KIT | KIT-Bibliothek | Impressum | Datenschutz

RoDLA: Benchmarking the Robustness of Document Layout Analysis Models

Chen, Yufan 1; Zhang, Jiaming ORCID iD icon 1; Peng, Kunyu ORCID iD icon 1; Zheng, Junwei 1; Liu, Ruiping 1; Torr, Philip; Stiefelhagen, Rainer ORCID iD icon 1
1 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Before developing a Document Layout Analysis (DLA) model in real-world applications, conducting comprehensive robustness testing is essential. However, the robustness of DLA models remains underexplored in the literature. To address this, we are the first to introduce a robustness benchmark for DLA models, which includes 450K document images of three datasets. To cover realistic corruptions, we propose a perturbation taxonomy with 12 common document perturbations with 3 severity levels inspired by realworld document processing. Additionally, to better understand document perturbation impacts, we propose two metrics, Mean Perturbation Effect (mPE) for perturbation assessment and Mean Robustness Degradation (mRD) for robustness evaluation. Furthermore, we introduce a self-titled model, i.e., Robust Document Layout Analyzer (RoDLA), which improves attention mechanisms to boost extraction of robust features. Experiments on the proposed benchmarks (PubLayNet-P, DocLayNet-P, andM6Doc-P) demonstrate that RoDLA obtains state-of-the-art mRD scores of 115.7, 135.4, and 150.4, respectively. Compared to previous methods, RoDLA achieves notable improvements in mAP of +3.8%, +7.1% and +12.1%, respectively.


Originalveröffentlichung
DOI: 10.1109/CVPR52733.2024.01473
Scopus
Zitationen: 6
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 16.06.2024
Sprache Englisch
Identifikator ISBN: 979-8-3503-5301-3
ISSN: 1063-6919
KITopen-ID: 1000173327
HGF-Programm 46.24.01 (POF IV, LK 01) Applied TA: Digitalizat. & Automat. Socio-Technical Change
Erschienen in 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); Seattle, WA, USA, 16.-22.06.2024
Veranstaltung IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPRW 2024), Seattle, WA, USA, 16.06.2024 – 22.06.2024
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 15556–15566
Externe Relationen Abstract/Volltext
Schlagwörter Robustness, Document Analysis, Computer Vision and Pattern Recognition
Nachgewiesen in Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page