities. As a result, we do not get a single set of
quantization levels, but multiple for each condition. The degree of quantization
and the corresponding weights can be exchanged dynamically on the accelerator
later. To get comparable results for various perturbations, our exploration GA always
starts with a fixed starting population and applies the same crossover and mutation
algorithms in all DSEs.
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6.5 Hardware Support for Mixed-Precision Inference

The centerpiece that enables mixed-precision DNN inference for modern SoCs, is a
hardware component for number conversion that alters the dataflow between the
off-chip memory and the DNN accelerator. This number converter has to support
a fast and low-latency conversion. Since it will be hosted on the reconfigurable
fabric of a SoC it also has to be resource efficient to keep enough spare resources
for other applications. To support off-chip memory movement from and to the local
scratchpad memory, our component should consist of a quantizer to convert numbers
into integers and a dequantizer that transforms them back into bfloat16 format. An
external controller has to be able to dynamically and quickly adjust conversion formats,
either in between layers or when the input is perturbed. The controller can trigger
more precise computation, e.g., when external sensors detect a weather change. From
an arithmetic viewpoint, inputs and weights have to undergo a conversion according
to the following equations, in which xq is the quantized and xfloat the dequantized
value. S and Z denote a scale and zero-offset factor.

xq =
xfloat

S
+ Z xfloat = (xq − Z) ∗ S

To make the computation in hardware much simpler, zero-centered uniform quantiza-
tion is applied. Hence, the zero-offset factor is zero and can be neglected. Moreover,
we can transform the division during quantization operation into another multiplica-
tion. As a result, the conversion operation narrows down to a multiplication with a
scale factor. This can be realized in hardware using a single multiplier, which can be
parallelized and pipelined in a straightforward manner to meet the aforementioned
high throughput and low latency goal.

Details of our dataflow involving our number converter component along with all
the necessary additional components are given in Figure 6.6 and Figure 6.7 for the
dequantizer and the quantizer, respectively. All dashed boxes are placed onto the
reconfigurable fabric. For an online conversion of data, we have direct access to the
on-chip communication network, allowing us to redirect the data stream between
the actual DNN accelerator and off-chip memory through our number converter
architecture. Here, connection to the on-chip network is realized using the widely
usedAXI-Stream interface. Integer precision and scale factors, whichwere determined
in advance by our DSE, can be updated during runtime via an AXI-Lite interface
from an external control unit, noted as controller in the overview figure, e.g., a CPU.
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Figure 6.7: Overview of the quantization units, which convert bfloat16 numbers into
arbitrary precision integer numbers, and the data compressor that packs
data for transmission back to the main memory via AXI.

We will now walk you through an inference using our mixed-precision approach. For
a given layer, quantized weights and inputs or intermediate results are fetched from
the off-chip memory, e.g., a large DRAM memory. This data then passes through
the dequantizer unit. Since data from the off-chip memory comes in large chunks
of aligned data and at a nondeterministic time, incoming data is first buffered in a
ring buffer inside the extractor. From this ring buffer, we can read smaller chunks of
any given bit-length for dequantization. This bit-length is set to the corresponding
quantization bit-width. In each cycle, multiple small chunks can be read from the
ring buffer to feed multiple dequantization units simultaneously. Running the de-
quantization in parallel, allows us not only to mitigate backpressure effects, but also
allows for clock-domain-crossing, which is necessary in reconfigurable fabrics that

MIXED-PRECISION INFERENCE FOR ROBUSTNESS AND ENERGY EFFICIENCY | 205



usually run slower than the glue logic on-chip network. Each of the dequantization
units first convert integer inputs into bfloat16 by aligning the number format and the
exponent accordingly. This process follows a straightforward nine-stage approach, of
which one checks the sign bit and the other eight shift the exponent. Since bfloat16
has eight exponent bits, we need exactly these nine stages, which can be realized in a
pipelined structure. Then the scale factor is multiplied onto the converted number
using a simple floating-point multiplier. Once the conversion has finished, we can
pack multiple bfloat16 values and send them via the on-chip network to the DNN ac-
celerator. The DNN accelerator finally receives its inputs and weight without noticing
they underwent a conversion.

Pseudocode 6.1: Pseudocode representation of the quantization unit.
Data: Data from accelerator: I
Result: Data to memory: O

1 parallel-for id ∈ I do
2 rfloat = id · 1/S /* Apply scale factor */

/* Convert bfloat16 to int */
3 rint = exponent_shift(rfloat) /* adjust exponent */
4 if rfloat < 0 then apply_twos_complement(rint) /* check sign bit */

5 place_in_ring_buffer(rint)
6 endfor

When the DNN accelerator has finished parts of the computation and returns the
first results, we can quantize them before transferring them to the off-chip memory.
Some intermediate results and weights may be stored in a local memory that directly
holds values in bfloat16 format. All remaining results, which have to be offloaded, are
now passed through the second part of our architecture: the quantization part. First,
the individual bfloat16 values are unpacked and the inverse scale factor is applied.
Then, the conversion into the previous defined integer format is performed. This
happens in multiple quantization units, which run in parallel to meet the bandwidth
requirements. Their function is described by Pseudocode 6.1. Processed quantized
values are then given into a compressor that packs converted values back into aligned
packets for transmission to the off-chip memory. We realize this using another ring
buffer, which can write multiple converted integer values of arbitrary length at the
same time and give out data packets of a fixed length. This helps us to keep the data
always aligned, implement correct handshaking for AXI communication, and to use
all bits of the memory bus efficiently.
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Obviously, our number converter units have to be able to change their parameters in
between layers, which causes write accesses to registers. Therefore, the scale factor
is not fixed, but stored in two registers, one that is currently used and another one,
in which the controller can preload the next scale factor for the upcoming layer.
This enables fast switching to new quantization and dequantization precision for all
components.

Since we work on a reconfigurable fabric, there is still a more area efficient way of
switching between different precision. It is conceivable to design the quantization
and dequantization units partially reconfigurable. A design for each bit-width and
scale factor can be synthesized and be loaded when it is needed. To enable a seamless
switching between different precision levels in-between layers, we can instantiate the
number converter architecture twice to operate in a ping-pong scheme. While one
set of units is busy converting data, the other gets reconfigured and prepared for the
next layer. Of course, fixing the scale factor to the synthesized design, enables us to
highly optimize the multiplication and the extractor or compressor, as we can drop
support for multiple bit-widths.

In the next section, we will explore the performance of the here described hardware
architecture on a reconfigurable fabric and will see that it enables fast and flexible
mixed-precision for increased energy efficiency and robustness.

6.6 Evaluation and Discussion

To prove our claim of increased robustness and energy efficiency during DNN infer-
ence with our mixed-precision approach, we performed comprehensive experiments.
As workloads, we chose CNNs, which are typical for environment perception in
embedded systems like semantic segmentation networks. For the evaluation, we
first introduce our test setup, namely the picked CNNs and the hardware model for
energy estimation. Then we looked at the energy savings mixed-precision can achieve
and particularly how we can improve the robustness of the DNN. In the second part,
we present our evaluation results on a modern SoC with a reconfigurable fabric to
demonstrate how our method enables mixed-precision in such a platform. Finally,
we discuss the results, also in comparison to other quantization approaches.
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Network DeepLabV3+ DeepLabV3+ UNet YOLOP
Backbone ResNet-101 MobileNet-V2 ResNet-18
Dataset CityScapes CityScapes DAVID BDD-100k

# Layers 113 60 35 102
# Parameters 58.75million 5.23million 19.46million 7.94million
Input size 2048× 1024 2048× 1024 608× 800 640× 480

Baseline
accuracy

95.9% 95.2% 96.7% 79.5%

Inference
energy

5520.00mJ 4112.77mJ 501.79mJ 129.35mJ

DRAM
accesses

3292million 2953million 2570million 1297million

DRAM energy 658.49mJ 590.69mJ 51.40mJ 27.94mJ

Table 6.1: Workload details used for evaluation.

6.6.1 Selected Workloads and Test Setup

For our robustness and energy evaluation, we looked at four large image-segmentation
CNNs. Each infers three distinct, well-established datasets, which are corrupted by
different weather conditions for robustness evaluation. The goal of our evaluation
is to find precision levels for each network’s layer and image corruption type that
maximizes the trade-off between fewer off-chip memory accesses through quantiza-
tion and model accuracy. In doing that, we tried to maintain the baseline accuracy of
the model. An overview of the workloads and some of their parameters are given in
Table 6.1.

As evaluation datasets, we used CityScapes [72], DAVID14 and BDD-100k [73]. For
the first, a subset is used that features perturbed images with rain and fog [345]. This
subset consists of 52 validation samples with three different severity levels and twelve
different patterns each, which results in 1872 samples. And for the latter two, rain,
fog, brightness and snow are added artificially through the image corruption tool
by Michaelis et al. [346]. This tool adds those perturbations by mixing in noise that
reflects the correspondingweather conditionwith a given intensity. Sincewe are using
an established tool to corrupt the images, we can alter the entire CityScapes dataset

14 https://mediatum.ub.tum.de/1596437
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and build a large basis for evaluation. CityScapes is evaluated with DeepLabV3+ [96]
for semantic segmentation. This network is moreover tested with two backbones,
ResNet-101 and MobileNetV2. Both networks are pretrained15 and achieve 95.9%
and 95.2% pixel accuracy on the finely annotated CityScapes dataset, respectively.
The DAVID autonomous driving dataset is fed into a U-Net topology. We trained the
network from scratch toworkwith theDAVIDdataset. It achieves a 96.7% Intersection
over Union (IoU) baseline accuracy. Finally, BDD-100k is tested with YOLOP [86]
to segment drivable area, traffic objects and lanes. Here, we also used a pretrained
model checkpoint16. Since the network returns threemetrics at the same time, we used
the average of all three for evaluation. The baseline accuracies for the network are
91.5% for drivable area, 70.5% for lane detection and 76.5% mAP. All those datasets
and models are well-established in image segmentation, which is crucial for, e.g.,
autonomous driving. Even though these four CNNs address the same challenge, they
have distinct architectures and operate on different datasets, which allows us to take
a deep look into how quantization impacts segmentation accuracy, energy efficiency
and robustness. Besides them, our tool and architecture can also evaluate any PyTorch
model to identify to what degree mixed-precision can increase the efficiency and
robustness.

Finding an optimal quantization level for intermediate result andweights of each layer
in each perturbed workload is crucial to benefit from our mixed-precision inference.
As stated before, we find those levels using our tool that performs a DSE using a GA.
Initially we started to shrink the design space to enable a faster exploration. For each
layer’s weight and activations, we limited the bit-width to the interval x ∈ [2, 16]

since more bits do not increase accuracy and fewer bits yield a too low accuracy.
Moreover, we did not evaluate the entire dataset, but a significant subset of samples.
For BDD-100k, CityScapes and DAVID we set the number of samples to 2048, 256 and
1024, respectively. To figure out the parameters for the GA, we performed sweeps over
different GAparameters, like for the sparsity exploitation. We settled at 30 generations
with a population size of 20. Thereby, we used a mutation factor and probability of
10 and 1.0, as well as crossover factor and probability of 5 and 1.0, respectively. With
these parameters the GA has the objective to maximize the model accuracy and the
off-chip memory compression through quantization. An accuracy constraint is added
to dismiss solutionswith an extremely lowmodel accuracy. This constraint is obtained
based on the baseline model accuracy, from which we allowed for a maximum of 3%

15 https://github.com/VainF/DeepLabV3Plus-Pytorch
16 https://github.com/hustvl/YOLOP

MIXED-PRECISION INFERENCE FOR ROBUSTNESS AND ENERGY EFFICIENCY | 209

https://github.com/VainF/DeepLabV3Plus-Pytorch
https://github.com/hustvl/YOLOP


accuracy degradation. To investigate the impact on robustness of mixed-precision,
we performed multiple DSEs: each model and dataset combination is tested with all
the above-mentioned weather conditions and intensities. In total, we evaluated over
4500 precision combinations.

Before starting to investigate the impact of quantization, we had a look into howmany
DRAM accesses each workload cause in its baseline configuration. As stated before,
we used Timeloop to get an estimation of the actual memory transactions and how
much traffic we save using our compression using mixed-precision inference. As basis
for our architecture model, we chose the well-supported Eyeriss-v2 accelerator [60].
In its original configuration from 2016, however, Eyeriss offers only 12× 14 process-
ing elements with 128 kB local scratchpad memory. To match the performance of
modern state-of-the-art embedded DNN accelerators, we made some changes to the
architecture. First, we increased the number of PEs to 48x48, 2304 in total. The size
of the local memory is set to 3MB, inspired by architectures like Tesla’s FSD. Local
buffers for weights, inputs and accumulators are configured to a size of 192, 12 and
16 entries each, respectively. To estimate the energy consumption using Accelergy
and Timeloop, we used a 45 nm technology for all components and the DRAM. The
latter is connected with a 256-bit bus, which also reflects the AXI-Stream protocol
that is used for the quantization and dequantization units in the reconfigurable fabric.
With a mapping performed by Timeloop, we could derive the amount of required
DRAM accesses and their energy consumption. To also account for the energy our
quantization method adds, we reassembled a corresponding model in Accelergy that
features the ring buffers and the quantization logic.

6.6.2 Evaluation of Mixed-Precision to Enhance Energy Efficiency
and Robustness

First, we look at the energy each workload consumes for DRAM transfers when infer-
ring a single input sample. For reference, the total energy required for an inference
using bfloat16 is given in Table 6.1. We can already see that the numerous DRAM
transfers can become challenging for energy constrained systems. To address this,
we can now start our DSE tool to quantize the workloads and reduce the inference
energy. The results for all four workloads are given in Figure 6.8. Each plot shows only
the energy needed for offloading and the corresponding accuracy. Pareto optimal
solutions are indicated in blue. For all three workloads, a clear trend can be observed:
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Figure 6.8: Quantization exploration for the most energy-efficient mixed-precision
inference for the selected four workloads.

Obviously, a higher model accuracy also requires a more precise inference, resulting
in more energy consumption due to offloading. If we look for example at Figure 6.8a,
we can see that the Pareto optimal solutions can more than half the DRAM energy,
from 27.94mJ at bfloat16 execution down to 17.93mJ using mixed-precision.

The figures above only indicate the energy needed for DRAM movements, as we only
altered this part with our mixed-precision approach. Nonetheless, it is reasonable
to look at the total energy consumption per inference and how we can improve it.
Especially, to show if our number converter adds less energy to the total energy
budget than we can save through compression. The total energy estimation reported
by Timeloop and Accelergy of all Pareto optimal solutions for our four workloads
with and without mixed-precision is shown in Figure 6.9. We break down the energy
consumption into DRAM movements, buffers, registers, MAC units, and finally our
converter unit that is added to the architecture. Our converter units only add at max
2% energy to the overall design, which is little compared to the reduction of DRAM
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Figure 6.9: Total energy consumption of the three workloads with and without mixed-
precision inference. DRAM accesses shown in blue, the DNN accelerator
in teal and the conversion unit in brown.

access energy. Absolute energy figures range from about 3mJ in the small YOLOP
network to about 60mJ in DeepLabV3 with a ResNet-101 backbone. In total, our
approach could save up to 5.6% of the total energy considering a DeepLabV3 network
with a MobileNetV2 backbone or YOLOP, which operates on large input images and
has many layers. Hereby, the accelerator itself ran in bfloat16 format, to achieve a
high model accuracy by executing sensitive layers identified by our tool more precise,
and it still allows for fine-tuning or retraining of the DNN. For DeepLabV3 with a
ResNet-101 backbone and U-Net the total energy was reduced by 4.5% and 4.6%,
respectively.

Our tool chooses the bit-width for each layer based on the impact it has on the model
accuracy and the energy consumed for off-chip memory movements. The latter scales
with the size of the input or output feature map of this layer, since layers whose
intermediate results exceed the local memory, offloading to the DRAM happens. As a
result of this evaluationmetric, different layers show different degrees of quantization.
To get an impression of the bit-width distribution, we show in Figure 6.10 the average
precision for each layer of all Pareto optimal solutions, exemplarily for a DeepLabV3
with a MobileNetV2 backbone. Activation bits are shown in blue and weight bits
in green. Error bars indicate one standard deviation. Looking at the distribution,
there is no clear correlation between the precision of a layer and the dimensions or
the weights for that given layer. To nevertheless identify sensitive layers, our tool
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Figure 6.10: Bit-width distribution for Pareto optimal solutions in DeepLabV3 with a
MobileNetV2 backbone. Blue shows activations, weights shown in green.

evaluates each bit-width combination with the validation dataset, since the minimum
feasible precision regarding the model accuracy depends strongly on the model input.
As it can be seen, some layers can benefit from a higher compression through a lower
precision, while quantization sensitive layers might still be executed with higher
precision. On average, we can quantize feature maps to 10.107 bit and weights to
9.837 bit.

Now that we looked into the bare energy savings ourmixed-precision approach brings
and that it clearly covers the energy added by our number converters, we can analyze
how it can support the robustness of CNN inference. Therefore, we performed, as
mentioned before, multiple DSE with different perturbations on our three workloads.
The results of our DSEs are depicted in Figure 6.11. Corresponding Pareto-optimal
solutions are marked in color, while dominated solutions are shown in gray. Each
plot shows three intensities as well as an exploration of the baseline dataset without
perturbation. The tolerable minimum accuracy is indicated in the plot using a dashed
line. Instead of giving the DRAM energy, we present the amount of data that has to be
written and read from the off-chip memory, which directly correlates with the energy
consumption. This number is independent of the technology node, as the 45 nm
technology library that is shipped with Accelergy and CACTI is not state of the art
anymore. In total, we evaluated various weather conditions with different intensities
for different networks. Hence, we were able to only show a selection, which, however,
presents the most significant findings and covers a large variety.
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(a) DeepLabV3+ with ResNet101 backbone (Baseline accuracy 95.9%, off-chip transfers
without compression: 6279.8MB), which is subject to corruption by rain.
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(b) DeepLabV3+ with a MobileNetV2 backbone (Baseline accuracy 95.2%, off-chip transfers
without compression: 2068.9MB). Data is subject to corruption by fog.
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(c) YOLOP (Baseline accuracy 90.5%, off-chip transfers without compression: 266.5MB)with
BDD-100k under the influence of brightness.

Figure 6.11: Model accuracy regarding off-chip memory movements required for a
single inference of three different CNNs under various weather condi-
tions. A dashed line shows a lower accuracy constraint.
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Figure 6.11a shows the exploration results for aDeepLabV3+modelwith a ResNet-101
backbone that is impacted by rainy conditions. The figure gives the model accuracy
regarding the amount of off-chip memory transactions, with three severity levels
of rain. Moreover, it presents the model exploration without any perturbation as
baseline, marked by blue dots ( ). DeepLabV3+ with a ResNet-101 backbone running
with entirely bfloat16 number format creates in total 6279.88MB of data offloading
per inference. This alone accounts for 658.49mJ energy for off-chip transactions
per inference. As stated before, we can significantly reduce the number of off-chip
memory accesses through mixed-precision. While maintaining baseline accuracy, we
could lower them by 3760.57MB, which equals to 59.8% less compared to bfloat16
inference. If we now increase the perturbation by rain, we can leverage a higher
computational precision and restore the model accuracy. The first rain severity level
is marked by green diamonds ( ). When we select a solution of the DSE that can
maintain the baseline accuracy, we could reduce the precision compared to fully
bfloat16 inference. Here we saved, e.g., 1632.2MB or 26% of data moved to and
fetched from the off-chip memory. If we allow for 1% drop at this rain severity, we
could even save up to 3006.8MB or 47.9%. In case of heavier rain, which is shown
by orange circles ( ), our approach could not completely restore the initial accuracy.
However, we still stayed in the bounds of the configured accuracy constraint. For
example, we could quantize the network to reach an accuracy of 94.66% and still
decrease the number of DRAM movements by 1452.58MB or 23.1%. When we look
at very heavy rain, which is depicted with purple cross marks ( ), we see that we
were not able to meet the accuracy constraint regardless of how precise we perform
the inference. As reference, we also tested this weather condition using 32-bit floating-
point precision. Here, it only yielded 92.6% pixel accuracy. Our approach could also
achieve this accuracy, but with 1645.29MB or 26.1% less off-chip memory transfers.

The next interesting workload we looked at is DeepLabV3+ with a MobileNetV2
backbone under foggy conditions. Corresponding DSE results are shown in Fig-
ure 6.11b. Considering bfloat16 inference, this network loads and retrieves 2068.9MB
of data per inference from the off-chip memory. From this we could save 1215.75MB
or 41.2% using mixed-precision when the weather conditions are clear. When we
encounter light fog at severity level 1, our tool can leverage mixed-precision inference
and reduced the number of off-chip memory transfers by 492.4MB or 23.8% com-
pared to bfloat16 inference. At the same time, wemaintained baseline model accuracy.
With very severe fog at level 2 and 3, the model itself could not maintain the baseline
accuracy. Here, we looked again at the performance the model can achieve under
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this condition. With fog of level 2, it reached 91.9% pixel accuracy. Targeting the
same accuracy, with our mixed-precision, we could reduce off-chip data movement
by 32.4% (672.2MB).

The third figure, Figure 6.11c, shows YOLOP, a comparably lightweight model, for
drivable area detection, corrupted by increased brightness. Running at bfloat16
precision, the model requires 266.47MB worth of off-chip memory transfers. With
mixed-precision inference, we reduced this figure to 142.77MB, which equals to a
46% cut. At severity level 1, our tool found a solution that achieves a model accuracy
of 90.3%, which is only slightly less than an uncorrupted input. This solution also
needed only 146.45MB off-chip movements per inference, 45% less compared to full
bfloat16 inference. From level 2 the model accuracy started to degrade. Here we could
reach 89.3% model accuracy with 152.19MB of data transfers, 42.9% less. Finally,
level 3 did not yield any solution that meet the accuracy constraint. For the sake of
completeness, the best solution, that we were able to find, reaches 88.4% accuracy,
with 139.66MB off-chip memory movements (47.5% reduction).

6.6.3 Hardware Considerations for Mixed-Precision Inference

Now that we explored the design space of accuracy, robustness and reduced off-chip
memory transfers, we want to evaluate hardware aspects of our mixed-precision
inference. Therefore, we looked at various performance figures of our hardware
architecture, which enables mixed-precision CNN inference on modern heteroge-
neous SoCs. As target platform, we chose AMD’s Versal [131] platform, since it is a
very recent high-performance SoC. It features besides other components like CPUs,
also a reconfigurable fabric and a DNN accelerator. In particular, we mapped our
architecture onto an AMD VCK190 evaluation kit, which is populated with an AMD
Versal XCVC1902 device, to evaluate the performance and feasibility of our approach.
On the SoC, the AI-Engines function as DNN accelerator and the quantization and
dequantization units are hosted on the FPGA part, which is controlled via AXI-Lite
from the ARM CPUs. As communication network, the built-in Network-on-Chip
(NoC) is used. The connection of the quantization and dequantization units is done
with Direct Memory Access (DMA) modules that interface with AXI-Stream.

Table 6.2 shows a breakdown of the required resources to host our architecture
on the reconfigurable fabric. Our evaluation design had 16 quantization and 16
dequantization units, together with one extractor and compressor. The design ran

216 | EVALUATION AND DISCUSSION



Component LUTs FFs DSPs BRAMs

Entire Design 37,366 25,995 32 9
AXI-DMA & Interfaces 8,007 12,754 0 9
Number converter 29,359 13,241 32 0

Extractor 4,835 2,352 0 0
1x Quantizer 686 257 1 0
1x Dequantizer 556 212 1 0
Compressor 2,138 3,120 0 0

Table 6.2: Resource utilization of our hardware prototype setup. The entire design
features 16 quantization and dequantization units, with a 256-bit connection
to the off-chip memory.

at 300MHz clock speed. With this design we achieved a theoretical throughput
of 4.8 billion conversions per second. From the table, we can see that our number
converter consumes less than 1% of the total available resources in the XCVC1902
device. The entire design, which comprises all necessary interfaces and peripherals
for data movement, utilized just under 1% of the total resources. This allows us to
increase the number of quantization and dequantization units for more demanding
designs and applications, while also keeping spare resources for other designs that
need the reconfigurable fabric as well.

From a performance perspective, it is important to match the throughput of the DNN
accelerator and to be able to compute modern CNN workloads within a short time
window. As stated before, we designed our quantization and dequantization units in a
highly parallelized and pipelined fashion. Based on a design with the aforementioned
16 units, we can report a latency of two and ten cycles for the extractor and quantization
unit, respectively. Similarly, a dequantization unit and the compressor have a latency
of ten and two cycles. We evaluated the latency for different integer precision. Like
for the exploration, we fixed our architecture to support conversions from and to 2-
to 16-bit integers. For all configurations the latency stays constant. As a result, we
report a total latency of 12 clock cycles per conversion. When considering a DNN
workload with 50 layers, this merely adds 2µs at 300MHz.

To put this into perspective, we can look at oneYOLOPwith 101 layers. Here, Timeloop
reports 139million memory accesses. The design with 16 conversion units for each
direction was kept the same. Now, we have to consider the latency for adjusting the
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configuration of the number converters between layers for weights and intermediate
results. We measured this to take a total of 25 cycles, 12 to each flush and refill the
pipeline plus an extra cycle for switching the register that holds the scale factor. This
setup can convert the data required for 34.35 inferences on BDD-100k per second.
For the larger DeepLabV3+ network with a ResNet-101 backbone, which requires
3.29 billion off-chip memory accesses, we can report a performance of 1.45 inferences
per second. To achieve a similar inference rate for this workload, we can simply invest
more resources and add more conversion units, which are running in parallel, since
the design utilizes only a few resources. However, it has to be kept in mind that for
such a large workload, we most likely have to scale up the DNN accelerator as well as
the interface to the off-chip memory. The currently available bandwidth of 9.6GB s−1

is probability not sufficient for DeepLabV3 inference with 30 FPS.

Finally, we have to look at the energy our number converter adds to the design.
Regarding energy consumption, Xilinx Vivado reported 75mW for our test setup
with 16 converters running at 300MHz. This equals 2.18mJ of energy per YOLOP
inference and 51.72mJ for DeepLabV3+ with a ResNet-101 backbone, respectively.

6.6.4 Discussion

During our evaluation, we showed that an in-depth evaluation of the workload in
advance is important for multiple reasons. First, it is crucial to identify sweet-spots
between higher model accuracy and fewer off-chip memory accesses, since some
layers contribute largely to the off-chip memory transactions and others may be very
sensitive to quantization. Therefore, a designer has to carefully decide what degree of
accuracy degradation is acceptable for the use case. In addition, they have to consider
the area and energy our quantization extension adds to the overall architecture. For
some applications, the extra hardware resources may not worth investing. Second, it
is important to figure out the throughput and latency requirements at the beginning,
to tune the converter architecture so that it matches the performance requirements.
Finally, to increase the robustness of the CNN towards perturbed inputs, it is crucial
to understand the workload, as selection of the right quantization degree for each
layer and perturbation plays a significant role.

In terms of robustness, we can to restore the initial accuracy in most scenarios. How-
ever, the CNN model itself has not been optimized for weather conditions. This
explains, why we were not able to find a solution that can mitigate very heavy rain
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(severity level 3), even not with a higher computational precision. A combination
of our approach with a network that is particularly designed and trained for robust
inference, seems promising to work in even more situations. Moreover, it has to be
noted, that we applied mixed-precision only as method to circumvent failures accord-
ing to the intended functionality. We have to start from the premise that adversarial
attacks or inputs outside the training dataset, which are essentially inputs the model
is not trained to detect, can neither be detected nor mitigated by simply increasing
the precision. For that further research in this direction has to be carried out. Hence,
they are not covered in this contribution.

Considering our quantization architecture, we generated energy figures using
Timeloop and a comparably large technology node. Hence, a lower total energy
might be achieved if moving to more recent nodes. This is already indicated by our
evaluation on the recent AMD Versal platform that is implemented in 7 nm.

6.7 Conclusion and Outlook

Applications like autonomous driving or robotics often rely on CNNs for environment
perception. However, the embedded domain poses multiple challenges to the DNN
accelerator that executes the CNN workload. For one thing there are harsh perfor-
mance and energy constrains, since they are typically battery powered, then there are
needs to make the network robust to perturbations like changes in weather conditions
that obstruct the input. In the previous chapter, we already surveyed pruning and
sparsification methods to increase the performance and energy efficiency of DNN
inference. However, robustness was not yet discussed.

In this chapter, we presented amixed-precision inferencemethod, which is realized by
an architecture that adds support for increased robustness to modern heterogeneous
state-of-the-art SoCs. We have shown that mixed-precision inference cannot only
increase the energy efficiency of CNN inference but can also support the model’s
robustness towards various weather conditions, while still saving energy through
targeted quantization of less quantization sensitive layers. In contrast to traditional
network quantization, mixed-precision achieves a higher model accuracy as quan-
tization sensitive layers can be run with higher precision, and less sensitive layers
are executed with less precision. When the inputs are subject to perturbation, we
can increase the computational precision through mixed-precision inference and
restore the initial accuracy. Therefore, we proposed a hardware architecture with low
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resource requirements and latency, which takes care of dynamic number conversion
of data going from the off-chip memory to the accelerator and back. Our design
allows using an off-the-shelf DNN accelerator that uses bfloat16 number format and
thus supports continual online learning for embedded High-Performance Computing
(HPC) applications.

To test and evaluate our mixed-precision approach, we designed a tool to determine
the best trade-off between quantization and model accuracy. Moreover, we mapped
the hardware architecture on an AMD Versal platform that represents a modern
HPC platform. With this setup we performed a wide range of experiments and
DSEs. Thereby, we gained insightful results on how the model accuracy behaves
under various weather conditions and degrees of quantization. We demonstrated, for
example, that under rainy conditions we can maintain the model accuracy compared
to clear weather conditions, by increasing the precision. At the same time, we could
reduce the number of off-chip memory transfers by 45%, which also directly reflects
into saved inference energy.

The state of the art around quantization is steadily growing and here research has
by far not finished. Hence, some paths for future research directions are worth
exploring. For example, evaluating models that are especially trained to be robust
to perturbations seems like a promising approach, e.g., to increase the accuracy
even under heavy weather conditions. Also, a combination of our approach with
the deraining methods can deliver improved results. To increase the efficiency in
terms of energy consumption further, it is also conceivable to use a finer quantization
granularity than per-layer. With such an approach a higher compression can be
achieved and robustness sensitive sections of layers can run with a high precision.
Although a similar method was investigated by Song et al. [219], one has to carefully
consider the time it takes to change the bit-width. When this has to happen too often,
the returns may quickly diminish. In addition, one should consider looking into
other quantization schemes that leverage a lower quantization noise like non-uniform
quantization. Another interesting approach may be to combine this quantization
method with pruning methods like the one we introduced in the previous chapter.
The foundations for this are already laid in the tool and a straightforward combination
of the hardware structures is conceivable.
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Chapter7
Summary, Conclusion and Outlook

D eep Neural Networks (DNNs) have become ubiquitous in many domains
starting from consumer products like smartphones to highly constrained
domains like automotive. Over the course of this thesis, we have seen

that there are multiple challenges that are yet searching for a solution. Especially,
when we want to deploy Deep Neural Network (DNN) algorithms to embedded
systems. One of the most predominant challenges is the rising complexity of the
DNN workloads, which is necessary to solve more and more complex tasks. At the
same time, constraints like an energy consumption or chip area limits, make it hard
to put more powerful devices into those embedded systems. Over the course of the
last ten years, many efforts have been put into making DNN inference more efficient
in terms of energy, area, performance and latency. Starting with the large rise of
dedicated hardware accelerators that are tailored to the unique dataflow of DNNs.
Then multiple optimization strategies were explored by a vast body of research: From
dedicated hardware-aware Neural Architecture Search (NAS) that aims to co-design
the network topology in accordance with the hardware accelerator, over pruning and
quantization that effectively reduces or simplifies the vast number of computations
in DNNs, to tools that enable highly-efficient mapping and tiling of the complex
workloads onto the accelerators.

7.1 Concluding Remarks

In this thesis, we explored ways to address the energy efficiency constraints to per-
formance requirements gap that in particular emerges when Convolutional Neural
Networks (CNNs) are deployed in embedded systems. Especially, CNNs are essential
to vision based environment perception systems and at the same time have huge
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memory requirements for the intermediate results. Since those intermediate results
of large DNNworkloads cannot be stored locally, they have to be offloaded to external
memories. This necessary process does not only add latency to the inference but also
requires a large chunk of the available energy budget. As a result, CNNs with their
large feature maps present an exceptional challenge regarding energy efficiency.

To tackle the energy demand of CNNs in embedded systems we propose three main
contributions in this thesis. First, in Chapter 4 looked at the interplay of DNN model
and hardware accelerator that is later executing the workload. Therefore, we pre-
sented FLECSim a cycle-accurate simulation framework to model and evaluate all
kinds of dataflows that may occur in DNNs. FLECSim brings along necessary infras-
tructure like Direct Memory Accesses (DMAs), memories and Central Processing
Units (CPUs) to quickly sketch a System-on-Chip (SoC) design for fast evaluation.
In combination with established tools like Accelergy and CACTI, FLECSim is able to
assess the efficiency and performance of workload running on the specified SoC. Us-
ing our cycle-accurate simulator, we carried out experiments that gave viable design
insights. Moreover, we conducted a case-study in which, we used FLECSim to design
a DNN accelerator that is hosted on an embedded Field Programmable Gate Array
(eFPGA) for the European Processor Initiative (EPI) project. This design is area and
energy constrained and has many degrees of freedom, as the eFPGA architecture,
i.e., the number and arrangement of building blocks, can be adjusted. The found
eFPGA accelerator can infer a pruned and quantized SqueezeNet topology for face
recognition in about 150ms, while using a mere 4.8mW power.

Cycle-accurate simulation has the advantage of being precise, but it typically takes a
lot of time to simulate every single data movement and operations. To address this,
we moreover introduced our analytical approach that does not rely on this kind of
detailed simulation, but uses a model to estimate the total number of memory access
and computations directly. It uses the widely established Roofline model, which
essentially groups computational workloads in memory or compute bound problems.
Ourmodel, now analyzes the accelerator andDNNworkload parameters to determine
whether they can be considered as compute or memory bound. Since the tool is much
faster than cycle-accurate simulation, we can even use it to explore various accelerator
designs and to find an ideal configuration for a given DNN workload. To show the
performance of our model we evaluated it with some benchmark workloads and
performed a case study showing its feasibility in Design Space Exploration (DSE).
In our experiments, we demonstrated a precision that is only 1% off compared to a
cycle-accurate simulation and at the same time up to 100× faster comparing to state-
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of-the-art works. The full power of our two accelerator and algorithm co-design tools
unfolds when they are combined. With the analytical model, we can coarsely search
the design space and then evaluate the remaining design options using cycle-accurate
simulation in FLECSim.

In addition, to the co-design approaches that enable efficient design of accelerators
and CNN workloads, we also looked in particular into the energy expensive off-
chip memory transactions. In Chapter 5 we presented Spex and Sparse-Blox, our
methodology to increase and prune regular activation sparsity in DNNs. Regular
sparsity in the form of blocks that match the underlying hardware accelerator, was
proven beneficial to achieve a straightforward reduction in Multiply-Accumulate
(MAC) operations and compression of off-chip memory transactions. In hardware,
this pruning mechanism is realized by our low-overhead hardware extension Sparse-
Blox, which detects sparse blocks by comparing the sum of a block with a threshold.
The threshold uponwhich a block in a given layer is pruned, is determined in advance
by our exploration tool Spex. It systematically searches the design space of different
per-layer thresholds and the corresponding inference accuracy, as higher thresholds
and thus more pruning can worsen the model accuracy. With Spex and Sparse-
Blox we analyzed their performance effects on the state-of-the-art benchmark CNNs
ResNet-50 and YOLOv5s. We could demonstrate that we are able to prune up to
22.73% of activations considering a block size of 8× 8. At the same time, we reduced
the number of off-chip memory transactions by up to 18.9%. Thereby, our hardware
extension consumes 2.5× to 5× less area than state-of-the-art sparse accelerators that
operate on irregular sparsity.

Apart from pruning, quantization is also a very popular optimization technique to
make DNN inference more efficient. In Chapter 6 we introduced a novel mixed-
precision dataflow that is not only able to compress off-chip memory transactions but
can also help to increase the robustness of CNNs to perturbed inputs. Therefore, we
proposed a hardware module that is put in between the DNN accelerator and the
off-chip memory to enable dynamic quantization and dequantization of weights and
activations. As a result, the accelerator can operate on bfloat16 number format to keep
the possibility of online learning, and we are still able to benefit from compression
through quantization. To find beneficial degrees of quantization for each layer’s
weights and activations we presented an exploration tool to identify quantization
sensitive layers and those that can benefit from higher quantization. The tool can also
analyze to what extent higher inference precision can restore the accuracy of networks
that are under influence of image corruptions, like various weather conditions or
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other environmental factors. Evaluation of three highly-demanding CNNs for image
segmentation showed that we could achieve a large reduction in off-chip memory
transfers through mixed-percision. Even when the inputs are subject to, e.g., rainy
conditions we were able to restore the initial precision without rain using a higher
precision. In such a weather perturbation scenario, we could, in particular, save up to
45% off-chip memory transfers and thus energy. Our quantization module, hosted
on the reconfigurable fabric, of a modern SoC thereby only required a small energy
and area budget.

7.2 Outlook and Future Work

Obviously, the landscape of optimizations that can be applied to make DNNs more
efficient is vast. As always, a designer has to decide between flexibility to support var-
ious different dataflows versus the efficiency one can achieve by specifically designing
an accelerator for one particular DNN workload. This problem is well-known from
hardware / software co-design and will likely never be resolved entirely. However,
we saw in this thesis that there are many ways to unify both at least to some extent.
Therefore, we introduced co-design approaches along with optimization strategies
that leverage the probabilistic behavior of DNNs. Although our proposed methods
demonstrated good results to make DNNs more efficient, there is still loads of room
for further extension of our work.

Starting with our co-design methods. As mentioned before, a combination of both the
cycle-accurate and the analytical tool seems very beneficial for large-scale parameter
exploration. The potential of this has not been fully studied yet. Especially consider-
ing the currently popular Transformer models, which have yet other requirements
than CNNs. Besides that, it is conceivable to run an actual HW-NAS using, e.g., our
analytical model to co-design accelerator and model at the same time. Here some
preliminary work has already shown promising results, however, they are often ren-
dered infeasible due to the long exploration time. Finally, an evaluation on an actual
hardware platform, involving a synthesis tool for Application-Specific Integrated
Circuit (ASIC) flows, is worth looking into. This will help to verify and underpin the
Performance, Power and Area (PPA) figures reported by our simulation tools.

Looking at the optimization strategies, we investigated with Sparse-Blox and our
mixed-precision methodology, some further research options are imaginable. First, it
is worth looking at DNNs aside from CNNs. For example, sparsification may also
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support Long-Short Term Memories (LSTMs) or quantization can increase the ro-
bustness of Transformer networks. Beyond simulation and evaluation using mapping
tools like Timeloop or Accelergy, it is insightful to perform the same experiments with
ASIC synthesis tools to obtain more real-world accurate PPA results. We can achieve
this, e.g., with a modification of the systolic array builder Gemmini, since it already
features a configurable systolic array and an ASIC flow. One promising approach is
moreover the consideration of other optimization algorithms for both determining
the precision and the sparsity thresholds. Recently, super networks demonstrated
great capabilities to reduce the design space for NAS. Besides the methods mentioned
so far, integration of our methods into the training process can also be envisaged.
Most likely training towards networks that already yield high degrees of sparsity and
are inherently robust, might even increase the benefits of our methodologies.

Another opportunity for further research is the combination of our sparsification and
quantizationmethod. Thiswill likely increase the performance of theDNNaccelerator
further. The advantage of our approaches comes also here to play: the accelerator
architecture itself is left unchanged, and only Sparse-Blox and the external number
converter have to be added. Finally, it is also conceivable to use our architecture
simulation and modelling tools. With this, we can lay out an efficient accelerator
that works with quantized and pruned networks, before adding Sparse-Blox and the
number converter. Therefore, sparsification and mixed-precision has to be added to
FLECSim or our analytical model.
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The advancement of AI and DNNs has been propelled by recent tech-
nological developments, enabling applications like autonomous 
vehicles and medical diagnostics. Moreover, in the last two decades 
tools to optimize DNN topologies and methods like quantization and 
pruning to enhance the efficiency were presented. Despite the pro-
gress, however, challenges for embedded systems remain in terms of 
performance, energy efficiency, safety, and accuracy.

Tim Hotfilter

This thesis presents three innovative approaches to increase efficiency 
of DNN accelerators. First, it introduces FLECSim-SoC, a cycle-accurate 
simulation tool and an analytical counterpart. Both assess the impact 
of architectural parameters on energy efficiency and performance. 
These tools complement each other, offering guidance to configure 
CNN accel-erators, as demonstrated in two case studies.

Additionally, a new hardware-centric pruning method to boost the 
energy efficiency of CNN accelerators is conceived, implemented and 
evaluated. It prunes regular regions in CNNs that match the accelera-
tor’s dimensions. A dedicated tool identifies those regions systemati-
cally, leading to 20% less operations and up to 19% energy savings, 
while occupying less chip area than other solutions.

In the context of robust and efficient CNN execution, this thesis ex-
plores mixed-precision quantization. A new hardware architecture is 
introduced to support mixed-precision with low latency. This tech-
nique enhances CNN robustness, particularly in challenging conditions 
like input perturbations. By dynamically increasing the operand's pre-
cision, the original model accuracy of could be restored, while 
reducing memory access energy consumption by 45%.

Efficient Optimization of Convolutional Neural 
Networks for Modern Embedded High-
Performance Applications
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