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Abstract

The main objective of Ramsey theory is to investigate the largest monochromatic sub-
structure guaranteed in any coloring of a given discrete host structure. Examples for
such substructures are subgraphs hosted in a complete graph or arithmetic progres-
sions in the natural numbers. In this thesis, we present quantitative Ramsey-type
results in the setting of finite sets that are equipped with a partial order, so-called
posets. A prominent example of a poset is the Boolean lattice Qn, which consists of
all subsets of {1, . . . , n}, ordered by inclusion. For posets P and Q, the poset Ramsey
number R(P,Q) is the smallest N such that no matter how the elements of QN are
colored in blue and red, there is either an induced subposet isomorphic to P in which
every element is colored blue, or an induced subposet isomorphic to Q in which every
element is colored red.

The central focus of this thesis is to investigate R(P,Qn), where P is fixed and n

grows large. Our results contribute to an active area of discrete mathematics, which
studies the existence of large homogeneous substructures in host structures with local
constraints, introduced for graphs by Erdős and Hajnal [27]. We provide an asymp-
totically tight bound on R(P,Qn) for P from several classes of posets, and show a
dichotomy in the asymptotic behavior of R(P,Qn), depending on whether P contains
a subposet isomorphic to one of two specific posets.

A fundamental question in the study of poset Ramsey numbers is to determine
the asymptotic behavior of R(Qn, Qn) for large n. In this dissertation, we present
improvements on the known lower and upper bound on R(Qn, Qn). Moreover, we
explore variations of the poset Ramsey setting, including Erdős-Hajnal-type questions
when the small forbidden poset has a non-monochromatic color pattern, and so-called
weak poset Ramsey numbers, which are concerned with non-induced subposets.
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Chapter 0

Introduction

0.1 Brief introduction to Ramsey theory for posets

The field of extremal combinatorics studies extremal properties of finite, discrete struc-
tures, for example graphs, integers or set systems, under local or global conditions.
The most common local constraint is to forbid a specific local substructure. One of
the key questions in extremal combinatorics is to find out which size of a homogeneous
substructure can be guaranteed in any given host structure. This general question is
the foundation of Ramsey theory, a major area of discrete mathematics, which provides
the general framework for this thesis. An active branch of this discipline is the so-called
Erdős-Hajnal setting, in which the emergence of homogeneous substructures is studied for
host structures in which some specific induced substructure is forbidden.

These Ramsey-type problems can be illustrated by a folklore example corresponding
to a Ramsey-type question for graphs: At a conference with 10 participants there are
always three people who are either all pairwise acquaintances or all pairwise strangers,
i.e., there is a homogeneous set of size 3. A natural extremal question is to determine
the smallest number of participants N such that any conference with N participants
has this property. It can be shown that the answer to this is N = 6. If we add the local
constraint that at a conference with 10 attendees, there are no three participants such
that among the three pairs in this trio exactly two pairs are acquainted, then we can
guarantee the existence of a homogeneous set of size 4.

In its mathematical abstraction, Ramsey-type problems are considered in terms
of partitions of a large host structure, or equivalently in terms of colorings, in which
a substructure is homogeneous if and only if it is monochromatic. The most well-
known setting of Ramsey theory studies monochromatic subgraphs in edge-colorings
of complete graphs, i.e., in terms of the example above, each participant corresponds

1



2 0. Introduction

to a vertex, and we color each pair of distinct vertices with any of two colors, depending
on whether they are acquaintances or strangers. In this thesis, we are concerned with
Ramsey theory in the setting of posets.

The term poset is an abbreviation for partially ordered set. As an example of a poset,
we denote by Qn the set of subsets of the first n integers {1, . . . , n}. The subsets in
Qn are partially ordered by inclusion, e.g., the subset {1, 2} is included in {1, 2, 3} but
incomparable to {1, 3}. A simple Ramsey-type question is to determine the smallest
N such that no matter how we color the members of QN with two colors, there is
always a monochromatic, 4-element substructure isomorphic to Q2. Figure 0.1 (a) il-
lustrates such a substructure in an exemplary coloring. Observe that N > 3, because
the coloring of Q3 presented in Figure 0.1 (b) does not contain a monochromatic copy
of Q2. However, it can be shown that N = 4. The focus of this thesis is to explore
Ramsey-type questions for posets. Among the main theorems, we show quantitative
results in the classic Ramsey setting as well as in the Erdős-Hajnal setting for large un-
avoidable monochromatic Qn. In particular, connecting both aforementioned settings,
we study the off-diagonal Ramsey setting, in which we forbid a small poset P colored
monochromatically with one color and determine the size of a largest Qn colored with
the opposite color.

(b)

∅

{1} {2} {3}

{1, 2, 3}

{2, 3}{1, 2} {1, 3}

(a)

∅

{1} {2} {3}

{1, 2, 3}

{2, 3}{1, 2} {1, 3}
{2, 3}{1}

∅

{1, 2, 3}

F ⊂ Q3

Q3 Q3

Figure 0.1: (a) A blue/red coloring of Q3 containing a blue subposet F isomorphic to
Q2. (b) A blue/red coloring of Q3 with no monochromatic copy of Q2.

The introductory chapter is structured as follows. In the next section, we formally
state basic definitions, and in Section 0.3, we give definitions of various posets. After-
wards, we present an overview of known results, before summarizing the results of
the dissertation in Section 0.5. For a compact overview, the reader is referred to Ta-
ble 0.1. After that, we discuss related research and variants of Ramsey-type questions
for posets. In Section 0.7, we introduce additional terminology commonly used in our
proofs and state two central lemmas, the Embedding Lemma and the Chain Lemma. We
use that terminology in the final section to formally prove the existence of the poset
Ramsey number.



0.2. Basic definitions 3

0.2 Basic definitions

Partially ordered set and Boolean lattice

A partially ordered set, or poset for short, is a pair (P,≤P ) of a finite set P and a partial
order ≤P on this set, so a binary relation that is

• reflexive, i.e., X ≤P X for every X ∈ P ,

• antisymmetric, i.e., if X ≤P Y andX ≥P Y , then X = Y for everyX,Y ∈ P , and

• transitive, i.e., if X ≤P Y and Y ≤P Z, then also X ≤P Z for every X,Y, Z ∈ P .

Usually, we refer to a poset (P,≤P ) just as P . The elements of P are often called vertices.
We say thatX ∈ P is smaller than Y ∈ P ifX ≤P Y . Moreover,X is strictly smaller than
Y , denoted by X <P Y , if X ≤P Y and X ̸= Y . Two vertices X,Y ∈ P are incomparable
if X ̸≤P Y and X ̸≥P Y , for which we write X ≁ Y . A vertex X ∈ P is minimal if there
is no vertex Y ∈ P such that Y <P X . Similarly, X ∈ P is maximal if there is no vertex
Y ∈ P with Y >P X . A poset P is usually represented by a Hasse diagram, in which
every X ∈ P is drawn as a point and there is an upward line from X to Y if X <P Y ,
but lines that are implicit by transitivity are omitted.

A prominent example of a poset is the Boolean lattice Qn of dimension n, that is the
set of subsets of an n-element ground set, ordered by the inclusion relation ⊆. The
Hasse diagram of the 3-dimensional Boolean lattice Q3 is depicted in Figure 0.1. For a
general introduction to partially ordered sets, the reader is referred to the textbooks by
Trotter [71] and Schröder [66].

Induced copy and weak copy

To establish a Ramsey setting for posets, we need a notation for a substructure of a
poset. In fact, there are two main variants.

• A poset (P2,≤P2) is an induced subposet of a poset (P1,≤P1) if P2 ⊆ P1 and for
every twoX,Y ∈ P2, X ≤P2 Y if and only ifX ≤P1 Y . If such a P2 is isomorphic
to some poset P ′, we say that P2 is an induced copy of P ′ in P1. For the majority
of this thesis, we restrict our attention to induced subposets and induced copies.
Therefore, we often omit the prefix “induced”, e.g., we use the terms induced
copy and copy interchangeably. See Figure 0.1 (a) for an example of an induced
subposet.
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• We say that (P2,≤P2) is a weak subposet of (P1,≤P1) if P2 ⊆ P1 and for every two
X,Y ∈ P2 with X ≤P2 Y , we have that X ≤P1 Y . If a weak subposet P2 of P1 is
isomorphic to a poset P ′, we refer to the induced subposet of P1 on vertices P2,
i.e., the set P2 ordered as in ≤P1 , as a weak copy of P ′ in P1. Note that the linearly
ordered set on k elements is a weak copy of any k-element poset P .

Basic poset parameters and parallel composition

Let P be a poset. The size |P | of P is the total number of vertices in P . The height h(P )
denotes the largest number of vertices in P which are pairwise comparable, while the
width w(P ) is the largest number of vertices in P which are pairwise incomparable. We
denote the 2-dimension of P by dim2(P ), that is the smallest dimension n of a Boolean
lattice Qn which contains P as an induced copy. It is a basic observation that the
2-dimension exists for any poset, see Proposition 0.12. Observe that

|Qn| = 2n, h(Qn) = n+ 1, and dim2(Qn) = n.

The well-known Sperner’s theorem [68] states that w(Qn) =
(

n
⌊n/2⌋

)
.

Given a poset P , two subposets P1, P2 ⊆ P are parallel if they are element-wise
incomparable. In particular, any two parallel posets are disjoint. We denote by P1 ⃝|| P2

the parallel composition of two posets P1 and P2, i.e., the poset consisting of a copy
of P1 and a copy of P2 which are parallel. In the literature, the parallel composition
is also referred to as independent union. Note that this operation is commutative and
associative, so the parallel composition P1 ⃝|| · · · ⃝|| Pℓ for posets Pi, i ∈ {1, . . . , ℓ}, is
well-defined.

Blue/red coloring of a poset

In this thesis, we study colorings of the vertices of posets with two colors, usually
blue and red. A blue/red coloring of a poset P is a mapping c : P → {blue, red}. This
definition extends canonically to colorings with more than two colors, which are not
studied in-depth in this work. We say that a poset is monochromatic if all its vertices
have the same color. If every vertex of a poset is blue, we say that the poset is blue.
Similarly, if every vertex is red, the poset is red.
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Poset Ramsey number

Analogously to Ramsey-extremal functions in graphs or hypergraphs, we define an
extremal function for posets that is based on the Boolean lattice. For posets P and Q,
let the poset Ramsey number of P and Q be

R(P,Q) = min{N ∈ N : every blue/red coloring of QN contains either

a blue induced copy of P or a red induced copy of Q}.

The poset Ramsey number is the central extremal function analyzed in this thesis.
We remark that for any posets P and Q, the poset Ramsey number R(P,Q) is well-
defined. A detailed proof of this fundamental observation is given in Proposition 0.13.
The proof idea is the following. For P = Q = Qn, the existence of R(Qn, Qn) follows
from a result by Graham and Rothschild [33]. For arbitrary posets P and Q, we find
an n = n(P,Q) such that Qn contains a copy of P and a copy of Q. In particular,
R(P,Q) ≤ R(Qn, Qn), which implies that R(P,Q) is well-defined.

Weak poset Ramsey number and poset Erdős-Hajnal number

In Section 0.2, we introduced two different notions of a substructure in posets, induced
and weak subposets. While the poset Ramsey number is defined based on induced
subposets, there is an analogous Ramsey-extremal number using weak subposets. The
weak poset Ramsey number for posets P and Q is

Rw(P,Q) = min{N ∈ N : every blue/red coloring of QN contains either

a blue weak copy of P or a red weak copy of Q}.

Every induced copy of a poset is also a weak copy, so it is clear thatRw(P,Q) ≤ R(P,Q).
In particular, Rw(P,Q) exists for any P and Q.

A colored poset Ṗ is a poset P with a fixed blue/red coloring. Given a colored poset
Ṗ and an integer n ∈ N, the poset Erdős-Hajnal number R̃(Ṗ , Qn) is the smallest N ∈ N
such that every blue/red coloring of the vertices of QN contains a copy of P colored as
in Ṗ , or a monochromatic copy of Qn. It is easy to see that R̃(Ṗ , Qn) ≤ R(Qn, Qn) for
any colored poset Ṗ , so R̃(Ṗ , Qn) is well-defined. Observe that if the fixed forbidden
pattern Ṗ is monochromatic and n is large, then R̃(Ṗ , Qn) = R(P,Qn).
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0.3 Catalog of considered posets

In this section, we provide a catalog of all specific classes of posets defined in this thesis.
They are listed alphabetically in terms of their notation. Illustrations of all posets are
given in Figures 0.2 to 0.5. Following the common practice in extremal combinatorics,
we usually do not distinguish between a poset P and its isomorphism class, unless the
vertices of P are specifically defined.

• An antichainAt of size t is the poset consisting of t pairwise incomparable vertices,
i.e., the parallel composition of t single vertices. We remark that the width w(P )
of a poset P is the size of a largest antichain contained as a subposet in P .

• A chain Ct of length t is the poset consisting of t pairwise comparable vertices, i.e.,
its vertices form a linear order Z1 < · · · < Zt. Note that the height h(P ) of a poset
P is the length of a largest chain contained as a subposet in P .

• We say that a chain composition Ct1,t2,...,tℓ with parameters t1, . . . , tℓ, ℓ ≥ 1, is the
parallel composition of chains Ct1 , . . . , Ctℓ , i.e., Ct1,t2,...,tℓ = Ct1

⃝|| Ct2
⃝|| · · · ⃝|| Ctℓ .

Note that C1,...,1 is an antichain.

• An n-diamond Dn is the poset consisting of an antichain on n vertices, a vertex
smaller than all others, and a vertex larger than all others. Note that D2 is
isomorphic to Q2.

A4

C5 C4,4,1

D5

Figure 0.2: Hasse diagrams of A4, C5, C4,4,1, and D5.

• A complete ℓ-partite poset Kt1,...,tℓ is a poset on t1 + · · · + tℓ vertices obtained as
follows. Consider ℓ pairwise disjoint sets A1, . . . , Aℓ, where each Ai consists of ti
vertices. Then for any two indices i, j ∈ {1, . . . , ℓ} and for any vertices X ∈ Ai,
Y ∈ Aj , we define that X < Y if and only if i < j. Such a poset can be seen as a
complete blow-up of a chain. In the literature, it is also referred to as a strict weak
order. Note that K1,n,1

∼= Dn.

• The Λ-shaped poset Λ2 consists of 3 elements and has a unique maximal vertex
and two distinct minimal vertices, i.e., Λ2 is the poset on vertices Z1, Z2, and Z3

such that Z1 > Z3, Z1 > Z2, and Z2 ≁ Z3.
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• The N-shaped poset∧∨ consists of four distinct verticesW ,X , Y , and Z such that
W < Y , Y > X , X < Z, W ≁ X , W ≁ Z, and Y ≁ Z.

Λ2K3,4,2 ∧∨

Figure 0.3: Hasse diagrams of K3,4,2, Λ2, and ∧∨.

• We use Qn to denote the Boolean lattice of dimension n, i.e., the poset consisting of
all subsets of an n-element ground set, ordered by inclusion.

• Let n and t be positive integers. The n-dimensional t-cubeQ(t)
n is the set {1, . . . , t}n,

partially ordered by domination, i.e., for any two X,Y ∈ {1, . . . , t}n, we define
that X ≤ Y if and only if X(i) ≤ Y (i) for every i ∈ {1, . . . , t}. Let the 0-
dimensional t-cube Q(t)

0 be the poset consisting only of a single vertex. Note that
Q

(1)
n

∼= Cn and Q(2)
n

∼= Qn.

• The hook-shaped posetQ−
2 has distinct verticesW ,X , Y , andZ such thatW > X ,

X < Y < Z, W ≁ Y , and W ≁ Z.

• The standard example Sn is the 2n-element subposet of a Boolean lattice Qn con-
sisting of all 1-element and (n− 1)-element subsets.

Q
(3)
2 (1, 1)

(1, 2)

(1, 3)

(3, 3)

(2, 3)

(2, 2)
(3, 1)

(3, 2)

(2, 1) Q−
2 S4

W

X

Y

Z

Figure 0.4: Hasse diagrams of Q(3)
2 , Q−

2 , and S4.

• Given integer-valued parameters r ≥ 0, s ≥ 1 and t ≥ 0, an (r, s, t)-spindle Sr,s,t
is defined as the complete multipartite posetKt′1,...,t

′
r+1+t

where t′1, . . . , t′r = 1 and
t′r+1 = s and t′r+2, . . . , t

′
r+1+t = 1. In other words, this poset on r + s+ t vertices

is constructed by combining an antichain As and two chains Cr and Ct such that
every vertex of As is larger than every vertex from Cr, but smaller than every
vertex from Ct. If r = 0 or t = 0, the respective chain is omitted. Note that
S1,n,1 ∼= Dn and Sr,1,t ∼= Cr+t+1.
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• For s, t ∈ N, let SDs,t denote the (s, t)-subdivided diamond, which is the poset
obtained from two parallel chains of length s and t, respectively, by adding a
vertex which is smaller than all others and a vertex which is larger than all others.
Note that SD1,1

∼= Q2.

• An n-fork Vn is the poset consisting of an antichain on n vertices with an added
vertex smaller than all other vertices. Note that Vn ∼= K1,n. Particularly relevant
for this thesis is V2, the V-shaped, 3-element poset with a unique minimal vertex
and two maximal vertices, so on vertices Z1, Z2, and Z3 such that Z1 < Z2,
Z1 < Z3, and Z2 ≁ Z3.

SD3,2S2,5,3

V4

Figure 0.5: Hasse diagrams of S2,5,3, SD3,2, and V4.

0.4 Background and known results

0.4.1 Historical background

Ramsey theory originates from a groundbreaking result by Ramsey [63] from 1930,
who showed that a sufficiently large uniform hypergraph colored with a fixed number
of colors contains a monochromatic sub-hypergraph of any fixed size. Even shortly
before that, van der Waerden [73] considered a Ramsey-type question on arithmetic
progressions. Van der Waerden’s work was later generalized by the highly influential
Hales-Jewett theorem [42], which laid the foundation for Ramsey theory on various
discrete settings such as combinatorial lines or words.

This result was even further extended by Graham and Rothschild [33], who con-
sidered so-called cubes. Cubes can be interpreted as finite affine spaces, see also a book
by Graham, Rothschild, and Spencer [34]. Here, we present an interpretation of the
Graham-Rothschild theorem in terms of posets.
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Recall that for t ∈ N, the n-dimensional t-cube Q(t)
n denotes the poset on vertices

{1, . . . , t}n such that a vertex X is smaller than a vertex Y if and only if X(i) ≤ Y (i)

for every i ∈ {1, . . . , t}. The Graham-Rothschild theorem [33] shows that there exists a
sufficiently largeN such that any coloring of copies ofQ(t)

q inQ(t)
N with r colors contains

a monochromatic copy of Q(t)
n . In the special case q = 0, r = 2, and t = 2, this shows

the existence of the poset Ramsey number of Qn and Qn.

Theorem 0.1 (Graham-Rothschild [33]). For any n ∈ N, there is a sufficiently large N
such that any blue/red coloring of the vertices of an N -dimensional Boolean lattice contains a
monochromatic copy of Qn. In particular, R(Qn, Qn) exists.

In the last decades, Ramsey theory established itself as an active and major field in
discrete mathematics, applied to various discrete settings. To name just a few, there
are noteworthy recent advances in arithmetic Ramsey theory [48, 50], Ramsey theory
on vector spaces [58], and Euclidean Ramsey theory [17].

Most notable, Ramsey-type problems are considered for graphs, initiated by a paper
of Erdős and Szekeres [26]. A graph is a pair (V,E) of a vertex setV and an edge setE, such
that each edge e ∈ E is a set of two vertices x, y ∈ V . A graph (V,E) is complete if every 2-
element subset ofV is inE. For a general introduction to graph theory, see the textbooks
of Diestel [21] and West [76]. Erdős and Szekeres [26] studied the smallest integerR(n)
such that any blue/red coloring of the edges of a complete graph onN vertices contains
a monochromatic, n-vertex, complete graph, and showed thatR(n) ≤ 4n. An overview
of the most significant graph Ramsey questions is given by a recent survey due to
Conlon, Fox, and Sudakov [16]. It is also worth highlighting a very recent breakthrough
result by Campos, Griffiths, Morris, and Sahasrabudhe [9], who improved the upper
bound by Erdős and Szekeres to R(n) ≤

(
4− 1

128

)n. Further notable and recent results
in Ramsey theory on graphs and hypergraphs are for example [15, 49, 53, 64].

An important variant of this classic graph Ramsey setting was introduced by Erdős
and Hajnal [27]. Let H be a complete graph on t vertices in which each edge has an
arbitrary fixed color, say blue or red. They studied the minimal number of vertices of a
graph such that any blue/red coloring of its edges contains a t-vertex subgraph whose
induced color pattern is isomorphic to H , or a monochromatic complete graph on n

vertices. The well-known and mostly unsolved Erdős-Hajnal conjecture claims that for
any H , this minimal number of vertices is at most nc(H), where c(H) is some constant
depending on H . Results towards this conjecture are surveyed by Chudnovsky [14],
see also [56, 60, 75].
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The first to apply Ramsey-type problems explicitly to posets were Nešetřil and
Rödl [59], who determined all posets U such that for any poset P there is a host poset
F with the property that any coloring of copies of U in F with a fixed number of
colors results in a monochromatic copy of P . See also papers by Paoli, Trotter, and
Walker [61] and Sokić [67] on this topic. If U is the poset consisting of a single vertex
and there are only two colors, we arrive at a natural special case, where we analyze
whether any blue/red coloring of the vertices ofF contains a monochromatic copy ofP .
Kierstead and Trotter [46] considered this setting for general posets in a quantitative
approach, with the goal of minimizing p(F ) for all P with a fixed p(P ), where p is a
poset parameter such as size, height, or width.

If we set the poset parameter p to be the 2-dimension, this leads to the definition of
the poset Ramsey numberR(P,Q), which was introduced by Axenovich and Walzer [2].

0.4.2 Overview of known results

Recall that for any posets P and Q, R(P,Q) is the smallest integer N such that in any
blue/red coloring of the N -dimensional Boolean lattice QN , there is a blue induced
copy of P or a red induced copy ofQ. In the following, we give a rough overview about
previous research onR(P,Q), stating only a selection of results. Further known bounds
on poset Ramsey numbers are discussed in the respective chapters of this thesis.

A trivial lower bound on the poset Ramsey number of any posets P and Q is

R(P,Q) ≥ h(P ) + h(Q)− 2,

obtained by considering a so-called layered blue/red coloring of QN with dimension
N = h(P ) + h(Q) − 3, i.e., each layer {X ∈ QN : |X| = ℓ}, 0 ≤ ℓ ≤ N , is colored
monochromatically such that there are h(P ) − 1 blue layers and h(Q) − 1 red layers.
This coloring obviously contains no blue copy ofP , because no blue subposet has height
h(P ). Similarly, there is no red copy of Q.

When P is an arbitrary poset and Q is a Boolean lattice, this trivial lower bound
and a general upper bound due to Axenovich and Walzer [2] provide the following
framework.

Theorem 0.2 (Axenovich-Walzer [2]). Let n ∈ N and P be a poset. Then

n+ h(P )− 1 ≤ R(P,Qn) ≤ h(P )n+ dim2(P ).
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We present their upper bound approach in Lemma 6.6.

Naturally, one of the central questions in the study of poset Ramsey numbers is to
determine the asymptotic behavior ofR(Qn, Qn) for largen. In this setting, Theorem 0.2
yields that

2n ≤ R(Qn, Qn) ≤ n2 + 2n.

After several gradual improvements, the best known lower bound is due to Bohman
and Peng [7], and the best upper bound is given by Lu and Thompson [52]. They
showed that for n ≥ 3,

2n+ 1 ≤ R(Qn, Qn) ≤ n2 − n+ 2.

For small n, the Ramsey number is determined exactly, in particular R(Q2, Q2) = 4,
see also Figure 0.1. Crucially, it is not known whether R(Qn, Qn) is asymptotically
linear, quadratic or neither of the two. The so-called diagonal setting R(P, P ) was also
considered for other basic classes of posets P , see e.g., Walzer [74] and Chen, Chen,
Cheng, Li, and Liu [12].

The related off-diagonal setting R(Qm, Qn), where m < n, also received consider-
able attention over the last years. When both m and n are large, the best known upper
bound is due to Lu and Thompson [52] who showed that for a constant c > 0,

R(Qm, Qn) ≤ n
(
m− 2 + c

m

)
+m+ 3.

The setting can be simplified by considering a fixed m. It is trivial to see that
R(Q1, Qn) = n+ 1. For m = 2, Grósz, Methuku, and Tompkins [38] showed that

n+ 3 ≤ R(Q2, Qn) ≤ n+
(
2 + o(1)

) n

log n
.

Here and throughout this thesis, ‘log’ refers to the logarithm with base 2. For fixed
m ≥ 3, only rough estimates are known, see Lu and Thompson [52].

Furthermore, there has been some progress on the weak poset Ramsey number in
the diagonal setting Qn and Qn. It was shown by Cox and Stolee [18] for the lower
bound and by Lu and Thompson [52] for the upper bound that

2n+ 1 ≤ Rw(Qn, Qn) ≤ R(Qn, Qn) ≤ n2 − n+ 2.
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We remark that in the off-diagonal setting Rw(P,Qn), where P is small and n is large,
the asymptotic behavior is trivial: For any poset P , the chain C|P | is a weak copy of P ,
thus for fixed P ,

R(Ch(P ), Qn) ≤ Rw(P,Qn) ≤ R(C|P |, Qn).

Axenovich and Walzer [2] determined R(Ct, Qn) = n + t − 1, see Corollary 0.11, so
Rw(P,Qn) = n+Θ(1).

Besides the Ramsey numbersR(P,Q) andRw(P,Q), we are concerned in this thesis
with the poset Erdős-Hajnal number R̃(Ṗ , Qn). To the best knowledge of the author,
Erdős-Hajnal problems on posets have not been studied before.

0.5 Summary of results shown in this thesis

We remark that formal definitions of all posets mentioned in the following are presented
in Section 0.3.

In this thesis, motivated by the Erdős-Hajnal setting for posets as well as the objective
to improve known bounds on R(Qm, Qn), we analyze R(P,Qn) for a fixed poset P and
large n. In Chapter 1, we generalize a known approach by Grósz, Methuku, and
Tompkins [38], and obtain an improved upper bound on R(P,Qn) if P is a complete
multipartite poset or subdivided diamond. This chapter serves as a gentle introduction
to the notation and methods used throughout this thesis.

We show in Chapter 2 that two different asymptotic behaviors of R(P,Qn) emerge,
depending on two special 3-element posets. We say that a poset P is non-trivial if P
contains a copy of either V2 orΛ2; otherwise, we say thatP is trivial. For trivial posetsP ,
we determine that

R(P,Qn) = n+Θ(1).

However, for non-trivial posets P , we show a different asymptotic behavior in Theo-
rem 2.1, by proving the lower bound

R(P,Qn) ≥ n+ 1
15

n
logn .

Although this seems to be minor progress at first glance, this sublinear improvement is
asymptotically tight in the two leading additive terms for several classes of non-trivialP .
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Together with the results of the first chapter, we find that

R(P,Qn) = n+Θ

(
n

log n

)
if P is a complete multipartite poset or subdivided diamond. In Chapter 3, we show
the same bound for P being the N-shaped poset ∧∨. At the heart of that chapter we
develop a new method to upper bound R(P,Qn), that might be applied to further
posets P in the future. It remains unknown whether there is a poset P for which
R(P,Qn) = n+Ω(n), which we discuss in Conjecture 2.16.

As mentioned above, in the setting of trivial posets P , the poset Ramsey number is
R(P,Qn) = n+Θ(1). In Chapter 4, the additive term Θ(1) is precisely determined for
antichains and trivial posets of width at most 3.

In Chapter 5, we study the poset Erdős-Hajnal number R̃(Ṗ , Qn) for posets P with
a fixed non-monochromatic color pattern. We present a general bound on R̃(Ṗ , Qn)

and investigate this number if P is an antichain, chain, or small Boolean lattice.

In the final Chapter 6, we turn our attention to diagonal Ramsey problems on posets.
In particular, we strengthen the bound on R(Qn, Qn): With respect to the initial, basic
estimate stated in Theorem 0.2, we give the first linear improvement of the lower bound
and the first superlinear improvement of the upper bound. More precisely, we show in
Corollaries 5.6 and 6.2 that

2.02n+ o(1) ≤ R(Qn, Qn) ≤ n2 −
(
1− o(1)

)
n log n.

Furthermore, we determine the poset Ramsey number R(P, P ) up to an additive con-
stant of 2 when P is a diamond or a fork, and give an improved upper bound on
R(Qm, Qn). In Chapter 6, we also briefly discuss the weak poset Ramsey number. We
present an improvement of the upper bound on Rw(Qn, Qn) by a quadratic term: For
sufficiently large n, we show that

Rw(Qn, Qn) ≤ 0.96n2.

A compact overview of our results is given in Table 0.1. As a consequence of our
research, we obtain bounds on R(P,Qn) which are asymptotically tight in the two
leading additive terms for all posets P on at most 4 vertices (of which there are 19 up
to symmetry). Moreover, we precisely determine R(P,Qn) for all trivial P on at most 4
vertices. The bounds are listed in Table 0.2. Some posets have alternative names used
in the literature, these are additionally mentioned in the table.
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poset Ramsey bound proof

n+ 1
15

n
log(n) ≤ R(Q2, Qn) ≤ n+

(
2 + o(1)

)
n

logn

LB: Thm. 2.1,
UB: [38]

n+ 1
15

n
log(n) ≤ R(Kt1,...,tℓ , Qn) ≤ n+

(
2ℓ+ o(1)

)
n

logn

LB: Thm. 2.1,
UB: Thm. 1.1

n+ 1
15

n
log(n) ≤ R(SDs,t, Qn) ≤ n+

(
2 + o(1)

)
n

logn

LB: Thm. 2.1,
UB: Thm. 1.5

n+ 1
15

n
log(n) ≤ R(Ds, Qn) ≤ n+

(
2 + o(1)

)
n

logn

LB: Thm. 2.1,
UB: Cor. 1.4

n+ 1
15

n
log(n) ≤ R(Vs, Qn) ≤ n+

(
1 + o(1)

)
n

logn

LB: Thm. 2.1,
UB: Cor. 1.4

n+ 1
15

n
log(n) ≤ R(∧∨, Qn) ≤ n+

(
1 + o(1)

)
n

logn

LB: Thm. 2.1,
UB: Thm. 3.1

R(Ct1 , Qn) = n+ t1 − 1 [2]

R(Ct1,t2 , Qn) = n+ t1 + 1 Thm. 4.4

R(Ct1,t2,t3 , Qn) =

{
n+ t1 + 1, if t1 > t2 + 1

n+ t1 + 2, if t1 ≤ t2 + 1
Thm. 4.5

R(At, Qn) = n+ 3 Thm. 4.1

2.02n < R(Qn, Qn) ≤ n2 −
(
1− o(1)

)
n log n

LB: Cor. 5.6,
UB: Cor. 6.2

R(Qm, Qn) ≤ n
(
m−

(
1− o(1)

)
logm

)
Thm. 6.1

R(Dn, Dn) =
(
1 + o(1)

)
log(n) Thm. 6.3

R(Vn, Vn) =
(
d+ o(1)

)
log(n), Thm. 6.4

where d ≈ 1.29

Rw(Qn, Qn) ≤ 0.96n2 Thm. 6.5

R̃(Ȧ,Qn) =

{
n+ 2, if s ≤ 2

n+ 3, if s ≥ 3,
Thm. 5.3

where Ȧ is a colored antichain and s is the size of
its largest color class

2.02n < R̃(Ċ,Qn) ≤ (t− 1)n+Θ(1), Thm. 5.4,
Thm. 5.5

where Ċ is a colored chain and t ≥ 4 is the size of
a largest alternatingly colored subposet

Table 0.1: Summary of poset Ramsey bounds presented in this thesis and reference to
the proofs of lower bound (LB) and upper bound (UB).
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poset P R(P,Qn) proof

C1 = Q0 n+ 0 trivial

C2 = Q1 n+ 1 [2], see Cor. 0.11

A2 = 2C1 n+ 2 Thm. 4.4

C3 n+ 2 [2], see Cor. 0.11

C2,1 n+ 3 Thm. 4.4

A3 = 3C1 n+ 3 Thm. 4.1

V2 = K1,2 n+ c(n)n
log(n) ,

1
15 ≤ c(n) ≤ 1 + o(1)

LB: Thm. 2.2,
UB: Cor. 1.4

C4 n+ 3 [2], see Cor. 0.11

C2,2 = 2C2 n+ 3 Thm. 4.4

A4 = 4C1 n+ 3 Thm. 4.1

C3,1 n+ 4 Thm. 4.4

C2,1,1 n+ 4 Thm. 4.5

V2 ⃝|| C1 n+ c(n)n
log(n) ,

1
15 ≤ c(n) ≤ 1 + o(1)

LB: Thm. 2.1, UB:
Cor. 1.4, Thm. 0.5

K1,3 = V3 n+ c(n)n
log(n) ,

1
15 ≤ c(n) ≤ 1 + o(1)

LB: Thm. 2.1,
UB: Cor. 1.4

∧∨ n+ c(n)n
log(n) ,

1
15 ≤ c(n) ≤ 1 + o(1)

LB: Thm. 2.1
UB: Thm. 3.1

Q2 = K1,2,1 n+ c(n)n
log(n) ,

1
15 ≤ c(n) ≤ 2 + o(1)

LB: Thm. 2.1,
UB: [38]

K1,1,2 = Y n+ c(n)n
log(n) ,

1
15 ≤ c(n) ≤ 2 + o(1)

LB: Thm. 2.1,
UB: Thm. 1.3

Q−
2 n+ c(n)n

log(n) ,
1
15 ≤ c(n) ≤ 2 + o(1)

LB: Thm. 2.1,
UB: Cor. 1.6

K2,2 = 1 n+ c(n)n
log(n) ,

1
15 ≤ c(n) ≤ 4 + o(1)

LB: Thm. 2.1,
UB: Thm. 1.1

Table 0.2: Off-diagonal poset Ramsey bounds for small P and reference to the proofs
of lower bound (LB) and upper bound (UB).
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The results of this thesis are based on papers by the author, partly in joint work
with Maria Axenovich, see listed below in chronological order. The presented material
does not correspond exactly to the published manuscripts. Major changes are outlined
in the respective chapters.

• Christian Winter. Poset Ramsey Number R(P,Qn). I. Complete Multipartite

Posets. Order, 2023. Available from: https://doi.org/10.1007/s11083-023-0
9636-8.

• Maria Axenovich and Christian Winter. Poset Ramsey numbers: large Boolean

lattice versus a fixed poset. Combinatorics, Probability and Computing, 32(4):
638–653, 2023. Available from: https://doi.org/10.1017/S0963548323000032.

• Maria Axenovich and Christian Winter. Poset Ramsey Number R(P,Qn). II.

N-Shaped Poset. Order, 2024. Available from: https://doi.org/10.1007/s110
83-024-09663-z.

• Christian Winter. Poset Ramsey NumberR(P,Qn). III. Chain compositions and

antichains. Discrete Mathematics, 347(7):114031, 2024. Available from: https:
//doi.org/10.1016/j.disc.2024.114031.

• Christian Winter. Erdős-Hajnal problems for posets. ArXiv preprint, 2023.
Available from: https://arxiv.org/abs/2310.02621.

• Maria Axenovich and Christian Winter. Diagonal poset Ramsey numbers.
ArXiv preprint, 2024. Available from: https://arxiv.org/abs/2402.13423.

0.6 Related research

Other Ramsey-type numbers for posets

The focus of this dissertation is placed on the poset Ramsey number R(P,Q). In order
to motivate this definition and emphasize connections to existing research, we give an
overview of various Ramsey-type questions in the setting of posets.

• In this thesis, we restrict our attention to colorings of the host Boolean lattice with
two colors, blue and red. As a generalization of this setting, one can define a
multicolor poset Ramsey number, considering colorings using r distinct colors.

https://doi.org/10.1007/s11083-023-09636-8
https://doi.org/10.1007/s11083-023-09636-8
https://doi.org/10.1017/S0963548323000032
https://doi.org/10.1007/s11083-024-09663-z
https://doi.org/10.1007/s11083-024-09663-z
https://doi.org/10.1016/j.disc.2024.114031
https://doi.org/10.1016/j.disc.2024.114031
https://arxiv.org/abs/2310.02621
https://arxiv.org/abs/2402.13423
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For any poset P and any r ∈ N, let

Rr(P ) = min{N ∈ N : every coloring of QN with r colors contains

a monochromatic copy of P}.

Note that R1(P ) = dim2(P ) and R2(P ) = R(P, P ). If we choose a large
poset P and a fixed number of colors r ≥ 3, determining Rr(P ) is even harder
than determining R(P, P ), which is already hardly understood.

As another direction of research, one can consider Rr(P ) for a fixed poset P and
a large number of colors r. In this setting, Axenovich and Walzer [2] determined
that Rr(P ) grows linearly in terms of r for any poset P which is not an antichain.
The best general lower bound is due to Walzer, see Lemma 36 of [74]. If P is an
antichain, it is an easy consequence of Sperner’s theorem [68] that the multicolor
poset Ramsey number Rr(At) for fixed t grows logarithmically in terms of r.
Further results in the multicolor poset Ramsey setting are given by Chen, Cheng,
Li, and Liu [13].

• Mirroring a similar notion in graphs, Ramsey problems can be also studied for
rainbow copies of posets. A poset is colored rainbow if every vertex has a distinct
color.

Chen, Cheng, Li, and Liu [13] introduced the rainbow poset Ramsey number for
posets P and Q, that is

RR(P,Q) = min{N ∈ N : every coloring of QN with arbitrarily many colors

contains either a monochromatic copy of P or a rainbow copy of Q}.

They gave bounds when P and Q are chains, antichains, or Boolean lattices. In
particular, Chen, Cheng, Li, and Liu [13] showed that

m2n ≤ RR(Qm, Qn) ≤ m724(n+m),

so the asymptotic behavior of RR(Qn, Qn) is exponential. Further results on
rainbow poset Ramsey problems are given by Chang, Gerbner, Li, Methuku,
Nagy, Patkós, and Vizer [11].

• We mentioned in Section 0.4.1 that Kierstead and Trotter [46] considered Ramsey-
type problems on posets with respect to several poset parameters.
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We define the size poset Ramsey number of a poset P as

Rsize(P ) = min{N ∈ N : there exists a poset F of size |F | = N such that

every blue/red coloring of F contains a monochromatic copy of P}.

Similarly, we define Rheight(P ) and Rwidth(P ). Kierstead and Trotter [46] showed
that

2|P | − 1 ≤ Rsize(P ) ≤ |P |2 − |P |+ 1.

In the same paper, it was shown that there exists a class of posets with a quadratic
size poset Ramsey number, more precisely,

Rsize(Cn ⃝|| An−1) = Θ(n2).

For Rheight(P ) and Rwidth(P ), only rough bounds are known, again due to Kier-
stead and Trotter [46].

The three variants have in common that in their definition the structure of the
extremal poset F depends on P . However, if we consider

R2-dim(P ) = min{N ∈ N : there exists a poset F with dim2(F ) = N such that

every blue/red coloring of F contains a monochromatic copy of P},

then every poset F with dim2(F ) = N is a subposet of anN -dimensional Boolean
lattice, so we can suppose without loss of generality that F = QN . In particular,
R2-dim(P ) is equal to the diagonal poset Ramsey number R(P, P ).

• Another variant of Ramsey theory for posets is to choose the host poset randomly.
Let n ∈ N and p be a real-valued constant between 0 and 1. Similarly to the well-
known Erdős-Rényi random graph, Rényi [65] introduced P(n, p) as the induced
subposet of Qn obtained by including each vertex of Qn independently with
probability p.

We say that an event E(n) holds with high probability, abbreviated by w.h.p., if the
probability of E(n) tends to 1 as n → ∞. Falgas-Ravry, Markström, Treglown,
and Zhao [28] asked for which values of p, there is a high probability that any
blue/red coloring of the random poset P(n, p) contains a blue copy of a poset P
or a red copy of a poset Q.
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Ramsey theory on related structures

In Section 0.4.1, we described a variety of discrete structures for which Ramsey theory
was studied in the literature. Here, we briefly highlight some structures which are
closely related to our poset setting.

• Draganić and Mašulović [23] discussed a non-quantitative Ramsey result for so-
called multiposets. A multiposet is a set equipped with a family of partial orders
≤1, . . . ,≤t such that each ≤i, i ∈ [t], “refines” the partial orders ≤j , j < i.

• If we consider a poset as the vertex set of a graph and draw an oriented edge
for each pair of comparable vertices, we obtain an acyclic oriented graph. Ramsey
numbers for acyclic oriented graph were considered, for example, by Fox, He,
and Wigderson [29].

• The Hasse diagram of a poset can be interpreted as a graph. Any such graph is
called a comparability graph. Korándi and Tomon [47] studied Ramsey properties
of unions of comparability graphs.

• A Boolean algebra is a set structure which has additional restrictions in comparison
to the Boolean lattice. Ramsey-type questions for Boolean algebras were discussed
by Gunderson, Rödl, and Sidorenko [39].

• Similarly, an affine vector space over the field on 2 elements is also a restricted
version of a Boolean lattice. In recent years, Ramsey theory for affine spaces has
undergone a renaissance, see e.g., Nelson and Nomoto [58], Frederickson and
Yepremyan [30], and Hunter and Pohoata [43].

Related extremal questions on posets

Outside the scope of Ramsey theory, several other extremal properties of posets and
their induced subposets have been investigated in recent years and mirror similar
concepts in graphs. These include first and foremost Turán-type questions, which ask
for the densest discrete structure in which a specific substructure is forbidden. Carroll
and Katona [10] introduced La#(n, P ) as the largest size of a subposet of Qn that does
not contain a copy of the poset P . In this language, the classic Sperner’s theorem [68]
shows thatLa#(n,C2) =

(
n

⌊n/2⌋
)
. Most notable is a result by Methuku and Pálvölgyi [54],

who showed that
La#(n, P ) ≤ f(P )

(
n

⌊n/2⌋

)
,
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i.e., an asymptotically tight bound on the maximum size of a subposet of a Boolean
lattice that does not have a copy of a fixed poset P , for general P . Their statement has
been refined for several special cases, see e.g., Erdős [24], Boehnlein and Jiang [6], Lu
and Milans [51], and Méroueh [57]. Further Turán-type results are, for example, given
by Methuku and Tompkins [55], and Tomon [69].

We remark that the closely related function La(n, P ), which is the weak subposet
analogue of La#(n, P ), was also studied extensively. Notably, Bukh [8] determined the
asymptotic behavior of La(n, T ) for posets T whose Hasse diagram is a tree. The best
known general upper bound is due to Grósz, Methuku, and Tompkins [36]. To name
a few other results, see listed chronologically Katona and Tarján [44], De Bonis and
Katona [19], Griggs and Lu [35], Patkós [62], Grósz, Methuku, and Tompkins [37] and
Guo, Chang, Chen, and Li [40].

In addition, so-called saturation-type extremal problems have been addressed for
induced and weak subposets. In the saturation setting, one asks for the sparsest discrete
structure which does not contain a specific substructure, but any increase of its density
creates the forbidden substructure. A survey of poset saturation questions is given
by Keszegh, Lemons, Martin, Pálvölgyi, and Patkós [45]. Very recent advances in this
area are for example the papers of Freschi, Piga, Sharifzadeh, and Treglown [31] and
Ðanković and Ivan [1].

0.7 Preliminary tools and two key lemmas

In this section, we collect important tools and the essential terminology necessary
for the proofs presented in this thesis. In particular, we show two key lemmas: the
Embedding Lemma, see Lemma 0.9, and the Chain Lemma, see Lemma 0.10.

0.7.1 Notational conventions

For any positive integer n ∈ N, we use [n] to denote the set {1, . . . , n}. We omit floors
and ceilings where appropriate. In this work, ‘log’ always refers to the logarithm with
base 2. TheO-notation is usually used depending on the parameter n, unless explicitly
stated otherwise.
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0.7.2 Boolean lattice Q(X) and factorial tree O(Y)

Let X be a non-empty set. We denote by Q(X) the Boolean lattice of dimension |X| on
ground set X , i.e., the poset consisting of all subsets of X , ordered by the inclusion
relation ⊆, as illustrated in Figure 0.6 (a). Note that the Boolean lattice Qn with an
unspecified n-element ground set is isomorphic to Q(X) for every n-element set X .
Throughout this work, we use capital letters to denote vertices in posets, in particular
vertices in a Boolean lattice, i.e., subsets of the ground set. To avoid ambiguity when
we consider a set of ground elements which is not interpreted as a vertex, we often use
bold capital letters for significant ground sets. For example, we consider the Boolean
lattice Q(X) on ground set X, and then study the vertices X ∈ Q(X). In a slight abuse
of notation, any subset F ⊆ Q(X) implicitly inherits the partial order of Q(X), i.e., we
interpret such an F as a subposet of Q(X).

The Boolean lattice is the natural poset consisting of all (unordered) subsets of some
ground set. We define a related poset based on ordered subsets, referred to as the factorial
tree. An ordered subset S of a set Y is a sequence S = (y1, . . . , ym) of distinct elements
yi ∈ Y, i ∈ [m]. It also could be thought of as a string with non-repeated letters over
the alphabet Y. We denote the empty ordered set by ∅o = (). The number of elements
in S is denoted by |S|. An ordered set T is a prefix of an ordered set S if |T | ≤ |S| and
each of the first |T | members of S coincides with the respective member of T .

If T is a prefix of S, we write T ≤O S. Note that ∅o is a prefix of every ordered
set. Observe that the prefix relation ≤O is transitive, reflexive, and antisymmetric, i.e.,
a partial order. Let O(Y) be the poset of all ordered subsets of Y, equipped with ≤O,
see Figure 0.6 (b). We refer to this poset as the factorial tree on ground set Y. If we
identify any ordered subsets in O(Y) with the same underlying unordered set, then we
obtain the Boolean lattice Q(Y). Thus, one can think of a factorial tree as an “unfolded”
Boolean lattice.

O([3]) ∅o

(1, 2) (1, 3) (2, 1) (2, 3) (3, 1) (3, 2)

(2)

(1, 2, 3) (1, 3, 2) (2, 1, 3) (2, 3, 1) (3, 1, 2) (3, 2, 1)

(3)(1)

Q({x1, x2, x3}) ∅

{x1} {x2} {x3}

{x1, x2, x3}

{x2, x3}{x1, x2} {x1, x3}

(a) (b)

Figure 0.6: Hasse diagrams of Q({x1, x2, x3}) and O([3]).
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0.7.3 Stirling’s formula, Sperner number, and parallel compositions

The asymptotic behavior of factorials is approximated by the well-known Stirling’s
formula,

N ! =
(
1 + o(1)

)√
2πN

(
N

e

)N

. (0.1)

Using Stirling’s formula, it is straightforward to find an approximation of the binomial
coefficient

(
N
qN

)
.

Proposition 0.3. If N is a positive integer and q is a real constant with 0 < q < 1, then

log

(
N

qN

)
= −

(
1 + o(1)

)
N
(
q log q + (1− q) log(1− q)

)
=
(
1 + o(1)

)
H(q)N,

where H(q) = −
(
q log q + (1− q) log(1− q)

)
.

In the literature, the function H(q) = −
(
q log q + (1− q) log(1− q)

)
is referred to as the

binary entropy function.

Let n ∈ N. We denote by α(n) the smallest dimension N such that QN contains
an antichain of size n. We call α(n) the Sperner number of n. A classic result due
to Sperner [68] shows that α(n) is the minimal integer N such that

(
N

⌊N/2⌋
)
≥ n. By

Proposition 0.3, we see that α(n) =
(
1 + o(1)

)
log n. Habib, Nourine, Raynaud and

Thierry [41] gave an almost exact bound on α(n).

Theorem 0.4 (Habib et al. [41]). For any n ∈ N,

⌊
log n+ log logn

2

⌋
+ 1 ≤ α(n) ≤

⌊
log n+ log logn

2

⌋
+ 2.

Recall that the parallel composition of posets P1, . . . , Pℓ, ℓ ≥ 2, is denoted by P1 ⃝||

· · · ⃝|| Pℓ and refers to the poset obtained by taking a copy of each Pi, i ∈ [ℓ], such that
the copies are pairwise disjoint and element-wise incomparable. In his master thesis,
Walzer observed a general upper bound on the poset Ramsey number of parallel
compositions, see Proposition 12 of [74].

Theorem 0.5 (Walzer [74]). Let ℓ ≥ 2, and let P1, P2, . . . , Pℓ, and Q be arbitrary posets. Let
P = P1 ⃝|| · · · ⃝|| Pℓ be the parallel composition of P1, . . . , Pℓ. Then

R(P,Q) ≤ max
i∈[ℓ]

{
R(Pi, Q)

}
+ α(ℓ) ≤ max

i∈[ℓ]

{
R(Pi, Q)

}
+ log(ℓ) + 1

2 log log(ℓ) + 2.
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Here, the last inequality is a consequence of Theorem 0.4.

0.7.4 Characterization of ∧∨-free, V2-free, and Λ2-free posets

We say that a poset Q is P -free if it does not contain an induced copy of P .

Let P1 and P2 be two disjoint posets. The series composition P1 ⃝< P2 of P1 below
P2 is the poset consisting of a copy of P1 and a copy of P2 that are disjoint and such
that any vertex in the copy of P1 is smaller than any vertex in the copy of P2. A poset
is series-parallel if it is either a 1-element poset, or obtained by series composition or
parallel composition of two series-parallel posets.

Recall that∧∨ is the N-shaped poset consisting of 4 vertices. Valdes [72] showed the
following characterization.

Theorem 0.6 (Valdes [72]). A non-empty poset is ∧∨-free if and only if it is series-parallel.

A poset P is an up-tree if P has a unique minimal vertex and for every vertex
X ∈ P , the vertices smaller or equal thanX are pairwise comparable, i.e., the subposet
{Z ∈ P : Z ≤P X} is a chain. Similarly, P is a down-tree if there exists a unique
maximal vertex and for every X ∈ P , the subposet {Z ∈ P : Z ≥P X} is a chain.

Recall that Λ2 is the 3-element Λ-shaped poset, and V2 is the 3-element V-shaped
poset. We use up-trees and down-trees to characterize the structure of Λ2-free and
V2-free posets.

Proposition 0.7. Let P be a poset.

(i) P contains no copy of Λ2 if and only if P is a parallel composition of up-trees.

(ii) P contains no copy of V2 if and only if P is a parallel composition of down-trees.

(iii) P is trivial, i.e., Λ2-free and V2-free, if and only if P is a parallel composition of chains.

Proof. To show part (i), observe that P is a parallel composition of up-trees if and only
if for every vertex X ∈ P , the subposet {Z ∈ P : Z ≤P X} forms a chain.

• If there is a copy ofΛ2 inP , say with maximal vertexX and further vertices Y1 and
Y2, then the subposet {Z ∈ P : Z ≤P X} contains the two incomparable vertices
Y1 and Y2, thus {Z ∈ P : Z ≤P X} is not a chain. This implies that P is not a
parallel composition of up-trees.
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• If P is not the parallel composition of up-trees, we find a vertexX ∈ P , for which
{Z ∈ P : Z ≤P X} is not a chain. In other words, there are incomparable Y1 and
Y2 in {Z ∈ P : Z ≤P X}. Note that X ̸= Yi, i ∈ [2], because X is comparable to
every vertex in {Z ∈ P : Z ≤P X}. Thus, Y1, Y2, and X form a copy of Λ2.

A similar argument proves part (ii). For part (iii), if P is a parallel composition of
chains, it is clear that P contains neither a copy of Λ2 nor a copy of V2. Conversely, let P
be a poset with neither a copy of Λ2 nor a copy of V2. Part (i) implies that P is a parallel
composition of up-trees T1, . . . , Tk. Since every Ti has a unique minimal vertex, it is not
the parallel composition of smaller subposets. The poset P is V2-free, so in particular,
Ti is V2-free. It follows from (ii) that Ti is a down-tree, i.e., it has a unique maximal
vertex. Thus, Ti is a chain.

0.7.5 Homomorphisms, embeddings, and Embedding Lemma

Let P and Q be two posets. An embedding ϕ : P → Q is a function such that for any
X,Y ∈ P ,

X ≤P Y if and only if ϕ(X) ≤Q ϕ(Y ).

Observe that every embedding is injective. Recall that we defined a copy P ′ of P in Q
as a subposet of Q isomorphic to P . Equivalently, such a copy P ′ can be defined as
the image of an embedding ϕ : P → Q. In particular, for every copy P ′, there exists an
embedding ϕ : P → Q with image P ′.

A homomorphism of a poset P into another posetQ is a function ψ : P → Q such that
for any two X,Y ∈ P ,

if X ≤P Y, then ψ(X) ≤Q ψ(Y ).

We say that ψ : P → Q is a weak embedding of P into Q if ψ is an injective homomor-
phism. Note that every embedding is in particular a weak embedding, see Figure 0.7.
Furthermore, note that every weak copy of P in Q is the image of a weak embedding
ψ : P → Q.

Let Z be a non-empty ground set and let X ⊆ Z. A function ϕ : Q(X) → Q(Z) is
X-good if

ϕ(X) ∩X = X for every X ∈ Q(X).

This definition extends canonically to subposets of Q(X): For any F ⊆ Q(X), we say
that ϕ : F → Q(Z) is X-good if ϕ(X) ∩X = X for every X ∈ F .
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Proposition 0.8. Let X ⊆ Z for some non-empty set Z. Let F be a subposet of Q(X). Every
X-good homomorphism ϕ : F → Q(Z) is an embedding.

Proof. If X,Y ∈ F such that ϕ(X) ⊆ ϕ(Y ), then X = ϕ(X) ∩ X ⊆ ϕ(Y ) ∩ X = Y .
Therefore, ϕ is an embedding.

function

homomorphism

weak embedding

embedding

X-good embedding

X-good function

φ(X) ∩X = X

φ(X) ∩X = X

X ⊆ Y ⇒ φ(X) ⊆ φ(Y )

X ⊆ Y ⇒ φ(X) ⊆ φ(Y )

φ(X) ⊆ φ(Y )⇒ X ⊆ Y

injectivity

φ(X) ⊆ φ(Y )⇒ X ⊆ Y

Figure 0.7: Diagram of properties of a function ϕ : F → Q(Z), where F ⊆ Q(X) and
X ⊆ Z. Respective properties shall hold for any X,Y ∈ F .

One of the two main structural tools used in this thesis is the following result, which
we refer to as the Embedding Lemma: When considering an embedding ϕ of a Boolean
lattice Qn into a larger Boolean lattice Q(Z), we can find a subset X ⊆ Z such that ϕ is
isomorphic to an X-good embedding. This result is due to Axenovich and Walzer [2].
Here, we state an alternative proof.

Lemma 0.9 (Embedding Lemma; Axenovich-Walzer [2]).
Let n ∈ N. Let Z be a set with |Z| ≥ n. If there is an embedding ϕ : Qn → Q(Z), then there
exist a subset X ⊆ Z with |X| = n, and an embedding ϕ′ : Q(X) → Q(Z) with the same image
as ϕ such that ϕ′(X) ∩X = X for every X ∈ Q(X), i.e., ϕ′ is X-good.

Proof. Suppose that the ground set of Qn is U, i.e., Qn = Q(U). For each u ∈ U, we
consider the embedded singleton ϕ({u}). Since ϕ is an embedding and {u} ̸⊆ U\{u},
we find that ϕ({u}) ̸⊆ ϕ(U\{u}). For every u ∈ U, pick an arbitrary f(u) ∈ Z such that

f(u) ∈ ϕ({u}) \ ϕ(U\{u}).

For any u′ ∈ U\{u}, it holds that ϕ({u′}) ⊆ ϕ(U\{u}), using that ϕ is an embedding.
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This implies that f(u) /∈ ϕ({u′}), so all representatives f(u), u ∈ U, are distinct. Let

X = {f(u) : u ∈ U}.

Note that the map f : U → X is a bĳection. We shall define an embedding ϕ′ : Q(X) →
Q(Z). For that, we consider the inverse image under f , i.e., for X ⊆ X we let UX ⊆ U

such that X = {f(u) : u ∈ UX}. Let ϕ′(X) = ϕ(UX) for any X ∈ Q(X). The function
ϕ′ : Q(X) → Q(Z) is an embedding because ϕ is an embedding. Moreover, since f is
a bĳection, ϕ and ϕ′ have the same image. We shall show that ϕ′(X) ∩X = X for any
X ∈ Q(X). Fix an arbitrary f(u) ∈ X.

• If f(u) ∈ X , then u ∈ UX , and in particular ϕ({u}) ⊆ ϕ(UX). We selected
f(u) ∈ ϕ({u}), so f(u) ∈ ϕ({u}) ⊆ ϕ(UX) = ϕ′(X).

• If f(u) /∈ X , then u /∈ UX , and thus UX ⊆ U \ {u}. Using that ϕ is an embedding,
we see that ϕ(UX) ⊆ ϕ(U \ {u}). By definition, f(u) /∈ ϕ(U \ {u}), so f(u) /∈
ϕ(UX) = ϕ′(X).

This implies that f(u) ∈ ϕ′(X) if and only if f(u) ∈ X , so ϕ′ isX-good, which concludes
the proof.

Let Z ̸= ∅ and X ⊆ Z. We say that a copy Q′ of Q(X) in Q(Z) is X-good if there
is an X-good embedding of Q(X) into Q(Z) with image Q′. The Embedding Lemma
claims in particular that any copy of Qn in a larger Boolean lattice Q(Z) is X-good for
some subset X ⊆ Z.

Remark. We say that a poset P has the embedding property if for any ground set Z and
for every embedding ϕ of P into a Boolean lattice Q(Z), there exist a subset X ⊆ Z of
size dim2(P ), and a copy F of P in Q(X) such that we can find an X-good embedding
ϕ′ : F → Q(Z) with the same image as ϕ. In the Embedding Lemma we showed thatQn

has the embedding property. Further examples of posets which have the embedding
property are chains Cn, the N-shaped poset ∧∨ and the standard example Sn. For Cn

and ∧∨, the proof is straightforward. For Sn, we can apply the proof of Lemma 0.9. A
negative example is the antichain A5. Note that dim2(A5) = 4, but for the antichain in
Q([5]) on vertices {1}, {2}, {3}, {4}, and {5} there is no 4-element X ⊆ [5] such that this
antichain is X-good. Studying the class of posets with the embedding property might
be of independent interest.
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0.7.6 Y-chains and Chain Lemma

Let X and Y be two disjoint sets. Each vertex Z in the Boolean lattice Q(X∪Y) has an
X-part Z ∩X and a Y-part Z ∩Y. In the following, we establish a connection between
the existence of a red Boolean lattice and a blue chain in a blue/red colored Q(X∪Y),
depending on X and Y. More precisely, we are interested in red copies of Q(X) in
which the X-part of each vertex is predetermined, and blue copies of C|Y|+1 in which
the Y-part of each vertex is predetermined.

We denote a linear ordering τ of Y for which y1 <τ y2 <τ · · · <τ yk by a sequence
τ = (y1, . . . , yk), implying that Y = {y1, . . . , yk}. In other words, τ corresponds to an
ordered subset of Y of maximal size. Given a linear ordering τ = (y1, . . . , yk) of Y, a
Y-chain corresponding to τ is a (k + 1)-element chain in Q(X ∪Y) on vertices

X0 ∪∅, X1 ∪ {y1}, X2 ∪ {y1, y2}, . . . , Xk ∪Y,

where X0 ⊆ X1 ⊆ · · · ⊆ Xk ⊆ X. Note that any Y-chains corresponding to distinct
linear orderings of Y are distinct. In the special case Y = ∅, a Y-chain consists of a
single vertex.

The following lemma is the second main structural tool of this dissertation and is
referred to as the Chain Lemma. A weaker formulation of this result was stated implicitly
by Chen, Cheng, Li and Liu, see Theorem 15 of [13], as well as by Grósz, Methuku and
Tompkins, see Claim 3 of [38].

Lemma 0.10 (Chain Lemma). Let n and k be non-negative integers. Let X and Y be disjoint
sets with |X| = n and |Y| = k. Fix an arbitrary blue/red coloring of the Boolean lattice
Q(X∪Y), and a linear ordering τ = (y1, . . . , yk) of Y. Then there exists either a red, X-good
copy of Q(X) or a blue Y-chain corresponding to τ in Q(X ∪Y).

Proof. By relabelling Y, we can suppose without loss of generality that yi = i for i ∈ [k],
i.e., Y = [k]. Throughout this proof, we use the convention [0] = ∅. Assume that there
does not exist a blue [k]-chain corresponding to τ , i.e., a subposet on vertices Xi ∪ [i],
i ∈ {0, . . . , k} with Xi−1 ⊆ Xi, i ∈ [k]. We shall show that there is a red copy of a
Boolean lattice.

For every X ∈ Q(X), we shall define an integer ℓX ∈ {0, . . . , k} such that the
function

ϕ : Q(X) → Q(X ∪Y), ϕ(X) = X ∪ [ℓX ]
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is a red, X-good embedding. Recursively, we choose ℓX , X ∈ Q(X), such that

(i) for any U ⊆ X , ℓU ≤ ℓX ,

(ii) the vertex X ∪ [ℓX ] is colored red, and

(iii) if ℓX ≥ 1, then there are blue vertices X ′
0 ∪ [0], . . . , X ′

ℓX−1 ∪ [ℓX − 1] with X ′
0 ⊆

· · · ⊆ X ′
ℓX−1 ⊆ X , i.e., there is a blue [ℓX − 1]-chain corresponding to the linear

ordering (1, . . . , ℓX − 1) whose maximal vertex is smaller than X ∪ [ℓX − 1].

First, we consider the vertex ∅ ∈ Q(X). Let ℓ∅ be the smallest integer ℓ, 0 ≤ ℓ ≤ k,
such that the vertex∅∪[ℓ] is red. If there is no such ℓ, then the vertices∅∪[0], . . . ,∅∪[k]
form a blueY-chain corresponding to τ , a contradiction. It is immediate that properties
(i) and (ii) hold for ℓ∅. If ℓ∅ ≥ 1, then ∅ ∪ [0], . . . ,∅ ∪ [ℓ∅ − 1] are blue vertices, so (iii)
is fulfilled.

Next, consider an arbitrary X ∈ Q(X), X ̸= ∅, and assume that for every X ′ ⊂ X ,
we already defined ℓX′ with properties (i), (ii), and (iii). Fix any vertex U ⊂ X such that
ℓU is maximal among the ℓX′ ’s, X ′ ⊂ X . Recursively, we find a blue chain: If ℓU ≥ 1,
property (iii) for U provides a blue [ℓU − 1]-chain CU ; if ℓU = 0, let CU be the empty
poset. If the verticesX ∪ [ℓU ], . . . , X ∪ [k] are all blue, then they form, together with CU ,
a blue [k]-chain corresponding to τ , so we arrive at a contradiction. Thus, there exists a
smallest integer ℓX such that ℓU ≤ ℓX ≤ k and X ∪ [ℓX ] is red. We shall verify that ℓX
has properties (i), (ii), and (iii).

• For every X ′′ ⊂ X , we know that ℓX′′ ≤ max{ℓX′ : X ′ ⊂ X} = ℓU ≤ ℓX , thus
property (i) holds.

• The vertex X ∪ [ℓX ] is defined to be red, so ℓX has property (ii).

• For property (iii), note thatX ∪ [ℓU ], . . . , X ∪ [ℓX −1] are blue by the minimality of
ℓX . These vertices, together with CU , form a blue [ℓX − 1]-chain corresponding to
the linear ordering (1, . . . , ℓX−1)with a maximal vertex smaller thanX∪ [ℓX−1].

We define ϕ as the function mapping from the Boolean lattice Q(X) to Q(X ∪ Y)

such that
ϕ(X) = X ∪ [ℓX ].

Property (ii) implies that every vertexϕ(X) is red. Note thatϕ(X)∩X = X for everyX ∈
Q(X), so ϕ is X-good. It remains to show that ϕ is an embedding. By Proposition 0.8,
it suffices to verify that for any two X1, X2 ∈ Q(X) with X1 ⊆ X2, ϕ(X1) ⊆ ϕ(X2).
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Indeed, let X1, X2 ∈ Q(X) with X1 ⊆ X2, then Property (i) provides that ℓX1 ≤ ℓX2 .
Thus,

ϕ(X1) = X1 ∪ [ℓX1 ] ⊆ X2 ∪ [ℓX2 ] = ϕ(X2).

Therefore, ϕ is a red, X-good embedding. Its image is a red, X-good copy of Q(X) in
Q(X ∪Y).

The following corollary is a simplified version of the Chain Lemma, which appeared
as Lemma 4 in Axenovich and Walzer [2].

Corollary 0.11 (Axenovich-Walzer [2]). Let n ≥ 1 and k ≥ 0 be integers. Any blue/red
colored Boolean lattice of dimension n + k contains a red copy of Qn or a blue chain of length
k + 1. In particular, R(Ck+1, Qn) = n+ k.

Here, the lower bound on R(Ck+1, Qn) follows immediately from Theorem 0.2.

0.8 Existence of 2-dimension and poset Ramsey number

Recall that the 2-dimension dim2(P ) of a poset P is the smallest integer n such that Qn

contains an induced copy of P . Using poset embeddings, it is easy to show that the
2-dimension is well-defined for any poset P .

Proposition 0.12 (Trotter [70]). For every poset P , there is an integer n such thatQn contains
an induced copy of P . In particular, dim2(P ) is well-defined.

Proof. Let P be a poset of size |P | = n, say on vertices X1, . . . , Xn. We shall show that
the n-dimensional Boolean lattice Q([n]) contains a copy of P . For that, we define the
function ϕ : P → Q([n]) such that any vertex Xi ∈ P is mapped to

ϕ(Xi) = {j : Xj ≤P Xi}.

We claim that ϕ is an embedding of P into Q([n]). Let Xi and Xj be any vertices in P .

• If Xi ≤P Xj , then ϕ(Xi) = {ℓ : Xℓ ≤P Xi} ⊆ {ℓ : Xℓ ≤P Xj} = ϕ(Xj).

• If ϕ(Xi) ⊆ ϕ(Xj), then i ∈ {ℓ : Xℓ ≤P Xi} = ϕ(Xi) ⊆ ϕ(Xj) = {ℓ : Xℓ ≤P Xj}.
This implies that Xi ≤P Xj .
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Proposition 0.13 (Walzer [74]). For every two posets P and Q, there is a sufficiently large n
such that any blue/red coloring ofQn contains a blue copy of P or a red copy ofQ. In particular,
R(P,Q) is well-defined.

Proof. Let n = max{dim2(P ),dim2(Q)}. By Theorem 0.1, R(Qn, Qn) is well-defined.
The Boolean lattice Qn contains a copy of any smaller Boolean lattice Qm, m ≤ n. In
particular, Qn contains a copy of P and a copy of Q. Therefore, R(P,Q) ≤ R(Qn, Qn),
which completes the proof.



Chapter 1

Complete multipartite poset versus large Boolean lattice

1.1 Introduction of Chapter 1

Recall that the poset Ramsey number R(P,Q) of posets P and Q is the smallest integer
N such that in any blue/red coloring of the N -dimensional Boolean lattice QN , there
is a blue induced copy of P or a red induced copy of Q. This chapter focuses on upper
bounds forR(P,Q) in the setting that P is a fixed poset andQ = Qn is a Boolean lattice.
This setting is a generalization of the off-diagonal setting R(Qm, Qn), where m is fixed
and n is large, which is one of the focal points of research on the poset Ramsey number.
Theorem 0.2 provides a basic bound: For every m,n ∈ N,

n+m ≤ R(Qm, Qn) ≤ mn+ n+m.

It is easy to see that the lower bound is sharp for m = 1, i.e., R(Q1, Qn) = n+ 1. In the
case m = 2, an early estimate by Axenovich and Walzer [2] showed that R(Q2, Qn) ≤
2n + 2. This was further improved by Lu and Thompson [52] who proved the bound
R(Q2, Qn) ≤ 5

3n+ 2, and finally by Grósz, Methuku, and Tompkins [38] showing that

n+ 3 ≤ R(Q2, Qn) ≤ n+
(
2 + o(1)

) n

log n
,

where the lower bound holds for n ≥ 18. We remark that Grósz, Methuku, and
Tompkins also gave an upper bound for small n, that is R(Q2, Qn) ≤ n + 6.14 n

logn for
n ≥ 2. For m ≥ 3, an improvement of the basic upper bound is given by Lu and
Thompson [52]. They showed that R(Q3, Qn) ≤ 37

16n+ 39
16 ≈ 2.31n and for 4 ≤ m ≤ n,

R(Qm, Qn) ≤
(
m− 2 +

9(m− 1)

(2m− 3)(m+ 1)

)
n+m+ 3,

31
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in particularR(Q4, Qn) ≤ 77
25n+7 ≈ 3.08n andR(Q5, Qn) ≤ 27

7 n+8 ≈ 3.86n. However,
no significant improvement of the lower bound in this setting is known.

The poset Ramsey number R(Qm, Qn) is known exactly for some specific values
of m and n. It was shown that R(Q2, Q2) = 4, R(Q2, Q3) = 5, and R(Q3, Q3) = 7,
see Axenovich and Walzer [2], Lu and Thompson [52], and Falgas-Ravry, Markström,
Treglown and Zhao [28], respectively.

In this chapter, we generalize the upper bound on R(Q2, Qn) by Grósz, Methuku,
and Tompkins [38] to two broader classes of posets. Recall that a complete ℓ-partite poset
Kt1,...,tℓ is a poset on t1+ · · ·+ tℓ vertices which is the series composition of ℓ antichains
A1, . . . , Aℓ, where eachAi consists of ti distinct vertices. In other words, given pairwise
disjoint setsA1, . . . , Aℓ with |Ai| = ti, we define for any two indices i, j ∈ {1, . . . , ℓ} and
for any vertices X ∈ Ai, Y ∈ Aj ,

X < Y if and only if i < j,

see Figure 1.1. Note that Q2
∼= K1,2,1.

Theorem 1.1. Let n ∈ N and ℓ ≥ 2. Let t1, . . . , tℓ be fixed integers. Then

R(Kt1,...,tℓ , Qn) ≤ n+

(
2 + o(1)

)
ℓn

log n
.

In fact, our proof also holds if the parameters of a complete multipartite posetK depend
on n.

Theorem 1.2. For large n ∈ N, let ℓ = ℓ(n) be an integer such that ℓ ≥ 2 and ℓ = o(log n).
For i ∈ {1, . . . , ℓ}, let ti = ti(n) be an integer with supi∈[ℓ] ti = no(1). Then

R(Kt1,...,tℓ , Qn) ≤ n

(
1 +

2 + o(1)

log n

)ℓ

≤ n+

(
2 + o(1)

)
ℓn

log n
.

Recall that a complete multipartite poset is an antichain if ℓ = 1, and a chain if ti = 1

for every i ∈ [ℓ]. In both of these special cases, Theorem 1.1 gives a weaker bound than
Theorem 0.2 and Corollary 0.11, respectively.

As an intermediate step in proving Theorem 1.2, we shall first consider a special
complete multipartite poset that we call a spindle. Let r ≥ 0, s ≥ 1, and t ≥ 0 be integers.
Recall that an (r, s, t)-spindle Sr,s,t is the complete multipartite posetKt′1,...,t

′
r+1+t

, where
t′1, . . . , t

′
r = 1 and t′r+1 = s and t′r+2, . . . , t

′
r+1+t = 1, see Figure 1.1. If r = 0 or t = 0, the

respective layers are omitted.
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SD3,2K3,4,2 S2,5,3

Figure 1.1: Hasse diagrams of K3,4,2, S2,5,3, and SD3,2.

Theorem 1.3. For n ∈ N, let r and t be non-negative integers with 1 ≤ r + t = o(
√
log n).

Let s be a positive integer with s = no(1). Then

R(Sr,s,t, Qn) ≤ n+

(
1 + o(1)

)
(r + t)n

log n
.

Note that S1,s,1 describes the same poset as an s-diamondDs, while the spindle S1,s,0 is
an s-fork Vs. For these posets, Theorem 1.3 implies stronger bounds than Theorem 1.1.

Corollary 1.4. Let s ∈ N with s = no(1) for n ∈ N. Then

R(Ds, Qn) ≤ n+

(
2 + o(1)

)
n

log n
and R(Vs, Qn) ≤ n+

(
1 + o(1)

)
n

log n
.

For s, t ∈ N, a (s, t)-subdivided diamond SDs,t is the poset obtained from two parallel,
i.e., element-wise incomparable, chains of length s and t, respectively, by adding a
vertex smaller than all others as well as a vertex larger than all others, see Figure 1.1.
Note that Q2

∼= SD1,1.

Theorem 1.5. Let n ∈ N. Let s = s(n) and t = t(n) be positive integers such that s + t =

o(log log n). Then

R(SDs,t, Qn) ≤ n+

(
2 + o(1)

)
n

log n
.

Note that, if P ′ is a subposet of a poset P , thenR(P ′, Qn) ≤ R(P,Qn). In particular,
Theorem 1.5 implies a Ramsey bound for the hook-shaped posetQ−

2 , which is a subposet
of SD1,2.

Corollary 1.6. For n sufficiently large, R(Q−
2 , Qn) ≤ R(SD1,2, Qn) ≤ n+

(
2 + o(1)

)
n

logn .

We remark that an improved lower bound on R(P,Qn) for general posets P is
shown in Theorem 2.1. By this result, we see that Theorems 1.1 and 1.5 are tight in a
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strong sense, i.e., that R(P,Qn) = n+Θ
(

n
logn

)
if P is a complete multipartite poset or

subdivided diamond.

The structure of this chapter is as follows. In Section 1.2, we recall key definitions
and give a summary of our approach. In Section 1.3.1, we bound the Ramsey number
of posets obtained by gluing. In Sections 1.3.2 and 1.3.3, we consider complete mul-
tipartite posets, and give proofs of Theorems 1.3 and 1.2, respectively. These results
are published in Order, 2023 [78]. Section 1.4 is concerned with subdivided diamonds,
where we present a proof of Theorem 1.5. This part of the chapter is published in
Discrete Mathematics, 2024 [79]. We remark that Theorem 1.5 is a stronger statement
than the corresponding result in [79], but this strengthening is implied by the same
proof.

1.2 Outline of the approach

Let X and Y be disjoint sets with |X| = n and |Y| = k. Let τ = (y1, . . . , yk) be a linear
ordering of Y. Recall that a Y-chain corresponding to τ is a chain on k + 1 vertices
Z0 ⊂ · · · ⊂ Zk such that

Zi ∩Y = {y1, . . . , yi} for i ∈ [k], and Z0 ∩Y = ∅.

In other words, the Y-part of each vertex is determined by the underlying linear
ordering.

The proofs of Theorems 1.3 and 1.5 follow the same approach as the upper bound
on R(Q2, Qn) by Grósz, Methuku, and Tompkins [38]. To show that R(P,Qn) ≤ n+ k,
we consider a blue/red colored Q(X ∪Y), i.e., a Boolean lattice on ground set X ∪Y,
which contains no red copy of Qn. The Chain Lemma, Lemma 0.10, implies that in
this coloring there is a blue Y-chain for every linear ordering of Y, of which there
are k!. These blue chains might intersect heavily, but are pairwise distinct. We shall
use a pigeonhole principle argument to find some vertices in some of these chains
which form a blue copy of P . In the proof of Grósz, Methuku, and Tompkins [38],
i.e., if P = Q2, this was straightforward. If P is a spindle or a subdivided diamond,
additional arguments are required. Theorem 1.2 follows easily from Theorem 1.3 and
a lemma on a gluing operation for posets, see Lemma 1.7.
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1.3 Upper bound on R(Kt1,...,tℓ, Qn)

1.3.1 Gluing operation for posets

By identifying vertices of two otherwise disjoint posets, they can be “glued together”
creating a new poset. Later, we construct complete multipartite posets by gluing
spindles on top of each other using the following definition. Given a poset P1 with
a unique maximal vertex Z1 and a poset P2 disjoint from P1 with a unique minimal
vertex Z2, let P1≬P2 be the poset obtained by identifying Z1 and Z2, see Figure 1.2.
Formally speaking, P1≬P2 is the poset (P1 \ {Z1})∪ (P2 \ {Z2})∪ {Z} for a Z /∈ P1 ∪ P2

where for any two X,Y ∈ P1≬P2, we let X <P1≬P2
Y if and only if one of the following

five cases hold: X,Y ∈ P1 and X <P1 Y ; X,Y ∈ P2 and X <P2 Y ; X ∈ P1 and Y ∈ P2;
X ∈ P1 and Y = Z; or X = Z and Y ∈ P2.

P1

P2

Z1

Z2

Z

P1GP2

Figure 1.2: Creating P1≬P2 from P1 and P2.

Lemma 1.7. Let P1 be a poset with a unique maximal vertex and let P2 be a poset with a unique
minimal vertex. Then R(P1≬P2, Qn) ≤ R(P1, QR(P2,Qn)).

Proof. Let N = R(P1, QR(P2,Qn)). Consider a blue/red colored Boolean lattice Q of
dimension N which contains no blue copy of P1≬P2. We shall show that there exists a
red copy ofQn in this coloring. We say that a blue vertex Z in Q is P1-clear if there is no
blue copy of P1 in Q containing Z as its maximal vertex. Similarly, a blue vertex Z is
P2-clear if there is no blue copy of P2 in Q with minimal vertex Z. Observe that every
blue vertex is P1-clear or P2-clear (or both), since there is no blue copy of P1≬P2.

We introduce an auxiliary coloring of Q using colors green and yellow. Color all
blue vertices which are P1-clear in green and all other vertices in yellow. There exists no
copy of P1 in which every vertex has color green, since otherwise the maximal vertex of
such a copy is green but not P1-clear, a contradiction. Recall thatN = R(P1, QR(P2,Qn)),
thus Q contains a copy Q′ of QR(P2,Qn) in which every vertex is yellow.
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Consider the original blue/red coloring of Q′. Every blue vertex of Q′ is yellow in
the auxiliary coloring, thus not P1-clear. Therefore, every blue vertex of Q′ is P2-clear.
The blue/red coloring of Q′ does not contain a blue copy of P2, since otherwise the
minimal vertex of such a copy is not P2-clear. Recall that Q′ is a copy of a Boolean lattice
of dimension R(P2, Qn), thus there exists a red copy of Qn in Q′, hence also in Q.

Corollary 1.8. Let P1 be a poset with a unique maximal vertex, and let P2 be a poset with a
unique minimal vertex. Suppose that there are functions f1, f2 : N → R with R(P1, Qn) ≤
f1(n)n and R(P2, Qn) ≤ f2(n)n for any n ∈ N and such that f1 is monotonically non-
increasing. Then for every n ∈ N,

R(P1≬P2, Qn) ≤ f1(n)f2(n)n.

Proof. For an arbitrary n ∈ N, let n′ = f2(n)n. Because R(P,Qn) ≥ n for any poset P ,
we find that

n′ = f2(n)n ≥ R(P2, Qn) ≥ n.

The function f1 is non-increasing, thus f1(n′) ≤ f1(n). Lemma 1.7 provides that
R(P1≬P2, Qn) ≤ R(P1, Qn′) ≤ f1(n

′)n′ ≤ f1(n)f2(n)n.

1.3.2 Proof of Theorem 1.3

In our proof, we need a classic result known as Dilworth’s theorem [22], and a compu-
tational lemma which follows the lines of a similar claim in [38]. Recall that we omit
floors and ceilings where appropriate.

Theorem 1.9 (Dilworth [22]). A poset P contains no antichain of size s if and only if all
vertices of P can be covered by s− 1 chains.

Lemma 1.10. For n ∈ N, let r = r(n) and t = t(n) be non-negative integers such that
1 ≤ r + t = o(

√
log n), and let s = s(n) be a positive integer such that s = no(1). We define

k = k(n, r, s, t) =
cn

log n
,

where

c =
r + t+ δ

1− ε
, ε =

log s

log n
and δ =

2(r + t)

log n
(log log n+ r + t+ log e).

Then k! > 2(r+t)(n+k) · (s− 1)k+1 for sufficiently large n.
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Proof. We prove the lemma by verifying that Γ > 0, where

Γ = k
(
log k − log e

)
− k
(
r + t+ log(s− 1)

)
− log(s− 1)−

(
r + t

)
n.

Indeed, Γ > 0 implies that k(log k− log e) > k(r+ t+ log(s− 1))+ log(s− 1)+ (r+ t)n,
therefore

k! ≥
(
k

e

)k

= 2k(log k−log e) > 2(r+t)(n+k)+(k+1) log(s−1) = 2(r+t)(n+k) · (s− 1)k+1.

Note that s = nε, so in particular, s− 1 ≤ nε. Moreover, note that c ≥ 1. Applying
these two observations and recalling k = cn

logn , we see that

Γ = k
(
log k − r − t− log(s− 1)− log e

)
− log(s− 1)−

(
r + t

)
n

≥ cn

log n

(
(log n− log log n)− r − t− ε log n− log e

)
− ε log n−

(
r + t

)
n

=
cn

log n

(
(log n− ε log n)− (log log n+ r + t+ log e)

)
− ε log n−

(
r + t

)
n

= (1− ε)cn− cn

log n

(
log log n+ r + t+ log e

)
− ε log n−

(
r + t

)
n

=
(
(1− ε)c− (r + t)

)
n− cn

log n

(
log log n+ r + t+ log e

)
− ε log n.

By definition of c, (1− ε)c− (r + t) = δ = 2(r+t)
logn (log log n+ r + t+ log e). Thus,

Γ ≥ δn− cn

log n

(
log logn+ r + t+ log e

)
− o

(
n

log n

)
≥

(
2(r + t)− c− o(1)

) n

log n

(
log log n+ r + t+ log e

)
.

Since r + t = o(
√
log n), we see that δ = 2(r+t)

logn (log log n + r + t + log e) = o(1). Addi-
tionally, s = no(1) implies that ε = o(1). Thus,

c ≤ r + t+ δ

1− ε
≤
(
1 + o(1)

)
(r + t).

In particular, 2(r + t)− c− o(1) > 0 for large n, so Γ > 0.

Now we give a proof of Theorem 1.3.

Proof of Theorem 1.3. Recall that r, s, t are chosen such that 1 ≤ r + t = o(
√
log n) and

s = no(1). We shall show that R(Sr,s,t, Qn) ≤ n + k for sufficiently large n and k =
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k(n, r, s, t) as defined in Lemma 1.10. By Lemma 1.10, we can suppose that

k! > 2(r+t)(n+k) · (s− 1)k+1.

If s = 1, then Sr,s,t is a chain, and R(Sr,s,t, Qn) ≤ n + r + t ≤ n + k by Corollary 0.11,
so suppose that s ≥ 2.

Let X and Y be disjoint sets with |X| = n and |Y| = k. Fix an arbitrary blue/red
coloring of Q(X ∪Y) with no red copy of Qn. We shall show that there is a blue copy
of Sr,s,t in Q(X ∪Y). For any linear ordering τ = (yτ1 , . . . , y

τ
k) of Y, the Chain Lemma,

Lemma 0.10, provides a blue Y-chain, i.e., a chain on vertices Zτ
0 ⊂ Zτ

1 ⊂ · · · ⊂ Zτ
k such

that Zτ
0 ∩ Y = ∅ and Zτ

i ∩ Y = {yτ1 , . . . , yτi } for every i ∈ [k]. We refer to this chain
as Cτ .

For every linear ordering τ of Y, we consider the r smallest vertices Zτ
0 , . . . , Z

τ
r−1

and the t largest vertices Zτ
k−t+1, . . . , Z

τ
k of its corresponding chain Cτ , so let

I = {0, . . . , r − 1} ∪ {k − t+ 1, . . . , k}.

Here, if r = 0, then I = {k − t + 1, . . . , k}, and if t = 0, then I = {0, . . . , r − 1}.
Our approach is to find many chains Cτ that have their smallest and largest vertices in
common, by using a counting argument. Each Zτ

i is a vertex of Q(X∪Y), so one of the
2n+k distinct subsets of X ∪Y. Thus, for a fixed τ , there are at most

(
2n+k

)r+t distinct
combinations of theZτ

i , i ∈ I . Recall that k! > 2(r+t)(n+k) ·(s−1)k+1. By the pigeonhole
principle, we find a collection τ1, . . . , τm of m = (s− 1)k+1 + 1 distinct linear orderings
of Y such that for any j ∈ [m] and i ∈ I , Zτj

i = Zi, where Zi ⊆ X ∪ Y is a fixed
vertex independent of j. In other words, we find many chains with the same r smallest
vertices Zi, i ∈ {0, . . . , r − 1}, and the same t largest vertices Zi, i ∈ {k − t+ 1, . . . , k}.
Let P be the subposet of Q induced by all chains Cτj , j ∈ [m]. Note that every vertex in
P is blue.

If there is an antichain A of size s in P , then none of the vertices Zi, i ∈ I , is in A,
because each of them is contained in every chain Cτj , and thus comparable to all other
vertices in P . Note that here we used the assumption s ≥ 2. This implies that A and the
vertices Zi, i ∈ I , form a copy of Sr,s,t in P , so we obtain a blue copy of the spindle Sr,s,t
in Q. From now on, suppose that there is no antichain of size s in P . By Dilworth’s
theorem, Theorem 1.9, we obtain s− 1 chains D1, . . . ,Ds−1 which cover every vertex of
P , i.e., every vertex in every Cτj . Note that the chains Di might consist of significantly
more vertices than the (k + 1)-element chains Cτj .
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In the remainder of the proof, we shall find a contradiction to the number of linear
orderings τ1, . . . , τm. For this purpose, we restrict each vertex inP toY, apply again the
pigeonhole principle, and then show that there are two linear orderings in the collection
τ1, . . . , τm which are equal, a contradiction.

Claim: Let i ∈ [s − 1], j ∈ [m], and ℓ ∈ {0, . . . , k} such that Zτj
ℓ ∈ Di. Then Z

τj
ℓ ∩ Y

does not depend on j, i.e., there is a unique set Y ℓ
i such that Zτj

ℓ ∩Y = Y ℓ
i for every j.

Proof of the claim: By definition of a Y-chain, the Y-part Zτj
ℓ ∩Y consists of the first ℓ

elements of Y, ordered with respect to τj . In particular, |Zτj
ℓ ∩Y| = ℓ. We claim that

there is a unique set Y ℓ
i such that everyZ ∈ Di with |Z∩Y| = ℓ has Y-partZ∩Y = Y ℓ

i .
Indeed, pick arbitrary vertices Z,Z ′ ∈ Di such that |Z ∩Y| = |Z ′ ∩Y| = ℓ. Since Di is
a chain, Z and Z ′ are comparable, say Z ⊆ Z ′. In particular, Z ∩Y ⊆ Z ′ ∩Y, which
implies that Z ∩Y = Z ′ ∩Y. This proves the claim.

Let j ∈ [m] be fixed. Because the chains D1, . . . ,Ds−1 cover every vertex in Cτj , there
is an index iℓ ∈ [s − 1] for each ℓ ∈ {0, . . . , k} such that Zτj

ℓ ∈ Diℓ . Thus, the claim
implies that each of the k + 1 sets Zτj

ℓ ∩Y is equal to one of at most s− 1 Y ℓ
i ’s. Recall

that we have chosen m = (s − 1)k+1 + 1 distinct linear orderings τj of Y. Using the
pigeonhole principle, we find two indices j1, j2 such that Zτj1

ℓ ∩Y = Z
τj2
ℓ ∩Y for each

ℓ ∈ {0, . . . , k}. Recall that Zτj
ℓ ∩Y = {yτj1 , . . . y

τj
ℓ }, so we conclude that yτj1ℓ = y

τj2
ℓ for

each ℓ ∈ {0, . . . , k}. Therefore, τj1 and τj2 are equal, but this is a contradiction to the
fact that all orderings τj are distinct.

1.3.3 Proof of Theorem 1.1

In this subsection, we generalize Theorem 1.3 from spindles to general complete mul-
tipartite posets by gluing spindles on top of each other.

Proof of Theorem 1.1. Recall that ℓ = o(log n) and supi∈[ℓ] ti = no(1). Let t = supi∈[ℓ] ti.
Theorem 1.3 shows the existence of a function ε(n) = o(1) with

R(K1,t,1, Qn) ≤ n

(
1 +

2 + ε(n)

log n

)
.

We can suppose that the function ε is monotonically non-increasing by replacing ε(n)
withmaxN>n{ε(N), 0}where necessary. Note that this maximum exists since ε(N) → 0

for N → ∞. In order to prove the theorem, we show a stronger statement using the
auxiliary (2ℓ + 1)-partite poset P = K1,t,1,t,...,1,t,1. Observe that Kt1,...,tℓ is an induced
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subposet of P , thus R(Kt1,...,tℓ , Qn) ≤ R(P,Qn). In the following, we verify that

R(P,Qn) ≤ n

(
1 +

2 + ε(n)

log n

)ℓ

.

We use induction on ℓ. If ℓ = 1, then P = K1,t,1, so R(P,Qn) ≤ n
(
1 + 2+ε(n)

logn

)
. If

ℓ ≥ 2, we “deconstruct” the poset into two parts. ConsiderP1 = K1,t,1 and the complete
(2ℓ − 1)-partite poset P2 = K1,t,1,t,...,1,t,1. Note that P1 has a unique maximal vertex
and P2 has a unique minimal vertex, and moreover, P1≬P2 = P . Using the induction
hypothesis,

R(P1, Qn) ≤ n

(
1 +

2 + ε(n)

log n

)
and R(P2, Qn) ≤ n

(
1 +

2 + ε(n)

log n

)ℓ−1

,

so Corollary 1.8 provides the required bound.

1.4 Upper bound on R(SDs,t, Qn)

1.4.1 Counting permutations

In this subsection, we bound the number of permutations with a special property, in
preparation for our proof of Theorem 1.5. A permutation π : [k] → [k] is called r-proper
if for every j ∈ [k], |{ℓ ≤ j : π(ℓ) ≥ j − 1}| ≤ r. For example, the permutation π̂ given
by (π̂(1), . . . , π̂(k)) = (k, 1, 3, 4, 5, . . . , k − 1, 2), see Figure 1.3, is not 1-proper because
at j = 3, {ℓ ≤ 3 : π̂(ℓ) ≥ 2} = {1, 3}. However, π̂ is 2-proper.

π̂

1 2 3 4 5 k − 1 k

1 2 3 4 5 k − 1 k

. . .

. . .

Figure 1.3: The permutation π̂ : [k] → [k].

Lemma 1.11. Let r, k ∈ N. There are at most 2(r+log r)k distinct r-proper permutations
π : [k] → [k].

Proof. For a permutation π, we say that an index i ∈ [k] is bad if π(i) ≥ i, and good if
π(i) ≤ i−1. LetBπ andGπ denote the set of indices that are bad and good, respectively.
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Note that Bπ and Gπ partition [k]. Again considering the example (π̂(1), . . . , π̂(k)) =

(k, 1, 3, 4, 5, . . . , k − 1, 2), we have that Bπ̂ = {1} ∪ {3, 4, . . . , k − 1} and Gπ̂ = {2, k}.

Given an r-proper permutation π, the proper restriction ρ of π is the restriction of
π to its bad indices, i.e., ρ : Bπ → [k] with ρ(i) = π(i) for every i. For example,
the proper restriction of π̂ is ρ̂ : [k − 1] \ {2} → [k] with ρ̂(1) = k and ρ̂(i) = i for
3 ≤ i ≤ k − 1. Note that ρ does not depend on r. Observe that a function ρ can be the
proper restriction of distinct r-proper permutations. Let Π be the set of all r-proper
permutations π : [k] → [k]. If a function ρ is the proper restriction of some π ∈ Π, we
say that ρ is a Π-restriction. To avoid ambiguity, we denote the domain of ρ by Bρ.
Inheriting the properties of an r-proper permutation, ρ is injective and

∣∣{ℓ ∈ Bρ : ℓ ≤ j, ρ(ℓ) ≥ j − 1}
∣∣ ≤ r.

In the following, we bound |Π| by first estimating |{ρ : ρ is a Π-restriction}|, and
then bounding |{π ∈ Π : π has the proper restriction ρ}| for every fixed ρ.

Claim 1: There are at most 2rk distinct Π-restrictions.

Proof of Claim 1: We show that every Π-restriction has a distinct representation as a
collection of r vectors V1, . . . , Vr ∈ {0, 1}k, which implies that there are at most 2rk

Π-restrictions. Let ρ be a Π-restriction with domain Bρ. For every i ∈ Bρ, we define an
integer interval Ii = {i, . . . , ρ(i) + 1}. Consider the interval graph H given by intervals
Ii, i.e., the graph on vertex set Bρ where {i, j} is an edge if and only if i ̸= j and
Ii ∩ Ij ̸= ∅. In the following we use terminology common in graph theory, for a formal
introduction we refer the reader to Diestel [21].

Next, we bound the maximal size of a clique in H . Suppose that vertices i1, . . . , im
form a clique in H , then the intervals Ii1 , . . . , Iim pairwise intersect, thus there exists
an integer j ∈ [k] such that j ∈ Ii1 ∩ · · · ∩ Iim . In terms of m, this implies that

m ≤
∣∣{ℓ ∈ Bρ : j ∈ Iℓ}

∣∣ = ∣∣{ℓ ∈ Bρ : ℓ ≤ j, ρ(ℓ) + 1 ≥ j}
∣∣ ≤ r,

where the last inequality holds because ρ is a proper restriction. Thus, there is no clique
of size r+ 1 in H . It is common knowledge that interval graphs are perfect, see [21], so
there exists a proper vertex coloring ofH using at most r colors. Fix such a coloring c of
H with set of colors [r]. For each color s ∈ [r], we shall construct a vector Vs representing
the intervals with color s. Note that for each color class, the corresponding intervals
are pairwise disjoint.
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For any fixed s ∈ [r], we denote the set of indices with color s by

Bs = {i ∈ Bρ : c(Ii) = s}.

We define a vector Vs ∈ {0, 1}k as follows. Let

Vs(i) = · · · = Vs(ρ(i)) = 1 for i ∈ Bs and Vs(i) = 0 for i ∈ [k] \Bs.

Since the intervals Ii, i ∈ Bs, are pairwise disjoint, Vs is well-defined. Moreover, we
obtain that Vs(ρ(i) + 1) = 0 for every i ∈ Bs. This implies that Vs(i − 1) = 0, if
defined, for i ∈ Bs. In other words, each sequence Vs(i), . . . , Vs(ρ(i)) of 1’s in Vs can be
identified by a 0 “in front” and “behind” of it. By this, the vector Vs encodes all indices
in Bs and their respective functional values ρ(i), i ∈ Bs: If for some j ∈ [k], Vs(j) = 1
and Vs(j − 1) = 0, then j ∈ Bs and ρ(j) is given by the maximal index j′ such that
Vs(j) = · · · = Vs(j

′) = 1.

We obtain a vector representation V1, . . . , Vr of ρ. It is easy to see that distinct Π-
restrictions have distinct representations. There are at most (2k)r distinct such vector
representations, which proves the claim.

Claim 2: Given a fixed Π-restriction ρ, the number of r-proper permutations π with
proper restriction ρ is at most rk.

Proof of Claim 2: Let ρ be a fixed Π-restriction with domainBρ. LetGρ = [k]\Bρ. Let Πρ

be the collection of all r-proper permutations with proper restriction ρ. We shall show
that |Πρ| ≤ rk. Note that for every π ∈ Πρ and ℓ ∈ Bρ, π(ℓ) = ρ(ℓ). The remaining
indices ℓ ∈ [k] \ Bρ = Gρ are good for π, i.e., π(ℓ) ≤ ℓ− 1. We count the permutations
π ∈ Πρ, by iterating through all good indices i ∈ Gρ in increasing order, while counting
the choices for each π(i).

Observe that 1 /∈ Gρ, since π(1) ≥ 1 for any permutation π. Fix an i ∈ Gρ, i.e., i ≥ 2.
Suppose that all indices ℓ ∈ Gρ∩[i−1] are already assigned to an integer π(ℓ) ≤ ℓ−1 and
all ℓ ∈ Bρ are assigned to π(ℓ) = ρ(ℓ). There are two conditions on the choice of π(i):
On the one hand, i is a good index, so we require π(i) ∈ [i− 1]. On the other hand, π is
injective, thus π(i) ̸= π(ℓ) for all ℓ < i. Therefore, π(i) ∈ [i− 1] \ {π(ℓ) ∈ [i− 1] : ℓ < i}.
We evaluate the size of this set. Recall that |{ℓ < i : π(ℓ) ≥ i− 1}| ≤ r, thus the number
of indices ℓ ∈ [i− 1] with π(ℓ) < i− 1 is at least (i− 1)− r. In particular,

∣∣{π(ℓ) ∈ [i− 1] : ℓ < i}
∣∣ ≥ i− 1− r,
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which implies that

∣∣[i− 1] \ {π(ℓ) ∈ [i− 1] : ℓ < i}
∣∣ ≤ (i− 1)− (i− 1− r) = r.

Therefore, there are at most r choices for selecting π(i) for each i ∈ Gρ. Note that
|Gρ| ≤ k, thus the number of r-proper permutations with proper restriction ρ is at
most rk.

Combining both claims, the number of r-proper permutations is at most∑
ρ is a Π-restriction

∣∣{π ∈ Π: ρ is a proper restriction of π}
∣∣ ≤ 2rkrk = 2(r+log r)k.

We remark that the bound provided here is not optimal. With a more careful ap-
proach to counting distinctΠ-restrictions, the numberN(k, r) of r-proper permutations
π : [k] → [k] can be bounded by

rk ≤ N(k, r) ≤ (2r)2k.

Studying this extremal function might be of independent interest.

1.4.2 Proof of Theorem 1.5

Before presenting the proof of Theorem 1.5, we give a computational lemma similar to
Lemma 1.10.

Lemma 1.12. For n ∈ N, let c = c(n) be an integer with c = o(log log n). Let

k =
(2 + δ)n

log n
, where δ =

3

log n
(log log n+ log e+ c+ 2).

Then for sufficiently large n, k! > 2ck · 22(n+k).

Proof. Since k! >
(
k
e

)k
= 2k(log k−log e), we shall show that k(log k− log e) > ck+2(n+k)

or equivalently
k(log k − log e− c− 2)− 2n > 0.
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Let Γ = k(log k − log e− c− 2)− 2n. Using that k = (2+δ)n
logn and δ ≥ 0, we see that

Γ = k
(
log k − log e− c− 2

)
− 2n

=
(2 + δ)n

log n

(
log(2 + δ) + log n− log logn− log e− c− 2

)
− 2n

≥ (2 + δ)n log n

log n
− (2 + δ)n

log n

(
log logn+ log e+ c+ 2

)
− 2n

≥ δn− (2 + δ)n

log n

(
log logn+ log e+ c+ 2

)
=

3n

log n
(log log n+ log e+ c+ 2)− (2 + δ)n

log n

(
log log n+ log e+ c+ 2

)
> 0,

where the last inequality holds for sufficiently large n.

Proof of Theorem 1.5. For any s ≤ t, note that SDs,t is an induced subposet of SDt,t, so
it suffices to prove the Ramsey bound for s = t. We shall show that

R(SDt,t, Qn) ≤ n+
(
2 + o(1)

) n

log n
for 2t ≤ o(log log n).

Let k = (2+δ)n
logn , where δ = 3

logn(log log n + log e + c + 2) and c = 2t + 2 + log(2t + 2).
By the choice of t, we know that c = o(log log n). Thus, Lemma 1.12 implies that for
sufficiently large n,

k! > 2ck · 22(n+k).

Let X and Y be disjoint sets with |X| = n, |Y| = k. Consider an arbitrary blue/red
coloring of Q(X ∪Y) with no red copy of Qn. We shall show that there is a blue copy
of SDt,t in this coloring.

There are k! linear orderings of Y. For every linear ordering τ of Y, the Chain
Lemma provides a blue Y-chain Cτ in Q(X ∪ Y) corresponding to τ , say on vertices
Zτ
0 ⊂ Zτ

1 ⊂ . . . ⊂ Zτ
k . In each chain, consider the smallest vertex Zτ

0 and the largest
vertex Zτ

k . Both vertices are subsets of X∪Y, so there are at most 22(n+k) distinct pairs
(Zτ

0 , Z
τ
k ). By the pigeonhole principle, there is a collection τ1, . . . , τm of m = k!

22(n+k)

distinct linear orderings of Y such that all the corresponding Y-chains Cτi have both
Zτi
0 and Zτi

k in common. Lemma 1.12 shows that m > 2ck.

Fix an arbitrary linear ordering σ ∈ {τ1, . . . , τm}. By relabelling Y, we can suppose
that σ = (1, . . . , k), i.e., 1 <σ · · · <σ k. Consider an arbitrary linear ordering τj , j ∈ [m],
allowing that τj = σ. Let τj = (y1, . . . , yk). We say that τj is t-close to σ for some t ∈ N if
for every i ∈ [k − t], either [i] ⊆ {y1, . . . , yi+t} or {y1, . . . , yi} ⊆ [i+ t]. For example, the
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linear ordering (4, 5, . . . , k, 1, 2, 3) is 3-close to σ since the first i elements of this linear
ordering are contained in [i+3], for any i ∈ [k−3]. However, our example is not 2-close
to σ, because neither {1} ⊆ {4, 5, 6} nor {4} ⊆ {1, 2, 3}.

In the remainder of the proof, we distinguish two cases: If there is a linear ordering
τj which is not t-close to σ, we build a copy of SDt,t from the Y-chains corresponding
to σ and τj . If every linear ordering τ1, . . . , τm is t-close to σ, we find m permutations
fulfilling the property of Lemma 1.11, which provides that m ≤ 2ck. Recalling that
m > 2ck, we arrive at a contradiction.

Case 1: There is a linear ordering τ ∈ {τ1, . . . , τm} which is not t-close to σ.

Suppose that the Y-chains corresponding to σ and τ are given by vertices Zσ
0 , . . . , Z

σ
k

and Zτ
0 , . . . , Z

τ
k , respectively. Recall that Zσ

0 = Zτ
0 and Zσ

k = Zτ
k . Since τ is not

t-close to σ, there is an index i ∈ [k − t] such that neither [i] ⊆ {y1, . . . , yi+t} nor
{y1, . . . , yi} ⊆ [i+ t]. In a Y-chain, the Y-part Z ∩Y of each vertex Z is determined by
the underlying linear ordering, in particular Zσ

i ∩Y = [i] and Zτ
i+t∩Y = {y1, . . . , yi+t},

thus Zσ
i ̸⊆ Zτ

i+t. By transitivity, Zσ
j ̸⊆ Zτ

j′ for any two j, j′ ∈ {i, . . . , i+ t− 1}. Similarly,
Zτ
i ̸⊆ Zσ

i+t and so Zτ
j ̸⊆ Zσ

j′ . This implies that the poset

P =
{
Zσ
j , Z

τ
j : j ∈ {0, k} ∪ {i, . . . , i+ t− 1}

}
contains a copy of SDt,t. Furthermore, every vertex of P is included in a blue Y-chain
and thus colored blue. This completes the proof for Case 1.

Case 2: Every linear ordering τ ∈ {τ1, . . . , τm} is t-close.

Here, we use the fact that every linear ordering τj , j ∈ [m], is obtained by permuting
the linear ordering σ: Fix an arbitrary τ ∈ {τ1, . . . , τm}, and let τ = (y1, . . . , yk). We say
that the permutation corresponding to τ is π : [k] → [k] with π(ℓ) = yℓ. We show that π
has the following property.

Claim: For every j ∈ [k], |{ℓ ≤ j : π(ℓ) > j + t}| ≤ t.

Proof of the claim: The inequality is trivially true if j + t > k. Fix an arbitrary j ∈
[k − t]. Using that τ is t-close, either {π(1), . . . , π(j)} = {y1, . . . , yj} ⊆ [j + t] or
[j] ⊆ {y1, . . . , yj+t} = {π(1), . . . , π(j + t)}.

• If {π(1), . . . , π(j)} ⊆ [j + t], then for every ℓ ≤ j, π(ℓ) ≤ j + t. Therefore,
{ℓ ≤ j : π(ℓ) > j + t} = ∅, so the claim holds.
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• If [j] ⊆ {π(1), . . . , π(j + t)}, then let I = {π(1), . . . , π(j + t)} \ [j], and note that
|I| = t. For every ℓ ≤ j with π(ℓ) > j + t, we know in particular that π(ℓ) /∈ [j],
thus π(ℓ) ∈ I . Using that π is bĳective,

∣∣{ℓ ≤ j : π(ℓ) > j + t}
∣∣ = ∣∣{π(ℓ) : ℓ ≤ j, π(ℓ) > j + t}

∣∣ ≤ |I| = t.

This proves the claim.

In particular, π has the property that |{ℓ ≤ j : π(ℓ) ≥ j−1}| ≤ 2t+2 for every j ∈ [k],
i.e., π is (2t + 2)-proper. Note that distinct linear orderings τi, i ∈ [m], correspond to
distinct permutations πi : [k] → [k]. Lemma 1.11 provides that the number of (2t+ 2)-
proper permutations πi is at most

m ≤ 2(2t+2+log(2t+2))k = 2ck.

Recall that m > 2ck by Lemma 1.12, so we arrive at a contradiction.

1.5 Concluding remarks

In the first part of this chapter, we studied the poset Ramsey number R(K,Qn), where
K is a complete multipartite poset. Our proof was based on the Chain Lemma. Despite
the effectiveness of this approach for complete multipartite posets of any fixed size, it
remains open how to improve the upper bound on R(Q3, Qn), in particular whether
R(Q3, Qn) = n+ o(n). We have seen in Corollary 1.8 how small posets can be used as
“building blocks” for bounding R(P,Qn) for more complex posets P . This raises hope
that an extension of Corollary 1.8 might allow for “building” the posetQ3. For example,
Q3 can be partitioned into a copy of K1,3 and a copy of K3,1 which interact properly.
Both of these two building blocks are complete 2-partite posets, so by Theorem 1.1,

R(K1,3, Qn) = R(K3,1, Qn) ≤ n+O

(
n

log n

)
.

We remark that in this chapter, we have not used the full strength of the Chain
Lemma. It actually provides that the red copy of Qn is X-good. Taking this additional
structural property into account brings us closer to the notion of blockers, which we
study in Chapters 2 and 3.
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In the second part of this chapter, we focused on subdivided diamonds SDs,t,
and presented an upper bound on R(SDs,t, Qn) in Theorem 1.5. This result can be
extended to a larger class of posets. Let P be a poset of width w(P ) = 2 which does
not contain a copy of the N-shaped poset ∧∨. Note that every subdivided diamond is
such a poset. Recall that a poset is series-parallel if it consists of a single vertex, or is
constructed from a series composition or parallel composition of smaller series-parallel
posets. Theorem 0.6 yields that P is series-parallel. In a rather technical argument,
which is omitted here, one can show that P is a subposet of some poset P ′, where P ′ is
obtained by gluing subdivided diamonds on top of each other. Therefore, Corollary 1.8
and Theorem 1.5 imply that

R(P,Qn) = n+O

(
n

log n

)
.



Chapter 2

V-shaped poset versus large Boolean lattice

2.1 Introduction of Chapter 2

Recall that the poset Ramsey number R(P,Q) of two posets P and Q is the smallest N
such that any blue/red coloring of anN -dimensional Boolean latticeQN contains a blue
copy of P or a red copy of Q. Most known lower bounds on the poset Ramsey number
R(P,Q) correspond to so-called layered colorings of Boolean lattices, in which any two
vertices in the same layer have the same color, see for example Theorem 0.2. The only
two previously known non-layered constructions are given by Grósz, Methuku, and
Tompkins [38], improving the trivial lower bound R(Q2, Qn) ≥ n + 2 to n + 3, and
by Bohman and Peng [7], improving the trivial lower bound for the diagonal case
R(Qn, Qn) ≥ 2n to 2n + 1. In this chapter, we present a first of a kind non-marginal
improvement of the trivial lower bound for the poset Ramsey numberR(P,Qn), where
P is a fixed poset.

Recall that the poset Λ2 is the 3-element Λ-shaped poset, i.e., the poset on vertices
Z1, Z2, and Z3 such that Z1 > Z3, Z1 > Z2, and Z2 ≁ Z3. Its symmetric counterpart
is V2, the 3-element V -shaped poset on vertices Z1, Z2, and Z3 such that Z1 < Z2,
Z1 < Z3, and Z2 ≁ Z3. We say that a poset is trivial if it contains neither a copy of Λ2

nor a copy of V2, and non-trivial otherwise. The main result of this chapter shows a
sharp jump in the behavior of R(P,Qn) as a function of n, depending on whether P
contains a copy of Λ2 or V2.

Theorem 2.1. Let P be an arbitrary poset.

(i) If P is trivial, then R(P,Qn) = n + Θ(1). More precisely, for any positive integer
n, n+ h(P )− 1 ≤ R(P,Qn) ≤ n+ h(P ) + α(w(P ))− 1.

(ii) If P is non-trivial, then R(P,Qn) ≥ n+ 1
15

n
logn for any n ≥ 216.

48



2.1. Introduction of Chapter 2 49

Here, recall that ‘log’ refers to the logarithm with base 2, and α(n) denotes the smallest
dimension of a Boolean lattice containing an antichain of size n, as elaborated in
Section 0.7.3. The second part of Theorem 2.1 relies on a lower bound on R(Λ2, Qn)

that we provide in the next theorem.

Theorem 2.2. For any n ≥ 216,

R(Λ2, Qn) ≥ n+
1

15
· n

log n
.

We show this lower bound by giving a probabilistic construction of parallel copies of
factorial trees to find the desired blue/red coloring.

Previously, in Theorems 1.1 and 1.5, we have shown thatR(P,Qn) = n+O
(

n
logn

)
, if

P is a complete multipartite poset or a subdivided diamond. For such P , Theorem 2.1
provides a lower bound for R(P,Qn) which is asymptotically tight not only in the
linear but also in the sublinear term. Most notably, Theorem 2.1 and the upper bound
on R(Q2, Qn) by Grósz, Methuku, and Tompkins [38] imply:

Corollary 2.3. R(Q2, Qn) = n+Θ
(

n
logn

)
.

For every trivial poset P , Theorem 2.1 determines R(P,Qn) up to an additive constant,
depending on P . This setting is considered in more detail in Chapter 4.

Recall that an ordered subset of a fixed set Y is a sequence of non-repeated elements
of Y. For two ordered subsets T and S of Y, we write T ≤O S if T is a prefix of S, i.e., if
|T | ≤ |S| and each of the first |T | members of S coincides with the respective member
of T . The relation ≤O defines a partial order. Recall that the factorial tree O(Y) with
ground set Y is the poset of all ordered subsets of a fixed set Y, ordered by the prefix
relation. The factorial tree O([3]) is depicted in Figure 2.1.

O([3]) ∅o

(1)

(1, 2) (1, 3) (2, 1) (2, 3) (3, 1) (3, 2)

(2) (3)

(1, 2, 3) (1, 3, 2) (2, 1, 3) (2, 3, 1) (3, 1, 2) (3, 2, 1)

Figure 2.1: Hasse diagram of the factorial tree O([3]).
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Let X and Y be disjoint sets. We denote by Q(X) the Boolean lattice on ground
set X. Recall that an embedding ϕ of Q(X) into Q(X ∪Y) is X-good if ϕ(X) ∩X = X

for every X ∈ Q(X). A copy Q of Qn in Q(X ∪ Y) is X-good if there is an X-good
embedding ofQ(X) intoQ(X∪Y)with imageQ. The Embedding Lemma, Lemma 0.9,
states that any copy ofQn in a host Boolean lattice is X-good for some X. We introduce
a similar notion of goodness for factorial trees. For an ordered subset S of Y, we refer
to its underlying unordered set as S. An embedding ξ : O(Y) → Q(X ∪Y) is Y-good
if ξ(S)∩Y = S for every S ∈ O(Y). We say that a subposet F of Q(X∪Y) is a Y-good
copy of O(Y) if there exists a Y-good embedding ξ : O(Y) → Q(X∪Y) with image F .
We also refer to a Y-good copy of O(Y) as a Y-shrub.

In our second main theorem, we present a structural duality result.

Theorem 2.4. For two disjoint sets X and Y, fix a blue/red coloring of the Boolean lattice
Q(X∪Y) that contains no blue copy of Λ2. Then exactly one of the following statements holds
in Q(X ∪Y):

(i) there is a red, X-good copy of Q(X), or

(ii) there is a blue, Y-good copy of O(Y), i.e., a blue Y-shrub.

Informally speaking, this duality statement claims that for any bipartition X∪Y of the
ground set of a Boolean lattice, there exists either a red copy of Q(X) that is restricted
to X, or a blue copy of the factorial tree O(Y) restricted to Y. This result can be seen as
a strengthening of the Chain Lemma, Lemma 0.10, in the special case when we forbid
a blue copy of Λ2. In particular, the family of chains of maximal length in the shrub
corresponds to the family of Y-chains obtained in the Chain Lemma.

When studying the poset Ramsey number R(P,Qn), we shall understand blue/red
colorings in which blue copies of P and red copies Qn are forbidden. Theorem 2.4
implies a characterization for blue/red colored Boolean lattices that contain neither a
blue copy of Λ2 nor a red copy of Qn.

Corollary 2.5. Let n, k ∈ N and N = n+ k. Let Q([N ]) be a blue/red colored Boolean lattice
with no blue copy of Λ2. There is no red copy ofQn in Q([N ]) if and only if for every k-element
subset Y ⊆ [N ], there exists a blue Y-shrub.

In Corollary 1.4, we presented an upper bound on R(Λ2, Qn). By applying a counting
argument to Corollary 2.5, we obtain an alternative proof of that bound.

Corollary 2.6.

R(Λ2, Qn) ≤ n+
(
1 + o(1)

) n

log n
.
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The structure of this chapter is as follows. In Section 2.2, we introduce additional
notation for factorial trees, and discuss basic properties of shrubs. In Section 2.3, we
give a probabilistic construction that verifies Theorem 2.2, and derive Theorem 2.1 from
that. In Section 2.4, we present proofs of Theorem 2.4, Corollary 2.5, and Corollary 2.6.
The results of this chapter are published in Combinatorics, Probability and Computing,
2023 [3], in joint work with Maria Axenovich. In contrast to the published manuscript,
the content of this chapter has been reorganized into two parts, separating the proofs
of Theorems 2.1 and 2.4. Furthermore, we have expanded Theorem 2.1 (ii) to include
a threshold for n such that the statement holds, and edited the proof of Theorem 2.9
accordingly.

2.2 Basic properties of a shrub

In this subsection, we discuss the central properties of shrubs, which are the key
ingredient in the upcoming proofs. Recall that the unordered set underlying an ordered
set S is denoted by S. We say that S is an ordering of S. Let |S| = |S| be the size of S.
We denote the empty ordered set by ∅o = (). Note that ∅o is a prefix of every ordered set.
We say that an ordered set T is a strict prefix of an ordered set S, denoted by T <O S, if
T is a prefix of S and T ̸= S.

Recall that an up-tree P is a poset which has a unique minimal vertex and for every
vertex Z ∈ P , the vertices Z ′ ∈ P with Z ′ ≤P Z form a chain. In Proposition 0.7,
we showed that a poset P does not contain a copy of Λ2 if and only if it is a parallel
composition of up-trees.

Lemma 2.7. Let X and Y be disjoint sets. Let n = |X| and k = |Y|. Let F be a Y-shrub in
the Boolean lattice Q(X ∪Y). Then:

(i) F is an up-tree. In particular, F does not contain a copy of Λ2.

(ii) F contains a vertex of every X-good copy of Qn.

(iii) The 2-dimension of Q(X∪Y) is at least k(log k− log e), i.e., n ≥ k(log k− log e− 1).

Proof. First, we shall verify part (i). In a factorial tree O(Y) with ground set Y, the set
of prefixes {T ∈ O(Y) : T ≤O S} of any vertex S ∈ O(Y) forms a chain. Furthermore,
the vertex ∅o is the unique minimal vertex of Y, thus O(Y) is an up-tree. Since F is a
copy of O(Y), it is also an up-tree. In particular, Proposition 0.7 provides that F does
not contain a copy of Λ2.
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For part (ii), let ϕ : Q(X) → Q(X∪Y) be an arbitrary X-good embedding of Q(X).
Let ξ : O(Y) → Q(X ∪Y) be an arbitrary Y-good embedding of the factorial tree with
image F . Assume that ϕ(X) ̸= ξ(S) for any two X ∈ Q(X) and S ∈ O(Y).

We shall find a contradiction by applying an iterative argument. Let Y0 = ∅ be
the empty (unordered) set and let S0 = ∅o be the empty ordered set. Let X1 ⊆ X

such that ξ(S0) = X1 ∪ S0. Note that X1 = ξ(S0) ∩X, since ξ is Y-good. Let Y1 ⊆ Y

such that ϕ(X1) = X1 ∪ Y1, i.e., using that ϕ is X-good, Y1 = ϕ(X1) ∩ Y. Because
X1 ∪ Y1 = ϕ(X1) ̸= ξ(S0) = X1 ∪ S0, we conclude that Y1 ̸= S0 = ∅, so |Y1| ≥ 1.

Suppose that for some i ∈ [k], we already defined X1, . . . , Xi ⊆ X, Y0, . . . , Yi ⊆ Y,
and S0, . . . , Si−1 ∈ O(Y) such that

• Si−1 = Yi−1,

• ξ(Si−1) = Xi ∪ Si−1,

• ϕ(Xi) = Xi ∪ Yi,

• Yi−1 ⊂ Yi, and |Yi| ≥ i.

Fix any ordering Si of Yi which has Si−1 as a strict prefix. Such an Si exists because
Si−1 = Yi−1 ⊂ Yi. In other words, Si is obtained from Si−1 by adding the elements in
Yi \ Yi−1 in arbitrary order to the “end” of Si−1.

Afterwards, letXi+1 be the subset ofXwith ξ(Si) = Xi+1∪Si, i.e.,Xi+1 = ξ(Si)∩X.
Since ξ is an embedding, we know that Xi ∪ Si−1 = ξ(Si−1) ⊆ ξ(Si) = Xi+1 ∪ Si, so in
particular, Xi ⊆ Xi+1.

Next, let Yi+1 ⊆ Y such that ϕ(Xi+1) = Xi+1∪Yi+1, so Yi+1 = ϕ(Xi+1)∩Y. Because
Xi ⊆ Xi+1 and ϕ is an embedding, we see thatXi∪Yi = ϕ(Xi) ⊆ ϕ(Xi+1) = Xi+1∪Yi+1,
so in particular, Yi ⊆ Yi+1. Moreover, using the assumption that the images of ϕ and ξ
have no common vertex,

Xi+1 ∪ Yi+1 = ϕ(Xi+1) ̸= ξ(Si) = Xi+1 ∪ Yi.

This implies that Yi+1 ̸= Yi, thus Yi+1 ⊃ Yi, and therefore |Yi+1| ≥ |Yi| + 1 ≥ i + 1.
Iteratively, we obtain a subset Yk+1 ⊆ Y with |Yi| ≥ k + 1, a contradiction to |Y| = k.

For part (iii), observe thatO(Y)has k!distinct maximal vertices, each corresponding
to a distinct permutation of Y. In particular, F has at least k! vertices, thus

(
k

e

)k

≤ k! ≤ |F| ≤ |Q(X ∪Y)| = 2|X∪Y| = 2n+k.
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This implies that k(log k − log e) ≤ n+ k.

2.3 Lower bound on R(Λ2, Qn)

2.3.1 Construction of an almost optimal shrub

Outline of the proof idea for Theorem 2.2: To bound R(Λ2, Qn) from below, we shall
construct a blue/red coloring of the host Boolean lattice that contains neither a blue
copy of Λ2 nor a red copy of Qn. Our proposed coloring consists of a collection of blue
shrubs, while all remaining vertices are colored red. We construct a “dense” shrub,
and then use a probabilistic argument to find a collection of parallel shrubs in the host
Boolean lattice. Afterwards, we use Lemma 2.7 to confirm that the proposed coloring
indeed contains neither a blue copy of Λ2 nor a red copy of Qn.

First, we construct a Y-shrub which is almost optimal in the sense that its host
Boolean lattice has a dimension almost matching the lower bound in Lemma 2.7 (iii).

Lemma 2.8. Let Y be a k-element set for some k ∈ N. Let A be a set disjoint from Y such that
|A| ≥ k ·max{log k + log log k, 11}. Then there is a Y-shrub in Q(A ∪Y).

Proof. Let A0, . . . ,Ak−1 be pairwise disjoint subsets of A such that |Ai| = α(k), where
α(k) is the smallestN such that theN -dimensional Boolean lattice contains an antichain
of size k. It is easy to check that

α(k) ≤ log k + log log k for k ≥ 256, and α(k) ≤ 11 for k ≤ 256,

so such subsets Ai’s can be chosen. Each Ai, i ∈ {0, . . . , k − 1}, is the ground set of a
Boolean latticeQ(Ai)which contains an antichain of size k. Let

{
Aj

i : j ∈ {0, . . . , k−1}
}

be this antichain enumerated arbitrarily. Throughout this proof, we use addition of
indices modulo k.

Let Y = {y0, . . . , yk−1}. We shall construct a Y-good embedding ξ of the factorial
tree O(Y) into the Boolean lattice Q(A ∪ Y) as follows. Let ξ(∅o) = ∅. For every
i ∈ {0, . . . , k − 1}, let ξ((yi)) = Ai ∪ {yi}. Consider any non-empty ordered subset of
Y, say (yi1 , yi2 , . . . , yij ) where 2 ≤ j ≤ k. Let

ξ((yi1 , . . . , yij )) = Ai1 ∪A
i2
i1+1 · · · ∪A

ij
i1+j−1 ∪ {yi1 , . . . , yij}.
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For example, if k = 4, then ξ((y0, y1, y2)) = A0 ∪A1
1 ∪A2

2 ∪ {y0, y1, y2}, ξ((y2, y3, y1)) =
A2 ∪A3

3 ∪A1
0 ∪ {y1, y2, y3}, and ξ((y3, y1)) = A3 ∪A1

0 ∪ {y1, y3}, see Figures 2.2 and 2.3.
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Figure 2.2: Assignment of the Ai’s and Aj
i ’s to vertices of a {y0, y1, y2, y3}-shrub.
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Figure 2.3: Segment of the shrub highlighted in Figure 2.2. Here, union signs are
omitted because of spacing. For example, A2A

1
3A

0
0y2y1y0 corresponds to the shrub

vertex A2 ∪A1
3 ∪A0

0 ∪ {y2, y1, y0}.

Observe that ξ is aY-good embedding. Indeed, for any ordered sequence of distinct
ground elements (yi1 , . . . , yij ), we have that ξ((yi1 , . . . , yij ))∩Y = {yi1 , . . . , yij}. Using
this property, it is straightforward to check that for any two vertices (yi1 , . . . , yip) and
(yi1 , . . . , yiq) in O(Y),

(yi1 , . . . , yip) <O (yi1 , . . . , yiq) if and only if ξ((yi1 , . . . , yip)) ⊆ ξ((yi1 , . . . , yiq)).

The image of ξ is a Y-shrub in Q(A ∪Y)



2.3. Lower bound on R(Λ2, Qn) 55

2.3.2 Random coloring with many blue shrubs

In this subsection, we find a blue/red coloring which later implies our lower bound
on R(Λ2, Qn). Note that we do not provide an explicit construction, but only prove the
existence of such a coloring.

Theorem 2.9. Let N ∈ N with N ≥ 216, and let k = N
14.9 logN . Then there exists a blue/red

coloring of the Boolean lattice Q([N ]) which contains no blue copy of Λ2 and such that for each
k-element subset Y ⊆ [N ], there is a blue Y-shrub in Q([N ]).

Proof of Theorem 2.9. We shall show the existence of a desired coloring for k = N
γ logN

where γ = 14.9. For this, we select parameters δ1 = 0.135, δ2 = 0.3, and

ε =

(
1
2 − 1

γ − δ1
)2

1− 1−δ2
γ

− 2

γ log(e)
. (2.1)

Here, ε ≈ 0.00007. Observe that

γ ≥ 6,
2

γ
< δ1 ≤

1

2
− 1

γ
, 0 < δ2 < 1, and ε > 0. (2.2)

We remark that our proof holds for all parameters γ, δ1, δ2, and ε satisfying (2.1) and
(2.2), at the expense of a larger lower bound on N . The minimal value for γ such that
there exist δ1, δ2, and ε fulfilling these conditions is approximately 14.7235.

We consider the Boolean lattice Q([N ]). Let
([N ]

k

)
denote the family of k-element

subsets of [N ]. The idea of the proof is to construct a Y-shrub, denoted by FY, for every
Y ∈

([N ]
k

)
, with the additional property that selected shrubs are parallel, i.e., pairwise

disjoint and element-wise incomparable. Then, since each shrub FY does not contain a
copy of Λ2, the parallel composition of all FY’s also does not contain a copy of Λ2. We
obtain these shrubs by randomly choosing a Y-framework for every Y ∈

([N ]
k

)
and then

constructing a Y-shrub based on each of them. Afterwards, we shall define a coloring
in which every vertex in each constructed shrub is colored blue and the remaining
vertices red.

A Y-framework of a k-element subset Y ⊆ [N ] is a 4-tuple (Y,AY,ZY,XY) such that

• Y, AY, and ZY are pairwise disjoint and Y ∪AY ∪ ZY = [N ],

• |AY| = k(log k + log log k),

• XY ⊆ ZY.

A Y-framework is random if
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• AY is chosen uniformly at random among all subsets of [N ]\Y of size k(log k +

log log k),

• ZY = [N ]\(Y ∪AY), and

• each element of ZY is included in XY independently at random with probability
1
2 .

Draw a random Y-framework for each Y ∈
([N ]

k

)
.

Claim 1:

(
1− 1

γ

)
N ≤ |ZY| ≤

(
1− 1−δ2

γ

)
N .

Proof of Claim 1: Using that k = N
γ logN ,

|ZY| = N − |Y| − |AY|

= N − k(log k + log log k + 1)

= N − N

γ logN

(
logN − log γ − log logN + log log k + 1

)
. (2.3)

Note that log log k ≤ log logN and 1 ≤ log γ, so in (2.3) the term in parentheses is
bounded from above as follows:

logN − log γ − log logN + log log k + 1 ≤ logN,

thus
|ZY| ≥ N − N

γ logN
logN =

(
1− 1

γ

)
N.

For the upper bound on |ZY|, note that k ≥
√
N for N ≥ 216, so

log logN − log log k ≤ log logN − log log
√
N = 1.

This implies that in (2.3) the term in parentheses is bounded from below as follows:

logN − log γ − log logN + log log k + 1 ≥ logN − log γ ≥ (1− δ2) logN,

where we used that δ2 logN ≥ log γ for N ≥ 216, δ2 = 0.3, and γ = 14.9. Consequently,

|ZY| ≤ N − N

γ logN
(1− δ2) logN =

(
1− 1− δ2

γ

)
N,

which proves Claim 1.
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Let E1 be the event that for some distinct Y1,Y2 ∈
([N ]

k

)
, |XY1 ∩ ZY2 | ≤ δ1N .

Claim 2: P(E1) <
1
2 .

Proof of Claim 2: Consider some arbitrary Y1,Y2 ∈
([N ]

k

)
with Y1 ̸= Y2. It follows from

Claim 1 that (
1− 2

γ

)
N ≤ |ZY1 ∩ ZY2 | ≤ |ZY1 | ≤

(
1− 1− δ2

γ

)
N. (2.4)

In the random Y1-framework, each element of ZY1 ∩ ZY2 is contained in XY1 ∩ ZY2

independently with probability 1
2 . Consequently, |XY1 ∩ ZY1 | ∼ Bin

(
|ZY1 ∩ ZY2 |, 12

)
and E(|XY1 ∩ ZY1 |) = 1

2 |ZY1 ∩ ZY2 |.

A well-known Chernoff’s inequality, see Corollary 23.7 in the textbook by Frieze
and Karoński [32], states that for a binomially distributed random variableX and a real
number a,

P(X ≤ E(X)− a) ≤ exp

(
− a2

2E(X)

)
. (2.5)

By Chernoff’s inequality,

P(|XY1 ∩ ZY2 | ≤ δ1N) = P
(
|XY1 ∩ ZY2 | ≤

|ZY1 ∩ ZY2 |
2

−
(
|ZY1 ∩ ZY2 |

2
− δ1N

))
≤ exp

(
−
( |ZY1

∩ZY2
|

2 − δ1N
)2

|ZY1 ∩ ZY2 |

)

≤ exp

(
−
(
(12 − 1

γ )− δ1
)2

(1− 1−δ2
γ )

·N

)

≤ exp

(
−
(

2

γ log e
+ ε

)
·N
)
,

where we applied (2.4) in the penultimate line and (2.1) in the last line. Thus,

P(E1) ≤
∑

Y1,Y2∈([N ]
k )

P(|XY1 ∩ ZY2 | ≤ δ1N)

≤ N2k exp

(
−
(

2

γ log e
+ ε

)
·N
)

= exp

(
2k logN

log(e)
−
(

2

γ log e
+ ε

)
·N
)

= exp

(
2N

γ log e
−
(

2

γ log e
+ ε

)
·N
)

= exp(−εN)

<
1

2
for N ≥ 216.
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This proves Claim 2.

Let E2 be the event that there exist two subsets Y1,Y2 ∈
([N ]

k

)
with Y1 ̸= Y2 such

that XY1 ∩ ZY2 ⊆ XY2 .

Claim 3: P(E2) < 1.

Proof of Claim 3: Let P(E2|¬E1) be the conditional probability ofE2, given that the event
E1 does not occur. Note that, using Claim 2,

P(E2) ≤ P(E1) + P(E2|¬E1) <
1

2
+ P(E2|¬E1).

We shall show that P(E2|¬E1) ≤ 1
2 . Let Y1,Y2 ∈

([N ]
k

)
with Y1 ̸= Y2, and suppose

that E1 does not occur, i.e., |XY1 ∩ ZY2 | > δ1N . Note that each element of XY1 ∩ ZY2

is contained in XY2 with probability 1
2 . Thus,

P(XY1 ∩ ZY2 ⊆ XY2) =

(
1

2

)|XY1
∩ZY2

|
≤ 2−δ1N .

This implies that

P(E2|¬E1) ≤
∑

Y1,Y2∈([N ]
k )

P(XY1 ∩ ZY2 ⊆ XY2)

≤ N2k · 2−δ1N

= 2

(
2N
γ

−δ1N
)

≤ 1

2
,

where the last line holds for N ≥ 216, γ = 14.9, and δ1 = 0.135. This proves Claim 3.

In particular, there exists a collection ofY-frameworks (Y,AY,ZY,XY), Y ∈
([N ]

k

)
,

such that for any two distinct Y1,Y2 ∈
([N ]

k

)
, XY1 ∩ ZY2 ̸⊆ XY2 . In the remainder of

the proof, we use this collection of frameworks to define the desired coloring.

Recall that |AY| = k(log k + log log k) for every Y ∈
([N ]

k

)
. Let F ′

Y be a Y-shrub
in Q(AY ∪Y) as guaranteed by Lemma 2.8. Note that the shrubs F ′

Y, Y ∈
([N ]

k

)
, are

not necessarily parallel posets. Let FY be obtained from F ′
Y by replacing each vertex

Z ∈ F ′
Y with Z ∪XY. Then FY is a Y-shrub in Q([N ]).
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Claim 4: Let Y1,Y2 be two distinct k-element subsets of [N ]. Then FY1 and FY2 are
parallel subposets of Q([N ]).

Proof of Claim 4: Fix arbitrary vertices Ui ∈ FYi , i ∈ [2]. Recall that XY1 ∩ ZY2 ̸⊆ XY2 ,
which implies that there exists an a ∈ (XY1 ∩ ZY2)\XY2 . In particular, a ∈ U1 since
XY1 ⊆ U1 and a ̸∈ U2 since a ∈ ZY2 \XY2 and U2 ∩ZY2 = XY2 . Therefore, a ∈ U1\U2

and similarly, there is an element b ∈ U2\U1. This implies that U1 ≁ U2, which proves
the claim.

We consider the blue/red coloring c : Q([N ]) → {blue, red} such that for every
X ∈ Q([N ]),

c(X) =

blue, if X ∈ FY for some Y ∈
([N ]

k

)
red, otherwise.

For every Y ∈
([N ]

k

)
, FY is a blue Y-shrub in Q([N ]). By Lemma 2.7 (i), any Y-shrub is

an up-tree. Claim 4 implies that the blue subposet of Q([N ]) is a parallel composition
of up-trees, so Proposition 0.7 provides that the coloring c does not contain a blue copy
of Λ2.

2.3.3 Proofs of Theorems 2.2 and 2.1

We have collected all necessary tools to show a lower bound on R(Λ2, Qn).

Proof of Theorem 2.2. Letk = N
14.9 logN andn = N−k. Note thatk ≤ N

2 , thusn ≤ N ≤ 2n.
In particular, N ≥ 216. By Theorem 2.9, there exists a blue/red coloring of the Boolean
lattice Q([N ]) with no blue copy of Λ2 such that for every k-element Y ⊆ [N ], there is a
blue Y-shrub. If there is a red copy Q of Qn, then the Embedding Lemma, Lemma 0.9,
provides that Q is X-good for some n-element subset X ⊆ [N ]. However, Q([N ])

contains a blue ([N ] \ X)-shrub F . The subposets Q and F are monochromatic in
distinct colors, thus they are disjoint. This is a contradiction to Lemma 2.7 (ii), so there
is no red copy of Qn. Therefore, R(Λ2, Qn) > N = n+ k.

It remains to bound k in terms of n. Indeed,

k =
N

14.9 logN
≥ n

14.9 log(2n)
=

n

14.9(log(n) + 1)
≥ 1

15
· n

log n
,

which shows the desired bound.
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Proof of Theorem 2.1. The lower bound R(P,Qn) ≥ n + h(P ) − 1 is immediate from
Theorem 0.2. If P is a chain, the upper bound is given by Corollary 0.11. If P is trivial
but not a chain, then by Proposition 0.7, the poset P is a parallel composition of at least
2 chains. Applying Theorem 0.5 and afterwards Corollary 0.11, we obtain that

R(P,Qn) ≤ R(Ch(P ), Q) + α(w(P )) ≤ n+ h(P ) + α(w(P ))− 1.

Every non-trivial poset P contains either Λ2 or V2 as a subposet. Note that
R(Λ2, Qn) = R(V2, Qn), so it follows from Theorem 2.2 that for n ≥ 216,

R(P,Qn) ≥ R(Λ2, Qn) ≥
1

15
· n

log n
.

2.4 Duality of colorings with no blue copy of Λ2

2.4.1 Definition and examples of embeddable vertices

In Lemma 2.7 (ii), we showed that there can not be both a blue Y-shrub and a red,
X-good copy of Qn in any blue/red coloring of Q(X ∪ Y). This already implies one
direction of Theorem 2.4. In this section, the main objective is to show that any blue/red
coloring of a host Boolean lattice with no blue copy of Λ2 and no red, X-good copy of
Qn contains a blue Y-shrub.

Throughout this section, we fix disjoint sets X and Y and consider the Boolean
lattice Q(X∪Y) on ground set X∪Y. The integers n, k, andN always denote n = |X|,
k = |Y|, and N = n + k = |X ∪ Y|. The vertices of Q(X ∪ Y) can be partitioned
with respect to X and Y in the following manner. Every Z ⊆ X ∪ Y has an X-part
XZ = Z ∩X and a Y-part YZ = Z ∩Y. In this section, we refer to Z alternatively as
the pair (XZ , YZ). Conversely, for any two subsets X ⊆ X and Y ⊆ Y, the pair (X,Y )

has a 1-to-1 correspondence to the vertex X ∪ Y ∈ Q(X ∪Y). One can think of such
pairs as elements of the Cartesian product 2X × 2Y, which has a canonical bĳection to
2X∪Y = Q(X∪Y). Observe that forXi ⊆ X, Yi ⊆ Y, i ∈ [2], (X1, Y1) ⊆ (X2, Y2) if and
only if X1 ⊆ X2 and Y1 ⊆ Y2.

Fix an arbitrary blue/red coloring of Q(X ∪Y) which contains no blue copy of Λ2.
For X ⊆ X and Y ⊆ Y, we say that the vertex (X,Y ) ∈ Q(X∪Y) is embeddable if there
is an embedding ϕ : {X ′ ∈ Q(X) : X ′ ⊇ X} → Q(X ∪Y) such that
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• ϕ is red, i.e., every vertex in its image is red,

• ϕ is X-good, i.e., ϕ(X ′) ∩X = X ′ for any X ′, and

• (X,Y ) ⊆ ϕ(X), or equivalently (X,Y ) is included in every ϕ(X ′), X ′ ⊇ X .

We say that ϕ witnesses that (X,Y ) is embeddable. Moreover, for every embeddable
vertex (X,Y ), we fix an arbitrary embedding ϕ with the above properties and refer to
it as the witness for the embeddability of (X,Y ).

Example 2.10. Let X = {1, 2} and Y = {y}. Fix the blue/red coloring of Q(X ∪ Y)

depicted in Figure 2.4. The vertex {1} is embeddable, witnessed by the embedding
ϕ({1}) = {1} and ϕ({1, 2}) = {1, 2, y}. The vertex {y} is not embeddable, since there
exists no red vertex ϕ({y}) with ϕ({y}) ∩ X = ∅ and ϕ({y}) ⊇ {y}. In fact, the only
non-embeddable vertices of this blue/red coloring are {y} and {2, y}.

{2}{1}

{1, 2}

{1, 2, y}

{2, y}

{y}

∅

{1, y}

Figure 2.4: A blue/red coloring of Q(X ∪Y) for X = {1, 2} and Y = {y}.

It is immediate from the definition of embeddable vertices that:

Proposition 2.11. There is a red, X-good embedding ϕ : Q(X) → Q(X ∪ Y) if and only if
(∅,∅) is embeddable.

Outline of the proof of Theorem 2.4: We shall show that, if there is no red, X-good
embedding, then there is a blue Y-shrub. Proposition 2.11 implies that if there is no
red, X-good embedding, then (∅,∅) is not embeddable. In the next subsection, we
characterize embeddable and non-embeddable vertices, see Lemma 2.12. We shall use
this characterization in Lemma 2.14 to show that if (∅,∅) is not embeddable, then it
contains a blue weak Y-shrub. Finally, we show that in our setting every weak Y-shrub
is a Y-shrub, see Lemma 2.15.
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2.4.2 Characterization of embeddable vertices

Lemma 2.12. Let X ⊆ X and Y ⊆ Y. Let Q(X ∪ Y) be a blue/red colored Boolean lattice
with no blue copy of Λ2. Then (X,Y ) is embeddable if and only if either

(i) (X,Y ) is blue and there is a Y ′ ⊆ Y with Y ′ ⊃ Y such that (X,Y ′) is embeddable, or

(ii) (X,Y ) is red and for all X ′ ⊆ X with X ′ ⊃ X , (X ′, Y ) is embeddable.

Note that if (X,Y) is blue for some X ⊆ X, then (X,Y) is not embeddable.

Proof. First, suppose that (X,Y ) is embeddable, so let ϕ : {X ′ ∈ Q(X) : X ′ ⊇ X} →
Q(X ∪Y) be the witness that (X,Y ) is embeddable.

• If (X,Y ) is blue, then (X,Y ) ⊂ ϕ(X), using that ϕ has a red image. Since ϕ is
X-good and so ϕ(X)∩X = X , we know that Y ⊂ ϕ(X)∩Y. Let Y ′ = ϕ(X)∩Y.
Note that ϕ witnesses that (X,Y ′) is embeddable, so condition (i) is fulfilled.

• If (X,Y ) is red, then pick some arbitrary subset X ′ ⊆ X such that X ′ ⊃ X . Let
ϕ′ : {U ∈ Q(X) : U ⊇ X ′} → Q(X ∪Y) be the restriction of ϕ, i.e., ϕ′(U) = ϕ(U)

for everyU containingX ′. Inheriting the properties ofϕ, the functionϕ′ is a red,X-
good embedding. Moreover, since ϕ(X ′) ∩X = X ′ and (X,Y ) ⊆ ϕ(X) ⊆ ϕ(X ′),
we know that (X ′, Y ) ⊆ ϕ(X ′) = ϕ′(X ′). Thus, ϕ′ witnesses that (X ′, Y ) is
embeddable. Since X ′ was chosen arbitrarily, condition (ii) is fulfilled.

We shall show that conditions (i) and (ii) each imply that (X,Y ) is embeddable. If
(i) holds, then there is some Y ′ ⊃ Y such that (X,Y ′) is embeddable. The embedding
witnessing this also verifies that (X,Y ) is embeddable.

For the remainder of the proof, we assume that (ii) holds, i.e., that (X,Y ) is red and
for any X ′ ⊆ X with X ′ ⊃ X , the vertex (X ′, Y ) is embeddable. We shall verify that
(X,Y ) is embeddable by constructing a red, X-good embedding

ϕ : {X ′ ∈ Q(X) : X ′ ⊇ X} → Q(X ∪Y)

with (X,Y ) ⊆ ϕ(X). Our idea for this is to choose each ϕ(X ′) depending on the blue
vertices of the form (X∗, Y ), where X ⊆ X∗ ⊆ X ′, more precisely, depending on the
number of inclusion-minimal subsets X∗’s, X ⊆ X∗ ⊆ X ′, such that (X∗, Y ) is blue.

Let X ′ be arbitrary with X ⊆ X ′ ⊆ X. We distinguish three cases, see Figure 2.5.

(1) If for every X∗ with X ⊆ X∗ ⊆ X ′, the vertex (X∗, Y ) is red, let ϕ(X ′) = (X ′, Y ).
Note that this case includes X ′ = X .
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(2) If there is a unique minimal set X∗ such that X ⊆ X∗ ⊆ X ′ and (X∗, Y ) is blue,
then (X∗, Y ) is embeddable by condition (ii). Let ϕX∗ be the witness that (X∗, Y )

is embeddable. Define ϕ(X ′) = ϕX∗(X ′).

(3) Otherwise, let ϕ(X ′) = (X ′,Y).

Cases (1), (2), and (3) determine a partition of the poset {X ′ ∈ Q(X) : X ′ ⊇ X} into
three pairwise disjoint parts P1,P2, and P3, where Pj is the set of vertices X ′ to which
ϕ was assigned in Case (j).

(X, Y )

(X, Y )

(X ′
1, Y )

(X ′
2, Y )

(X ′
3, Y )

(X∗
3 , Y )

∅

(X,Y)

(X∗
2 , Y )

Figure 2.5: Construction for subsets X ′
1, X

′
2, X

′
3 ∈ X belonging to cases (1), (2), and

(3), respectively. Here, all vertices are supposed to be red unless drawn in blue. The
subsets X∗

2 and X∗
3 are minimal with the desired property.

We shall show that the function ϕ witnesses that (X,Y ) is embeddable.

• Clearly, ϕ(X ′) ∩X = X ′ for every X ′ ⊆ X with X ′ ⊇ X , so ϕ is X-good.

• By assumption, (X,Y ) is a red vertex, soX ∈ P1. This implies thatϕ(X) = (X,Y ),
and in particular ϕ(X) ⊇ (X,Y ).

• For everyX ′ ∈ Q(X), we shall verify that ϕ(X ′) is red. The proof depends on the
index i for which X ′ ∈ Pi. If X ′ ∈ P1, then it is immediate that ϕ(X ′) is red. If
X ′ ∈ P2, then ϕ(X ′) = ϕX∗(X ′), which is red because ϕX∗ has a red image.

Next, we consider the case that X ′ ∈ P3, i.e., there are two subsets X1, X2 ⊆ X

with X1 ̸= X2 and X ⊆ Xi ⊆ X ′, i ∈ [2], such that (Xi, Y ) are blue and Xi are
both minimal with this property. The latter condition implies that X1 and X2

are incomparable, i.e., neither X1 ⊆ X2 nor X1 ⊇ X2. In particular, (X1, Y ) and
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(X2, Y ) are incomparable. Moreover, because X ′ is by definition comparable to
both X1 and X2, we know that Xi ̸= X ′, i ∈ [2]. Thus, Xi ⊂ X ′ and therefore
(Xi, Y ) ⊂ (X ′,Y), which implies that (X1, Y ), (X2, Y ), and (X ′,Y) form a copy
of Λ2. Recall that (X1, Y ) and (X2, Y ) are blue. If ϕ(X ′) = (X ′,Y) is blue, there
is a blue copy of Λ2, which is a contradiction. Therefore, ϕ(X ′) is red.

• We claim that ϕ is an embedding. Indeed, let X1 and X2 be arbitrary subsets of
X with

X ⊆ X1 ⊆ X2 ⊆ X ′. (2.6)

By Proposition 0.8, it suffices to verify that ϕ(X1) ⊆ ϕ(X2). Let Y1, Y2 ⊆ Y such
that ϕ(X1) = (X1, Y1) and ϕ(X2) = (X2, Y2). Note that Y ⊆ Yi, i ∈ [2]. We shall
show that Y1 ⊆ Y2.

Assume that at least one of X1 or X2 is in P1 ∪ P3. If X1 ∈ P1, then Y1 = Y , and
we are done as Y ⊆ Y2. Furthermore, if X2 ∈ P3, then Y2 = Y, and we are done
since Y1 ⊆ Y. If X1 ∈ P3, then X1 ⊆ X2 implies that X2 is also in P3. Conversely,
if X2 ∈ P1, the fact that X2 ⊇ X1 yields that X1 ∈ P1, and the proof is complete.

As a final step, suppose that X1 and X2 are both in P2. This implies that for each
i ∈ [2], there is a unique minimal set X∗

i such that (X∗
i , Y ) is blue and

X ⊆ X∗
i ⊆ Xi. (2.7)

It follows from (2.6) and (2.7) thatX∗
1 ⊆ X1 ⊆ X2. By minimality ofX∗

2 , we obtain
that X∗

2 ⊆ X∗
1 , thus in particular, X∗

2 ⊆ X∗
1 ⊆ X1. The minimality of X∗

1 implies
that X∗

1 ⊆ X∗
2 , so X∗

1 = X∗
2 . From now on, we denote the set X∗

1 = X∗
2 by X∗.

By condition (ii), the vertex (X∗, Y ) is embeddable, so let the embedding ϕX∗ be
the witness of that. Since X∗ ⊆ X1 ⊆ X2 and since ϕX∗ is an embedding, we
observe that ϕX∗(X1) ⊆ ϕX∗(X2). This implies that

ϕ(X1) = ϕX∗(X1) ⊆ ϕX∗(X2) = ϕ(X2).

This concludes the proof of the lemma.

Corollary 2.13. LetX ⊆ X and Y ⊆ Y such that (X,Y ) is not embeddable. Then there exists
some X ′ with X ⊆ X ′ ⊆ X such that (X ′, Y ) is blue and not embeddable.

Proof. If (X,Y ) is blue, we are done. Otherwise, Lemma 2.12 yields a set X1 with
X ⊂ X1 ⊆ X such that (X1, Y ) is not embeddable. By repeating this argument, we find
an X ′ ⊆ X with X ′ ⊇ X such that (X ′, Y ) is blue and not embeddable.
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2.4.3 Finding a blue weak shrub

We define a weak Y-shrub as the image of a Y-good homomorphism of the factorial
tree, i.e., a function ξ : O(Y) → Q(X ∪ Y) such that for every S, T ∈ O(Y) with
T ≤O S, ξ(S) ∩Y = S and ξ(T ) ⊆ ξ(S). Note that ξ is not necessarily injective.

Lemma 2.14. If (∅,∅) is not embeddable, then there is a blue weak Y-shrub.

Proof. We construct a function ξ : O(Y) → Q(X ∪Y) iteratively and increasingly with
respect to the order of O(Y). Suppose that (∅,∅) is not embeddable. By Corollary
2.13, there is some X∅ ⊆ X such that (X∅,∅) is blue and not embeddable. Let
ξ(∅) = (X∅,∅). From here, we continue iteratively. Suppose that for an ordered set
T ∈ O(Y) with T ̸= Y, we already defined XT ⊆ X such that

(i) ξ(T ) = (XT , T ) is blue and not embeddable, and

(ii) XT ′ ⊆ XT for every T ′ ≤O T .

Extend the ordered set T by adding a new final element, i.e., let S ∈ O(Y) such
that T is a prefix of S and |S| = |T |+ 1. Because (XT , T ) is blue and not embeddable,
we see by Lemma 2.12 that (XT , S) is not embeddable. Corollary 2.13 provides an XS

with XT ⊆ XS ⊆ X such that (XS , S) is blue and not embeddable. Let ξ(S) = (XS , S).
By definition, property (i) holds for XS . We claim that XS also has property (ii). This
is clear if T ′ = S. For any T ′ <O S, we see that T ′ ≤O T , in which case property (ii)
applied to XT implies that XT ′ ⊆ XT ⊆ XS .

By this procedure, we define ξ for every S ∈ O(Y). We shall show that ξ is aY-good
homomorphism with a blue image.

• It follows immediately from (i) that ξ(S) is blue and ξ(S) ∩ Y = S, for every
S ∈ O(Y).

• Let S, T ∈ O(Y) with T ≤O S. We shall verify that ξ(T ) ⊆ ξ(S), so let XS and
XT be subsets of X such that ξ(T ) = (XT , T ) and ξ(S) = (XS , S). Since T is a
prefix of S, we see that T ⊆ S. Moreover, condition (ii) implies that XT ⊆ XS .
Consequently, ξ(T ) ⊆ ξ(S).

Trivially, every Y-shrub is a weak Y-shrub. The converse statement holds for
subposets of a Boolean lattice that do not contain a copy of Λ2.
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Lemma 2.15. Let X and Y be disjoint sets. Let F be a weak Y-shrub in Q(X ∪Y) such that
F contains no copy of Λ2. Then F is a Y-shrub.

Proof. Let ξ : O(Y) → Q(X ∪ Y) be a Y-good homomorphism with image F . For
each S ∈ O(Y), let XS = ξ(S) ∩ X, i.e., ξ(S) = (XS , S). We shall show that ξ is an
embedding, which proves that F is a Y-shrub. Let S1 and S2 be ordered subsets of Y.
We need to verify that,

if ξ(S1) ⊆ ξ(S2), then S1 ≤O S2.

Suppose that ξ(S1) ⊆ ξ(S2), i.e., (XS1 , S1) ⊆ (XS2 , S2). In particular, S1 ⊆ S2 and so
|S1| ≤ |S2|. Let T be the largest common prefix of S1 and S2. Such a prefix exists since
∅o is a prefix of every ordered set.

• If |S1| = |T |, then S1 = T ≤O S2 and the proof is complete, so we can assume that
|T |+ 1 ≤ |S1|.

• If |T |+ 1 = |S1| = |S2|, then the first |T | elements of S1 and S2 are equal, because
they coincide with the respective elements of T . We claim that the final element of
S1 and the final element of S2 are also equal. Using that S1 ⊆ S2 and |S1| = |S2|,
it is clear that S1 = S2, so there is a ground element a with {a} = S1\T = S2\T .
In other words, both S1 and S2 have T as prefix of size |S1| − 1 = |S2| − 1 and a

as final vertex. Therefore, S1 = S2, and the proof is complete as well.

• From now on, assume that |T |+ 1 ≤ |S1| ≤ |S2| and |T |+ 1 < |S2|. We shall find
a contradiction. Consider prefixes S′

1 ≤O S1 and S′
2 ≤O S2 of size |T | + 1. Note

that T is a prefix of both S′
1 and S′

2. Let a1 such that S′
1\T = {a1}, and let a2 with

S′
2\T = {a2}. If a1 = a2, then S′

1 = S′
2, which implies that T is not the largest

common prefix of S1 and S2, a contradiction.

If a1 ̸= a2, the sets S′
1 and S′

2 are incomparable. This implies that the vertices
(XS′

1
, S′

1) and (XS′
2
, S′

2) are incomparable. We shall prove that (XS′
1
, S′

1), (XS′
2
, S′

2)

and (XS2 , S2) form a copy of Λ2. Since S′
1 ≤O S1 and since ξ is a homomorphism,

we know that

(XS′
1
, S′

1) ⊆ (XS1 , S1) = ξ(S1) ⊆ ξ(S2) = (XS2 , S2),

and similarly (XS′
2
, S′

2) ⊆ (XS2 , S2). Moreover, (XS′
1
, S′

1) and (XS′
2
, S′

2) are proper
subsets of (XS2 , S2), because |S′

1| = |S′
2| = |T | + 1 < |S2|. Therefore, the three

vertices (XS′
1
, S′

1), (XS′
2
, S′

2) and (XS2 , S2) form a copy of Λ2, so we reach a con-
tradiction.
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2.4.4 Proof of Theorem 2.4 and Corollary 2.5

Combining the previously presented lemmas, we can now prove Theorem 2.4.

Proof of Theorem 2.4. Let X and Y be disjoint sets. Let Q(X ∪Y) be a blue/red colored
Boolean lattice that contains no blue copy of Λ2.

• First, suppose that there is no red, X-good copy of Q(X). By Proposition 2.11,
(∅,∅) is not embeddable. Lemma 2.14 provides that there exists a blue weak
Y-shrub. According to Lemma 2.15, this subposet is a blue Y-shrub.

• If there is a red, X-good copy of Q(X) and a blue Y-shrub, then this contradicts
Lemma 2.7 (ii).

Proof of Corollary 2.5. If there is a red copy Q of Qn in a blue/red coloring of Q([N ]),
then by the Embedding Lemma, there exist disjoint subsets X and Y partitioning
[N ] = X ∪Y such that |X| = n, |Y| = k, and such that Q is an X-good copy of Q(X).
Thus, by Theorem 2.4 there is no blue Y-shrub.

If there is no red copy ofQn in Q([N ]), fix an arbitrary n-element subset X of [N ]. In
particular, there is no red, X-good copy of Q(X). Let Y = [N ] \X. Theorem 2.4 shows
the existence of a blue Y-shrub. As X was chosen arbitrarily, there is a blue Y-shrub
for any k-element subset Y of [N ].

2.4.5 Alternative proof of Corollary 2.6

We remark that Corollary 2.6 is a weaker version of Corollary 1.4, which has been shown
in Chapter 1. In this subsection, we present an alternative proof of Corollary 2.6.

Proof of Corollary 2.6. For any ε > 0, let

k = (1 + ε)
n

log n
.

We shall show that R(Λ2, Qn) ≤ n + k. Assume that there exists a blue/red coloring
of the Boolean lattice on ground set [n + k] which contains neither a blue copy of Λ2

nor a red copy of Qn. Select an arbitrary k-element subset Y ⊆ [n + k]. Theorem 2.4
guarantees the existence of a blue Y-shrub F , therefore Lemma 2.7 (iii) implies that
n ≥ k(log k − log e− 1).
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We shall find a contradiction by bounding k(log k − log e − 1) from below. Using
that k = (1 + ε) n

logn ,

k(log k − log e− 1) > k(log k − 3)

> (1+ε)n
logn

(
log n− log logn− 3

)
= n

logn log n+ n
logn

(
log n+ ε log n− (1 + ε)(log log n+ 3)

)
≥ n,

where the last inequality holds for sufficiently large n depending on ε. This is a
contradiction, so each blue/red colored Boolean lattice of dimension n + k contains
either a blue copy of Λ2 or a red copy of Qn.

2.5 Concluding remarks

In this chapter, we showed a sharp jump in the asymptotic behavior of the poset
Ramsey number R(P,Qn) for large n. Recall that we characterized trivial posets as
parallel composition of chains, see Proposition 0.7. For trivial posets P , the poset
Ramsey number of P and Qn deviates from the trivial lower bound R(P,Qn) ≥ n by
at most an additive constant. However, we observe a different behavior for non-trivial
posets. In this case, R(P,Qn) is always notably larger than the trivial lower bound n by
at least an additive term Ω

(
n

logn

)
.

At the core of our proof, we analyzed the properties of shrubs. Theorem 2.4 verifies
that in any blue/red coloring with no blue copy of Λ2, shrubs are the crucial structure
to determine the existence of a red copy of Qn. In the next chapter, we discuss how a
similar approach can be applied for other small forbidden blue posets, in particular for
the N-shaped poset ∧∨.

As shown in the proof of Corollary 2.6, Theorem 2.4 can be applied to derive an
upper bound onR(Λ2, Qn). A first proof of that upper bound was given in Theorem 1.3,
using the Chain Lemma. Here, our approach was to bound the dimension of a Boolean
lattice containing a single shrub, and we achieved this bound by considering the maxi-
mal vertices of the shrub. There are several obvious ideas of improving this approach:
The maximal vertices of the shrub actually form an antichain; the shrub contains many
further vertices which are not maximal; and every Y-shrub is Y-good. Each of these
additional conditions only provides an asymptotically insignificant improvement on
the Ramsey bound.
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Another intuitive idea to strengthen the upper bound is to take into account more
than one shrub. We know that any blue/red coloring with neither a blue copy of Λ2

nor a red copy of Qn contains a Y-shrub for every Y. However, Y-shrubs for distinct
Y might intersect heavily, which is hard to control. In summary, additional ideas are
necessary to further improve the bound on R(Λ2, Qn).

As elaborated in Chapter 1, the poset Ramsey number R(Qm, Qn) for fixed m ≥ 3

is only bounded up to a constant linear factor, see Lu and Thompson [52]. Their result
implies that for a fixed poset P and large n,

R(P,Qn) ≤ CP · n,

where CP is a constant close to the 2-dimension of P . However, Axenovich and the
author believe that the true value ofR(P,Qn) is significantly closer to our lower bound,
more precisely, that the difference R(P,Qn)− n is sublinear in terms of n.

Conjecture 2.16. Let n ∈ N and P be a fixed poset independent of n. Then

R(P,Qn) = n+ o(n).

Since any posetP is contained in a Boolean lattice of dimensiondim2(P ), Conjecture 2.16
is equivalent to the following.

Conjecture 2.17. For every fixed m ∈ N, R(Qm, Qn) = n+ o(n).



Chapter 3

N-shaped poset versus large Boolean lattice

3.1 Introduction of Chapter 3

The poset Ramsey number of posets P and Q is

R(P,Q) = min{N ∈ N : every blue/red coloring of QN contains either

a blue copy of P or a red copy of Q}.

In this chapter, we discuss a novel proof method for determining an upper bound on
R(P,Qn), where P is fixed and n is large. It is unknown whether there exists a poset P
such that R(P,Qn) ≥ (1 + c)n for some c > 0. Therefore, it is natural to consider the
value of R(P,Qn)− n and determine its asymptotic behavior. We say that a tight bound
on R(P,Qn) is a function f(n) such that R(P,Qn) = n+Θ(f(n)).

A tight bound onR(P,Qn) is only known for a handful of posets. For trivial posetsP ,
i.e., posets which contain neither a copy of V2 nor a copy of Λ2, Theorem 2.1 gives the
bound R(P,Qn) = n + Θ(1). If P is a complete multipartite poset or a subdivided
diamond, we know that

R(P,Qn) = n+Θ

(
n

log n

)
,

where the upper bound is shown in Theorems 1.1 and 1.5, respectively, and the lower
bound is given by Theorem 2.1, which states that

R(P,Qn) ≥ R(Λ2, Qn) ≥ n+
n

15 log n
,

for any fixed non-trivial P and for sufficiently large n. In particular, if P is a Boolean
lattice, a tight bound is known for Q1 and Q2, but not for Boolean lattices Qm, m ≥ 3.

70
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For non-trivial posets P , we have presented in Chapters 1 and 2 two different
approaches to bound R(P,Qn) from above. The first one is showcased by Grósz,
Methuku, and Tompkins [38] for an upper bound on R(Q2, Qn) and uses the Chain
Lemma, Lemma 0.10: In any blue/red coloring of the host Boolean lattice, there is
either a red copy of Qn or there are many blue chains. In the latter case, we can apply
a counting argument to the chains, and find a blue copy of the poset P . Examples for
this method are the proofs of Theorems 1.3 and 1.5.

An alternative approach is given in Corollary 2.6, proving an upper bound on
R(Λ2, Qn): With a careful analysis of the blue vertices in a blue/red colored host
Boolean lattice with forbidden red Qn, we obtain much more information than the
existence of many blue chains. More specifically, we can show that there is either a blue
Λ2 or many blue shrubs, see Theorem 2.4.

In this chapter, we elaborate on the second approach and formulate the central,
intermediate step as a theorem for general P . This approach involves so-called blockers,
posets that contain a vertex from each copy ofQn in a special, easier-to-analyze subclass.
We show in Theorem 3.4 that the extremal properties of blockers which do not contain
a copy of P immediately give an upper bound on R(P,Qn). In particular, we present
a bound on R(∧∨, Qn), where ∧∨ is the 4-element N-shaped poset, i.e., the poset on
verticesW ,X , Y , and Z such thatW ≤ Y , Y ≥ X ,X ≤ Z,W ≁ X ,W ≁ Z, and Y ≁ Z.

Theorem 3.1. For n ≥ 216,

n+
n

15 log n
≤ R(∧∨, Qn) ≤ n+

(1 + o(1))n

log n
.

Here, the lower bound is a consequence of Theorem 2.1, so our focus is placed on the
upper bound.

This chapter is structured as follows. In Section 3.2, we introduce and recall impor-
tant definitions. Section 3.3 deals with the main tool used in this chapter - blockers. In
Section 3.4, we give a proof of Theorem 3.1. The content of these sections is published in
Order, 2024 [5], in joint work with Maria Axenovich, although the proof of Theorem 3.5
has been completely rewritten. In Section 3.5, we study the relation between the poset
Ramsey number R(P,Qn) and an extremal function for P -free blockers. The material
of this section has not been published before.
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3.2 Preliminaries

Let P1 and P2 be two disjoint posets. Recall that the parallel composition P1 ⃝|| P2 is the
poset on vertices P1 ∪ P2 such that pairs of vertices in P1 as well as pairs of vertices in
P2 are comparable if and only if they are likewise comparable in P1 or P2, respectively,
and any two Z1 ∈ P1 and Z2 ∈ P2 are incomparable. If for a poset P there exists no
partition P = P1 ∪ P2 into non-empty subposets P1 and P2 such that P is the parallel
composition of P1 and P2, we say that P is connected. Note that a poset is connected if
its Hasse diagram, considered as a graph, is connected.

Moreover, recall the following definitions introduced in Chapter 0: The series com-
position P1 ⃝< P2 of a poset P1 below a poset P2 is the poset on vertices P1 ∪ P2, where
pairs of vertices in P1 as well as pairs of vertices in P2 are comparable if and only if
they are likewise comparable in P1 or P2, respectively, and Z1 < Z2 for any Z1 ∈ P1

and Z2 ∈ P2. A poset is series-parallel if it is either a 1-element poset, or obtained by
series composition or parallel composition of two series-parallel posets. Given a fixed
poset P , a poset Q is P -free if it contains no copy of P . Valdes [72] showed that a
non-empty poset is ∧∨-free if and only if it is series-parallel, see Theorem 0.6.

Recall that a homomorphism of a poset P to another poset Q is a function ψ : P → Q

such that for any twoX,Y ∈ P withX ≤P Y , ψ(X) ≤Q ψ(Y ). An embedding ϕ : P → Q

is a function such that for any X,Y ∈ P , X ≤P Y if and only if ϕ(X) ≤Q ϕ(Y ). The
image of ϕ is referred to as a copy of P in Q.

Throughout this chapter, we consider a set Z as the ground set of our host Boolean
lattice Q(Z), where |Z| = N for some integer N . We then partition Z into two disjoint
sets X and Y, |Y| ≠ ∅, such that |X| = n and |Y| = k for some integers n and k, i.e.,
N = n+ k.

Recall that a function ϕ : Q(X) → Q(Z) is X-good if ϕ(X) ∩ X = X for every
X ∈ Q(X). A copy of Qn in Q(Z) is X-good if it is the image of an X-good embedding
of Q(X). The Embedding Lemma, Lemma 0.9, states that any copy of Qn in Q(Z) is
X-good for some n-element subset X ⊆ Z.
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3.3 Y-blockers

3.3.1 Definition and examples of Y-blockers

Outline of the proof idea for Theorem 3.1: The definition of R(P,Qn) implies that for
every set Z with |Z| ≤ R(P,Qn) − 1, there is a coloring of Q(Z) in blue and red such
that the subposet of blue vertices is P -free and “covers” all copies of Qn, i.e., there is a
blue vertex in each copy of Qn. We shall classify all copies of Qn according to the set X
for which they are X-good, and consider the set of only those blue vertices that “cover”
copies of Qn with a specific X. We refer to the poset induced by those blue vertices as
a Y-blocker, where Y = Z \X. We shall derive several properties of general blockers
and those that are ∧∨-free. Afterwards, we bound R(∧∨, Qn) in terms of blockers.

Let Y and Z be two non-empty sets such that Y ⊆ Z. A Y-blocker in Q(Z) is a
subposet F in Q(Z) which contains a vertex from every X-good copy of Q(X), where
X = Z \Y. We say that a Y-blocker F in Q(Z) is critical if for any vertex F ∈ F , the
subposet F \ {F} is not a Y-blocker in Q(Z). Note that for any Y ⊆ Z, a Y-blocker in
Q(Z) exists, take for example F = Q(Z). Later on, we consider “thinner” Y-blockers
satisfying special properties, in particularP -free blockers. We remark that theY-shrubs
considered in Chapter 2 are Y-blockers. This observation follows immediately from
Lemma 2.7 (ii).

Example 3.2. Let Z = {1, 2, x1, x2}, Y = {1, 2}, and X = {x1, x2}. Let

F =
{
{x1} ∪ Y : Y ∈ Q(Y)

}
,

see Figure 3.1 (a). To show that F is a Y-blocker, consider an arbitrary X-good copy
of Q(X) with a corresponding X-good embedding ϕ : Q(X) → Q(Z). Then ϕ({x1}) =
{x1} ∪ Y for some Y ⊆ Y, and hence ϕ({x1}) ∈ F . Thus, F is a Y-blocker in Q(Z).
Figure 3.1 (b) also depicts a Y-blocker, which we shall verify by Theorem 3.5.

{x1}

{1, x1} {2, x1}

{1, 2, x1}

∅

{1, x1} {2, x2}

{1, 2, x1} {1, 2, x2}(a) (b)

Figure 3.1: Two {1, 2}-blockers in Q({1, 2, x1, x2}).
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3.3.2 General properties of Y-blockers

Lemma 3.3.

(i) Let Z be a set with |Z| > n. A blue/red colored Boolean lattice Q(Z) contains no red copy
of Qn if and only if for every X ⊆ Z of size |X| = n, there is a blue (Z \X)-blocker.

(ii) Let Y be a non-empty subset of a set Z. Let F be a Y-blocker and let Y ⊆ Y. Then there
is a vertex Z ∈ F with Z ∩Y = Y . In particular, if F has a unique minimal vertex Z,
then Z ∩Y = ∅; and if F has a unique maximal vertex Z, then Z ∩Y = Y.

(iii) If F is a Y-blocker, then |F| ≥ 2|Y|.

Proof. Part (i) follows immediately from the Embedding Lemma and the definition of
a Y-blocker. For (ii), let F be a Y-blocker in Q(Z) and let X = Z \Y. Observe that F
contains a vertex U with U ∩Y = Y for every Y ⊆ Y, because otherwise the subposet
{X ∪ Y : X ∈ Q(X)} is an X-good copy of Q(X) that does not contain a vertex from
F . Considering Y = ∅, we see that there is a vertex U ∈ F such that U ∩Y = ∅. If Z
is the unique minimal vertex of F , then it has Y-part Z ∩Y ⊆ U ∩Y = ∅. Similarly, if
there is a unique maximal vertex Z of F , it has Y-part Z ∩Y = Y. For (iii), since there
are 2|Y| subsets of Y, part (ii) immediately implies that |F| ≥ 2|Y|.

Theorem 3.4. Let P be a poset and let n ∈ N be an integer. Then

R(P,Qn) ≤ min{N : there is no P -free Y-blocker in Q([N ]) for some Y⊆ [N ], |Y|=N −n}.

Proof. Let N0 be the smallest integer such that for some subset Y ⊆ [N0] of size
|Y| = N0−n, there is no P -free Y-blocker in Q([N0]). Consider an arbitrarily blue/red
colored Boolean lattice Q([N0]), and let F be the subposet of Q([N0]) induced by all
blue vertices. We shall show that there is either a blue copy of P or a red copy of Qn.
Let X = [N0]\Y. If there is a red, X-good copy ofQn in Q([N0]), the proof is complete.
Otherwise, each X-good copy ofQn contains a blue vertex, i.e., the blue subposet F is a
Y-blocker. By definition ofN0, F is not P -free, thus there is a blue copy of P in Q([N0]).

It remains to show that this minimum is well-defined, i.e., we shall find an integer
N such that there is no P -free Y-blocker in Q([N ]), where Y ⊆ [N ] with |Y| = N − n.
For this, we bound the size |F| of a P -free Y-blocker F in Q([N ]) from above and from
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below. On the one hand, by a result of Methuku and Pálvölgyi [54] and by Stirling’s
formula, see (0.1), the size of the P -free subposet F ⊆ Q([N ]) is bounded by

|F| ≤ c(P )

(
N

N/2

)
≤ c′(P ) · 2N√

N
,

where c and c′ are constants depending only on P . On the other hand, Lemma 3.3
provides that

|F| ≥ 2|Y| = 2N−n.

For sufficiently large N , we have that
√
N

c′(P ) > 2n, which implies that there is no P -free
Y-blocker |F| in Q([N ]).

3.3.3 Y-hitting and Y-avoiding homomorphisms

For a subposet F of Q(Z) and Y ⊆ Z, we say that a homomorphism ψ : F → Q(Y) is
Y-hitting if there exists some F ∈ F with ψ(F ) = F ∩Y. Conversely, ψ is Y-avoiding if
ψ(F ) ̸= F ∩Y for every F ∈ F . Note that each ψ is either Y-hitting or Y-avoiding.

We prove that the existence of a Y-blocker is equivalent to the non-existence of a
Y-avoiding homomorphism, by showing an interconnection of (Z \Y)-good copies of
Qn with homomorphisms ψ : F → Q(Y).

Theorem 3.5. Let Y be a non-empty subset of a set Z. A subposet F of a Boolean lattice Q(Z)

is a Y-blocker if and only if every homomorphism ψ : F → Q(Y) is Y-hitting.

Example 3.6. Let Z = {1, 2, x1, x2} and Y = {1, 2}. In the Boolean lattice Q(Z),
consider the subposet F on vertices ∅, {1, x1}, {1, 2, x1}, {2, x2}, and {1, 2, x2}, see
Figure 3.1 (b). We claim that F is a {1, 2}-blocker. To show this, we apply Theorem 3.5.
Let ψ : F → Q(Y) be an arbitrary homomorphism. We shall show that ψ is Y-hitting,
so assume that ψ is Y-avoiding, i.e., for every F ∈ F , ψ(F ) ̸= F ∩ Y. Thus in
particular, ψ(∅) ∩ Y ̸= ∅. Say without loss of generality, 1 ∈ ψ(∅) ∩ Y. Since ψ is a
homomorphism, we see that ψ(∅) ⊆ ψ({1, x1}), so 1 ∈ ψ({1, x1}) ∩ Y. Recall that ψ
is Y-avoiding, so ψ({1, x1}) ∩Y ̸= {1}, and thus ψ({1, x1}) ∩Y = {1, 2}. Using that
ψ({1, x1}) ⊆ ψ({1, 2, x1}), this implies that ψ({1, 2, x1}) ∩Y = {1, 2}, a contradiction.

Proof of Theorem 3.5. Let Y be a non-empty subset of a set Z and let X = Z \ Y. For
the first part of the proof, let F be a subposet in Q(Z) such that every homomorphism
ψ : F → Q(Y) is Y-hitting. We shall show that F is a Y-blocker. Let Q be an
arbitrary X-good copy of Q(X) in Q(Z) with a corresponding X-good embedding
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ϕ : Q(X) → Q(Z). Consider the function ψ : F → Q(Y) given by

ψ(F ) = ϕ(F ∩X) ∩Y, for each F ∈ F .

Let F, F ′ ∈ F such that F ⊆ F ′, so in particular, F ∩ X ⊆ F ′ ∩ X. Since ϕ is an
embedding, ψ(F ) = ϕ(F ∩X)∩Y ⊆ ϕ(F ′ ∩X)∩Y = ψ(F ′), so ψ is a homomorphism.
By our assumption, ψ is Y-hitting, thus we find some Z ∈ F with ψ(Z) = Z ∩Y. The
Y-part of ϕ(Z ∩X) is

ϕ(Z ∩X) ∩Y = ψ(Z) = Z ∩Y.

The fact that ϕ is X-good implies that ϕ(Z ∩X)∩X = Z ∩X. Therefore, ϕ(Z ∩X) = Z.
Recall that the image of ϕ is Q, which implies that Z = ϕ(Z ∩ X) ∈ Q. In particular,
F and Q have the vertex Z in common. Since Q was chosen arbitrarily, F contains a
vertex from every X-good copy of Q(X), so F is a Y-blocker.

From now on, let F be a subposet in Q(Z) for which there exists a Y-avoiding
homomorphism ψ : F → Q(Y). We shall show that F is not a Y-blocker. For that, we
shall construct an X-good embedding ϕ : Q(X) → Q(Z) such that the image of ϕ does
not contain a vertex from F . We obtain this embedding iteratively from a family of
X-good embeddings ϕi : Q(X) → Q(Z), i ≥ 0, constructed as follows.

Let ϕ0 : Q(X) → Q(Z) be the identity function, i.e., ϕ0(X) = X for everyX ∈ Q(X).
Note that ϕ0 is an X-good embedding. Assume that we already defined an X-good
embedding ϕi for some non-negative integer i. If the image of ϕi does not contain a
vertex from F , we are done. So, suppose that there is a vertex Xi ∈ Q(X) which is
minimal with the property that ϕi(Xi) ∈ F . Let ϕi+1 : Q(X) → Q(Z) be defined as

ϕi+1(U) =

ϕi(U) ∪ ψ
(
ϕi(Xi)

)
, if Xi ⊆ U

ϕi(U), otherwise.

It is easy to see that ϕi+1 is an embedding, because ϕi is an embedding. Since ϕi is
X-good and ψ

(
ϕi(Xi)

)
∩X = ∅, the function ϕi+1 is X-good as well.

It remains to verify that this process stops after finitely many steps. Note that
ϕi(U) ⊆ ϕi+1(U) for every U ∈ Q(X). We shall show that ϕi(Xi) is a proper subset of
ϕi+1(Xi). SinceQ(X) andZ are finite, this implies that there are only finitely many steps.
Assume towards a contradiction that ϕi(Xi) = ϕi+1(Xi), thus ψ

(
ϕi(Xi)

)
⊆ ϕi(Xi).

Recall that ψ maps to Y, so in particular,

ψ
(
ϕi(Xi)

)
⊆ ϕi(Xi) ∩Y.
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Since ψ is Y-avoiding, ψ
(
ϕi(Xi)

)
̸= ϕi(Xi) ∩ Y, thus ψ

(
ϕi(Xi)

)
is a proper subset

of ϕi(Xi) ∩ Y. Therefore, there exists a ground element a ∈ ϕi(Xi) ∩ Y such that
a /∈ ψ

(
ϕi(Xi)

)
.

A simple inductive argument shows that for any X ∈ Q(X) and any non-negative
integer i′,

ϕi′(X) = X ∪
⋃

0≤j<i′ with Xj⊆X

ψ
(
ϕj(Xj)

)
. (3.1)

In particular, since a ∈ ϕi(Xi) \Xi, there exists an index j < i such that Xj ⊆ Xi and
a ∈ ψ

(
ϕj(Xj)

)
. Using (3.1) and Xj ⊆ Xi, we find that

ϕj(Xj) = Xj ∪
⋃

0≤ℓ<j with Xℓ⊆Xj

ψ
(
ϕℓ(Xℓ)

)
⊆ Xi ∪

⋃
0≤ℓ<i with Xℓ⊆Xi

ψ
(
ϕℓ(Xℓ)

)
= ϕi(Xi).

Since ψ is a homomorphism, ψ
(
ϕj(Xj)

)
⊆ ψ

(
ϕi(Xi)

)
, so a ∈ ψ

(
ϕi(Xi)

)
. This contra-

dicts the choice of a.

Remark. In this proof, we showed that there is a Y-hitting homomorphism ψ : F →
Q(Y) if and only if there is an X-good embedding ϕ of Qn which has no vertex in
common withF . However, there is no 1-to-1 correspondence between homomorphisms
and X-good embeddings of Qn, and our constructions building ϕ from ψ as well as ψ
from ϕ are not inverse of each other.

3.3.4 Properties of critical blockers

In the following, we use the characterization from Theorem 3.5 to analyze properties
of critical blockers. Recall that for Y ⊆ Z, a Y-blocker F in Q(Z) is critical if for any
vertex F ∈ F the subposet F \ {F} is not a Y-blocker in Q(Z).

Lemma 3.7. Let F be a critical Y-blocker for a non-empty set Y. Then F is a connected poset,
i.e., it can not be decomposed into two non-empty parallel posets.

Proof. Assume that F is the parallel composition of two non-empty posets F1 and F2,
i.e., F1 and F2 are element-wise incomparable in F . Each of F1 and F2 is not a Y-
blocker, because F is critical. By Theorem 3.5, there are Y-avoiding homomorphisms
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ψ1 : F1 → Q(Y) and ψ2 : F2 → Q(Y). This implies that the function ψ̂ : F → Q(Y),

ψ̂(F ) =

ψ1(F ), if F ∈ F1

ψ2(F ), if F ∈ F2

is a Y-avoiding homomorphism of F . Recall that F is a Y-blocker, so this is a contra-
diction to Theorem 3.5.

Lemma 3.8. Let F be a critical Y-blocker for a non-empty set Y. Let U1, U2 ∈ F with
U1 ̸= U2. If either U1 ∩Y = ∅ = U2 ∩Y or U1 ∩Y = Y = U2 ∩Y, then U1 and U2 are not
comparable.

Proof. Assume that U1 ∩Y = ∅ = U2 ∩Y and U1 ⊂ U2. As F is a critical Y-blocker,
the subposet F \ {U2} is not a Y-blocker, so by Theorem 3.5, we find a Y-avoiding
homomorphism ψ : F \ {U2} → Q(Y). Let U = {U ∈ F \ {U2} : U ⊂ U2}, note that
U ̸= ∅, see Figure 3.2 (a). We extend ψ to a function ψ̂ : F → Q(Y) by defining

ψ̂(F ) =

ψ(F ), if F ̸= U2⋃
U∈U ψ(U), if F = U2.

To reach a contradiction, we need to show that ψ̂ is a Y-avoiding homomorphism. We
shall prove that ψ̂ is a homomorphism by considering any two F1, F2 ∈ F such that
F1 ⊆ F2 and verifying that ψ̂(F1) ⊆ ψ̂(F2). We distinguish three cases, depending
on whether either of F1 or F2 is equal to U2. We repeatedly use the fact that ψ is a
homomorphism.

• If F1 ̸= U2 and F2 ̸= U2, then ψ̂(F1) = ψ(F1) ⊆ ψ(F2) = ψ̂(F2).

• If F1 = U2, then ψ̂(F1) = ψ̂(U2) =
⋃

U∈U ψ(U) ⊆
⋃

U∈U ψ(F2) ⊆ ψ(F2) = ψ̂(F2).
Here, we used the property that for any U ∈ U , U ⊆ U2 ⊆ F2.

• If F2 = U2, then ψ̂(F1) = ψ(F1) ⊆
⋃

U∈U ψ(U) = ψ̂(U2) = ψ̂(F2). Here, we used
that F1 is an element of U , and thus ψ(F1) ⊆

⋃
U∈U ψ(U).

Therefore, ψ̂ is a homomorphism. To show that ψ̂ is Y-avoiding, we shall verify for any
F ∈ F that ψ̂(F ) ̸= F ∩Y.

• Consider an arbitrary vertex F ∈ F with F ̸= U2. Recalling that ψ is Y-avoiding,
ψ̂(F ) = ψ(F ) ̸= F ∩Y.

• ForF = U2, sinceψ isY-avoiding,ψ(U1) ̸= U1∩Y = ∅. Note thatψ(U1) ⊆ ψ̂(U2),
so ψ̂(U2) ̸= ∅ = U2 ∩Y.
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We conclude that ψ̂ is Y-avoiding. This contradicts Theorem 3.5 and the fact that F is
a Y-blocker.

Under the assumption U1∩Y = Y = U2∩Y and U1 ⊂ U2, a symmetric proof holds
for the subposet F \ {U1}, U = {U ∈ F \ {U1} : U ⊃ U1}, and ψ̂ : F → Q(Y) with

ψ̂(F ) =

ψ(F ), if F ̸= U1⋂
U∈U ψ(U), if F = U1.

F
(a) (b)

U1 U2
F1

F \ F1

U2

U1

U

Figure 3.2: (a) Setting in Lemma 3.8. (b) Setting in Lemma 3.9.

Lemma 3.9. Let F be a critical Y-blocker, where Y ̸= ∅.

(i) Let F1 ⊆ {U ∈ F : U ∩ Y = ∅} such that F = F1 ⃝< (F \ F1), i.e., F is a series
composition of F1 below F \ F1, then |F1| ≤ 1.

(ii) Let F2 ⊆ {U ∈ F : U ∩ Y = Y} such that F = (F \ F2) ⃝< F2, i.e., F is a series
composition of F \ F2 below F2, then |F2| ≤ 1.

Proof. For the first part, assume towards a contradiction that there are two distinct ver-
tices U1, U2 ∈ F1. Since F is a critical Y-blocker, there is a Y-avoiding homomorphism
ψ : F \ {U2} → Q(Y). Let ψ̂ : F → Q(Y) such that

ψ̂(F ) =

ψ(F ), if F ̸= U2

ψ(U1), if F = U2.

We shall prove that ψ̂ is a Y-avoiding homomorphism of F . By Lemma 3.8, F1 is an
antichain. In order to show that ψ̂ is a homomorphism, we consider two arbitrary
F1, F2 ∈ F with F1 ⊆ F2 and verify that ψ̂(F1) is a subset of ψ̂(F2).
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• If F2 = U2, then in particular F2 ∈ F1. This implies that F1 ∈ F1, because F1 ⊆ F2

and F is a series composition of F1 below F \ F1. Since F1 is an antichain, we
have that F1 = U2 = F2, thus trivially ψ̂(F1) = ψ̂(U2) = ψ̂(F2).

• If F1 = U2 and F2 ̸= U2, we know that F2 is in F \ F1, because F1 is an antichain.
Thus, U1 ⊆ F2. Because ψ is a homomorphism and by definition of ψ̂, we see that
ψ̂(F1) = ψ̂(U2) = ψ(U1) ⊆ ψ(F2) = ψ̂(F2).

• If F1 ̸= U2 and F2 ̸= U2, then ψ̂(F1) = ψ(F1) ⊆ ψ(F2) = ψ̂(F2).

Therefore, ψ̂ is a homomorphism of F . For every F ∈ F \{U2}, ψ̂(F ) = ψ(F ) ̸= F ∩Y.
Furthermore, ψ̂(U2) = ψ(U1) ̸= U1 ∩ Y = ∅ = U2 ∩ Y, thus ψ̂ is Y-avoiding, a
contradiction.

For part (ii), if we assume that there are distinct U1, U2 ∈ F2, then a symmetric
argument, considering the same function ψ̂ : F → Q(Y),

ψ̂(F ) =

ψ(F ), if F ̸= U2

ψ(U1), if F = U2,

yields a contradiction.

Lemma 3.10. Let X and Y be two disjoint sets with |Y| = 1. Let F be a critical Y-blocker in
Q(X∪Y). Then F is a chain consisting of two verticesX1 andX2∪Y, whereX1 ⊆ X2 ⊆ X.

Proof. Since |Y| = 1, every Z ∈ F has as its Y-part either Z ∩Y = ∅ or Z ∩Y = Y.
Consider subposets F1 = {Z ∈ F : Z ∩ Y = ∅} and F2 = {Z ∈ F : Z ∩ Y = Y}
partitioning F . Lemma 3.3 provides that neither F1 nor F2 are empty. By Lemma 3.7,
F is connected. In particular, there are two vertices from F1 and from F2 which are
comparable. Let these vertices be X1 ∈ F1 and X2 ∪Y ∈ F2, where X1, X2 ⊆ X, and
note that X1 ⊆ X2 ∪Y.

To show that F = {X1, X2 ∪Y}, consider the subposet

F ′ = {X1, X2 ∪Y} ⊆ F .

We shall verify that F ′ is a Y-blocker in Q(X ∪Y). By Theorem 3.5, it suffices to show
that there exists no Y-avoiding homomorphism from F ′ to Q(Y). Let ψ : F ′ → Q(Y)

be a homomorphism, so in particular, ψ(X1) ⊆ ψ(X2 ∪ Y). If ψ is Y-avoiding, then
ψ(X1) = Y and ψ(X2 ∪ Y) = ∅, contradicting ψ(X1) ⊆ ψ(X2 ∪ Y). This implies
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that there is no Y-avoiding homomorphism, so F ′ is a Y-blocker. The Y-blocker F is
critical, thus F = F ′ = {X1, X2 ∪Y}.

Lemma 3.11. Let Y be a set of size at least 2, and let a ∈ Y. Let F be a Y-blocker. Then the
subposets {F ∈ F : a ∈ F} and {F ∈ F : a /∈ F} are (Y \ {a})-blockers.

Proof. Let F ′ = {F ∈ F : a ∈ F}. Assume that F ′ is not a (Y \ {a})-blocker, i.e., by
Theorem 3.5, there is a (Y \ {a})-avoiding homomorphism ψ : F ′ → Q(Y \ {a}). We
shall find aY-avoiding homomorphism ofF to reach a contradiction. Let ψ̂ : F → Q(Y)

such that

ψ̂(F ) =

{a}, if F ∈ F \ F ′, i.e., a /∈ F

ψ(F ) ∪ {a}, if F ∈ F ′, i.e., a ∈ F.

Observe that ψ̂ is a homomorphism, because {a} ⊆ ψ(F ) ∪ {a} for all F ∈ F ′ and ψ is
a homomorphism. We claim that ψ̂ is Y-avoiding.

• For every F ∈ F \ F ′, note that a ∈ ψ̂(F ) but a /∈ F ∩Y, thus ψ̂(F ) ̸= F ∩Y.

• Recall that ψ is (Y \ {a})-avoiding, thus for every F ∈ F ′, ψ(F ) ̸= F ∩ (Y \ {a}).
Note that a /∈ ψ(F ) and a /∈ F ∩ (Y \ {a}), so

ψ̂(F ) = ψ(F ) ∪ {a} ≠
(
F ∩ (Y \ {a})

)
∪ {a} = F ∩Y.

Therefore, ψ̂ is a Y-avoiding homomorphism of F , which is a contradiction.

The second part of the lemma follows from a symmetric argument for the subposet
F ′′ = {F ∈ F : a /∈ F}, using the function ψ̂ : F → Q(Y),

ψ̂(F ) =

Y \ {a}, if F ∈ F \ F ′′

ψ(F ), if F ∈ F ′′.

3.3.5 Properties of ∧∨-free Y-blockers

Theorem 3.12. Let X and Y be disjoint sets with Y ̸= ∅. Let F be an ∧∨-free, critical
Y-blocker in Q(X ∪ Y). Then F has at least one of a unique minimal vertex or a unique
maximal vertex.
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Proof. Since Y ̸= ∅, Lemma 3.3 implies that |F| ≥ 21. By Theorem 0.6, F is series-
parallel, so it can be partitioned into two disjoint, non-empty posets F1 and F2 such
that F is either the parallel composition of F1 and F2 or the series composition of F1

below F2. The former could not happen, as shown in Lemma 3.7. Therefore, F can be
partitioned into two disjoint, non-empty posets F1 and F2 such that for every F1 ∈ F1

and F2 ∈ F2, F1 ⊆ F2.

Let Y1 = (
⋃

F∈F1
F ) ∩ Y be the Y-part of the union of all vertices in F1, and let

Y2 = (
⋂

F∈F2
F ) ∩ Y be the Y-part of the intersection of all vertices in F2. Clearly,

∅ ⊆ Y1 ⊆ Y2 ⊆ Y.

First, assume that Y1 is neither ∅ nor Y, thus there are a ∈ Y1 and b ∈ Y \ Y1.
Lemma 3.3 provides that the Y-blocker F contains a vertex U with U ∩ Y = {b}.
Note that U /∈ F1, since b ∈ U while b /∈ Y1. Similarly, U /∈ F2, because a /∈ U while
a ∈ Y1 ⊆ Y2. This is a contradiction, hence Y1 ∈ {∅,Y}. Symmetrically, Y2 ∈ {∅,Y}.

Take an arbitrary subset Y ⊆ Y such that Y /∈ {∅,Y}. By Lemma 3.3, there is a
vertex Z ∈ F with Z ∩ Y = Y . For this vertex, either Z ∈ F1 or Z ∈ F2. If Z ∈ F1,
then Y1 ̸= ∅, thus Y1 = Y. Recalling that Y1 ⊆ Y2 ⊆ Y, we obtain that Y1 = Y2 = Y. If
Z ∈ F2, then Y2 ̸= Y, so Y1 = Y2 = ∅. Therefore, either Y1 = Y2 = ∅ or Y1 = Y2 = Y.

• First, suppose that Y1 = Y2 = ∅. Because Y1 = (
⋃

F∈F1
F ) ∩Y = ∅, we see that

F ∩ Y = ∅ for every F ∈ F1. By Lemma 3.9, there is at most one vertex in F1.
Recall that F1 is non-empty, so we find a unique vertex Z ∈ F1. In particular, Z
is the unique minimal vertex of F .

• If Y1 = Y2 = Y, we can argue symmetrically and obtain a unique maximal vertex
of F .

3.3.6 Construction of the family {(FS, ZS, AS, BS) : S ∈ S}

In this subsection, we define posets and vertices indexed by ordered sets. For this, we
reiterate definitions on ordered sets and prefixes, which were used in Chapter 2 in
the context of factorial trees: An ordered set S is a sequence S = (y1, . . . , ym) of distinct
elements yi, i ∈ [m]. Given a set Y, we say that S is an ordered subset of Y if yi ∈ Y for
all i ∈ [m]. We denote the empty ordered set by ∅o = (). The underlying unordered set of
S is denoted by S, and |S| = |S| is the size of S. Recall that an ordered set S′ is a prefix
of S if |S′| ≤ |S| and each of the first |S′| members of S coincides with the respective
member of S′. Note that ∅o is a prefix of every ordered set. A prefix S′ of S is strict if
S′ ̸= S.
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For a set Y and an ordered subset S of Y, we denote the set of all elements of Y
that are not in S by Y−S = Y \S. For an ordered set S = (y1, . . . , ym) and an element
ym+1 /∈ S, we write (S, ym+1) for the ordered set (y1, . . . , ym, ym+1).

In the following, we analyze the structure of an∧∨-free criticalY-blocker by selecting
smaller and smaller subposets which are critical Y′-blockers for some Y′ ⊆ Y. Recall
that by Theorem 3.12, any critical Y′-blocker has either a unique minimal vertex or a
unique maximal vertex. We call such a vertex a root of the blocker. Note that the blocker
could have both a unique minimal vertex and a unique maximal vertex. In this case,
we select one of them to be the assigned root of the blocker and ignore the second root.

Construction 3.13. Let Y be a k-element subset of Z. Let F be an ∧∨-free, critical
Y-blocker in Q(Z). Let S be the set of all ordered subsets of Y of size at most k − 1. In
the following, we recursively construct a family {(FS , ZS , AS , BS) : S ∈ S}, where FS

is a critical (Y−S)-blocker, FS ⊆ F , andZS is the root of FS . In addition,AS∪BS = S,
where each element of AS is included in each vertex of FS and each element of BS is
excluded from each vertex of FS . The setsAS andBS are used as tools to encode crucial
information on the blocker FS and its root ZS , as well as FS′ and ZS′ for prefixes S′ of
S.

If the rootZS is the unique minimal vertex inFS , we say thatS is min-type, otherwise
we say that S is max-type.

Initial step: Let S = ∅o. In this case, let FS = F . Let ZS be an arbitrarily chosen
root of F , i.e., a unique minimal or unique maximal vertex of F , which exists due to
Theorem 3.12. Let AS = BS = ∅.

General iterative step: Consider an arbitrary non-empty ordered subset S of Y with
|S| ≤ k − 1. Let S′ be the prefix of S such that (S′, a) = S for some a ∈ Y, i.e.,
|S′| = |S| − 1. Given (FS′ , ZS′ , AS′ , BS′) such that FS′ is a critical (Y − S′)-blocker,
ZS′ is a root of FS′ , and AS′ , BS′ are disjoint sets partitioning AS′ ∪ BS′ = S′, we shall
construct FS , ZS , AS , and BS . By Lemma 3.11 and since (Y − S′) \ {a} = Y − S, the
subposets {F ∈ FS′ : a ∈ F} and {F ∈ FS′ : a /∈ F} are (Y − S)-blockers.

• If S′ is min-type, we define FS to be an arbitrary critical (Y − S)-blocker that
is a subposet of {F ∈ FS′ : a ∈ F}. Note that a ∈ F for every F ∈ FS . Let
AS = AS′ ∪ {a} and BS = BS′ .

• If S′ is max-type, we define FS to be an arbitrary critical (Y − S)-blocker that is
a subposet of {F ∈ FS′ : a /∈ F}. In this case, note that a /∈ F for every F ∈ FS .
Let AS = AS′ and BS = BS′ ∪ {a}.
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It remains to select ZS . Theorem 3.12 guarantees the existence of a root in FS . If
|S| ≤ k− 2, let ZS be an arbitrary root of FS . If |S| = k− 1, we need to be more careful
in choosing ZS . We selected FS as a critical (Y − S)-blocker, for |Y − S| = 1. By
Lemma 3.10, FS has exactly two vertices, one of which is the unique minimal and one
is the unique maximal vertex. If the prefix S′ is min-type, let ZS be the unique minimal
vertex of FS , i.e., S is min-type. If S′ is max-type, let ZS be the unique maximal vertex
of FS , here S is max-type.

F = F∅o

Z∅o

Z(3)

F(2)

F(3)

F(1) ⊆ {Z ∈ F∅o : 1 ∈ Z}

Z(1)

Z(1,2)
Z(1,3)

F(1,3)

⊆ {Z ∈ F(1) : 3 /∈ Z}
F(1,2)

⊆ {Z ∈ F(1) : 2 /∈ Z}

Z(2)

Figure 3.3: An example of the construction of F(1,3) and F(1,2) for Y = {1, 2, 3}.

The construction terminates after all ordered subsets of Y of size at most k− 1 have
been considered. The family {(FS , ZS , AS , BS) : S ∈ S} gives a recursive structural
decomposition of F into “up” and “down” components, i.e., max-type and min-type
blockers, as illustrated in Figure 3.3. Note that blockers FS may heavily overlap.

Remark. An example for an ∧∨-free critical Y-blocker is the Y-shrub introduced in
Chapter 2. Indeed, it follows from Lemma 2.7 that a Y-shrub is an ∧∨-free Y-blocker.
Theorem 2.4 implies that F is critical. Applying the above structural decomposition
to F , we see that every FS is min-type, and that for same-sized ordered subsets S1
and S2 of Y, the blockers FS1 and FS2 does not overlap. Moreover, it can be seen
that every Λ2-free critical blocker is a Y-shrub, which gives rise to an alternative proof
of Theorem 2.4. A direct generalization of Theorem 2.4 to ∧∨-free subposets is not
possible: By allowing min-type and max-type blockers FS , we obtain non-isomorphic
∧∨-free critical Y-blockers.
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Several properties follow immediately from the construction.

Lemma 3.14. Let S be an ordered subset of Y of size at most k − 1, and let S′ be a prefix of S.
Then:

(i) FS ⊆ FS′ , AS′ = AS ∩ S′, and BS′ = BS ∩ S′.

(ii) The size of the set AS is equal to the number of min-type strict prefixes S′ of S. The size
of BS is equal to the number of max-type strict prefixes S′ of S.

(iii) If S is min-type, then Y ∩ ZS = AS . If S is max-type, then Y \ ZS = BS .

Proof. Statements (i) and (ii) are easy to see. For statement (iii), recall that FS is a
(Y − S)-blocker. If S is min-type, then ZS is the unique minimal vertex of FS , so
Lemma 3.3 implies that ZS ∩ (Y − S) = ∅. Therefore,

ZS ∩Y = ZS ∩ S = AS .

Similarly, if FS is max-type, then Lemma 3.3 provides that ZS ∩ (Y − S) = (Y − S),
thus

ZS ∩Y =
(
ZS ∩ S

)
∪ (Y − S) = AS ∪ (Y − S) = Y \BS ,

or equivalently Y \ ZS = BS .

Let S′ be a strict prefix of an ordered set S. In Construction 3.13, we defined FS as
a subposet of FS′ , so in particular, ZS ∈ FS′ . If FS′ has both a unique minimal and a
unique maximal vertex, then one of these two vertices is ZS′ , while the other might be
equal to ZS . However, it is crucial for the upper bound on R(∧∨, Qn) that this does not
happen if S has size k − 1, i.e., for the “innermost” root ZS . We ensure this property
by the following lemma.

Recall that for an ordered set S = (y1, . . . , ym), we denote by (S, ym+1) the ordered
set (y1, . . . , ym, ym+1).

Lemma 3.15. Let S be an ordered subset of Y of size k − 1, and let S′ be a strict prefix of S.
Then ZS ∩ (Y − S′) /∈ {∅,Y − S′}.

Proof. Note that |Y−S| = 1, so let Y−S = {b}. First, we consider the case |S′| = k−2,
i.e., S = (S′, a) for some a ∈ Y. Note that Y − S′ = {a, b}, so we shall show that
|ZS ∩{a, b}| = 1, i.e., one of the two elements a and b is in ZS while the other is not. We
repeatedly use that a and b are elements of Y.
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• If S is min-type, then our construction implies that a ∈ AS . By Lemma 3.14 (iii),
AS = ZS ∩ Y, so in particular, a ∈ ZS . Moreover, since b /∈ S and AS ⊆ S, we
know that b /∈ AS = ZS ∩Y, thus b /∈ ZS .

• If S is max-type, then we can argue similarly. Note that a ∈ BS ∩ Y . By
Lemma 3.14 (iii), BS = Y \ ZS , thus a /∈ ZS . Using that b /∈ S and BS ⊆ S, we
obtain that b /∈ BS = Y \ ZS , so b ∈ ZS .

It remains to consider the case |S′| < k − 2. Let S′′ be the prefix of S of size k − 2,
so S′ is a prefix of S′′. Observe that Y − S′′ ⊆ Y − S′. We already showed that
ZS ∩ (Y − S′′) /∈ {∅,Y − S′′}, so in particular, ZS ∩ (Y − S′) /∈ {∅,Y − S′}.

3.4 Upper bound on R(∧∨, Qn)

Proof of Theorem 3.1. To bound R(∧∨, Qn) from above, let k and N be arbitrary integers
withN ≥ k, let n such thatN = n+ k. Let Y be a set on |Y| = k elements, say without
loss of generality, Y = {1, . . . , k}. Fix a set Z with Y ⊆ Z and |Z| = N . Suppose
that there is an ∧∨-free, critical Y-blocker F in Q(Z). In other words, suppose that the
integerN is sufficiently large with respect to k such that there exists a subposet F with
these properties.

In the following, we shall show that F contains at least k!2−k−1 vertices. Since
|F| ≤ |Q(Z)| = 2|Z|, this implies that

(
1− o(1)

)
k log k ≤ log

(
k!2−k−1

)
≤ log |F| ≤ |Z| = N = n+ k.

It follows that k ≤ (1 + o(1)) n
logn , i.e., N = n+ k ≤ n+ (1 + o(1)) n

logn , so Theorem 3.4
provides the required bound.

Next, we argue that there exists a subposet in F with many vertices. Let S
be the set of all ordered subsets of Y of size at most k − 1. Consider the family
{(FS , ZS , AS , BS) : S ∈ S} given by Construction 3.13. Let S1 be the family of all or-
dered subsets of Y of size exactly k−1, note that |S1| = k!. We introduce two notions of
equivalence between elements in S1, type-equivalence and intersection-equivalence. First,
we shall show the existence of a large subfamily S3 ⊆ S1 such that its elements are pair-
wise type-equivalent but not pairwise intersection-equivalent. Afterwards, we prove
that {ZS : S ∈ S3} is a large subposet of F .
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Let S1, S2 ∈ S1 be two ordered subsets of Y of size k− 1. We say that S1 and S2 are
type-equivalent if for any prefixes S′

1 of S1 and S′
2 of S2 of the same size, S′

1 is min-type
if and only if S′

2 is min-type. Equivalently, S′
1 is max-type if and only if S′

2 is max-type.
The ordered sets S1 and S2 are intersection-equivalent if for any same-sized prefixes S′

1

of S1 and S′
2 of S2, ZS′

1
∩ Y = ZS′

2
∩ Y. It is obvious that both notions define equiv-

alence relations on S1. Note that intersection-equivalence of two ordered sets in S1 is
a very strong property. It provides a good intuition to think of intersection-equivalent
ordered sets as equal. Several technical parts of the proof, in particular in Claim 1, arise
from the fact that there might be intersection-equivalent ordered sets which are distinct.

Claim 1: There exists a subfamily S3 ⊆ S1 of size at least 2−k−1k! such that any two
distinct ordered sets S1, S2 ∈ S3, are type-equivalent but not intersection-equivalent.

Proof of Claim 1. Recall that |S1| = k!. We denote the prefix of an ordered set S with
size i by S[i]. For every i ∈ {0, . . . , k − 1} and for every S ∈ S1, the prefix S[i] is either
min-type or max-type. By the pigeonhole principle for fixed i, there are at least |S1|/2
ordered subsets S ∈ S1 such that all prefixes S[i] are of the same type. Inductively, we
find a subfamily S2 ⊆ S1 of size at least 2−k|S1| such that for any fixed i ∈ {0, . . . , k−1},
all prefixes S[i], S ∈ S2, have the same type. Equivalently, the elements of S2 are
pairwise type-equivalent.

In the following, we shall show that each intersection-equivalence class in S2 has
size at most 2. Thus, by selecting a representative of each equivalence class, we obtain
a subfamily S3 as required.

Consider two ordered sets S1, S2 ∈ S2 which are intersection-equivalent, i.e., for
every two same-sized prefixes S′

1 of S1 and S′
2 of S2, we have that ZS′

1
∩Y = ZS′

2
∩Y.

Without loss of generality, suppose that S1 = (1, 2, . . . , k − 1) and Y − S1 = {k}.
Let S2 = (y1, . . . , yk−1) and Y − S2 = {yk}. We shall show that yi = i for all but
at most two indices i ∈ [k], which implies that S2 is either equal to S1, or obtained
from S1 by interchanging the two differing members. This implies that the intersection-
equivalence class of S1 consists of at most 2 members.

Since S1 and S2 are both in S2, i.e., type-equivalent, we know that for every index
i ∈ {0, . . . , k − 1}, either both S1[i] and S2[i] are min-type, or both S1[i] and S2[i] are
max-type. We enumerate the index set {0, . . . , k − 1} as follows. Let i1, . . . , ip be the
indices i ∈ {0, . . . , k − 1} such that S1[i] and S2[i] are min-type in increasing order.
Similarly, let j1, . . . , jq enumerate in increasing order the indices j ∈ {0, . . . , k − 1} for
which S1[j] and S2[j] are max-type. Note that {i1, . . . , ip}∪{j1, . . . , jq} = {0, . . . , k−1}.
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Next, consider any two consecutive indices i = iℓ and i′ = iℓ+1 for some fixed
ℓ ∈ [p−1]. Note that i < i′, so in particular, i+1 ≤ i′ and i < k−1. By Lemma 3.14 (iii),
we know that ZS1[i] ∩Y = AS1[i] and ZS1[i′] ∩Y = AS1[i′]. Our next step is to show that
the index i+ 1 is the unique element in the set difference of those two sets.

Recall that the prefix S1[i] is min-type, so in Construction 3.13 in the iterative step
for S1[i+ 1] = (S1[i], i+ 1), we defined that

AS1[i+1] = AS1[i] ∪ {i+ 1}.

By Lemma 3.14 (i) and recalling that i+ 1 ≤ i′,

AS1[i+1] ⊆ AS1[i′].

Lemma 3.14 (ii) provides that |AS1[i]| = ℓ and |AS1[i′]| = ℓ+ 1. In particular,

AS1[i] ∪ {i+ 1} = AS1[i+1] = AS1[i′],

which implies that

(ZS1[i′] ∩Y) \ (ZS1[i] ∩Y) = AS1[i′] \AS1[i] = {i+ 1}.

Similarly for S2, we see that

(ZS2[i′] ∩Y) \ (ZS2[i] ∩Y) = AS2[i′] \AS2[i] = {yi+1}.

Since S1 and S2 are intersection-equivalent, the indices yi+1 and i+ 1 are equal.

We obtain that yiℓ+1 = iℓ + 1 for every ℓ ∈ [p − 1]. For j1, . . . , jq, a symmetric
argument for j = jℓ and j′ = jℓ+1 considering the set difference

(ZS1[j] ∩Y) \ (ZS1[j′] ∩Y) = (Y \BS1[j]) \ (Y \BS1[j′]) = BS1[j′] \BS1[j] = {j + 1}

yields that yjℓ+1
= jℓ+1 for every ℓ ∈ [q − 1]. Thus, yi+1 = i + 1 for all indices

i ∈ {0, . . . , k − 1} \ {ip, jq}, so S1 and S2 coincide in all but at most two members. As
a consequence, S2 is either equal to S1, or obtained from S1 by interchanging the two
differing members, i.e., the intersection-equivalence class of S1 consists of at most 2
ordered sets. Since S1 was chosen arbitrarily, every intersection-equivalence class of S2

has size at most 2. Select S3 ⊆ S2 by choosing an arbitrary representative from each
intersection-equivalence class, i.e., let S3 be the largest subfamily of S2 such that every
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two distinct S2, S3 ∈ S3 are not intersection-equivalent. The size of S3 is

|S3| ≥ |S2|/2 ≥ 2−k−1|S1| = 2−k−1k!,

which concludes the proof of Claim 1.

Claim 2: The set {ZS : S ∈ S3} has size |S3| = k!2−k−1.

We remark that (although not necessary for verifying Theorem 3.1) Claim 2 holds
in greater generality. Analogously to the following proof, one can show that for every
family S ′ of ordered sets such that any two distinct members of S ′ are type-equivalent
and not intersection-equivalent, the set {ZS : S ∈ S ′} is an antichain inQ(Z) of size |S ′|.

Proof of Claim 2. Recall that any two distinct, ordered sets in S3 are type-equivalent but
not intersection-equivalent. We shall prove that for every two distinct S1, S2 ∈ S3, the
vertices ZS1 and ZS2 are distinct. We show an even stronger property: Any two vertices
ZS1 and ZS2 are incomparable. Assume towards a contradiction that ZS1 ⊆ ZS2 . Since
S1 and S2 are not intersection-equivalent, there are same-sized prefixes S′

1 of S1 and S′
2

of S2 such that ZS′
1
∩Y ̸= ZS′

2
∩Y. Since S1 and S2 are type-equivalent, both S′

1 and
S′
2 have the same type. Suppose that S′

1 and S′
2 are min-type.

First, we argue that ZS′
1
∩ Y and ZS′

2
∩ Y are incomparable. Lemma 3.14 (iii)

shows that ZS′
1
∩Y = AS′

1
and ZS′

2
∩Y = AS′

2
. Type-equivalence implies that pairs of

same-sized prefixes of S′
1 and S′

2 always have the same type, thus by Lemma 3.14 (ii),
|AS′

1
| = |AS′

2
|. We obtain that the two sets ZS′

1
∩ Y = AS′

1
and ZS′

2
∩ Y = AS′

2
are

distinct but of the same size, consequently ZS′
1
∩Y and ZS′

2
∩Y are not comparable.

If S′
1 = S1 and S′

2 = S2, then ZS1 ∩ Y and ZS2 ∩ Y are incomparable, and so
ZS1 ≁ ZS2 , a contradiction to the assumption ZS1 ⊆ ZS2 . For the remainder of the
proof, suppose that the size |S′

1| = |S′
2| is strictly less than k − 1. We shall show that

there is a copy of the N-shaped poset ∧∨ in F , contradicting the definition of F to be
an ∧∨-free poset.

Let Y′ = Y − S′
2, and note that FS′

2
is a Y′-blocker. Since ZS′

1
∩Y and ZS′

2
∩Y are

not comparable, there exists an element a ∈ ZS′
1
∩Y with a /∈ ZS′

2
. By Lemma 3.3 (ii),

the Y-blocker FS′
2

contains a vertex U ∈ FS′
2

with U ∩Y′ = Y′ \ {a}. Next, we shall
verify that ZS′

1
, ZS2 , ZS′

2
, and U form a copy of ∧∨ in F , see Figure 3.4.

• ZS′
2
⊆ ZS2 , because ZS′

2
is the unique minimal vertex of FS′

2
and ZS2 ∈ FS2 ⊆ FS′

2

by Lemma 3.14 (i).
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ZS′
2

F

ZS1

ZS′
1

FS′
2

U

ZS2

Figure 3.4: Copy of ∧∨ constructed in the proof of Claim 2.

• ZS′
1
⊆ ZS1 ⊆ ZS2 , asZS′

1
is the unique minimal vertex ofFS′

1
andZS1 ∈ FS1 ⊆ FS′

1

by Lemma 3.14 (i).

• ZS′
1
≁ ZS′

2
, because ZS′

1
∩Y and ZS′

2
∩Y are not comparable.

• ZS′
2
⊆ U , because U is in FS′

2
by definition and ZS′

2
is the unique minimal vertex

of FS′
2
.

• Note that a ∈ ZS′
1

and a /∈ U , so ZS′
1
̸⊆ U . Since ZS′

2
̸⊆ ZS′

1
but ZS′

2
⊆ U ,

transitivity yields that U ̸⊆ ZS′
1
. Therefore, U and ZS′

1
are incomparable.

• We know that a ∈ ZS2 but a /∈ U , thus ZS2 ̸⊆ U . To show that U ̸⊆ ZS2 , we
consider ZS2 ∩ Y′. Lemma 3.15 provides that ZS2 ∩ Y′ ̸= Y′. Furthermore,
ZS2 ∩Y′ ̸= Y′ \ {a}, since a ∈ ZS2 , thus ZS2 ∩Y′ is not a superset of Y′ \ {a} =

U ∩Y′, so U ̸⊆ ZS2 , and hence U ≁ ZS2 .

• The four vertices are distinct, because otherwise we find an immediate contradic-
tion to one of the above relations.

Therefore, there is a copy of ∧∨ in F , which is a contradiction to the fact that F is
∧∨-free.

If S′
1 and S′

2 are max-type, a similar argument can be applied, so we only give a
rough sketch. As a first step, we observe that ZS′

1
∩Y and ZS′

2
∩Y are incomparable.

Afterwards, for Y′ = Y − S′
1 and for a vertex U ∈ FS′

1
with U ∩Y′ = {a}, we find a

copy of ∧∨ on vertices ZS′
1
, ZS1 , ZS′

2
, and U , which is a contradiction. This concludes

the proof of Claim 2.

Claim 2 guarantees the existence of a subposet of F of size at least k!2−k−1. Since
F ⊆ Q(Z), we know that k!2−k−1 ≤ |F| ≤ 2|Z|, so

|Z| ≥ log |F| ≥ log

(
k!

2k+1

)
≥ log

(
kk

2k+1ek

)
≥ k

(
log(k)− c

)
,
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for a fixed constant c > 0. Recall that |Z| = n + k, thus n ≥ k log k −
(
1 + c

)
k, which

implies that k ≤
(
1 + o(1)

)
n

logn . Finally, Theorem 3.4 provides that

R(∧∨, Qn) ≤ N = n+ k ≤ n+
(
1 + o(1)

) n

log n
.

The lower bound on R(∧∨, Qn) follows from Theorem 2.1.

3.5 Tight bound on R(P,Qn) using P -free blockers

The content of this section is not contained in a previous publication.

Recall that n ≤ R(P,Qn) ≤ c(P )n for any fixed poset P , see Theorem 0.2. A bound
on R(P,Qn) is referred to as tight if it has the form R(P,Qn) = n + Θ

(
g(n)

)
for some

function g(n). In Corollary 2.6 and Theorem 3.1, we have presented a tight bound on
R(P,Qn) for P = Λ2 and P = ∧∨, respectively. For both results, the proof idea for the
upper bound was to bound the dimension of a Boolean lattice hosting a single blocker.
Here, we generalize that proof technique to every non-trivial poset P which has an
additional property.

Recall that a poset is connected if it can not be decomposed into two non-empty
parallel posets, and non-trivial if it contains a copy of Λ2 or V2. Furthermore, recall that
in Theorem 3.4 we established the bound

R(P,Qn) ≤ min
{
N : there is no P -free Y-blocker in Q([N ])

for some Y ⊆ [N ], |Y| = N − n
}
.

In this section, we consider a related extremal function for blockers, which is easier to
work with. For k ∈ N and a non-trivial poset P , let

mP (k) = min
{
N : there is a P -free [k]-blocker F in Q([N ])

}
.

Note that mP (k) is well-defined: Every non-trivial poset P contains a copy of Λ2 or V2,
and Lemma 2.8 implies thatmΛ2(k) = mV2(k) ≤ kmax{(log k+log log k+1), 12}. Thus,

k ≤ mP (k) ≤ mΛ2(k) ≤
(
1 + o(1)

)
k log k, (3.2)

where the lower bound is trivial. Note that mP (k) is a non-decreasing function.
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In our first result, we give a lower bound on R(P,Qn) in terms of mP (n), for every
poset P such that the asymptotic behavior of mP is “nice” in the following sense. We
say that a function f : N → R is asymptotically smooth if

f

(
n2

f(n)

)
= Θ(n).

We remark that this definition is not related to the notion of a smooth function commonly
used in the field of mathematical analysis. An example of an asymptotically smooth
function is f(n) = n log n. Indeed,

f

(
n2

f(n)

)
= f

(
n

log n

)
=
n (log n− log logn)

log n
=
(
1− o(1)

)
n = Θ(n).

In fact, every function f(n) = Θ(n), f(n) = Θ(n log n), or f(n) = Θ(n log log n), etc.
is asymptotically smooth. Recall that n ≤ mP (n) ≤

(
1 + o(1)

)
n log n. It is not clear

whether there exists a non-trivial poset P such that mP is not asymptotically smooth.

Theorem 3.16. Let P be a fixed non-trivial, connected poset. If mP is asymptotically smooth,
then

R(P,Qn) ≥ n+Ω

(
n2

mP (n)

)
.

The proof of Theorem 3.16 follows the same steps as the proof of Theorem 2.2. In the
second result of this section, we show that Theorem 3.16 is asymptotically tight if mP

has one of the following properties.

Theorem 3.17. Let P be a non-trivial, connected poset.

(i) IfmP (ℓ) =
(
c+o(1)

)
ℓ for some c > 1, thenR(P,Qn) = n+Θ

(
n2

mP (n)

)
=
(
1+Θ(1)

)
n.

(ii) If mP is superlinear and asymptotically smooth, then R(P,Qn) = n+Θ
(

n2

mP (n)

)
.

(iii) In particular, if mP (ℓ) = Θ(ℓ(log . . . log︸ ︷︷ ︸
t times

ℓ)s) for some parameters t ∈ N and s > 0, then

R(P,Qn) = n+Θ
(

n2

mP (n)

)
.

It remains open whether the bound R(P,Qn) = n + Θ
(

n2

mP (n)

)
holds for every non-

trivial P . We remark that our proofs of Theorems 3.16 and 3.17 provide an improved
bound onR(P,Qn), even ifmP (n) is only bounded roughly. That is, ifmP is superlinear
and f(n) ≤ mP (n) ≤ g(n) for asymptotically smooth functions f, g : N → R, then

n+Ω

(
n2

g(n)

)
≤ R(P,Qn) ≤ n+O

(
n2

f(n)

)
.
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However, for any non-trivial poset P for which the asymptotic behavior ofR(P,Qn)−n
is unknown, it remains open to improve the basic bound onmP stated in equation (3.2).

3.5.1 Proof of Theorem 3.16

Outline of the proof idea: We prove Theorem 3.16 similarly to Theorem 2.2. Using a
collection of random frameworks, we shall show that there exists a collection of frame-
works with specific properties. Depending on this collection, we construct a collection
of parallel blockers, and use it to define a blue/red coloring which contains neither a
blue copy of P nor a red copy of Qn.

The following lemma is a variant of Theorem 2.9.

Lemma 3.18. Let P be a non-trivial poset. For n ∈ N, let k = k(n) ∈ N and N = n+ k. If

(i) mP (k) ≤ 0.1N and

(ii)
(
N
k

)2
2−0.1N → 0 as n→ ∞,

then R(P,Qn) > N = n+ k for sufficiently large n.

Proof. We shall show that R(P,Qn) > N by finding a blue/red coloring of Q([N ])

which contains neither a blue copy of P nor a red copy of Qn. Let
([N ]

k

)
denote the

family of k-element subsets of [N ]. For a subset Y ∈
([N ]

k

)
, a Y-framework is a 4-tuple

(Y,A,Z,X) such that

• the sets Y, A, and Z are pairwise disjoint and partition [N ],

• |A| = 0.1N − k, or equivalently |Z| = 0.9N , and

• X ⊆ Z.

It follows from (3.2) and property (i) that k ≤ mP (k) ≤ 0.1N , so |A| = 0.1N − k ≥ 0.

Claim: There is a collection of Y-frameworks (Y,AY,ZY,XY), Y ∈
([N ]

k

)
, such that

for every two distinct Y1,Y2 ∈
([N ]

k

)
, it holds that XY1 ∩ ZY2 ̸⊆ XY2 .

Proof of the claim. Given Y, we say that a Y-framework (Y,A,Z,X) is random if

• A is chosen uniformly at random among all subsets of [N ] on 0.1N − k elements,

• Z = [N ] \ (Y ∪A), and

• each element of Z is included in X independently at random with probability 1
2 .
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Draw a randomY-framework (Y,AY,ZY,XY) for everyY ∈
([N ]

k

)
. Since |ZY| = 0.9N ,

we know that for any two Y1,Y2 ∈
([N ]

k

)
,

0.8N ≤ |ZY1 ∩ ZY2 | ≤ 0.9N.

Recall that an eventE(n) holds with high probability if P(E(n)) → 1 as n→ ∞. Next,
we shall show that with high probability, every two distinct Y1,Y2 ∈

([N ]
k

)
have the

property that
|XY1 ∩ ZY2 | ≥ 0.1N.

Note that each element of ZY1 ∩ ZY2 is contained in XY1 ∩ ZY2 independently with
probability 1

2 . Therefore,

|XY1 ∩ ZY2 | ∼ Bin
(
|ZY1 ∩ ZY2 |, 12

)
and E(|XY1 ∩ ZY2 |) = 1

2 |ZY1 ∩ ZY2 |.

Chernoff’s inequality, see (2.5), provides that

P(|XY1 ∩ ZY2 | ≤ 0.1N) = P
(
|XY1 ∩ ZY2 | ≤

|ZY1 ∩ ZY2 |
2

−
(
|ZY1 ∩ ZY2 |

2
− 0.1N

))
≤ exp

(
−
( |ZY1

∩ZY2
|

2 − 0.1N
)2

|ZY1 ∩ ZY2 |

)

≤ exp

(
−(0.4− 0.1)2

0.9
·N
)

= exp (−0.1N) .

Let E1 be the event that for the collection of random Y-frameworks, there exist two
distinct Y1,Y2 ∈

([N ]
k

)
with |XY1 ∩ ZY2 | ≤ 0.1N . The probability of E1 is

P(E1) ≤
∑

Y1,Y2∈([N ]
k )

P(|XY1 ∩ ZY2 | ≤ 0.1N)

≤
(
N

k

)2

exp (−0.1N)

≤
(
N

k

)2

2−0.1N → 0, as n→ ∞,

where we used property (ii) in the last line. We conclude that with high proba-
bility, the event E1 does not occur. From now on, assume that for any distinct
Y1,Y2 ∈

([N ]
k

)
, |XY1 ∩ ZY2 | ≥ 0.1N .
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Let Y1,Y2 ∈
([N ]

k

)
be distinct. Recall that each element of XY1 ∩ ZY2 is included

in XY2 independently with probability 1
2 . This implies that

P(XY1 ∩ ZY2 ⊆ XY2) =

(
1

2

)|XY1
∩ZY2

|
≤ 2−0.1N .

Let E2 be the event that there are distinct Y1,Y2 ∈
([N ]

k

)
for which XY1 ∩ ZY2 ⊆ XY2 .

Using property (ii), we see that

P(E2) ≤
∑

Y1,Y2∈([N ]
k )

P(XY1 ∩ ZY2 ⊆ XY2)

≤
(
N

k

)2

2−0.1N → 0, as n→ ∞.

Thus, with high probability, the event E2 does not occur. Consequently, there exists a
collection of Y-frameworks, Y ∈

([N ]
k

)
, such that XY1 ∩ZY2 ̸⊆ XY2 for any two distinct

Y1,Y2 ∈
([N ]

k

)
, which proves the claim.

Fix a collection of Y-frameworks, Y ∈
([N ]

k

)
, as obtained from the claim. For every

Y ∈
([N ]

k

)
, select an arbitrary P -free Y-blocker F ′

Y in Q(Y ∪AY). Note that F ′
Y exists,

because |Y ∪AY| = 0.1N ≥ mP (k) by property (i). We “shift” the vertices of F ′
Y by

XY, i.e., let
FY =

{
Z ∪XY : Z ∈ F ′

Y

}
.

Note that FY is isomorphic to F ′
Y, thus FY is a P -free.

Recall that [N ] = Y∪AY∪ZY. We claim thatFY is aY-blocker inQ([N ]). Consider
an arbitrary (AY ∪ZY)-good copy Q of Q(AY ∪ZY) in Q([N ]). We shall show that Q
has a vertex in common with FY, by using that F ′

Y is a Y-blocker. It is straightforward
to check that the induced subposet

{
U ∈ Q : U ∩ ZY = XY} is an AY-good copy of

Q(AY). Next, we apply a “reverse shift” to this subposet. That is, let Q′ be the poset
obtained from

{
U ∈ Q : U ∩ZY = XY} by element-wise deleting XY. Note that Q′ is

isomorphic to
{
U ∈ Q : U ∩ZY = XY}, in particular Q′ is a copy of Q(AY). Moreover,

Q′ is AY-good and a subposet of Q(Y ∪AY). Since F ′
Y is a Y-blocker in Q(Y ∪AY),

F ′
Y has a vertex F in common with Q′. Consider the shifted vertex F ∪XY in Q([N ]).

On the one hand, the definition of FY implies that F ∪XY ∈ FY. On the other hand,
using that F ∈ Q′, we see that F ∪XY is a vertex in Q. Thus, F ∪XY ∈ FY ∩ Q, as
desired. This implies that FY is a Y-blocker in Q([N ]).

We shall show that distinct blockersFY are parallel, i.e., element-wise incomparable.
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For two arbitrary distinctY1,Y2 ∈
([N ]

k

)
, pick arbitrary verticesU1 ∈ FY1 andU2 ∈ FY2 .

Since XY1 ∩ ZY2 ̸⊆ XY2 , we find a ground element a ∈ (XY1 ∩ ZY2) \ XY2 , so in
particular, a ∈ U1 \ U2. Similarly, we find an element b ∈ U2 \ U1, thus U1 ≁ U2.
Therefore, the blockers FY1 and FY2 are parallel.

Let c : Q([N ]) → {blue, red} be the blue/red coloring mapping Z ∈ Q([N ]) to

c(Z) =

blue, if Z ∈ FY for some Y ∈
([N ]

k

)
red, otherwise.

• Assume that there is a blue copy of P . Each blue vertex is contained in a
blocker FY. Since P is connected and the blockers FY are pairwise parallel,
the copy of P is contained in one of the blockers FY. This is a contradiction,
because FY is P -free.

• Finally, assume that there is a red copy Q of Qn. The Embedding Lemma,
Lemma 0.9, implies that this copy is X-good for some n-element subset X ⊆ [N ].
There is a blue ([N ] \X)-blocker in Q([N ]), which by definition, contains a vertex
of Q. This contradicts the assumption that Q is red.

Proof of Theorem 3.16. We shall show that R(P,Qn) > n + k, where k = Ω
(

n2

mP (n)

)
.

Since mP is asymptotically smooth, there exists a constant c = c(P ) ≥ 1 such that for
large ℓ,

mP

(
ℓ2

mP (ℓ)

)
≤ cℓ. (3.3)

By choosing c sufficiently large, we can suppose that log(200c2e) + 1 ≤ 4c2. Let
k = n2

100c2mP (n)
andN = n+ k. Next, we shall show that n, k, andN meet conditions (i)

and (ii) of Lemma 3.18.

It follows from the definition of mP , that this function is non-decreasing. Thus,
by (3.3),

mP (k) = mP

(
n2

100c2mP (n)

)
≤ mP

( (
n
10c

)2
mP

(
n
10c

))
≤ c · n

10c

≤ n

10
≤ N

10
.
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This proves condition (i) of Lemma 3.18. Recall that triviallymP (n) ≥ n, thus k ≤ n
100c2

,
and in particular N = n+ k ≤ 2n. Using that N ≤ 2n, k = n2

100c2mP (n)
, and mP (n) ≥ n,

we see that

log

(
N

k

)
≤ k log

(
eN

k

)
≤ k log

(
2en

k

)
=

n2

100c2mP (n)

(
log(200c2e) + log

(
mP (n)

n

))
≤ n

100c2

(
log(200c2e) +

n

mP (n)
log

(
mP (n)

n

))
.

Note that log(x)
x ≤ 1 for any x ≥ 1, so in particular, n

mP (n) log
mP (n)

n ≤ 1. Recall that
log(200c2e) + 1 ≤ 4c2, thus

log

(
N

k

)
≤ n

100c2
(
log(200c2e) + 1

)
≤ 0.04n.

Therefore,
(
N
k

)2
2−0.1N ≤ 20.08n−0.1N → 0 for n→ ∞, where we used that n ≤ N .

Consequently, conditions (i) and (ii) in Lemma 3.18 hold for n and k, and this lemma
provides the desired Ramsey bound R(P,Qn) > N .

3.5.2 Proof of Theorem 3.17

Before presenting a proof of Theorem 3.17, we show a preliminary observation.

Lemma 3.19. Let n and k be fixed integers. Let P be a poset. If R(P,Qn) > n + k, then
mP (k) ≤ n+ k.

Proof. Let N = n+ k. If R(P,Qn) > N , then there exists a blue/red coloring of Q([N ])

which contains neither a blue copy of P nor a red copy of Qn. In particular, there is no
red ([N ] \ [k])-good copy ofQn, so the subposet consisting of all blue vertices in Q([N ])

is a P -free [k]-blocker. This implies that mP (k) ≤ N = n+ k.

Proof of Theorem 3.17. The lower bound in each part follows from Theorem 3.16.

Part (i): Suppose that mP (ℓ) =
(
c+ o(1)

)
ℓ for some constant c > 1. Let

d =
c+ 1

c− 1
and k =

dn2

mP (n)
.
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We shall show the bound R(P,Qn) ≤ n + k. By Lemma 3.19, it suffices to show that
mP (k) > n+ k. Note that c+1

2 < c for c > 1. Recalling the definition of d and k as well
as the bound mP (ℓ) =

(
c+ o(1)

)
ℓ ≥ ℓ, we see that

mP (k) = mP

(
dn2

mP (n)

)
=

(
c+ o(1)

)( dn2(
c+ o(1)

)
n

)
≥

(
d− o(1)

)
n

=

(
1 +

2

c− 1
− o(1)

)
n

=

(
1 +

dn
c+1
2 n

− o(1)

)
n

>

(
1 +

dn(
c− o(1)

)
n

)
n

≥
(
1 +

dn

mP (n)

)
n

= n+ k.

Part (ii): Since mP is asymptotically smooth, there is a real-valued constant d ≥ 1 such
that for large ℓ,

mP

(
ℓ2

mP (ℓ)

)
>

2

d
· ℓ.

Let k = dn2

mP (n) . The functionmP is superlinear, so k ≤ n for large n. We shall show that
mP (k) > n+k. Using thatmP is non-decreasing, the definition of d, and the inequality
k ≤ n, we find that

mP (k) = mP

(
dn2

mP (n)

)
≥ mP

(
dn2

mP (dn)

)
>

2

d
· dn

≥ n+ k,

where the last two lines hold for sufficiently large n. Lemma 3.19 implies the desired
Ramsey bound.

Part (iii): It is straightforward to check that mP (ℓ) = Θ
(
ℓ(log . . . log ℓ)s

)
is asymptoti-

cally smooth, so part (iii) follows from (ii).
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3.6 Concluding remarks

In this chapter, we showed the Ramsey bound R(∧∨, Qn) ≤ n + O
(

n
logn

)
. A matching

lower bound is given by Theorem 2.1, which states that for any non-trivial poset P ,

R(P,Qn) = n+Ω

(
n

log n

)
.

If this lower bound is asymptotically tight in the two leading additive terms for some
non-trivial poset P , i.e., R(P,Qn) = n+Θ

(
n

logn

)
, we say that P is modest. Note that by

Theorem 3.1,∧∨ is modest. Further modest posets are the complete multipartite posets,
see Theorem 1.1, and subdivided diamonds, see Theorem 1.5. Notably, it remains open
whether there exists a non-trivial poset which is not modest.

Conjecture 3.20. There is a fixed poset P with R(P,Qn) = n+ ω
(

n
logn

)
.

This conjecture is related to Conjecture 2.16, in which we propose the general bound
R(P,Qn) = n+o(n) for any fixed poset P . Known modest posets differ in various poset
parameters, for example SDt,t has large height, and K1,t has large width. However,
every known modest poset has order dimension 2. The order dimension ofP , also known
as Dushnik-Miller dimension, is the minimal number of linear orderings of the vertices
in P such that P is the poset in which X ≤ Y for X,Y ∈ P if and only if in every linear
ordering, X is smaller than Y . Natural candidates for proving Conjecture 3.20 are the
Boolean lattice Q3 and the standard example S3, the 6-element poset induced by the 1-
and 2-element subsets in Q3. Both posets have order dimension 3.

A key ingredient in our approach to bound R(∧∨, Qn) is Theorem 3.4, in which
we showed a connection between the poset Ramsey number of R(P,Qn) for a poset P
and an extremal function for blockers. In Section 3.5, we introduced a closely related
extremal function, that is

mP (k) = min{N : there is a P -free [k]-blocker F in Q([N ])}.

A blocker in a Boolean lattice can be seen as a transversal of a set of specific smaller
Boolean lattices, and is related to other notions of transversals, e.g., clique-transversals in
graphs as introduced by Erdős, Gallai, and Tuza [25]. Seen in this context, research on
extremal functions on blockers might be of independent interest.

We have shown that if mP (k) behaves “nicely”, then the asymptotic behavior of
R(P,Qn) − n can be determined from a tight bound on mP (k). This results can be
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interpreted as a reduction of the Ramsey setting R(P,Qn), in which we forbid all red
copies of Qn, to a setting in which we avoid only X-good copies of Qn for a single
n-element set X. It remains open whether mP (k) behaves nicely for every non-trivial
posets P , and subsequently, whether for every such P ,

R(P,Qn) = n+Θ

(
n2

mP (n)

)
.

In Conjecture 2.16, we have suggested that for any fixed poset P , R(P,Qn) =

n+ o(n). If one does not believe this conjecture, Theorem 3.17 (i) provides an approach
to disprove it: If there is a non-trivial, connected poset P such that limk→∞

mP (k)
k exists

and is not equal to 1, then R(P,Qn) ≥ (1 + c)n for some constant c > 0.



Chapter 4

Chain composition and antichain versus large Boolean lattice

4.1 Introduction of Chapter 4

The poset Ramsey number of posets P and Q is defined as

R(P,Q) = min{N ∈ N : every blue/red coloring of QN contains either

a blue copy of P or a red copy of Q}.

The focus of this chapter is to determine R(P,Qn) for trivial posets P , i.e., posets that
contain neither a copy of Λ2 nor a copy of V2. Previously, in Chapters 1, 2, and 3, we
have presented asymptotic bounds onR(P,Qn) for non-trivial posets P , i.e., posets that
have a subposet isomorphic to Λ2 or V2. In that setting, it appears to be out of reach
to precisely determine R(P,Qn) for large n. However, for trivial posets P , we already
bounded R(P,Qn) up to an additive constant in Theorem 2.1, showing that

n+ h(P )− 1 ≤ R(P,Qn) ≤ n+ h(P ) + α
(
w(P )

)
− 1.

Here, h(P ) denotes the height of P , i.e., the length of a largest chain in P , and w(P )

denotes the width of P , i.e., the size of a largest antichain in P . Recall that α(t) is the
Sperner number, i.e., the smallest integerN such that the Boolean lattice of dimensionN
contains an antichain of size t. This chapter focuses on improving this bound by
precisely determining R(P,Qn) for some classes of trivial posets P .

Recall that a chain Ct of length t is a poset on t vertices forming a linear order. A
parallel composition P1 ⃝|| P2 of posets P1 and P2 is the poset consisting of a copy of P1

and a copy of P2 which are disjoint and element-wise incomparable. We know from
Proposition 0.7 that a poset is trivial if and only if it is a parallel composition of chains
Ct1 , . . . , Ctℓ . We refer to this as a chain composition with parameters t1, . . . , tℓ, denoted

101
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by
Ct1,t2,...,tℓ = Ct1

⃝|| Ct2
⃝|| · · · ⃝|| Ctℓ .

Throughout this chapter, we use the convention that t1 ≥ t2 ≥ · · · ≥ tℓ, thus every
trivial poset has a unique representation as a chain composition.

An antichain Aℓ is a chain composition with parameters t1, . . . , tℓ = 1, i.e., the poset
consisting of ℓ pairwise incomparable vertices. Theorems 2.1 and 0.4 imply that

n ≤ R(At, Qn) ≤ n+ α(t) ≤ n+ log t+ log log t
2 + 2.

The same bound can be obtained from Theorem 0.2 or Theorem 0.5. In the first result
of this chapter, we exactly determine R(At, Qn), not only for fixed t ≥ 3, but also if t
grows at most double-logarithmic in terms of n. We remark that the cases t ∈ {1, 2} are
covered by Corollary 0.11 and Theorem 4.4, respectively.

Theorem 4.1. For every two integers n and t with 3 ≤ t ≤ log logn,

R(At, Qn) = n+ 3.

In fact, our result holds for n ≥ 22
t−2 − 2, which is a slightly weaker precondition than

t ≤ log logn. Furthermore, we prove that if t is large in terms of n, the poset Ramsey
number R(At, Qn) exceeds n+ 3.

Theorem 4.2. Let n, r, t ∈ N such that t >
(
n+2r+1

r

)
. Then

R(At, Qn) ≥ n+ 2r + 2.

In particular, if t ≥ n+ 4, then R(At, Qn) ≥ n+ 4.

Stated explicitly in terms of n and t, Theorems 2.1 and 4.2 provide the following.

Corollary 4.3. For n, t ∈ N with n ≥ 3 and t ≥ 2,

n+
2 log t

3 + log n
≤ R(At, Qn) ≤ n+ α(t) ≤ n+ log t+

log log t

2
+ 2.

In the second part of this chapter, we provide an exact bound onR(P,Qn) for chain
compositions P of width w(P ) ≤ 3, i.e., those consisting of at most 3 chains. Recall that
by Corollary 0.11, for any natural numbers n and t1,

R(Ct1 , Qn) = n+ t1 − 1.



4.2. Exact bound on R(At, Qn) 103

Theorem 4.4. Let n, t1, t2 ∈ N such that t1 ≥ t2. Then

R(Ct1,t2 , Qn) = n+ t1 + 1.

Theorem 4.5. Let n, t1, t2, t3 ∈ N with t1 ≥ t2 ≥ t3. Then

R(Ct1,t2,t3 , Qn) =

n+ t1 + 1, if t1 > t2 + 1

n+ t1 + 2, if t1 ≤ t2 + 1.

These results imply an improved general lower bound for trivial posets. In particular,
if P is trivial and has width w(P ) ≥ 2, then R(P,Qn) ≥ n + h(P ) + 1. For non-trivial
posetsP , it follows from Theorem 2.1 thatR(P,Qn) ≥ n+h(P )+1 for largen. However,
for small n, the general lower bound does not extend to non-trivial posets. For example,
it can be easily checked that R(V2, Q1) = 3 < 4.

LetZ be anN -element set. Recall thatQ(Z) denotes the Boolean lattice with ground
setZ. For ℓ ∈ {0, . . . , N}, recall that layer ℓ ofQ(Z) is the subposet {Z ∈ Q(Z) : |Z| = ℓ}.
Note that Q(Z) consists of N + 1 pairwise disjoint layers, and that each layer forms
an antichain in Q(Z). A blue/red coloring of a Boolean lattice is layered if within each
layer every vertex receives the same color.

This chapter is structured as follows. Section 4.2 focuses on antichains, and contains
proofs of Theorems 4.1 and 4.2 as well as Corollary 4.3. In Section 4.3, we show
Theorems 4.4 and 4.5. The content of this chapter is published in Discrete Mathematics,
2024 [79].

4.2 Exact bound on R(At, Qn)

4.2.1 Erdős-Szekeres variant

A sequence T is a subsequence of another sequence S = (a1, . . . , am) if there exist indices
1 ≤ i1 < · · · < iℓ ≤ m such that (ai1 , . . . , aiℓ) = T . In preparation for the proof of
Theorem 4.1, we reshape the following well-known result of Erdős and Szekeres [26].

Theorem 4.6 (Erdős-Szekeres [26]). Let m ∈ N. Let S = (a1, a2, . . . , am2+1) be a sequence
consisting of m2 + 1 distinct elements. Let τ be a linear ordering of {a1, . . . , am2+1}. Then
there exists a subsequence (ai1 , . . . , aim+1) of S on m+ 1 elements such that

ai1 <τ · · · <τ aim+1 or aim+1 <τ · · · <τ ai1 .
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In this subsection, we refer to a finite sequence (a1, . . . , am) of distinct elements
as a Z-sequence, where Z = {a1, . . . , am}. Note that there is a 1-to-1 correspondence
between Z-sequences and linear orderings of Z. We say that a sequence (b1, b2, . . . , bℓ)

is an undirected subsequence of a sequence S if either (b1, b2, . . . , bℓ) or (bℓ, bℓ−1, . . . , b1) is
a subsequence of S. Let {S1, . . . , Sd}, d ∈ N, be a collection of Z-sequences for some
set Z. If (b1, b2, . . . , bℓ) is an undirected subsequence of every Si, i ∈ [d], it is referred to
as a common undirected subsequence of S1, . . . , Sd.

Corollary 4.7. Let Z be an (m2+1)-element set. Let S and T be two Z-sequences. Then there
exists a common undirected subsequence of S and T with length m+ 1.

Proof. Let S = (a1, a2, . . . , am2+1), i.e., Z = {a1, . . . , am2+1}. Let jℓ, ℓ ∈ [m2 + 1], be
indices such that T = (aj1 , . . . , ajm2+1

). Consider the linear ordering τ of Z given by
aj1 <τ · · · <τ ajm2+1

. Theorem 4.6 provides a subsequence (ai1 , . . . , aim+1) of S which
is also an undirected subsequence of T . In particular, (ai1 , . . . , aim+1) is a common
undirected subsequence of S and T .

By iteratively applying Corollary 4.7, we obtain the following lemma.

Lemma 4.8. Let d ∈ N and N ≥ 22
d−1

+ 1. Let Z be an N -element set. Let τ1, . . . , τd be
arbitrary linear orderings of Z. Then there exist pairwise distinct x, y, z ∈ Z such that for every
i ∈ [d],

x <τi y <τi z or z <τi y <τi x.

Proof. For each i ∈ [d], say that τi is given by ai1 <τi a
i
2 <τi · · · <τi a

i
N . Let S(τi) be

the sequence (ai1, a
i
2, . . . , a

i
N ), i.e., S(τi) is a Z-sequence. We shall show that there is a

common undirected subsequence of S(τ1), . . . , S(τd) of length 3. Afterwards, we verify
that for such a subsequence (x, y, z), either x <τi y <τi z or z <τi y <τi x for each
i ∈ [d]. We proceed with an iterative argument.

Let T 1 = S(τ1) and note that |T 1| ≥ 22
d−1

+ 1. For i ∈ [d − 1], assume that T i is a
common undirected subsequence of all S(τj), j ∈ [i], and has length at least 22d−i

+ 1.
Let Zi be the underlying set of T i, and let Si be the restriction of S(τi+1) to Zi. We see
that both T i and Si are Zi-sequences. By Corollary 4.7, there is a common undirected
subsequence T i+1 of T i and Si of length at least (22d−i

)
1
2 +1 = 22

d−(i+1)
+1. Since T i+1

is an undirected subsequence of T i, T i+1 is also an undirected subsequence of every
S(τj), j ∈ [i]. Furthermore, because T i+1 is an undirected subsequence of Si, it is also
an undirected subsequence of S(τi+1).
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After d − 1 steps, we obtain a sequence T d of length at least 220 + 1 = 3 which
is a common undirected sequence of S(τ1), . . . , S(τd). Choose an arbitrary 3-element
subsequence (x, y, z) of T d. Then x, y, and z have the desired property.

We remark that the bound N ≥ 22
d−1

+ 1 in Lemma 4.8 is tight. Indeed, it is
widely known that there is a sequence ofm2 distinct elements which does not meet the
property in Theorem 4.6. Given such a sequence, it is straightforward to construct a
collection of d linear orderings of a 22

d−1-element set such that no triple x, y, and z has
the property of Lemma 4.8.

4.2.2 Proof of Theorem 4.1

Recall that an embedding ϕ : Q1 → Q2 of a Boolean lattice Q1 into a Boolean lattice Q2 is
a function such that for any two X,Y ∈ Q1, X ⊆ Y if and only if ϕ(X) ⊆ ϕ(Y ).

Proof of Theorem 4.1. Observe that R(A3, Qn) ≤ R(At, Qn) ≤ R(Alog logn, Qn) for any
natural number t with 3 ≤ t ≤ log logn, so it suffices to show that R(A3, Qn) ≥ n + 3

and R(Alog logn, Qn) ≤ n+ 3. Let N = n+ 3.

For the lower bound, we consider the following blue/red coloring of the Boolean
lattice Q([N − 1]). Color all vertices in the two chain

{
[i] : i ∈ [N − 1]

}
and

{
[N − 1]\[i] : i ∈ [N − 1]

}
in blue, and color all remaining vertices in red. Among any three distinct blue vertices,
we find two vertices contained in the same chain, so there exists no blue copy of A3 in
our coloring.

We shall show that there is no red copy of Qn in Q([N − 1]), so assume that there
does exist such a copy. By the Embedding Lemma, Lemma 0.9, there is an n-element
set X ⊆ [N − 1] and an embedding ϕ : Q(X) → Q([N − 1]) such that the image of ϕ is
red and ϕ(X) ∩X = X for every X ∈ Q(X). We shall find a contradiction by finding a
blue vertex in the image of ϕ.

The vertex ∅ is blue, but ϕ(∅) is red, so there exists a ground element a ∈ ϕ(∅). We
know that a ∈ [N − 1] \X because ϕ(∅) ∩X = ∅. Recalling that ϕ is an embedding of
Q(X), we see that for every X ∈ Q(X), ϕ(∅) ⊆ ϕ(X), and thus a ∈ ϕ(X). Using that
[N − 1] is blue and ϕ(X) is red, we similarly find an element b ∈ [N − 1] \X such that
b /∈ ϕ(X) for every X ∈ Q(X). In particular, the ground elements a and b are distinct.
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Since |X| = n = (N−1)−2 and a, b /∈ X, the ground set [N−1] is partitioned intoX

and {a, b}. For everyX ∈ Q(X), we know that ϕ(X)∩X = X and ϕ(X)∩{a, b} = {a}.
Therefore, every X ∈ Q(X) is mapped to ϕ(X) = X ∪ {a}.

• If a = 1, then ϕ(∅) = {a} = {1}. The vertex {1} is colored blue, contradicting the
fact that ϕ has a red image.

• If b > a ≥ 2, then neither a nor b are in [a− 1], so [a− 1] ⊆ X. The image

ϕ([a− 1]) = [a− 1] ∪ {a} = [a]

is colored blue. This is a contradiction, because ϕ has a red image.

• If b < a, then [N − 1]\[a] ⊆ X. Note that the image

ϕ([N − 1]\[a]) = ([N − 1]\[a]) ∪ {a} = [N − 1]\[a− 1]

is a blue vertex, so we reach a contradiction again.

For the upper bound on R(Alog logn, Qn), recall that N = n+ 3, and let Z be a fixed
N -element set. Consider an arbitrary blue/red coloring of the Boolean lattice Q(Z)

which contains no blue copy of At, where t = log log n. We shall show that there is a
red copy of Qn in Q(Z).

By Dilworth’s theorem, Theorem 1.9, there exists a family of t−1 chains C1, . . . , Ct−1

that cover all blue vertices. Without loss of generality, we assume that every Ci is a
chain onN +1 vertices, so a poset on vertices ∅, {ai1}, {ai1, ai2}, . . . , {ai1, . . . , aiN}, where
Z = {ai1, . . . , aiN}. We say that each Ci, i ∈ [t − 1], corresponds to the unique linear
ordering τi of Z given by ai1 <τi a

i
2 <τi · · · <τi a

i
N . By applying Lemma 4.8 to the

collection of linear orderings τi, i ∈ [t− 1], we obtain three distinct elements x, y, z ∈ Z

such that for every i ∈ [t− 1],

x <τi y <τi z or z <τi y <τi x.

Assume towards a contradiction that there is no red copy of Qn in Q(Z). Let
Y = {x, y, z} and X = Z\Y. Let τ be the linear ordering of Y defined by x <τ z <τ y.
The Chain Lemma, Lemma 0.10, provides a chain inQ(Z)which contains a blue vertexZ
such that Z ∩Y = {x, z}. Since Z has color blue, it is covered by a chain Cj for some
j ∈ [t − 1]. In the linear ordering τj corresponding to Cj , we know that either y <τj z

or y <τj x. This implies that every vertex in Cj containing x and z also contains y. This
contradicts Z ∈ Cj .
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4.2.3 Proofs of Theorem 4.2 and Corollary 4.3

If t is large in terms of n, we give an improved lower bound onR(At, Qn) using a layered
construction, i.e., a blue/red coloring of the host Boolean lattice in which each layer is
monochromatic.

For our proof, we need a classic result of extremal set theory. A chain in an N -
dimensional Boolean lattice is said to be symmetric if it consists of vertices

Xℓ ⊂ · · · ⊂ XN−ℓ

for some ℓ ≥ 0, such that |Xi| = i for every i ∈ {ℓ, . . . , N − ℓ}. De Bruĳn, Tengbergen,
and Kruyswĳk [20] showed the following decomposition result.

Theorem 4.9 (De Bruĳn-Tengbergen-Kruyswĳk [20]). The vertices of an N -dimensional
Boolean lattice can be decomposed into pairwise disjoint, symmetric chains.

Proof of Theorem 4.2. Let n, r, t ∈ N with t >
(
n+2r+1

r

)
. We shall show that R(At, Qn) >

n+2r+1. Let Q(Z) be the Boolean lattice on an arbitrary ground set Z with n+2r+1

elements. Consider the following layered blue/red coloring of Q(Z). Color every
vertex Z ∈ Q(Z) with |Z| ≤ r or |Z| ≥ n+r+1 in blue, and all other vertices in red. We
see that Q(Z) consists of n+ 2r + 2 monochromatic layers, of which 2r + 2 are colored
blue, and the remaining n layers are colored red. Since h(Qn) = n + 1, there is no red
copy of Qn in this coloring.

It remains to show that there is no blue copy of At in Q(Z). We fix a symmetric
chain decomposition of Q(Z) as provided by Theorem 4.9. Let Γ be the collection
of only those symmetric chains in Q(Z) which contain an r-element subset of Z as a
vertex. For any vertex Z of size at most r or at least n + r + 1, there is some chain CZ
in the decomposition which covers Z. Using the properties of a symmetric chain, we
conclude that CZ ∈ Γ, thus the chains in Γ cover all vertices of size at most r or at least
n+ r+1. Thus, all blue vertices are covered by chains in Γ, whereas |Γ| =

(
n+2r+1

r

)
< t.

Therefore, Dilworth’s theorem implies that there is no blue copy of At in Q(Z).

Proof of Corollary 4.3. The upper bound on R(At, Qn) follows from Theorem 2.1. In
Theorem 4.2, we showed the lower boundR(At, Qn) ≥ n+2r+2, where r is the largest
non-negative integer with t >

(
n+2r+1

r

)
. Note that r is well-defined for t ≥ 2. We shall
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bound r in terms of n and t. Using the maximality of r,

t ≤
(
n+ 2r + 3

r + 1

)
≤
(
e(n+ 2r + 3)

r + 1

)r+1

≤
(

en

r + 1
+ 3e

)r+1

≤ (2en)r+1,

thus r + 1 ≥ log t
log(2e)+logn ≥ log t

3+logn , which implies the desired bound.

4.3 Bounds on R(Ct1,...,tℓ, Qn)

4.3.1 Proof of Theorem 4.4

Proof of Theorem 4.4. Let N = n+ t1 + 1. To prove that R(Ct1,t2 , Qn) ≤ N , we consider
an arbitrarily blue/red colored Boolean lattice Q1 = Q([N ]) which contains no red
copy of Qn. We shall show that there is a blue copy of Ct1,t2 . Corollary 0.11 guarantees
the existence of a blue chain C of length t1 + 2, say on vertices Z0 ⊂ Z1 ⊂ · · · ⊂ Zt1+1.
Let C′ be the subposet of C on vertices Z1, . . . , Zt1 , i.e., the chain of length t1 obtained
by discarding the minimal and maximal vertex of C. Note that there exists an element
a ∈ Z1, since Z1 has a proper subset Z0. Similarly, we find an element b ∈ [N ] \Zt1 . We
obtain that {a} ⊆ Z1 ⊂ · · · ⊂ Zt1 ⊆ [N ] \ {b}.

Q1 = Q([N ])

Z1

Zt1
[N ] \ {a}

{b}

Q2

Zt1+1

C ′⊂C

Z0

Figure 4.1: The parallel subposets C′ and Q2 in Q1.

We consider the subposet Q2 = {Z ∈ Q1 : b ∈ Z, a /∈ Z}, see Figure 4.1. Note
that Q2 is a copy of a Boolean lattice of dimension N − 2 = n + t1 − 1. Since Q1

contains no red copy of Qn, in particular there is no red copy of Qn in Q2. Since
R(Ct2 , Qn) = n+ t2 − 1 ≤ n+ t1 − 1, there is a blue copy D of Ct2 in Q2. For any U ∈ C′

and Z ∈ D, we know that a ∈ U \ Z and b ∈ Z \ U , thus U ≁ Z. Therefore, C′ ∪ D is a
blue copy of Ct1,t2 , so R(Ct1,t2 , Qn) ≤ N .
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It remains to show that R(Ct1,t2 , Qn) ≥ N = n + t1 + 1. We shall verify this lower
bound by introducing a layered coloring of the Boolean lattice Q3 = Q([N − 1]) which
contains neither a blue copy ofCt1,t2 nor a red copy ofQn. Consider a layered blue/red
coloring of Q3 in which layer 0 and layer N − 1, i.e., both one-element layers, are blue,
t1 − 1 arbitrarily chosen additional layers are blue, and all remaining N − (t1 + 1) = n

layers are red.

SinceQn has height n+1, but only n layers ofQ3 are colored red, there is no red copy
of Qn. Assume that there is a blue copy P of Ct1,t2 . Note that h(P) = h(Ct1,t2) = t1.
Because Q3 has only t1 − 1 layers containing blue vertices, including layer 0 and layer
N − 1, we know that at least one of the vertices ∅ and [N − 1] is in P . Each of these
two vertices is comparable to all other vertices of Q3. This is a contradiction, because P
consists of two parallel chains. Thus, there exists no blue copy P of Ct1,t2 .

4.3.2 Proof of Theorem 4.5

Proof of Theorem 4.5. Let N = n+ t1 + 1. It is a consequence of Theorem 4.4 that

R(Ct1,t2,t3 , Qn) ≥ R(Ct1,t2 , Qn) = n+ t1 + 1 = N.

By Theorem 2.1, we see that

R(Ct1,t2,t3 , Qn) ≤ n+ t1 + α(3)− 1 = n+ t1 + 2.

First, suppose that t1 ≥ t2+2. We shall show thatR(Ct1,t2,t3 , Qn) ≤ N . Our proof is
similar to the lower bound proof of Theorem 4.4. Let Q1 = Q([N ]), and fix an arbitrary
blue/red coloring of Q1 which contains no red copy ofQn. We shall find a blue copy of
Ct1,t2,t3 in Q1. By Corollary 0.11, there is a blue chain C of length t1+2. Let C consist of
vertices Z0 ⊂ · · · ⊂ Zt1+1. Consider the subposet C′ of C on vertices Z1, . . . , Zt1 , which
is a chain of length t1. Note that Z1 ̸= ∅ and Zt1 ̸= [N ], thus there are ground elements
a, b ∈ [N ] such that {a} ⊆ Z1 ⊆ · · · ⊆ Zt1 ⊆ [N ] \ {b}.

Let Q2 = {Z ∈ Q1 : b ∈ Z, a /∈ Z}. This subposet of Q1 is isomorphic to a Boolean
lattice of dimension N − 2 = n+ t1 − 1 ≥ n+ t2 + 1. There is no red copy of Qn in Q2,
so Theorem 4.4 yields a blue copy P of Ct2,t3 in Q2. For every two vertices Z ∈ P and
U ∈ C′, we know that a ∈ U \Z and b ∈ Z \U , so Z ≁ U . Consequently, P ∪C′ is a blue
copy of Ct1,t2,t3 in Q1.
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From now on, suppose that t1 ≤ t2 + 1. Recall that N = n+ t1 + 1. We shall show
that R(Ct1,t2,t3 , Qn) > N . If t1 = 1, then Ct1,t2,t3 is an antichain and the desired bound
follows immediately from Theorem 4.1, so say that t1 ≥ 2. We construct a layered
blue/red coloring of the Boolean lattice Q3 = Q([N ]) which neither contains a red copy
of Qn nor a blue copy of Ct1,t2,t3 , as follows. Color all vertices in the four layers 0, 1,
N − 1, and N in blue. Color t1 − 2 arbitrarily chosen additional layers in blue and all
remaining (N + 1) − 4 − (t1 − 2) = n layers in red. Clearly, this coloring contains no
red copy of Qn, since h(Qn) = n+ 1.

Assume for a contradiction that there is a blue copy P of Ct1,t2,t3 in Q3. In P , we
denote a blue chain of length t1 by C, say on verticesZ1 ⊂ · · · ⊂ Zt1 . Furthermore, there
is a chain D of length t2 in P which is parallel to C, see Figure 4.2. Let F be a vertex
of P which is neither in C nor in D, i.e., F is incomparable to every vertex in C and D.

C
D

F

Z1

Z5

Figure 4.2: Chains C and D, and vertex F in a copy of C5,4,4.

Neither ∅ nor [N ] are in P , because both of these vertices are comparable to every
other vertex in Q3 and there is no such vertex in P . Excluding these two vertices ∅ and
[N ], there are precisely t1 layers containing blue vertices, including layer 1 and layer
N − 1. Recall that C is a blue chain of length t1, thus the smallest vertex Z1 of C is
in layer 1, while the largest vertex Zt1 of C is in layer N − 1. Therefore, we find two
ground elements a, b ∈ [N ] such that Z1 = {a} and Zt1 = [N ]\{b}. Note that a and b

are distinct.

Let Q4 = {Z ∈ Q3 : b ∈ Z, a /∈ Z}. Since F is incomparable to Z1 and Zt1 , we see
that a /∈ F and b ∈ F . This implies that F ∈ Q4, so in particular,

{b} ⊆ F ⊆ [N ]\{a}.

Similarly, D ⊆ Q4. The blue/red coloring of Q4 inherited from Q3 is layered and has
precisely t1 blue layers. Two of these blue layers in Q4 are the one-element layers given
by {b} and [N ] \ {a}. Since the chain D has height h(D) ≥ t1 − 1, either {b} ∈ D or
[N ]\{a} ∈ D. This is a contradiction, because F is incomparable to every vertex in D,
but both {b} and [N ]\{a} are comparable to F .
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4.4 Concluding remarks

In this chapter, we studied the poset Ramsey number R(P,Qn) for trivial posets P .
We determined exact bounds if P has small width or is an antichain. In particular,
Theorems 4.1 and 4.2 state that R(Alog logn, Qn) = n+3 and R(An+4, Qn) ≥ n+4. This
raises the question of what the largest t is such thatR(At, Qn) = n+3. Here, we showed
that log log n ≤ t < n+4, but the asymptotic behavior of t in terms of n remains unclear.
More generally, one can ask for the maximal t(c) such that R(At(c), Qn) = n+ c for any
fixed c, i.e., the largest t such that any blue/red coloring of an (n + c)-dimensional
Boolean lattice contains either a red copy of Qn or a blue At.



Chapter 5

Erdős-Hajnal problems for posets

5.1 Introduction of Chapter 5

The classic question in Ramsey theory is to quantify the size of a host structure such that
in any coloring of its elements, a large monochromatic substructure exists. In the setting
of graphs, Erdős and Hajnal [27] introduced a related problem: Given a fixed graph
H edge-colored with colors blue and red, determine the minimal order of a complete
graph such that any blue/red coloring of its edges contains a subgraph isomorphic to
H with a matching color pattern, or a monochromatic complete graph on n vertices.
The well-known Erdős-Hajnal conjecture states that the answer to the above problem is
at most nc(H) where c(H) is a constant, depending on H . This conjecture is wide-open
for most graphs H . For more details, we refer to a survey by Chudnovsky [14] and
other recent results, e.g., [56, 60, 75]. In this chapter, we propose a similar concept for
posets.

A colored poset is a pair (P, cP ), where P is a poset and cP : P → {blue, red} is
a blue/red coloring of the vertices of P . If a poset P has a fixed coloring cP , we
usually write Ṗ instead of (P, cP ). The size of a colored poset Ṗ is the size of the
underlying poset P . Occasionally, we specify the assigned coloring using an additional
superscript. In particular, the poset P which is colored monochromatically blue is
denoted by Ṗ (b). In this case, we say that Ṗ is blue. Similarly, we refer to a poset P
colored monochromatically red as Ṗ (r) and say that Ṗ is red.

Recall that a copy of a poset P inQ is an induced subposet P ′ ofQ that is isomorphic
to P . Equivalently, a copy is the image of an embedding ϕ : P → Q, i.e., a function such
that for every X,Y ∈ P , X ≤P Y if and only if ϕ(X) ≤Q ϕ(Y ). Given a fixed blue/red
coloring ofQ, a colored copy, or copy for short, of a colored poset Ṗ inQ is a copy P ′ of P
in Q such that each vertex Z ∈ P ′ has the same color in Q as its corresponding vertex

112
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in Ṗ . For any fixed colored poset Ṗ , a blue/red coloring of Q is Ṗ -free if it contains no
colored copy of Ṗ .

Forn ∈ N, the poset Erdős-Hajnal number R̃(Ṗ , Qn) of a colored poset Ṗ is the smallest
N ∈ N such that every blue/red coloring of QN contains a copy of Ṗ , Q̇(b)

n , or Q̇(r)
n . In

other words, R̃(Ṗ , Qn) is the minimal N such that any Ṗ -free blue/red coloring of QN

contains a monochromatic copy ofQn. In this chapter, we study the poset Erdős-Hajnal
number R̃(Ṗ , Qn) for a fixed colored poset Ṗ , while n is usually large.

If Ṗ is monochromatic, then R̃(Ṗ , Qn) = R(P,Qn) for large n. This poset Ramsey
setting has been addressed in Chapters 1 to 4. Here, we focus on colored posets Ṗ in
which both colors occur.

We say that Ṗ is diverse if it contains two comparable vertices of distinct color.
Otherwise, Ṗ is said to be non-diverse. Our first results provide general bounds for the
poset Erdős-Hajnal number of diverse and non-diverse Ṗ , respectively. Recall that the
height h(P ) of a poset P is the size of a largest chain in P , and the 2-dimension dim2(P )

of P is the smallest N such that QN contains a copy of P .

Theorem 5.1. Let Ṗ be a diverse colored poset. Let n ∈ N. Then

2n ≤ R̃(Ṗ , Qn) ≤ h(P )n+ dim2(P ).

This bound corresponds to the general bound on R(P,Qn) stated in Theorem 0.2, and
can be shown by a straightforward proof, similar to the proof of Theorem 0.2: The
lower bound is obtained from a layered coloring of Q2n−1, in which vertices Z with
|Z| ≤ n− 1 are colored in one color, and vertices Z such that |Z| ≥ n in the other color.
The upper bound follows from Lemma 3 in Axenovich and Walzer [2]. We omit the
details.

Extending the concept of parallel compositions of (uncolored) posets, we define the
parallel composition Ṗ1⃝|| Ṗ2 of two colored posets Ṗ1 and Ṗ2 as the colored poset consisting
of a copy of Ṗ1 and a copy of Ṗ2 that are parallel, i.e., element-wise incomparable.
Observe that a colored poset Ṗ is non-diverse if and only if P has subposets Pb and Pr

such that Ṗ = Ṗ
(b)
b

⃝|| Ṗ
(r)
r .

Theorem 5.2. Let Ṗ be a non-diverse poset. Let Pr and Pb such that Ṗ = Ṗ
(b)
b

⃝|| Ṗ
(r)
r . Let

n ∈ N with n ≥ max{dim2(Pb), dim2(Pr)}. Then

max{R(Pb, Qn), R(Pr, Qn)} ≤ R̃(Ṗ , Qn) ≤ max{R(Pb, Qn), R(Pr, Qn)}+ 2.
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The simplest non-diverse colored poset is an antichain At, i.e., a poset consisting of t
pairwise incomparable vertices. We precisely determine the Erdős-Hajnal number for
antichains.

Theorem 5.3. Let Ȧ be a non-monochromatic antichain on at least 2 vertices. Let n be
sufficiently large. If there are no three vertices of the same color in Ȧ, then R̃(Ȧ,Qn) = n+ 2.
Otherwise, R̃(Ȧ,Qn) = n+ 3.

In particular, R̃(Ȧ(b)
2

⃝|| Ȧ
(r)
2 , Qn) = n+2 = R(A2, Qn), and R̃(Ȧ(b)

1
⃝|| Ȧ

(r)
1 , Qn) = n+2 =

R(A1, Qn) + 2, which attain the lower and upper bound in Theorem 5.2, respectively.
We do not attempt to determine the smallest n for which this bound holds. In our
proof, we require log log log n = Ω(|A|).

Recall that a chainCt is a poset on tpairwise comparable vertices. For colored chains,
we introduce two specific colorings. The red-alternating chain Ċ(rbr)

t is the chainCt whose
vertices are colored alternatingly in red and blue, such that the minimal vertex is red,
see Figure 5.1 for an illustration. Similarly, the blue-alternating chain Ċ(brb)

t is the chainCt

colored alternatingly, but the minimal vertex is blue.

Given a colored chain Ċ, let λ(Ċ) be the largest integer ℓ such that Ċ contains a
copy of Ċ(rbr)

ℓ or Ċ(brb)
ℓ . Theorem 5.1 implies that R̃(Ċ,Qn) is linear in terms of n. In

our next result, we show that the poset Erdős-Hajnal number of any colored chain Ċ is
determined by the poset Erdős-Hajnal number of an alternating chain, up to an additive
term independent of n.

Theorem 5.4. Let n ∈ N. Let Ċt be a colored chain of length t, and let λ = λ(Ċt). Then

R̃(Ċ
(rbr)
λ , Qn) ≤ R̃(Ċt, Qn) ≤ R̃(Ċ

(rbr)
λ , Qn) + t− λ.

For alternating chains, we give the following bounds.

Theorem 5.5. For every n, R̃(Ċ(rbr)
2 , Qn) = R̃(Ċ

(rbr)
3 , Qn) = 2n. For t ≥ 4 and sufficiently

large n,
2.02n < R̃(Ċ

(rbr)
t , Qn) ≤ (t− 1)n.

The lower bound on R̃(Ċ(rbr)
t , Qn) shows the existence of a blue/red coloring of Q2.02n

with no monochromatic Qn.

Corollary 5.6. For sufficiently large n, R(Qn, Qn) > 2.02n.
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Q̇
(brbb)
2 Q̇

(brrb)
2 Q̇

(rrbb)
2 Q̇

(rbbb)
2Ċ

(brb)
2Ċ

(rbr)
3

Figure 5.1: Alternating chains and non-monochromatic colorings of Q2.

In the final part of this chapter, we analyze the poset Erdős-Hajnal number of small
colored Boolean lattices. Up to permutation of colors, the only non-monochromatic
blue/red coloring of Q1 is Ċ(rbr)

2 . Theorem 5.5 shows that R̃(Ċ(rbr)
2 , Qn) = 2n. More-

over, we give bounds on R̃(Q̇2, Qn) for every non-monochromatic blue/red coloring
of Q2. Up to symmetry and permutation of colors, the four non-monochromatic Q2

are Q̇(brbb)
2 , Q̇(brrb)

2 , Q̇(rrbb)
2 , and Q̇

(rbbb)
2 , each with the respective coloring as illustrated

in Figure 5.1.

Theorem 5.7. For every n ∈ N, R̃(Q̇(brbb)
2 , Qn) = R̃(Q̇

(brrb)
2 , Qn) = R̃(Q̇

(rrbb)
2 , Qn) = 2n,

and 2n ≤ R̃(Q̇
(rbbb)
2 , Qn) ≤ 2n+O

(
n

logn

)
.

The chapter is structured as follows. In Section 5.2, we introduce supplementary
notation. In Section 5.3, we study non-diverse posets and prove Theorems 5.2 and 5.3.
Afterwards, in Section 5.4, we focus on chains and present proofs for Theorems 5.4
and 5.5. In the final Section 5.5, we verify Theorem 5.7. The material presented in this
chapter is based on a manuscript available as a preprint on arXiv [77].

5.2 Notation on subposets of the Boolean lattice

Recall that Q(Z) denotes the Boolean lattice with ground set Z. For ℓ ∈ {0, . . . , |Z|},
layer ℓ of Q(Z) refers to the subposet {Z ∈ Q(Z) : |Z| = ℓ}. Note that every layer of the
Boolean lattice is an antichain.

Given a Boolean lattice Q and vertices A,B ∈ Q with A ⊆ B, the sub-Boolean lattice,
or sublattice for short, between A and B is

Q
∣∣B
A
= {X ∈ Q : A ⊆ X ⊆ B}.

This subposet is isomorphic to a Boolean lattice of dimension |B| − |A|. Note that a
copy of a Boolean lattice in Q is not necessarily a sublattice.
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5.3 Forbidden non-diverse colored posets

Proof of Theorem 5.2. For the lower bound, note that Pb ⊆ Qn by the choice of n. Thus,
R(Pb, Qn) ≤ R̃(Ṗ

(b)
b , Qn) ≤ R̃(Ṗ , Qn). A similar argument shows that R(Pr, Qn) ≤

R̃(Ṗ , Qn).

To establish the upper bound, let m = max{R(Pb, Qn), R(Pr, Qn)} and N = m+ 2.
Consider an arbitrary blue/red coloring of the Boolean lattice Q = Q([N ]) which
contains no monochromatic copy of Qn. We shall show that this coloring contains a
copy of Ṗ . Note that the sublattices Q

∣∣[N ]\{2}
{1} and Q

∣∣[N ]\{1}
{2} are parallel. The sublattice

Q
∣∣[N ]\{2}
{1} is isomorphic to a Boolean lattice of dimensionN−2 = m ≥ R(Pb, Qn), thus it

contains a blue copy of Pb. Similarly, Q
∣∣[N ]\{1}
{2} contains a red copy of Pr. By combining

these two subposets, we obtain a copy of Ṗ .

Theorem 5.3 is a consequence of the following three lemmas.

Lemma 5.8. For every 1 ≤ s ≤ t < n, R̃(Ċ(b)
t

⃝|| Ċ
(r)
s , Qn) = n+ t+ 1.

Proof. The upper bound R̃(Ċ
(b)
t

⃝|| Ċ
(r)
s , Qn) ≤ R(Ct, Qn) + 2 = n + t + 1 is implied

by Theorem 5.2 and Corollary 0.11. We shall prove the lower bound by constructing a
layered coloring ofQ([n+t]) that contains neither a copy of Ċ(b)

t
⃝|| Ċ

(r)
s nor a monochro-

matic copy of Qn. Assign the color blue to the two vertices ∅ and [n + t] as well as to
all vertices in t− 1 arbitrarily chosen additional layers. Color all remaining vertices in
red. There are t + 1 ≤ n blue layers and n red layers in our coloring. Since Qn has
height n + 1, i.e., contains a chain on n + 1 vertices, there is no monochromatic copy
of Qn. Next, assume towards a contradiction that there exists a copy Ṗ of Ċ(b)

t
⃝|| Ċ

(r)
s .

The subposet Ṗ contains t pairwise comparable blue vertices. Since there are t+1 blue
layers in our coloring, either ∅ or [n+ t] are contained in Ṗ . Both of these vertices are
comparable to every other vertex of the copy of Ṗ . However, every blue vertex of Ṗ is
incomparable to every red vertex of Ṗ , a contradiction.

Lemma 5.9. For n ≥ 3, R̃(Ȧ(b)
2

⃝|| Ȧ
(r)
2 , Qn) = n+ 2.

Proof. The lower bound R̃(Ȧ
(b)
2

⃝|| Ȧ
(r)
2 , Qn) ≥ R(A2, Qn) = n + 2 follows from Theo-

rems 5.2 and 4.4. For the upper bound, let N = n + 2 and fix an arbitrary blue/red
coloring of the Boolean lattice Q = Q([N ]). We shall show that there is either a colored
copy of Ȧ(b)

2
⃝|| Ȧ

(r)
2 or a monochromatic copy of Qn.
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We say that a layer {Z ∈ Q : |Z| = i}, i ∈ {1, . . . , n + 1}, is almost red if it contains
at most one blue vertex, and almost blue if it contains at most one red vertex. We can
suppose that every layer i, where i ∈ {1, . . . , n + 1}, is almost red or almost blue;
otherwise, such a layer contains a copy of Ȧ(b)

2
⃝|| Ȧ

(r)
2 . If there are consecutive layers i

and i + 1, i ∈ {1, . . . , n}, such that one of them is almost red and one is almost blue,
then it is straightforward to find a copy of Ȧ(b)

2
⃝|| Ȧ

(r)
2 , so suppose otherwise. Without

loss of generality, every layer is almost red.

First, assume that any two blue vertices in Q are comparable, i.e., the blue vertices
form a chain. Let b ∈ [N ] be a ground element contained in every blue vertex, except
for possibly ∅. Let a ∈ [N ] be a ground element contained in none of the blue vertices,
except for possibly [N ]. Note that the sublattice Q

∣∣[N ]\{b}
{a} contains no blue vertex. Since

its dimension is N − 2 = n, the sublattice is a red copy of Qn, as desired.

From now on, suppose there are two blue incomparable vertices. Pick two blue
vertices X,Y ∈ Q such that

• X ≁ Y , i.e., X and Y are incomparable,

• |X| ≤ |Y |, and

• |Y | − |X| is minimal among such pairs, i.e., there are no twoX ′, Y ′ ∈ Q such that
X ′ ≁ Y ′, |X ′| ≤ |Y ′|, and |Y ′| − |X ′| < |Y | − |X|.

Because layers |X| and |Y | are almost red, we see that 1 ≤ |X| < |Y | ≤ N − 1. We
distinguish three cases, depending on whether |X| = 1 and |Y | = N − 1.

Case 1: |X| ≥ 2.

Since X ̸⊆ Y , there exists a ground element a ∈ X \ Y . Let

F = {Z ∈ Q : |Z| = |X|, a ∈ Z},

so X ∈ F . Note that F is a layer of the (N − 1)-dimensional sublattice Q
∣∣[N ]

{a}, therefore
the size of F is

|F| =
(
N − 1

|X| − 1

)
≥
(
N − 1

1

)
= N − 1

In particular, there exist two distinct vertices U1, U2 ∈ F \ {X}. We claim that X , Y ,
U1, and U2 form a copy of Ȧ(b)

2
⃝|| Ȧ

(r)
2 . Indeed, X and Y are blue and, since layer |X|

is almost red, U1 and U2 are red. Recall that F is a layer of a sublattice and thus an
antichain, soU1,U2, andX are pairwise incomparable. Furthermore, Y is incomparable
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to each of U1, U2, and X , because on the one hand |U1| = |U2| = |X| < |Y |, and on the
other hand a is contained in each of U1, U2, and X , but a /∈ Y .

Case 2: |Y | ≤ N − 2.

We proceed similarly to Case 1, so we only sketch the proof. Let a ∈ X \ Y , and let
F = {Z ∈ Q : |Z| = |Y |, a /∈ Z}. Observe that |F| ≥ N − 1, so we find vertices
U1, U2 ∈ F such that X , Y , U1, and U2 form a copy of Ȧ(b)

2
⃝|| Ȧ

(r)
2 .

Case 3: |X| = 1 and |Y | = N − 1.

Since X and Y are incomparable, there is a ground element a ∈ [N ] such that X = {a}
and Y = [N ] \ {a}. Fix some distinct ground elements b, c ∈ [N ] \ {a}. Assume that
there is a blue vertex U in the sublattice Q

∣∣[N ]\{c}
{b} . We shall find a contradiction to the

minimality of X and Y . Since layer 1 of the Boolean lattice Q is almost red and X is
blue, the vertex {b} is red, so |U | ≥ 2. Similarly, [N ] \ {c} is red, which implies that
|U | ≤ N − 2.

• If a ∈ U , then U and Y = [N ] \ {a} are incomparable, and |Y | − |U | < N − 2 =

|Y | − |X|, contradicting the minimality of |Y | − |X|.

• However, if a /∈ U , then U and X = {a} are incomparable, and |U | − |X| <
|Y | − |X|, which also contradicts the minimality of |Y | − |X|.

Therefore, the sublattice Q
∣∣[N ]\{c}
{b} is a red copy of Qn.

Lemma 5.10. Let Ȧ be a colored antichain such that there are three vertices of the same color.
Then for sufficiently large n, R̃(Ȧ,Qn) = n+ 3.

Proof. The bound R̃(Ȧ,Qn) ≥ R(A3, Qn) = n + 3 is a consequence of Theorems 5.2
and 4.1. In the remainder of the proof, we bound R̃(Ȧ,Qn) from above. Let s be the
number of vertices of Ȧ colored in the majority color, so s ≥ 3. Let t = s + 22s. Let
N = n + 3, and fix an arbitrary blue/red coloring of the Boolean lattice Q = Q([N ])

which contains no monochromatic copy ofQn. We show that there is a copy of Ȧ(r)
s ⃝|| Ȧ

(b)
s

in this coloring, so in particular, there is a copy of Ȧ. It was shown in Theorem 4.1 that
for sufficiently large n,

R(At, Qn) = n+ 3 = N.



5.3. Forbidden non-diverse colored posets 119

Since there is neither a blue nor a red copy of Qn, there exists a red copy A′ of At as
well as a blue copy B′ of At in our coloring. Note that neither ∅ nor [N ] are contained
in the antichains A′ or B′, since each of ∅ and [N ] is comparable to every vertex of Q.

Our proof idea is to find s red vertices in A′ and s blue vertices in B′, denoted by Zi,
i ∈ [2s], which are “easily separable”, i.e., such that there exist ground elements ai ∈ Zi

and xi /∈ Zi with ai ̸= xj for any indices i, j ∈ [2s]. While we cannot guarantee that
the vertices Zi, i ∈ [2s], form a colored copy of the desired antichain, we shall show
that there is a large sublattice Q′ parallel to the vertices Zi, i ∈ [2s]. Any antichain of
size 2s − 1 in Q′ contains s monochromatic vertices. These monochromatic vertices,
together with all Zi’s of the complementary color, shall form a copy of Ȧ(r)

s ⃝|| Ȧ
(b)
s , as

desired.

Fix a vertex Z1 ∈ A′, and let a1 ∈ Z1 and x1 ∈ [N ] \ Z1 be chosen arbitrarily.
We proceed iteratively. For i ∈ {2, . . . , s}, assume that we selected distinct vertices
Z1, . . . , Zi−1 ∈ A′ and ground elements a1, . . . , ai−1, x1, . . . , xi−1 such that aj ∈ Zj ,
xj ∈ [N ] \ Zj , and aj ̸= xj′ for any j, j′ ∈ [i− 1]. In the next iterative step, pick a vertex
Zi ∈ A′ such that

• Zi is distinct from Z1, . . . , Zi−1,

• there is an ai ∈ Zi with ai /∈ {x1, . . . , xi−1}, and

• there is an xi ∈ [N ] \ Zi with xi /∈ {a1, . . . , ai−1}.

To show that Zi is well-defined, let Fi be the set of vertices that fail at least one of
these criteria. We need to verify that |Fi| < |A′|. The vertices in Fi are Z1, . . . , Zi−1

as well as all subsets of {x1, . . . , xi−1} and all vertices of the form [N ] \ X , where
X ⊆ {a1, . . . , ai−1}. Thus, the size of Fi is

|Fi| ≤ (i− 1) + 2i−1 + 2i−1 ≤ (s− 1) + 2s < t = |A′|,

so a triple (Zi, ai, xi) with the desired properties exists in every step i. After iteration
step i = s, let A = {Z1, . . . , Zs}. This subposet of A′ is a red antichain.

We proceed similarly for B′, i.e., for i ∈ [s], we select Zs+i, as+i, and xs+i. Pick
a vertex Zs+1 ∈ B′ such that there are as+1 ∈ Zs+1 with as+1 /∈ {x1, . . . , xs} and
xs+1 ∈ [N ] \ Zs+1 with xs+1 /∈ {a1, . . . , as}. This is possible because the number of
“bad” vertices is 2s + 2s < |B′|. Iteratively, let i ∈ {2, . . . , s}. Assume that we defined
distinct vertices Zs+1, . . . , Zs+i−1 ∈ B′ and as+1, . . . , as+i−1, xs+1, . . . , xs+i−1 such that
aj ∈ Zj , xj ∈ [N ]\Zj for j ∈ {s+1, . . . , s+i−1}, and aj1 ̸= xj2 for any j1, j2 ∈ [s+i−1].
We choose Zs+i ∈ B′ such that
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• Zs+i is distinct from Zs+1, . . . , Zs+i−1,

• there is an as+i ∈ Zs+i such that as+i /∈ {x1, . . . , xs+i−1}, and

• there is an xs+i ∈ [N ] \ Zs+i with xs+i /∈ {a1, . . . , as+i−1}.

The number of vertices for which one of these properties fails is at most

(i− 1) + 2s+i−1 + 2s+i−1 ≤ (s− 1) + 22s−1 + 22s−1 < t = |B′|,

so Zs+i, as+i, and xs+i can be chosen in every step. Let B = {Zs+1 . . . , Z2s}, and note
that this is a blue antichain. We remark that A and B are disjoint, because A is red and
B is blue. However, A ∪ B might contain comparable vertices.

Consider the sublattice Q′ =
{
X ∈ Q : {xi : i ∈ [2s]} ⊆ X ⊆ [N ] \ {ai : i ∈ [2s]}

}
.

This subposet is well-defined, because ai ̸= xj for any i, j ∈ [2s]. We claim that Q′ is
parallel to A ∪ B. Let X ∈ Q′ and i ∈ [2s]. Since xi ∈ X \ Zi and ai ∈ Zi \X , we see
that X and Zi are incomparable, so Q′ is parallel to A and B. The dimension of Q′ is at
least n− 4s. For sufficiently large n, there exists an antichain P ′ on 2s− 1 vertices in Q′.
In particular, P ′ contains a monochromatic antichain P on s vertices. If P is blue, then
A ∪ P is a copy of Ȧ(r)

s ⃝|| Ȧ
(b)
s . If P is red, then P ∪ B is a copy of Ȧ(r)

s ⃝|| Ȧ
(b)
s .

Proof of Theorem 5.3. Lemma 5.8 implies that R̃(Ȧ(b)
1

⃝|| Ȧ
(r)
1 , Qn) = n+2. By Lemma 5.9,

R̃(Ȧ
(b)
2

⃝|| Ȧ
(r)
2 , Qn) = n+ 2, thus also

n+ 2 = R̃(Ȧ
(b)
1

⃝|| Ȧ
(r)
1 , Qn) ≤ R̃(Ȧ

(b)
2

⃝|| Ȧ
(r)
1 , Qn) ≤ R̃(Ȧ

(b)
2

⃝|| Ȧ
(r)
2 , Qn) = n+ 2,

and similarly R̃(Ȧ(b)
1

⃝|| Ȧ
(r)
2 , Qn) = n+2. For any other non-monochromatically colored

antichain, the poset Erdős-Hajnal number is determined by Lemma 5.10.

5.4 Forbidden chains

5.4.1 Proof of Theorem 5.4

Throughout this subsection, let Ċ be a fixed colored chain on t vertices Z1 < Z2 <

· · · < Zt. For i ∈ [t], we denote by Ċ
∣∣Zi

Z1
the subposet of C consisting of its i smallest

vertices Z1 < · · · < Zi, colored as in Ċ. Additionally, let Ċ
∣∣Z0

Z1
be the empty colored

poset. In this subsection, Q is a Boolean lattice with a fixed Ċ-free blue/red coloring.
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We partition the vertices of Q into so-called phases. The i-th phase of Q with respect to
Ċ is defined as the family of vertices

F Ċ
i =

{
X ∈ Q : Q

∣∣X
∅ contains a copy of Ċ

∣∣Zi−1

Z1
, but no copy of Ċ

∣∣Zi

Z1

}
.

Here, Q
∣∣X
∅ inherits the coloring from Q. See Figure 5.2 for an example of phases of Q4.

We remark that F Ċ
i might be empty.

Ċ

F Ċ
1

F Ċ
2

F Ċ
3

F Ċ
4

Figure 5.2: A colored chain Ċ and a Ċ-free blue/red coloring ofQ4 with setsF Ċ
i , i ∈ [4].

Denote the color of Zi, the i-th vertex of Ċ, by ci ∈ {blue, red}, and let c̄i be its
complementary color. Let I(Ċ) be the set of indices for which there is no color switch in
Ċ, i.e.,

I(Ċ) =
{
i ∈ {2, . . . , t} : ci = ci−1

}
.

In our example, I(Ċ) = {2}. For i ∈ [t], we define Ai as the set of minimal vertices
of F Ċ

i . For example, in Figure 5.2, the set A2 consists of the three red vertices in F Ċ
2 .

The following properties are immediate, so we omit the proof.

Lemma 5.11.

(i) The families F Ċ
1 , . . . ,F Ċ

t partition Q.

(ii) Let X,Y ∈ Q with X ∈ F Ċ
i and Y ∈ F Ċ

j for some i, j ∈ [t]. If X ⊆ Y , then i ≤ j.

The next lemma shows that the color of each vertex in Q is determined by its phase.

Lemma 5.12.

(i) Every vertex in F Ċ
1 has color c̄1.

(ii) Let 2 ≤ i ≤ t with ci ̸= ci−1. Then every vertex in F Ċ
i has color c̄i.

(iii) Let 2 ≤ i ≤ t with ci = ci−1. Then every vertex of Ai has color ci, and every vertex in
F Ċ
i \ Ai has the complementary color c̄i.



122 5. Erdős-Hajnal problems for posets

Proof. Part (i) is immediate from the definition of F Ċ
1 .

For part (ii), consider an index i ≥ 2 with ci ̸= ci−1. Let X be an arbitrary vertex
in F Ċ

i . By definition of F Ċ
i , there is a copy Ḋ of Ċ

∣∣Zi−1

Z1
in Q

∣∣X
∅ . If X has color ci = c̄i−1,

then X has a different color than the maximal vertex of Ḋ and is larger than any vertex
of Ḋ, thus X /∈ Ḋ. In particular, by adding the vertex X to the colored chain Ḋ, we
obtain a copy of Ċ

∣∣Zi

Z1
in Q

∣∣X
∅ . This is a contradiction to the assumption X ∈ F Ċ

i . Thus,
the color of X is c̄i.

For part (iii), let i ≥ 2 with ci = ci−1, i.e., i ∈ I(Ċ), and fix a vertex X ∈ F Ċ
i .

• If X ∈ Ai, then X is minimal with the property that Q
∣∣X
∅ contains a copy of

Ċ
∣∣Zi−1

Z1
. In particular,X is contained in a copy Ḋ of Ċ

∣∣Zi−1

Z1
in Q

∣∣X
∅ . The vertexX is

the maximal vertex of Q
∣∣X
∅ , thus X is also the maximal vertex of Ḋ. In particular,

X has color ci−1 = ci.

• If X /∈ Ai, then there is a vertex A ∈ F Ċ
i such that A ⊂ X . Let Ḋ be a copy

of Ċ
∣∣Zi−1

Z1
in Q

∣∣A
∅. If X has color ci, then Ḋ and X form a copy of Ċ

∣∣Zi

Z1
in Q

∣∣X
∅ ,

contradicting that X is a vertex of F Ċ
i . Therefore, X has color c̄i.

Proof of Theorem 5.4. Let Ċ be a colored chain on vertices Z1 < · · · < Zt. Recall that
λ = λ(Ċ) is the maximal integer ℓ such that Ċ contains a copy of Ċ(rbr)

ℓ or Ċ(brb)
ℓ . By

switching the colors, we can suppose without loss of generality that the minimal vertex
Z1 of Ċ is red. In particular, this implies that the largest alternating chain in Ċ is
red-alternating, i.e., Ċ contains a copy of Ċ(rbr)

λ .

For the lower bound on R̃(Ċ,Qn), note that any Ċ(rbr)
λ -free colored Boolean lattice

is also Ċ-free, so R̃(Ċ,Qn) ≥ R̃(Ċ
(rbr)
λ , Qn).

To show the upper bound on R̃(Ċ,Qn), we present a non-constructive lower bound
on R̃(Ċ(rbr)

λ , Qn), in terms of R̃(Ċ,Qn). Let N = R̃(Ċ,Qn)− 1 and Q = Q([N ]). Select
an arbitrary blue/red coloring of Q which is Ċ-free and contains no monochromatic
copy of Qn. This coloring exists because N < R̃(Ċ,Qn). In Q, we shall find a copy Q′

of a Boolean lattice of dimension N − t + λ which is colored Ċ
(rbr)
λ -free. This proves

that R̃(Ċ(rbr)
λ , Qn) > N − t + λ, implying the desired bound R̃(Ċ,Qn) = N + 1 ≤

R̃(Ċ
(rbr)
λ , Qn) + t− λ.

Next, we construct Q′ ⊆ Q. For i ∈ [t], we denote by Fi = F Ċ
i the i-th phase of

Q with respect to Ċ. Let I = I(Ċ), i.e., the set of indices for which there is no color
switch in Ċ. Observe that |I| = t−λ. Recall that Ai denotes the set of minimal vertices
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in Fi. Note that each Ai is an antichain. Given any m antichains in Q([N ]) for some
m ∈ N, Corollary 0.11 implies that Q([N ]) contains a copy of an (N −m)-dimensional
Boolean lattice not containing a single vertex of any of the antichains. Thus, there exists
a copy Q′ of a Boolean lattice of dimension N − |I| = N − t+ λ such that Q′ is disjoint
from every Ai, i ∈ I .

For every i ∈ [t], let F ′
i = Fi ∩ Q′, see Figure 5.3. By Lemma 5.12, each F ′

i , i ∈ [t], is
monochromatically colored with color c̄i. Furthermore, by Lemma 5.11 (i), we see that
F ′
1, . . . ,F ′

t partition Q′.

QĊ Q′ ⊆ QF1

F2

F3

F4

F5

F6

F7

F8

F9

F ′
7

H1

H2

H3

H4

H5

F ′
2

F ′
5

Figure 5.3: A colored chain Ċ, families Fi in Q, F ′
i in Q′, and Hj partitioning Q′, where

t = 9, s = 5, and λ = 5.

Next, we define vertex families H1, . . . ,Hs partitioning Q′, by merging families F ′
i ,

i ∈ [t]. That is, let each Hj be the union of consecutive phases F ′
i ’s of the same color,

such that for j ≥ 2, Hj and Hj−1 have different colors, and such that consecutive
Hj ’s contain consecutive phases. An illustration of this merging is given in Figure 5.3.
Observe that the number of color switches of Hj ’s, i.e., indices j ≥ 2 for which Hj and
Hj−1 have distinct colors, is equal to the number of color switches of F ′

i ’s. Recalling
that each F ′

i has color c̄i, this quantity is equal to the number of color switches in Ċ,
which is λ− 1. Therefore, s ≤ λ.

Since the families Hj , j ∈ [s], consist of consecutive phases and by Lemma 5.11 (ii),
we have that for any X ∈ Hj1 and Y ∈ Hj2 ,

if X ⊆ Y, then j1 ≤ j2. (5.1)

To show that Q′ is Ċ(rbr)
λ -free, we assume that there is a red-alternating chain U of

length λ in Q′, say on vertices U1 ⊂ · · · ⊂ Uλ.
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• If there is anHj which contains two vertices ofU , sayUℓ andUℓ′ for some ℓ, ℓ′ ∈ [λ]

with ℓ < ℓ′, then (5.1) implies that Uℓ+1 ∈ Hj . Note that Uℓ and Uℓ+1 have distinct
colors. We arrive at a contradiction, because Hj is monochromatic.

• If every Hj , j ∈ [s], contains at most one vertex of U , then every Hj contains
exactly one vertex of U , since U has length λ ≥ s. In particular, H1 ∩ U is not
empty. By (5.1), U1 ∈ H1. The chain U is red-alternating, so U1 is red. However,
H1 has the color of F ′

1, i.e., c̄1. Recalling that Z1, the minimal vertex of Ċ, is red,
we conclude that H1 is blue. This is a contradiction.

5.4.2 Proof of Theorem 5.5

We break down the proof of Theorem 5.5 into three parts: Theorem 5.5 is immediate
from Lemmas 5.13, 5.14, and 5.15.

Lemma 5.13. For every n ∈ N, R̃(Ċ(rbr)
2 , Qn) = R̃(Ċ

(rbr)
3 , Qn) = 2n.

Proof. The lower bound is a consequence of Theorem 5.1. Since R̃(Ċ
(rbr)
2 , Qn) ≤

R̃(Ċ
(rbr)
3 , Qn), it remains to show that R̃(Ċ(rbr)

3 , Qn) ≤ 2n. Let Q = Q([2n]), and pick
an arbitrary blue/red coloring of Q. We shall find a copy of Ċ(rbr)

3 or a monochromatic
copy of Qn in this coloring. If the longest red chain in Q has length at most n, Corol-
lary 0.11 guarantees the existence of a blue copy of a Boolean lattice with dimension at
least n. So, suppose that there exists a red chain of length n+1. We denote its minimal
element by A and its maximal element by B, i.e., A ⊆ B and |B| − |A| ≥ n. If there is a
blue vertex Z in the sublattice Q

∣∣B
A

, then the vertices A, Z, and B form a copy of Ċ(rbr)
3 .

Otherwise, Q
∣∣B
A

is a red copy of a Boolean lattice of dimension |B| − |A| ≥ n.

Lemma 5.14. Let n ∈ N and t ≥ 3. Then R̃(Ċ(rbr)
t , Qn) ≤ (t− 1)n.

Proof. We prove this statement using induction. The base case t = 3 is shown in
Lemma 5.13. Suppose that R̃(Ċ(rbr)

t , Qn) ≤ (t− 1)n for some t ≥ 3. We shall show that
R̃(Ċ

(rbr)
t+1 , Qn) ≤ tn. Let N = tn and choose an arbitrary blue/red coloring of the host

Boolean lattice Q = Q([N ]). Fix any vertex Z ∈ Q([N ]) with |Z| = N − n = (t − 1)n,
and consider the sublattices Q

∣∣Z
∅ and Q

∣∣[N ]

Z
. By induction, we find in Q

∣∣Z
∅ either a

monochromatic copy of Qn, which completes the proof, or a copy Ḋ of Ċ(rbr)
t . In the

latter case, let X ∈ Q
∣∣[N ]

Z
be a vertex colored differently than the maximal vertex in Ḋ.

Then Ḋ andX form a copy of Ċ(rbr)
t+1 . If there exists no such vertexX , then the sublattice

Q
∣∣[N ]

Z
is a monochromatic copy of Qn.
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Lemma 5.15. For sufficiently large n, R̃(Ċ(rbr)
4 , Qn) > 2.02n.

Outline of the proof idea for Lemma 5.15: Let c = 0.02. Let n be a natural number,
and let N = (2 + c)n. First, in Lemma 5.16, we use a probabilistic argument to find
two families S and T of vertices in the Boolean lattice Q([N ]) in layers (1 − c)n and
(1 + 2c)n, respectively, which have two properties:

(1) every vertex in S is incomparable to every vertex in T , and

(2) both S and T are “dense” in their respective layer.

Afterwards, we formally define a blue/red coloring in Construction 5.17, as illustrated
in Figure 5.4. We need (1) to ensure that this construction is well-defined. As a final
step, we shall show that there is no monochromatic copy of Qn and no copy of Ċ(rbr)

4

in our construction, for which we use (2). Recall that we omit floors and ceilings where
appropriate.

S

T (1 + 2c)n

(1− c)n

N/2

n/2

N − n/2

N = (2 + c)n

Figure 5.4: Blue/red coloring of Q([N ]) based on S and T in Construction 5.17.

Lemma 5.16. Let c = 0.02. LetN = (2+ c)n for sufficiently large n. Then there exist families
S and T of vertices in Q([N ]) with the following properties:

(i) For every S ∈ S, |S| = (1− c)n. For every T ∈ T , |T | = (1 + 2c)n.

(ii) Every two vertices S ∈ S and T ∈ T are incomparable.

(iii) For every pair of disjoint sets A,B ⊆ [N ] with |A| = n
2 and |B| = n, there exists an

S ∈ S with S ⊆ A ∪B and |B ∩ S| ≤ n
2 .

(iv) For every pair of disjoint sets A,B ⊆ [N ] with |A| = n
2 and |B| = n, there exists a

T ∈ T with T ⊇ [N ] \ (A ∪B) and |B \ T | ≤ n
2 .
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Proof. First, we introduce several families of vertices in Q([N ]). Let s = (1 − c)n and
t = (1 + 2c)n, and denote the corresponding layers of Q([N ]) by

Ls =
{
Z ∈ Q([N ]) : |Z| = s

}
and Lt =

{
Z ∈ Q([N ]) : |Z| = t

}
.

Let
Cones =

{
Ks(A,B) : A,B ⊆ [N ], A ∩B = ∅, |A| = n

2 , |B| = n
}

be a collection of cones Ks(A,B), which are defined as

Ks(A,B) =
{
S ∈ Ls : S ⊆ A ∪B, |B ∩ S| ≤ n

2

}
,

as illustrated in Figure 5.5. Similarly, let

Conet =
{
Kt(A,B) : A,B ⊆ [N ], A ∩B = ∅, |A| = n

2 , |B| = n
}
,

where a cone Kt(A,B) is a family of vertices given by

Kt(A,B) =
{
T ∈ Lt : T ⊇ [N ] \ (A ∪B), |B \ T | ≤ n

2

}
.

Furthermore, we define the neighborhood of a vertex S ∈ Ls as

Nt(S) =
{
T ∈ Lt : T ⊇ S

}
.

layer Ls

layer Lt

S
Ks(A,B)

Nt(S)Kt(A,B)

A ∪B

[N ] \ (A ∪B)

Figure 5.5: Examples for families Ks(A,B), Kt(A,B), and Nt(S).

We shall find families S and T such that

(i’) S ⊆ Ls and T ⊆ Lt,

(ii’) for every S ∈ S, Nt(S) ∩ T = ∅,

(iii’) for every K ∈ Cones, there exists an S ∈ K ∩ S, and

(iv’) for every K ∈ Conet, there is a T ∈ K ∩ T .
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Each property (i’) to (iv’) implies the respective property (i) to (iv). Summarizing these
properties, the subposet S ∪ T can be described as an antichain that is a “transversal”
of Cones ∪ Conet.

To find the desired S and T , we consider the following two random families. Let
p = 0.77n. Randomly draw a family S ′ by independently including each S ∈ Ls with
probability p. Similarly, draw a family T by including each T ∈ Lt independently with
probability p.

We say that an event E(n) holds with high probability, abbreviated by w.h.p., if
P(E(n)) → 1 for n → ∞. In the following, we shall show that with high probability,
S ′ ∪ T has a large intersection with every K ∈ Cones ∪ Conet, i.e., S ′ ∪ T is a “strong
transversal” of Cones ∪ Conet. Afterwards, we deterministically refine S ′, by deleting
vertices which are “bad” with respect to property (ii’), resulting in a family S ⊆ S ′.
Lastly, we shall verify that S has a non-empty intersection with every cone K ∈ Cones.

Recall that Stirling’s formula, see (0.1), implies thatN ! = Θ(
√
N)
(
N
e

)N . Throughout
this proof, we repeatedly apply the following consequence of Stirling’s formula, which
is a reformulation of Proposition 0.3. For positive constants C > d,(

Cn

dn

)
=

Θ(1)
√
Cn√

dn
√
(C − d)n

(Cn)Cn

eCn

edn

(dn)dn
e(C−d)n

((C − d)n)(C−d)n

= Θ

(
1√
n

)(
CC

dd(C − d)C−d

)n

. (5.2)

Claim 1: With high probability, every cone K ∈ Cones has an intersection with the
(unrefined) family S ′ of size |K ∩ S ′| ≥ 1.66n.

Proof of Claim 1. For arbitrary fixed, disjoint A,B ⊆ [N ] with |A| = n
2 and |B| = n,

let K = Ks(A,B) ∈ Cones. Each element in K is included in S ′ independently with
probability p. Thus,

|K ∩ S ′| ∼ Bin
(
|K|, p

)
, and E(|K ∩ S ′|) = |K| · p = |K| · 0.77n.

We shall bound |K| from below. If S ∈ Ks(A,B), then S consists of s elements, so
|B ∩ S| = |S| − |A ∩ S| ≥ s− |A| ≥ (12 − c)n. Thus, (12 − c)n ≤ |B ∩ S| ≤ n

2 . Using (5.2)
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and c = 0.02, we see that the size of K is

|K| =

cn∑
i=0

(
|A|

s− (n/2− i)

)(
|B|

n/2− i

)
≥

(
|A|

s− n/2

)(
|B|
n/2

)
=

(
n/2

n/2− cn

)(
n

n/2

)
= Θ

(
1

n

)(
1

cc (1/2− c)1/2−c (1/2)1/2

)n

≥ 2.17n,

where the last bound holds for sufficiently large n. In particular, for large n,

E(|K ∩ S ′|) = |K| · p ≥ 2.17n · 0.77n ≥ 2 · 1.66n.

The multiplicative form of Chernoff’s inequality, see Corollary 23.7 in Frieze and
Karoński [32], provides that for a random variable X with binomial distribution and
for 0 < a < 1,

P
(
X ≤ (1− a)E(X)

)
≤ exp

(
−E(X)a2

2

)
.

Using this inequality for X = |K ∩ S ′| and a = 1
2 ,

P
(
|K ∩ S ′| < 1.66n

)
≤ P

(
|K ∩ S ′| ≤

(
1− 1

2

)
E(|K ∩ S ′|)

)
≤ exp

(
−E(|K ∩ S ′|)

8

)
≤ exp (−4 · 1.66n)

LetXK∩S′ be the random variable counting cones K ∈ Cones such that |K∩S ′| < 1.66n.
The expected value of XK∩S′ is

E(XK∩S′) =
∑

K∈Cones

P
(
|K ∩ S ′| < 1.66n

)
≤

∑
B⊆[N ],
|B|=n

∑
A⊆[N ]\B,
|A|=n/2

exp (−4 · 1.66n)

≤ 22N exp (−4 · 1.66n)

≤ 24.04n exp (−4 · 1.66n) → 0 for n→ ∞,

thus w.h.p.,XK∩S′ = 0, i.e., every cone K ∈ Cones has a large intersection with S ′. This
proves Claim 1.
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Claim 2: With high probability, |K ∩ T | ≥ 1.66n for every K ∈ Conet. In particular,
w.h.p., T has property (iv’).

Proof of Claim 2. This claim can be shown similarly to Claim 1, so we only provide a
sketch of the proof. Fix a K = Kt(A,B) ∈ Conet. Note that

|K ∩ T | ∼ Bin
(
|K|, p

)
, and E(|K ∩ T |) = |K| · p = |K| · 0.77n.

The size of K is bounded from below as follows:

|K| =

cn∑
i=0

(
|A|

t−
∣∣[N ] \ (A ∪B)

∣∣− (n/2 + i)

)(
|B|

n/2 + i

)
≥

(
n/2

cn

)(
n

n/2

)
≥ 2.17n.

Thus, E(|K ∩ T |) = |K| · p ≥ 2 · 1.66n. Analogously to Claim 1, this implies that w.h.p.,
|K ∩ T | ≥ 1.66n for every cone K ∈ Conet.

We say that a family of vertices K ⊆ Ls is bad if for every S ∈ K∩S ′, the intersection
Nt(S)∩T is non-empty. We shall show that w.h.p., there exists no bad cone K ∈ Cones.

Claim 3: Let K ∈ Cones such that |K ∩ S ′| ≥ 1.66n. Then P(K is bad) ≤ 0.98n(1.04)
n .

Proof of Claim 3. First, we evaluate P(K′ is bad) for a subfamily K′ ⊆ K ∩ S ′. We
construct K′ such that the neighborhoods Nt(S), S ∈ K′, are pairwise disjoint, by using
a greedy process. Let K0 = K ∩ S ′. Pick a vertex S1 ∈ K0 to be added to K′. Let K1

be the set of remaining vertices in S ∈ K0 \ {S1} for which the neighborhood Nt(S) is
disjoint from Nt(S1). Iteratively for i ≥ 2, as long as Ki−1 ̸= ∅, pick a vertex Si ∈ Ki−1

to be added to K′. Let Ki ⊆ Ki−1 be the set of vertices S ∈ Ki−1 \ {Si} for which
Nt(S) ∩Nt(Si) = ∅.

If Ki−1 = ∅, we stop the process, and let K′ = {S1, . . . , Si−1}. By construction,
the families Nt(S), S ∈ K′, are pairwise disjoint. We shall bound |K′| from below
by overcounting the vertices excluded from K′ in every step i of this process, i.e.,
those vertices S ∈ Ki−1 such that the neighborhoods of S and Si have a non-empty
intersection. Recall that N = (2 + c)n, s = (1 − c)n, and t = (1 + 2c)n for c = 0.02.
By (5.2),

|Nt(Si)| =
(
N − s

t− s

)
=

(
(1 + 2c)n

3cn

)
≤
(

1.041.04

0.060.06 · 0.980.98

)n

≤ 1.26n. (5.3)
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Similarly, there are at most 1.26n verticesS ∈ Ls such thatS ⊆ T for eachT ∈ Nt(Si).
Thus, there are at most 1.262n vertices S in Ls such that Nt(S) ∩ Nt(S1) ̸= ∅, see
also Figure 5.6. In particular, |Ki \ Ki−1| ≤ 1.262n, independently of i. Using that
|K ∩ S ′| ≥ 1.66n, we can bound the number of steps in the greedy process from by

|K′| ≥ |K ∩ S ′|
1.262n

≥ 1.66n

1.262n
≥
(

1.66

1.262

)n

≥ 1.04n.

layer Ls

layer Lt

Nt(Si)Nt(S)

S Si

Figure 5.6: Vertex S ∈ Ls for which the neighborhood Nt(S) intersects Nt(Si).

Our goal is to bound the probability that the cone K is bad. If K is bad, then in
particular K′ is bad, so

P(K is bad) ≤ P(K′ is bad) = P(for any S ∈ K′, Nt(S) ∩ T ̸= ∅),

where we used that K′ ⊆ S ′. We defined K′ such that the neighborhoods Nt(S), S ∈ K′,
are pairwise disjoint. In particular, the probability that a vertex T ∈ Nt(S) is included
in T is independent of every T ′ ∈ Nt(S

′), S′ ∈ K′. Thus,

P(K′ is bad) =
∏
S∈K′

P(Nt(S) ∩ T ̸= ∅).

Next, we bound P(Nt(S) ∩ T ̸= ∅) for any fixed S ∈ K′. By (5.3),

P(Nt(S) ∩ T ̸= ∅) ≤
∑

T∈Nt(S)

P(T ∈ T ) = |Nt(S)| · p ≤ (1.26 · 0.77)n ≤ 0.98n.

Therefore,

P(K is bad) ≤ P(K′ is bad) ≤
∏
S∈K′

0.98n = 0.98n|K
′| ≤ 0.98n(1.04)

n

.
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Claim 4: With high probability, there is no bad cone K ∈ Cones.

Proof of Claim 4. By Claim 1, we have that with high probability, |K ∩ S ′| ≥ 1.66n for
every K ∈ Cones. From now on, suppose that S ′ has this property. Let Xbad be the
random variable counting the number of bad K ∈ Cones. By Claim 3, the expected
value of Xbad is

E(Xbad) =
∑

K∈Cones

P(K is bad)

≤
∑

B⊆[N ],
|B|=n

∑
A⊆[N ]\B,
|A|=n/2

P(K is bad)

≤ 22N0.98n(1.04)
n

≤ 24.04n0.98n(1.04)
n

→ 0 for n→ ∞,

thus, by Markov’s inequality, P(Xbad ≥ 1) → 0, and so, w.h.p., Xbad = 0. In particular,
w.h.p., both conditions |K ∩ S ′| ≥ 1.66n for every K ∈ Cones and Xbad = 0 are
fulfilled, which proves Claim 4.

By Claims 2 and 4, we know that w.h.p., for the randomly selected families S ′ ⊆ Ls

and T ⊆ Lt, there exists no bad cone in Cones, and for every K ∈ Conet, K ∩ T ≠ ∅.
This implies in particular the existence of two families S ′ and T with these properties.

For such fixed S ′ and T , we refine the family S ′ as follows. Let S be obtained from
S ′ by deleting all vertices S ∈ S ′ for which Nt(S) ∩ T ≠ ∅, i.e., for which there is a
T ∈ T such that S ⊆ T . By construction, S and T possess properties (i’) and (ii’).
Since there is no bad K ∈ Cones, there exists an S ∈ K ∩ S ′, for which the intersection
Nt(S) ∩ T is non-empty. Using the definition of S, we know that S ∈ S, thus S has
property (iii’). Furthermore, T has property (iv’). Therefore, the families S and T are
as desired.

Construction 5.17. Let n and N be integers such that N ≥ 2n. Let S and T be two
families of vertices inQ([N ]) such that for every S ∈ S and T ∈ T , it holds that |S| < |T |
and S ̸⊆ T . We define a blue/red coloring of the Boolean lattice Q([N ]).

Let VT be the set of all vertices Z ∈ Q([N ]) with |Z| ≥ n
2 such that there exists a

T ∈ T with Z ⊆ T . Similarly, let VS be the set of all vertices Z ∈ Q([N ]) for which
|Z| ≤ N − n

2 and there is an S ∈ S with Z ⊇ S. Observe that VT and VS are disjoint,
since the vertices of S and T are pairwise incomparable. Let WS be the set of vertices
Z ∈ Q([N ]) with n

2 ≤ |Z| ≤ N
2 and Z /∈ VS . Similarly, let WT be the set of vertices

Z ∈ Q([N ]) for which N
2 < |Z| ≤ N − n

2 and Z /∈ VT .
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As illustrated in Figure 5.7, we color Z ∈ Q([N ]) in

• blue if |Z| < n
2 ,

• red if Z ∈ VT ∪WS ,

• blue if Z ∈ VS ∪WT ,

• red if |Z| > N − n
2 .

Note that this construction is well-defined if and only if S and T are element-wise
incomparable.

Z ∈ VT

Z ∈ VS
Z ∈ WT

Z ∈ WS

|Z| > N − n
2

|Z| < n
2

S ∈ S

T ∈ T

Figure 5.7: Vertices in the sets VT ,VS ,WT and WS for exemplary S ∈ S and T ∈ T .

Proof of Lemma 5.15. Let c = 0.02, and let N = (2 + c)n for sufficiently large n. Let S
and T be two families with properties as described in Lemma 5.16. Color the Boolean
latticeQ([N ]) as defined in Construction 5.17, and let VS and VT as in Construction 5.17.
It is easy to see that this coloring is Ċ(rbr)

4 -free, by using the observation that for every
two vertices A,B ∈ VT ∪ WS with A ⊆ B, the subposet {Z ∈ Q([N ]) : A ⊆ Z ⊆ B}
is red. We shall show that there is no monochromatic copy of Qn, which implies that
R̃(Ċ

(rbr)
4 , Qn) > N = 2.02n.

Assume towards a contradiction that there exists a red copy Q′ of Qn in Q([N ]). By
the Embedding Lemma, Lemma 0.9, there is an n-element X ⊆ [N ] such that Q′ is the
image of an X-good embedding ϕ, i.e., an embedding ϕ : Q(X) → Q([N ]) such that
ϕ(X) ∩X = X for every X ∈ X. Note that |ϕ(∅)| ≥ n/2, because ϕ(∅) is red. Let A
be an arbitrary subset of ϕ(∅) of size |A| = n/2, see Figure 5.8. Since ϕ(∅) ∩X = ∅,
the subsets A and X are disjoint. By property (iii) in Lemma 5.16, we know that there
exists an S ∈ S with S ⊆ A ∪X and |S ∩X| ≤ n/2.
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Q(X)

X
ϕ(S ′)

∅ A

S ′ = S ∩X

Q([N ])

S ∈ S

ϕ(X)

ϕ(∅)

Q′

Figure 5.8: Embedding ϕ of Q(X) into Q[N ].

Let S′ = S ∩X. We analyze ϕ(S′) to find a contradiction. First, we claim that S ⊆
ϕ(S′). Indeed, using that ϕ is an embedding, we know that S ∩A ⊆ A ⊆ ϕ(∅) ⊆ ϕ(S′).
Moreover, since ϕ is X-good, S′ ⊆ ϕ(S′). Therefore, S = (S ∩A) ∪ S′ ⊆ ϕ(S′). Because
S ∈ S and S ⊆ ϕ(S′), either ϕ(S′) ∈ VS or |ϕ(S′)| > N − n

2 . Recall that ϕ(S′) is a vertex
in the red poset Q′, but every vertex in VS is blue. This implies that ϕ(S′) /∈ VS , so
|ϕ(S′)| > N − n

2 . However, because ϕ is X-good, ϕ(S′) ∩ (X \ S′) = ∅, so

|ϕ(S′)| ≤ N − |X \ S′| = N − |X|+ |S ∩X| ≤ N − n
2 ,

a contradiction. By a symmetric argument, there exists no blue copy of Qn. Therefore,
R̃(Ċ

(rbr)
4 , Qn) > N .

In particular, we find thatR(Qn, Qn) ≥ R̃(Ċ
(rbr)
4 , Qn) > 2.02n. We remark that with

the here presented approach it is not possible to push the lower bound on R(Qn, Qn)

higher than R̃(Ċ(rbr)
4 , Qn), i.e., higher than 3n.

5.5 Forbidden Boolean lattices

Proof of Theorem 5.7. Recall that Q(brbb)
2 , Q(brrb)

2 , Q(rrbb)
2 , and Q

(rbbb)
2 are defined as de-

picted in Figure 5.9. All four lower bounds follow directly from Theorem 5.1.

Q̇
(brbb)
2 Q̇

(brrb)
2 Q̇

(rrbb)
2 Q̇

(rbbb)
2

Figure 5.9: Non-monochromatic blue/red colorings of the Boolean lattice Q2.
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(i): R̃(Q̇
(brbb)
2 , Qn) ≤ 2n.

For n = 1, the statement is trivial, so suppose n ≥ 2. Fix an arbitrary blue/red coloring
of Q = Q([2n]). We shall show that there exists a copy of Q̇(brbb)

2 or a monochromatic
copy of Qn. Let ℓ be the length of a longest blue chain in Q. If ℓ ≤ n, then we apply
Corollary 0.11, i.e., the bound R(Cℓ+1, Qn) = n+ ℓ ≤ 2n, to find a red copy of Qn.

So, suppose that ℓ > n. In Q, fix a blue chain C of length ℓ with minimal vertex A
and maximal vertex B. The sublattice Q

∣∣B
A

has dimension |B| − |A| ≥ ℓ − 1 ≥ n. If
there exists no red vertex in this sublattice, there is a blue copy of Qn. Otherwise, let
R ∈ Q

∣∣B
A

be a red vertex. We claim that there is a copy of Q̇(brbb)
2 . Note that A and B

are blue and R is red, so |A| < |R| < |B|.

• If there is a blue vertex Z ∈ Q
∣∣B
A

with |Z| = |R|, then A, R, Z, and B form a copy
of Q̇(brbb)

2 .

• Suppose that every vertex Z ∈ Q
∣∣B
A

with |Z| = |R| is red. Since ℓ > n ≥ 2,
there is a blue vertex Z1 ∈ C such that A ⊂ Z1 ⊂ B. We shall find a red vertex
incomparable to Z1. Let a ∈ Z1 \ A and b ∈ B \ Z1. Since |A| < |R| < |B|, there
exists a vertex R1 with A ∪ {b} ⊆ R1 ⊆ B \ {a} and |R1| = |R|. Note that R1 is
red and incomparable to Z1, so the four vertices A, R1, Z1, and B form a copy
of Q̇(brbb)

2 .

(ii): R̃(Q̇
(brrb)
2 , Qn) ≤ 2n.

Let N = 2n and Q = Q([N ]). Fix an arbitrary blue/red coloring of Q. We distinguish
two cases.

Case 1: There exist two blue vertices A,B ∈ Q with A ⊆ B and |B| − |A| ≥ n+ 1.

If there is no red vertex in Q
∣∣B
A

, this sublattice contains a blue copy of Qn, so let R1 be
a minimal red vertex in Q

∣∣B
A

. Let a ∈ R1 \ A. If there is no red vertex in the sublattice
Q
∣∣B\{a}
A

, again there is a blue copy of Qn. So, suppose that there exists a red vertex
R2 ∈ Q

∣∣B\{a}
A

. We claim that A, R1, R2, and B form a copy of Q̇(brrb)
2 . Indeed, it is clear

that A ⊂ R1 ⊂ B and A ⊂ R2 ⊂ B. Furthermore, we know that R1 ̸⊆ R2, because
a ∈ R1 \R2, and R2 ̸⊂ R1, because R1 is chosen to be minimal.

Case 2: For any two blue vertices A,B ∈ Q with A ⊆ B, it holds that |B| − |A| ≤ n.

Pick an arbitrary X ⊆ [N ] with |X| = n. Let Y = [N ] \ X, so |Y| = n. Let F be the
family of allX ⊆ X such that the verticesX andX∪Y are both blue. Note that possibly
F = ∅. Assume that for some X ∈ F , there is a vertex X ′ ⊂ X which is blue. Then X ′
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andX ∪Y are comparable blue vertices with |X ∪Y|− |X ′| > |X ∪Y|− |X| = n, which
is a contradiction. Therefore, every proper subset X ′ of X ∈ F is red. In particular,
F is an antichain (or empty). If there is an X ∈ F such that the sublattice Q

∣∣X∪Y
X

is
monochromatic, the proof is complete. Thus, we can suppose that for every X ∈ F ,
there exists a red vertex X ∪ YX for some YX ⊆ Y.

We shall construct an embedding of Qn with a red image. Define the function
ϕ : Q(X) → Q such that for X ∈ Q(X),

ϕ(X) =


X, if Q

∣∣X
∅ is monochromatic red,

X ∪ YX , if Q
∣∣X
∅ is not monochromatic red and X ∈ F ,

X ∪Y, if Q
∣∣X
∅ is not monochromatic red and X /∈ F .

Using that F is an antichain, it is easy to see that ϕ is an embedding of Q(X). To show
that ϕ has a red image, let X ∈ Q(X).

• If Q
∣∣X
∅ is red, then ϕ(X) = X is red.

• If Q
∣∣X
∅ is not monochromatic red and X ∈ F , then ϕ(X) = X ∪ YX is red.

• IfQ
∣∣X
∅ is not monochromatic red andX /∈ F , then assume towards a contradiction

that ϕ(X) = X ∪ Y is blue. If the vertex X is blue as well, then X ∈ F ,
which is a contradiction. So, we conclude that X is red. However, Q

∣∣X
∅ is not

monochromatic red, so there is a blue vertex X ′ ⊂ X . In particular, X ′ ⊆ X ∪Y

and |X ∪Y| − |X ′| > |X ∪Y| − |X| = n, a contradiction.

Therefore, the image of ϕ is a red copy of Qn.

(iii): R̃(Q̇
(rrbb)
2 , Qn) ≤ 2n.

LetN = 2n, and fix an arbitrary blue/red coloring of Q = Q([N ]). There are two cases.

Case 1: There exist two red vertices R1, R2 with R1 ⊂ R2 and |R2| ≤ n.

Fix an arbitrary U with R1 ⊆ U ⊂ R2 and |U | = |R2| − 1, see Figure 5.10. Note that
possibly U = R1. Let a ∈ [N ] with R2 \ U = {a}. The sublattice Q

∣∣[N ]

U
has dimension

at least N − |U | = 2n − |R2| + 1 ≥ n + 1. We consider the auxiliary coloring of Q
∣∣[N ]

U

obtained from the original coloring of Q by recoloring U in red. We apply the Chain
Lemma, Lemma 0.10, for Y = {a} to the auxiliary coloring of Q

∣∣[N ]

U
. This lemma

implies that in the auxiliary coloring, there is either a red copy of Qn or a chain on two
blue vertices B1 ⊂ B2 with a /∈ B1 and a ∈ B2.
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In the first case, recall that R1 ⊆ U is a red vertex. By replacing U with R1 in the
copy ofQn, we obtain a red copy ofQn in the original coloring of Q. In the second case,
observe that B1 and B2 are also blue in our original coloring. We shall prove that the
vertices R1, R2, B1, and B2 form a copy of Q̇(rrbb)

2 in the original coloring of Q. Indeed,
we see that R1 ⊆ U ⊂ B1 ⊂ B2 and R1 ⊂ R2 = U ∪ {a} ⊆ B2. The vertices R1, R2, B1,
and B2 are pairwise distinct. Note that R2 ̸⊆ B1, because a ∈ R2 \ B1. Furthermore,
B1 ̸⊂ R2, because otherwise B1 = U , which contradicts that B1 and U have distinct
colors in the auxiliary coloring.

R2 = U ∪ {a}

[N ]
[N ] \ {a}

R1

U

B1

B2

Q ∅

Figure 5.10: Construction in Case 1 of (iii).

Case 2: The red vertices in layers 0, . . . , n of Q, i.e., in the “lower half”, form an
antichain A.

First, suppose that there exists a blue vertex B ∈ Q with |B| ≥ n+ 1, i.e., in the “upper
half”. In the sublattice Q

∣∣B
∅ , every red vertex is either in A or contained in some layer

n+ 1, n+ 2, . . . , |B| − 1. Therefore, the length of the largest red chain in Q
∣∣B
∅ is at most

|B| − n. By Corollary 0.11, there exists a blue copy of a Boolean lattice with dimension
at least |B| − (|B| − n) = n in Q

∣∣B
∅ . From now on, suppose that the “upper half” is red,

i.e., every vertex Z ∈ Q with |Z| ≥ n+ 1 is red.

• If every vertex Z ∈ Q with |Z| ≤ n is blue, then for any U ∈ Q with |U | = n, the
sublattice Q

∣∣U
∅ is a blue copy of Qn.

• If there exists a red vertex R ∈ Q with |R| ≤ n, then the sublattice Q
∣∣[N ]

R
contains

n + 1 entirely red layers, so the largest blue chain in Q
∣∣[N ]

R
has length at most

(N −|R|+1)− (n+1) = n−|R|. Thus, Corollary 0.11 guarantees the existence of
a red copy of a Boolean lattice with dimension at least (N − |R|)− (n− |R|) = n.
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(iv): R̃(Q̇
(rbbb)
2 , Qn) ≤ 2n+O

(
n

logn

)
.

Recall that Λ2 is the 3-element Λ-shaped poset. In Corollary 1.4 we showed that
R(Λ2, Qn) ≤ n+O

(
n

logn

)
. Let N = n+ 1 +R(Λ2, Qn), and let Q = Q([N ]). We choose

an arbitrary blue/red coloring of Q. Fix an inclusion-minimal red vertex R ∈ Q. If
|R| > n, there is a blue copy of Qn in the sublattice Q

∣∣R
∅, so suppose that |R| ≤ n.

Let A ∈ Q such that A is “directly above” R in the Hasse diagram, i.e., A ⊃ R with
|A| = |R| + 1. Note that Q

∣∣[N ]

A
has dimension N − |A| ≥ N − n − 1 ≥ R(Λ2, Qn),

thus Q
∣∣[N ]

A
contains either a red copy of Qn, as desired, or a blue copy of Λ2. In the

latter case, the red vertex R and the blue copy of Λ2 form a copy of Q̇(rbbb)
2 . Therefore,

R̃(Q̇
(rbbb)
2 , Qn) ≤ N ≤ 2n+O

(
n

logn

)
.

While we have precisely determined the poset Erdős-Hajnal number for three of
the four color patterns of Q2, the upper bound R̃(Q̇

(rbbb)
2 , Qn) ≤ 2n + O

(
n

logn

)
differs

from the provided lower bound 2n by a sublinear margin. Recall that in Theorem 2.2
we proved the lower bound

R(Λ2, Qn) ≥ n+Ω
(

n
logn

)
,

which matches the upper bound for R(Λ2, Qn) applied in our proof. It remains open
whether R̃(Q̇(rbbb)

2 , Qn) ≥ 2n+ Ω
(

n
logn

)
. An intuitive approach for a lower bound con-

struction would be the following: In the host Boolean lattice, assign the color blue to
every vertex in layers 0, . . . , n− 2, and for all other layers mimic the Λ̇2

(b)-free construc-
tion given in Theorem 2.9. However, the probabilistic argument used in Theorem 2.9
fails in this setting, because the 2-dimension of the host Boolean lattice is too large.



Chapter 6

Diagonal poset Ramsey numbers

6.1 Introduction of Chapter 6

Recall that an induced copy of P is the image of an embedding of P intoQ, i.e., a function
ϕ : P → Q such that X ≤P Y if and only if ϕ(X) ≤Q ϕ(Y ) for any two X,Y ∈ P . The
poset Ramsey numberR(P,Q) of posets P andQ is the smallestN such that any blue/red
coloring ofQN contains either a blue induced copy of P or a red induced copy ofQ. In
this chapter, we refer to R(P,Q) also as the induced poset Ramsey number .

In Chapters 1 to 4, we have studied R(P,Qn) for a fixed poset P and large n, mo-
tivated by an Erdős-Hajnal-type question. However, from the perspective of classic
Ramsey theory, the most fundamental question in the study of the poset Ramsey num-
ber is to estimateR(Qn, Qn) for large n. The focus of this chapter is to provide improved
bounds on R(Qn, Qn) and related diagonal poset Ramsey results. The diagonal set-
ting R(Qn, Qn) has been actively studied in recent years. First bounds were given by
Axenovich and Walzer [2] who showed that 2n ≤ R(Qn, Qn) ≤ n2 + 2n. The upper
bound was improved by Walzer [74] to n2 + 1, and then by Lu and Thompson [52]
to the best previously known value n2 − n + 2. Cox and Stolee [18] improved the
lower bound to 2n + 1 for n ≥ 13, which was extended to all n ≥ 3 by Bohman and
Peng [7]. The best known estimate from below is given in Corollary 5.6, where we
showed that R(Qn, Qn) ≥ 2.02n for large n. In particular, the best known lower bound
is linear, while the best known upper bound is quadratic. It remains an open question
to determine the asymptotic behavior of R(Qn, Qn), which we address in Conjecture
6.10.

Related toR(Qn, Qn) is the off-diagonal settingR(Qm, Qn), where bothm and n are

138
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large. Lu and Thompson [52] showed that for n ≥ m ≥ 4,

R(Qm, Qn) ≤ n
(
m− 2 +O

(
1
m

))
+m+ 3.

Here, the O-notation is used in terms of m. Our main result of this chapter is a
strengthened upper bound on the poset Ramsey number of Qm and Qn, when m and
n are both large. Recall that ‘log’ refers to the logarithm with base 2.

Theorem 6.1. Let n,m ∈ N with 225 ≤ m ≤ n. Then

R(Qm, Qn) ≤ n
(
m−

(
1− 2√

logm

)
logm

)
.

More generally, if n,m ∈ N with n ≥ m and ε ∈ R, 0 < ε < 1, such that n+m
n · 1

(1−ε) logm +

m−ε ≤ ε, then
R(Qm, Qn) ≤ n

(
m− (1− ε)2 logm

)
.

Theorem 6.1 is the first improvement of the initial basic upper bound by Axenovich and
Walzer [2], see Theorem 0.2, by a superlinear additive term. Our result immediately
provides an improved upper bound on R(Qn, Qn).

Corollary 6.2. For every ε > 0 and for sufficiently large n ∈ N, depending on ε,

R(Qn, Qn) ≤ n2 − (1− ε)n log n.

Although the asymptotic behavior of R(Qn, Qn) is unknown, the diagonal poset
Ramsey number R(P, P ) is known exactly for some basic posets P . Walzer [74] de-
termined the diagonal poset Ramsey number for chains and antichains, and bounded
this number for the standard example Sn, i.e., the poset consisting of all singletons
and co-singletons of Qn, up to an additive constant 2. Chen, Chen, Cheng, Li, and
Liu [12] showed an exact bound on R(P, P ) when P is the poset which consists of two
elementwise incomparable chains on a given number of vertices, with an added vertex
smaller than all other vertices.

Here, we study the diagonal poset Ramsey number R(P, P ) for further posets P .
The n-fork Vn is the poset consisting of an antichain on n vertices with an added vertex
smaller than all other vertices. The n-diamondDn is the poset consisting of an antichain
on n vertices and a vertex smaller than all others as well as a vertex larger than all
others.

Let n ∈ N. Recall that the Sperner number α(n) is the minimal dimension N such
that QN contains an antichain of size n. Sperner [68] showed that α(n) is the minimal
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integer N such that
(

N
⌊N/2⌋

)
≥ n. It is a basic observation that α(n) ≤ α(2n − 1) ≤

α(n) + 2, which we use repeatedly. Stirling’s formula, as stated in (0.1), yields that
α(n) =

(
1+ o(1)

)
log n, see also Theorem 0.4, where we state an almost exact bound on

α(n) due to Habib, Nourine, Raynaud, and Thierry [41].

Theorem 6.3. For every n ∈ N, 2α(n) ≤ R(Dn, Dn) ≤ α(n) + α(2n − 1). In particular,
2α(n) ≤ R(Dn, Dn) ≤ 2α(n) + 2, and thus R(Dn, Dn) =

(
2 + o(1)

)
log n.

Note that for infinitely many values of n, α(2n−1) ≤ α(n)+1, in which case the above
upper and lower bounds onR(Qn, Qn) differ by 1. In the so-called weak Ramsey setting,
almost tight bounds for the diamond poset were determined by Cox and Stolee [18].

For the next result, we need two further extremal parameters. Given n,N ∈ N with
N ≥ α(n), let β(N,n) and N∗(n) be integers with

β(N,n) = min
{
β :

(
N
β

)
≥ n

}
and N∗(n) = max

{
N ≥ α(n) : N − β(N,n) < α(n)

}
,

as illustrated in Figure 6.3. Note that
(
N
0

)
< n ≤

( α(n)
⌊α(n)/2⌋

)
≤
(

N
⌊α(n)/2⌋

)
, so 1 ≤ β(N,n) ≤

α(n)/2. Thus, α(n) ≤ N∗(n) < β(N∗(n), n) + α(n) ≤ 2α(n), so in particular, β(N,n)
and N∗(n) are well-defined.

Theorem 6.4. For every n ∈ N, N∗(n) + 1 ≤ R(Vn, Vn) ≤ N∗(n) + 3. Moreover, let
d = 1

1−c , where c is the unique real solution of log
(
c−c(1 − c)c−1

)
= 1 − c, i.e., d ≈ 1.29.

Then R(Vn, Vn) = (d+ o(1)) log n.

Similarly to Theorem 6.3, by using more careful estimates, the proof of Theorem 6.4
provides that R(Vn, Vn) ≤ N∗(n) + 2, whenever α(2n− 1) ≤ α(n) + 1.

A variant of the induced poset Ramsey numberR(P,Q), which is based on induced
copies of P andQ, is the weak poset Ramsey number, which deals with weak copies. Recall
the following definitions. Let P and Q be two posets. A homomorphism ψ : P → Q

is a function such that for any two vertices X and Y in P , X ≤P Y implies that
ψ(X) ≤Q ψ(Y ). In this setting, we allow that ψ(X) ≤Q ψ(Y ) even if X ̸≤P Y . We say
that ψ is a weak embedding if it is an injective homomorphism. The image of ψ is a weak
copy of P in Q. The weak poset Ramsey number of posets P and Q is

Rw(P,Q) = min{N ∈ N : every blue/red coloring of QN contains either

a blue weak copy of P or a red weak copy of Q}.

It is a basic observation that Rw(P,Q) ≤ R(P,Q) for any posets P and Q. The best
known bounds in the diagonal setting P = Q = Qn are a lower bound by Cox and
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Stolee [18] and an upper bound by Lu and Thompson [52], stating that

2n+ 1 ≤ Rw(Qn, Qn) ≤ R(Qn, Qn) ≤ n2 − n+ 2.

Moreover, in the off-diagonal setting Grósz, Methuku, and Tompkins [38] showed that
Rw(Qm, Qn) ≥ m+ n+ 1 for m ≥ 2 and n ≥ 68, and Rw(Qm, Qn) ≤ n+ 2m − 1, where
the second bound is derived from a result by Cox and Stolee [18].

Our final result is an improvement of the upper bound on Rw(Qn, Qn).

Theorem 6.5. For sufficiently large n, Rw(Qn, Qn) ≤ 0.96n2.

The structure of this chapter is as follows. In Section 6.2, we introduce some nota-
tion and definitions, and discuss the Blob Lemmas. In Section 6.3, we present a proof
of Theorem 6.1. In Section 6.4, we prove Theorems 6.3 and 6.4. A proof of Theo-
rem 6.5 is given in Section 6.5. The results of this chapter are joint work with Maria
Axenovich and included in the arXiv preprint [4], which is currently under peer-review.

6.2 Notation and preliminary results

Recall that Q(Z) is the Boolean lattice on ground set Z with dimension |Z|. Given a set Z
with disjoint subsets S, T ⊆ Z, we define a blob in a Boolean lattice Q(Z) as

B(S;T ) = {Z ⊆ Z : S ⊆ Z ⊆ S ∪ T}.

We call T the variable set of this blob. Note that B(S;T ) is a copy of a Boolean lattice
of dimension |T |. We say that |T | is the dimension of the blob. We remark that every
Z ∈ B(S;T ) has the form S ∪ TZ where TZ ⊆ T .

A t-truncated blob, denoted B(S;T ; t), is the poset {Z ∈ B(S;T ) : |Z \ S| ≤ t}.
We also say that B(S;T ; t) has dimension |T |. Given a Boolean lattice Q(X) on ground
set X and a non-negative integer twith t ≤ |X|, let Q(X)t denote the t-truncated Boolean
lattice, that is the subposet {Z ∈ Q(X) : |Z| ≤ t} = B(∅;X; t). Given two non-negative
integers s and twith 0 ≤ s ≤ t ≤ |X|, letQ(X)ts denote the (s, t)-truncated Boolean lattice,
that is the subposet {Z ∈ Q(X) : s ≤ |Z| ≤ t}. In particular, Q(X)t = Q(X)t0.

For ℓ ∈ {0, . . . , |Z|}, recall that layer ℓ of Q(Z) is the set {X ∈ Q(Z) : |X| = ℓ}.
Similarly, the layer ℓ of Q(Z)t is {X ∈ Q(Z)t : |X| = ℓ} for 0 ≤ ℓ ≤ t.
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Let X and Y be disjoint, non-empty sets. Let ϕ : Q(X)t → Q(X ∪ Y) be an em-
bedding. Recall that ϕ is X-good if ϕ(X) ∩ X = X for every X ∈ Q(X)t. Note that
any t-truncated blob B(S;X; t) in Q(X ∪Y), where S ⊆ Y, is the image of the X-good
embedding ϕ : Q(X)t → Q(X ∪Y) defined by ϕ(X) = S ∪X .

We say that ϕ is red if its image is a red poset, i.e., ϕ maps only to red vertices, and
blue if its image is a blue poset. If ϕ is an embedding of a poset P into a Boolean lattice,
we use the notation ϕ(P ) for the set {ϕ(X) : X ∈ P}. For a subposet F of a Boolean
lattice, we say that the volume of F , denoted Vol(F), is the total number of ground
elements in all vertices of F , i.e., Vol(F) = |

⋃
X∈F X|. We shall use the notion of the

volume to keep track of the number of ground elements in the image of an embedding,
constructed iteratively.

In order to show an upper bound on R(Qm, Qn), we have to find a blue copy of Qm

or a red copy of Qn in every blue/red coloring of a host Boolean lattice. Kierstead and
Trotter [46] introduced the following proof technique in a related setting: In the host
Boolean lattice, we define many pairwise disjoint blobs, arranged in a product structure.
If any blob is monochromatically blue, we obtain a blue copy ofQm. Otherwise, we find
a red copy of Qn by choosing one red vertex in each blob. This proof idea was utilized
for previous improvements of the upper bound on R(Qm, Qn), see Lemma 3 in [2] and
Lemma 1 in [52]. Using our notation, let us briefly reiterate this basic approach.

Lemma 6.6 (Blob Lemma; Axenovich-Walzer [2]). Let n,m ∈ N and N = nm + n +m.
Any blue/red coloring of Q([N ]) contains a blue copy of Qm or a red copy of Qn.

Proof. Partition [N ] arbitrarily into sets X,Y(0),Y(1), . . . ,Y(n) such that |X| = n and
|Y(i)| = m, i ∈ {0, . . . , n}. We construct a red embedding ϕ : Q(X) → Q([N ]). Let
B∅ = B(∅,Y(0)). For each X ∈ Q(X), X ̸= ∅, consider the blob

BX = B

X ∪
|X|−1⋃
i=0

Y(i);Y(|X|)

 .

If one of the blobs is monochromatically blue, it is a blue copy of Qm, as desired.

Suppose that there is a red vertex ZX ∈ BX for every X ∈ Q(X). Then the function
ϕ : Q(X) → Q([N ]) with ϕ(X) = ZX has a red image. Observe that ϕ(X) ∩ X = X

for every X ⊆ X, i.e., ϕ is X-good. Moreover, for any two X,Y ∈ Q(X) with X ⊆ Y ,
we see that ϕ(X) = ZX ⊆ ZY = ϕ(Y ). Thus, ϕ is an X-good homomorphism. By
Proposition 0.8, ϕ is an embedding. Therefore, there is a red copy of Qn.
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The general proof idea for our bound on R(Qm, Qn) is to refine Lemma 6.6 by
considering truncated blobs instead of blobs, moreover those chosen based on already
embedded layers. In addition, we control the volume of truncated blobs while con-
structing the embedding. For this, we need parts (i), (ii), and (iii) of the following
variant of Lemma 6.6. Part (iv) is applied in the final part of this chapter to achieve an
upper bound on Rw(Qn, Qn).

Lemma 6.7 (Truncated Blob Lemma). Let n,m, t,N ∈ N. Fix a blue/red coloring of the
Boolean lattice Q([N ]). Let X ⊆ [N ].

(i) If |X| = n, t ≤ n, and there is a red, X-good embedding ϕ : Q(X)t → Q([N ]) such that
Vol(ϕ(Q(X)t)) ≤ N − (n− t)m, then Q([N ]) contains a blue copy of Qm or a red copy
of Qn.

(ii) If |X| = m, t ≤ m, and there is a blue, X-good embedding ϕ : Q(X)t → Q([N ]) such
that Vol(ϕ(Q(X)t)) ≤ N − (m− t)n, then Q([N ]) contains a blue copy of Qm or a red
copy of Qn.

(iii) If |X| = n, t ≤ n, and there is a set S disjoint from X and a red truncated blob B(S;X; t)

such that |S ∪X| ≤ N − (n− t)m, then there is a blue copy of Qm or a red copy of Qn.

(iv) If 0 ≤ s ≤ t ≤ n, and N = (t − s + 2)n, then Q([N ]) contains a blue copy of Qn or a
red copy of Q([n])ts, i.e., a red copy of the middle layers of Qn.

Proof. Part (i): We shall extend ϕ to a red embedding ϕ′ : Q(X) → Q([N ]). As in the
proof of Lemma 6.6, we select pairwise disjoint sets of ground elements, and use them
to define a blob for each not yet embedded X ∈ Q(X). Let U =

⋃
X∈Q(X)t ϕ(X) and

note that |U| = Vol(ϕ(Q(X)t)). Since ϕ is X-good, X ⊆ U. Thus,

|[N ] \ (U ∪X)| = |[N ] \U| = N −Vol(ϕ(Q(X)t)) ≥ (n− t)m.

Fix n − t pairwise disjoint m-element subsets Y(t+1), . . . ,Y(n) of [N ] \ U. For every
X ∈ Q(X) with |X| > t, consider the blob

BX = B

X ∪ (U \X) ∪
|X|−1⋃
i=t+1

Y(i);Y(|X|)

 ,

where we use the convention that
⋃−1

i=0Y
(i) = ∅. If BX is blue, it is a blue copy of Qm,

so suppose that there is a red vertex ZX ∈ BX . Let ϕ′ : Q(X) → Q([N ]) with

ϕ′(X) =

ϕ(X) if |X| ≤ t,

ZX if |X| > t.
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The image of ϕ′ is red. We shall verify that ϕ′ is an embedding. Note that ϕ′(X)∩X = X

for every X ∈ Q(X). Let X1, X2 ∈ Q(X) with X1 ⊆ X2.

• If |X1| ≤ |X2| ≤ t, then ϕ′(X1) = ϕ(X1) ⊆ ϕ(X2) = ϕ′(X2), because ϕ is an
embedding.

• If |X1| ≤ t < |X2|, then ϕ′(X1) = X1∪(ϕ(X1)\X) ⊆ X2∪(U\X) ⊆ ZX2 = ϕ′(X2).

• If t < |X1| ≤ |X2|, then ϕ′(X1) ∈ BX1 , so ϕ′(X1) ⊆ X1 ∪ (U \X) ∪Y(t+1) ∪ · · · ∪
Y(|X1|) ⊆ ZX2 = ϕ′(X2).

Therefore, ϕ′ is an X-good homomorphism, so by Proposition 0.8, ϕ′ is an embedding.

Part (ii): This part is proven analogously to part (i).

Part (iii): Observe that B(S;X; t) is the image of an X-good embedding ϕ : Q(X)t →
Q(S∪X), ϕ(X) = S∪X , withVol(ϕ(Q(X)t) = |S∪X|, so the claim follows from part (i).

Part (iv): Let X = [n]. Choose pairwise disjoint, n-element subsets Y(s), . . . ,Y(t) of
[N ] \X. For each X ∈ Q(X) with s ≤ |X| ≤ t, we define a blob

BX = B

X ∪
|X|−1⋃
i=s

Y(i);Y(|X|)

 ,

where
⋃|X|−1

i=s Y(i) = ∅ for |X| = s. If BX is blue, it corresponds to a blue copy ofQn. If
there is a red vertex ϕ(X) in every BX , then {ϕ(X) : X ∈ X} is a red copy of Q(X)ts.

6.3 Upper bound on Ramsey number R(Qm, Qn)

First, we need the following computational lemma.

Lemma 6.8. Let 225 ≤ m ≤ n. Let ε = 1√
logm

. Then n+m
n · 1

(1−ε) logm +m−ε ≤ ε.

Proof. The bound m ≥ 225 implies that ε = 1√
logm

≤ 1
5 , so in particular, 4ε ≤ 1 − ε.

Since m ≤ n and logm = ε−2, we obtain that

n+m

n
· 1

(1− ε) logm
≤ 2n

n
· ε2

1− ε
=
ε

2
· 4ε

1− ε
≤ ε

2
.



6.3. Upper bound on Ramsey number R(Qm, Qn) 145

For ε ≤ 1
5 , it is straightforward to check that 1

ε ≥ 1 − log ε. Thus, using again that
logm = ε−2,

m−ε = 2−ε logm = 2−
1
ε ≤ 2−1+log ε =

ε

2
.

Therefore,
n+m

n
· 1

(1− ε) logm
+m−ε ≤ ε

2
+
ε

2
= ε.

Next, we show our main result.

Proof of Theorem 6.1. Fix n and m such that n ≥ m. Fix an ε ∈ R with 0 < ε < 1 which
satisfies

n+m

n
· 1

(1− ε) logm
+m−ε ≤ ε. (6.1)

Let
N = n

(
m− (1− ε)2 logm

)
.

We present a proof of the second statement of the theorem, i.e., we shall show that
R(Qm, Qn) ≤ N . The first statement is a corollary of this. Indeed, if m ≥ 225, then
Lemma 6.8 shows that inequality (6.1) holds for ε = 1√

logm
, thus

R(Qm, Qn) ≤ n
(
m− (1− ε)2 logm

)
≤ n

(
m− (1− 2ε) logm

)
= n

(
m−

(
1− 2√

logm

)
logm

)
.

Now, we proceed with the proof of the boundR(Qm, Qn) ≤ N . Let tµ = (1−ε) logm
and tη = n

m tµ. Note that 0 ≤ tµ ≤ m and 0 ≤ tη ≤ n. In this proof, we consider tµ-
truncated blobs of dimensionm and tη-truncated blobs of dimension n. It follows from
the definition of N , tµ, and tη that

N = n(m− tµ) + εntµ = (n− tη)m+ εmtη.

Fix an arbitrary blue/red coloring of Q([N ]). We shall find a blue copy of Qm or a
red copy ofQn in this coloring. More precisely, we show that there is a blue embedding
ϕ of Q([m])tµ whose image has volume at most N − n(m− tµ), or a red embedding ϕ′

of Q([n])tη whose image has volume at most N − (n− tη)m. In either case, Lemma 6.7
gives the desired monochromatic copy of a Boolean lattice.
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First, we suppose that there exist disjoint sets S, T ⊆ [N ] with |S| ≤ εmtη − n and
|T | = n, such that the truncated blob B(S;T ; tη) is monochromatically red, i.e., there is
a red embedding of Q([n])tη . Note that |S ∪ T | ≤ εmtη = N − (n− tη)m. So, part (iii)
of Lemma 6.7 implies the existence of a blue copy of Qm or a red copy of Qn, which
completes the proof. So from now on, we can assume the following:

Property (∗): In every truncated blob B(S;T ; tη) with dimension |T | = n and volume
|S ∪ T | ≤ εmtη, there is a blue vertex.

Let X be a fixed subset of [N ] of size m, and let Y = [N ] \X. In the remainder of
the proof, we construct a blue, X-good embedding ϕ : Q(X)tµ → Q([N ]) such that its
image has a small volume.

6.3.1 Construction of a blue embedding ϕ of Q(X)tµ

We shall find a blue ϕ(X) for each X ∈ Q(X)tµ layer-by-layer such that ϕ(X)∩X = X .
After stating the complete construction, we justify that the defined objects indeed ex-
ist. Fix pairwise disjoint subsets Y(0),Y(1), . . . ,Y(tµ) of Y, where |Y(0)| = n and
|Y(i)| = 2i−1tη, for i ∈ [tµ]. In our construction, we shall make sure that ϕ(X) ∩Y ⊆
Y(0)∪· · ·∪Y(|X|), which ensures that the volume of the embedded posetVol(ϕ(Q(X)tµ)

is at most |X| + |Y(0)| + · · · + |Y(tµ)|. For each selected ϕ(X), we denote the Y-part
ϕ(X)∩Y by YX . Our function ϕ is chosen to be X-good, so ϕ(X) = X∪YX for everyX .

[N ]

∅

Q([N ])

X ∪Y(0) ∪ . . . ∪Y(i)

X ∪Y(0) ∪ . . . ∪Y(i−1)

X ∪ SX
φ(X)

X ∪ SX ∪ TX

X ′ ∪ YX ′ = φ(X ′)

∅ ∪ Y∅ = φ(∅)

B(X ∪ SX ;TX ; tη)

Figure 6.1: The vertex ϕ(X) in B(X ∪ SX ;TX ; tη) for i = 3 and |X| = 4.
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Let ϕ(∅) be a blue vertex in the blob B∅ = B(∅;Y(0); tη), which exists by (∗). To
embed X ∈ Q(X)tµ with |X| = i, 1 ≤ i ≤ tµ, we shall define a truncated blob BX of
dimension n and embed X to a blue vertex in this blob, as provided by property (∗).
Recall that the variable set of a blob is the set difference between its minimal and its
maximal vertex. The variable set of BX shall be the union of the set Y(i) of “new"
ground elements and a set of ground elements of Y that were already used by the
embedding of previous layers.

Let i ≥ 1. Assume that we constructed ϕ(X) for every X ∈ Q(X)tµ , |X| ≤ i − 1,
such that ϕ(X) ∩Y ⊆ Y(0) ∪ · · · ∪Y(i−1). For each X ∈ Q(X)tµ , |X| = i, let

SX =
⋃

X′⊂X

ϕ(X ′) ∩Y =
⋃

X′⊂X

YX′ , and

TX ⊆
(
Y(0) ∪ · · · ∪Y(i)

)
\ SX , with |TX | = n.

Let ϕ(X) be a blue vertex in the blob BX = B(X ∪ SX ;TX ; tη), that exists by property
(∗). Let YX = ϕ(X) ∩Y.

We run this procedure for all i ≤ tµ. It is immediate that ϕ is blue and ϕ(X)∩X = X

for every X ∈ Q(X)tµ . We shall verify that ϕ is an embedding. For any two X1, X2 ∈
Q(X)tµ with X1 ⊆ X2, it follows from the construction that YX1 ⊆ YX2 . Thus,

ϕ(X1) = X1 ∪ YX1 ⊆ X2 ∪ YX2 = ϕ(X2),

i.e., ϕ is an X-good homomorphism of Q(X)tµ . Proposition 0.8 implies that ϕ is indeed
an embedding.

6.3.2 Verification that ϕ is well-defined and has small image volume

We need to make sure that the sets Y(i) and TX exist, i.e., that the sets from which these
are selected as subsets are large enough. To see that Y(i) exists for i ≤ tµ, it is sufficient
to verify |Y(0) ∪ · · · ∪Y(tµ)| ≤ |Y|. Note that for any i ≥ 1,

|Y(0) ∪ · · · ∪Y(i)| = n+

i∑
j=1

2j−1tη = n+ (2i − 1)tη. (6.2)
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Recalling that tµ = (1− ε) logm and tη = n
m tµ, we see that

|Y(0) ∪ · · · ∪Y(tµ)| = n+ (2tµ − 1)tη

≤ n+m1−ε n

m
tµ

=

(
1

tµ
+m−ε

)
ntµ.

We picked ε such that n+m
n · 1

(1−ε) logm+m−ε ≤ ε, which implies that 1
tµ
+ m

ntµ
+m−ε ≤ ε.

Thus,

|Y(0) ∪ · · · ∪Y(tµ)| ≤
(
ε− m

ntµ

)
ntµ

= εntµ −m

= N − n(m− tµ)−m (6.3)

≤ N −m

= |Y|. (6.4)

It follows from (6.4) that the sets Y(i), i ≤ tµ, exist.

Next, we shall show that TX exists for every X ∈ Q(X)tµ , |X| = i, with i ∈ [tµ]. For
that, we need to verify that |(Y(0) ∪ · · · ∪Y(i)) \

⋃
X′⊂X YX′ | ≥ n. Observe that in our

construction ϕ(X) is chosen in a tη-truncated blob, in which every vertex is larger than
SX =

⋃
X′⊂X YX′ . Therefore, |YX \

⋃
X′⊂X YX′ | ≤ tη, i.e., we are introducing at most tη

“new” elements from Y for ϕ(X), compared to the images of proper subsets of X . If
|X| = i, then X has 2i − 1 proper subsets X ′, and each ϕ(X ′) uses as most tη “new”
elements of Y compared to its own subsets, so we have that

|SX | =
∣∣∣∣ ⋃
X′⊂X

YX′

∣∣∣∣ = ∣∣∣∣ ⋃
X′⊂X

(
YX′ \

⋃
X′′⊂X′

YX′′

)∣∣∣∣ ≤ (2i − 1)tη. (6.5)

Using (6.2) and (6.5), we find that∣∣∣∣(Y(0) ∪ · · · ∪Y(i)) \
⋃

X′⊂X

YX′

∣∣∣∣ ≥ (n+ (2i − 1)tη)− (2i − 1)tη = n,

so we can select an n-element set TX from (Y(0) ∪ · · · ∪Y(i)) \
⋃

X′⊂X YX′ .
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6.3.3 Completion of the proof

Finally, we consider the volume of ϕ(Q(X)tµ), and obtain the following bound us-
ing (6.3):

Vol(ϕ(Q(X)tµ)) ≤ |X|+ |Y(0)∪· · ·∪Y(tµ)| ≤ m+(N−n(m− tµ)−m) = N−n(m− tµ).

We conclude that ϕ is a blue, X-good embedding of Q(X)tµ such that its image has
volume Vol(ϕ(Q(X)tµ)) ≤ N − (m− tµ)n. Thus, by part (ii) of Lemma 6.7 with t = tµ,
there is a blue copy of Qm or a red copy of Qn.

6.4 Bounds on R(Dn, Dn) and R(Vn, Vn)

6.4.1 Proof of Theorem 6.3

Recall that the Sperner numberα(n) is the smallestN such thatQN contains an antichain
of size n, and Sperner [68] showed that

( α(n)
⌊α(n)/2⌋

)
≥ n.

Proof of Theorem 6.3. We shall show that 2α(n)−1 < R(Dn, Dn) ≤ α(n)+α(2n−1). For
the lower bound, color the Boolean lattice Q1 = Q([2α(n)− 1]) such that Z ∈ Q1 is red
if |Z| < α(n) and blue if |Z| ≥ α(n). Assume that in this coloring there is a red copy D
of Dn with maximal vertex Y , thus D is contained in the subposet {Z ∈ Q1 : Z ⊆ Y },
which is a copy of a Boolean lattice of dimension |Y | < α(n). We know that D contains
an antichain on n vertices, but by definition of α(n) there is no antichain on n vertices
in {Z ∈ Q1 : Z ⊆ Y }, a contradiction. Similarly, we see that there is no blue copy of
Dn. This implies that R(Dn, Dn) > 2α(n)− 1.

In order to bound R(Dn, Dn) from above, let N = α(n) + α(2n − 1), and consider
an arbitrary blue/red coloring of the Boolean lattice Q2 = Q([N ]). Let

S =
{
Z ∈ Q2 : |Z| = ⌊α(n)/2⌋

}
and T =

{
Z ∈ Q2 : |Z| = N − ⌊α(n)/2⌋

}
.

We distinguish two cases.
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Case 1: At least one of S ∪ {∅} or T ∪ {[N ]} is not monochromatic.

Suppose that T ∪ {[N ]} is not monochromatic. Let Y ∈ T such that Y has a different
color than the vertex [N ], see Figure 6.2. Let S ′ = {Z ∈ S : Z ⊆ Y }.

• If S ′ ∪ {∅} is monochromatic, then one of Y or [N ] has the same color as S ′.
Note that |S ′| =

( |Y |
⌊α(n)/2⌋

)
≥
( α(n)
⌊α(n)/2⌋

)
≥ n, where the last inequality follows from

Sperner’s theorem [68]. This implies that the vertices S ′ ∪ {∅, Y, [N ]} contain a
monochromatic copy of Dn.

• If S ′∪{∅} is not monochromatic, then considerX ∈ S ′ such thatX has a different
color than the vertex ∅. Note that X ⊂ Y . The subposet {Z ∈ Q2 : X ⊆ Z ⊆ Y }
is a copy of a Boolean lattice of dimension |Y |− |X| ≥ N −α(n) ≥ α(2n−1). This
implies that there is an antichain A on 2n − 1 vertices such that for every vertex
Z ∈ A, X ⊆ Z ⊆ Y . Note that neither X nor Y are in A, because each of X and
Y is comparable to every vertex in A. In A, we find n vertices with the same color,
say without loss of generality, red. These n vertices, together with the red vertex
among ∅ and X and the red vertex among Y and [N ], form a red copy of Dn.

∅

[N ]

YT

S
S ′X

Q2

A

Figure 6.2: Setting in Case 1 if S ′ ∪ {∅} is not monochromatic.

Case 2: Both S ∪ {∅} and T ∪ {[N ]} are monochromatic.

IfS∪{∅} and T ∪{[N ]}have the same color, thenS∪{∅, [N ]} contains a monochromatic
copy of Dn, because |S| =

(
N

⌊α(n)/2⌋
)
≥
( α(n)
⌊α(n)/2⌋

)
≥ n. So, suppose that S ∪ {∅} and

T ∪ {[N ]} have distinct colors. Fix the vertex X = [α(n)] ∈ Q2. If X has the same color
as S ∪ {∅}, say red, then let S ′′ = {Z ∈ S : Z ⊆ X}. Note that |S ′′| ≥

( |X|
⌊α(n)/2⌋

)
≥ n,

thus S ′′ ∪ {∅, X} contains a red copy of Dn. If X has the same color as T ∪ {[N ]}, we
find a monochromatic copy of Dn by a similar argument.
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6.4.2 Proof of Theorem 6.4

Let n,N ∈ N such that N ≥ α(n). Recall that

β(N,n) = min
{
β ∈ N :

(
N
β

)
≥ n
}

and N∗(n) = max
{
N ≥α(n) : N − β(N,n)<α(n)

}
,

as illustrated in Figure 6.3. Both β(N,n) and N∗(n) are well-defined.

Q([N ∗])

≥ n
< n

< n

layer β
layer β − 1

layer bN
∗+β
2 c

∅

[N ∗]

Figure 6.3: Setting for N∗ = N∗(n) and β = β(N∗, n).

Proof of Theorem 6.4. Let N∗ = N∗(n). First, we show the lower bound R(Vn, Vn) > N∗.
We construct a blue/red coloring of the Boolean lattice Q1 = Q([N∗]) which contains
no monochromatic copy of Vn. Color the vertices Z with |Z| < β(N∗, n) in red and all
remaining vertices in blue. There is no red antichain of size n, so in particular, there is
no red copy of Vn. Assume towards a contradiction that there is a blue copy of Vn with
minimal vertexX . Note that |X| ≥ β(N∗, n), so the subposet {Z ∈ Q1 : X ⊆ Z ⊆ [N∗]}
is a copy of a Boolean lattice of dimension at most N∗ − β(N∗, n) < α(n). Thus, there
is no blue antichain of size n, and in particular no blue copy of Vn, a contradiction.

For the upper bound, we define N+ to be the smallest integer such that

N+ − β(N+, n) ≥ α(2n− 1).

To show thatR(Vn, Vn) ≤ N+, we consider an arbitrary blue/red coloring of the Boolean
lattice Q2 = Q([N+]). We shall find a monochromatic copy of Vn. Without loss of
generality, the vertex ∅ is red. Let β+ = β(N+, n). We know that layer β+ contains at
least n vertices. If every vertex in this layer is red, then we find a red copy of Vn, so
suppose that there exists a blue vertex X with |X| = β+. The subposet Q3 = {Z ∈
Q2 : X ⊆ Z ⊆ [N+]} is a copy of a Boolean lattice of dimension N+ − β+ ≥ α(2n− 1).
Thus, we find an antichain A of size 2n − 1 in Q3. Note that X /∈ A. Each vertex in A
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is either red or blue, so there are n vertices of the same color in this antichain. These
n vertices, together with one of X or ∅, form a monochromatic copy of Vn, as desired.
Therefore, R(Vn, Vn) ≤ N+.

We shall show that N+ ≤ N∗ + 3. Indeed, note that(
N∗ + 3

β(N∗ + 1, n)

)
≥
(

N∗ + 1

β(N∗ + 1, n)

)
≥ n,

thus β(N∗ + 1, n) ≥ β(N∗ + 3, n). The definition of N∗(n) provides that (N∗ + 1) −
β(N∗ + 1, n) ≥ α(n), so

(N∗ + 3)− β(N∗ + 3, n) ≥ (N∗ + 1) + 2− β(N∗ + 1, n) ≥ α(n) + 2 ≥ α(2n− 1).

Recall that N+ is minimal such that N+ − β(N+, n) ≥ α(2n− 1), so N+ ≤ N∗ + 3. This
concludes the proof of the upper bound. We remark that if α(n) + 1 ≥ α(2n − 1), a
similar argument provides that N+ ≤ N∗ + 2.

It remains to show that N∗(n) = (d+ o(1)) log n, where d = 1
1−c and c is the unique

real solution of log
(
c−c(1− c)c−1

)
= 1− c, i.e., d ≈ 1.29. This follows from a technical

computation given in the next subsection.

6.4.3 Technical computation for the proof of Theorem 6.4

We shall find d such that N∗ = (d+ o(1)) log n, where

N∗ = max
{
N ≥ α(n) : N − β(N,n) < α(n)

}
and β(N,n) = min

{
β ∈ N :

(
N
β

)
≥ n

}
.

Recall Proposition 0.3, which claims that for arbitrary N ∈ N and q with 0 < q < 1,

log

(
N

qN

)
=
(
1 + o(1)

)
H(q)N, (6.6)

where H(q) = −
(
q log q + (1− q) log(1− q)

)
is the binary entropy function. Let c be the

unique solution of 1− c = H(c), i.e., c ≈ 0.2271.

We shall show that N∗ =
(

1
1−c + o(1)

)
log n. Let q ∈ R such that qN∗ = β(N∗, n),

and let q′ ∈ R such that q′(N∗ + 1) = β(N∗ + 1, n). The definition of β implies that(
N∗

qN∗ − 1

)
< n ≤

(
N∗

qN∗

)
and

(
N∗ + 1

q′(N∗ + 1)− 1

)
< n ≤

(
N∗ + 1

q′(N∗ + 1)

)
. (6.7)
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By the definition of N∗(n), we know that

(1− q)N∗ < α(n) ≤ (1− q′)(N∗ + 1). (6.8)

In the following, o(1) always refers to the asymptotic behavior for large n, so equiv-
alently for large N∗, since α(n) ≤ N∗ ≤ 2α(n). Recall that

α(n) =
(
1 + o(1)

)
log n. (6.9)

Each step of the upcoming computation is labelled by an inequality from (6.6)
to (6.9) indicating which argument is being applied. For example, ‘(6.6)= ’ means that the
equality holds because of (6.6). To highlight the idea of our computation, we give a
two-line proof, where some steps are not yet justified:

(1− q)N∗ (6.8)
≈ α(n)

(6.9)
=
(
1+ o(1)

)
log n

(6.7)
≈
(
1+ o(1)

)
log

(
N∗

qN∗

)
(6.6)
=
(
1+ o(1)

)
H(q)N∗,

which implies that q =
(
1 + o(1)

)
c, where c is the unique solution of 1 − c = H(c).

Thus,
N∗ (6.8)

≈ 1
1−qα(n)

(6.9)
=
(

1
1−q + o(1)

)
log(n) =

(
1

1−c + o(1)
)
log(n),

as desired. However, some steps in the above computation require significant ad-
ditional argumentation. In the following, we present a detailed proof that N∗ =(

1
1−c + o(1)

)
log n.

Observe that

(1−q)N∗ (6.8)
< α(n)

(6.9)
=
(
1+o(1)

)
log n

(6.7)

≤
(
1+o(1)

)
log

(
N∗

qN∗

)
(6.6)
=
(
1+o(1)

)
H(q)N∗.

Thus, 1 − q ≤
(
1 + o(1)

)
H(q), so q ≤

(
1 + o(1)

)
c. Next, we bound q′ from below. We

see that

(1− q′)(N∗ + 1)
(6.8)

≥ α(n)
(6.9)
=
(
1 + o(1)

)
log n

(6.7)
>
(
1 + o(1)

)
log

(
N∗ + 1

q′(N∗ + 1)− 1

)
.

We shall show that log
(

N∗+1
q′(N∗+1)−1

)
≥
(
1+o(1)

)
H(q′)(N∗+1). For that, we first require

a rough lower bound on q′.

We know from (6.8) that N∗ − qN∗ ≤ α(n)− 1. Note that qN∗ = β(N∗, n) ≤ α(n),
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so N∗ + 1 ≤ qN∗ + α(n) ≤ 2α(n). Therefore,

(
N∗ + 1

1
16(N

∗ + 1)

)
≤
(
2α(n)
1
8α(n)

)
(6.6)
=

(
22(

1
8

)1/8 (15
8

)15/8
)(1+o(1))α(n)

≤ 1.6(1+o(1)) logn < n,

thus q′ ≥ 1
16 . This bound implies that(

N∗ + 1

q′(N∗ + 1)− 1

)
=

q′(N∗ + 1)

(1− q′)(N∗ + 1) + 1

(
N∗ + 1

q′(N∗ + 1)

)
≥ q′

2− q′

(
N∗ + 1

q′(N∗ + 1)

)
≥ 1

31

(
N∗ + 1

q′(N∗ + 1)

)
.

Thus,

log

(
N∗ + 1

q′(N∗ + 1)− 1

)
≥ − log(31) + log

(
N∗ + 1

q′(N∗ + 1)

)
(6.6)
=
(
1 + o(1)

)
H(q′)(N∗ + 1).

Therefore, 1− q′ ≥
(
1 + o(1)

)
H(q′), which implies that q′ ≥

(
1 + o(1)

)
c.

We see that

α(n)
(6.8)

≤ (1− q′)(N∗ + 1)

≤ (1 + o(1))(1− c)(N∗ + 1)

≤
(
1 + o(1)

)
(1− q)N∗

(6.8)

≤
(
1 + o(1)

)
α(n).

In particular, N∗ = (1+o(1))
1−c α(n)

(6.9)
= (1+o(1))

1−c log n, as desired.

6.5 Upper bound on Ramsey number Rw(Qn, Qn)

Proof of Theorem 6.5. Consider an arbitrary blue/red coloring of the Boolean lattice
Q([N ]), where N = 0.96n2. Our goal is to find a monochromatic weak copy of Qn.
While an induced copy of Qn has a rigid structure, there are many non-isomorphic
weak copies of Qn. In Q([N ]), we shall find a member of a class P(n, s, t) of special
weak copies of Qn.
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6.5.1 Definition of P(n, s, t)

Throughout this proof, we write P ′ < P ′′ for posets P ′ and P ′′ if any element of a poset
P ′ is strictly smaller than any element of a poset P ′′. We define the class P(n, s, t) of
posets, see Figure 6.4 (a), such that each member of this class is of the form

P0 ∪ · · · ∪ Ps−1 ∪Qt
s ∪ P ′

t+1 ∪ · · · ∪ P ′
n,

where

• Pi is an arbitrary poset with |Pi| =
(
n
i

)
, i ∈ {0, . . . , s− 1},

• P ′
j is an arbitrary poset with |P ′

j | =
(

n
n−j

)
=
(
n
j

)
, j ∈ {t+ 1, . . . , n},

• Qt
s is an induced copy of an (s, t)-truncated Qn, i.e., Qt

s consists of layers s, . . . , t
of an n-dimension Boolean lattice Qn,

• P0 < P1 < · · · < Ps−1 < Qt
s < P ′

t+1 < · · · < P ′
n.

Here, if s = 0 or t = n, we use the convention that P0 ∪ · · · ∪ Ps−1 = ∅ or P ′
t+1 ∪

· · · ∪ P ′
n = ∅, respectively. Observe that every member of P(n, s, t) is indeed a weak

copy of Qn, where layer i of Qn corresponds to Pi, for i ∈ {0, . . . , s − 1}, layer j of Qn

corresponds to P ′
j , for j ∈ {t+ 1, . . . , n} and the remaining layers are contained in the

middle part Qt
s.

[N ]

∅

Zbqnc

Z ′bqnc

..
.

..
.

S1

S2

S0

S ′0
S ′1

S ′2

Z0

Z1

Z2

B

Q([N ])

Z ′0

Z ′1

Z ′2

P(n, s, t)

Qt
s

layer s

layer t

P ′t+1

P ′n

P0

Ps−1

<
<

<
<

<
<

<

P1

(a) (b)

Figure 6.4: (a) A P(n, s, t) for s = 4 and t = n− 3. (b) Sausage chain in Q([N ]).
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6.5.2 Construction of a sausage chain in Q([N ])

Let N = 0.96n2. For our proof, we need to define a constant q that satisfies certain
properties. Recall that for 0 < p < 1, the binary entropy function is defined as

H(p) = −
(
p log p+ (1− p) log(1− p)

)
.

Let q be the real number, 0 < q < 1/2, which minimizes (1 − q) + 2
∫ q
0 H(s)ds. It

can be verified by analyzing the first derivative that such a q satisfies H(q) = 1/2, i.e.,
0.11 < q < 0.111, and

∫ q
0 H(s)ds ≤ 0.033. In particular,

(1− q)n2 + 2n2
∫ q

0
H(s) ds ≤ 0.956n2 ≤ N − εn2, (6.10)

for some constant ε > 0.

Next, we define a sausage chain in Q([N ]), see Figure 6.4 (b). Let

Z0 ⊂ Z1 ⊂ · · · ⊂ Z⌊qn⌋ ⊂ Z ′
⌊qn⌋ ⊂ Z ′

⌊qn⌋−1 ⊂ · · · ⊂ Z ′
0

be vertices in Q([N ]) such that for 0 ≤ i ≤ ⌊qn⌋,

|Zi| =
i∑

j=0

(⌈
log

(
n

j

)⌉
+ 1

)
and |Z ′

i| = N −
i∑

j=0

(⌈
log

(
n

j

)⌉
+ 1

)
.

We argue later that |Z⌊qn⌋| ≤ |Z ′
⌊qn⌋|, which implies that these vertices are well-defined.

We define subposets Si and S ′
i, which we refer to as sausages. Let

Si = {X ∈ Q([N ]) : Zi−1 ⊆ X ⊂ Zi}, for 1 ≤ i ≤ ⌊qn⌋,

and S0 = {X ∈ Q([N ]) : X ⊂ Z0}. We remark that in the literature such subposets are
usually referred to as half-open intervals. Similarly, let sausages

S ′
i = {X ∈ Q([N ]) : Z ′

i ⊂ X ⊆ Z ′
i−1}, for 1 ≤ i ≤ ⌊qn⌋,

and S ′
0 = {X ∈ Q([N ]) : Z ′

0 ⊂ X}. Moreover, we define

B = {X ∈ Q([N ]) : Z⌊qn⌋ ⊆ X ⊆ Z ′
⌊qn⌋}.

The subposet B is isomorphic to a Boolean lattice of dimension |Z ′
⌊qn⌋| − |Z⌊qn⌋|. Note
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that
S0 < S1 < · · · < S⌊qn⌋ < B < S ′

⌊qn⌋ < · · · < S ′
0.

We refer to the subposet S0 ∪ · · · ∪ S⌊qn⌋ ∪ B ∪ S ′
⌊qn⌋ ∪ · · · ∪ S ′

0 as the sausage chain. The
sausage chain is well-defined if all vertices Zi and Z ′

i, i ∈ {0, . . . , ⌊qn⌋}, exist. Note that
|S0| < · · · < |S⌊qn⌋| and |S ′

⌊qn⌋| > · · · > |S0|.

6.5.3 Finding a member of P(n, s, t) in the sausage chain

In the sausage chain, we shall find a monochromatic member of P(n, s, t) for some
parameters s and t depending on the coloring, such that the middle partQt

s of P(n, s, t)

is embedded into B, each Pi is embedded into its own Sℓ, and each P ′
i is embedded in

its own S ′
ℓ′ for some ℓ and ℓ′.

Assume without loss of generality that among all sausages

S0, . . . ,S⌊qn⌋,S ′
0, . . . ,S ′

⌊qn⌋,

most sausages have majority color red. Then at least ⌈qn⌉ sausages have this majority
color. Assume further, that there are s sausages among S0, . . . ,S⌊qn⌋ with majority
color red, which we denote by Si0 , . . . ,Sis−1 , i0 < · · · < is−1. Note that possibly s = 0.
Since i0 ≥ 0, we see that i1 ≥ 1, and iteratively ij ≥ j for any j ∈ {0, . . . , s− 1}.

For any i ∈ {0, . . . , ⌊qn⌋},

|Si| = 2|Zi|−|Zi−1| − 1 = 2⌈log (
n
i)⌉+1 − 1 ≥ 2

(
n

i

)
− 1,

so in particular, |Sij | ≥ 2
(
n
ij

)
− 1 ≥ 2

(
n
j

)
− 1, i.e., there are at least

(
n
j

)
vertices in the

majority color red in Sij . For each j ∈ {0, . . . , s − 1}, choose Pj arbitrarily such that
Pj ⊆ Sij , |Pj | =

(
n
j

)
, and Pj is red.

Similarly, we find ⌈qn⌉ − s sausages among S ′
0, . . . ,S ′

⌊qn⌋ with majority color red,
denoted by S ′

i′0
, . . . ,S ′

i′⌈qn⌉−s−1
, i′0 < · · · < i′⌈qn⌉−s−1. Here, it is possible that ⌈qn⌉−s = 0.

For j ∈ {0, . . . , ⌈qn⌉ − s − 1}, choose P ′
n−j arbitrarily, such that P ′

n−j ⊆ S ′
i′j

, |P ′
n−j | =(

n
n−j

)
, and P ′

n−j is red. With a similar argument as before, we see that there are indeed
at least

(
n

n−j

)
distinct red vertices in S ′

i′j
.

Let t = n − ⌈qn⌉ + s. So far, we have selected Pj for j ∈ {0, . . . , s − 1} and P ′
j for

j ∈ {t+1, . . . , n}. It remains to verify thatQt
s is contained in B. For that, we shall show

that the dimension of B is large enough to apply Lemma 6.7 (iv).
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Recall that for any N ∈ N and 0 < p < 1, Proposition 0.3 provides that

log

(
N

pN

)
=
(
1 + o(1)

)
H(p)N,

where H(p) = −
(
p log p+ (1− p) log(1− p)

)
. Thus,

dim(B) = |Z ′
⌊qn⌋| − |Z⌊qn⌋|

= N − 2

⌊qn⌋∑
i=0

(⌈
log

(
n

i

)⌉
+ 1

)

≥ N − 4n− 2

⌊qn⌋∑
i=1

log

(
n

i

)

≥ N − 4n−
(
2 + o(1)

)
n

⌊qn⌋∑
i=1

H

(
i

n

)
. (6.11)

Since H is an increasing and continuous function on the interval (0, 1/2) and is
bounded by 1, we have that

⌊qn⌋∑
i=1

H

(
i

n

)
≤
∫ qn+1

1
H

(
t

n

)
dt =

∫ q+1/n

1/n
H(s)n ds ≤ n

∫ q

0
H(s) ds+ 1,

Thus, using (6.11) and recalling the bound on N from (6.10),

dim(B) ≥ N − 4n−
(
2 + o(1)

)(
n2
∫ q

0
H(s) ds+ n

)
≥ N − 2n2

∫ q

0
H(s) ds− o(n2)

≥
(
(1− q)n2 + 2n2

∫ q

0
H(s) ds+ εn2

)
− 2n2

∫ q

0
H(s) ds− o(n2)

≥ (1− q)n2 + 2n = (n− qn+ 2)n.

In particular, |Z ′
⌊qn⌋| − |Z⌊qn⌋| ≥ 0, which implies that the vertices Zi and Z ′

i, i ∈
{0, . . . , ⌊qn⌋}, are well-defined. Recall that t = n− ⌈qn⌉+ s, so

dim(B) ≥ (n− qn+ 2)n ≥ (t− s+ 2)n.

By Lemma 6.7 (iv), B contains either a blue induced copy of Qn and we are done, or
a red Qt

s. If there is a red Qt
s in B, we conclude that the sausage chain contains a red

member of P(n, s, t), and thus a red weak copy of Qn.
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6.6 Concluding remarks

In this chapter, we provided an improved upper bound on the induced poset Ramsey
number for large Boolean lattices, by showing that for n ≥ m and 0 < ε < 1 with
n+m
n · 1

(1−ε) logm +m−ε ≤ ε,

R(Qm, Qn) ≤ n
(
m− (1− ε)2 logm

)
.

When applying this result to specific ε, there is a trade-off between the best Ramsey
bound and the smallest value of m for which the bound holds. Our main result
claims that R(Qm, Qn) ≤ n

(
m−

(
1− 2√

logm

)
logm

)
for 225 ≤ m ≤ n. In addition, if

1024 ≤ m ≤ n or if 32 ≤ m ≤ n
32 , one could obtain the upper bound R(Qm, Qn) ≤

n
(
m− 1

4 logm
)
, using ε = 1

2 .

Theorem 6.1 is an improvement of the basic upper bound on R(Qm, Qn), see
Lemma 6.6, by a superlinear additive term and a step towards the following conjecture
raised by Lu and Thompson [52].

Conjecture 6.9 (Lu-Thompson [52]). For n ≥ m, R(Qm, Qn) = o(n2).

Recall that for fixed m, Theorem 0.2 implies that R(Qm, Qn) = Θ(n), so the interesting
case here is that both m and n are large. Axenovich and the author propose a stronger
conjecture:

Conjecture 6.10. For any ε > 0, there is a large enough m0 such that for any two m,n ∈ N
with n ≥ m ≥ m0,

R(Qm, Qn) ≤ n ·mε.

Our suggested bound matches up nicely with Conjecture 2.17, in which we conjectured
that for fixed m ∈ N and large n ∈ N,

R(Qm, Qn) = n+ o(n).

In the last part of this chapter, we discussed weak poset Ramsey numbers and
improved the previously known upper bound Rw(Qn, Qn) ≤ R(Qn, Qn) ≤ n2 − o(n2)

to Rw(Qn, Qn) ≤ 0.96n2. It is still open whether the weak poset Ramsey number is
significantly smaller than the induced poset Ramsey number. The author suggests the
following conjecture.

Conjecture 6.11. For any n ∈ N, R(Qn, Qn)−O(n) ≤ Rw(Qn, Qn) ≤ R(Qn, Qn).



160 6. Diagonal poset Ramsey numbers

In this chapter, we focused on the upper bound on Rw(Qn, Qn). The only known
lower bound in this setting is Rw(Qn, Qn) ≥ 2n + 1 due to Cox and Stolee [18] and
improves the trivial bound 2n. It is a natural question whether Construction 5.17, used
to obtain the best known lower bound R(Qn, Qn) ≥ 2.02n, actually gives a blue/red
coloring with no monochromatic weak copy of Qn, and thus gives a non-trivial lower
bound on Rw(Qn, Qn).



Chapter 7

Conclusion

The focus of this thesis was the study of the poset Ramsey number R(P,Q) and its
variations. In the Erdős-Hajnal-type setting R(P,Qn) for a fixed poset P and large n,
we provided bounds which are asymptotically tight in the linear and sublinear additive
term, ifP belongs to one of several classes of posets. To obtain these results, we extended
a known proof method utilizing the Chain Lemma, see Chapter 1, and introduced a new
approach based on blockers, see Chapter 3. In Chapter 2, we showed a sharp jump in
the asymptotic behavior of R(P,Qn), depending on whether P contains a copy of one
of the small posets V2 or Λ2, i.e., for large n,

R(P,Qn)

≤ n+ c(P ), if P contains neither a copy of V2 nor a copy of Λ2

≥ n+ n
15 logn , otherwise.

For the lower bound, we introduced a novel probabilistic construction involving parallel
factorial trees. We conjecture that there is no linear improvement of this bound, i.e.,

R(P,Qn) = n+ o(n), for any fixed poset P and large n.

It remains open whether there exists a poset P such that R(P,Qn) = n + ω
(

n
logn

)
.

However, we were able to find a linear improvement on the trivial lower bound for the
related poset Erdős-Hajnal number R̃(Ṗ , Qn), where Ṗ is a specific colored chain, see
Chapter 5.

In the final chapters of this thesis, we contributed to a central question in the area of
Ramsey theory for posets, that is, to determine the asymptotic behavior of the diagonal
poset Ramsey number R(Qn, Qn). We presented the first linear improvement on the
trivial lower bound and the first superlinear improvement on the basic upper bound

161
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on R(Qn, Qn). More precisely, Corollaries 5.6 and 6.2 provide that

2.02n+ o(1) ≤ R(Qn, Qn) ≤ n2 −
(
1− o(1)

)
n log n.

We proved the lower bound by introducing a probabilistic construction built on two
parallel, “dense” collections of vertices. The upper bound proof refines the previously
known Blob Lemma. The exact asymptotic behavior of R(Qn, Qn) remains unknown,
though we conjecture that

R(Qn, Qn) = O
(
n1+o(1)

)
.
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max-type ordered set, 83
min-type ordered set, 83
modest poset, 99

non-diverse poset, 113
non-trivial poset, 12, 48

ordered set, 21, 49, 82

parallel composition, 4, 72, 101, 113
parallel posets, 4, 113
partial order, 3
partially ordered set, 3
phase, 121
poset, 3
poset Erdős-Hajnal number, 5, 113
poset Ramsey number, 5, 31, 48, 70,

101, 138
prefix, 21, 49, 82

random framework, 55, 93
root vertex, 83

sausage, 156

sausage chain, 156
series composition, 23, 72
series-parallel poset, 23, 72
shrub, 50
size, 4
Sperner number, 22, 101, 139, 149
spindle, 7, 32
standard example, 7
strict comparability, 3
strict prefix, 51, 82
subdivided diamond, 8, 33
sublattice, 115
subposet, 3
subsequence, 103
symmetric chain, 107

tight bound, 70, 91
trivial poset, 12, 48
truncated blob, 141
truncated Boolean lattice, 141

undirected subsequence, 104
up-tree, 23, 51

vertex, 3
volume, 142

weak copy, 4, 140
weak embedding, 24, 140
weak poset Ramsey number, 5, 140
weak shrub, 65
weak subposet, 4
width, 4, 101
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