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Abstract

Commitment schemes are an important cryptographic primitive that allow a committer to

decide on a hidden value and possibly reveal it later. They are commonly used for zero

knowledge proofs and other protocols like secure coin flipping. Randomness subversion

attacks involve an attacker subverting the generation of random numbers to compromise

security. To defend against these attacks, rerandomizable commitment schemes are of

special interest since they allow modifying the randomness inside a commitment without

revealing it. Homomorphic commitment schemes allows for easy rerandomization by

combining a potentially subverted commitment with a "fresh" one, without modifying the

message itself. Despite this, little research has been done to survey the available options

for implementors.

In this work, we present a list of five practical randomness-homomorphic commitment

schemes from publications in the field along with proofs of their security. We study their

constructions in detail and compare them in terms of both the security they provide

and their performance. The presented schemes depend on the hardness of problems

from different domains, including the discrete logarithm problem and well known lattice

problems like the Short Integer Solution and Learning with Errors problems. Finally, we

give recommendations about the applications of the presented schemes.
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Zusammenfassung

Commitment-Schemata sind ein wichtiger Teil der Kryptographie, der es einem Committer

ermöglicht, sich für einen verborgenen Wert zu entscheiden und ihn möglicherweise spä-

ter offenzulegen. Sie werden häufig für Zero-Knowledge-Beweise und andere Protokolle

wie sicheres Münzwerfen verwendet. Bei Randomness Subversion Attacks untergräbt ein

Angreifer die Generierung von Zufallszahlen, um die Sicherheit zu gefährden. Zur Abwehr

dieser Angriffe sind rerandomisierbare Commitment-Schemata von besonderem Interesse,

da sie es ermöglichen, die Zufälligkeit innerhalb eines Commitments zu ändern, ohne es

offenzulegen. Homomorphe Commitment-Schemata ermöglichen eine einfache Rerando-

misierung, indem ein möglicherweise untergrabenes Commitment mit einem „frischen“

kombiniert wird, ohne die Nachricht selbst zu ändern. Trotzdem wurde bisher wenig

Forschung betrieben, um die verfügbaren Optionen für Entwickler zu untersuchen.

In dieser Arbeit präsentierenwir eine Liste von fünf praktischen Randomness-homomorphen

Commitment-Schemata aus Veröffentlichungen auf diesem Gebiet zusammen mit Bewei-

sen ihrer Sicherheit. Wir untersuchen ihre Konstruktionen im Detail und vergleichen

sie sowohl hinsichtlich der von ihnen gebotenen Sicherheit als auch ihrer Leistung. Die

vorgestellten Schemata hängen von der Schwierigkeit von Problemen aus verschiedenen

Bereichen ab, darunter das diskrete Logarithmusproblem und bekannte Gitterprobleme

wie die Short Integer Solution und Learning with Errors. Abschließend geben wir Empfeh-

lungen zu den Anwendungen der vorgestellten Schemata.

iii





Contents

Abstract i

Zusammenfassung iii

1 Introduction 1
1.1 Applications of Rerandomizable Commitment Schemes . . . . . . . . . . 1

1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Preliminaries 5
2.1 Properties of Commitment Schemes . . . . . . . . . . . . . . . . . . . . . 6

2.2 Computational Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Discrete Logarithm . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2 Computational Diffie-Hellman . . . . . . . . . . . . . . . . . . . 8

2.2.3 Short Integer-Solution . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.4 Learning with Errors . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Analyzed Commitment Schemes 9
3.1 Discrete Logarithm Schemes . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 Pedersen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.2 ElGamal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.3 Groth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Lattice Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Ajtai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.2 Baum et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Other Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Direct Comparison between the Schemes 25
4.1 Security Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Commitment Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.4 Finding a Suitable Commitment . . . . . . . . . . . . . . . . . . . . . . . 27

5 Conclusion 29

Bibliography 31

v





List of Figures

2.1 Description of the three steps in a commitment . . . . . . . . . . . . . . 5

3.1 Description of the Pedersen Commitment . . . . . . . . . . . . . . . . . . 10

3.2 Description of the ElGamal Commitment . . . . . . . . . . . . . . . . . . 12

3.3 Description of the Groth Commitment . . . . . . . . . . . . . . . . . . . 14

3.4 Description of the Ajtai Commitment . . . . . . . . . . . . . . . . . . . . 18

3.5 Description of the Baum et al. Commitment . . . . . . . . . . . . . . . . 21

3.6 Illustration of how 𝛽 influences securty. Adapted from Baum et al. [6], Fig. 1 22

4.1 Performance comparison of the five commitment schemes . . . . . . . . 26

4.2 Flow graph for deciding on a commitment scheme . . . . . . . . . . . . . 27

vii





List of Tables

4.1 Security Properties of the different schemes . . . . . . . . . . . . . . . . 25

ix





1 Introduction

Commitment schemes are two-party protocols between a committer and a receiver. They

allow the committer to decide on a chosen value without others being able to identify the

value, while being able to later reveal it.

A commitment scheme can be thought of as a two-stage process:

1. Commitment: The committer generates a commitment value, which is a crypto-

graphic representation of the value or statement they want to commit to. The

commitment value should not reveal any information about the committed value or

statement, while not allowing the committer to change the value without changing

the commitment.

2. Unveiling: The committer reveals the committed value or statement to the receiver.

This can be done by providing the receiver with a decommitment information that

allows them to open or recompute the commitment value.

In some cases the number of possible messages is very small. For example, bit commitments

only allow the committer to commit to either 0 or 1. To prevent adversaries from being

able to exhaustively try all openings for a commitment, an element of randomness is

usually included in addition to the message.

Randomness homomorphic commitments are homomorphic with respect to the random-

ness inside them. This thesis deals with the question of what randomness homomorphic

commitment schemes are available and how they compare to each other. Specifically, we

compare the strengths of their security, the problems their security relies on and their

performance.

1.1 Applications of Rerandomizable Commitment Schemes

Since the revelations of Snowden in 2013 we know that state-level attackers try to subvert

the generation of randomness on computers to weaken the security of cryptographic

protocols. There are numerous known practical randomness subversion attacks against

popular cryptosystems [46]. In the case of commitment schemes, one possible approach

to defending against these attacks is to introduce a rerandomizing reverse firewall [14] [4].

Randomness homomorphic commitment schemes are especially easy to rerandomize and

are therefore of special interest.
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1 Introduction

Rerandomizable commitment schemes are also used in Single Secret Leader Elections

(SSLE). SSLE allow multiple parties to randomly choose a leader among them, with the

restriction that the identity of the leader will only be known to the leader themselves.

Later, the leader can reveal their identity and prove it to the rest of the group. This is

useful for example in the context of proof of stake blockchains [5]. This problem was first

introduced by Boneh et al. [9, 10].

There are cryptographic operations that cannot be achieved without a common reference

string (CRS). Their security depends on the trust granted to the authority that generates

the CRS. In practice, there exists no authority that is trusted absolutely. Ananth et al [3]

use the existence of rerandomizable commitment schemes to construct a protocol that

allows the authority to be held accountable if it were to misuse its powers. To implement

this protocol in practice, it is required to have a list of suitable commitment schemes to

choose from. This thesis aims to draw a comparison between popular options.

1.2 RelatedWork

Previous research has been done to survey the construction of commitment schemes.

While none focus on randomness homomorphic commitment schemes specifically, there

is prior work for other sorts of commitments and homomorphic encryption.

Vector commitments allow to commit on a sequence of values and later reveal one or more

of them at a time. Similar to our work, Anca Nitulescu [37] compares a number of different

vector commitment schemes on their properties such as runtime complexity of generating

and verifying the commitment value and their updateability, ie. the ability to move values

in the committed sequence around.

Multivariate polynomial commitment schemes are a group of commitment schemes where

the value being committed to is a polynomial involving more than one variable. Ihyun

Nam [36] surveys multiple of these commitment schemes, studies their construction and

compares them based on runtime complexity and the assumptions their security is based

on.

Homomorphic commitment schemes may be constructed from homomorphic encryption

schemes. One example of this is the (homomorphic) ElGamal encryption [23], which

can be used to construct a homomorphic commitment scheme [1]. This scheme is also

demonstrated in Section 3.1.2. Marcolla et al. [35] evaluate several different homomorphic

encryption algorithms and compares their performance and evolution over time, as well

as the availability of implementations.
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1.3 Contributions

1.3 Contributions

We demonstrate five commitment schemes relying on the hardness of different mathemat-

ical problems. The selected schemes cover both problems from classic assumptions like

the discrete logarithm and problems from the lattice domain, like Short Integer Solution

or Learning with Errors. In contrast to the research listed in Section 1.2, we explicitly only

survey randomness-homomorphic commitment schemes. We provide example implemen-

tations of the schemes and compare their performance to each other.

1.4 Outline

Chapter 2 defines the core properties of commitments and other terms used throughout

the work, as well as the mathematical problems that the hardness of the presented com-

mitments depends on. Chapter 3 present the five chosen commitment schemes in detail

and provides proofs of their security. It also lists a few more randomness homomorphic

commitment schemes that were not included in earlier listing as well as the reasoning

behind this decision. Chapter 4 draws comparisons between the schemes presented ear-

lier and gives recommendations about selecting a scheme for a particular application.

Lastly, Chapter 5 summarizes the findings and provides an outlook for future research

opportunities.
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2 Preliminaries

To discuss the advantages and disadvantages of various commitment schemes, we must

first give definitions for the schemes themselves and their properties.

We describe a commitment in terms of three algorithms Setup, Commit and Verify. The
purpose of these algorithms is detailed in Figure 2.1.

Setup: The parties agree on any shared

parameters required by the scheme.

Commit: The committer computes a commitment

value.

Verify: The verifier validates the commitment

after receiving the opening information

by the committer.

Figure 2.1: Description of the three steps in a commitment

We notate the commitment value as 𝐶𝑜𝑚(𝑚, 𝑟 ), where 𝐶𝑜𝑚 is the Commit algorithm of

the scheme in question,𝑚 is the committed value and 𝑟 is a random value.

To fulfill the criteria of a commitment scheme, there must be no feasible way to compute𝑚

from only𝐶𝑜𝑚(𝑚, 𝑟 ) with a probability that significantly exceeds guessing. This is known

as the Hiding property [18].

Secondly, for any commitment𝐶𝑜𝑚(𝑚, 𝑟 ), there must be no feasible way to find a message

𝑚′ and a random vector 𝑟 ′ such that 𝐶𝑜𝑚(𝑚, 𝑟 ) = 𝐶𝑜𝑚(𝑚′, 𝑟 ′), as this would allow the

committer to reveal a message other than the one it committed to earlier. This is the

Binding property [18].

Subversion Attacks Subversion attacks are attacks where the adversary undermines parts

of the system, without the target noticing. These attacks have received widespread atten-

tion after the Snowden leaks. They are nontrivial to detect and sabotage the security of the

system as a whole [46]. One example of how such a backdoor can impact security of such

a backdoor is demonstrated by Zhichao Yang et al. [46], where the authors demonstrate a

practical randomness subversion attack against the LWE encryption scheme.
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2 Preliminaries

2.1 Properties of Commitment Schemes

Definition 2.1.1 (Correctness). A commitment scheme is said to be correct if the Verify
algorithm from Figure 2.1 succeeds for every𝐶𝑜𝑚(𝑚, 𝑟 ) using opening information for𝑚, 𝑟

[43]. Informally, a commitment scheme is correct if correct openings for valid commitments

are also valid.

Definition 2.1.2 (Rerandomizability). A commitment is rerandomizable [10] if it is possible
to transform a commitment 𝐶𝑜𝑚(𝑚, 𝑟 ) on a value𝑚 into a new commitment 𝐶𝑜𝑚(𝑚, 𝑟 ′)
where 𝑟 ≠ 𝑟 ′, without knowledge of𝑚 or 𝑟 .

Definition 2.1.3 (Homomorphy). A commitment scheme is homomorphic if the commit-

ment value 𝑐 , the message𝑚 and the random value 𝑟 belong to abelian groups 𝐺𝑐 , 𝐺𝑚
and 𝐺𝑟 and the combination of two commitments yields a commitment containing the

combination of the two messages [30].

𝐶𝑜𝑚(𝑚, 𝑟 ) ⊕ 𝐶𝑜𝑚(𝑚′, 𝑟 ′) = 𝐶𝑜𝑚(𝑚 ⊗𝑚′, 𝑟 ⊗ 𝑟 ′) (2.1)

Any homomorphic commitment is rerandomizable, since there exists an identity element

𝑒𝑚 ∈ 𝐺𝑚 . This allows for rerandomization using 𝐶𝑜𝑚(𝑒𝑚, 𝑟 ′):

𝐶𝑜𝑚(𝑚, 𝑟 ) ⊕ 𝐶𝑜𝑚(𝑒𝑚, 𝑟 ′) = 𝐶𝑜𝑚(𝑚 ⊗ 𝑒𝑚, 𝑟 ⊗ 𝑟 ′)
= 𝐶𝑜𝑚(𝑚, 𝑟 ⊗ 𝑟 ′)

We refer to such commitments as randomness-homomorphic.

Definition 2.1.4 (Malleability). Malleable commitments [15] are a generalization of ho-

momorphic commitments. A commitment is said to be malleable if, given a commitment

𝐶𝑜𝑚(𝑚, 𝑟 ) on𝑚, it is possible to derive a commitment𝐶𝑜𝑚(𝑚′, 𝑟 ′) on𝑚′, such that𝑚 and

𝑚′ are related, but different.

Definition 2.1.5 (Equivocability). Equivocable commitment schemes [7, 21] allow the

committer to reveal different committed messages for the same commitment, which are

indistinguishable to the verifier. This means that for a (valid) commitment 𝐶𝑜𝑚(𝑚, 𝑟 ),
the committer can later choose to unveil the commitment as if they had committed on a

different value𝑚′.

This is also referred to as the trapdoor property. A commitment is said to be perfectly
trapdoor if it can be opened up to any message [30].

Definition 2.1.6 (Extractability). Extractable commitments [20, 1] are commitments for

which there exists an algorithm indistinguishable from Setup that, in addition to the usual

setup, sets up a trapdoor. Knowledge of the trapdoor allows extraction of𝑚 from any

commitment 𝐶𝑜𝑚(𝑚, 𝑟 ). This is only possible for computationally hiding commitment

schemes. For example, in the case of a commitment based on an encryption scheme the

decryption key would be the trapdoor.
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2.2 Computational Problems

Extractability and Equivocability might seem like anti-features at first, given that they

explicitly violate the hiding and binding properties. However, we reiterate that these

violations are only possible given the secrets generated during Setup. Without them,

all other assumptions still hold. Equivocable commitments are used for constructing

non-malleable commitments, zero knowledge proofs and secure signature schemes [25].

Both extractable and equivocable commitments are also used to construct universally-

composable commitment schemes [16].

The strength of a commitment schemes security properties is generally divided into three

distinct categories.

A commitment is

• computationally hiding if the advantage of a probabilistic polynomial-time (PPT)

attacker compared to guessing𝑚 is negligible.

• statistically hiding if the advantage of an unbounded attacker over randomly guessing

𝑚 is negligible.

• perfectly hiding if an unbounded attacker has no advantage over guessing𝑚.

These categories are defined in a similar way for the binding property. A commitment is

• computationally binding if the advantage of a polynomial-time committer compared

to guessing𝑚′, 𝑟 ′ is negligible.

• statistically binding if the advantage of an unbounded committer compared to guess-

ing𝑚′, 𝑟 ′ is negligible.

• perfectly binding if an unbounded committer has no advantage compared to guessing

𝑚′, 𝑟 ′.

2.2 Computational Problems

The security of a commitment scheme depends on the hardness of somemathematical prob-

lem. This section introduces the mathematical problems that the presented commitment

schemes depend on.

2.2.1 Discrete Logarithm

The discrete logarithm problem was first introduced along with the similar Diffie-Hellman

problem [22]. For a group 𝐺 , a generator 𝑔 of 𝐺 and some ℎ ∈ 𝐺 it asks to solve 𝑔𝑥 = ℎ for

x. This value can easily be computed for a few specific groups, like multiplicative powers

of ten. Whether the discrete logarithm in general can be computed in polynomial time

on a classical computer is an open problem in computer science. A quantum computer

theoretically able to efficiently compute discrete logarithms using Shors Algorithm [44] and

7



2 Preliminaries

schemes based on the hardness of doing so will therefore usually not offer post-quantum

resistance.

2.2.2 Computational Diffie-Hellman

The Computational Diffie-Hellman (CDH) problem [22] states that for a group 𝐺 with

generator 𝑔 and random 𝑎, 𝑏 ∈ 𝐺 given only (𝑔,𝑔𝑎, 𝑔𝑏) it is hard to compute 𝑔𝑎𝑏 . The

security of the CDH problem relies on the hardness of the discrete logarithm problem.

2.2.3 Short Integer-Solution

For a randommatrix𝐴 ∈ Z𝑛×𝑚𝑞 and some positive real number 𝛽 , the Short Integer Solution

(SIS) problem requires finding a 𝑧 ∈ Z𝑚 with |𝑧 | < 𝛽 such that 𝐴𝑧 = 0. This is similar

to solving regular linear systems, but with the additional constraint that the norm of 𝑧

must be sufficiently small. 𝛽 must be smaller than 𝑞, otherwise 𝑧 = (𝑞, 0 . . . 0) ∈ Z𝑚 would

always be a trivial solution. This problem was first introduced in the seminal work of Ajtai

[2]. A more in-depth analysis can be found in [39].

2.2.4 Learning with Errors

Learning with Errors (LWE) is parameterized by a public matrix 𝐴 ∈ Z𝑛×𝑚 , some secret

𝑠 ∈ Z𝑛𝑞 and a secret vector of uniformly random, small error values 𝑒 . It uses the result

of computing 𝑦 = 𝐴𝑠 + 𝑒 , effectively multiplying 𝑠 with each row in 𝐴 and then adding a

small error [39]. There are multiple variations of the problem:

The Decisional LWE Problem states that it is computationally hard to distinguish 𝑦 from

uniformly random noise [40].

The Search-LWE Problem aims to find the secret 𝑠 given only 𝑦 [40].

8



3 Analyzed Commitment Schemes

Throughout this chapter, various different commitment schemes are presented and ana-

lyzed. Each scheme is analyzed individually, a comparison between them is later drawn in

Chapter 4.

3.1 Discrete Logarithm Schemes

The following commitment schemes are all based on the discrete logarithm problem ex-

plained in Section 2.2, or variations thereof. While these are usually simple and performant,

they are assumed to be efficiently solvable on a quantum computer.

3.1.1 Pedersen

Pedersen Commitments [38] were one of the first commitment schemes developed and

are widely used in literature due to their simplicity and efficiency [28, 29]. Their high

popularity and extensibility is the primary reason for their inclusion in this thesis. A

definition of the commitment algorithms can be found in Figure 3.1. While the message

space in Pedersen commitments themselves is limited to scalar values from Z𝑞 , they have

been extended in a variety of ways to support more complex messages. Peiheng Zhang et

al. [47] extend Pedersen commitments to polynomials. Fischlin and Fischlin [26] developed

an interactive version that is no longer malleable.

What follows are proofs for the fundamental security properties of Pedersen commit-

ments.

Correctness Notice that the computation of the commitment in Figure 3.1 is fully deter-

ministic. Therefore, when the verifier recomputes the commitment in the Verify phase, it

will always end up computing the same value and accept the commitment if the provided

parameters𝑚, 𝑟 are correct.

Randomness Homomorphy Combining two commitments 𝐶𝑜𝑚(𝑚1, 𝑟1) and 𝐶𝑜𝑚(𝑚2, 𝑟2)
yields

𝑔𝑚1ℎ𝑟1𝑔𝑚2ℎ𝑟2 = 𝑔𝑚1+𝑚2ℎ𝑟1+𝑟2 (3.1)

which is equivalent to 𝐶𝑜𝑚(𝑚1 +𝑚2, 𝑟1 + 𝑟2).

9



3 Analyzed Commitment Schemes

Setup: The parties agree on a cyclic group 𝐺

of order 𝑞 where the discrete logarithm

problem is hard as well as two generators

𝑔, ℎ of 𝐺 .

Commit: The committer, given a message𝑚 ∈ 𝐺 ,
chooses a uniformly random 𝑟 ∈ 𝐺 . Then
they compute 𝐶𝑜𝑚(𝑚, 𝑟 ) = 𝑔𝑚ℎ𝑟 .

Verify: The verifier receives𝑚, 𝑟 from the com-

mitter and recomputes the commitment

with the same public parameters. The

commitment is accepted if the recom-

puted commitment matches the given

one.

Figure 3.1: Description of the Pedersen Commitment

Malleability Pedersen Commitments are malleable. Multiplying a commitment𝐶𝑜𝑚(𝑚, 𝑟 )
by 𝑔 gives 𝐶𝑜𝑚(𝑚 + 1, 𝑟 ):

𝐶𝑜𝑚(𝑚, 𝑟 ) · 𝑔 = 𝑔𝑚ℎ𝑟𝑔

= 𝑔𝑚+1ℎ𝑟

= 𝐶𝑜𝑚(𝑚 + 1, 𝑟 ).
(3.2)

Hiding Pedersen Commitments are perfectly hiding. For any𝐶𝑜𝑚(𝑚, 𝑟 ) and any potential
committed message𝑚 there exists a value for 𝑟 that creates the same commitment. There-

fore, all𝑚 are equally likely. Since 𝑔 and ℎ are generators, 𝑔𝑚 and ℎ𝑟 are also generators.

Since 𝑔𝑚
′
is a generator for𝐺 for any𝑚′, there exists a value 𝑥 such that 𝑔𝑚

′
𝑥 = 𝐶𝑜𝑚(𝑚, 𝑟 )

and because ℎ is a generator of 𝐺 , there also exists a randomness 𝑟 ′ such that ℎ𝑟
′
= 𝑥 .

Binding If a Committer were able to find𝑚′, 𝑟 ′ such that 𝐶𝑜𝑚(𝑚, 𝑟 ) = 𝐶𝑜𝑚(𝑚′, 𝑟 ′) then
they would be able to solve the discrete logarithm problem 𝑙𝑜𝑔𝑔 (ℎ) as follows:

𝐶𝑜𝑚(𝑚, 𝑟 ) = 𝐶𝑜𝑚(𝑚′, 𝑟 ′)
𝑔𝑚ℎ𝑟 = 𝑔𝑚

′
ℎ𝑟
′

𝑔𝑚−𝑚
′
= ℎ𝑟

′−𝑟

𝑚 −𝑚′ = 𝑙𝑜𝑔𝑔 (ℎ𝑟
′−𝑟 )

𝑚 −𝑚′ = 𝑙𝑜𝑔𝑔 (ℎ) (𝑟 ′ − 𝑟 )
𝑚 −𝑚′
𝑟 ′ − 𝑟 = 𝑙𝑜𝑔𝑔 (ℎ)

(3.3)

10



3.1 Discrete Logarithm Schemes

Therefore finding such𝑚′, 𝑟 ′ is at least as hard as the discrete logarithm problem in𝐺 and

therefore Pedersen Commitments are computationally binding.

Equivocability The committer can reveal a commitment to be any message𝑚 if a value 𝑥

is known such that 𝑔𝑥 = ℎ. This follows directly from the observation that

𝐶𝑜𝑚(𝑚, 𝑟 ) = 𝑔𝑚ℎ𝑟

= 𝑔𝑚 (𝑔𝑥 )𝑟

= 𝑔𝑚+𝑥𝑟 .

(3.4)

Any Commitment 𝐶𝑜𝑚(𝑚, 𝑟 ) can then be opened up to reveal an arbitrary message𝑚′

using 𝑟 ′ =𝑚 + 𝑥𝑟 −𝑚′ as the random vector. This is true because

𝐶𝑜𝑚(𝑚′, 𝑟 ′) = 𝑔𝑚′+𝑥𝑟 ′

= 𝑔𝑚
′+𝑥 (𝑚+𝑥𝑟−𝑚′)

= 𝑔𝑚
′+𝑚+𝑥𝑟−𝑚′

= 𝑔𝑚+𝑥𝑟

= 𝐶𝑜𝑚(𝑚, 𝑟 ).

(3.5)

This makes Pedersen commitments equivocable.

Extractability Since the committer, given the right information, is able to open any

commitment to any value (Equation 3.5), it is impossible for an attacker to extract any

specific committed value. This makes unextractable under our assumptions.

11
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3.1.2 ElGamal

ElGamal Commitments are based on the popular ElGamal encryption scheme first described

by Taher Elgamal in 1985 [24]. Committing to a value is equivalent to encrypting it under

the ElGamal encryption. The value can later be extracted using a trapdoor, which is the

encryption key used. The scheme is explained in Figure 3.2.

The scheme is included in this work to demonstrate the possibility of using homomorphic

encryption to construct homomorphic commitment schemes.

Setup: The parties agree on a cyclic group 𝐺 of

order 𝑞 where the discrete logarithm prob-

lem is hard as well as two generators 𝑔, ℎ

of 𝐺 .

Commit: The committer, given a message𝑚 ∈ 𝐺 ,
chooses a uniformly random 𝑟 ∈ Z𝑞 . Then
they compute 𝐶𝑜𝑚(𝑚, 𝑟 ) = (𝑔𝑟 ,𝑚ℎ𝑟 ).

Verify: The verifier receives𝑚, 𝑟 from the com-

mitter and recomputes the commitment

with the same public parameters. The

commitment is accepted if the recom-

puted commitment matches the given

one.

Figure 3.2: Description of the ElGamal Commitment

Correctness As the computation of the commitment is fully deterministic, the correctness

of ElGamal commitments follows analogous that of Pedersen commitments described in

Figure 3.1.1.

Randomness Homomorphy Let (𝑔𝑟1,𝑚1ℎ
𝑟1), (𝑔𝑟2,𝑚2ℎ

𝑟2) be two messages, using the same

𝑔, ℎ but otherwise independent of each other.

𝐶𝑜𝑚(𝑚1, 𝑟1) ·𝐶𝑜𝑚(𝑚2, 𝑟2) = (𝑔𝑟1,𝑚1ℎ
𝑟1) · (𝑔𝑟2,𝑚2ℎ

𝑟2)
= (𝑔𝑟1 · 𝑔𝑟2, (𝑚1ℎ

𝑟1) · (𝑚2ℎ
𝑟2))

= (𝑔(𝑟1+𝑟2), (𝑚1 ·𝑚2)ℎ(𝑟1+𝑟2))
(3.6)

The last step in Equation 3.6 is equivalent to a commitment on a message𝑚1 ·𝑚2 using

the randomness 𝑟1 + 𝑟2. Therefore, the ElGamal commitment is homomorphic.

Binding The first half of the commitment, 𝑔𝑟 , is an injective function on 𝑟 ∈ Z𝑞 . Therefore,
a second opening would have to use the same randomness, otherwise the first term would

be different. But the second half,𝑚ℎ𝑟 uniquely determines𝑚 if ℎ𝑟 is fixed. Therefore, no

second opening can exist which makes the commitment perfectly binding.

12
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Hiding If an adversary A was able to efficiently compute𝑚 given only 𝐶𝑜𝑚(𝑚, 𝑟 ) then
this implies the existence of an attacker B who can efficiently solve the computational

Diffie-Hellman problem defined in Section 2.2.2. When given an instance of the CDH

problem (𝑔,𝑔𝑎, 𝑔𝑏) B chooses a random 𝑧 ∈ Z𝑞 and gives 𝐶𝑜𝑚(𝑚, 𝑟 ) = (𝑔𝑎, 𝑧) to A with

the public parameters 𝑔 = 𝑔, ℎ = 𝑔𝑏 . When A returns an𝑚 ∈ Z𝑞 , B simply computes

𝑧/𝑚 = ℎ𝑎 = 𝑔𝑎𝑏

Therefore, the hiding property of the ElGamal commitment is at least as hard as the CDH

problem, making it computationally hiding.

Malleability The ElGamal commitment scheme is easily malleable, as multiplying the

second element of the commitment with any value directly influences the committed

value: For a commitment (𝑔𝑦,𝑚ℎ𝑦), multiplying with any𝑚′ yields (𝑔𝑦,𝑚ℎ𝑦𝑚′), a valid
commitment for the message𝑚 ·𝑚′.

Equivocability The commitment is perfectly binding and therefore cannot be equivocable

under our assumptions.

Extractability Because 𝑔, ℎ are generators of 𝐺 , they have the relation ℎ = 𝑔𝑥 for some

𝑥 ∈ Z𝑞 . This makes 𝑥 a trapdoor. Knowing 𝑥 allows opening up any commitment. To open

a commitment (𝑔𝑦,𝑚ℎ𝑦), divide the second value by the first which gives𝑚𝑔𝑥 . Since 𝑥

and 𝑔 are known, this can trivially be solved for𝑚. This is equivalent to knowledge of the

private key in the ElGamal encryption scheme.

13
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3.1.3 Groth

Groth demonstrates a homomorphic commitment scheme based on bilinear maps common

in pairing cryptography. Like the ElGamal scheme it allows committing to group elements

instead of exponents [30]. The scheme itself is explained in Figure 3.3.

Definition 3.1.1 (Bilinear Groups). Bilinear Groups are two groups𝐺 , 𝐺𝑡 with a bilinear

map 𝑒 : 𝐺 ×𝐺 → 𝐺𝑇 . The operation 𝑒 satisfies a number of conditions [42].

• It is linear in both arguments

• It is non-degenerate: 𝑒 (𝑥,𝑦) = 0⇔ 𝑥 = 0 ∨ 𝑦 = 0

• It is efficiently computable

The security of their scheme depends on the hardness of the simultaneous triple pairing
assumption, which states that given two random tuples (𝑔𝑟 , 𝑔𝑠, 𝑔𝑡 ) and (ℎ𝑟 , ℎ𝑠, ℎ𝑡 ) and a

bilinear map 𝑒 it is infeasible to find 𝑟 , 𝑠 , 𝑡 such that

𝑒 (𝑔𝑟 , 𝑟 )𝑒 (𝑔𝑠, 𝑠)𝑒 (𝑔𝑡 , 𝑡) = 1 and 𝑒 (ℎ𝑟 , 𝑟 )𝑒 (ℎ𝑠, 𝑠)𝑒 (ℎ𝑡 , 𝑡) = 1

Groth shows that this assumption is implied by the decisional linear assumption [8].

Setup: The parties agree on two groups 𝐺 , 𝐺𝑇 of

order 𝑞 and a bilinear map 𝑒 from𝐺 to𝐺𝑇 ,

a number of messages 𝑛

and 2𝑛 + 4 random elements

(𝑔𝑠, 𝑔𝑟 , 𝑔1 . . . 𝑔𝑛, ℎ𝑠, ℎ𝑟 , ℎ1 . . . ℎ𝑛) ∈ 𝐺2𝑛+4
.

Commit: The committer, given 𝑛 messages

𝑚1 . . .𝑚𝑛 chooses two random values

𝑟, 𝑠 ∈ 𝐺 . The commitment is given by

(𝑐, 𝑑) with
𝑐 = 𝑒 (𝑔𝑠, 𝑠)𝑒 (𝑔𝑟 , 𝑟 )

∏𝑛
𝑖=1 𝑒 (𝑔𝑖,𝑚𝑖) and

𝑑 = 𝑒 (ℎ𝑠, 𝑠)𝑒 (ℎ𝑟 , 𝑟 )
∏𝑛
𝑖=1 𝑒 (ℎ𝑖,𝑚𝑖).

Verify: The verifier receives𝑚1 . . .𝑚𝑛 , (𝑟, 𝑠) from
the committer and recomputes the com-

mitment with the same public parameters.

The commitment is accepted if the re-

computed commitment matches the given

one.

Figure 3.3: Description of the Groth Commitment
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Correctness Commitments are verified by recomputing and comparing them. Since the

commit algorithm is deterministic, the proof of correctness is analogous to that of Pedersen

commitments in Figure 3.1.1.

Hiding As shown in the section on equivocability, any commitment can be opened to

any message. This implies that the commitment scheme is perfectly hiding, as an attacker

cannot possibly rule out any possibilities.

Randomness Homomorphy For any two groups𝐺 ,𝐺𝑇 both halves of the commitment (𝑐/𝑑)

are homomorphic. The following proves this for 𝑐 , the proof for 𝑑 follows in the same way.

Let 𝑐 , 𝑐′ be the first halves of two commitments𝐶𝑜𝑚(𝑚1 . . .𝑚𝑛, 𝑟 ) and𝐶𝑜𝑚(𝑚′1 . . .𝑚′2, 𝑟 ′).

(𝑒 (𝑔𝑠, 𝑠)𝑒 (𝑔𝑟 , 𝑟 )
𝑛∏
𝑖=1

𝑒 (𝑔𝑖,𝑚𝑖)) (𝑒 (𝑔𝑠, 𝑠′)𝑒 (𝑔𝑟 , 𝑟 ′)
𝑛∏
𝑖=1

𝑒 (𝑔𝑖,𝑚′𝑖))

= 𝑒 (𝑔𝑠, 𝑠𝑠′)𝑒 (𝑔𝑟 , 𝑟𝑟 ′)
𝑛∏
𝑖=1

𝑒 (𝑔𝑖,𝑚𝑖𝑚
′
𝑖)

(3.7)

This is equivalent to the first half of a commitment 𝐶𝑜𝑚(𝑚𝑚′, (𝑠𝑠′, 𝑟𝑟 ′)). Therefore, the
Groth commitment is randomness-homomorphic.

Equivocability To set up a trapdoor, one chooses 𝑥1, 𝑦1 . . . 𝑥𝑛 , 𝑦𝑛 , 𝑥𝑠 , 𝑦𝑠 , 𝑥𝑟 , 𝑦𝑟 at random

such that 𝑥𝑠𝑦𝑟 ≠ 𝑥𝑟𝑦𝑠 [30]. Then, the key is defined as

𝑔1 = 𝑔
𝑥
1
, ℎ1 = 𝑔

𝑦

1
. . . 𝑔𝑛 = 𝑔

𝑥𝑛
, ℎ𝑛 = 𝑔

𝑦𝑛
, 𝑔𝑠 = 𝑔

𝑥
𝑠 , ℎ𝑠 = 𝑔

𝑦
𝑠 , 𝑔𝑟 = 𝑔

𝑥
𝑟 , ℎ𝑟 = 𝑔

𝑦
𝑟 .

Choosing 𝑥𝑠𝑦𝑟 − 𝑥𝑟𝑦𝑠 enables computing(
𝛼 𝛽

𝛾 𝛿

)
=

(
𝑥𝑟 𝑥𝑠
𝑦𝑟 𝑦𝑠

)−1
. (3.8)

Then, the trapdoor key is (𝑥1, 𝑦1 . . . 𝑥𝑛, 𝑦𝑛, 𝑥𝑠, 𝑦𝑠, 𝑥𝑟 , 𝑦𝑟 , 𝛼, 𝛽,𝛾, 𝛿) [30]. Notice that computing

the trapdoor key given only the public key is computationally hard due to the discrete

logarithm problem.

Then, to create an equivocable commitment, the committer chooses a random (𝑠, 𝑟 ) ∈ 𝐺2

and computes a commitment (𝑐, 𝑑) ∈ 𝐺2

𝑇
as follows [30]:

𝑐 = 𝑒 (𝑔𝑟 , 𝑟 )𝑒 (𝑔𝑠, 𝑠) and 𝑑 = 𝑒 (ℎ𝑟 , 𝑟 )𝑒 (ℎ𝑠, 𝑠).

Such a commitment can then be opened to reveal anymessage (𝑚1, . . .𝑚𝑛) by computing

𝑎 = 𝑟𝑥𝑟 𝑠𝑥𝑠
∏𝑛
𝑖=1𝑚

−𝑥𝑖
𝑖

and 𝑏 = 𝑟𝑦𝑟 𝑠𝑦𝑠
∏𝑛
𝑖=1𝑚

−𝑦𝑖
𝑖
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Then, the opening (𝑟 ′, 𝑠′)where 𝑟 ′ = 𝑎𝛼𝑏𝛽 and 𝑠′ = 𝑎𝛾𝑏𝛿 is a valid opening for (𝑚1, . . .𝑚𝑛)[30].

This is the case since (
𝛼 𝛽

𝛾 𝛿

)
×
(
𝑥𝑟 𝑥𝑠
𝑦𝑟 𝑦𝑠

)
=

(
1 0

0 1

)
. (3.9)

Due to the properties of a bilinear map defined in Definition 3.1.1 we know that

𝑒 (𝑔𝑟 , 𝑟 ′)𝑒 (𝑔𝑠, 𝑠′) = 𝑒 (𝑔𝑥𝑟 , 𝑎𝛼𝑏𝛽)𝑒 (𝑔𝑥𝑠 , 𝑎𝛾𝑏𝛿 )
= 𝑒 (𝑔𝑥𝑟 , 𝑎𝛼 )𝑒 (𝑔𝑥𝑟 , 𝑏𝛽)𝑒 (𝑔𝑥𝑠 , 𝑎𝛾 )𝑒 (𝑔𝑥𝑠 , 𝑏𝛿 )
= 𝑒 (𝑔, 𝑎)𝛼𝑥𝑟𝑒 (𝑔𝑏)𝛽𝑥𝑟𝑒 (𝑔, 𝑎)𝛾𝑥𝑠𝑒 (𝑔,𝑏)𝛿𝑥𝑠

= 𝑒 (𝑔, 𝑎)𝛼𝑥𝑟+𝛾𝑥𝑠𝑒 (𝑔,𝑏)𝛽𝑥𝑟+𝛿𝑥𝑠
= 𝑒 (𝑔, 𝑎) .

(3.10)

In the same way, it follows that 𝑒 (ℎ𝑟 , 𝑟 ′)𝑒 (ℎ𝑠, 𝑠′) = 𝑒 (ℎ,𝑏).

To verify the trapdoor commitment above, the verifier recomputes the commitment.

Substituting in 𝑎 = 𝑟𝑥𝑟 𝑠𝑥𝑠
∏𝑛
𝑖=1𝑚

−𝑥𝑖
𝑖

and 𝑏 = 𝑟𝑦𝑟 𝑠𝑦𝑠
∏𝑛
𝑖=1𝑚

−𝑦𝑖
𝑖

gives

𝑒 (𝑔𝑠, 𝑠′)𝑒 (𝑔𝑟 , 𝑟 ′)
𝑛∏
𝑖=1

𝑒 (𝑔𝑖,𝑚𝑖) = 𝑒 (𝑔, 𝑎)
𝑛∏
𝑖=1

𝑒 (𝑔𝑖,𝑚𝑖)

= 𝑒 (𝑔, 𝑟𝑥𝑟 𝑠𝑥𝑠
𝑛∏
𝑖=1

𝑚
−𝑥𝑖
𝑖
)

𝑛∏
𝑖=1

𝑒 (𝑔𝑥𝑖 ,𝑚𝑖)

= 𝑒 (𝑔, 𝑟𝑥𝑟 𝑠𝑥𝑠 )
𝑛∏
𝑖=1

𝑒 (𝑔,𝑚𝑥𝑖−𝑥𝑖
𝑖
)

= 𝑒 (𝑔, 𝑟𝑥𝑟 𝑠𝑥𝑠 )
= 𝑒 (𝑔𝑥𝑟 , 𝑟 )𝑒 (𝑔𝑥𝑠 , 𝑠)
= 𝑒 (𝑔𝑟 , 𝑟 )𝑒 (𝑔𝑠, 𝑠)
= 𝑐.

(3.11)

In the same way it can be proven that 𝑒 (ℎ𝑠, 𝑠′)𝑒 (ℎ𝑟 , 𝑟 ′)
∏𝑛
𝑖=1 𝑒 (ℎ𝑖,𝑚𝑖) = 𝑑 , making the

commitment valid [30].

Binding Assume therewas an adversaryA that, given a commitment key (𝑔1, ℎ1 . . . 𝑔𝑛, ℎ𝑛),
is able to compute two different messages (𝑚1 . . .𝑚𝑛), (𝑚′1 . . .𝑚′𝑛) that compute to the

same commitment with a non-negligible probability 𝜖 . The existence of A implies the

existence of an attacker B that solves the simultaneous triple pairing problem defined in

Section 3.1.3 with non-negligible probability.

Let (𝑔𝑟 , 𝑔𝑠, 𝑔𝑡 , ℎ𝑟 , ℎ𝑠, ℎ𝑡 ) be a challenge for the simultaneous triple pairing problem. If

𝑒 (𝑔𝑠, ℎ𝑟 ) = 𝑒 (𝑔𝑟 , ℎ𝑠) then a solution for the challenge is given by (𝑔𝑠, 𝑔−1𝑟 , 1) [30], since

𝑒 (𝑔𝑟 , 𝑔𝑠)𝑒 (𝑔𝑠, 𝑔−1𝑟 )𝑒 (𝑔𝑡 , 1) = 1 and 𝑒 (ℎ𝑟 , 𝑔𝑠)𝑒 (ℎ𝑠, 𝑔−1𝑟 )𝑒 (ℎ𝑡 , 1) = 1.
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This solution is non-trivial unless 𝑔𝑠 = 𝑔
−1
𝑟 = 1. In that case, (ℎ𝑠, ℎ−1𝑟 , 1) is another solution.

If that one is trivial as well, then 𝑔𝑟 = 𝑔𝑠 = ℎ𝑟 = ℎ𝑠 and (𝑔,𝑔, 1) is a non-trivial solution
[30].

If 𝑒 (𝑔𝑠, ℎ𝑟 ) ≠ 𝑒 (𝑔𝑟 , ℎ𝑠) then the discrete logarithms, defined the same way as in Section

3.1.3, satisfy 𝑥𝑠𝑦𝑟 ≠ 𝑥𝑟𝑦𝑠 . This means that (𝑥𝑠, 𝑦𝑟 ) and (𝑥𝑟 , 𝑦𝑠) are linearly independent

in Z2𝑞 [30]. Choose 𝜌1, 𝜎1, 𝜏1 . . . 𝜌𝑛, 𝜎𝑛𝜏𝑛 ∈ Z𝑞 and determine 𝑔1, ℎ1 . . . 𝑔𝑛, ℎ𝑛 by computing

𝑔𝑖 = 𝑔
𝜌𝑖
𝑟 𝑔

𝜎𝑖
𝑠 𝑔

𝜏𝑖
𝑡 and ℎ𝑖 = ℎ

𝜌𝑖
𝑟 ℎ

𝜎𝑖
𝑠 ℎ

𝜏𝑖
𝑡 [30].

Since (𝑥𝑠, 𝑦𝑟 ) and (𝑥𝑟 , 𝑦𝑠) are linearly independent, these 𝑔𝑖 , ℎ𝑖 are uniformly distributed

among Z𝑞 . This means that commitment keys defined as (𝑔1, ℎ1 . . . 𝑔𝑛, ℎ𝑛) have the same

distribution as commitment keys generated by the setup algorithm [30].

With a non-negligible probabilityA is able to compute two different (𝑚1 . . .𝑚𝑛), (𝑚′1 . . .𝑚′𝑛)
and randomness values (𝑟, 𝑠), (𝑟 ′, 𝑠′) that create the same commitments. Then, define

𝜇𝑖 = 𝑚
′
𝑖𝑚
−1
𝑖 , 𝑟 ′′ = 𝑟 ′𝑟−1 and 𝑠′′ = 𝑠′𝑠−1. Because of the homomorphic property proven in

Section 3.1.3, 𝐶𝑜𝑚(𝜇1 . . . 𝜇𝑛, (𝑟 ′′, 𝑠′′)) is (1, 1) [30]. Then

𝑒 (𝑔𝑟 , 𝑟 ′′)𝑒 (𝑔𝑠, 𝑠′′)
∏𝑛
𝑖=1 𝑒 (𝑔𝑖, 𝜇𝑖) = 𝑒 (𝑔𝑟 , 𝑟 ′′

∏𝑛
𝑖=1 𝜇

𝜌𝑖
𝑖
)𝑒 (𝑔𝑠, 𝑠′′

∏𝑛
𝑖=1 𝜇

𝜎𝑖
𝑖
)𝑒 (𝑔𝑡 ,

∏𝑛
𝑖=1 𝜇

𝜏𝑖
𝑖
) = 1

𝑒 (ℎ𝑟 , 𝑟 ′′)𝑒 (ℎ𝑠, 𝑠′′)
∏𝑛
𝑖=1 𝑒 (ℎ𝑖, 𝜇𝑖) = 𝑒 (ℎ𝑟 , 𝑟 ′′

∏𝑛
𝑖=1 𝜇

𝜌𝑖
𝑖
)𝑒 (ℎ𝑠, 𝑠′′

∏𝑛
𝑖=1 𝜇

𝜎𝑖
𝑖
)𝑒 (ℎ𝑡 ,

∏𝑛
𝑖=1 𝜇

𝜏𝑖
𝑖
) = 1

This means that (𝑟 ′′∏𝑛
𝑖=1 𝑔

𝜌𝑖
𝑟 , 𝑠
′′∏𝑛

𝑖=1 𝑔
𝜎𝑖
𝑠 ,

∏𝑛
𝑖=1 𝑔

𝜏𝑖
𝑡 ) is a solution to the triple pairing chal-

lenge. Since (𝑚1 . . .𝑚𝑛) ≠ (𝑚′1 . . .𝑚′𝑛) there is at least one 𝜇𝑖 ≠ 1. And because 𝜏𝑖 is

uniformly random, the probability that

∏𝑛
𝑖=1 𝑔

𝜏𝑖
𝑡 = 1 is

1

𝑞
. Therefore the probability that

the solution above is trivial is at most
1

𝑞
.

To summarize, if 𝑒 (𝑔𝑠, ℎ𝑟 ) = 𝑒 (𝑔𝑟 , ℎ𝑠) then the triple pairing challenge can be solved with

probability 1. If 𝑒 (𝑔𝑠, ℎ𝑟 ) ≠ 𝑒 (𝑔𝑟 , ℎ𝑠) then B has at least the (non-negligible) probability

𝜖 − 1

𝑞
to pass the challenge. Therefore, the commitment must be computationally binding

[30].

Extractability The Groth commitment scheme cannot be extractable under our assump-

tions, since it is perfectly hiding.
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3.2 Lattice Schemes

The following commitment schemes no longer depend on the hardness of computing

the discrete logarithm, instead, they use well known lattice problems like Short Integer

Solution or Learning with Errors. These problems are assumed to be hard to solve even on

a quantum computer.

3.2.1 Ajtai

The Ajtai Commitment is implicitly given in the seminal work of Ajtai[2] was later

explicitly defined by Lyubashevsky et al. [34]. It is a fairly direct translation from the Short

Integer Solution problem to the realm of commitments. The scheme allows committing

to an arbitrarily sized vector of values at once, with the nice property that the size of

the commitment is independent of the number of committed values. A higher number of

values does weak the security, since the SIS problem becomes easier when more column

vectors are available. Computing the commitment is conceptually very simple and easy to

implement, requiring only a few basic matrix-vector operations. Figure 3.4 defines the

Setup, Commit and Verify algorithms for the Ajtai Commitment.

The scheme is included in this thesis due to its simplicity and ease of implementation.

Setup: The parties agree on two matrices 𝐴1 ∈
Z
𝑛× 𝑗
𝑞 and 𝐴2 ∈ Z𝑛×𝑘𝑞 . They also choose a

real number 𝛽 < 𝑞.

Commit: The committer, given a message𝑚 ∈ Z 𝑗𝑞
with ∥𝑚∥ < 𝛽 , chooses a uniformly ran-

dom 𝑟 ∈ Z𝑘𝑞 with ∥𝑟 ∥ < 𝛽 . Then they

compute 𝐶𝑜𝑚(𝑚, 𝑟 ) = 𝐴1𝑚 +𝐴2𝑟 .

Verify: The verifier receives𝑚, 𝑟 from the com-

mitter and recomputes the commitment.

The commitment is accepted if the recom-

puted commitment matches the given one

and both ∥𝑚∥, ∥𝑟 ∥ < 𝛽 .

Figure 3.4: Description of the Ajtai Commitment

Correctness Commitments are verified by recomputing and comparing them, as defined

in the Verify algorithm in Figure 3.4. Since the Commit algorithm is deterministic, the

proof of correctness is analogous to that of Pedersen commitments in Section 3.1.1.
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3.2 Lattice Schemes

Randomness Homomorphy Adding two commitments 𝐶𝑜𝑚(𝑚1, 𝑟1) and 𝐶𝑜𝑚(𝑚2, 𝑟2) to-
gether creates a valid commitment 𝐶𝑜𝑚(𝑚1 +𝑚2, 𝑟1 + 𝑟2):

𝐶𝑜𝑚(𝑚1, 𝑟1) +𝐶𝑜𝑚(𝑚2, 𝑟2) = (𝐴1𝑚1 +𝐴2𝑟1) + (𝐴1𝑚2 +𝐴2𝑟2)
= 𝐴1(𝑚1 +𝑚2) +𝐴2(𝑟1 + 𝑟2)
= 𝐶𝑜𝑚(𝑚1 +𝑚2, 𝑟1 + 𝑟2).

(3.12)

The homomorphy of the Ajtai commitment is limited. It is not guaranteed that ∥𝑚1 +𝑚2∥,
∥𝑟1 + 𝑟2∥ < 𝛽 , meaning that it is possible to create an invalid commitment by combining

two valid ones. This can be avoided by choosing messages and randomness values with

norm <
𝛽

2
in advance.

Binding Assume a committer was able to find short values𝑚1,𝑚2, 𝑟1, 𝑟2 where𝑚1 ≠𝑚2

and 𝐶𝑜𝑚(𝑚1, 𝑟1) = 𝐶𝑜𝑚(𝑚2, 𝑟2).

Then 𝐴1𝑚1 +𝐴2𝑟1 = 𝐴1𝑚2 +𝐴2𝑟2 and therefore 𝐴1(𝑚1 −𝑚2) +𝐴2(𝑟1 − 𝑟2) = 0. This can

be rewritten as [
𝐴1 𝐴2

] [(𝑚1 −𝑚1)
(𝑟1 − 𝑟2)

]
= 0. (3.13)

Since ∥𝑚1∥, ∥𝑚2∥, ∥𝑟1∥ and ∥𝑟2∥ must all be smaller than 𝛽 , ∥𝑚1 −𝑚2∥ and ∥𝑟1 − 𝑟2∥ must

be smaller than 2𝛽 .

The above is equivalent to an instance of SIS with 𝛽′ = 2𝛽 . Since solving this instance

is computationally hard, the commitment is computationally binding. This has a few

implications, like SIS, the binding property can only become stronger for higher 𝑛 and

weaker for higher 𝑗 , 𝑘 .

Hiding (𝐴2, 𝐴2𝑟 ) is indistinguishable from random noise according to the leftover hash

lemma [32]. Adding 𝐴1𝑚 where ∥𝑚∥ is small does not change the uniform distribution

[39].

Malleability For any vector v, adding 𝐴1𝑣 to the commitment creates a valid commitment

for𝑚 + 𝑣 . The only constraint is that |𝑚 + 𝑣 | must be small (otherwise the commitment

will be rejected). Since |𝑚 | is known to be small, |𝑣 | has to be small as well.

Equivocability The seminal work of Ajtai in 1996 [2] showed an efficient construction

of a lattice trapdoor. Using this algorithm, it is possible to efficiently compute a matrix

𝐴 that is statistically close to uniformly random and a corresponding short vector 𝑡 such

that 𝐴𝑡 = 0.

To set up a trapdoor for the Ajtai commitment, one needs to compute two of these

SIS trapdoors for for 𝐴1𝑚12 = 0 and 𝐴2𝑟12 = 0. Decomposing 𝑚12 = 𝑚1 − 𝑚2 and

𝑟12 = 𝑟1 − 𝑟2 where𝑚1,𝑚2, 𝑟1, 𝑟2 are short gives two openings for the commitment with

public parameters 𝐴1, 𝐴2.

Extractablity As the scheme is statistically hiding, it cannot be extractable under our

assumptions.

19



3 Analyzed Commitment Schemes

3.2.2 Baum et al.

Baum et al.[6] demonstrate an additively homomorphic vector commitment scheme over

polynomial rings. It is based on the ideas demonstrated in [19]. Notably, their scheme can

be instantiated with different parameters which determine the security properties. Figure

3.5 gives a definition of the scheme itself.

The scheme is defined over two rings. For some power of two𝑁 , 𝑅 = Z[𝑋 ]/⟨𝑋𝑁 +1⟩ is used
to compute element norms and 𝑅𝑞 = Z𝑞 [𝑋 ]/⟨𝑋𝑁 + 1⟩ is used for most other computations.

The choice of 𝑋𝑁 + 1 is further explained in section 2.1 of [6].

The scheme is based on the hardness of two different problems:

Definition 3.2.1 (𝑆𝐾𝑆2
𝑛,𝑘,𝛽

). The 𝑆𝐾𝑆2
𝑛,𝑘,𝛽

problem asks to find a (short) vector 𝑦 ∈ 𝑅𝑘𝑞 with
|𝑦 | < 𝛽 satisfying

[
𝐼𝑛 𝐴′

]
· 𝑦 = 0

𝑛
when given a random 𝐴′. This is equivalent to solving

Module-SIS. The 𝑆𝐾𝑆2
𝑛,𝑘,𝛽

problem becomes easier for larger 𝛽 [6].

Definition 3.2.2 (𝐷𝐾𝑆∞
𝑛,𝑘,𝛽

). The 𝐷𝐾𝑆∞
𝑛,𝑘,𝛽

problem asks to distinguish the distribution[
𝐼𝑛 𝐴′

]
· 𝑦 for |𝑦 | < 𝛽 from a uniformly random distribution when given 𝐴′ ∈ 𝑅𝑛×(𝑘−𝑛)𝑞 .

The 𝐷𝐾𝑆∞
𝑛,𝑘,𝛽

becomes harder for larger 𝛽 [6].

The parameter 𝛽 that these problems are instantiated with determines the security of the

hiding and binding properties of the commitment scheme. For large 𝛽 , the hiding property

becomes strong and the binding property is weakened, whereas for small 𝛽 the hiding

property is weaker and the commitment is strongly binding. This is illustrated in Figure

3.6. This configurability is the primary strength of the Baum et al. scheme and the reason

it was chosen to be included in the thesis, as none of the other analyzed schemes can be

configured.

The verification of the commitment schemes involves a polynomial 𝑓 in addition to the

message𝑚 and randomness 𝑟 . If a committer simply wishes to reveal the contents of a

commitment they can always choose 𝑓 = 1. Baum et al. present an algorithm that allows

zero-knowledge proofs of the committed message and might result in 𝑓 ≠ 1.

The randomness in the Commit algorithm from Figure 3.5 is sampled from 𝑆𝑘
𝛽
, which is

equivalent to 𝑅𝑘 except individual elements are bounded by 𝛽 in the 𝑙∞ norm.

Unlike other schemes presented, the Baum et al. scheme has additional capabilities for

zero knowledge proofs. The scheme allows a committer to prove that they know valid

opening information for a commitment, without revealing said opening information itself.

It is also possible to prove certain relations between the messages of multiple published

commitments in a zero-knowledge manner. Specifically, the committer can prove a linear

relation between two commitments and that the messages of multiple commitments sum

up to the message in another commitment.
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3.2 Lattice Schemes

Setup: Choose message length 𝑙 . Then, choose

𝐴1 ∈ 𝑅𝑛×𝑘𝑞 , 𝐴2 ∈ 𝑅𝑙×𝑘𝑞 as

𝐴1 =
[
𝐼𝑛 𝐴′

1

]
with 𝐴′

1
← 𝑅

𝑛×(𝑘−𝑛)
𝑞

𝐴2 =
[
0
𝑙×𝑛 𝐼𝑙 𝐴′

2

]
with𝐴′

2
← 𝑅

𝑙×(𝑘−𝑛−𝑙)
𝑞

Commit: To commit to a message𝑚 ∈ 𝑅𝑙𝑞 with ran-

domness 𝑟 ∈ 𝑆𝑘
𝛽
, compute

𝐶𝑜𝑚(𝑚, 𝑟 ) =
[
𝐴1

𝐴2

]
𝑟 +

[
0
𝑛

𝑚

]
=

[
𝑐1
𝑐2

]
Verify: An opening for𝐶𝑜𝑚(𝑚, 𝑟 ) given𝑚, 𝑟 and

a with polynomial 𝑓 is valid if 𝑓 ·
[
𝑐1
𝑐2

]
=[

𝐴1

𝐴2

]
𝑟 + 𝑓 ·

[
0
𝑛

𝑚

]
and for all 𝑖 ,

| |𝑟𝑖 | |2 < 4𝜎
√
𝑁 .

Figure 3.5: Description of the Baum et al. Commitment

Correctness Commitments are verified by recomputing and comparing them. Since

the Commit algorithm is deterministic, the proof of correctness is analogous to that of

Pedersen commitments in Section 3.1.1.

Randomness Homomorphy Adding two commitments 𝐶𝑜𝑚(𝑚1, 𝑟1) and 𝐶𝑜𝑚(𝑚2, 𝑟2) cre-
ates a valid commitment 𝐶𝑜𝑚(𝑚1 +𝑚2, 𝑟1 + 𝑟2).

𝐶𝑜𝑚(𝑚, 𝑟 ) +𝐶𝑜𝑚(𝑚′, 𝑟 ′) =
[
𝐴1

𝐴2

]
𝑟1 +

[
0

𝑚1

]
+
[
𝐴1

𝐴2

]
𝑟2 +

[
0

𝑚2

]
=

[
𝐴1

𝐴2

]
(𝑟1 + 𝑟2) +

[
0

𝑚1 +𝑚2

]
= 𝐶𝑜𝑚(𝑚1 +𝑚2, 𝑟1 + 𝑟2)

(3.14)

Therefore, the commitment scheme is randomness-homomorphic.

Hiding If an attacker was able to distinguish commitments to two different messages 𝑥0,

𝑥1 ∈ 𝑅𝑙𝑞 with a non-negligible advantage 𝜖 then it would be possible to solve the 𝐷𝐾𝑆∞
𝑛+𝑙,𝑘,𝛽

problem.

For an instance 𝐵 =
[
𝐼𝑛+𝑙 𝐵′

]
, 𝑡 of the 𝐷𝐾𝑆∞

𝑛+𝑙,𝑘,𝛽 problem,A′ chooses a random 𝑅 ∈ 𝑅𝑛×𝑙𝑞

and defines the public parameters of the scheme as[
𝐴1

𝐴2

]
=

[
𝐼𝑛 𝑅

0𝑛+𝑙 𝐼𝑙

]
· 𝐵. (3.15)
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𝛽

𝐻𝑖𝑑𝑖𝑛𝑔 𝐵𝑖𝑛𝑑𝑖𝑛𝑔

Figure 3.6: Illustration of how 𝛽 influences securty.

Adapted from Baum et al. [6], Fig. 1

The matrices 𝐴1, 𝐴2 are distributed identically to the actual public parameters of the

commitment scheme, since [
𝐴1

𝐴2

]
=

[
𝐼𝑛 𝑅

0
𝑛×𝑙 𝐼𝑙

]
𝐵

=

[
𝐼𝑛 𝑅

0
𝑛×𝑙 𝐼𝑙

] [
𝐼𝑛 0

𝑛×𝑙 𝐵′
1

0
𝑙×𝑛 𝐼𝑙 𝐵′

2

]
=

[
𝐼𝑛 𝑅 𝐵′

1
+ 𝑅𝐵′

2

0
𝑙×𝑛 𝐼𝑙 𝐵′

2

]
.

(3.16)

Since 𝑅, 𝐵′
1
, 𝐵′

2
are uniformly and independently distributed, this is indistinguishable from

the actual key generation algorithm.

Then, A′ chooses a random 𝑏 ← {0, 1} and computes the commitment[
𝑐1
𝑐2

]
=

[
𝐴1

𝐴2

]
𝑟 +

[
0
𝑛

𝑥𝑏

]
(3.17)

This information is then given to A, which will output 𝑏′ ∈ {0, 1}. If 𝑏 = 𝑏′ then A′
outputs 1, otherwise 0.

There are two possibilities: Either 𝑡 is truly random, then

[
𝑐1
𝑐2

]
are independent of 𝑥𝑏 and

A has a probability of
1

2
of being correct. Or 𝑡 = 𝐵𝑟 for some 𝑟 , then A by definition has

at least a probability of
1

2
+ 𝜖 of being correct. Thus, A′ has an advantage of at least 𝜖 .

Binding If an attackerA were able to find openings (𝑚, 𝑟, 𝑓 ) and (𝑚′, 𝑟 ′, 𝑓 ′) with𝑚 ≠𝑚′

for a commitment

[
𝑐1
𝑐2

]
with a non-negligible advantage 𝜖 , then an attacker A′ exists who

can solve the 𝑆𝐾𝑆2
𝑛,𝑘,𝛽

with advantage 𝜖 .
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Given an instance𝐴1 =
[
𝐼𝑛 𝐴′

1

]
of 𝑆𝐾𝑆2

𝑛,𝑘,𝛽
, the attacker computes𝐴2 in the same manner

as during public key generation. Then, with an advantage 𝜖 , A can find (𝑥, 𝑟, 𝑓 ) and
(𝑥′, 𝑟 ′, 𝑓 ′) with𝑚 ≠𝑚′ for the public key 𝐴1, 𝐴2. That means that

𝑓 ·
[
𝑐1
𝑐2

]
=

[
𝐴1

𝐴2

]
𝑟 + 𝑓 ·

[
0
𝑛

𝑚

]
𝑓 ′ ·

[
𝑐1
𝑐2

]
=

[
𝐴1

𝐴2

]
𝑟 ′ + 𝑓 ′ ·

[
0
𝑛

𝑚′

]
.

(3.18)

Multiplying the first equation by 𝑓 ′, the second by 𝑓 and subtracting the two yields

𝐴1(𝑓 ′ · 𝑟1 − 𝑓 · 𝑟2) = 0
𝑛

𝐴2(𝑓 ′ · 𝑟1 − 𝑓 · 𝑟2) + 𝑓 · 𝑓 ′ · (𝑥 − 𝑥′) = 0
𝑙 .

(3.19)

Since 𝑥 ≠ 𝑥′, 𝑓 · 𝑓 ′ · (𝑥 − 𝑥′) is known to be nonzero. Therefore, (𝑓 ′ · 𝑟1 − 𝑓 · 𝑟2) must also

be nonzero. Because 𝑓 , 𝑓 ′ ∈ C, | |𝑓 | |2, | |𝑓 ′| |2 < 2

√
𝜅.

Since all the polynomials 𝑟𝑖 are bounded by 4𝜎
√
𝑁 in the euclidian norm, we know that

| |𝑓 ·𝑟 | |2, | |𝑓 ·𝑟 | |2 ≤ 8𝜎
√
𝜅𝑁 . Therefore, their difference is at most 16𝜎

√
𝜅𝑁 and (𝑓 ′ ·𝑟1− 𝑓 ·𝑟2)

is a solution to the 𝑆𝐾𝑆2
𝑛,𝑘,16𝜎

√
𝜅𝑁

instance.
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3.3 Other Schemes

During literature research, a number of commitments were considered but not included in

the final survey. We decided to limit ourselves to schemes that depend on the hardness

of the discrete logarithm problem, the Short Integer Solution problem or Learning with

Errors. This was done to be able to draw a useful comparison between the complexity

of these schemes. More information can be found in Chapter 4. Publications in the field

often improve upon existing work, by extending them to add new functionality. Examples

of this are given in Section 3.1.1. Such publications are mentioned in this survey, but not

explicitly detailed to avoid duplication.

For completeness, these commitments are listed here.

• Abhishek Jain et al. [33] constructed a perfectly binding string commitment. However,

it is based on the Learning Parity with Noise (LPN) problem and not homomorphic.

• Peiheng Zhang et al. [47] introduced a polynomial commitment scheme that is both

homomorphic and based on the discrete logarithm problem. However, if the degree

of the polynomial being committed to is one, their commitment reduces back to

Pedersen commitments. Since polynomial commitments themselves are not the focus

of this work, their commitment was not included.

• Tore Kasper Frederiksen et al. [27] developed a very efficient, additively homomor-

phic commitment scheme that is secure in the universal-composability framework

of shown by Canetti [13]. An efficient implementation was later developed by Rindal

and Trifiletti [41]. Their scheme is not included here since it is based on oblivious

transfer functions and error correcting codes, not the discrete logarithm problem or

lattice problems.
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While previous chapters introduced individual commitment schemes we also want to give

a more concise comparison between them.

4.1 Security Properties

Table 4.1 summarizes the findings from the sections on individual commitments in chapter

3 and 4. The Performance column is meant to give a rough comparison of the relative

performance to each other, more precise benchmarks are shown in Figure 4.1.

The commitment of Baum et al. is an exception as it cannot clearly be categorized regarding

the strength of its hiding and binding properties. Since the scheme is configurable, either

one of the two properties can be statistical and the other one computational, or both can

be computational.

Name Problem Hiding Binding Equivocable Extractable Performance

Pedersen dlog Perfect Computational ✓ ✗ Good

ElGamal dlog Computational Perfect ✗ ✓ Good

Groth dlog Perfect Computational ✓ ✗ Bad

Baum et al. SIS/LWE Configurable ✗ ✗ Okay

Ajtai SIS Statistical Computational ✓ ✗ Okay

Table 4.1: Security Properties of the different schemes

4.2 Commitment Size

Another aspect when evaluating the suitability of a commitment for a particular purpose

is the size of the commitment value. In resource constrained environments, large com-

mitments can be impractical. Both the Pedersen and the ElGamal commitments are very

small, consisting of only a single group element. The Groth commitment (𝑐, 𝑑) contains
two group elements and is therefore twice as large. All the lattice schemes have very large

commitments that depend mostly on the dimension of the chosen lattice.

Both the Groth and the two lattice commitments are vector commitments, meaning that

a committer can commit to multiple values at once. The size of the Groth and Ajtai
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4 Direct Comparison between the Schemes

commitments are independent of the number of committed values, though committing to

more values at once does weaken the security. The commitment size of the Baum et al.

scheme linearly depends on the number of commitment values.

4.3 Performance

Pedersen ElGamal Groth Ajtai Baum

10
2

10
3

10
4

10
5

t
i
m
e
t
o
c
o
m
m
i
t
(
𝜇
𝑠)

Figure 4.1: Performance comparison of the five commitment schemes

For this work, the first three schemes were implemented in the rust programming language

[12] . We used the curve25519-dalek [17] library for elliptic curves and bn [11] for

bilinear maps. The two lattice schemes were implemented in python [45] using numpy [31]

instead. We do not expect this to distort the performance results too much, as the vast

majority of operations are implemented by numpy using highly optimized C routines. All

implementations are publicly available on GitHub
1
. The benchmarks were executed on a

Linux PC using an AMD Ryzen 7 3700X and 32GB of DDR4 SDRAM.

Figure 4.1 shows that the simpler discrete-logarithm-based schemes outperform lattice-

based approaches. Among them, the Pedersen commitment outperforms ElGamal commit-

ments slightly. Perhaps surprisingly, the Groth commitment is significantly slower than

even the more complex lattice schemes. This is due to the heavy usage of bilinear maps

and might be an issue with the bn library itself.

1https://github.com/Wuelle/randomness-homomorphic-commitments
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4.4 Finding a Suitable Commitment

4.4 Finding a Suitable Commitment

We present an algorithm for finding a suitable commitment scheme for a given application,

using the key differences between the schemes analyzed in Section 4.1 and Section 4.3. The

process is illustrated in Figure 4.2 as a flow graph. One starts at the top and works their

way downwards following the arrows by questions. When choosing a commitment scheme

for a particular application, the first decision is whether or not the application requires

post-quantum security. If not, then the added overhead of lattice-based schemes is likely

not worth it and a simpler scheme like Pedersen is preferrable. Within these two groups the

main difference between the schemes are the strength of the hiding and binding properties,

with the exception of the Groth commitment the performance difference is minor. The

Groth and Pedersen commitments show similar properties except for performance and the

fact that Groth commitments allow committing to multiple messages at once. Among the

lattice-based commitments, the Ajtai scheme the is simpler and slightly more performant

one. Besides being conceptually simple, it is also easy to implement, requiring only simple

matrix-vector multiplications. The scheme of Baum et al. is significantly more complicated

than any other scheme presented in this work, but the configurability of the hiding and

binding properties make it suitable for a wider variety of applications.

Post-Quantum Security required?

Efficiency relevant?Hiding or Binding?

Ajtai Baum et al.

Pedersen

ElGamal

(Groth)

YesN
o

H
id
in
g

B
in
d
in
g

Y
e
s

N
o

Figure 4.2: Flow graph for deciding on a commitment scheme

For generic applications like the rerandomization firewall explained in Section 1.1, the

Ajtai and Pedersen schemes are the most promising, due to both their simplicity and high

performance.
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5 Conclusion

The goal of this thesis was to give an overview of the available options for randomness

homomorphic commitments and to evaluate their individual advantages and disadvan-

tages. We presented five different options for rerandomizable commitments and explained

their construction in detail. For each of the commitments, we provided proofs of their

extractability and equivocability. We also compared all the schemes with regards to se-

curity, performance and ease of implementation. We observed that there are significant

differences in both performance and complexity between the commitments that developers

need to be aware of.

While this work focused on rerandomizable commitments without further constraints,

future work could additionally look into more specific variants of commitments. For

example, in the context of zero knowledge proofs it is often necessary to prove relations

between committed values without directly revealing them. Of the presented schemes

only the one by Baum et al. explicitly allows for this.

Overall, there are significant differences between the known available options for ran-

domness homomorphic commitment schemes. Individual applications might have specific

requirements not considered here. However, we conclude that among the schemes con-

sidered in this thesis, the Pedersen commitment and the Ajtai commitments are the most

promising options for general use cases. Both offer simplicity and ease of implementation,

while also being the most performant within their problems domain.
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