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Abstract
We introduce the fused sequential addition and migration (fSAM) algorithm for
generating microstructures of fiber composites with long, flexible, nonoverlap-
ping fibers and industrial volume fractions. The proposed algorithm is based
on modeling the fibers as polygonal chains and enforcing, on the one hand,
the nonoverlapping constraints by an optimization framework. The connectivity
constraints, on the other hand, are treated via constrained mechanical systems
of d’Alembert type. In case of straight, that is, nonflexible, fibers, the proposed
algorithm reduces to the SAM (Comput. Mech., 59, 247–263, 2017) algorithm,
a well-established method for generating short fiber-reinforced composites. We
provide a detailed discussion of the equations governing the motion of a flex-
ible fiber and discuss the efficient numerical treatment. We elaborate on the
integration into an existing SAM code and explain the selection of the numeri-
cal parameters. To capture the fiber length distributions of long fiber reinforced
composites, we sample the fiber lengths from the Gamma distribution and intro-
duce a strategy to incorporate extremely long fibers. We study the microstructure
generation capabilities of the proposed algorithm. The computational examples
demonstrate the superiority of the novel microstructure-generation technology
over the state of the art, realizing large fiber aspect ratios (up to 2800) and high
fiber volume fractions (up to 32% for an aspect ratio of 150) for experimentally
measured fiber orientation tensors.
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1 INTRODUCTION

1.1 State of the art

Long fiber reinforced thermoplastics (LFT) offer a high potential for lightweight applications as they feature a high stiff-
ness to weight ratio and may be manufactured with cost-efficient processes as injection or compression molding. Due to
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the heterogeneity of these composites, their elastic and inelastic mechanical behavior depends strongly on the material
microstructure and the properties of the constituents. Hence, understanding the underlying microstructures is essential
for predicting the effective properties of LFT properly. Characterizing such composites with micro-CT imaging1–4 reveals
highly anisotropic and random geometries, mainly described by the fiber volume fraction, the fiber length and orientation
distributions, as well as the fiber curvature.

To predict the mechanical behavior of such heterogeneous materials, multiscale methods,5 in particular using
advanced computational approaches,6–8 offer a time and resource efficient alternative compared to an experiments-only
approach. However, computational strategies require a complete description of the considered microstructure to be pro-
vided.9 Moreover, for random materials combining periodic geometries with periodic boundary conditions (required for
the homogenization) is particularly advantageous for computational multiscale methods.10–12

Typically, images of LFT from micro-CT scanning1–4 are available and may be used to obtain the necessary digital
microstructures. However, extracting a complete geometrical description from these images suffers from inaccuracies,
for example, as a result of the limited resolution with respect to the segmentation of the fibers. Additionally, the result-
ing geometries are nonperiodic and subsequent periodization11 is a demanding task. As a further restriction, only digital
microstructures corresponding to the available micro-CT images are obtained. Due to the limited amount of data, investi-
gating the mechanical behavior for more general cases is impossible. In this context, microstructure generation algorithms
are used to obtain periodic microstructures for prescribed microstructure characteristics, for example, the fiber volume
fraction or the fiber length and orientation distributions.

In general, methods for generating particle composites may be roughly classified into two categories: sequential inser-
tion algorithms and collective rearrangement algorithms. For sequential insertion algorithms, the particles are placed
one by one, keeping the positions and orientations of the previously placed inclusions fixed. The prime representative of
this class is the random sequential addition (RSA) algorithm initially introduced for spheres13 and subsequently extended
to more general inclusion shapes.14 Until the desired fiber volume fraction is reached, particles are placed successively
under the condition of mutual nonintersection. More precisely, for each fiber, its direction, length and midpoint are sam-
pled randomly from suitable distribution functions until an admissible, that is, nonoverlapping, configuration is found.
In case a generated fiber is not placed in a nonoverlapping position, there are two typical strategies for re-sampling. Either
only the midpoint is sampled anew or the direction and length as well. The latter strategy permits to reach higher fiber
volume fractions than the former. This increase, however, comes at a cost–systematic deviations of the desired orientation
and length distribution functions may be unavoidable then.

For sequential insertion algorithms, the particle characteristics are permanent after its placement, that is, it will
never be moved thereafter. Hence, the achievable fiber volume fraction is comparatively low. Moreover, with increasing
fiber aspect ratio ra, that is, the ratio between fiber length and diameter, the achievable fiber volume fraction decreases
as well.15,16 In fact, RSA-type methods permit to realize high volume fraction for unidirectional fiber arrangement
only. Nevertheless, the RSA algorithm is the most common microstructure generator and a number of extensions are
available.17–22

The second category of microstructure-generation algorithms for matrix-inclusion composites comprises methods
which position all particles in the cell first and then change their positions simultaneously. The mechanical contraction
method (MCM) introduced by Williams and Philipse23 permits to generate microstructures of spherocylinders, that is,
cylinders with half-caps at their ends, are generated. In the first step of the MCM, RSA is used to generate a microstruc-
ture with small volume fraction and nonoverlapping fiber configuration. Then, the unit cell is shrunk while retaining the
size of the inclusions to increase the volume fraction. The resulting fiber overlap is removed by an iterative procedure. In
its original form, the MCM is restricted to isotropic orientation states and fails to generate microstructures with indus-
trial fiber volume fractions for long fibers. For more general fiber orientation distributions, the sequential addition and
migration (SAM) algorithm may be used, first presented for short straight fibers with uniform length.24 As starting point,
a fiber arrangement is sampled according the descriptive components, for example, the fiber volume fraction or the fiber
orientation distribution. In contrast to the MCM, in the starting configuration overlap between the fibers is allowed. Then,
an optimization framework is used to find a configuration which satisfies the nonoverlap condition and further desired
criteria. Therefore, a non-negative objective function is introduced where every configuration corresponding to a root of
the objective function is admissible. Besides the SAM algorithm for short straight fibers with constant lengths,24 also an
extension for short fibers with fiber length distributions25 is available. Using this extension, the SAM algorithm accounts
for variability in the fiber lengths, which is typical for industrial discontinuous fiber-reinforced composites. Addition-
ally, considering fiber length distributions instead of uniform fiber lengths increases the volume-weighted mean fiber
length which can be realized by the algorithm. Thus, the SAM algorithm which accounts for a fiber length distribution
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is capable of generating long fiber reinforced composites as PPGF30 (13.22% fiber volume fraction), when restricting the
volume-weighted mean fiber length to about 2–3 mm. However, there are two apparent shortcomings of the original SAM
algorithm. For a start, the generated unit cells can become quite large. In fact, due to the straight fibers, the side length
of the unit cells need to be as long as the imposed mean fiber length, at least. This constraint may be rather restrictive
for long fibers. Secondly, the straight-fiber model of the original SAM algorithm leads automatically to the formation of
bundles of more or less aligned straight fibers. As such bundles of straight fibers are seldomly found in real composites,
the effective properties of the composite may be overestimated by computations based on such unit cells.

To enable microstructure generation for industrial LFTs, the packing limit with increasing fiber aspect ratio needs to
be overcome. However, to deal with this challenge, the reason for the packing limit should be understood first. In terms
of general packing mechanics of straight fibers, Toll16 reveals that the fiber volume fraction may be increased until a
maximum number of contacts per fiber is reached. By modeling the fibers with straight cylinders, this maximum number
of contacts turns out to be independent of the fiber aspect ratio ra. However, the apparent number of contacts during the
microstructure generation is higher for increasing fiber aspect ratios. Hence, besides unidirectional fiber arrangement less
fiber volume fraction is achieved for increasing fiber aspect ratios. With this insight at hand, we conclude that modeling
the fibers with straight cylinders restricts the achievable fiber volume fraction due to their low maximum number of
contacts. To overcome this limitation, modeling fibers accounting for fiber bending may enable packings with higher
volume fractions for longer fibers.16 Moreover, this appears to be the more natural way of describing real fibers in long
fiber reinforced composites as they feature significant fiber bending due to the manufacturing processes.

For typical manufacturing processes, long fiber reinforced composites feature almost planar fiber orientation
states26–29 as the fiber lengths exceed the plate thickness. For these cases, Fliegener et al.30 present an algorithm for
microstructure generation with curved fibers achieving high fiber volume fractions. First, a planar microstructure with
low fiber volume fraction is generated by RSA. Then, the structure is compressed in thickness direction using a full
finite element analysis until the required volume fraction is reached. Due to the finite element analysis, the method
is computationally complex and time-consuming, as many elements are necessary to resolve the microstructure ade-
quately. Additionally, changing the resolution after the microstructure generation, for example, for the homogenization,
is a challenging topic as the fibers are modeled with hexahedral elements and not with an underlying analytical
formulation.

An alternative approach accounting for fiber bending, is the extension of the SAM algorithm for long curved fibers.31

For this algorithm, a curved fiber is discretized by a polygonal chain with spherocylinders as segments. Thus, the opti-
mization problem incorporates the additional condition that adjacent segments need to be connected. In general, such
a constraint may be considered in the optimization process in two ways. On one hand, the constraint may only be satis-
fied at convergence and may be violated for previous iterative steps. For the previous SAM approach, this is realized by
adding a penalty term to the objective function. To make this strategy work, the penalty parameter needs to be selected in
a clever way and may influence the convergence behavior negatively. The alternative strategy satisfies the constraint in
every step, resulting in a more complex iteration rule. Within the optimization procedure of the SAM algorithm for long
curved fibers,31 the first strategy is used. Hence, the segments move separately during the optimization process. How-
ever, the penalty term leads to convergence problems for complex microstructures. Thus, microstructures with high fiber
volume fractions are barely achieved.

1.2 Contributions

In this work, we address the challenge of generating packings with high fiber volume fractions for long fiber-reinforced
composites. More precisely, we aim to realize microstructures for industrial composites with fiber volume fractions up to
30% and aspect ratios exceeding 100. For the microstructure generation, we address two further tasks. First, the size of the
representative volume element (RVE) needs to be reduced to enable efficient microstructure generation and computa-
tional homogenization. Therefore, we require the descriptive components of the microstructure to be realized accurately.
Additionally, we wish to generate periodic geometries to decrease artificial artifacts at the boundaries.10–12 Moreover, we
aim to account for the fiber bending, as modeling fibers with straight cylinders necessitates RVEs to be rather large.32,33

Secondly, we target an adequate modeling of the fiber lengths. Experiments reveal that long fiber reinforced composites
feature fiber length distributions with high standard deviations30,34,35 leading to a wide range of fiber lengths. Computing
the effective properties requires that the fiber length distribution is captured accurately, that is, assuming constant fiber
lengths is not sufficient.25 Thus, we require an adequate representation of the fiber length distribution.
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To address these tasks, we present the fused Sequential Addition and Migration (fSAM) algorithm as an alterna-
tive approach to the SAM strategy for long curved fibers31 in terms of a physically meaningful fiber motion during the
optimization. The SAM strategy for long curved fibers discretizes the curved fibers as polygonal chains. Hence, besides
other criteria for convergence, for example, the nonoverlap condition, adjacent segments need to be connected. A con-
verged configuration satisfying the nonoverlap condition and the coherence condition for all fibers is shown in Figure 1.
During the optimization procedure with a gradient descent approach, Schneider31 moves the segments of each polyg-
onal chain independently. To ensure the coherence condition between adjacent segments, a penalty term is added to
the optimization function. As the coherence condition is not fulfilled for all iterative steps, nonconverged configurations
typically show a positive distance between the fiber segments. A nonconverged configuration of the SAM algorithm is
shown in Figure 1, where we highlight the distance between adjacent segments by the dashed connection lines. Due
to the additional penalty term, the SAM strategy for long curved fibers suffers from convergence problems for complex
microstructures. To overcome this limitation, we aim to fulfill the coherence condition in every iterative step by mov-
ing the polygonal chains in a fused way. Hence, nonconverged configurations of the fSAM algorithm involve connected
fibers, see Figure 1. However, by restricting the movement on the admissible space for a connected polygonal chain,
the configuration space, that is, the admissible set during the optimization, is a curved, that is, nonflat, manifold. In
this context, a basic gradient descent approach may lead to iterates which leave the manifold. We illustrate this issue
for an optimization problem where the configuration space for the iterates pk ∈ R2 is the unit circle, see Figure 2A.
For Riemannian manifolds (, g) with metric g, an optimization on the manifold may be ensured by moving along the
geodesics,36,37 that is, the shortest lines between two points on the manifold. These replace the straight lines in vector
spaces, where no curvature is present. In Figure 2B, a gradient descent step following the geodesic of the unit sphere is
shown. In general, the equations governing the geodesics may be understood as mechanical problems with holonomic
constraints and no external forces. Hence, moving along a geodesic means integrating the constrained mechanical system
for a unit time with initial conditions, that is, the location on the manifold and a tangent vector. For enabling fused fiber

F I G U R E 1 Visualization of nonconverged configurations during the optimization using the SAM algorithm or the fSAM algorithm as
well as of a solution configuration.

(A) (B)

F I G U R E 2 Illustration of a gradient descent step with the iterates p1 and p2 for an optimization problem with a unit circle as the
configuration space , using the basic approach (A) and an adapted approach moving along the blue highlighted geodesic (B).
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movement, we first derive the d’Alembert type constrained mechanical system, which governs the geodesics of the man-
ifold describing a polygonal chain. Then, we introduce an efficient numerical integration for the resulting differential
algebraic equations.

We account for the fiber length distribution by sampling the fiber lengths from the Gamma distribution. The details
comprise Section 3.3. As a result, extremely long fibers may occur, discretized with a high number of segments. However,
the dimension of the system of equations which is solved for the numerical integration of the constrained mechanical sys-
tem increases with the number of segments. As the effort of direct solvers scales cubically with the dimension, extremely
long fibers lead to a rather long runtime. To handle this issue, we propose a workaround for extremely long fibers. To be
more precise, a fiber discretized with more segments than a maximum number is divided in smaller subchains, which
move separately. The coherence conditions between these subchains is only ensured for the final configuration by adding
a respective penalty term to the optimization function. We refer to Section 3.4 for more details.

For the computational investigations described in Section 4, we first discuss the improvements of the microstruc-
ture generation with the fSAM algorithm by comparing it to the SAM algorithm for long fibers.31 After identifying the
necessary resolution and RVE size, we study the influence of the maximum segment length which is used to discretize
the curved fibers. Moreover, we show the capability of the fSAM algorithm to generate packings with high fiber vol-
ume fractions for long fibers. Furthermore, we apply the fSAM algorithm to an industrial PPGF30 material, comprised
of a polypropylene matrix reinforced by E-glass fibers with a volume content of 13.22%, accounting for its fiber length
distribution.

1.3 Notation

Throughout this manuscript, a direct tensor notation or a matrix-vector-notation with orthonormal bases {e1, … , en}
(n ∈ N) is used. We denote scalars by nonbold letters, for example, b. Noncursive bold lowercase letters, for example,
b, are used for vectors in matrix-vector notation and cursive bold lowercase letters, for example, b, for vectors in direct
tensor notation. Matrices are denoted with bold noncursive uppercase letters, for example, B. Tensors of second order
are represented by bold cursive uppercase letters, for example, B, and tensors of fourth order by, for example, B. With
respect to a three-dimensional vector space, a tensor of second order in diagonalized form is given with, for example,
B =̂ diag(b1, b2, b3). The following notation for the mathematical operations may be used for the direct tensor notation
as well as for the matrix-vector notation. A transposed tensor of second order is given with, for example, BT. We denote
a linear mapping of a first-order by a second-order tensor as, for example, a = Cb and the linear mapping with complete
contraction including higher-order tensors as, for example, a = B

[
C⟨3⟩] =̂ BijklCjkl. For the scalar product, we use the

notation A ⋅ B = tr (ABT) and for the Frobenius norm ||B|| = (B ⋅ B)1∕2. The dyadic product is given with, for example,
a ⊗ b and the l-times repeated dyadic product of a vector with, for example, b⊗l = b ⊗ b · · ·⊗ b. We represent the unit
sphere in R3 by S2. For the cross product of two vectors, we use the notation, for example, a × b. A skew-symmetric tensor
of second order with corresponding axial vector b is denoted by b × =̂ (b×)ij = 𝜀ikjbk, using the permutation symbol

𝜀ijk =
⎧⎪⎨⎪⎩
+1, for (i, j, k) = (1, 2, 3), (2, 3, 1), or (3, 1, 2),
−1, for (i, j, k) = (1, 3, 2), (2, 1, 3), or (3, 2, 1),
0, else.

(1)

2 OPTIMIZATION ON THE CONFIGURATION SPACE OF CURVED FIBERS

2.1 Riemannian manifolds and submanifolds

In this article, we consider Riemannian manifolds (, g),36,37 that is, real, smooth manifolds  equipped with a metric
g, which is a family of Euclidean inner products on the tangent spaces Tx that depends smoothly on the point x ∈ .
With the metric, the energy of a curve c ∶ [0, 1] → , parametrized by arc length t, is defined by

E(c) = 1
2

1

∫
0

gc(t)(ċ(t), ċ(t)) dt. (2)
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6 of 33 LAUFF et al.

Suppose that a submanifold  of the n-dimensional Euclidean space Rn with scalar product ⟨., .⟩Rn is given in terms
of a constraint function 𝚽 which has 0 as a regular value. Then, the tangent space Tx arises as the null space of the
constraint Jacobian

Tx = null
(
𝜕𝚽(x)
𝜕x

)
, x ∈ 𝚽−1(0) ≡ . (3)

The submanifold  naturally inherits the Riemannian metric of the ambient space

gx(v1, v2) = ⟨v1, v2⟩Rn , v1, v2 ∈ Tx ⊆ R
n. (4)

For such a submanifold , the geodesic, that is, the shortest path between two points on the manifold,36,37 is obtained
as the minimum of the energy functional in Equation (2)

1
2

1

∫
0

gx(ċ(t), ċ(t)) dt → min
c∶[0,1]→Rn, s.t. 𝚽(c(t))=0

(5)

subject to the constraints c(0) = x0 and c(1) = x1 for two given points x0, x1 ∈ . The optimization problem in
Equation (5) may be interpreted as a constrained mechanical system following Newton’s (generalized) laws of motion
without a potential or external forces. Hence, the equations governing the geodesic motion on the manifold  may be
formulated in the form of the differential-algebraic equations (DAEs) for a general constrained mechanical system38,39

Mc̈(t) + R(c(t),𝝀(t)) = 0 with R(c(t),𝝀(t)) ≡
(
𝜕𝚽(c(t))

𝜕c

)T

𝝀(t),

𝚽(c(t)) = 0,
(6)

depending on a constant symmetric positive-definite (mass) matrix M, a coordinate vector c(t), a vector the Lagrangian
multipliers 𝝀(t) and a vector-valued constraint function 𝚽. The constraint forces are given with

R(c(t),𝝀(t)) ≡
(
𝜕𝚽(c(t))

𝜕c

)T

𝝀(t) ≡ J(c(t))T𝝀(t), (7)

where J denotes the Jacobian of the vector-valued constraint function. Suppose that we parametrize a Riemannian
manifold (, g) by another manifold E with a smooth map

m ∶ E → . (8)

Then, the manifold E inherits the Riemannian metric g via pull-back37

hp(w1,w2) ≡ gm(p)
(

dmp(w1), dmp(w2)
)
, p ∈ E, w1,w2 ∈ TpE, (9)

where dmp is the differential map from the tangent space TpE onto the tangent space Tm(p) at the point p ∈ E.

2.2 Description and discretization of curved fibers

Following Schneider,31 we consider a cylindrical fiber with length L and we describe its centerline by a twice continuously
differentiable curve

c ∶ [0,L] → Q, (10)

where we assume a periodic rectangular unit cell Q = [0,Q1] × [0,Q2] × [0,Q3]. The curve is parametrized by arc length s

||c′(s)|| = 1, s ∈ [0,L], (11)
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LAUFF et al. 7 of 33

and the diameter D is assumed to be constant, see Figure 3A. For the parametrization with the arc length, the curvature
is defined as

𝜅(s) = ||c′′(s)||. (12)

We discretize a fiber as a polygonal chain with spherocylinders as segments.31 Then, a fiber consists of n segments
with common segment lengths 𝓁 = L ∕n. In the original SAM algorithm for curved fibers,31 every segment with index a =
1, … ,n is parametrized by its midpoint xa ∈ Q and its direction pa ∈ S2, where S2 denotes the unit sphere, see Figure 3B.
This parametrization appears to have 5 n degrees of freedom. However, the condition that consecutive segments have to
be connected reduces the degrees of freedom to 3 + 2 n. In the SAM algorithm,31 the connection of consecutive segments
is ensured via penalization, which is part of the optimization method used later on.

Alternatively, the connectedness of consecutive segments may be ensured by restricting the coordinate vector

f =
[(

x1)T · · · (xn)T (
p1)T · · · (pn)T

]T
(13)

on the configuration space

 =
{

f ∈ R
6 n| 𝚽1(f) = 0,𝚽2(f) = 0

}
, (14)

where the n-dimensional vector-valued constraint function 𝚽1 ensures that the directions are normed

𝚽1(f) =
[
𝛷1

1(f) · · · 𝛷n
1 (f)

]T
with 𝛷a

1(f) =
1
2
(||pa||2 − 1

)
, a = 1, … ,n, (15)

and the 3 (n − 1)-dimensional vector-valued constraint function 𝚽2 accounts for the connectedness of the fiber

𝚽2(f) =
[
𝚽1

2(f)T · · · 𝚽n−1
2 (f)T

]T
with 𝚽a

2(f) = xa + 𝓁
2

pa −
(

xa+1 − 𝓁
2

pa+1
)
, a = 1, … ,n − 1. (16)

We follow this strategy for the fSAM algorithm, and aim to account for the vector-valued constraint function 𝚽2 directly
by the parametrization of a curved fiber. Therefore, we introduce the notation x0 for the starting point of the fiber. To
obtain a completely dimensionless parametrization, we normalize the starting point with

x̂0 = Q̂−1 x0 with Q̂ = diag(Q1,Q2,Q3), (17)

where the matrix Q̂ in the context of microstructure generation comprises the dimensions of the unit cell. Then, each
connected polygonal chain may be parametrized via

(
x̂0
,p1, … ,pn) ∈ R3 ×

(
S2)n. To collect the starting point and the

directions of the segments in vector-valued form, we define the coordinate vector q ∈ R
nq as

q =
[(

x̂0)T (
p1)T · · · (pn)T

]T
(18)

(A)
(B)

F I G U R E 3 Description of a curved fiber with a twice continuously differentiable curve parametrized by arc length (A) and discretized
polygonal chain (B).
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8 of 33 LAUFF et al.

where the dimension nq of the coordinate vector is

nq = 3 (n + 1). (19)

Hence, the admissible configuration space of a polygonal chain parametrized via the vector q (18) is given by the set

 =
{

q ∈ R
nq | 𝚽1(f(q)) = 0

}
, (20)

where the coordinate vector f derives from the relation

f(q) =
[ (

x1(q)
)T · · ·

(
xn(q)

)T(p1)T · · ·
(
pn)T

]T
, q ∈ ,

with xa(q) = Q̂ x̂0 +
a−1∑
b=1

𝓁 pb + 𝓁
2

pa, a = 1, … n.
(21)

The configuration space (20) consists of (products of) the rectangular box [0, 1] × [0, 1] × [0, 1] (with periodic bound-
ary conditions) for the normalized starting point x̂0 and of the unit sphere S2 for the directions of the segments pa. As
the configuration space  parametrizes the admissible configuration space for the coordinate vector f ∈ R6 n, it turns out
to be a Riemannian manifold (, g)37 with a natural metric g, inherited from the known scalar product of the Euclidean
space. Due to the restriction of the directions on the unit sphere, the tangent space Tq at q ∈  arises as the null space
of the constraint Jacobian

Tq = null
(
𝜕𝚽1(f(q))

𝜕q

)
. (22)

According to the derivation in Appendix A, the Riemannian metric g of the manifold  is constant gq ≡ g and given in
the explicit form

g
(
q̇1, q̇2

)
= q̇T

1 G q̇2, q ∈ , q̇1, q̇2 ∈ Tq, (23)

with the constant metric matrix

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

n Q̂2 f1 𝓁 Q̂ f2 𝓁 Q̂ · · · fn 𝓁 Q̂
fd,1 13×3 f2 𝓁2 13×3 · · · fn 𝓁2 13×3

⋱ ⋮

⋱ fn 𝓁2 13×3

sym fd,n 13×3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
with fa = n − a + 1

2
and fd,a = 𝜀(𝓁,D) + 𝓁2

(
n − a + 1

4

)
.

(24)
Here, Q̂ denotes the normalization matrix for the starting point (17), 𝓁 the segment length and 𝜀(𝓁,D) the volume-specific
moment of inertia of a spherocylinder40

𝜀(𝓁,D) = I(𝓁,D)
V(𝓁,D)

= D2

2∕3 + 𝓁∕D

[
(𝓁∕D)3

12
+

(𝓁∕D)2

6
+

3 𝓁∕D
16

+ 1
15

]
(25)

with the volume V(𝓁,D) and the moment of inertia I(𝓁,D) of a spherocylinder. For an exact expression of the moment of
inertia I(𝓁,D), we refer to Garcia40(appendix B). To obtain Equation (25), the density of a spherocylinder is set to unity. We
remark that the vectors with overdots q̇1, q̇2 ∈ Tq in Equation (23) are no time derivatives, but tangent vectors in the
tangent space Tq, and may be velocity vectors.

2.3 Adapted gradient descent approach on the configuration space of curved fibers

We aim to solve an optimization problem

F(q) → min
q∈ (26)
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LAUFF et al. 9 of 33

with a gradient descent approach on the configuration space  (20) with constant metric g (23), where the coordinate
vector q ∈ R

nq is restricted to the manifold  due to the vector-valued constraint function 𝚽1 (15). Proceeding with
the standard gradient descent on vector spaces does not respect the constraints, in general, as illustrated in Figure 2A.
To compute admissible iterates, the gradient descent approach may be adapted by moving along the geodesics, that is,
the shortest paths between two points on the manifold,36,37 see Figure 2B. According to Equation (5), a geodesic on the
manifold  may be obtained by minimizing the energy functional for a curve q(t) ∈ R

nq under the condition that the
curve lies on the manifold, that is, the vector-valued constraint function 𝚽1(f(q(t))) is the zero vector. Then, the system of
equations governing the geodesic equals a constrained mechanical system given in the form of the differential-algebraic
equations (DAEs) in Equation (6). For the geodesic on the manifold , an explicit form of the system of equations (6) may
be derived, see Appendix B. Resulting from this derivation, the geodesics on the Riemannian manifold of curved fibers
 (20) is governed by

G q̈(t) + J(q(t))T𝝀(t) = 0,
𝚽1(f(q(t))) = 0,

(27)

depending on the constant symmetric positive-definite metric matrix G ∈ R
nq×nq (24), the coordinate vector q(t) ∈

R
nq (18), the vector of Lagrangian multipliers 𝝀(t), the vector of constraints 𝚽1(f(q(t))) ∈ Rn (15) and the transposed

Jacobian of the constraint vector J(q(t))T ∈ R
nq×n in explicit form

J(q(t))T =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

03×1 03×1 · · · 03×1

p1(t) 03×1 · · · 03×1

03×1 p2(t) · · · 03×1

⋮ ⋮ ⋱ ⋮

03×1 03×1 · · · pn(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (28)

The coordinate vector q(t) and the vector of the Lagrangian multipliers 𝝀(t) are curves parametrized with the arc length
t. To shorten the expressions, we will suppress this time-dependency further, that is, we will write

𝝀 ≡ 𝝀(t) and q ≡ q(t). (29)

For the geodesically complete Riemannian manifold (, g), the exponential mapping takes a tangent vector v ∈ Tq and
a point on the manifold q ∈  and computes

expq(v) = qv(1), (30)

where qv ∶ [0, 1] →  is the unique geodesic with the starting point qv(0) = q and the initial tangent vector q̇v(0) = v.
With this insight at hand, the iterates of the gradient descent approach may be computed via the scheme

qk+1 = expqk

(
−𝜏k ∇qF(qk)

)
, k = 0, 1, … , (31)

with step size 𝜏k to enable an admissible optimization procedure on the Riemannian manifold .

2.4 D’Alembert type constrained mechanical system governing the geodesics

Due to the presence of the Lagrange multipliers 𝝀 in the system of equations (27), we need to solve for nq + n unknowns,
although the system has only nq − n degrees of freedom. There is a systematic procedure to reduce degrees of freedom
to nq unknowns, called d’Alembert principle. This strategy is based on identifying the tangent space q̇ ∈ Tq at q ∈ 
explicitly. To do so, we differentiate the condition 𝚽1(f(q)) = 0 with regard to the time

J(q) q̇ = 0, (32)
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10 of 33 LAUFF et al.

which uncovers that the tangent space q̇ ∈ Tq at q ∈  arises as the null space of the constraint Jacobian J(q). Let the
vectors tj ∈ R

nq (j = 1, … ,nq − n) be a basis of the tangent space Tq. Then, the null space matrix P(q) ∈ R
nq×(nq−n)39

may be constructed such that its range, also called column space, is equal to the tangent space

range(P(q)) ≡ Tq = null(J(q)), (33)

using the basis vectors tj ∈ R
nq as its column vectors

P(q) =
[
t0 · · · tnq−n

]
. (34)

By this construction, the null space matrix P(q) maps any vector u ∈ R
nq−n onto the tangent space Tq at q ∈ 39

P(q) ∶ R
nq−n → Tq. (35)

For an arbitrary basis of the tangent space Tq, the linear mapping in Equation (35) is not isometric, in general. To
preserve the size of the vector u, we require that the null space matrix is an isometry, that is, its column vectors correspond
to an orthonormal basis.41 Then, every tangent vector v ∈ Tq may be parametrized in the space R

nq−n with the vector

u = PT v (36)

and the condition v = P u holds. Betsch39 derives an explicit formulation for the isometric null space matrix of the double
spherical pendulum. Extending this formulation to the considered polygonal chain leads to

P(q) =

⎡⎢⎢⎢⎢⎢⎣

13×3 03×3 · · · 03×3

03×2 P1(p1) · · · 03×2

⋮ ⋮ ⋱ ⋮

03×2 03×2 · · · Pn(pn)

⎤⎥⎥⎥⎥⎥⎦
with Pa(pa) =

[
ra(pa) sa(pa)

]
, (37)

where the column vectors of the submatrices Pa(pa) characterize the tangent space for each segment direction

ra(pa) = Ra e1, sa(pa) = Ra e2

with Ra =
(
e3 ⋅ pa)13×3 +

(
e3 × pa)× +

(e3 × pa)⊗ (e3 × pa)
1 + e3 ⋅ pa .

(38)

Here, the formulation (e3 × pa)× denotes a skew-symmetric matrix with corresponding axial vector e3 × pa, see
Section 1.3. As the null space matrix P(q) is constructed such that the product P(q)T J(q) is a zero matrix, the equivalent
form of Equation (27)

P(q)T G q̈ = 0,
𝚽1(f(q)) = 0,

(39)

leads to a system of equation with nq unknowns.

2.5 Numerical integration of the d’Alembert type constrained mechanical system

For the numerical integration of Equation (39), we follow Betsch39 and use the energy conserving time integration scheme
introduced by Gonzales.42 We briefly introduce the main aspects of the numerical integration scheme, especially with
respect to the considered use case. For more details, we refer to Betsch.39

We are interested in the evolution of the coordinate vector q in the time interval I = [0, 1]. For the numerical inte-
gration, we divide the time interval I into nt subintervals of length Δt = 1∕nt. On a single time interval Ij =

[
tj, tj+1

]
, we

approximate the coordinate vector and its first time derivative via
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LAUFF et al. 11 of 33

q(t) ≈ qj +
t − tj

Δt
(
qj+1 − qj

)
,

q̇(t) ≈ vj +
t − tj

Δt
(
vj+1 − vj

)
,

(40)

with given quantities qj ∈  and vj ∈ R
nq at time node tj. To obtain the coordinate vector at time node tj+1, we solve the

discretized differential-algebraic equations

P(qj,qj+1)T H(qj,qj+1) = 0,

𝚽1
(
f
(
qj+1

))
= 0,

with H(qj,qj+1) =
2
Δt

G
[
qj+1 − qj

]
− 2 G vj,

(41)

via a Newton scheme, see Betsch.39 P
(
qj,qj+1

)
denotes the discrete null space matrix and characterizes the null space of

the discrete constraint Jacobian J(qj,qj+1). In general, the discrete constraint Jacobian is defined via discrete derivatives,43

see Betsch.39 For the special case of quadratic constraint function, for example, as for the considered polygonal chain, the
discrete constraint Jacobian simplifies and is equal to the constraint Jacobian evaluated at the coordinate vector at the
midpoint of the time interval qj+ 1

2

J
(
qj,qj+1

)
= J

(
qj+ 1

2

)
. (42)

Accordingly, the discrete null space matrix P
(
qj,qj+1

)
equals the null space matrix P

(
qj+ 1

2

)
. As the starting point for the

Newton iteration, the coordinate vector at time node tj+1 is set to

qj+1 = qj + Δt vj. (43)

After solving for the coordinate vector qj+1, the velocity is updated

vj+1 = 2
Δt

(
qj+1 − qj

)
− vj, (44)

such that all necessary quantities for the next time step are known.
With respect to the iterative Newton scheme, integrating the d’Alembert type scheme (39) instead of the basic con-

strained scheme (27) offers an additional advantage in terms of the conditioning of the iteration matrix. Whereas the basic
scheme suffers from an ill-conditioned iteration matrix for small time steps, the condition number of the iteration matrix
is independent of the time step for the d’Alembert type scheme.

In our implementation, we initially consider nt = 1 subintervals of the full interval I, subdividing the considered
interval whenever the Newton scheme fails to converge. As convergence criterion for the Newton scheme, we choose that
the norm of the residual vector is below 10−4. If more than ten Newton iterations are necessary, we stop the Newton scheme
and restart the time integration with halved time steps. To ensure convergence, we apply the backtracking strategy44

with parameters 𝛼 = 1∕3 and 𝛽 = 0.9. A pseudo-code for the numerical integration of the d’Alembert type constrained
mechanical system is given in Algorithm 1.

3 MICROSTRUCTURE GENERATION FOR LONG FIBER-REINFORCED
COMPOSITES

3.1 Description of long fiber reinforced composites

We consider a rectangular cell Q = [0,Q1] × [0,Q2] × [0,Q3] containing N curved fibers of constant diameter D in a non-
penetrating fiber arrangement. The ith-fiber is discretized as a polygonal chain, see Section 2.2. The number of segments
ni is chosen such that the segment length 𝓁i is below a defined maximum segment length 𝓁
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12 of 33 LAUFF et al.

Algorithm 1. Numerical integration of the d’Alembert type constrained mechanical system

Input: q1, v1
1: nt ← 1, Δt ← 1
2: for j ← 1 to nt do
3: Initial update of the coordinate vector qj+1 ⊳ *Equation (43)
4: Computation of the residual vector
5: while norm of residual vector >10−4 do
6: if j > 10 then
7: nt ← 2 nt, Δt ← 1

2
Δt

8: Return to line 2

9: Newton step with backtracking
10: Computation of the residual vector

ni =
⌈

Li

𝓁

⌉
, 𝓁i =

Li

ni
, (45)

where the type ⌈⋅⌉ denotes the smallest integer larger or equal to a given real number. The location of the fiber is
defined by the coordinate vector qi (18). As we consider a nonpenetrating fiber arrangement, the fiber volume fraction
computes as

𝜙 = 𝜋D2

4Q1Q2Q3
Ltotal with the total length Ltotal =

N∑
i=1

Li, (46)

which is identical to the formula for straight cylinders.45

For fiber-reinforced composites, it is convenient to use volume-weighted fiber orientation tensors46,47 as compact char-
acteristics for the fiber orientation distribution. In case of a finite number of curved fibers, the realized volume-weighted
fiber orientation tensor of second order Ar and of fourth order Ar compute as

Ar = 1
Ltotal

N∑
i=1

ni∑
a=1

𝓁i
(

pa
i
)⊗2

, A
r = 1

Ltotal

N∑
i=1

ni∑
a=1

𝓁i
(

pa
i
)⊗4 (47)

in tensorial notation. Typically, the fiber orientation tensors of second order Ar are obtained from micro-CT scans.48–50

However, to predict the effective properties accurately also the fiber orientation tensor of fourth order Ar is neces-
sary.27,51,52 To obtain an adequate fourth order orientation tensor, closure approximations are applied.27,53–58 In this
manuscript, we use the exact closure (ACG).59,60

3.2 Fused sequential addition and migration (fSAM) algorithm

In its original form, the sequential addition and migration (SAM)24 algorithm is a method for generating periodic
microstructures of short straight fiber-reinforced composites with constant lengths. Additionally, extensions of the basic
scheme enable to account for fiber length distributions25 and long curved fibers discretized as polygonal chains.31

Microstructure generation with the SAM algorithm proceeds in consecutive steps until the desired fiber volume fraction
is reached. For each step, a specified amount of fibers is added randomly to the cell first. Then, an optimization frame-
work is used, converging provided no overlap between fibers is detected and further criteria, for example, realization of
the prescribed fiber orientation tensor A up to the defined numerical precision, are fulfilled. Considering the extension
of the SAM algorithm for long fibers,31 convergence problems occur as the coherence of adjacent fiber segments is not
intrinsically ensured with the fiber parametrization but with an additional penalty term. In order to enable packings with
higher fiber volume fractions for longer fibers, in this work we introduce the fused sequential addition and migration
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LAUFF et al. 13 of 33

(fSAM) algorithm as alternative approach to the SAM algorithm with respect to a fused fiber description and movement,
see Section 2.

Therefore, we adapt the objective function introduced by Schneider31 to

F(f1, … , fN) =̂
1
2

N∑
i,j=1

ni∑
a=1

nj∑
b=1

(
𝛿ab

ij

)2
+ wA

8
N||A − A

r||2 + w𝜌

2

N∑
i=1

ni−1∑
a=1

(
𝜌a

i
)2 (48)

with weights wA and w𝜌, where fi denotes the vector of all midpoints and directions of the ith-fiber (18). For the SAM
algorithm,31 an additional term for the coherence between segments is considered, which we leave out as we intrinsically
fulfill this condition. The first term captures the nonoverlap condition with the quantity

𝛿ab
ij ≡

⟨
D − min

sa
i ,s

b
j ∈[−1,1]

dQ

(
xa

i + sa
i
𝓁i

2
pa

i , xb
j + sb

j
𝓁j

2
pb

j

)⟩
+

≡ ⟨D − ||kab
ij ||⟩+, (49)

where the vector kij
ab relates to the smallest periodic distance between two segments and the Macaulay bracket ⟨h⟩+ =

max(0, h) are used. The second term of F(f1, … , fN) in Equation (48) accounts for the prescribed fiber orientation tensor.
As extremely wide angles between segments are unrealistic, the third term of F(f1, … , fN) in Equation (48) aims to limit
the maximum bending angle to the prescribed value 𝛼 with the quantity

𝜌a
i ≡ ⟨

cos 𝛼 − pa+1
i ⋅ pa

i
⟩
+. (50)

Let us discuss the weights wA and w𝜌. As the function F(f1, … , fN) has dimension (length) 2 due to the first term, both
weights are required to have dimension (length) 2 as well. Following Schneider,31 we choose w𝜌 = 0.75 𝜀(𝓁i,D), where
𝜀(𝓁i,D) is the volume-specific moment of inertia of a spherocylinder, see Equation (25). For the weight wA, Schneider31

uses wA = 𝜀(𝓁i,D). However, we observed that the fSAM algorithm and its numerical integration leads to slow conver-
gence of the orientation condition for an increased number of segments. Hence, we choose the weight wA to depend on
the number of segments via the relation

wA ≡ 𝜀(𝓁i,D)
𝜀(ni 𝓁i,D)
ni 𝜀(𝓁i,D)

= 𝜀(ni 𝓁i,D)
ni

. (51)

In case of a fiber consisting of a single segment, the weight wA coincides with the SAM algorithm.
We aim to solve the optimization problem with a gradient descent approach parametrized by the coordinate vectors qi

F(f1, · · · , fN) → min
qi∈ℛ

. (52)

Therefore, we need to compute the respective directional derivatives of the objective function. However, the objective
function F(f1, … , fN) in Equation (48) is given in terms of the midpoints and the directions collected in the coordinate
vectors fi. For this parametrization, the directional derivatives are computed via

𝜕F(f1, … , fN)
𝜕xa

i
=̂ −

N∑
j=1

nj∑
b=1

𝛿ab
ij

kab
ij‖‖‖kab
ij
‖‖‖ ,

𝜕F(f1, … , fN)
𝜕pa

i
=̂ −

N∑
j=1

nj∑
b=1

𝛿ab
ij

𝓁isab
ij

2
kab

ij‖‖‖kab
ij
‖‖‖ − wA

𝓁iN
Ltotal

(
A − A

r)[(pa
i )⊗

3] − w𝜌

(
𝜌a

i pa+1
i + 𝜌a−1

i pa−1
i

)
,

(53)

according to the SAM algorithm for curved fibers.31 To obtain the directional derivatives for the coordinate vectors qi from
Equation (53), we have to account for the dependence between these two parametrizations, see Equation (21). Then, we
obtain the relation
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14 of 33 LAUFF et al.

𝜕F(f1, … , fN)
𝜕qi

=
(
𝜕fi

𝜕qi

)T
𝜕F(f1, … , fN)

𝜕fi

=

⎡⎢⎢⎢⎢⎢⎢⎣

Q̂
ni∑

a=1

𝜕F(f1,… ,fN)
𝜕xa

i

R1(f1, … , fN)
⋮

Rni(f1, … , fN)

⎤⎥⎥⎥⎥⎥⎥⎦
with Ra(f1, … , fN) = F(f1, … , fN)

(
𝜕

𝜕pa
i
+

ni∑
b=a+1

𝓁i
𝜕

𝜕xb
i

+ 𝓁i

2
𝜕

𝜕xa
i

)
,

(54)

where Q̂ denotes the normalization matrix for the starting point (17) and 𝓁i the segment length.
For Riemannian manifolds, the gradient computes as the linear map of the directional derivatives by the inverse of

the metric matrix.37 Hence, the gradient of the objective function F(f1, … , fN) with respect to the coordinate vectors qi
follows as

∇qi F(f1, … ,fN) = G−1
i
𝜕F(f1,…,fN)

𝜕qi
(55)

with the metric matrix Gi (24), which differs throughout the polygonal chains in case the segment lengths 𝓁i or the
numbers of segments ni are not constant.

As the motion is restricted to a curved manifold, a basis descent gradient approach may leave the optimization space,
see Figure 2A. To ensure a motion on the manifold, we compute the iterates of the gradient descent approach moving
along the geodesics and account for the periodicity with respect to the normalized starting points. This iterative procedure
may be written in the form

qk+1
i = expqk

i

(
−𝜏∇qi F

(
fk

1, … , fk
N

))
, k = 0, 1, … , (56)

where 𝜏 denotes the stepsize and expq(v) refers to the exponential mapping, see Equation (2.29), with a tangent vec-
tor v ∈ Tq and a point on the manifold q ∈ . The exponential mapping is realized by numerically integrating the
d’Alembert type mechanical constrained system, explained in Section 2.5, using the point q ∈  and the tangent vector
v ∈ Tq as initial condition at time t0 = 0. As the exponential mapping of a single fiber’s coordinate vector is independent
of the remaining fibers, the numerical integration may be computed independently for each fiber, thus, the computa-
tion may be parallelized directly. We select the stepsize 𝜏 = 0.501.24 Additionally, we multiply the directional derivatives
𝜕F

(
fk

1, … , fk
N

)
∕𝜕pa

i with the stepsize 𝜏p = 0.3 to prefer translation over rotation, following the SAM algorithm.24 A
pseudo-code for a single iterative optimization step of the fSAM algorithm is given in Algorithm 2.

Algorithm 2. Iterative optimization step of the fSAM algorithm

Input: Coordinate vector qk
i , i = 1,… ,n

1: Compute the coordinate vectors fk
i ⊳ *Equation (21)

2: for i ← 1 to n do
3: for a ← 1 to ni do

4: Compute the directional derivatives
𝜕F

(
fk

1 ,… , fk
N
)

𝜕xa
i

and
𝜕F

(
fk

1 ,… , fk
N
)

𝜕pa
i

⊳ *Equation (53)

5: Compute the directional derivative
𝜕F

(
fk

1 ,… , fk
N
)

𝜕qi
⊳ *Equation (54)

6: Compute the gradient ∇qi F
(
fk

1 ,… , fk
N
)

⊳ *Equation (55)
7: Compute the updated coordinate vector qk+1

i ⊳ *Equation (56) following Sections (2.3) to (2.5)
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LAUFF et al. 15 of 33

When computing the gradients with Equation (53), most of the time/effort is spent for the evaluation of the
inter-segment distances. To generate periodic microstructures, we use periodic distances between the fiber segments.
Assuming the fiber segments are smaller than the half of the minimum of the cell dimensions Qi, the periodic distance
between two points x, y ∈ Q may be computed as

dQ(x, y) =

√√√√ 3∑
i=1

(((x − y) ⋅ ei,Qi))2, x, y ∈ Q, (57)

with the function

(𝜉,L) =
⎧⎪⎨⎪⎩
𝜉 − L, for 𝜉 > L∕2,
𝜉 + L, for 𝜉 ≤ −L∕2,
𝜉, else,

(58)

see Schneider.31 To reduce the effort, two main aspects need to be considered. First, a fast computation of the periodic
distances is necessary. Therefore, we use a modified Vega-Lago algorithm61 introduced in Pournin et al.62 Additionally,
the number of distance measurements should be reduced. To check only close segments for collision, we use cell-linked
lists63 in combination with nested Verlet lists.24,64 For more details on the implementation of these strategies for the
distance computation, we refer to previous publications on the SAM algorithm.24,25,31

3.3 Gamma distribution as fiber length distribution

Due to the manufacturing processes of fiber-reinforced composites, the fiber lengths vary throughout the component.
For short fiber-reinforced composites, Mehta and Schneider25 show the importance of capturing the varying fiber lengths
when computing the effective properties with minimum effort. As for long fiber reinforced composites the fiber lengths
are even more varying,30,34,35 we aim to realize the fiber lengths adequately.

Typically, only the volume-weighted mean m and standard deviation s are available as statistic quantities measured in
experiments. To model a fiber length distribution with these input parameters, a distribution type has to be chosen which
captures the main characteristics of the measured fiber length distributions. In case of long-fiber reinforced polymers, the
fiber length distribution involves a monotonically decreasing curve and high standard deviations.30,34,35 To model such
a qualitative behavior, the Gamma distribution may be used, see Figure 4, which is defined via the probability density
function

𝜌𝛼,𝛽(L) =
𝛽𝛼

Γ(𝛼)
L𝛼−1 exp(−𝛽 L), L > 0, (59)

depending on the shape parameter 𝛼 > 0 and the rate parameter 𝛽 > 0.
For the problem at hand, we need to compute the distribution parameters 𝛼 and 𝛽 from the volume-weighted mean

m and the standard deviation s. Provided the volume of the considered objects only varies due to the length, for example,
as it holds for straight cylinders with constant diameter, Mehta and Schneider25(Apx. A) derive the conditions

m =
⟨
𝓁2⟩⟨𝓁⟩ , s2 =

⟨
𝓁3⟩⟨𝓁⟩ − m2, (60)

where the notation ⟨Z⟩ is used for the expectation of the random variable Z. As the volume of a curved cylindrical fiber
with constant diameter D coincides with the volume of a straight cylindrical fiber with equal diameter,45 the condition (60)
holds for the considered polygonal chain. For a random variable Z following the Gamma distribution with distribution
parameters 𝛼 and 𝛽, the expectation of the nth-power of the random variable Z is given by the expression65

⟨Zn⟩ = 1
𝛽n

n∏
i=1

(𝛼 + i − 1), n ∈ N. (61)
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16 of 33 LAUFF et al.

With the expression (61) at hand, we reformulate Equation (60) to get the system

m = 𝛼 + 1
𝛽

, s2 = 𝛼 + 1
𝛽2 (62)

of equations. Solving for 𝛼 in the first equation and inserting this expression into the second equation yields the explicit
relations

𝛼 = m2

s2 − 1, 𝛽 = m
s2 . (63)

Due to the asymptotic behavior of the Gamma distribution for high standard deviations shown in Figure 4, sam-
pling from the Gamma distribution results in numerous fibers with unrealistically small fiber lengths. To overcome this
limitation, we only consider fiber lengths exceeding a chosen minimum fiber length. Attention has to be taken that the
minimum fiber length is small enough such that the volume-weighted quantities are not influenced significantly. Hence,
we choose the minimum fiber length to be equal to the fiber diameter such that also the smallest fiber length is larger
than the diameter.

For an accurate realization of the statistic quantities m and s, it is critical to select an adequate sampling strategy,
especially when considering high standard deviations as in long fiber reinforced polymers. Due to the advantages of a
sampling strategy with scrambled Sobol sequences66,67 compared to a classic Monte Carlo approach,68 see Mehta and
Schneider,25 we use this scheme for the fiber length sampling.

Besides the Gamma distribution, also other distribution types may be used to model the fiber length distribution of
long fiber reinforced polymers, for example, the Beta, Weibull or log-normal distribution. For the material at hand, the
Gamma distribution turns out to be a sufficiently accurate model for the fiber length distribution.

3.4 Handling of extremely long fibers

If the fiber lengths are sampled from a fiber length distribution, for example, the Gamma distribution, extremely long
fibers with high numbers of segments n may be present. For the numerical integration of the fiber movement, systems
of linear equations of a dimension nq = 3(ni + 1) need to be solved. As the effort of direct solvers scales cubically in nq, it
may be extremely time-consuming to determine the fiber movement for fibers with many segments.

F I G U R E 4 Gamma distribution with volume-weighted mean m = 15.00 mm and standard deviation s = 14.98 mm (blue), fitted to
fiber length data of a PPGF30 material30 (red).
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LAUFF et al. 17 of 33

To improve the efficiency for increasing aspect ratios, we introduce a mixed procedure which combines the advantages
of the SAM and fSAM algorithm. If more segments than a prescribed maximum number n are necessary, then the fiber
will be divided in

np =
⌈

ni

n

⌉
(64)

polygonal chains, which will move separately. The first np − 1 chains comprise n-segments each, and the last chain collects
the remaining segments. To illustrate the separation into multiple chains, a fiber with n = 15 segments and a maximum
number of segments n = 6 is shown in Figure 5. The distance between adjacent chains is highlighted by the two dashed
connection lines.

With the introduced separation, we satisfy the coherence condition for the links in each subchain but not between
different subchains, see Figure 5. However, we still require that the coherence is a convergence criterion for the optimiza-
tion process. To overcome this issue, we account for an additional term in the optimization function with respect to the
coherence criterion,31 which we have left out in Equation (48)

F(f1, … , fN) =̂
1
2

N∑
i,j=1

ni∑
a=1

nj∑
b=1

(
𝛿ab

ij

)2
+ wA

8
N||A − A

r||2 + w𝜌

2

N∑
i=1

ni−1∑
a=1

(
𝜌a

i
)2 +

w𝛾

2

N∑
i=1

ni−1∑
a=1

(
𝛾a

i
)2
. (65)

The quantity 𝛾 i
a is defined as the smallest periodic distance between two adjacent segments. As we still fulfill the coherence

condition within the chains intrinsically, the quantity 𝛾 i
a is only nonzero for adjacent segments which are part of two

different subchains. Hence, the quantity 𝛾 i
a may be computed via

𝛾a
i ≡

⎧⎪⎨⎪⎩
dQ

(
xa

i +
𝓁i
2

pa
i , xa+1

i − 𝓁i
2

pa+1
i

)
, if a ∈ {n, 2 n, 3 n, … }

0, else

⎫⎪⎬⎪⎭, a = 1,…,ni − 1. (66)

As the fourth term in Equation (65) needs to have dimension (length)2, the weight w𝛾 is dimensionless, and we choose
w𝛾 = 0.75.31 Due to the additional term in the objective function, also the directional derivatives extend

𝜕F(f1, · · · , fN)
𝜕xa

i
=̂ −

N∑
j=1

nj∑
b=1

𝛿ab
ij

kab
ij‖‖‖kij
ab
‖‖‖ + w𝛾 (va

i − va+1
i ),

𝜕F(f1, · · · , fN)
𝜕pa

i
=̂ −

N∑
j=1

nj∑
b=1

𝛿ab
ij

𝓁isab
ij

2
kab

ij‖‖‖kab
ij
‖‖‖ − wA

𝓁iN
Ltotal

(
A − A

r)[(pa
i )⊗

3] − w𝜌

(
𝜌a

i pa+1
i + 𝜌a−1

i pa−1
i

)
+

w𝛾𝓁i

2
(

va
i + va+1

i

)
,

(67)
where the vector va

i relates to the smallest periodic distance between two adjacent segments.

F I G U R E 5 Separation of a fiber with n = 15 segments and a maximum number of segments n = 6 into three chains.
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18 of 33 LAUFF et al.

Attention has to be taken that the maximum number of segments n is chosen adequately. On the one hand, if the
parameter is too small, convergence problems due to the coherence condition will arise similar to the SAM algorithm. On
the other hand, if the maximum number of segments is too large, the runtime for the numerical integration will increase
drastically.

4 COMPUTATIONAL INVESTIGATIONS

4.1 Setup

For the computational investigations, we use an implementation of the fSAM algorithm in Python with Cython exten-
sions. This implementation features parallelization with OpenMP for collision checks between the fibers and the
numerical integration of the fiber movement. The measured runtimes were recorded on a desktop computer with a 8-core
Intel i7 CPU and 64GB RAM.

We consider the material parameters of a polypropylene (PP) matrix reinforced by E-glass fibers,69,70 see Table 1. As
our reference setup, we model the fibers with a diameter of D = 17 𝜇m. We restrict the segment lengths to 𝓁 = 100 𝜇m
and the maximum angles to 𝛼 = 60◦. To avoid stress peaks for fibers which are too close,71,72 we enforce a minimum
inter-fiber distance of 20% of the fiber diameter, that is, for a diameter of D = 17 𝜇m the minimum distance is 3.4 𝜇m.
The fiber lengths, the fiber volume fraction and the fiber orientation tensor vary throughout the different studies. As the
reference algorithm, we use the pure fSAM algorithm, introduced in Section 3.2. Only for the computational studies in
the Sections 4.5 and 4.7, we also use the mixed procedure with a maximum segment number of n = 20, see Section 3.4.
For the pure fSAM algorithm and the mixed procedure, we add the fibers which are necessary to reach the desired fiber
volume fractions in a single step.

To reduce boundary effects, we generate periodic microstructures. From a computational point of view, this require-
ment manifests in periodic distance computations between the individual fiber segments. The fiber orientation tensors of
fourth order are approximated with the exact closure by a prescribed fiber orientation tensor of second order. As termina-
tion criteria for the microstructure generation with the fSAM algorithm, we enforce that the nonoverlapping condition is
fulfilled strictly. Additionally, the fiber orientation tensor has to be realized with a relative error below 10−4 and the angle
constraint with an absolute error below 10−2. In case of the mixed procedure, the termination criterion for the coherence
condition is a distance between adjacent chains below 10−3D, where D denotes the fiber diameter.

The effective elastic properties are computed with FFT-based computational homogenization software.73,74 We use
a discretization on a staggered grid75 and a conjugate gradient solver76,77 with a relative tolerance of 10−5 as termina-
tion criterion. Based on six independent load cases, we first compute the effective elasticity tensor. Second-order fiber
orientation tensors are always orthotropic.78,79 Hence, also the fiber orientation tensors of fourth order approximated by
the exact closure are at most orthotropic.52 For this reason, we report on the effective orthotropic engineering constants
approximated from the full effective elastic tensor.78,80

4.2 On the difference between the SAM and the fSAM algorithm

The main goals of the extension towards a fused fiber movement are, on the one hand, to enable faster microstructure
generation and, on the other hand, to achieve packings with high fiber volume fractions for long fibers. To assess the
improvement, we start our investigations by comparing the efficiency of the microstructure generation for both the SAM
and the fSAM algorithm. For this purpose, we generate microstructures with a cubic unit cell and cell dimension Qi =
748 𝜇m. The fibers are modeled with a uniform fiber length of L = 1700 𝜇m, that is, a fiber aspect ratio of ra = 100. For
the study, we consider the fiber volume fractions

T A B L E 1 Material properties for the PP matrix and the E-glass fibers.69,70

E-glass fibers PP matrix

E = 72.0 GPa E = 1.25 GPa

𝜈 = 0.22 𝜈 = 0.35
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LAUFF et al. 19 of 33

𝜙 ∈ {5%, 10%, 15%, 20%} (68)

and the second-order fiber orientation tensors

A1 =̂ diag(0.33, 0.33, 0.33), A2 =̂ diag(0.48, 0.48, 0.04),
A3 =̂ diag(0.96, 0.02, 0.02), A4 =̂ diag(0.77, 0.17, 0.06),

(69)

where the last fiber orientation corresponds to a fiber orientation state experimentally determined for long fiber reinforced
thermoplastics81 manufactured by the LFT-D process.82 For every combination of fiber volume fraction, fiber orientation
tensor and procedure, we generate ten microstructures. The measured runtimes are visualized in Figure 6.

For all fiber orientation tensors, we observe an increase in effort for packings with higher fiber volume fractions.
Also, the considered fiber orientation tensor has an influence on the microstructure generation. According to the study,
the easiest fiber orientation tensor to realize is the isotropic case and generating the almost planar isotropic case is the
hardest. For example, for the fSAM algorithm and the highest volume fraction it takes on average about 5 s to generate
the isotropic microstructure but 156 s for the almost planar one. Composites with fiber lengths exceeding the geometry
thickness, for example, industrial long fiber reinforced thermoplastics, feature an almost planar fiber arrangement.26–29

Comparing the two algorithms for the almost planar fiber orientation states A2-A4, it turns out that the microstructure

(A)

(C)

(B)

(D)

F I G U R E 6 Comparison of the runtimes for generating microstructures with four different fiber orientation tensors and fiber volume
fractions using the SAM algorithm or the fSAM algorithm.
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20 of 33 LAUFF et al.

generation with the fSAM algorithm is always faster than using the SAM algorithm. Especially for the highest volume
fraction of 20%, tremendous differences in the runtime are measured. Only for a configuration with an isotropic fiber
orientation state and a fiber volume fraction of 𝜙 = 20%, the SAM algorithm is slightly faster than the fSAM algorithm.
However, this configuration is not representative for typical LFTs.

Let us focus on the almost planar isotropic case shown in Figure 6B to investigate the differences between the two
strategies more thoroughly. For the fiber volume fractions 5%, 10% and 15%, the fSAM algorithm is 4.2, 6.7, and 7.2 times
faster than the SAM algorithm. For the highest fiber volume content of 20%, the SAM algorithm fails to converge at all,
but the fSAM algorithm is able to generate this microstructure in a mean runtime of 156 s. As filler fractions between 20%
and 30% are of primary industrial relevance, the SAM algorithm turns out to be incapable of generating the necessary
microstructures, whereas the fSAM algorithm reaches this range. The capability of the fSAM algorithm for even higher
fiber volume fractions up to 32% and aspect ratios of 150 is shown in Section 4.6.

Due to the numerical integration of the constrained mechanical system, a single optimization step for the fused fiber
procedure takes more time than for the SAM algorithm. Still, the fSAM algorithm turns out to be faster overall, which
is a result of the significantly lower number of iteration until convergence. Especially, for complex microstructures, for
example, with long fibers or high volume fraction, the SAM algorithm suffers from convergence problems due to the
penalty term for the coherence condition. Moving the fibers in a physically meaningful way appears to stabilize the con-
vergence behavior of the optimization algorithm. Hence, we conclude that the adaption of the SAM algorithm with respect
to the fSAM algorithm improves the microstructure generation for long fibers immensely. Last but not least, we remark
that further reduction in runtime may be achieved by a faster implementation of the numerical integration, for example,
with respect to special strategies for the matrix multiplications or the solution of the linear systems of equations.

4.3 Resolution study

When computing effective properties with computational homogenization techniques, the mesh size needs to be chosen
fine enough such that an accurate computation of the properties is enabled.77,83 For this purpose, we study the influence
of the resolution on the effective stiffness with the reference setup from Section 4.1 and material parameters listed in
Table 1. We generate microstructures with a cubic cell-size and cell dimension Qi = 612 𝜇m, which turns out to be large
enough for representativity in the RVE study in Section 4.4. The microstructures are filled with a fiber volume fraction of
𝜙 = 15%. A uniform fiber length of L = 2550 𝜇m is considered, that is, an aspect ratio of ra = 150. Due to the maximum
segment length of 𝓁 = 100 𝜇m, the chains consist of 26 segments. We prescribe the fiber orientation tensor of second
order A =̂ diag(0.77, 0.17, 0.06), already used in Section 4.2.

For the resolution, we consider four voxel edge-lengths 6.8, 3.4, 2.0 and 1.7 𝜇m. Hence, 2.5 voxels resolve a diameter
for the coarsest mesh size, whereas 10 voxels resolve a diameter for the finest mesh size. With respect to the total voxel
number per microstructure, this results in 903, that is, more than 72 ⋅ 104, voxels for the coarsest mesh size and 3603, that is,
more than 46 ⋅ 106, voxels for the finest mesh size. As the effort for the computational homogenization increases with the
total voxel number, the homogenization is significantly more time-consuming for the finest mesh size than for the coarsest
mesh size. Comparing the voxel edge-lengths to the minimum segment distance of 3.4 𝜇m, it turns out that the two finest
mesh sizes resolve the minimum segment distance with more than one voxel, whereas the voxel edge-length h = 3.4 𝜇m
equals the minimum segment distance and the coarsest resolution is not sufficient to resolve the minimum segment
distance. In Figure 7, the same microstructure resolved with different voxel edge-lengths are shown. We observe that the
fiber directions show a preference in e1-direction and are mainly planar, according to the prescribed fiber orientation
tensor of second order.

Let us discuss the computed orthotropic engineering constants, see Table 2. As we approximate the engineering con-
stants from the full effective elastic tensor, we report on the approximation error errorth to control the quality of the
approximation. We observe that the approximation error is 2.35% for the coarsest resolution and decreases below 1%
for the three other meshes. Hence, in all cases the approximation is adequate to represent the effective stiffness. For the
Young’s moduli, it turns out that the Young’s modulus in e1-direction exceeds the moduli in the other directions by about
a factor of three due to the preferred fiber arrangement in e1-direction. As the fibers are rather positioned in e2-direction
than in e3-direction, the smallest Young’s modulus is E3. Also the shear moduli are notably affected by the anisotropic
fiber arrangement. According to the order of the fiber orientation tensor components (a1 > a2 > a3), the shear moduli
decrease from G12 to G13 to G23. To assess the error induced by the chosen resolution, we compare the moduli with respect
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LAUFF et al. 21 of 33

(A) (B) (C)

F I G U R E 7 Visualization of (612 𝜇m)3-microstructures resolved with three different voxel edge-lengths h.

T A B L E 2 Approximated orthotropic engineering constants for the voxel edge-lengths h = 6.8 𝜇m, h = 3.4 𝜇m, h = 2.0 𝜇m, and
h = 1.7 𝜇m.

h E1 E2 E3 G23 G13 G12 errorth

𝝁m GPa GPa GPa GPa GPa GPa %

6.8 6.10 2.26 2.06 0.75 0.86 1.09 2.35

3.4 6.82 2.32 2.04 0.74 0.85 1.15 0.96

2.0 7.06 2.35 2.03 0.73 0.85 1.17 0.52

1.7 7.11 2.35 2.03 0.73 0.85 1.17 0.44

to the finest mesh. The highest error is computed for the Young’s modulus E1 and the coarsest resolution with 14.21%,
dropping to 4.08% and 0.70% for the finer resolutions.

To obtain an error below 3%, we choose a voxel edge-length of h = 2.0 𝜇m, that is, 8.5 voxels per diameter. Compared
to previous studies for straight22,24,84 and curved31 fibers with aspect ratios up to 30, where a resolution of 5 voxels per
diameter turns out to be sufficient, we observe a higher required resolution for an aspect ratio of 150.

4.4 On the size of the representative volume element (RVE)

A key concept for computational homogenization of materials with random microstructures is the representativity of unit
cells. Due to the randomness of the microstructures, the computed apparent elastic properties on cells of finite volume
are random variables. Only when assuming infinite cell sizes, the apparent properties become deterministic descriptors,
known as effective properties. For increasing cell sizes, the apparent properties converge to the effective properties.10,85,86

In this context, a unit cell is called representative volume element (RVE) if the computed properties are sufficiently close
to the effective properties, that is, the infinite-volume limit of the apparent properties. The computational effort for the
homogenization increases with the unit-cell size. Hence, reducing the necessary RVE size is an important factor to ensure
time efficient homogenization.

In general, the effective properties are unknown quantities. Hence, it is not possible to compare the apparent properties
directly to these quantities. However, the representativity of a unit cell may be assessed without knowing the effective
properties in advance. Instead, it is sufficient to monitor two kinds of representativity errors. For a fixed unit-cell size,
the random error10,87 is quantified by the standard deviation of the apparent properties and measures the differences
between the realizations. Increasing the unit-cell size reduces the random error.32,88 Besides the random error, the mean
of the apparent properties may differ from the effective properties, which is called systematic error.10,87 To monitor the
systematic error, we compare the mean of the apparent properties for increasing unit-cell sizes until the mean value
converges.
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22 of 33 LAUFF et al.

For the RVE study, the setup from Section 4.3 is considered, where the microstructures are resolved with 8.5 voxels
per diameter. We study the representativity of three different cubic cell-sizes with dimensions Qi = 476 𝜇m, Qi = 612 𝜇m
and Qi = 748 𝜇m. Hence, the fibers with length 2550 𝜇m are several times longer than the cell edge-length, for example,
for the smallest cell by about a factor of 5. With respect to the voxel edge-length of h = 2 𝜇m, the smallest cell is resolved
with 2383, that is, more than 13 ⋅ 106, voxels and the largest cell with 3743, that is, more than 52 ⋅ 106, voxels. In Figure 8,
generated microstructures for all three cell sizes are shown.

For each cell size, we compute the mean and the standard deviation of the approximated engineering constants for
ten realized microstructures. The results are listed in Table 3.

Monitoring the orthotropic approximation error shows that the approximation is suitable with an error below 1%
for all three cases. Also for the representativity errors, we observe small deviations, only affecting the second digit. The
highest systematic error occurs for the shear modulus G12 with a relative error of 0.51%.

It turns out that even the smallest cell size is representative and thus the RVE sizes are small enough to ensure com-
putationally reasonable effort for the homogenization in industrial applications. A further reduction of the cell size is
difficult, especially as the smallest cell size only includes 27 fibers and a minimum amount of fibers is necessary to ensure
that the microstructure statistics are realized. Additionally, the microstructure generation process is made more challeng-
ing as the fibers wrap around the cell even more often. In accordance with previous studies,22,31 we emphasize that the
combination of periodic boundary conditions and an accurate realization of the prescribed descriptors, for example, as
the fourth-order fiber orientation tensor A, lead to extremely small RVE sizes.

4.5 Study on the maximum segment length

In this section, we study the influence of the maximum segment length 𝓁 on the runtime for the microstructure genera-
tion as well as on the computed effective stiffness. Therefore, we consider the setup from Section 4.3 with an edge-length
of Qi = 612 𝜇m. The selection of the maximum segment length influences the runtime of the microstructure generation

F I G U R E 8 Generated microstructures for three different cubic cell-sizes Qi.

T A B L E 3 Approximated orthotropic engineering constants for the cubic cell-sizes Qi = 476 𝜇m, Qi = 612 𝜇m, and Qi = 748 𝜇m.

Qi E1 E2 E3 G23 G13 G12 errorth

𝝁m GPa GPa GPa GPa GPa GPa %

476 7.09 ± 0.05 2.36 ± 0.02 2.03 ± 0.01 0.73 ± 0.00 0.84 ± 0.01 1.17 ± 0.01 0.55 ± 0.09

612 7.06 ± 0.03 2.35 ± 0.01 2.03 ± 0.00 0.73 ± 0.00 0.84 ± 0.00 1.16 ± 0.01 0.55 ± 0.06

748 7.06 ± 0.02 2.35 ± 0.01 2.03 ± 0.00 0.73 ± 0.00 0.84 ± 0.00 1.17 ± 0.01 0.54 ± 0.03
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significantly. To identify an adequate range for the parameter, we study the runtime for varying maximum segment
lengths. The considered maximum segment lengths 𝓁 and the resulting numbers of segments n are listed in Table 4
with blue color. For all cases, the averaged runtimes of ten microstructure generations are illustrated in Figure 9A by the
blue graph.

For the mean runtime, we observe a convex shape with a minimum of 5 s for a maximum segment length of 𝓁 =
100 𝜇m, that is, the case where the fibers consist of 26 segments. For higher maximum segment lengths, the runtime is
increasing and for 𝓁 = 225 𝜇m, the mean runtime is more than 100s. On the other hand, the microstructure generation
is also more expensive for maximum segment lengths smaller than 𝓁 = 100 𝜇m. Between a maximum segment length
of 100 and 52 𝜇m, the gradient is rather small. In contrast, the graph shows an extreme raise for the runtime between
53 𝜇m, that is, 49 segments, and 52 𝜇m, that is, 50 segments. The highest mean runtime is measured for 52 𝜇m of more
than 600s.

With increasing maximum segment length, fewer but longer segments are considered. Hence, the possibility of the
fibers to fill small free spaces within in the unit cell is hindered, which causes an increase in runtime. Especially, for small
RVE sizes the maximum segment length needs to be small as fibers wrapping around a unit cell multiple times harden
the microstructure generation and more flexibility is necessary. However, for decreasing maximum segment lengths the
increasing number of segments leads to more effort for the numerical integration of the constrained mechanical system
and the collision checks. Comparing the latter two tasks, the numerical integration of the constrained mechanical system
is the main reason for the increase in runtime. For our investigation, the microstructure generation becomes inefficient
whenever certain thresholds are exceeded, for example, the maximum segment length may not be smaller than 53 𝜇m
and not larger than 175 𝜇m. For this setup, the maximum segment length 𝓁 = 100 𝜇m is identified as best selection with
respect to the runtime. The thresholds and the ideal parameter selection depend on the considered setup.

We aim to study the runtimes for the microstructure generation with even smaller maximum segment lengths. To
reduce the effort for the numerical integration due to the high number of segments, we use the mixed procedure, see

T A B L E 4 Considered maximum segment lengths 𝓁 and the resulting numbers of segments n.

𝓁 21 25 50 52 53 75 100 125 150 175 200 225

n 122 102 51 50 49 34 26 21 17 15 13 12

(A) (B)

F I G U R E 9 Comparison of the runtimes for the microstructure generation (A) and the Young’s moduli (B) in terms of different
maximum segment lengths 𝓁.
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24 of 33 LAUFF et al.

Section 3.4. For the study, we consider a maximum number of segments n = 20 and the segment lengths listed in Table 4
with green text color or boxed. Higher maximum segment lengths than 𝓁 = 125 𝜇m are not considered as the resulting
segment numbers are smaller than the maximum number of segments n = 20. Thus, the fibers are discretized with only
one chain and the mixed procedure coincides with the pure fSAM algorithm. The measured runtimes are shown by the
green graph in Figure 9A.

We observe that the runtimes for the mixed procedure are always higher than for the maximum segment length
𝓁 = 100 𝜇m with the fSAM algorithm. Hence, this is still the best parameter and procedure selection for our use case.
Considering maximum segment lengths smaller than 𝓁 = 53 𝜇m, where the fibers are discretized with high numbers of
segments, the mixed procedure immensely reduces the runtimes. For example, we observe a runtime of 17.8 s for the
maximum segment length 𝓁 = 50 𝜇m, which is more than 30 times smaller than the runtime for the maximum segment
length 𝓁 = 52 𝜇m using the fSAM algorithm. However, the green graph shows a significant increase in runtime for max-
imum segment lengths smaller than 𝓁 = 50 𝜇m as the higher number of chains per fiber results in more violation of the
coherence condition. For the smallest considered maximum segment length 𝓁 = 21 𝜇m, a runtime of 533 s is needed. A
further reduction of the maximum segment length to 𝓁 = 20 𝜇m is not possible as the segment aspect ratio is only slightly
higher than one, but the algorithm requires a pronounced spherocylindrical, and not a spherical, segment shape. To con-
clude, it turns out that the mixed procedure enables microstructure generation for high numbers of segments. However,
for moderate number of segments, still the lowest runtime is measured for the fSAM algorithm. Hence, we emphasize
that the mixed procedure should only be used to handle extremely long fibers, for example, due to sampling from fiber
length distributions.

After studying the influence of the maximum segment length on the runtime of the microstructure generation, we
turn our attention to the computed effective stiffnesses. Therefore, we generate microstructures with the maximum seg-
ment lengths listed in Table 4, using the fSAM algorithm for the blue written maximum segment lengths and the mixed
procedure for the green written or boxed ones. Following Section 4.3, the generated microstructures are resolved with
a voxel edge-length of h = 2.0 𝜇m. With this setup, the unit cell is representative and the orthotropic approximation is
adequate, according to Section 4.4. Hence, we generate only one unit cell for each case to compute the approximated
orthotropic effective stiffnesses. The Young’s moduli are shown in Figure 9B.

The results show that the stiffness of the microstructures is close for all maximum segment lengths. When comparing
the differences with the representativity errors, it even turns out that they are in a similar range. This observation corre-
sponds to a previous study,31 investigating the effective properties between curved fibers with a fixed maximum segment
length of 𝓁 = 50𝜇m, that is, five times the considered diameter of D = 10 𝜇m, and straight fibers, that is, the extreme case
with a maximum segment length of 𝓁 = ∞, for different fiber lengths. However, for straight fibers, the microstructure
generation and the following homogenization are extremely demanding for high aspect ratios due to the huge necessary
unit-cell sizes. Hence, the previous study is restricted to fiber aspect ratios up to ra = 90. By considering rather long max-
imum segment lengths instead of completely straight fibers, we are capable of confirming the observation of the previous
study31 also for a significantly higher aspect ratio of ra = 150. Additionally, it turns out that also using maximum segment
lengths which are only slightly larger than the diameter does not influence the effective properties remarkably.

4.6 Generation of microstructures with high fiber volume fractions

We aim to study the limits of the microstructure generation using the fSAM algorithm with respect to a packing with high
fiber volume fraction. Therefore, we generate microstructures with a cubic cell-size and cell dimension Qi = 612 𝜇m, a
constant fiber length of L = 2550 𝜇m and a fiber orientation tensor of second order A =̂ diag(0.77, 0.17, 0.06). To pack
structures with industrial fiber volume fractions, a high flexibility for the fibers, that is, a small maximum segment length,
is required. Hence, we use the maximum segment length 𝓁 = 53 𝜇m, which is the threshold for an efficient numerical
integration of the constrained mechanical system according to Section 4.5. Compared to the fiber diameter D = 17 𝜇m,
the segments have an aspect ratio of about 3. To study the efficiency of the algorithm with increasing fiber volume fraction,
we generate microstructures starting from 20% in 1% steps up to the fiber volume fraction where the algorithm fails to
converge within 106 iterations.

In Figure 10, the mean and the standard deviation of the runtimes for the microstructure generation are shown,
considering ten realizations for each fiber volume fraction. We observe an exponential growth in time for increasing fiber
volume fractions. Hence, the smallest runtime is measured for the lowest fiber volume fraction with 21 s. The limit for
the fiber volume fraction is reached for 𝜙 = 32%. Notice that the minimum distance between the fibers of 3.4 𝜇m, that
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LAUFF et al. 25 of 33

F I G U R E 10 Runtimes for the microstructure generation with increasing fiber volume fractions 𝜙.

F I G U R E 11 Microstructure with aspect ratio ra = 150 and fiber volume fraction 𝜙 = 32%.

is, 20% of the fiber diameter D = 17 𝜇m, is realized by increasing the diameter of a fiber during the collision checks by
20%. Hence, the minimum distance increases the fiber volume fraction artificially, and without the minimum distance
significantly higher fiber volume fractions may be achievable. A microstructure reinforced with 𝜙 = 32% fiver volume
content is shown in Figure 11. For this case, the runtime is about 7 900 s, that is, 2 h 12 min, which is still a low runtime
for a packing with such a high fiber volume fraction generated on an ordinary desktop computer. Typically, long fiber
reinforced composites are manufactured up to a fiber volume fraction of 30%.30,34 Hence, the study shows the capability
of the fSAM algorithm to generate microstructure for industrially used LFTs.

4.7 Application to a PPGF30 material accounting for the fiber length distribution

In this section, we apply the fSAM algorithm, see Sections 3.2 and 3.4, to a PPGF30 material with a fiber volume frac-
tion of 𝜙 = 13.22% and a second-order fiber orientation tensor A =̂ diag(0.71, 0.26, 0.03).30 We model the fiber length
distribution given by Fliegener et al.30 with a Gamma distribution using a volume-weighted mean of m = 15.00 mm and
a standard deviation of s = 14.98 mm. The resulting fiber length distribution is shown in Figure 4. For the microstruc-
ture generation, we consider a rectangular unit cell Q = [0, 1500 𝜇m] × [0, 1500 𝜇m] × [0,750 𝜇m]. To ensure an efficient
numerical integration of the constrained mechanical systems, we use the mixed procedure with a maximum segment
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26 of 33 LAUFF et al.

number of n = 20 and a maximum segment length of 𝓁 = 100. In Figure 12, a generated microstructure is shown. Due
to the fiber length distribution, extremely long fibers are realized. For the visualized microstructure, we highlight the
longest fiber, which has a length of L ≈ 48 976 𝜇m, in blue and observe that the fiber wraps around the unit cell multiple
times. Also, the oscillation of the fibers is apparent.

We aim to realize the volume-weighted mean m and the standard deviation s of the fiber length distribution accu-
rately due to their influence on the effective elastic properties.25 With increasing standard deviation, a higher number of
realizations is necessary to obtain adequate statistic quantities. However, when generating microstructures, a large num-
ber of fibers results in larger volume element sizes and thus higher computational effort in terms of to the microstructure
generation and the subsequent computational homogenization. To reduce the necessary fiber count, we use an improved
sampling strategy with scrambled Sobol sequences66,67 instead of, for example, the classical Monte Carlo approach. To
assess the quality of the realizations, we compare the mean values of the realized statistic quantities with the desired
ones. For the considered ten realizations, we obtain a volume-weighted mean of 14.06 mm, which is 6.27% below the
desired value of 15.00 mm. For the standard deviation, the mean value is 12.50 mm, that is, 16.56% below the desired
value of 14.98 mm. Hence, the volume-weighted mean is realized quite accurately, whereas we observe significantly
higher differences for the standard deviation, which is typical for sampling from distribution functions with high standard
deviations.

We wish to compare the stiffness of the generated microstructures with experimental data30 and with microstructures
generated with the SAM algorithm.31 Notice that the latter microstructures include fibers with a constant aspect ratio
of ra = 240. For this comparison, we generate ten microstructures, where the mean runtime is about 20 min. Then, we
compute the orthotropic Young’s moduli with a voxel edge-length of h = 2.0 𝜇m, resolving the generated microstructures
with 750 × 750 × 375, that is, about 211 million, voxels. Following Schneider,31 we use the material parameters E = 1.8GPa
and 𝜈 = 0.3530,35 for the polypropylene matrix. To enable a fair comparison of the runtime with identical hardware, we
additionally repeat the study on the SAM algorithm31 by generating ten microstructures.

The computed Young’s moduli are listed in Table 5, where we add the relative difference with respect to the experi-
mental results in brackets. Comparing the Young’s modulus E1, the fSAM algorithm shows a good agreement with the
experimental results with a relative underestimation of 4.06%, which is closer than the result for the SAM algorithm with
6.47% deviation. The Young’s modulus E2 is overestimated by both procedures slightly with 6.85% for the SAM and 7.49%
for the fSAM algorithm. For the Young’s modulus E3, no experimental results are obtained. However, comparing the two
procedures it turns out that the Young’s modulus E3 coincides. Besides the Young’s moduli, also the runtimes of the SAM
and the fSAM algorithm are listed in Table 5. The mean runtime of the SAM algorithm is about 89 min, which is multiple
times higher compared to the fSAM algorithm with 20 min.

Last but not least, we study the highest realizable fiber volume fraction for the considered setup, still using the fiber
length distribution shown in Figure 4. Therefore, we increase the fiber volume fraction starting from 15% in 1% steps.

F I G U R E 12 Generated microstructure with cell size Q = [0, 1500 𝜇m] × [0, 1500 𝜇m] × [0,750 𝜇m], highlighting the longest fiber with
a fiber length of L ≈ 48 976 𝜇m.
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T A B L E 5 Comparison of the experimental results30 and the computed approximated Young’s moduli of microstructures generated with
the SAM algorithm31 or with the fSAM algorithm.

Experiments30 SAM algorithm31 fSAM algorithm

E1 in GPa 6.65 6.22 6.38 ± 0.02

- [−6.47%] [−4.06%]

E2 in GPa 3.07 3.28 3.30 ± 0.02

- [+6.84%] [+7.49%]

E3 in GPa - 2.71 2.71 ± 0.00

Runtime in min - 88.61 ± 35.72 19.69 ± 4.14

T A B L E 6 Runtimes for the microstructure generation of a PPGF material with the fiber length distribution shown in Figure 4 and
increasing fiber volume fraction.

𝝓 in % 15 16 17 18 19

Runtime in min 34.14 ± 5.81 43.76 ± 4.92 57.61 ± 4.06 87.15 ± 20.95 151.32 ± 23.45

For each fiber volume fraction, we consider five realizations. The runtimes are shown in Table 6. For the highest realizable
fiber volume fraction of 19%, the runtime is about 150 min, that is, 2 h30 min.

5 SUMMARY AND CONCLUSION

This work presents the fused sequential addition and migration (fSAM) algorithm to generate microstructures for com-
posites with long, flexible fibers, which is applicable for industrial fiber aspect ratios and volume fractions. Especially,
as the fSAM algorithm generates these microstructures in a computationally efficient manner, the approach represents a
promising new tool in the field of reconstruction algorithms for long fiber reinforced composites.

According to the SAM algorithm for long curved fibers,31 we model the fibers as polygonal chains with spherocylin-
ders as segments and use an optimization framework for the microstructure generation. As main novelty, we enable a
physically meaningful fiber movement within the iterative scheme, where the fibers move in a fused way. However, as a
result we optimize on a curved manifold. For this case, the iterates of the basic gradient descent approach may leave the
optimization space. To ensure admissible iterates, the gradient steps need to move along the geodesic, that is, the shortest
curve between two points on the manifold. In general, such a geodesic is governed by a constrained mechanical system
without external forces. Thus, we derive the d’Alembert type constrained mechanical system describing the geodesic of
the considered manifold. In a second step, an efficient numerical method for the integration of the constrained mechan-
ical system is presented. Additionally, we discuss the adaption of the SAM algorithm for long curved fibers31 to account
for the fused fiber movement. For the fiber length distribution, we use the Gamma distribution, which is capable of real-
izing the main characteristics of the fiber lengths measured for long fiber reinforced microstructures.30,34,35 In context
of extremely long fibers, we introduce a workaround to overcome the high computational effort due to the numerical
integration of the constrained mechanical system.

We briefly summarize the findings of the computational investigations:

• First, a study on the efficiency of the SAM algorithm and the fSAM algorithm is provided, considering constant fiber
lengths. The results show that generating microstructures with the fSAM algorithm is multiple times faster than with
the SAM algorithm. Whereas the SAM algorithm fails to generate microstructures with a fiber volume fraction of 20%,
an aspect ratio of about 90 and an almost planar isotropic fiber orientation state, the fSAM algorithm is capable of
generating this microstructure in a routine way. The packing with higher fiber volume fraction is enabled as the fused
fiber movement stabilizes the convergence behavior of the optimization algorithm.

• To ensure the representativity of the generated unit cells, even the smallest considered cell size may be used as RVE.
In these unit cells only 27 fibers are included. Hence, the fSAM algorithm ensures appropriate cell sizes leading to a
reasonable effort for the subsequent computational homogenization.
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28 of 33 LAUFF et al.

• A parameter study of the maximum segment length is included in the computational investigations, showing that the
selection of the parameter has significant influence on the runtime but almost no effect on the effective properties.
On the one hand, the maximum segment length needs to be sufficient small to ensure the necessary flexibility of the
fibers. On the other hand, with decreasing maximum segment length more segments are used to discretize the fiber,
which leads to an increased effort for the numerical integration of the constrained mechanical system and the collision
checks. Hence, for every considered use case an adequate parameter selection is mandatory. Considering the computed
effective stiffness for different maximum segment lengths, the deviations are rather small, below 3%.

• To prove the capability of the fSAM algorithm to generate microstructures with industrial fiber volume fraction, a study
is included considering constant fiber lengths and an experimentally measured orthotropic fiber orientation tensor of
second order A =̂ diag(0.77, 0.17, 0.06).81 The highest achieved fiber volume fraction is 32% for a fiber aspect ratio
of 150, generated in 2 h 12 min. Hence, also high-performance materials reinforced by high fiber volume fractions are
covered by the algorithm. Indeed, for typical standard materials up to a fiber volume fraction of 25% the runtime is
within 3 min. Studying the maximum fiber volume fractions for varying fiber orientation states may be part of further
investigations.

• The method is capable of generating microstructures for an industrial PPGF30 material with a fiber volume fraction
of 13.22%, accounting for its fiber length distribution. Sampling from the Gamma distribution leads to extremely long
fibers, for example, in this case up to a length of 49 mm, that is, an aspect ratio of ra ≈ 2 881. By comparing the computed
effective properties to experimental results, the computed Young’s modulus E1 is in good coincidence with experi-
ments, leading to a relative underestimation by 4.06%. The computed Young’s modulus E2 slightly overestimates the
experiments with a relative deviation of 7.49%.

To sum up the numerical investigations, considering physically meaningful fiber motion as the key novelty within
the fSAM algorithm improves the capability for generating microstructures of composites with long, curved fibers signifi-
cantly. Thus, on the one hand, higher fiber volume fractions for long fiber reinforced composites are achievable, enabling
microstructure generation also for high-performance LFTs with more than 30% fiber volume content. On the other hand,
the microstructure generation is more efficient due to the reduced runtimes. Also, with respect to the subsequent numeri-
cal homogenization, reasonable computational effort is ensured by small RVE sizes. The methodology demonstrates to be
suitable for industrial materials, featuring fiber length distribution with extremely long fibers, when applied to a PPGF30
material. Moreover, comparing the computed effective properties of generated PPGF30 microstructures to experimental
data shows good coincidence.
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APPENDIX A. METRIC OF THE RIEMANNIAN MANIFOLD DESCRIBING A CURVED FIBER

The purpose of this appendix is to provide a streamlined derivation of the natural metric g of the manifold  (20), that
is, Equation (24). The manifold  parametrizes the submanifold  (14) of the Euclidean space R6 n, whose general ele-
ments we will denote as f. More precisely, the coordinate vector f collects the midpoints xa and the directions pa of all
segments, see Equation (13). For the Euclidean space at f ∈ R6 n, the scalar product of a tangent vector ḟ ∈ TxR

6 n ≡ R6 n

computes as

⟨ ḟ, ḟ ⟩R6 n =
n∑

a=1

[‖ẋa‖2 + 𝜀(𝓁,D)‖ṗa‖2
]
, (A1)

where the volume-specific moment of inertia of a spherocylinder 𝜀(𝓁,D) (25) is responsible for the specific form of the
rotational contributions. With the Equation (A1) at hand, the metric g of the manifold  is obtained via the pull-back (9)
of the scalar product in Equation (A1) onto the tangent space Tq
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gq(q̇, q̇) = ⟨ dfq(q̇), dfq(q̇)⟩R6 n , q ∈ , q̇ ∈ Tq, (A2)

with the explicit formulation for the differential map dfq

dfq(q̇) =
[ (

dx1
q(q̇)

)T · · ·
(

dxn
q(q̇)

)T(dp1
q(q̇)

)T · · ·
(

dpn
q(q̇)

)T
]T
, q ∈ , q̇ ∈ Tq

with dxa
q(q̇) = Q̂ ̇̂x0 +

a−1∑
b=1

𝓁 ṗb + 𝓁
2

ṗa and dpa
q(q̇) = ṗa, a = 1, … n

(A3)

from the tangent space Tq onto the tangent space Tf(q) . Using the explicit formulation of the differential map dfq in
Equation (A3) leads to

gq(q̇, q̇) =
n∑

a=1

[‖dxa(q̇)‖2 + 𝜀(𝓁,D)‖ dpa(q̇)‖2
]

=
n∑

a=1

⎡⎢⎢⎣
‖‖‖‖‖‖ Q̂ ̇̂x0 +

a−1∑
b=1

𝓁 ṗb + 𝓁
2

ṗa
‖‖‖‖‖‖

2

+ 𝜀(𝓁,D)‖ṗa ‖2
⎤⎥⎥⎦.

(A4)

Equation (A4) reveals that the metric of the manifold  is independent of the location on the manifold gq ≡ g. We wish
to give the metric g in Equation (A4) in the form of

g(q̇, q̇) = q̇T G q̇, (A5)

with the constant metric matrix G. As the metric g is already known, the metric matrix G may be derived by the relation

G = 1
2

𝜕2 g
𝜕q̇ 𝜕q̇

. (A6)

We compute the first derivative of the halved metric with regard to the normalized starting point

1
2
𝜕g

𝜕 ̇̂x0 =
n∑

a=1
Q̂

[
Q̂ ̇̂x0 +

a−1∑
b=1

𝓁 ṗb + 𝓁
2

ṗa

]
= n Q̂2 ̇̂x0 +

n∑
a=1

(
n − a + 1

2

)
𝓁 Q̂ ṗa (A7)

and with regard to the directions

1
2

𝜕g
𝜕ṗa = 𝓁

n∑
b=a+1

(
Q̂ ̇̂x0 +

b−1∑
c=1

𝓁 ṗc + 𝓁
2

ṗb

)
+ 𝓁

2

(
Q̂ ̇̂x0 +

a−1∑
b=1

𝓁 ṗb + 𝓁
2

ṗa

)
+ 𝜀(𝓁,D) ṗa

=
(

n − a + 1
2

)
𝓁 Q̂ ̇̂x0 +

a−1∑
b=1

(
n − a + 1

2

)
𝓁2 ṗb +

(
𝜀(𝓁,D) + 𝓁2

(
n − a + 1

4

))
ṗa +

n∑
b=a+1

(
n − b + 1

2

)
𝓁2 ṗb.

(A8)

Hence, the metric matrix attains the form

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

n Q̂2 f1 𝓁 Q̂ f2 𝓁 Q̂ · · · fn 𝓁 Q̂
fd,1 13×3 f2 𝓁2 13×3 · · · fn 𝓁2 13×3

⋱ ⋮

⋱ fn 𝓁2 13×3

sym fd,n 13×3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
with fa = n − a + 1

2
and fd,a = 𝜀(𝓁,D) + 𝓁2

(
n − a + 1

4

)
.

(A9)
where the latter equation corresponds to Equation (24).
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APPENDIX B. GEODESICS ON THE RIEMANNIAN MANIFOLD OF CURVED FIBERS

The goal of this appendix is to derive the equations governing the geodesics of the manifold describing curved fibers
 (20). Suppose that we know the coordinate vector at the time points t1 and t2 and aim to describe the geodesic curve
between these instants. According to Equation (5), the geodesic of the manifold  may be obtained by minimizing the
energy functional, parametrizing the midpoints and directions by the coordinate vector q(t) ∈ R

nq , see Equation (18),
under the condition that the vector-valued constraint function 𝚽1 (15) vanishes identically

1
2

1

∫
0

q̇(t)T G q̇(t) dt → min
q(t),𝚽1(f(q(t)))=0

(B1)

with the constant metric matrix G (24). The governing equations of the geodesic may be considered as a constrained
mechanical system, see Equation (6). Then, the geodesic equation is derived by solving Lagrange’s equations of the first
kind.89 To shorten the expressions, we will suppress the dependence on the time of the coordinate vector. For a constrained
mechanical system with n holonomic constraints, the equations read

d
dt

𝜕L(q, q̇, t)
𝜕q̇

−
𝜕L(q, q̇, t)

𝜕q
+ R(q,𝝀) = 0, (B2)

where 𝝀 ≡ 𝝀(t) refers to the vector of the Lagrangian multipliers and R(q,𝝀) corresponds to the constraint forces

R(q,𝝀) ≡
(
𝜕𝚽1(f(q))

𝜕q

)T

𝝀 ≡ J(q)T𝝀. (B3)

For the considered polygonal chain, the transposed Jacobian of the constraint vector J(q)T in Equation (B3) may be
computed explicitly as

J(q(t))T =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

03×1 03×1 · · · 03×1

p1(t) 03×1 · · · 03×1

03×1 p2(t) · · · 03×1

⋮ ⋮ ⋱ ⋮

03×1 0 · · · pn(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (B4)

As we consider no potential function, the Lagrangian function L in Equation (B2) equals the kinetic energy and depends
only on the first time derivative of the coordinate vector. Hence, Lagrange’s equations of the first kind shorten to

d
dt

𝜕E(q̇)
𝜕q̇

+ J(q)T𝝀 = 0, (B5)

where the first term of Equation (B5) computes as

d
dt

𝜕E(q̇)
𝜕q̇

≡ d
dt

1
2
𝜕q̇T G q̇

𝜕q̇
= G q̈. (B6)

Accounting for the geometric constraints (15) in Equation (B5) explicitly leads us to the differential algebraic equations
for the geodesics of the manifold  in Equation (27)

G q̈ + J(q)T𝝀 = 0,
𝚽1(f(q)) = 0.

(B7)
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