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Abstract

Vegetation plays a vital role for life on Earth and provides a range of essential
ecosystem service. Forests, in particular, are crucial as they cover nearly one-
third of the global land surface and play a central role in carbon storage and,
hence, climate regulation. Global climate change and the associated shifts in
climatic conditions, the increase in weather extremes (such as drought, heat,
frost, and heavy precipitation), as well as the spread of pests and diseases, pose
significant challenges to forests. Consequently, increased tree mortality has been
observed globally in recent years. To better understand the underlying causes of
tree mortality, the phenomenon must first be recorded in its nature and extent.
Remote sensing has proven to be a suitable method for characterizing vegetation
on large scales, and the amount of remote sensing data is steadily increasing.
Specifically, the research satellites of ESA’s Sentinel fleet offer a high temporal
resolution to best capture the dynamics of vegetation. The spatial resolution of
these satellite data (10 m) is above the size of individual trees, which, among other
factors (e.g., geopositioning, geometry, timing, viewing perspective), hampers
the link with ground reference data. The resulting lack of reference data is the
main limitation for satellite-based remote sensing methods in detecting deadwood,
and our understanding of the processes leading to tree mortality is therefore
incomplete.

Uncrewed aerial vehicles (UAV) can bridge the gap between ground reference
data and satellite data, as they provide high-resolution imagery suitable for
detecting individual trees. Given the large quantity and diversity of remote
sensing data, as well as the high spatial (UAV-data) and temporal (satellite image
time series) resolutions, traditional remote sensing methods reach their limits,
necessitating adapted methods. Deep learning techniques have already proven
to be suitable in other disciplines, such as convolutional neural networks (CNN)
for the interpretation of image data (e.g., classification, object detection) or long
short-term memory (LSTM) models for processing sequential information (e.g.,
speech recognition).

This thesis aims to investigate the prerequisites and suitability of deep learning
methods for remote sensing of deadwood—and vegetation in general. Central to
this is the upscaling approach: first, standing deadwood is automatically segmented
from UAV-based orthomosaics using CNNs. The identified deadwood then serves
as reference data for LSTMs, which are based on satellite image time series
(i.e., Sentinel-1 and Sentinel-2) and enable the large-scale detection of standing
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deadwood at the landscape level. In three studies, with a geographical focus on
mixed forests in Germany, the following research questions are addressed: (1) to
which extent is deep learning suitable for the analysis of very high-resolution,
UAV-based remote sensing data? (2) in what way is the concerted use of UAVs
and deep learning capable to close the reference data gap on tree mortality? (3) to
what extent is deep learning suitable for extracting temporal information from
satellite image time series? and (4) what are the spatio-temporal patterns and
environmental drivers of tree mortality in Germany?

The first study explores the potential of CNNs for the analysis of UAV-based,
high-resolution (<2 cm), RGB orthomosaics. For this purpose, twelve tree species,
standing deadwood, and forest floor were mapped in 51 study plots, each 1 ha
in mixed forest stands. Using a U-net CNN-architecture, the influence of tile
sizes, spatial resolution, and additional tree height information was tested. The
accuracy of the CNN achieved an F1-score of 0.73. Smaller tile sizes accounted for
underrepresented species in the dataset but increased inference time and resulted
in edge effects. Tree height information barely improved the models, while a high
spatial resolution was decisive for the identification of tree species.

The second study focuses on upscaling deadwood from the local level to the
landscape level. Therefore, standing deadwood in 176 UAV-scenes from 2017–2021,
covering 727 ha of forest, was automatically classified and segmented using a U-net.
The resulting polygons were used as reference data for LSTMs, which predicted
the proportion of standing deadwood per pixel across Germany from Sentinel
time series. The CNN-based segmentation of standing deadwood was highly
accurate (F1-score = 0.82, median of all study sites). The LSTMs achieved the best
results when using all available bands from Sentinel-1 and Sentinel-2 and two
vegetation indices (i.e., kNDVI, NDWI) (Pearson’s correlation coefficient = 0.66).
Validation with orthophotos revealed a spatially and temporally accurate detection
of standing deadwood.

In the third study, the nationwide maps of standing deadwood are analysed
to investigate the spatio-temporal patterns of tree mortality and its causes. From
2018–2021, a total of 978 ± 529 (kilohectares) kha of forest died, which is about
double the amount of deadwood recorded in the forest condition survey and other
remote sensing studies. The Harz region (47.2 kha, 30.2% of forested area) and
Sueder Uplands (74.2 kha, 17.1%) were the most affected, with Picea abies and Pinus
sylvestris being the most impacted species. Using random forest regression and
a model-agnostic interpretation method (accumulated local effects, ALE), the key
environmental drivers and their effects were identified and analysed. Atmospheric
conditions (i.e., late frosts, climatic water balance, hot days, and vapour pressure
deficit) were the most important predictors of tree mortality. Smaller and younger
stands showed increased tree mortality at the landscape level, contrasting results
from local studies. Monocultures were generally less affected by mortality unless
pest insects were present.
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The present thesis demonstrates that deep learning plays a key role in analysing
the diverse and large amounts of remote sensing data (big data), as it can ideally
evaluate spatial and temporal information without special preprocessing of input
data. The flexible design of deep learning architectures allows for integrated
analysis of different dimensions (i.e., spatial, temporal, spectral) and types (i.e.,
optical, radar, lidar) of remote sensing data. Deep learning enables detailed remote
sensing detection of standing deadwood at the landscape level, thereby improving
our understanding of the patterns and processes leading to tree mortality. The
concerted use of UAVs and CNNs can bridge the reference data gap for satellite-
based methods at the landscape level. Due to the data-intensive nature of deep
learning, a collaborative effort by the scientific community is required to share and
compile research data to address the challenges of climate change on vegetation
globally.
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Kurzfassung

Vegetation spielt eine wichtige Rolle für Leben auf der Erde und bietet eine Vielzahl
an Ökosystemdienstleistungen. Dabei ist insbesondere Wald wichtig, da dieser
knapp ein Drittel der globalen Landoberfläche bedeckt und eine zentrale Rolle bei
der Speicherung von Kohlenstoff und damit bei der Regulierung des Klimas hat.
Der globale Klimawandel und die damit verbundene Verschiebung der klimati-
schen Standortbedingungen, die Zunahme von Wetterextremen (wie Dürre, Hitze,
Spätfrost und Starkniederschlag), sowie die dadurch begünstigte Ausbreitung von
Schädlingen und Krankheiten stellen den Wald vor große Herausforderungen. In
der Konsequenz konnte Baumsterblichkeit in den vergangenen Jahren auf globaler
Ebene vermehrt beobachtet werden. Um die zugrundeliegenden Ursachen des
Baumsterbens besser zu verstehen, muss das Phänomen zunächst in seiner Art
und Ausbreitung erfasst werden. Dabei hat sich die Fernerkundung als geeignetes
Mittel erwiesen, großflächig Vegetation zu charakterisieren, und die Menge an
Fernerkundungsdaten nimmt stetig zu. Insbesondere die Forschungssatelliten
von ESA’s Sentinel Flotte bieten eine hohe zeitliche Auflösung, um die Dyna-
mik der Vegetationsveränderung abzubilden. Die räumliche Auflösung dieser
Satellitendaten (10 m) liegt oberhalb der Auflösungsgrenze von Einzelbäumen,
was, neben weiteren Faktoren (z.B., Geopositionierung, Geometrie, Aufnahme-
zeitpunkt, Datenmenge, Perspektive), die Verknüpfung mit Bodenreferenzdaten
erschwert. Der resultierende Mangel an Referenzdaten ist die Hauptlimitierung
für satellitenbasierte Fernerkundungsmethoden bei der Erfassung von Totholz
und unser Verständnis der Prozesse, die zu Baumsterben führen, ist dadurch
unvollständig.

Die Brücke von Bodenreferenzdaten zu Satellitendaten können Drohnen (uncre-
wed aerial vehicle, UAV) schlagen, da sie räumlich hochaufgelöste Bilddaten liefern,
die gut zur Erkennung von Einzelbäumen geeignet sind. Bei der großen Menge
und Vielfalt an Fernerkundungsdaten sowie den hohen räumlichen (Drohnenda-
ten) und zeitlichen (Satellitendatenzeitreihen) Auflösungen, stoßen traditionelle
Fernerkundungsmethoden an ihre Grenzen, und es bedarf angepasster Methoden.
Deep Learning Verfahren haben sich dabei in anderen Fachdisziplinen bereits als
geeignet herausgestellt, etwa convolutional neural networks (CNN) bei der Interpre-
tation von Bilddaten (z. B. Klassifikation, Objekterkennung) oder long short-term
memory (LSTM) Modelle für die Verarbeitung sequenzieller Informationen (z. B.
Spracherkennung).
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Ziel der vorliegenden Arbeit ist es, die Voraussetzung und Eignung von Deep
Learning Methoden bei der fernerkundlichen Erfassung von Totholz und von
Vegetation im Allgemeinen wissenschaftlich zu untersuchen. Von zentraler Bedeu-
tung ist dabei der Upscaling-Ansatz. Dazu wird zunächst stehendes Totholz aus
drohnenbasierten Orthomosaiken mithilfe von CNNs automatisiert klassifiziert
und segmentiert. Das erkannte Totholz dient anschließend als Referenzdaten
für LSTMs, die auf Satellitendatenzeitreihen (Sentinel-1 und Sentinel-2) basieren,
und die großflächige Erfassung von stehendem Totholz auf Landschaftsebene
ermöglichen. In drei Teilstudien, mit geographischem Fokus auf Mischwäldern
in Deutschland, wird untersucht: (1) inwiefern Deep Learning Methoden zur
Auswertung sehr hochaufgelöster, drohnenbasierter Fernerkundungsdaten ge-
eignet sind; (2) inwiefern Drohen und Deep Learning die Referenzdatenlücke
zur Baumsterblichkeit schließen können; (3) inwiefern Deep Learning Methoden
geeignet sind, Informationen aus Satellitendatenzeitreihen zu extrahieren; und (4)
was die räumlich-zeitlichen Muster von Baumsterben in Deutschland und dessen
Ursachen sind.

In der ersten Studie wird das Potenzial von CNNs zur Auswertung von drohnen-
basierten, hochaufgelösten (<2 cm), RGB-Orthomosaiken erörtert. Dazu werden
zwölf Baumarten, stehendes Totholz und Waldboden in 51 Untersuchungsflächen
á 1 ha in gemischten Waldbeständen kartiert. Mit einer U-net CNN-Architektur
wird der Einfluss der Kachelgrößen, der räumlichen Auflösung und von zu-
sätzlicher Baumhöheninformation getestet. Die Genauigkeit der CNNs lag bei
F1-score = 0,73. Eine kleinere Kachelgröße berücksichtigt im Datensatz unterre-
präsentierte Arten, erhöht jedoch die Inferenzzeit und produziert Randeffekte.
Baumhöheninformation verbesserte die Modelle kaum, während eine hohe räum-
liche Auflösung essenziell war zur Erkennung von Baumarten.

Der Fokus in der zweiten Studie liegt auf dem Upscaling von Totholz von der
lokalen Ebene auf die Landschaftsebene. Dazu wird stehendes Totholz in 176

Drohnenszenen aus den Jahren 2017–2021 über 727 ha Wald automatisiert mittels
CNN segmentiert. Die resultierenden Polygone gehen als Referenzdaten in LSTMs
ein, die aus Sentinel Zeitreihen den Anteil an stehendem Totholz je Pixel für ganz
Deutschland schätzen. Die CNN-basierte Segmentierung von stehendem Totholz
war sehr genau (F1-score = 0,82, Median aller Flächen). Bei den LSTMs führten alle
verfügbaren Kanäle von Sentinel-1 und Sentinel-2 und zwei Vegetationsindizes
(kNDVI, NDWI) zu den besten Modellen (Pearson’s Korrelationskoeffizient = 0,66).
Eine Validierung mit Orthophotos offenbarte eine räumlich und zeitlich akkurate
Erfassung von stehendem Totholz.

Die deutschlandweiten Karten an stehendem Totholz werden in der dritten Stu-
die analysiert, um räumlich-zeitliche Muster von Baumsterblichkeit und dessen
Ursachen zu erforschen. Über die Jahre 2018–2021 starben insgesamt 978 ± 529 kha
an Wald, was etwa dem Doppelten des erfassten Totholz in der Waldzustand-
serhebung und anderen Fernerkundungsstudien entspricht. Bei den Regionen
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waren Harz (47,2 kha, 30,2% der bewaldeten Fläche) und Sauerland (74,2 kha,
17,1%) am stärksten betroffen, bei den Arten Picea abies und Pinus sylvestris. Mit
einer random forest Regression und einer modellagnostischen Interpretations-
methode (accumulated local effects, ALE) werden die wichtigsten Umweltfaktoren
sowie deren Auswirkungen identifiziert. Atmosphärischen Bedingungen (d. h.,
Spätfröste, klimatischer Wasserhaushalt, heiße Tage und Dampfdruckdefizit) wa-
ren die wichtigsten Prädiktoren für die Baumsterblichkeit. Kleinere und jüngere
Bestände wiesen auf Landschaftsebene eine erhöhte Baumsterblichkeit auf, was
die Ergebnisse von lokalen Studien kontrastiert. Monokulturen waren generell
weniger von Mortalität betroffen, es sei denn, Schadinsekten waren vorhanden.

In der vorliegenden Arbeit zeigte sich, dass bei der Auswertung der vielfälti-
gen und großen Mengen (big data) an Fernerkundungsdaten Deep Learning eine
Schlüsselrolle zukommt, da es, ohne spezielle Vorprozessierung der Eingangsda-
ten, die räumliche und zeitliche Information ideal auswerten kann. Durch die
flexible Gestaltung der Deep Learning Architekturen können die verschiedenen
Dimensionen (räumlich, zeitlich, spektral) und Typen (optisch, radar, lidar) von
Fernerkundungsdaten integriert analysiert werden. Deep Learnign ermöglicht
die detaillierte fernerkundliche Erfassung von Totholz auf Landschaftsebene und
verbessert dadurch unser Verständnis der Muster und Prozesse von Baumsterb-
lichkeit. Ein konzertierter Einsatz von Drohnen und CNNs ist in der Lage, die
Referenzdatenlücke für satellitendatenbasierte Methoden auf Landschaftsebe-
ne zu schließen. Aufgrund des Datenhungers von Deep Learning, bedarf es
einer gemeinschaftlichen Anstrengung der wissenschaftlichen Gemeinschaft For-
schungsdaten zu teilen und zusammenzutragen, um die Herausforderungen des
Klimawandels für die Vegetation auch auf globaler Ebene zu adressieren.
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1 introduction

1.1 Main motivation

Vegetation plays a vital role for life on Earth. Forests, in particular, are crucial
as they cover nearly one-third of the global land surface (FAO, 2020). Forests
provide a range of essential ecosystem services: they provide habitats, food,
medicine, and other raw materials. They regulate our climate through carbon
sequestration, purify water and air, produce oxygen, and foster soil formation
and protect it from erosion. Forests are also of great economic importance, and
hold cultural, spiritual, and aesthetic value (FAO & UNEP, 2020). Global climate
change poses a major threat to forest ecosystems, but the total impact is not yet
foreseeable. It is therefore of great importance to monitor forests to assess the
impacts and risks of global climate change. Remote sensing has proven to be
a valuable tool to monitor the distribution and condition of forests (Fassnacht
et al., 2023). In particular, satellite-based remote sensing provides the necessary
spatial and temporal coverage to detect vegetation and its change on a global
scale. However, the amount of data generated is correspondingly large, and is
also supplemented by data from sensors mounted on aircraft and uncrewed aerial
vehicles (UAV). Traditional remote sensing methods often reach their limits when
it comes to interpreting and evaluating large and complex data sets. Deep learning
has proven to be promising in other disciplines and offers efficient, automated
and accurate methods, but its application in remote sensing is still underexposed.
This dissertation, therefore, aims to discuss the advantages and disadvantages of
existing deep learning methods in remote sensing of vegetation, to develop new
approaches and to expand their practical applicability.

The following section (1.2) describes open questions regarding the patterns
and drivers of tree mortality, as well as the current challenges in capturing and
understanding these at landscape level. The subsequent section (1.3) provides
the scientific-technical background of remote sensing of forests and vegetation
in general, with a focus on reference data requirements, the key role of UAVs in
linking field observations with satellite data, and the challenges in handling big
data. Section 1.4 gives an overview of deep learning methods and their application
in remote sensing. The research gaps identified are explained in section 1.5 and
the research questions are formulated. The results of the original research are
described in chapters 2, 3, and 4, and the three studies have already been published
or currently have been submitted to international peer-reviewed journals. The
results of the individual studies are comprehensively discussed in the final chapter
(5). Moreover, the advantages and disadvantages of deep learning methods in
remote sensing are examined, the concerted use of UAVs and deep learning to
address the reference data gap in tree mortality is discussed, and perspectives are
provided on what is necessary for the successful integration of deep learning in
remote sensing.
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1 .2 increasing tree mortality

1.2 Increasing tree mortality

Climate change poses a major threat to forests, due to an associated rise in tem-
peratures, the occurrence of episodic precipitation and droughts, or increased
rising atmospheric vapour pressure deficit (Hartmann et al., 2022; McDowell
et al., 2022; Schuldt et al., 2020). Under such conditions, trees get stressed and
may eventually die due to carbon starvation, hydraulic failure, or ensuing pest
infestations. Global change has also led to the emergence of ’hotter droughts’
during which high temperatures coincide with low precipitation (Allen et al.,
2015; Hammond et al., 2022), and consecutive (hotter) droughts have also become
more frequent (Hari et al., 2020; Rakovec et al., 2022). In a climate increasingly
characterized by extremes, stress factors can also manifest collectively as com-
pound events, amplifying the effects of individual stressors (Zscheischler et al.,
2018, 2020). Consequently, increased tree mortality has been observed extensively
(Allen et al., 2010; Byer & Jin, 2017; Rakovec et al., 2022; Senf et al., 2018) . Even if
trees do not die during the initial year of drought, critical ecosystem changes and
mortality may still occur in subsequent years, a phenomenon known as drought
legacy or lag effects (Obladen et al., 2021; Pohl et al., 2023; Schnabel et al., 2022).

The mechanisms leading to tree dieback may be well understood at the local
level, but they are not necessarily applicable to the landscape level (Clark et
al., 2016), and our understanding of the regional effects of tree mortality is
inconclusive. As comprehensive large-scale datasets on tree mortality are lacking,
many of our findings stem from compiled and harmonized datasets of in situ
observations of dieback events (Allen et al., 2010; Hammond et al., 2022). Due
to a lack of standardised survey methods, often only damaged areas of a certain
minimum size are included, which poses two problems for investigating the extent
and the underlying causes: standing deadwood often accumulates over extended
periods and the temporal link between the environmental cause and the dieback
event may be weakened or already obscured by other factors. Tree mortality
often occurs gradual and scattered across the landscape, and is likely to be
underrepresented in the aforementioned data sets (Cheng et al., 2024; Milodowski
et al., 2017).

The national forest condition survey (Waldzustandserhebung, WZE) has been
assessing tree vitality since 1984 (1990 for the new federal states) and has recorded
increased tree mortality in recent years following consecutive drought years in
Germany. The annual survey is based on a total of 402 systematically distributed
investigation plots across Germany and reports tree mortality based on approxi-
mately 10 000 randomly sampled trees (BMEL 2023). Since full forest inventories
are unrealistic, remote sensing methods are better suited for comprehensive
large-scale analyses. Although remote sensing has been demonstrated to capture
large-scale patterns of tree mortality (e.g., Brodrick & Asner, 2017; Byer & Jin,
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2017; Garrity et al., 2013; Hansen et al., 2013; Schwantes et al., 2016), the scattered
nature of tree dieback impedes the detectability, when the spatial resolution of the
employed sensors is coarser than the targeted trees. As reference data is scarce,
tree mortality is often not mapped directly. Instead, vegetation indices are used as
a proxy of dieback, but the reasons for changes in vegetation indices are plenty
and may not necessarily indicate mortality but rather vitality decline.

1.3 Remote sensing of vegetation

1.3.1 Fundamentals of remote sensing of vegetation

“Remote sensing has been variously defined but basically it is the art or science
of telling something about an object without touching it.” (Fischer et al., 1976,
p.34) To put it more technically, remote sensing describes the process of obtaining
information about the Earth’s surface from a distance by measuring the reflected
or emitted electromagnetic radiation (Lillesand et al., 2015). Remote sensing of
vegetation is a specialized field that focuses on collecting information about the
characteristics of vegetation and changes thereof. The electromagnetic spectrum
that is typically measured in remote sensing of vegetation ranges from the visible
light (400–700 nm) through the infrared range (700 nm–1 mm) to microwaves
(1 mm–1 m) (Jones & Vaughan, 2010). Depending on the system and application,
different properties of the electromagnetic wave are measured. Passive remote
sensing methods record the naturally occurring radiation, namely reflected solar
radiation or emitted thermal radiation. Active remote sensing systems, on the
other hand, emit energy and capture the radiation reflected from the Earth’s
surface.

Remote sensing data can be characterized by their spatial, temporal, spectral,
and radiometric resolution. Spatial resolution describes the smallest possible
distance between two adjacent points where they can still be distinguished from
each other. Temporal resolution is the time interval between two acquisitions
of the same area. Spectral resolution refers to the wavelength ranges—so-called
bands—that a sensor can separate. The larger the number of bands and the
narrower the wavelength ranges they cover, the higher the spectral resolution.
There is a trade-off between spatial and spectral resolution due to limitations of
the incident energy at the sensor. The higher the spatial or spectral dimensions
are resolved, the less energy of the incident radiation is available in the resolution
cells of the sensor. When increasing the resolution for one dimension, the other
dimension is automatically limited in its maximum resolution. Another important
trade-off concerns the spatial resolution and the area covered by the sensor, i.e,
sensor footprint. The number of resolution cells of the sensor is technically limited.
The maximum achievable spatial resolution is therefore inversely dependent on
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the field of view of the sensor, and a higher spatial resolution comes with a
smaller sensor footprint. Radiometric resolution describes the ability of a sensor
to measure and store differences in the amount of incident energy. Except for
laser-based remote sensing, the recorded data is typically stored and distributed
as a raster image with a defined pixel size.

In remote sensing of vegetation, the observed signal results from a complex
interaction between radiation incident on the surface and the biochemical and
structural properties of the vegetation (Jones & Vaughan, 2010). The absorption of
incident wavelengths is mainly controlled by the content of various biochemical
components such as water, pigments (e.g., chlorophyll, carotenoid), and leaf
dry matter. The scattering of incident and transmitted radiation is controlled
by structural properties such as shape, size, arrangement, and orientation of
leaves within the canopy, as well as the density of the vegetation (Asner, 1998;
Ollinger, 2011). Remote sensing applications have used these unique reflectance
properties, that are specific to objects and materials, to effectively characterize
vegetation by employing suitable sensors. Typically, optical sensors are utilized
to derive biochemical properties, whereas active sensors such as radio detection
and ranging (radar) and light detection and ranging (lidar) are used to derive
biophysical properties or ecosystem structure (Fassnacht et al., 2016).

Another important factor in remote observation of vegetation is the phenolog-
ical cycle. During a year, plants undergo seasonal changes in the biophysical
and -chemical characteristics which are valuable to deriving information about
vegetation health, productivity, or temporal dynamics in general.

There are two basic modelling approaches for harnessing remote sensing data
in vegetation science: empirical models and radiative transfer models (RTM). A
further model type are so-called semi-empirical or hybrid models as a combina-
tion of the former two. Empirical models are based on statistical relationships
between the remote sensing signal and ground-based reference measurements or
observations. RTMs are physical-based models that attempt to directly model the
radiative transfer process of light inside plants. The inversion of these models
allows deriving the biochemical and physical properties from the remote sensing
signal. Independent of the model type, ground reference data are needed, either
for model training, model accuracy assessment, or instrument calibration. Large
amounts of reference data are required to build robust models, depending on the
research subject and question (see section 1.3.2).

The Sentinel-1 and Sentinel-2 satellite missions of ESA’s Copernicus program, or
the Landsat satellites by NASA, are of paramount importance in vegetation remote
sensing. Sentinel-2 was launched in 2015 and is equipped with a multispectral
sensor that samples the electromagnetic spectrum in 13 spectral bands: four bands
at 10 m spatial resolution (RGB and NIR), six bands at 20 m resolution (VNIR and
SWIR), and three bands at 60 m resolution (aerosols and cirrus detection). It has a
temporal resolution of five days in its current two-satellite constellation. Sentinel-1
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was launched in 2014 and is equipped with a microwave synthetic-aperture radar
(SAR) instrument that operates in the 3.75–7.5 cm wavelength ranges (C-Band).
It was designed as a constellation of four satellites with a combined temporal
resolution of four days. However, at present, only one of the two already launched
satellites is operative. In its main operational mode over land—interferometric
wide swath mode (IW)—the signal is acquired in VV+VH polarization.

1.3.2 Reference data requirements

Most methods for the analysis of remote sensing data require ground reference
data, either for model calibration, validation or both. The ground reference
data are typically recorded in situ within plots or point observations and need
to fulfil manifold requirements to suit remote sensing applications (Fassnacht
et al., 2016). However, field-based reference data are prone to observer and
sampling bias (Asner et al., 2015; Lepš & Hadincová, 1992; Vittoz & Guisan,
2007) and do not always provide exact ground truth. A spatially explicit link
between the ground reference data and remotely sensed data is prerequisite for
any remote sensing application. This link is not trivial to establish (Leitão et al.,
2018) and can be hampered by several factors. The geographical position of the
field data is measured using a global navigation satellite system (GNSS). The
GNSS-measurements in the field typically show positional inaccuracies in the
range of decimetres to metres when differential GNSS corrected with ground data
is used and even exceed several metres when using stand-alone GNSS, particularly
under dense vegetation (Kaartinen et al., 2015; Valbuena et al., 2010). In addition
to the positional accuracy, geometric properties of the object under investigation
are decisive for the spatial link. So even if the geolocation is precisely determined,
for example, the measured tree stem coordinates may not correspond to the tree
crowns targeted from above. Scale effects further complicate the link between
remote sensing and reference data, as the spatial entities captured (i.e., field plots
and raster pixels) represent different processes when recorded at different scales
(Anderson, 2018). Remote sensing data originate from the bird’s-eye view and
provide a continuous representation (i.e., raster image) of the landscape and the
upper canopy of the vegetation in particular. This perspective does not necessarily
match ground-based reference data, which for example in the case of trees is
even recorded from the worm’s eye view. Ideally, reference data are ample, are
distributed in space—in case of time-series based approaches also in time—and
cover large environmental gradients. Recording suitable ground truth data can be
a task that is costly and labor-intensive to accomplish and, hence, one of the most
limiting factors for large-scale remote sensing analyses.
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1.3.3 uav as intermediary: linking ground and satellite data

UAVs1 are established remote sensing systems used for the acquisition of high-
resolution data in local level studies (Anderson & Gaston, 2013). There exist
mainly two types of UAVs, i.e., fixed-wing and rotor, and various sensors can
be mounted on the platform (e.g., multispectral, thermal, lidar). The geolocation
accuracy of the resulting data is in the centimetre range when equipped with a
differential GNSS. Imagery acquired by UAV systems can be applied to generate
orthorectified mosaics—orthomosaics—through a photogrammetric structure-
from-motion (SfM) processing chain. Therefore, the drone is piloted over the
survey area in a predefined flight plan and multiple orthophotos are captured
with overlapping fields of view. For best reconstruction of vegetation, the flight
plan is ideally in a criss-cross pattern (Frey et al., 2018). The spatial resolution
of the resulting orthoimagery is typically in the single-digit centimetre range,
sometimes even millimetres, and is controlled by the UAV flight height and focal
length of the camera.

Recent advancements in the field of robotics have increased the usability and
lowered the cost of UAVs. Hence, even off-the-shelf consumer drones can be
considered a valuable scientific remote sensing tool and very high-resolution
imagery of vegetation is becoming widely available. Consequently, UAVs have
been frequently used in ecology and precision agriculture (e.g., Alvarez-Vanhard
et al., 2021; Osco et al., 2021; Torresan et al., 2017; Zhang & Zhu, 2023). With
their flexible and easy deployment, UAVs enable data acquisition over previously
inaccessible areas and allow the coverage of large environmental gradients. Ul-
timately, UAVs already fulfil many of the previously described reference data
requirements (see section 1.3.2). They comprise a flexible and easy method of
reference data acquisition in comparison to field-based methods, and they are less
subject to observer and sampling bias. A growing body of literature exploits the
synergies of UAVs and satellites (e.g., Alvarez-Vanhard et al., 2020; Kattenborn
et al., 2019b). In most cases, UAV data could not replace in situ reference data, but
provided the bridge from ground-based truth to satellite data (Alvarez-Vanhard
et al., 2021). Recent advancements in deep learning technology are currently
paving new avenues for the interpretation of remote sensing data (see section 1.4)
and can help establish stronger synergies, for example through multiscale or data
fusion approaches.

1.3.4 Remote sensing in the era of big data

We have come far since the first systematic Earth observation with the launch of
Landsat 1 in 1972 (Campbell et al., 2023), and we are currently at the beginning

1 The term unmanned aerial vehicles may be more familiar, but inspired by Joyce et al. (2021) I
support the use of an inclusive and gender-neutral language.
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of an era of big data in remote sensing. One definition of big data are the ’three
Vs’—that is, data being collected and stored in increasing volumes at accelerating
velocity and in great variety. As of May 2023, there were 1 298 actively operating
Earth observation satellites in space according to the Union of Concerned Scientist
(www.ucsusa.org/resources/satellite-database). This includes both commercially
operated satellites such as the Dove fleet (Planet Labs Inc.) or Worldview (Maxar
Technologies Inc.) and satellites operated by government authorities such as the
Landsat (NASA) or Sentinel (ESA) fleets. The Sentinel satellites alone generate 16

Terabytes of data every day, and thus manifest the increasing volume and velocity
in the era of big data.

With the ever-increasing volume of satellite data, the paradigm of ’bringing
users to the data rather than data to the users’ is becoming increasingly important.
The velocity of data processing is no less important if not only new data is to be
generated, but also to be analysed within an adequate time horizon that fits with
ecological objectives. Finally, the variety of different platforms (e.g., UAV, aircraft,
or satellite), the different remote sensing methods (i.e., multispectral, hyperspectral,
lidar, radar) and the different scales (from the leaf level to individual plants and
stands to landscapes) requires unifying frameworks to use the data effectively. To
facilitate and standardize access to remote sensing data, the European Commission
has launched the Copernicus data and information access services (DIAS) platforms
providing centralized access to Copernicus data and cloud-based processing
services. This concept has been adopted at national level, and in Germany, for
example, the two platforms code-de.org for authorities and eo-lab.org for research
have been set up. Data analysis and management frameworks, such as ForceEO
(Frantz, 2019) or Open Data Cube (Killough, 2018), facilitate harmonized processing
of the raw data. Comparable platforms from commercial providers include, for
example, Google Earth Engine (Gorelick et al., 2017) or SentinelHub (Sinergise
Ltd.).

In the context of big data, it is also noteworthy that there exist several platforms
that curate openly available data sets contributed by research groups or citizen
scientists, for example, for UAV orthoimagery (e.g., geonadir.com, opendrop.de,
and openaerialmap.org), plant photographs (e.g., iNaturalist.org), and biodiversity
databases (e.g., TRY plant trait database, Kattge et al., 2020).

1.4 Deep learning

A method frequently associated with big data is deep learning. Deep learning is
a sub-field of machine learning, and both terms fall under the general category
of artificial intelligence. In general, machine learning attempts to transform
input data into a meaningful output and to learn suitable representations of
the input data in the process. For more complex data, this usually requires
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manual preparation of the input data—so-called feature engineering—for a model
to properly learn suitable representations. As a specialization of machine learning,
deep learning attempts to learn multiple successive layers of lower- and higher-
level data representations, hence the name deep. This task is already incorporated
by the layered design of deep learning architectures, which greatly simplifies the
entire workflow and is usually referred to as end-to-end learning (Chollet et al.,
2022). In simple terms, deep learning learns what and how to see simultaneously,
whereas machine learning only learns what to see (Kattenborn et al., 2021).

1.4.1 Fundamentals of deep learning

Deep learning methods are based on neural networks. A neural network is an
interconnected group of nodes, and the nodes are organized in layers. The first and
last layer of a deep neural network are the input and output layers, with at least
two internal—or hidden—layers in between. The nodes are interconnected and
are arbitrarily initiated with weights and biases—also called trainable parameters.
Training of a neural network means adjusting these parameters so that they become
meaningful regarding the task at hand. To adjust the parameters, the mismatch
between the predicted output—based on the arbitrary initialisation—and the
true target is calculated using a loss function (Chollet et al., 2022). Typical loss
functions are, for example, mean squared error for regression tasks, cross-entropy loss
for classification tasks, or focal loss for object detection tasks. Since the described
operations are differentiable mathematical functions, the gradient of the loss
function can be calculated. This is done by the optimizer and tells the direction
in which to adjust the parameters to minimize the loss (Chollet et al., 2022).
Typically, employed optimizers include SGD (stochastic gradient descent), adam
(adaptive moment estimation), or RMS-Prop (root mean square propagation). In
simple terms, a neural network is a large chain of differentiable operations and the
chain rule can be applied to pass the parameter adjustments through the network
starting from the final loss. This central algorithm is termed backpropagation. The
parameters are iteratively adjusted in epochs by repeatedly passing the training
data set through the network. An epoch is defined as a complete pass of the entire
training data through the network. Depending on the size of the network, training
can be very memory and computation intensive, and the parameter adjustments
are therefore done using small batches of data successively. To select the epoch
the model was best trained and to prevent the network from overfitting, the data
set is split into a training set and a test set, on which the model is later evaluated.
After many epochs, the loss of the training set converges towards a minimum
and the network will probably begin to overfit. As soon as the network starts to
overfit, the loss of the test set stagnates or increases again. This reversal point is
the epoch in which the model is best trained. A third validation set is required if
hyperparameters—architecture-level parameters of the network, such as number of
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layers, number of filters per layer, or batch size—are still to be optimized when
creating the network. This is because tuning the hyperparameters based on the
results of the test set would leak information from the test set into the model,
thereby inflating its performance. (Chollet et al., 2022)

A convolutional neural network (CNN) is a specialized form of a neural network
that is mostly used in image interpretation. Its architecture is built on convolutional
and pooling layers. In its core, CNN learn the data representations via convolu-
tional filters (or kernels) that extract (spatial) patterns in the data. The filters are
usually small quadratic matrices with an uneven number of rows and columns
(e.g., 3 × 3 or 5 × 5 matrix) that are moved over the input image where the dot-
product is formed. A subsequent pooling layer then downsamples the collected
information by selecting a small window (typically 2 × 2) of the input and by
applying a pooling operation (typically the maximum, so-called max-pooling). All
nodes of consecutive layers are connected to each other (fully connected). This
structure allows a CNN to learn spatial hierarchical patterns: early filters may
recognize simple patterns such as corners or edges, while deeper filters combine
these learned pattern and hence can detect higher-level concepts, such as leaves,
branches, or flowers. For large, high-resolution image data, the data size often
exceeds the available memory, necessitating the division of images into individual
tiles. In a segmentation task, training data in the form of masks are also split
into the same tiles. To increase the size and heterogeneity of the dataset, data
augmentation can be applied. Typically, this involves varying parameters such as
saturation, brightness, or contrast, as well as zooming, rotating, or flipping the
images.

A form of neural networks specialized for processing and interpretation of
sequence data are recurrent neural networks (RNN). One particular feature of
recurrent neural networks is their incorporated memory state, which enables the
stepwise processing of small chunks of sequence data while keeping the overall
context in memory. RNNs are known to suffer from the vanishing or exploding
gradient problem, that arises when the parameter adjustments become minimal or
large and potentiate during backpropagation for the gradient to eventually vanish
or explode. This problem was first described by Hochreiter and Schmidhuber
in 1991 and culminated in the introduction of the long short-term memory network
(LSTM, Hochreiter & Schmidhuber, 1997). The core of an LSTM layer is the LSTM
unit that takes temporal dependencies into account by controlling the network
memory. It does so using three sigmoid activations (gate units): a forget gate, an
input gate, and an output gate. Depending on the output of the previous cell and
the current input, the forget gate controls whether the previous memory cell state
will be kept by means of a sigmoid function. The input gate, similarly, controls
which part of the memory cell will be updated using a sigmoid function, combined
with a tanh function that creates weights that are then used to update the new
cell state. Finally, the output is determined by the output gate that decides which
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information of the cell state will be forwarded by means of a sigmoid function and
a tanh function.

1.4.2 Deep learning in remote sensing of vegetation

Machine learning in remote sensing of vegetation first became practicable with
the launch of the first digital scanner on board of Landsat-1 in 1972 (Campbell
et al., 2023). Early machine learning methods comprise principal component
analysis for dimensionality reduction, k-means clustering, or more sophisticated
classification and regression methods such as Support Vector Machines (Cortes &
Vapnik, 1995) or Random Forests, (Breiman, 2001) which are all well established in
current remote sensing. Although the fundamental methods of deep learning have
been established since the 1990s, it was only with advances in the development of
the appropriate hardware (i.e., graphics processing unit, GPU) that development
gained momentum in the 2010s (Chollet et al., 2022). The first scientific articles
using deep learning in remote sensing of vegetation emerged in 2016. Based
on a literature search on the Web of Science (www.webofscience.com) using
the keywords ’remote sensing’, ’deep learning’, and ’vegetation’, the number of
related articles has exploded since then to 1 019 publications in total and 271 new
articles in 2023 alone (and 137 articles in 2024, as of June). Since its introduction,
deep learning applications are increasingly replacing established remote sensing
image analysis methods that are either pixel-based or object-oriented analysis
methods. CNNs are specifically designed to analyse spatial pattern and are
particularly suitable for interpreting remotely sensed imagery, and RNN for
analysing sequential data (e.g., satellite image time series) (Brodrick et al., 2019;
Hoeser & Kuenzer, 2020; Zhang & Zhu, 2023; Zhu et al., 2017).

CNNs haven proven highly effective in image processing tasks, such as image
classification, object detection, and semantic segmentation. In image classification,
the overall information of an image is used to assign a label to it, and it is
frequently applied for plant identification of herbarium specimen (Younis et al.,
2018) and field observations (Labenski et al., 2022; Reeb et al., 2022; Wäldchen
& Mäder, 2018). Image classification of remote sensing imagery either relies
on prior segmentation of the target (e.g., Hartling et al., 2019; Natesan et al.,
2019; Sothe et al., 2020), or predictions are assigned to tiles of an image and
subsequently reassembled (e.g., Kattenborn et al., 2020; Qian et al., 2020; Rezaee
et al., 2018). Frequently used model architectures for image recognition are, for
example, VGG-16, ResNet, Inception, or EfficientNet. These models often build the
backbone of object detection and segmentation tasks, and pre-trained variants of
the former can build the foundation of subsequent specialized applications, to
accelerate and facilitate model learning. Object detection extends the concept of
image classification and identifies individual occurrences of objects within the
image, typically by locating the centre of an object and approximating its extent
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using a rectangular bounding box. Object detection is particularly suitable for
demarcated objects and in remote sensing of vegetation is often used in agriculture
(e.g., Chen et al., 2019; Csillik et al., 2018; Freudenberg et al., 2019) or in natural
environments, e.g., for the accounting of individual trees (Weinstein et al., 2019),
cacti (López-Jiménez et al., 2019), seedlings (Fromm et al., 2019), or bark beetle
infested trees (Safonova et al., 2019). Semantic segmentation aims to delineate the
actual extent of an object and assigns a certain class to each pixel. It is ideally
suited for remote sensing of vegetation as it best captures the natural, irregular
shapes and smooth transitions between species or vegetation types. Frequently
used models include U-net (Ronneberger et al., 2015), SegNet (Badrinarayanan
et al., 2017), FC-DenseNet (Jégou et al., 2017), and DeepLabV3+ (Chen et al., 2017).
Their applications in remote sensing of vegetation span from mapping single
species (e.g. Ferreira et al., 2021; Fricker et al., 2019; Kattenborn et al., 2019a; Popp
& Kalwij, 2023; Wagner et al., 2020), to structural components (e.g. Hamdi et al.,
2019; Jiang et al., 2019; Kislov & Korznikov, 2020), to vegetation communities or
types (e.g. Kattenborn et al., 2019a; Wagner et al., 2019). Instance segmentation
goes one step further and segments individual entities of the respective class, for
example, individual trees of one species (Beloiu et al., 2023; Braga et al., 2020).
Further promising applications of CNNs include, for example, gap filling of cloud-
obscured optical data by means of radar data (Meraner et al., 2020), improving
spatial resolution by means of super-resolution (Wang et al., 2022), or data fusion of
multimodal remote sensing data (Lefèvre et al., 2017).

The high temporal resolution of current satellite missions (see chapter 1.3)
provides dense satellite image time series (SITS). Traditional algorithms, such
as Random Forests and Support Vector Machines, have been shown to handle
the high dimensionality of such time series data, but temporal dependencies
remain underexploited (Pelletier et al., 2019b). Specifically designed deep learning
algorithms reveal the recurring pattern in sequential data and are ideally suited
in the analysis of such time series data (Reichstein et al., 2019; Zhong et al., 2019;
Zhu et al., 2017). Typical model architectures include, for example, RNNs, LSTMs,
and Transformers. They have been used for the classification of land use and land
cover types (Campos-Taberner et al., 2020; Rußwurm & Körner, 2017, 2018; Yuan
& Lin, 2021), tree species (Xi et al., 2021), and wildfire detection (Kong et al., 2018).

1.5 Research needs

Increased tree mortality has been observed globally (Allen et al., 2010; Byer & Jin,
2017; Rakovec et al., 2022; Senf et al., 2018), but the exact extent and causes are
not yet fully explored at the landscape-level (Allen et al., 2010; Hartmann et al.,
2018a). Remote sensing has proven to be an effective method for characterizing
vegetation on large scales, and numerous satellites provide medium- to high-
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resolution data in terms of space and time. The large stream of daily acquired
satellite data (big data) presents both advantages and disadvantages. On one
hand, most applications benefit from the high spatial and temporal resolution
of these images. On the other hand, the sheer volume of data poses significant
challenges in handling and utilizing it effectively. However, the spatial resolution
of these satellite data is above the size of individual trees, which hampers the link
with ground reference data. The resulting lack of reference data is the primary
limitation for large-scale satellite-based remote sensing methods in detecting
deadwood, leading to an incomplete understanding of the processes causing tree
mortality. UAVs can bridge the gap between ground reference data and satellite
data by providing high-resolution imagery suitable for detecting individual trees.
Given the large quantity and diversity of remote sensing data, along with the
high spatial resolution of UAV data and the high temporal resolution of satellite
image time series, traditional remote sensing methods are reaching their limits.
This necessitates the development of adapted methods. Deep learning techniques
have already proven effective in other disciplines, such as CNN for image data
interpretation (e.g., classification, object detection) and LSTM for processing
sequential information (e.g., speech recognition).

The aim of this thesis therefore is twofold: (1) evaluating deep learning ap-
proaches for remote sensing of vegetation and (2) integrating multimodal and
multidimensional remote sensing data from UAVs and satellites. Both objectives
are based on the underlying question of how this aids understanding patterns
and drivers of tree mortality. At the core of this thesis is the upscaling approach:
initially, CNNs are used to automatically segment standing deadwood from UAV-
based orthomosaics. The detected deadwood then acts as reference data for
LSTMs, which leverage satellite image time series (i.e., Sentinel-1 and Sentinel-
2) to facilitate large-scale detection of standing deadwood across Germany. The
following main research questions are investigated and sought to be answered:

1. How are deep learning algorithms suited to analyse the dense spatial infor-
mation in very high-resolution remote sensing data?

2. In what way is the concerted use of UAVs and deep learning capable of
closing the reference data gap on tree mortality?

3. To what extent is deep learning suitable for extracting temporal information
from satellite image time series?

4. What are the spatio-temporal patterns and environmental drivers of tree
mortality in Germany?

These main research questions are examined in three studies that have been
published in international peer-reviewed scientific journals (chapters 2 and 3)
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Figure 1.1: Overview of the upscaling approach presented in this thesis: (1) au-
tomated classification and segmentation of standing deadwood in high-resolution
UAV-imagery using CNN (chapter 2); (2) utilization of these segmented canopies
as reference data for LSTM models for area-wide mapping of tree mortality from
satellite data time series (chapter 3); (3) enhanced understanding of patterns and
drivers of tree mortality at the landscape level (chapter 4).

or currently have been submitted for peer review (chapter 4). In chapter 2, I
assess the potential of CNNs to map forest tree species from very high-resolution
UAV-based RGB imagery. I test this on 51 UAV-orthomosaics and over a large
and heterogeneous sample of mixed stands of forest trees. Since little is known
about the requirements of remote sensing data for deep learning approaches, I
therefore test several spatial resolutions, the additional value of photogrammetric
3D-information, and different tile sizes of the input images.

To compensate for the lack of ground reference data on tree mortality, in
chapter 3, I propose an upscaling approach in which fine-scaled patterns in
UAV imagery are harnessed to create ample reference data. I use this local-level
data for training models that predict standing deadwood at the landscape-level
using multitemporal and multispectral information of satellite data. I seek to
answer the questions, whether CNN-based predictions of standing deadwood
are robust across a wide range of forest stand characteristics and over multiple
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years. Subsequently, these predictions are input to a long short-term memory
model (LSTM) to infer fractional cover of standing deadwood based on Sentinel-1
and Sentinel-2 time series data. I further test whether this upscaling approach is
transferable across regions and different years.

This upscaling approach enables the extrapolation of local-level deadwood
observations to entire landscapes. In chapter 4, I want to assess the suitability
of the resulting Germany-wide maps of standing deadwood for investigating
the processes of tree mortality at the landscape level. To this end, I look at the
spatial and temporal patterns of standing deadwood in Germany and compare
the patterns found with other remote sensing and ground-based assessments. To
investigate the drivers of the observed tree mortality, I look at the influence of
several environmental parameters on the occurrence of standing deadwood.
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Chapter 2

Mapping forest tree species

in high resolution

UAV-based RGB-imagery by

means of convolutional

neural networks

This chapter has been published as: Schiefer, F., Kattenborn, T., Frick, A., Frey,
J., Schall, P., Koch, B., & Schmidtlein, S. (2020). Mapping forest tree species
in high resolution UAV-based RGB-imagery by means of convolutional neural
networks. ISPRS Journal of Photogrammetry and Remote Sensing, 170, 205–215.
https://doi.org/10/ghrrhs
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Abstract

The use of uncrewed aerial vehicles (UAV) in vegetation remote sensing allows a
time-flexible and cost-effective acquisition of very high-resolution imagery. Still,
current methods for the mapping of forest tree species do not exploit the respec-
tive, rich spatial information. Here, we assessed the potential of convolutional
neural networks (CNN) and very high-resolution RGB imagery from UAVs for the
mapping of tree species in temperate forests. We used multicopter UAVs to obtain
very high-resolution (<2 cm) RGB imagery over 51 ha of temperate forests in the
Southern Black Forest region, and the Hainich National Park in Germany. To fully
harness the end-to-end learning capabilities of CNNs, we used a semantic seg-
mentation approach (U-net) that concurrently segments and classifies tree species
from imagery. With a diverse dataset in terms of study areas, site conditions,
illumination properties, and phenology, we accurately mapped nine tree species,
three genus-level classes, deadwood, and forest floor (mean F1-score 0.73). A
larger tile size during CNN training negatively affected the model accuracies for
underrepresented classes. Additional height information from normalized digital
surface models slightly increased the model accuracy but increased computational
complexity and data requirements. A coarser spatial resolution substantially
reduced the model accuracy (mean F1-score of 0.26 at 32 cm resolution). Our
results highlight the key role that UAVs can play in the mapping of forest tree
species, given that air- and spaceborne remote sensing currently does not pro-
vide comparable spatial resolutions. The end-to-end learning capability of CNNs
makes extensive preprocessing partly obsolete. The use of large and diverse
datasets facilitates a high degree of generalization of the CNN, thus fostering
transferability. The synergy of high-resolution UAV imagery and CNN provides a
fast and flexible yet accurate means of mapping forest tree species.
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2.1 Introduction

Forest ecosystems cover about one-third of the Earth’s land area (FAO, 2020),
providing countless and substantial ecosystem services. There is, therefore, great
interest in obtaining information on the state of forest ecosystems. Many problems
in this context require the acquisition of tree species composition at a high spatial
resolution—a goal to which remote sensing can ultimately contribute significantly
(Fassnacht et al., 2016). A combination of two technological and methodological
advances offers great potential for accurately mapping forest tree species: the use
of uncrewed aerial vehicles (UAV) and deep learning. Whereas the use of very
high-resolution UAV-data is no novelty in this regard (Franklin & Ahmed, 2018;
Gini et al., 2014; Michez et al., 2016; Nevalainen et al., 2017), deep learning is only
recently being introduced into vegetation remote sensing (Audebert et al., 2019;
Brodrick et al., 2019; Ma et al., 2019; Zhang et al., 2016; Zhu et al., 2017).

The most effective deep learning algorithms in analysing high spatial resolution
remote sensing data are convolutional neural networks (CNN) since these are
specifically designed to analyse spatial patterns. CNNs autonomously extract low-,
mid- and high-level feature representations (e.g., corners, edges, abstract shapes)
that best describe targets, such as classes or continuous values, through a series of
convolutions and pooling operations. Several studies have already used CNNs
and very high-resolution remote sensing data for the mapping of tree species. To
detect tree individuals outside forests, good results have been reported from urban
environments (Hartling et al., 2019; Lobo Torres et al., 2020; Santos et al., 2019), and
plantations (Csillik et al., 2018; Freudenberg et al., 2019; Li et al., 2017; Osco et al.,
2020) but these results are hardly transferable to heterogeneous forest. Specifically
targeting forest environments, Fricker et al. (2019) used a CNN for classifying and
mapping seven tree species in a mixed-conifer forest from airborne data, with very
accurate results for hyperspectral and moderately accurate results for pseudo-RGB
data. Trier et al. (2018) also used airborne hyperspectral data to classify pine,
spruce, and birch trees in a boreal forest using a CNN. Nezami et al. (2020)
showed very accurate results for classifying the same tree species testing CNNs
with different combinations of hyperspectral and RGB imagery and canopy height
models. Thus far, mapping tree species in forests often requires high spectral
resolution data, which is cumbersome to access for non-specialist users. Solely
relying on RGB information, individual tree species have been accurately mapped
against a background of other species using CNNs (Kattenborn et al., 2019a, 2020;
López-Jiménez et al., 2019; Morales et al., 2018; Wagner et al., 2020). Natesan
et al. (2019) used a CNN to classify previously extracted tree crowns from RGB
data into white pine, red pine, and non-pine. Spectral resolution notwithstanding,
many studies used additional preprocessing steps prior to classification (e.g., tree
segmentation or tree localization from ancillary remote sensing data, background
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removal, feature engineering), which limits the transferability and increases the
computational load of such applications.

With consumer-grade UAVs on the rise, which enable easy and low-cost acqui-
sition of very high-resolution RGB data, the mapping of tree species in heteroge-
neous forests using solely RGB imagery is of high interest, as it does not rely on
sophisticated sensors, does not require extensive calibration and preprocessing
and, therefore, enables the application by a wide audience (Komárek, 2020). The
above-mentioned studies demonstrated that, regardless of the spectral resolution,
high spatial resolution remote sensing data can be sufficient for mapping tree
species when small samples of species or relatively homogeneous environments
with little site variability are considered.

To further assess the potential of very high-resolution imagery for mapping
forest tree species, it would be desirable to test CNNs on a large and heterogeneous
sample of species with a wide gradient of forest types, site conditions, and stand
structures. Moreover, such an assessment based on RGB imagery alone would
be valuable, since the use of RGB data ensures access to such applications for
a wide audience. Recent CNN architectures for semantic segmentation (e.g.,
U-Net (Ronneberger et al., 2015) or DenseNet (Jégou et al., 2017)) facilitate end-
to-end learning that can be directly applied on the raw remote sensing data
and enable mapping at the original image resolution and overcome the need
for prior segmentation and feature engineering steps. Here, we would like to
assess the potential of very high-resolution RGB imagery from UAVs to map
forest tree species with a large and heterogeneous sample on mixed stands of
forest trees. We used CNNs to map tree species from UAV-based very high-
resolution RGB imagery in temperate deciduous and mixed-coniferous forests
in Germany. We used a multiclass semantic segmentation approach (U-net) to
simultaneously segment and classify 14 classes (i.e., nine tree species, three genus-
level classes, deadwood, and forest floor). Our main research question is as
follows: Is RGB imagery sufficient to accurately map tree species in heterogeneous
forests? Moreover, given the very recent introduction of CNNs into vegetation
remote sensing, little is known about the requirements regarding the remote
sensing data. We, therefore, tested several spatial resolutions, the additional value
of photogrammetric 3D-information, and different tile sizes of the input images.

2.2 Material and Methods

2.2.1 Study area

The study area is in the Southern Black Forest region and the Hainich National
park (NP), in the German states of Baden-Württemberg and Thuringia, respectively
(Figure 2.1). The Southern Black Forest study site is situated in a mountain range

20



2 .2 material and methods

Figure 2.1: Map oft the two study areas, Southern Black Forest and Hainich NP in
Germany. Green markers indicate the locations of the research plots. Projection:
WGS84 UTM Zone 32N

between 120 and 1 492 m a.s.l. between the Rhine valley and the highest peak at
Feldberg. The area is mostly covered by mixed and coniferous forests, largely
managed for timber production (Kändler & Cullmann, 2015), and covers a wide
range of forest types and age classes (Frey et al., 2018). The main tree species
are Picea abies L. (40% cover), Fagus sylvatica L. (18%), and Abies alba Mill. (13%).
Less common tree species are Quercus robur L. (5%), Pinus sylvestris L. (4%), and
Pseudotsuga menziesii Mirbel (4%). Parent rock mainly consists of granite and
gneiss, with some admixture of sandstone (Storch et al., 2020).
The Hainich NP lies on a ridge between 225 and 494 m a.s.l. and covers an area of
7 600 ha. It is characterized by unmanaged mixed deciduous forests on limestone
and dominated by F. sylvatica. Subordinate species include Fraxinus excelsior L.,
Acer pseudoplatanus L., Acer platanoides L., Q. robur, Quercus petraea (Matt.) Liebl.,
Tilia cordata Mill., Tilia platyphyllos Scop., Carpinus betulus L., and others. The
heterogeneity of both study areas is exemplified by the forest inventory plots
(details, see section 2.2.2), with species numbers per plot between two and ten and
tree densities ranging from 179 and 851 trees per hectare.
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2.2.2 Data acquisition

The ConFoBi-Project (Conservation of Forest Biodiversity in Multiple-Use Land-
scapes of Central Europe) has implemented 135 research plots (100× 100 m) within
state-owned forests in the Southern Black Forest region (Storch et al., 2020). A
full forest inventory was conducted between October 2016 and February 2018. In
each plot, we recorded tree species, diameter at breast height DBH, and height
of all trees with a DBH ≥ 7 cm. In addition, each plot was inventoried with an
octocopter UAV (OktoXL 6S12, Mikrokopter GmbH, Moormerland, Germany)
carrying a consumer-grade full-frame RGB camera (Alpha 7R, Sony Europe Lim-
ited, Weybridge, Surrey, UK) with a 35 mm prime lens. Flights were carried out
in snowless conditions between March 2017 and April 2018. For each flight, the
UAV maintained an altitude of 80 m above ground at a flight speed of 3.5 m/s and
followed a criss-cross pattern using the onboard GNSS (see Frey et al., 2018, for
details). The camera was aligned nadir and perpendicular to the flight direction,
and triggered automatically every 3–4 m of the flight track. This resulted in for-
ward overlaps of >95% and ground sampling distances of about 1.1 cm. Because
we adopted an area-wide digitization of the reference data to gain a full picture of
the model performance across sites, the digitization of all plots would have been
too labor-intensive and we randomly selected 47 plots. From all 135 plots, plots
with leaf-off conditions, plantation-like forest structures as overly easy targets, or
cloud shadows in parts of a scene were excluded.

Within the Biodiversity Exploratories framework (Fischer et al., 2010), 13 re-
search plots (100 × 100 m) were implemented in the Hainich NP. In the off-season
from 2014–2015, all plots were surveyed and trees with a DBH ≥ 7 cm were
recorded with species information, DBH, tree height, and geographic location of
the stem (Schall et al., 2018). For 4 of these plots, UAV based RGB imagery was
acquired in September 2019 with a DJI Phantom 4 Pro+ (DJI Technology Co., Ltd.,
Shenzhen, China) quadcopter with a ground sampling distance of <1.35 cm, at a
flight speed of 2.8 m/s, and forward overlap of 90%.

We derived a total of 51 orthomosaics using a Structure from Motion-based
photogrammetric processing chain in Agisoft Metashape v.1.5.4 (Agisoft LLC, St.
Petersburg, Russia). This included filtering of blurry images, image matching,
and dense point-cloud creation. Digital elevation models were derived from the
dense point cloud. Orthomosaics were created by projecting single images on
digital elevation models. Georeferencing was performed automatically based on
the GNSS trajectory logs of the respective UAV. We calculated normalized digital
surface models (nDSMs) via subtraction of digital terrain models. The digital ter-
rain models were derived from airborne laser scans with 1 m resolution and were
provided by the states Baden-Württemberg (State Agency for Spatial Information
and Rural Development Baden-Württemberg, LGL, Stuttgart, www.lgl-bw.de) and
Thuringia (State Agency for Land Management and Geoinformation, TLBG, Erfurt,
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www.geoportal-th.de). Orthomosaics were resampled to a spatial resolution of
2 cm. To compensate for differences in the illumination properties of the individual
UAV scenes, we applied a histogram stretch to the 0.01 and 99.99% percentiles to
all orthomosaics.

2.2.3 Reference data extraction

Training of the U-net segmentation algorithm requires regular tiles of the RGB
imagery. Besides, classified areas in the form of masks need to be provided for
training. We derived these masks by visual interpretation and manual delineation
of classes in the orthomosaics and normalized digital surface models (nDSM)
using ArcGIS v.10.6.1 (ESRI, Redlands, CA, USA). A total of nine tree species,
three genus-level classes, deadwood, and forest floor were classified in this study
(Figure 2.2). Tree species composition, tree height, DBH, and relative position of
trees from the forest inventory data aided the visual classification. For each plot,
we digitized the classes. We did not explicitly delineate tree individuals because
this was beyond the scope of the study. Delineation and the class assignment were
cross-checked by at least one other interpreter. The visual, area-wide classification
is not a necessity of the CNN approach, but it was, as already mentioned above, a
requirement for gaining a comprehensive picture of the model performance across
sites and with different tile sizes. Parts of the canopy that could not be assigned
to classes with certainty (0.07% of the area, i.e., due to blurry image areas) were
excluded from further analysis. The area-related share of a species in the dataset
and the number of sites in which the species occurred is shown in Table 2.1. We
tested squared tiles with three different edge sizes: 128 pixel, 256 pixel, and 512

pixel corresponding to 2.56 m, 5.12 m, and 10.24 m, respectively. We seamlessly
cropped orthomosaics and class delineations into non-overlapping tiles, resulting
in a maximum of 36², 18², and 9² tiles for the respective tile sizes per scene. Tiles
containing empty raster cells (artefacts from the SfM-workflow caused by too
little image overlap) in the orthomosaics or unidentified species in the mask were
excluded from further analysis. In total, we extracted 62 826, 15 094, and 3 112 tiles
for the respective tile sizes.

2.2.4 Data splitting

Training of a CNN is performed in epochs, which are defined as one complete pass
through a training dataset. To assess whether a CNN is starting to over-optimize
on training data, the CNN is evaluated against a validation dataset after each
epoch. To get an independent assessment of the model accuracy, a model has to
be evaluated with independent test data. Prior to model training, we randomly
sampled 10% of the dataset (based on the 512-pixel tiles) as independent test
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Figure 2.2: Detailed overview of the occurring tree species and classes.

data. Additionally, for visual inspection of the results, the UAV-scene of an entire
100 × 100 m plot was set aside. The area covered by the 512-pixel test tiles was
also used for the test datasets of the smaller tiles, with an accordingly higher
resulting number of tiles. With the same procedure as for the test dataset, we
randomly split the remaining dataset into 75% for model training and 25% for
model validation.

2.2.5 CNN-based tree species mapping

For tree species mapping, we adapted the U-net CNN-architecture (Ronneberger
et al., 2015, Figure 2.3). The U-net consists of a contracting path (Figure 2.3,
left side) to capture context and a symmetric expanding path (Figure 2.3, right
side) to map the contextual information to the original image resolution. In our
implementation, the contracting path featured four blocks. Each block consisted
of two 3 × 3 convolutions, both followed by batch normalization and Rectifier
linear unit (ReLU) activation. A 2 × 2 max pooling operation with a striding
of two concluded each block, reducing the spatial dimensions of the feature
maps by half. After each max pooling operation, we doubled the number of
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feature maps. Each block of the expanding path consisted of up-sampling of the
feature maps and subsequent 2 × 2 convolution (“up-convolution”), reducing the
number of feature maps by half. The resulting feature maps were concatenated
with the feature maps of the corresponding blocks from the contracting path.
This was followed by repeated 3 × 3 convolutions, batch normalization, and
ReLU activation. With each block of the expanding path, we halved the number of
feature maps and doubled the spatial dimensions. The pixel-wise classification was
performed at a subsequent 1× 1 convolutional layer with a softmax activation. This
softmax activation mapped the learned features to the final class probabilities. The
maximum class probability of a pixel represented the final class of the respective
pixel.

Due to the imbalanced distribution of the tree species (Table 2.1), we used
weighted categorical cross entropy as loss function during model training. Thereby,
the categorical cross entropy between masks and model output was weighted
by the area-related share of a species; in this case inversely proportional. As
optimizer, we chose RMSprop with a learning rate of 1e-4. For better model
generalization, we performed a random data augmentation during model training.
This augmentation included inflating the training dataset to four times its size,
applying random horizontal and vertical flips, and randomly changing brightness
(90–110%) and contrast (80–120%) values of input tiles. Models were trained for
40 epochs with batch sizes of 3, 12, and 46 for 128 × 128, 256 × 256, and 512 × 512
pixel tiles, respectively. The epoch with the lowest loss value from the validation
dataset was kept as the final model. All code was written in R v.3.6.3 (R Core
Team, 2020), using the packages ‘tensorflow’ (Allaire et al., 2019b), ‘keras’ (Allaire
et al., 2019a), ‘tfdatasets’ (Allaire et al., 2019c), and ‘tibble’ (Müller & Wickham,
2019), and is available at https://github.com/FelixSchiefer/TreeSeg. We used the
R interface to Keras (Chollet & Allaire, 2017) with the TensorFlow backend v.2.0.0
(Abadi et al., 2016). Training of a CNN model on a CUDA-compatible NVIDIA
GPU (GeForce RTX 2080 Ti, 11 GB RAM) and the cuDNN library (Chetlur et al.,
2014) took between 7–14 hours. Upon request, the data used in this study can also
be made available.

2.2.6 Accuracy assessment

To analyse the effects of the tile size, height information, and spatial resolution
on CNN accuracy, we compared the results of several models. Three CNNs
were trained with RGB data; each with a different tile size. Another three CNNs
were trained with RGB+nDSM data; each with a different tile size. To analyse
the influence of spatial resolution, we trained four CNNs with RGB+nDSM data
and a fixed tile size of 256 × 256 pixel; each with a different spatial resolution
(4, 8, 16, and 32 cm). We compared manually delineated tree crowns from the
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Figure 2.3: Adapted U-net CNN-architecture for the tree species segmentation (Ron-
neberger et al., 2015). This scheme illustrates how 128 × 128 pixel tiles were analysed.
Values on top of the boxes depict the number of calculated feature maps with the
respective x-y-dimensions as vertically oriented labels.

test dataset with CNN predictions to evaluate CNN models based on Overall
accuracy (OA), precision, recall, and F1-score (harmonic mean of precision and
recall). The reported accuracies are based on the pixel-level. For visual inspection,
we applied the best model to an entire UAV-scene that was not used during model
training. We used a moving window approach with a half tile size overlap in x-
and y-direction. From the resulting nine predictions per pixel, final predictions
were derived through majority vote.

2.3 Results

2.3.1 Model training

For each model, the validation loss reached a minimum during the 40 epochs
(Figure 2.4). After reaching its minimum, the training loss for all models converged
towards zero (not depicted) whereas the validation loss stagnated or increased
again. Models that were trained with smaller tiles, displayed a faster decrease in
validation loss.
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Figure 2.4: Validation loss during CNN model training. Curves were smoothed for
better visualization. The symbols represent the unsmoothed validation loss of the
best epoch.

2.3.2 Model results

The model that performed best was trained with RGB+nDSM data and a tile size
of 128 × 128 pixel (OA = 89%, mean F1-Score = 73%), albeit only marginally better
than models trained only with RGB data or with a larger tile size (Table 2.1). A
coarser spatial resolution resulted in overall accuracy reduction from 89% at 2 cm
to 62% at 32 cm resolution, and mean F1-scores from 67% to 26%. Class-specific
F1-scores were highest for P. abies (93%). Moreover, these scores did not differ
much between models with different tile sizes, especially not for abundant species
(i.e., P. abies, F. sylvatica, A. alba, P. menziesii, and P. sylvestris). For underrepresented
species (i.e., Acer spp., F. excelsior, L. decidua, Quercus spp., C. betulus, Tilia spp., and
B. pendula), however, larger tile sizes resulted in lower F1-scores, with rare classes
no longer being classified.

The use of weighted categorical cross entropy did not compensate for the
imbalanced dataset. Setting the weights higher even worsened the results (see
Appendix A1 for details). The same applied for models with a decreasing spatial
resolution; 13 out of 14 classes were recognized at a spatial resolution of 4 cm,
but only 8 classes at 32 cm resolution. Such decrease in model accuracy was even
more evident for classes with a lower share. For example, Larix decidua had a
high F1-score at 2 cm spatial resolution (F1 = 89%), but was not classified at 32 cm
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spatial resolution. This variation was species-dependent. For example, for P. abies
the F1-score decreased far less, from 93% at a spatial resolution of 4 cm to 70% at
32 cm resolution. Site-specific F1-scores did not show large fluctuations over the
research plots from different study areas and years (see Appendix A2 for details).

2.3.3 Prediction on independent scene

We applied the best model (i.e., CNN trained with RGB+nDSM on 128 × 128
pixel tiles) to a UAV-scene that had not been used for training (Figure 2.5).
Model inference took about 3 minutes for the entire 100 × 100 m UAV-scene.
Abundant classes were almost perfectly predicted, but the model struggled with
underrepresented classes. The CNN predictions on larger tiles resulted in similar
patterns, but edge effects of the tiles were less pronounced (not shown).

2.4 Discussion

2.4.1 Model performance

The model accuracies achieved in our study were relatively high, especially when
considering the high number of 14 classes (i.e., nine tree species, three genus-level
classes, deadwood, and forest floor) and the fact that we only used RGB imagery.
Moreover, our data are characterized by a high degree of heterogeneity, as they
include different forest types (i.e., mixed, deciduous and coniferous), different
types of use (i.e., unmanaged forests in Hainich NP and commercial forest in the
Southern Black Forest), and feature a diverse age structure. By using a semantic
segmentation approach, no tree segmentation or localization steps prior to model
inference were required, allowing us to fully exploit the end-to-end learning
capabilities of CNNs. The classification of comparably high numbers of tree
species using CNNs has been demonstrated in subtropical forests (OA = 84%), but
hyperspectral UAV data was used and the targeted tree crowns were previously
extracted from the imagery (Sothe et al., 2020). Similar accuracies have been
reported for the classification of seven tree species in mixed coniferous forest
using airborne hyperspectral data (F1 = 87%) and pseudo-RGB data (F1 = 64%),
after previous identification of the trees in lidar-derived canopy height models
(Fricker et al., 2019). After the removal of shadowed, low-, and non-vegetated
pixels prior to CNN-classification, P. abies, P. sylvestris, and B. pendula have been
mapped in boreal forests in airborne hyperspectral data (OA = 87%) and RGB
data (OA = 74%) (Trier et al., 2018). The same species have been mapped with
different combinations of hyperspectral data, RGB imagery, and canopy height
models with the highest accuracies (OA = 98%) (Nezami et al., 2020). CNNs have
been successfully used to classify two Pinus species and non-Pinus in previously
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Figure 2.5: Predictions of a trained CNN on a 100 × 100 m plot. (a) UAV-based RGB
orthomosaic, (b) manually delineated reference data, (c) CNN prediction based on
128 × 128 pixel tiles (RGB+nDSM). For illustrative purposes, the two sides of the plot
are shown one above the other. Classes that did not appear in the reference data are
grouped in the category “other”.
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extracted tree crowns from UAV-based RGB imagery (F1 = 80%) (Natesan et al.,
2019). However, a more detailed comparison of our results with the existing
literature is hampered by the variety of applied CNN approaches (i.e., object
detection, image classification/regression, and semantic segmentation), CNN
architectures, forest types, and most of all the tree species studied.

2.4.2 Tile size

For most of the classes, the tile size did not have a prominent effect on model
performance. Only for underrepresented classes, a larger tile size was disadvanta-
geous. This depended less on the tile size itself, but rather on the species coverage
within the tiles. With smaller tiles, the area percentage of rare species on the
tile was larger and underrepresented species thus contributed more to the model
update during training. Whereas with larger tiles, underrepresented species got
lost in the surrounding information of more frequent species. This was despite
the use of weighted categorical cross entropy as loss function to compensate
for such imbalances. The situation was different for classes that feature distinct
characteristics (i.e., L. decidua and deadwood) as they were modelled equally well,
regardless of the tile size. From the prediction map (Figure 2.5c) it becomes
evident that the CNN, despite the employed moving window approach, suffered
from edge effects, a known problem with CNNs. Obviously, this effect is more
problematic with a smaller tile size. Hence, if sufficiently enough reference data
for the targeted classes is available, a larger tile size should be preferred. This
allows a larger spatial context to be considered–—which is key information to
CNNs—–and speeds up model inference over large spatial extents. The fact that
the models with smaller tile sizes reached their minimal validation loss earlier can
be explained by the different batch sizes. The batch size is limited by the computa-
tional complexity of the CNN-architecture, the available RAM, and the size of the
images. To analyse the influence of the batch size on the model performance is
beyond the scope of this study. With the different batch sizes for the CNNs of the
different tile sizes, we ensured that the models were exposed to the same amount
of information in terms of area coverage.

2.4.3 Canopy height information

Adding height information from nDSM to the CNN slightly increased the model
accuracies for most of the classes. This contrasts with Sothe et al. (2020) and
Hartling et al. (2019) who found additional height information to decrease the
model performance. Kattenborn et al. (2020) found no clear positive effect of
combining height information with RGB data and suggested that the structural
aspect is redundant in both height and RGB information. Analogous to our visual
perception of the tree crowns, we assume that the basic structural information
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of nDSMs is already inherently included in RGB data through shadows and
illumination differences. Whereas the creation of a digital surface model from UAV
data is required for the calculation of the orthomosaic anyway, one should keep in
mind that for the calculation of nDSMs a digital terrain model is needed (Wallace
et al., 2019), which in turn requires additional processing steps. Furthermore,
including additional layers to the CNN increases the number of parameters and
thus computational complexity and could outweigh the benefit introduced.

2.4.4 Spatial resolution

Our results showed that very-high spatial resolution was essential for accurate
mapping of forest tree species using RGB data. These findings underline the key
role that UAVs can play for the remote sensing-based forest assessment, given that
airborne and satellite remote sensing data currently do not provide a comparable
spatial resolution. While most species with small shares of the dataset could not be
identified with coarsening spatial resolution, deadwood could still be sufficiently
identified, despite its small share of the dataset (0.95%).This is probably because
the visual characteristics of deadwood were still represented at coarser spatial
resolutions. This indicates that for some classes, mapping might be possible even
at coarser spatial resolutions if prominent features exist. Accordingly, Safonova et
al. (2019) used CNNs on UAV-based RGB imagery with 5–10 cm spatial resolution
to detect damaged and dead trees of Abies sibirica after bark beetle infections with
F1-scores up to 93%.

For a qualitative inspection of the effect of the spatial resolution and to obtain a
causal explanation for our results, we inspected the learned features of the CNN
based on filter visualizations (Figure 2.6). The latter are synthetic images that
would maximally activate the respective filter of a trained network—–in other
words, they reflect what the network is looking for (technical details on the filter
visualization are given in the Appendix A3). The filter visualizations of the fourth
block and the centre block of the CNN revealed fine-scale patterns that resemble
typical canopy features, e.g., conifer-like branching structures (Figure 2.6 a,c), or
broad-leaf-like canopy structures (Figure 2.6 b,d). Such patterns could not be
revealed with coarser spatial resolutions, which underlines our findings that a
very high resolution is key to identifying forest tree species. It, therefore, seems
possible that further increasing the spatial resolution (e.g., sub-centimetre) may
even improve the capabilities for a CNN-based tree species mapping.

2.4.5 Model generalization

The validation from the test dataset revealed high generalization abilities for the
identification of 14 classes with a mean F1-score of 0.73 (128 × 128 pixel tiles,
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Figure 2.6: Selection of synthetic filter visualizations resembling patterns that would
most stimulate the CNN (for technical details, see Appendix A3). The filter visu-
alizations correspond to the dimensions of the tile size (here 256 × 256 pixel) and
highlight the importance of fine-scale features.

RGB+nDSM) and evenly distributed site-specific F1-scores across all sites and
years. Sothe et al. (2020) reported problems in generalizing the learned features of
nine tree species when individual CNNs were trained locally on different sites.
For the discrimination of two Pinus species from non-Pinus, Natesan et al. (2019)
showed a higher F1-score (80%) when CNNs were trained with samples from
several years than when trained with only one year (50%). Similarly, Weinstein
et al. (2020) reported high generalization abilities of CNNs for the detection of
individual trees over four different forest types. They found a CNN trained on
all available forest types to outperform individual, locally trained CNNs. Their
results suggest high model transferability when CNNs are trained over large and
heterogeneous data. The data used in this study were collected in 51 one-hectare
plots in two different forest types (temperate deciduous and mixed coniferous
forests), different managements (managed and unmanaged), and study areas
(Southern Black Forest and Hainich NP), and included a variety of growth stages.
UAV data acquisition took place in the years 2017–2019 from June–September (day
of the year 110–307) and covered a variety of illumination situations due to the
different recording times from 7 am to 6 pm. In addition, data augmentation was
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used to increase the size and variance of the training dataset, and to minimize
spatial autocorrelation of adjacent tiles. We, therefore, assume that the high
generalization abilities of the CNNs, as indicated by the overall accuracy, as well
as the evenly distributed F1-scores across all sites, are the result of including many
sites from different areas, different forest structures, different seasons and years,
and varying illumination properties. This way, it can be ensured that the CNN
learns features of tree species that are representative for different growth stages
and site conditions. In line with Weinstein et al. (2020), we assume that more
training data and increased heterogeneity will further enhance the accuracy and
generalization of CNNs. Coupled with the establishment of large databases of
remote sensing and reference data (Zhu et al., 2017), this opens the possibilities of
transfer learning or even the creation of universal models. In the case of transfer
learning, CNNs are pre-trained on large and heterogeneous datasets and the
model weights are fine-tuned for the respective use case, while a universal model
is trained on all existing data and is therefore transferable across sites. Weinstein
et al. (2020) already demonstrated this future perspective for the detection of trees
over various landscapes. Our results show a path for widely applicable mapping
of tree species in temperate forests using only low-cost UAV-based RGB data and
CNNs.

2.4.6 CNN architecture

Frequently applied approaches for mapping vegetation from remote sensing
data using CNN comprise image classification/regression or object detection.
Classification and regression approaches either rely on prior segmentation of the
target (cf. Hartling et al., 2019; Natesan et al., 2019; Sothe et al., 2020), or predictions
are assigned to an entire image tile (cf. Kattenborn et al., 2020; Qian et al., 2020;
Rezaee et al., 2018). The output of the object detection task is typically a bounding
box drawn around the object of interest (cf. Chen et al., 2019; Csillik et al., 2018;
Fromm et al., 2019; Safonova et al., 2019; Santos et al., 2019; Weinstein et al., 2019,
2020). The capability of such approaches to derive spatially explicit maps can be
limited by a number of reasons: (1) they require additional preprocessing steps
(e.g., segmentation, background removal), or (2) classification on the single-pixel
level is required to retrieve pixel-based predictions, or (3) the results represent
object location and (rectangular) extent rather than spatially explicit objects. In
contrast, semantic segmentation is an end-to-end learning approach that combines
segmentation and classification in a pixel-based fashion at the original spatial
resolution and is thus ideally suited for mapping tree species in forests. No prior
segmentation or classification is necessary apart from the creation of a training
samples.

In this study, we used the U-net architecture, given its good performance even
with small amounts of labelled data (Ronneberger et al., 2015). Besides its relatively

34



2 .4 discussion

low computational complexity, several studies have successfully demonstrated
the suitability of the U-net for the mapping of single plant species (Kattenborn
et al., 2019a; Wagner et al., 2020), individual trees (Freudenberg et al., 2019; Lobo
Torres et al., 2020), forest damage and disturbance (Hamdi et al., 2019; Kislov
& Korznikov, 2020; Wagner et al., 2019), forest types (Wagner et al., 2019), and
plant communities (Kattenborn et al., 2019a). Since we were interested in the
general applicability of CNNs for mapping forest tree species, we did not aim for
benchmarking multiple architectures. Besides U-net, a variety of more elaborate
model architectures for semantic segmentation exist (e.g., FC-DenseNet (Jégou et
al., 2017), SegNet (Badrinarayanan et al., 2017), or DeepLabv3+ (Chen et al., 2017)).
Lobo Torres et al. (2020) compared five models of varying complexity, namely
U-net, FC DenseNet, SegNet, and two variants of the DeepLabv3+ for semantic
segmentation of tree species in urban environments. Their results suggest the
model accuracies of the architectures to be comparable, whereas more complex
models (i.e., DeepLabv3+) required up to two or four times more time during
model training and inference.

Another alternative to semantic segmentation is instance segmentation, i.e.,
segmenting not only classes but also individuals. Detecting individual trees
would truly be of high value for forestry and conservation. However, from our
experience from the visual interpretation, many tree crowns of the same species
are hard to differentiate because branches may have crown-like characteristics (e.g.,
F. sylvatica, F. excelsior). This suggests that generating labels for the segmentation
of individuals requires more sophisticated procedures that either require in-situ
data with high-quality GNSS data on tree stem locations or a sophisticated link to
ancillary remote sensing data (e.g., lidar data) to aid visual inspection. However,
even if labels were available, we doubt that instance segmentation algorithms
would be able to locate individuals in RGB orthomosaics given the above-described
difficulties.

2.4.7 Reference data

Reference data were derived through manual delineation in the orthomosaics
after visual interpretation. Given the very high spatial resolution (<1.35 cm) of the
imagery, tree species were clearly identifiable. To minimize errors in the visual
interpretation, we used additional information from forest inventories (i.e., tree
height, DBH, and partly tree stem coordinates), cross-checked the delineations by
at least one other interpreter, and removed tree crowns that we could not identify
with certainty. Several reasons suggest that when using very high-resolution image
data, no other method is appropriate for obtaining reference data, especially in
the case of deep learning: (1) the acquisition of in-situ data of the required
amount is costly, time- and labor-intensive and might thus not be feasible; (2)
the reference data from visual interpretation of the image data is not subject
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to geolocation errors of GNSS-measurements as for in-situ measurements. Such
errors are typically in the range of decimetres to meters when using differential
GNSS and might even exceed several meters when using stand-alone GNSS,
particularly under dense canopies (Kaartinen et al., 2015; Valbuena et al., 2010).
Especially when using very high-resolution imagery, errors might exceed the
spatial resolution by far, which makes in-situ measurements difficult to use; (3)
in-situ data that can be recorded with the least effort in forests are typically
point observations (e.g., tree stem coordinates) that do not necessarily allow for a
spatially explicit link with the targeted variable (e.g., tree crowns). However, visual
interpretation from RGB imagery is not free of misinterpretation, but due to the
high amount of reference data required for CNNs and the need for high-precision
geolocation within the high-resolution imagery, it seems to be the most effective
way of collecting reference data. Furthermore, it has been shown that CNNs can
compensate for faulty labels to some extent and that correct classes were predicted
despite incorrectly labelled reference data (Hamdi et al., 2019; Kattenborn et al.,
2020).

A probable reason for the decreasing accuracy with decreasing share of the
species might be that less abundant species share similar features with more
abundant species and are therefore misclassified. This could be the case especially
with F. sylvatica and C. betulus whose leaves have a similar size and shape. On the
other hand, rarely occurring species that show no or less similarities with more
abundant species (e.g., small leaves and distinct habitus of B. pendula) have also
been poorly classified, most likely due to their under-representation in the data
set. The majority of observations in this study were situated along a gradient of
forest connectivity and structure (Storch et al., 2020) and, hence, not optimized
for representing all species for a remote sensing application. Thus, designing or
updating a database towards sufficient observations for rare taxa, may be key for
an accurate species mapping.

More technical alternatives for improving the accuracy for underrepresented
species include tuning the weights in the loss function and setting them higher
for less frequent classes (which in our case, however, rather worsened the results
at some point), weight updating (i.e., updating the weights of an already trained
CNN using solely data of less frequent species), or sampling tiles containing less
frequent species more often during model training. The latter, however, was not an
option due to the large range of occurrences in our dataset (0.2–33% area-related
share), as it would have drastically reduced the dataset size or assumedly would
have introduced large redundancies.

For the genera Acer, Tilia, and Quercus, we grouped the respective species into
genus-level classes, since they were only present in very small quantities in the
plots. While for some of these species a distinction in the RGB data might be
easier due to visible differences in tree habitus or leaf shape (e.g., Acer platanoides
and Acer pseudoplatanus), for other species with only subtle differences it might
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be very difficult or even impossible (e.g., Quercus petraea and Quercus robur). The
mapping of such species using very high-resolution UAV-based RGB data and
CNNs could prove to be very difficult and should be subject to further research.

2.5 Conclusion

We showed that RGB imagery from consumer-grade UAVs in concert with a CNN-
based semantic segmentation enables to map tree species across heterogeneous
temperate forests stands with high accuracies. We tested CNN-based tree species
mapping with different tile sizes, incorporation of height information (nDSM),
and varying spatial resolutions. The tile size had no prominent influence on the
model accuracy if enough reference data was available. By choosing a larger tile
size, a larger spatial context was considered by the CNN, thereby minimizing
edge effects, and accelerating the application over a large spatial extent. Ad-
ditional height information from nDSMs slightly increased the model accuracy.
Still, the inclusion of nDSMs should be carefully considered, since the increased
computational complexity of the CNN and the need for a digital terrain model are
major drawbacks. A high spatial resolution was indeed decisive for the accurate
mapping of forest tree species using RGB data. Overall, our results showed that
CNN models generalize well over the diverse dataset in terms of site conditions,
forest types, stand structure, phenology, and illumination properties.

Our findings underline the synergies between high-resolution UAV imagery
and CNN-based segmentation procedures. In view of the increasingly easy and
affordable way to obtain very high-resolution RGB imagery with consumer-grade
UAVs, and given that air- and spaceborne data currently do not provide compara-
ble spatial resolutions, UAVs can play a crucial role in the mapping of forest tree
species. CNN are able to learn species-specific features from such high-resolution
imagery, while their end-to-end learning capabilities make extensive preprocess-
ing of remote sensing data obsolete and simplify a widespread application. Our
study demonstrates the potential of a concerted use of UAVs and CNNs and thus
provides promising future perspectives for applications in forestry or large-scale
and long-term ecological research. Such applications usually require large-scale
and accurate maps of forest tree species, for which field-based methods might be
too labor-intensive while commonly used machine learning approaches might not
be accurate enough.

Given that training data generation for semantic segmentation is a laborious
task and generalization across forest types is of primary concern, a flexible,
widespread, and operational application of such an approach may be facilitated
by incorporating transfer learning (i.e., updating and refining the learned feature
representations of an already trained CNN by retraining the model with new
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image data) or the development of universal models (i.e., one single model that
has been trained over a variety of landscapes and many species).
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Abstract

Increasing tree mortality due to climate change has been observed globally. Re-
mote sensing is a suitable means for detecting tree mortality and has been proven
effective for the assessment of abrupt and large-scale stand-replacing disturbances,
such as those caused by windthrow, clear-cut harvesting, or wildfire. Non-stand re-
placing tree mortality events (e.g., due to drought) are more difficult to detect with
satellite data—especially across regions and forest types. A common limitation for
this is the availability of spatially explicit reference data. To address this issue, we
propose an automated generation of reference data using uncrewed aerial vehicles
(UAVs) and deep learning-based pattern recognition. In this study, we used con-
volutional neural networks (CNNs) to semantically segment crowns of standing
dead trees from 176 UAV-based very high-resolution (<4 cm) RGB-orthomosaics
that we acquired over six regions in Germany and Finland between 2017 and 2021.
The local-level CNN-predictions were then extrapolated to landscape-level using
Sentinel-1 (i.e., backscatter and interferometric coherence), Sentinel-2 time series,
and long short-term memory networks (LSTMs) to predict the cover fraction of
standing deadwood per Sentinel-pixel. The CNN-based segmentation of standing
deadwood from UAV imagery was accurate (F1-score = 0.85) and consistent across
the different study sites and years. Best results for the LSTM-based extrapolation
of fractional cover of standing deadwood using Sentinel-1 and -2 time series
were achieved using all available Sentinel-1 and -2 bands, kNDVI, and NDWI
(Pearson’s r = 0.66, total least squares regression slope = 1.58). The landscape-level
predictions showed high spatial detail and were transferable across regions and
years. Our results highlight the effectiveness of deep learning-based algorithms
for an automated and rapid generation of reference data for large areas using
UAV imagery. Potential for improving the presented upscaling approach was
found particularly in ensuring the spatial and temporal consistency of the two
data sources (e.g., co-registration of very high-resolution UAV data and medium
resolution satellite data). The increasing availability of publicly available UAV
imagery on sharing platforms combined with automated and transferable deep
learning-based mapping algorithms will further increase the potential of such
multiscale approaches.
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3.1 Introduction

Tree mortality has immense consequences for forestry, environmental protection,
and ecosystem services, and it is increasing globally due to changes in climate
and related extreme events (Allen et al., 2010; Hartmann et al., 2022). For instance,
in Europe recent excess rates of tree mortality could be related to intense drought
events in the years 2018 and 2019 (Bastos et al., 2021; Senf et al., 2020, 2021). Still,
the mechanisms and factors explaining excess rates of tree mortality are not fully
understood (Hartmann et al., 2018b). For instance, tree mortality varies widely
depending on tree species composition, forest management, and site conditions.
Furthermore, drivers of tree mortality, such as climate extremes, have complex
spatial and temporal patterns. They may even act in compound events, such as
consecutive drought years, late spring frosts, and subsequent insect and pathogen
outbreaks (Hartmann et al., 2018b; Huang et al., 2020; Zscheischler et al., 2020). To
understand recent excess rates of tree mortality or to develop methods to forecast
such events in the future, we need spatially and temporally continuous information
on tree mortality (Hartmann et al., 2022). However, detecting and quantifying tree
mortality over large spatial and temporal scales remains challenging.

Remote sensing is being successfully applied for the detection of abrupt and
large-scale stand replacing disturbances, such as those caused by windthrow,
wildfire, or clear-cut harvesting, to be feasible at regional and global scales at
a 30 m spatial resolution (Hansen et al., 2013; Senf & Seidl, 2021; White et al.,
2017). Less focus has been given to non-stand replacing disturbances, where
tree mortality occurs more subtle and scattered across landscapes, affecting only
individual trees or smaller groups. For example, this type of disturbance dynamics
can be triggered by drought or insects (Coops et al., 2020), particularly in the
initial phase of disturbance. Such patterns are critical to our understanding of tree
mortality dynamics, but cannot be accurately detected at 30 m spatial resolution
(Frolking et al., 2009; Senf et al., 2021; Trumbore et al., 2015).

Various studies have demonstrated the potential of higher spatial resolution
satellite data (Liu et al., 2021) or aerial (ortho-)images (Chiang et al., 2020; Fricker
et al., 2019; Jiang et al., 2019; Meddens et al., 2011; Monahan et al., 2022; Sylvain
et al., 2019; Zielewska-Büttner et al., 2020) to explicitly detect tree mortality.
However, such datasets are usually limited to small extents, are expensive to
acquire, and are often only acquired sporadically, which limits the spatially and
temporally systematic detection of deadwood. Other studies have attempted
to compensate for the coarse resolution of Earth observation satellites by using
spectral information to indirectly track tree mortality. For example, tree mortality
was approximated from relative changes of spectral indices (Bárta et al., 2021;
Thonfeld et al., 2022) or biochemical and biophysical traits obtained from radiative
transfer models (Ali et al., 2021). However, such spectral indices or traits also
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vary depending on a number of factors unrelated to tree mortality (e.g., species
composition, forest structure), but in a confounding way (Frolking et al., 2009;
Glenn et al., 2008; Xue & Su, 2017). Such approaches can only provide indirect
information on tree mortality, and therefore do not explicitly indicate whether
tree crowns are dead or not.

Explicit detection and quantification of tree mortality, for instance in terms of
cover of dead tree crowns per area, requires spatially explicit reference data for
model calibration and validation. However, such reference datasets are scarce and
costly to obtain, and are therefore one of the most limiting factors for conducting
large-scale remote sensing analyses for deadwood detection (Frolking et al., 2009;
McDowell et al., 2015; Schuldt et al., 2020; Trumbore et al., 2015). Moreover,
existing in situ reference datasets, such as those from national forest inventories,
are not explicitly designed to study or quantify tree mortality, and often do
not provide an estimate of canopy cover, which limits their usability for remote
sensing approaches. Several authors have highlighted this lack of ground reference
data and emphasized the need for global reference databases on tree mortality
following standardized protocols (Allen et al., 2010; Buras et al., 2020; McDowell
et al., 2015; Schuldt et al., 2020). Initiatives such as the International Tree Mortality
Network are compiling harmonized global datasets on field-based research plots to
study tree mortality (Hammond et al., 2022). But even with a well curated dataset
of global coverage, the integration of ground-based reference data with Earth
observation satellite data is challenging: Pixel sizes of suitable Earth observation
satellite missions, such as Landsat or Sentinel, do not enable to resolve individual
trees and, hence, hamper the link with ground reference observations. In addition,
properties typically measured on the ground (e.g., tree stem coordinates) do not
necessarily allow for a spatially explicit link to what satellites ‘see’ from a bird’s-eye
perspective (e.g., tree canopy reflectance) (Pause et al., 2016; Schiefer et al., 2020).
Moreover, dense canopy cover or complex topography can considerably limit
GNSS accuracies of ground measurements, making reliable geopositioning in the
field even more difficult (Kaartinen et al., 2015; Valbuena et al., 2010). Overall, both
the quality and quantity of common reference data do not facilitate the mapping
of tree mortality at large spatial scales with Earth observation data.

These practical limitations and the general scarcity of ground reference data on
tree mortality may be compensated by uncrewed aerial vehicles (UAVs, Alvarez-
Vanhard et al., 2021; Kattenborn et al., 2019b; Liu et al., 2021; Schiefer et al.,
2020). The very-high spatial resolution of UAV RGB imagery enables precise
segmentation of dead tree crowns, and the flexible deployment of UAVs further
enables efficient detection of tree mortality events over large and even inaccessible
areas. Especially in combination with recent advances in pattern recognition
and deep learning, such as convolutional neural networks (CNNs), very accurate
results for crown segmentation of standing dead trees have been demonstrated
(Chiang et al., 2020; Sani-Mohammed et al., 2022; Schiefer et al., 2020). Because
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such predictions also emerge from the bird’s-eye perspective, they may be readily
used for subsequent satellite-based and thus large-scale analyses (Kattenborn
et al., 2019b). The concerted use of UAVs and CNNs and their efficiency enable
the generation of ample amounts of reference data over large areas and multiple
years. This may greatly facilitate the training of robust satellite-based models that
are transferable across temporal, spatial, or environmental conditions. Hence, to
compensate for the lack of ground reference data on tree mortality, we propose an
upscaling approach in which fine-scaled patterns in UAV imagery are harnessed
to create ample reference data at local scales for training models that predict
standing deadwood at the landscape-scale using multitemporal and multispectral
information of satellite data. In doing so, we seek to answer the following
research questions: (1) Are CNN-based predictions of standing deadwood from
UAV imagery robust across a wide range of forest stand characteristics and over
multiple years? (2) Can these CNN-based predictions from UAV imagery serve
as reference data to accurately predict fractional cover of standing deadwood
with Sentinel imagery at 10 m spatial resolution? (3) Is this upscaling approach
transferable across regions and different years?

3.2 Material and Methods

The workflow of this study consisted of a local-level and a landscape-level part
(Figure 3.1). In the local-level part, we tested the combination of UAV RGB imagery
and CNN-based pattern recognition for an automated extraction of standing dead
tree crowns. We then upscaled these UAV-based segmentations of standing dead
trees to fractional cover at the landscape-level using satellite-based time series
analysis. For this upscaling, we used Sentinel-1 and Sentinel-2 time series together
with a long short-term memory network (LSTM).

3.2.1 Study area and UAV data acquisition

This study comprised a set of UAV data acquisitions from the six study regions
Southern Black Forest, Northern Black Forest, Dresden Heath, Karlsruhe-Bretten,
and Hainich National Park in Germany, as well as Helsinki, Finland (Figure 3.2).
The sites comprise a large heterogeneity in terms of species composition and forest
structure, which results from different environments and forest management (see
site information in Table 3.1). In total, we acquired orthoimages over 176 sites
across the six regions. For each site, we acquired UAV-based RGB-photographs
and derived orthomosaics using Structure-from-Motion (SfM) photogrammetric
processing chains (details see e.g. Schiefer et al., 2020). The UAV orthoimagery
was acquired with different UAV platforms, camera systems, flight planning
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Figure 3.1: Schematic workflow of the upscaling approach. CNN-based deadwood
segmentation from UAV RGB orthomosaics (local-level) are upscaled to fractional
cover of standing deadwood using Sentinel-1/-2 time series data and an LSTM model
(landscape-level). bCV: block cross-validation.

software, acquisition settings, and photogrammetric workflows for orthoimage
generation (an overview of the different settings for each dataset is given in
Table 3.1). The orthoimagery covered a total area of 727.33 ha and the spatial
extent of the individual orthomosaics ranged from 1.29 to 32.72 ha. The ground
sampling distance (GSD) ranged from 0.60 to 3.39 cm and was resampled to a
common pixel size of 4 cm.

3.2.2 CNN-based segmentation of standing deadwood at local level

For mapping dead trees at the local level, we choose a semantic segmentation
approach that allows to predict dead tree crowns at the original pixel-size of
the UAV imagery. The training of common CNN segmentation models requires
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Figure 3.2: The six study regions: (1) Southern Black Forest, (2) Black Forest, (3)
Dresden Heath, (4) Karlsruhe-Bretten, (5) Hainich National Park, and (6) Helsinki.

image data that is fully labelled in form of masks. We prepared binary masks
(absence/presence of dead tree crowns) by delineating standing dead trees from
all the available orthomosaics using visual interpretation in ArcGIS v.10.6.1 (ESRI,
Redlands, USA). Labelling all sites is not a requirement of the CNN approach, but
is necessary to obtain a comprehensive picture of the model performance across
sites and years. We delineated trees and branches that were clearly identifiable
as dead, as indicated by degraded, discoloured, or entirely absent foliage. Trees
that were damaged but still had green foliage (e.g., green attack after bark beetle
infestation) were not included, which facilitates visual interpretation and ensures
its robustness.

For the CNN model training, we cropped the orthomosaics and the correspond-
ing masks into 40 451 non-overlapping tiles of 256 × 256 pixels (edge length of
10.24 m). We used the U-net CNN architecture (Ronneberger et al., 2015) to auto-
matically segment standing dead trees in the orthomosaics. The U-net features an
encoding path to capture spatial features and their context, and a decoding path
to map the resembled information to the original image dimensions. Here, we
used five blocks in the encoding path, each consisting of two 3 × 3 convolutions,
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followed by batch normalization, a linear rectifier unit activation, and 2 × 2 max
pooling operation with a striding of two. In these blocks, the convolutional layers
had a depth of 1 024, 512, 256, 128, and 64 layers for the encoder path and the same
but in reverse order for the decoder path. A detailed description of the utilized
U-net architecture can be found in (Schiefer et al., 2020). Here, we used a sigmoid
activation in the final layer. The CNN was trained with a batch size of 32 tiles over
60 epochs using binary cross entropy loss and RMSprop optimizer with a learning
rate of 1e-4. For model regularization, we augmented the training tiles using
random horizontal and vertical flips and random changes in image brightness
(90–110%), contrast (80–120%), and saturation (80–120%), thereby increasing the
size of the training dataset to twice its size.

To avoid biased model performance estimates due to spatial dependence be-
tween training and test data, we assessed the CNN model performance using
five-fold spatial block cross-validation (Kattenborn et al., 2022). We randomly split
the image tiles from the study sites (n = 176) into five folds, thereby ensuring, that
from each of the six study regions, at least one site was included. In each step,
the sites from one fold served as an independent test set, and the sites from the
remaining four folds were split into 80% training and 20% validation set. Using
the independent test set, the final model performance was assessed on a per-pixel
level based on precision, recall, and F1 score (the harmonic mean of the first two).

3.2.3 Mapping deadwood cover fractions at landscape level using

satellite time series

3.2.3.1 Satellite time series

For the extrapolation to landscape-level using satellite data and LSTM, we used the
CNN-based segmentations (not the manually created masks) from high-resolution
UAV imagery and calculated the fractional cover (%) of standing deadwood per
Sentinel grid cell using a superimposed Sentinel-2 pixel grid (10 m resolution).
Summary statistics for all sites are given in Appendix A5. To map the fractional
cover of standing dead trees at the landscape level, we extracted time series from
Sentinel-1 and Sentinel-2 images acquired between 1

st October 2015 and 30
th

September 2021. For Sentinel-2, we used the Level-2A product that provides
atmospheric- and terrain-corrected Bottom Of Atmosphere (BOA) reflectance
images (Main-Knorn et al., 2017). We selected bands with 10 m GSD (i.e., B2 blue,
B3 green, B4 red, and B8 near infrared), 20 m GSD (i.e., B5–B7 red edge, and
B11–B12 short-wavelength infrared), and two with 60 m GSD (i.e., B1 aerosols
and B9 water vapor). In addition to the spectral bands, we calculated the kernel
normalized difference vegetation index (kNDVI, Camps-Valls et al., 2021) using
the red (B4) and near infrared (B8) bands, and normalized difference water index
(NDWI, Gao, 1996) using the narrow near infrared (B8A) and short wave infrared
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(B11) bands. Pixel values with kNDVI < 0.1 were masked out from the Sentinel-2
bands, as they primarily represent atmospheric water and clouds.

For Sentinel-1, we selected Level-1 ground range detected (GRD) and single
look complex (SLC) data from interferometric wide swath mode (IW) in dual
polarization of type VV+VH. We used the Copernicus analysis ready data (CARD)
processors that provide terrain-corrected backscatter (CARD-BS) and interferomet-
ric coherence (CARD-COH6) data. The CARD-BS processor consists of application
of orbit file, removal of border and thermal noise, radiometric calibration, and
terrain correction. The CARD-COH6 processor consists of application of orbit
file, TOPSAR split, back-geocoding, coherence, TOPSAR deburst, TOPSAR merge,
multilooking, and terrain correction. For terrain correction, the Copernicus DEM
30 m elevation data was used.

For both Sentinel-1 and -2, all spectral bands were resampled to 10 m spatial
resolution using nearest-neighbour interpolation. We linearly interpolated missing
values and converted the time series to 7-day intervals using arithmetic mean.
Non-forested areas according to the Sentinel-2 Global Land Cover (S2GLC) map
(Malinowski et al., 2020) were excluded from further analysis. All satellite images
were accessed and preprocessed using Copernicus data and information access
services (DIAS) via the CREODIAS platform (CloudFerro, Warsaw, Poland).

3.2.3.2 LSTM modelling

We used a long short-term memory network (LSTM) to predict fractional cover
of standing deadwood based on the Sentinel-1 and Sentinel-2 time series. As a
baseline to the deep learning method, we trained random forest models (Breiman,
2001), but these models performed worse (see Appendix A4). LSTM is a special
kind of recurrent neural network (RNN) capable of learning long-term dependen-
cies from sequences of data without suffering from the vanishing or exploding
gradient problem that can occur when training RNNs (Hochreiter & Schmidhuber,
1997). LSTM units take temporal dependencies into account by controlling the
network memory (or memory cell) using three sigmoid gate units (σ): a forget
gate, an input gate, and an output gate (Figure 3.3). Depending on the output of
the previous cell (ht−1) and the current input (xt) the forget gate controls whether
the previous memory cell state (Ct−1) will be kept by means of a sigmoid function.
The input gate, similarly, controls which part of the memory cell will be updated
using a sigmoid function, combined with a tanh function that creates weights
that are then used to update the new cell state (Ct). Finally, the output (ht) is
determined by the output gate that decides which information of the cell state
will be forwarded by means of a sigmoid function and a tanh function that scales
the output between -1 and 1. Using a bidirectional implementation of LSTM, the
network trains in both time directions, thereby learning temporal dependencies
from past and future time steps (Schuster & Paliwal, 1997). We used two bidirec-
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tional LSTM layers of 100 LSTM units each, followed by a fully connected layer
and a sigmoid activation that predicts the final class probabilities

Figure 3.3: Structure of an LSTM unit

We tested four different input band sets to the LSTM, namely only Sentinel-2
(S2), Sentinel-1 and Sentinel-2 (S1+S2), Sentinel-2 and vegetation indices (S2+VI)
and the combination of all available data (S1+S2+VI). We assessed the predictive
performance of the LSTM models using a five times repeated ten-fold spatial block
cross-validation. Here, the blocks were corresponding to the individual sites (an
area covered by an individual orthomosaic). In each repetition, we randomly split
the data on a site-basis (n = 176) into ten folds. In each cross-validation step, data
from one fold served as independent test data and data from the remaining nine
folds were split into 80% training and 20% validation data. Every LSTM model
was trained for 150 epochs with a batch size of 64 using Adam optimizer. A subset
(n = 6 300) we sampled from the entire dataset to ensure a balanced distribution of
fractional coverage values (0–100%). Because the spectral signal of bare ground
can be similar to that of dead tree canopies, we added such observations (i.e.,
open forest floor and sparsely vegetated areas) delineated from national aerial
surveys to avoid misclassification (a total area of approximately 10.14 ha).

To further validate the upscaling from high-resolution UAV imagery to satellite
time series, we compared the LSTM predictions with fractional cover values
obtained from an aerial orthophoto (GSD = 20 cm) for the Saxon Switzerland
National Park, which was not part of model training and validation. Therefore, we
semi-automatically classified the standing deadwood in the orthophoto (i.e., red-
green band ratio, thresholding, manual refinement), calculated the fractional cover
of standing deadwood with the superimposed Sentinel-2 grid, and compared
it with the LSTM predictions. All analyses were conducted in R language (R
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Core Team, 2022) and the code is available at https://github.com/FelixSchiefer/
TreeMortality. Landscape-level prediction maps for Germany are available at
https://doi.org/10.5445/IR/1000155244 and will be continuously expanded.

3.3 Results

3.3.1 CNN-based deadwood segmentation in UAV-orthomosaics (local

level)

The CNN-based segmentation of standing deadwood in the UAV imagery was
very accurate with precision = 0.9, recall = 0.82, and F1-score = 0.85 derived from
the five-fold block cross-validation (Figure 3.4a). Model performance was rela-
tively consistent across all study sites, as shown by the median F1-score of 0.82

(interquartile range: IQR = 0.15) (Figure 3.4b). Model performance was also con-

Figure 3.4: a) Illustration of the CNN model performance for the semantic segmenta-
tion of standing deadwood in CNN orthoimagery for a Southern Black Forest site.
(Coordinate reference system: WGS84 UTM zone 32N, EPSG:32632). b) Distribution
of F1-score values across study sites from the five-fold block cross-validation.
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sistent across different years, with median F1-scores of 2017: 0.79 (IQR = 0.20,
n = 56), 2018: 0.66 (IQR = 0.30, n = 5), 2019: 0.82 (IQR = 0.16, n = 60), 2020: 0.81

(IQR = 0.15, n = 35), and 2021: 0.87 (IQR = 0.07, n = 20). The median F1-scores
per study region were Southern Black Forest: 0.82 (IQR = 0.15), Northern Black
Forest: 0.87 (IQR = 0.07), Dresden Heath: 0.87 (IQR = 0.08), Karlsruhe-Bretten: 0.61

(IQR = 0.16), Hainich National Park: 0.11 (IQR = 0), and Helsinki: 0.78 (IQR = 0.04)
(see Appendix A5 for site-specific values). Low F1-scores for standing deadwood
were mainly observed at sites with very low area-related proportions of standing
deadwood and at sites where the UAV acquisition was very late in the growing
season (e.g., Hainich National Park). For the latter, deciduous trees that had
already shed some of their foliage were partly misclassified as standing deadwood.
Low F1-scores together with low precision, but high recall were observed for sites
where there were many dead branches on the forest floor after very recent logging,
which could easily be mistaken for standing deadwood.

3.3.2 Mapping fractional cover of standing deadwood from Sentinel

time series using LSTM (landscape level)

Figure 3.5 shows the Pearson’s correlation coefficient (r) and the slope value of
the total least squares (TLS) regressions for the different input band sets to the
LSTM models. The highest median r-value (0.62) was observed for the S2+VI
input band set with 12 Sentinel-2 bands from the five times repeated ten-fold
block cross-validation. Total least squares regression slope values closest to 1 were
observed for the S1+S2+VI input band set, but with all available Sentinel-2 bands
(median slope = 1.56). In general, additional information from Sentinel-1 alone (i.e.,
backscatter and interferometric coherence) reduced model performance compared
to the models using only Sentinel-2 data. Contrary, model performance increased
when vegetation indices (i.e., kNDVI and NDWI) were added to the Sentinel-2
data. Using all available input band sets especially improved the regression slope
values. LSTM model performance increased with more spectral information from
the 20 m Sentinel-2 bands (i.e., 10 bands) and even more with the 20 m and 60 m
Sentinel-2 bands (i.e., 12 bands).

Based on the TLS slope value closest to 1 (slope = 1.58, Pearson’s r = 0.66),
the LSTM model with the S1+S2+VI and 12 Sentinel-2 bands input band set
was selected for landscape-level predictions (Figure 3.6). Uncertainties in the
predictions were evenly distributed across the entire value range (Figure 3.6),
except for observed values close to 0 and 1, where we observed overpredictions
near 0 and underpredictions near 1. Model performance was stable across the
study regions with RMSE values for the Southern Black Forest: 0.21, Northern
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Figure 3.5: Pearson’s r (upper panel) and total least squares regression slope (lower
panel) of the five times repeated ten-fold cross-validations of the LSTM models
for different inputs of Sentinel-1 and Sentinel-2 band sets (S2: Sentinel-2; S1+S2:
Sentinel-1 and Sentinel-2; S2+VI; Sentinel-2, kNDVI, and NDWI; S1+S2+VI: Sentinel-1,
Sentinel-2, kNDVI, and NDWI), each with different Sentinel-2 bands (4: 10 m bands;
10: 10 & 20 m bands; 12: 10, 20 & 60 m bands).
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Figure 3.6: Scatterplot of observed and predicted fractional cover values of standing
deadwood [%] at landscape level from the selected LSTM model (S1+S2+VI, 12

Sentinel-2 bands). Each dot represents a 10 m Sentinel-2 pixel with reference data
available from the UAV-based segmentation.

Black Forest: 0.21, Dresden Heath: 0.22, Karlsruhe-Bretten: 0.23, Hainich National
Park: 0.21, and Helsinki: 0.19 (see Appendix A5 for site-specific values).

Figure 3.7 shows the Sentinel-based prediction map of standing deadwood
cover for the year 2020 using the previously selected best-performing LSTM
model (S1+S2+VI with 12 Sentinel-2 bands) exemplary for the Saxon Switzerland
National Park and its surroundings in Germany. The latter was largely affected
by the drought events of 2018 and 2019 and thus provides a suitable test region
with large gradients in deadwood cover. As expected, the map overview (centre)
reveals ample occurrences of tree mortality in the National Park, with 24.1% of
the Sentinel pixels showing more than 50% standing deadwood cover and 6.6%
of the pixels showing more than 75% standing deadwood cover. As can be seen
in comparison with independently acquired aerial orthoimagery in the close-
up panels (top and bottom), crown cover of standing deadwood was accurately
predicted from Sentinel data with a high spatial detail (10 m spatial resolution).
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Figure 3.7: Sentinel-based LSTM prediction map of fractional standing deadwood
cover for the year 2020 in Saxon Switzerland National Park (red outline), Germany
(Coordinate reference system: WGS84 UTM zone 33N, EPSG:32633; centre coordi-
nates: 450795.3, 5638435.7). Close-ups in the panels show amplified examples of
forest condition in Colour infrared-orthophotos (Staatsbetrieb Geobasisinformation
und Vermessung Sachsen, GeoSN) and corresponding prediction maps.

Annual LSTM prediction maps of standing deadwood cover in an example
region in the Saxon Switzerland National Park for the years 2018 to 2021 are
shown in Figure 3.8. The lower left panel displays histograms of fractional cover
values of standing deadwood for each year between 2018 and 2021. After an
initial crown dieback in 2018, most of the area was affected by tree mortality in
2019. The number of pixels classified with high fractions of standing deadwood
subsequently decreased in the years 2020 and 2021. In the same years, more pixels
with small values of standing deadwood cover can be observed in the histogram
and are also apparent in the LSTM prediction maps as dark blue patches.
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Figure 3.8: Sentinel-2 colour infrared image (CIR; top row; R=B8, G=B3, B=B2) and
LSTM prediction maps of standing deadwood cover (centre row) in an example
region in Saxon Switzerland National Park (see Figure 7 for the extent) across the
years 2018, 2019, 2020, and 2021 (Coordinate reference system: WGS84 / UTM zone
33N, EPSG:32633; centre coordinates: 444628, 5643575). The histogram shows the
standing deadwood cover values for each year. The grey box shows an independent
validation of the LSTM predictions based on fractional cover values derived from an
aerial orthophoto. Source CIR-orthophoto: Staatsbetrieb Geobasisinformation und
Vermessung Sachsen (GeoSN)

3.4 Discussion

3.4.1 UAV- and CNN-based deadwood segmentation as a reference

data source

With an F1-score of 0.85 from independent five-fold block cross-validation, the
automated segmentation of standing deadwood in UAV imagery based on CNN
models was confirmed to be very accurate. The very low median F1-score for
the Hainich National Park sites (0.11) can be explained by the small proportion
of standing deadwood for the respective sites, since even small areas can have a
large relative effect on the model results (e.g., small branches that were classified
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as deadwood but were not labelled as such in the reference data due to their small
size). It should be noted that the model performance is based on reference data
derived from a human interpreter. While the generation of reference data from
visual interpretation of high-resolution imagery is a very common approach, it
also comes with uncertainties that may likely result in an underestimation of the
model performance (Kattenborn et al., 2021).

Consistent with our results, Sylvain et al. (2019) reported an F1-score of 0.95

for classifying tree health status (live or dead trees) using a VGG16 CNN on RGB
aerial photos (20 cm GSD) over 990 1 ha sites in south-central Quebec, Canada.
Jiang et al. (2019) also reported very high accuracies for the segmentation of
standing dead trees using an FCN-DenseNet CNN, based on two airborne colour-
infrared orthomosaics (20 cm GSD) from the Bavarian Forest National Park, Ger-
many. Sani-Mohammed et al. (2022) used a Mask R-CNN for an instance seg-
mentation of standing dead trees from an airborne colour-infrared orthomosaics
(20 cm GSD) over the Bavarian Forest National Park, Germany, and reported an
F1-score of 0.87. Yet, the dataset used here likely comprises a higher variability
in site and data conditions than in the aforementioned studies. In this study, the
RGB-orthomosaics were acquired in six study regions over 176 sites that differ in
forest stand composition and structure. Imagery was acquired with different drone
platforms and sensors and at different times of the day over a five-year period,
resulting in very different sun-sensor geometries and environmental and atmo-
spheric conditions. Given this heterogeneity of the dataset, our results show that
the CNN-based segmentation of standing deadwood was spatially and temporally
robust and that the CNN models generalized well.

While the present study focuses solely on RGB imagery due to its relative ease
of acquisition and wide availability, other sensor types are also commonly used
for dead tree detection, including multispectral (Jiang et al., 2019; Meddens et al.,
2011; Sani-Mohammed et al., 2022; Zielewska-Büttner et al., 2020), hyperspectral
(Einzmann et al., 2021; Fricker et al., 2019), and LiDAR (Briechle et al., 2021;
Hell et al., 2022). While higher spectral resolution remote sensing data may be
advantageous for separating spectrally similar classes (e.g., tree species), we have
shown that RGB data are sufficient for separating live and dead trees in very high-
resolution UAV-imagery. It should be noted, however, that we only defined dead
trees or trees with clear signs of dieback or foliage discolouration as deadwood
and that we did not consider early stages of tree mortality (e.g., green attack
following bark beetle infestation).

Alternative detection methods, such as instance segmentation (Chiang et al.,
2020; Sani-Mohammed et al., 2022) or object detection (Safonova et al., 2019, 2022),
would even allow to map tree individuals. However, this would not have added
value to this study because for the landscape-level upscaling we targeted the
fractional cover of deadwood per Sentinel-2 pixel rather than the number of dead
trees. An instance segmentation approach would have further complicated the
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labelling of reference data and increased model complexity (see review by Hoeser
& Kuenzer, 2020).

An often-reported problem in deadwood detection tasks is the difficulty in
separating deadwood from bare ground (Fassnacht et al., 2014; Meddens et al.,
2011; Zielewska-Büttner et al., 2020). While these findings have primarily been
reported for pixel-based classification algorithms, we did not encounter substantial
misclassifications in the CNN-based deadwood segmentation, suggesting that
high-resolution textures are sufficient to separate bare ground from dead trees.
For the time series-based upscaling approach, we added reference data from
open forest floor and areas with sparse herbaceous vegetation. LSTM model
performances clearly improved compared to an LSTM without these additional
data (results not shown).

Overall, the described procedure can be used as an effective tool for rapid gener-
ation of reference data for large areas. This not only fosters research in remote or
inaccessible areas, but also allows for the collection of larger amounts of reference
data than field-based data collection would allow. The models can also be used
to continuously append reference datasets with predictions from newly acquired
orthomosaics, despite varying site and scene characteristics (e.g., environmental
and atmospheric conditions, sun-sensor geometry). In this context, it is important
to note that there are several platforms that curate openly available UAV orthoim-
agery (mostly RGB data) contributed by research groups or citizen scientists (e.g.,
https://geonadir.com, https://opendrop.de or https://openaerialmap.org). In
combination with the described CNN-based methods, these databases and their
spatio-temporal coverage can greatly stimulate the potential of using UAV-based
reference data for satellite-based applications (Kattenborn et al., 2019b).

3.4.2 LSTM-based modelling of standing deadwood from satellite

time series

Our results from the LSTM-based modelling of standing deadwood showed that
using all available spectral information from Sentinel-2 increased model perfor-
mance. We observed the highest model performance (according to TLS-regression
slope) when integrating all spectral bands from Sentinel-2, Sentinel-1 backscatter
and interferometric coherence, and the vegetation indices kNDVI and NDWI.
While it is generally assumed that neural networks do not require pronounced
feature engineering, our results indicate that adding vegetation indices to the raw
spectral information can further refine the model. This may be explained by the
fact that vegetation indices are often based on physical principles (e.g., NDVI as a
ratio of light absorption and scattering). Indirectly incorporating such physical
consistency may constrain the complexity of a model and facilitate the learning
process (Reichstein et al., 2019). While Sentinel-1 information alone decreased
model performance when added to the Sentinel-2 bands (S1+S2), incorporating
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physical constraints into the model by means of vegetation indices (S1+S2+VI)
also allowed the radar information to be used and thus showed the best model
performance.

At first glance, LSTM model performance in upscaling, with a Pearson’s r of
0.66 and an RMSE of 22% (S1+S2+VI), may not appear very high. Nevertheless, we
consider these model performances promising considering the following aspects:
Standing deadwood may appear very differently for different species and also for
different stand characteristics. For instance, the different growth forms of broadleaf
and needleleaf trees not only have different textural and spectral characteristics
of healthy tree individuals but are also reflected in the appearance of dead tree
crowns, complicating the modelling task. Different temporal signatures (e.g.,
deciduous and evergreen species) may further add complexity to the model,
although little is known about this effect and its interactions with the textural
and spectral properties. Moreover, in the UAV-based reference data acquisition,
standing dead tree crowns were segmented by an area corresponding to a convex
hull of the branches (see Figure 3.4). Thus, due to gaps within branches or holes
in the canopy, the segmented canopy area may not exactly match the true cover
of a dead tree crown, and thus the relationship between cover and reflectance
signals may be compromised. This effect adds even more complexity when dense
understory distinctly shines through the dead tree crowns (Frolking et al., 2009),
which further constrains the isolation of unique spectral features of dead tree
crowns in an already subtle process of non-stand replacing tree mortality. Thus,
the task of mapping dead tree crowns may appear more trivial than it actually is,
particularly for large environmental gradients.

Other studies have attempted to map tree mortality at landscape-level using
upscaling approaches from high resolution aerial images to coarser resolution
Landsat imagery (Campbell et al., 2020; Hart & Veblen, 2015; Meddens et al.,
2013; Schwantes et al., 2016). Reported accuracies for the local-level predictions
were comparably high but required more sophisticated input data (e.g., additional
lidar data) or (pre)processing than the UAV RGB imagery and the end-to-end
learning CNNs used here. Although these studies reported higher accuracies
for landscape-level predictions, comparison of the results is limited because the
coarser resolution of Landsat hardly accounts for subtle and small-scale deadwood
occurrences and because of different definitions of deadwood (e.g., grey stage was
excluded in Meddens et al., 2013).

Model performance was estimated using spatial block cross-validation, where
each individual site with available UAV data was treated as a block during the
cross-validation. Although several methods have been recommended to alleviate
optimistically biased model performance (Burman et al., 1994; Roberts et al., 2017),
recent studies suggest that spatial dependence in the raw data is often overlooked
(Ploton et al., 2020). This is particularly the case in deep learning-based studies,
where random cross-validation schemes prevail and spatial independence between
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training and validation data is not always ensured (Kattenborn et al., 2022). Thus,
the model performance assessed in this study may not be directly comparable to
similar approaches using other biased validation schemes that do not account for
the spatial dependence between training and test datasets. It should also be noted
that the model performance was tested across years and regions, while growing
seasons, and thus temporal patterns of the spectral signatures, may largely deviate
across time and space (Hufkens et al., 2012; Verbesselt et al., 2010). Linking the
two data sources is essential for model training, so the data must be spatially and
temporally matched.

Reference data from UAV orthomosaics were acquired throughout the entire
growing season (April to November), while the end of a satellite time series was
set to October 30 of the respective year. Setting a specific end date was motivated
by the LSTM modelling, which is facilitated by equidistant and synchronized time
series. Consequently, a standing dead tree crown visible in a UAV scene was
considered to be dead for the entire year of the acquisition. However, this may
not be completely true for all observations, and such temporal mismatches may
further reduce the estimated model performance.

In addition to a temporal mismatch between UAV and Sentinel data, a spatial
mismatch can also hinder model training and reduce model performance estimates.
In this regard, spatially more accurate UAV acquisitions using real-time kinematic
(RTK) GNSS data may be very promising (not available in this study). However,
it should be noted that RTK base stations are not always easy to deploy in
forest environments, and RTK-based surveys only improve the absolute positional
accuracy of the UAV data. A spatial mismatch between UAV and satellite data may
remain, as the absolute geolocation accuracy of, for example, Sentinel-2 is specified
at 12.5 m (Gascon et al., 2017). Additionally, automatic co-registration methods,
such as scale-invariant feature transform SIFT (Lowe, 2004), are not suitable for
remote sensing data with very different spatial resolutions, since the extracted
image features will not be found in both images. Therefore, we tested a simple
optimization method that co-registers resampled UAV imagery and the Sentinel-
2 RGB-bands by iteratively shifting and rotating the UAV data and finding the
maximum correlation of the spectral bands available in both datasets (i.e., red,
green, and blue). Gränzig et al. (2021) presented a similar optimization approach
where the optimal position is determined by the optimal fit between UAV-derived
land cover fractions and Sentinel-2 spectral information. Independent validation
of such optimization methods is difficult outside dedicated experiments, and we
assumed the method to be valid if the LSTM model performance improved in the
upscaling approach. Contrary to our assumption, the LSTM model performance
did not improve (presumably due to the different UAV acquisition times compared
to the constant Sentinel-2 overpass time and the resulting differences in lighting
situation and shadows), and we decided to discard the co-registration approach in
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this study. Yet, future studies may address the co-registration problem to further
improve the potential of the presented approach.

Despite the presented sources of uncertainty, our results indicate a high transfer-
ability across the individual study regions with evenly distributed RMSE values
ranging from 0.23 for the Karlsruhe-Bretten region to 0.19 for Helsinki). An inde-
pendent comparison between the extrapolations and aerial orthophotos in space
(Figure 3.7) and time (Figure 3.8) also suggests a robust and consistent predictive
performance of the LSTM model. Time series approaches are particularly useful
for capturing dynamic processes such as tree mortality, since a static selection of
acquisition dates introduces selection bias and hence uncertainty (Frantz et al.,
2022). For instance, after disturbance, increased light availability on the ground
facilitates rapid (re)growth and greening of understory vegetation (Frolking et al.,
2009; Meng et al., 2018). In addition, visibility of the understory from a bird’s-eye
perspective is enhanced by the sparse canopies of standing dead trees (particularly
for deciduous trees). Modelling approaches based on single image acquisitions
might easily confuse this regrown understory with a vital overstorey. Time se-
ries approaches, on the other hand, capture the context and dynamics prior to
canopy mortality and should detect canopy mortality more robustly. The LSTM is
specifically designed to detect temporal features of tree mortality throughout the
time series and to indicate whether standing deadwood was present in the year of
interest. This might be particularly relevant under common forest management
practices (i.e., salvage logging and sanitation harvest after disturbance), where
standing dead trees may have already been removed and thus may be missed by
single time-step algorithms. For example, it is possible that standing dead wood
has already been removed by foresters (e.g., for timber usage or path safety), but
the algorithm can still detect the temporal presence of standing deadwood based
on corresponding features in a period of the time series. Thus, the presented time
series-based approach is also capable of detecting rapidly evolving and short-lived
occurrences of standing deadwood.

An often-reported advantage of deep neural networks are their end-to-end
learning capabilities without the need for enhanced preprocessing steps. In
this study, the preprocessing for the LSTM modelling was confined to linear
interpolation of missing values in the satellite time series and cloud masking.
Results from Rußwurm and Körner (2018) indicate that the latter can be learned
jointly with the classification task, further reducing preprocessing. Thus, in concert
with cloud platforms where massive amounts of raw satellite data are stored (e.g.,
DIAS, Google Earth Engine), models may be trained that indirectly learn data
quality features and transformations analogous to data preprocessing, which in
turn could enhance the data processing efficiency and robustness for applications
over large spatial and temporal scales.

In this study, we demonstrated the upscaling from standing deadwood seg-
mentation maps at local-level (centimetre range) to continuous cover fractions at
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coarser resolution (10 m resolution) and large areas by combining pattern recog-
nition in UAV imagery and satellite time series analysis. This approach exploits
both the high spatial information of UAV imagery and the high spectral and
temporal information of satellite data. The quantitative performance assessment
using spatially explicit validation data (Figure 3.7) as well as the continuous and
multi-temporal prediction maps (Figure 3.8) showed that the predicted continuous
cover fractions do not only resemble large-scale tree mortality rates (e.g., of entire
forest stands), but also robustly predict transitions of tree mortality cover fractions
or scattered occurrences at small spatial scales. The fractional cover maps pre-
sented here do specifically reflect the presence of dead trees, but do not indicate
other sources of forest loss, e.g., due to logging or intense forest fires. This can
be particularly important for monitoring the typically widespread and patchy
patterns of tree mortality events associated with climate extremes such as drought,
disease, pathogens, and their combined effects.

3.5 Conclusion

Spatio-temporal information on forest mortality and associated processes is scarce,
but urgently needed for understanding climate change risks on forests. Earth ob-
servation satellites could provide spatially and temporally explicit information on
tree mortality, but mapping tree mortality with such data requires ample training
data. In this study, we presented a workflow that enables large-scale mapping of
tree mortality The automated generation of reference data from high-resolution
UAV imagery enables spatially explicit training and validation of landscape-level
models, which is hardly possible with most existing reference data sources. Op-
portunities for optimization exist, particularly regarding the spatial and temporal
consistency between UAV and satellite products, and the representation of natural
variability in the appearance of dead tree crowns in corresponding remote sensing
signals and should be subject to further research. Precise estimates of fractional
cover of standing deadwood could be used with other products, e.g., biomass esti-
mates, canopy height, or species maps, to estimate tree mortality-related changes
in carbon dynamics. Deadwood is also an important forest structural parameter,
and large-scale continuous information on its fractional cover may foster forest
biodiversity research and management. With the appropriate UAV data for refer-
ence data generation, the approach can be adapted to a wide range of applications
in vegetation remote sensing (e.g., tree species or habitat mapping). In the future,
the increasing availability of openly available UAV data in concert with automated
and transferable deep learning-based mapping algorithms will further increase
the potential of such multiscale approaches.
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Abstract

Global warming poses a major threat to forests and events of increased tree mor-
tality are observed globally. Studying tree mortality often relies on local-level
observations of dieback, while large-scale analyses are lacking. Satellite remote
sensing provides the spatial coverage and sufficiently high temporal and spatial
resolution needed to investigate tree mortality at landscape-scale; however, ade-
quate reference data are scarce. In a deep learning-based upscaling approach from
drone imagery to satellite data, Schiefer et al. (2023a) mapped standing deadwood
in Germany for the years 2018–2021 at 10 m resolution. Here, we used these maps
to study spatial and temporal patterns of tree mortality in Germany and analysed
their biotic and abiotic environmental drivers using random forest regression. In
2019, the second consecutive hotter drought year, standing deadwood increased
steeply reaching 334 ± 189 kilohectar (kha; uncertainty estimates resulting from
sensitivity analysis) of standing dead trees approximately 2.5 ± 1.4% of the total
forested area in Germany. Picea abies, Pinus sylvestris, and Fagus sylvatica showed
the highest shares of standing deadwood. Over the years 2018–2021, 978 ± 529 kha
(7.9 ± 4.4%) of standing dead trees accumulated. The differences to other surveys
(such as the ground-based forest condition survey) can be attributed to the fact
that remote sensing captures mortality from a bird’s-eye perspective and that
the high spatial detail (10 m) in this study also captures scattered occurrences
of tree mortality. Atmospheric drought (i.e., climatic water balance and vapour
pressure deficit) and temperature extremes (i.e., number of hot days and frosts
after vegetation onset) were the most important predictors of tree mortality. We
found increased tree mortality for smaller and younger stands and also on less
productive sites, which mitigates the findings of local-level studies where tree
height largely explained tree mortality patterns. We relate this to an averaging
effect when investigating entire landscapes and assume that tree mortality is
rather driven by competition, depending on tree age, height, and productivity.
Monospecific stands were generally not more affected by mortality, but only when
interactions with damaging insects (e.g., bark beetle) occurred. Because excess
tree mortality rates threaten many forests across the globe, similar analyses of
tree mortality are warranted and technically feasible at the global scale. We en-
courage the international scientific community to share and compile local data
on deadwood occurrences (see example: www.deadtrees.earth) as only such a
collaborative effort can reveal and help understand mortality events on a global
scale.
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4.1 Introduction

Forests cover one third of the total land surface (FAO, 2020), are an important
carbon sink, and provide a range of ecosystem services. Climate change and
the associated rise in temperatures, the occurrence of episodic precipitation and
droughts, or an increased atmospheric water vapour deficit pose a major threat
to forests (Hartmann et al., 2022; McDowell et al., 2022; Schuldt et al., 2020).
Consequently, trees get stressed and may eventually die due to carbon starvation,
hydraulic failure, or ensuing pest infestations. This cascade of effects is particularly
pronounced during ‘hotter droughts’, in which long periods of drought coincide
with high temperatures (Allen et al., 2015; Hammond et al., 2022). With the rise
in average temperatures, an earlier start to the growing season has also been
observed in recent years. Nevertheless, late-frost events can still occur after bud
burst, which can weaken the trees, prevent resprouting, and may ultimately lead
to mortality (Vanoni et al., 2016).

We currently witness the emergence of hotter droughts even in temperate
regions, such as the droughts that occurred between 2018–2020 (Allen et al.,
2015; Hammond et al., 2022). Consecutive (hotter) droughts have also become
more frequent (Hari et al., 2020; Rakovec et al., 2022), and large-scale tree stress
responses and diebacks have been observed after the prolonged 2018–2021 drought
in Central Europe (Rakovec et al., 2022; Schnabel et al., 2022; Schuldt et al., 2020)
and the 2012–2016 drought in Northern America (Byer & Jin, 2017). Even if
the trees do not die in a first year of drought, such as 2018, critical ecosystem
changes and mortality may still occur in the years after the drought, known as
drought legacy or lag effects (Obladen et al., 2021; Pohl et al., 2023; Schnabel et al.,
2022). Due to a climate that is increasingly characterized by extremes, all these
stress responses can also occur together, creating compound effects (Zscheischler
et al., 2018). Understanding the mechanisms that lead to tree mortality is crucial
to assess the impact of ongoing global warming on forests and to adapt forest
management strategies accordingly.

Many of these tree mortality-related mechanisms are known from local studies,
but are not easily transferable to larger scales (Clark et al., 2016). Due to a lack of
large-scale data sets on tree mortality, many of our findings arise from compiled
and harmonized data sets of in situ observations of dieback events (Allen et al.,
2010; Hammond et al., 2022). As there are no standardized survey methods,
often only damaged areas of a certain minimum size are included in such data
sets. This poses two problems for the investigation of the underlying causes:
large-scale occurrences of standing deadwood often only accumulate over time.
The temporal link between the environmental cause and the dieback event may
therefore be weakened or already overlaid by other factors. Furthermore, scattered
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and gradual occurrences of tree mortality are likely to be underrepresented in the
aforementioned data sets (Cheng et al., 2024; Milodowski et al., 2017).

Climate change and associated pest and pathogen outbreaks have increased the
risk of large-scale tree mortality (Allen et al., 2010; Huang et al., 2020; McDowell
et al., 2020), but some mechanisms are still unknown. For example, Socha et al.
(2023) suggest that higher productivity and greater tree age enhance susceptibility
to drought-induced mortality. The effect of tree height on mortality is under
debate. While smaller and younger trees die mainly due to competition for
resources (Kulha et al., 2023; Stephenson & Das, 2020), larger and older trees have
an accumulated risk of disease and damage (Bennett et al., 2015; Stovall et al.,
2019, 2020). The influence of tree species richness on mortality remains ambiguous
as well (Depauw et al., 2024). While a positive effect of tree species richness on the
stability and productivity of forests is assumed to be likely due to a performance
enhancing and buffering effects of diversity (Anderegg et al., 2018; Schnabel et al.,
2021), studies found mixed results regarding the effect of tree diversity on forest
responses to drought (Grossiord et al., 2014). While recent experimental work
points towards a generally positive or non-significant effect of tree diversity on
tree mortality, Searle et al. (2022) found higher tree diversity to be correlated with
higher tree mortality. These, at a first glance, contradictory results clearly illustrate
that tree mortality is still not generically understood. The mechanisms that have
been identified as causal for tree mortality at the individual tree level have not
been investigated or confirmed at the landscape level and require further research
(McDowell et al., 2022).

Large-scale patterns of tree mortality can be revealed using Earth observation
satellite missions (Brodrick & Asner, 2017; Byer & Jin, 2017; Garrity et al., 2013;
Hansen et al., 2013; Schwantes et al., 2016). Large-scale remote sensing assessments
are based on satellite data that usually feature spatial resolutions that are much
coarser than the tree canopies being targeted, such as 250 m spatial resolution
of MODIS down to 30 m of Landsat (Byer & Jin, 2017; Campbell et al., 2020;
Schuldt et al., 2020; Schwantes et al., 2016). Only a few studies use higher spatial
resolution satellite data, for example 10 m spatial resolution of Sentinel-2 (Thonfeld
et al., 2022), 3 m of PlanetScope (Francini et al., 2020), or even down to 0.5 m of
WorldView and Quickbird (Garrity et al., 2013; Liu et al., 2021). Aerial images,
such as those acquired from aircraft (Khatri-Chhetri et al., 2024; Schwarz et al.,
2023) or uncrewed aerial vehicles (UAV, Schiefer et al., 2023a), offer an even higher
spatial resolution. For accurate detection of dead trees, a higher spatial resolution
(<10 cm) is more important than a high spectral resolution (Khatri-Chhetri et al.,
2024; Schiefer et al., 2020). Reference data are the main limiting factor for large-
scale, satellite-based remote sensing analyses of tree mortality (Schiefer et al.,
2023a). Hence, studies often do not map tree mortality directly, but changes of
vegetation indices as a proxy of dieback. However, the causes for such changes in

66



4 .1 introduction

vegetation indices could be manifold and may not necessarily be linked to tree
mortality but rather to vitality decline.

Figure 4.1: Schematic overview of the presented upscaling approach in Schiefer
et al. (2023a) extrapolating local observations of standing deadwood in UAV-imagery
landscape-level predictions based on satellite image time series.

Tree mortality can be scattered across the landscape and only affect individual
trees in an otherwise intact and green canopy. The spatial resolution of existing
large-scale satellite-based products cannot capture this adequately, and detected
tree mortality events from such data sources typically reflect larger events and
neglect smaller patches. Although high-resolution aerial imagery from aircraft
and UAVs can provide this high spatial resolution, they are limited in their spatial
and temporal coverage and hence can only provide spatial snapshots of tree
mortality processes. Therefore, Schiefer et al. (2023a) presented an upscaling
approach that combines the high spatial detail UAV imagery offers at local scales
and the large-spatial coverage from the Sentinel satellites (see Figure 4.1). Their
upscaling approach resulted in Germany-wide maps of fractional cover of standing
deadwood at the original Sentinel image resolution of 10 m for the consecutive
years 2018–2021. Such an extensive and detailed dataset provides a base for
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large-scale, reproducible assessment of tree mortality dynamics. Here, we use this
dataset to reveal the spatio-temporal dynamics of standing deadwood in Germany,
and studied the species-specific patterns using tree species information from
Blickensdörfer et al. (2024). We further investigate the influence of several biotic
and abiotic environmental drivers on the observed tree mortality at landscape
level.

4.2 Material and methods

4.2.1 Tree mortality in Germany

To identify and study the pattern of tree mortality, we extracted fractional cover
values of standing dead trees for the available years 2018–2021 from the Germany-
wide layers Schiefer et al. (2023a)—an interactive preview is available at www.
deadtrees.earth. This product was built from automatically segmented crowns
of standing dead trees from very high-resolution UAV imagery available at local
scales using convolutional neural networks (CNN). These segmentations were
converted to cover fractions of standing deadwood per 10 m Sentinel-2 pixel and
fed into long short-term memory networks (LSTM) for large-scale extrapolation
using time series of Sentinel-1 and Sentinel-2 as predictors. The final Germany-
wide maps show the percentage of standing deadwood per satellite pixel.

As standing deadwood is not always necessarily removed from the forest, it can
appear in a pixel in consecutive years. To establish a meaningful link between the
occurrence of standing deadwood and the prevailing environmental conditions
and to only identify newly occurring standing deadwood, we, therefore, only
considered the year of first occurrence of standing deadwood. We defined the year
of the first occurrence of standing deadwood as the point at which the fractional
cover exceeds a certain threshold for the first time. We conducted a sensitivity
analysis applying different thresholds of standing deadwood continuously be-
tween 30% and 70% and averaged the results to avoid bias in the results by setting
an arbitrary threshold. We calculated standard deviations to provide uncertainty
estimates of the observed standing deadwood. The yearly binary maps of first
occurrence then only served as a mask, and in subsequent analysis again the
percentages of standing deadwood were used. We then overlaid the standing
deadwood maps with maps of the dominant tree species by Blickensdörfer et al.
(2024), who used national forest inventory and remote sensing to map 11 tree
species in Germany, i.e., Pinus sylvestris (22% area share), Picea abies (31.4%), Pseu-
dotsuga menziesii (2%), Abies alba (2%), Larix spp. (2.6%), Fagus sylvatica (15.1%),
Quercus spp. (8.9%), Betula pendula (2.1%), Alnus glutinosa (2.6%), and two other
deciduous species groups. The map of Blickensdörfer et al. (2024) has a spatial
resolution of 10 m.
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We assessed regional differences for Germany’s 73 major natural regions first
defined by Meynen and Schmithüsen (1953) adapted by the Federal Office for
Nature Conservation (Bundesamt für Naturschutz—BfN). The major natural
regions divide Germany into physical units of similar geography primarily based
on geomorphological, geological, hydrological, and pedological criteria. They
allow for a regional comparability beyond administrative boundaries.

4.2.2 Identifying drivers of tree mortality using random forest

To identify the main predictors of tree mortality in Germany, we calculated
random forest models (Breiman, 2001) using the previously described standing

Table 4.1: Environmental predictor variables

Variable Spatial
resolution Unit Data source

Slope
10 m

° Slope and eastness (sinus) and
northness (cosine) of terrain aspect
derived from Copernicus DEM (2021)

Eastness rad
Northness rad
Sand content 30 m % Hengl, T. and Parente, L. (2022)
Stand age 100 m years Besnard et al. (2021)
Canopy height 10 m m Lang et al., 2023

Tree species richness 10 m no. Calculated from Blickensdörfer
et al. (2024) as number of tree
species in a 100 m buffer

Temperature annual range
30 sec

°C Derived from
Fick and Hijmans (2017)Precipitation seasonality mm

Precipitation of warmest quarter mm
Late frosts* 1 km days Calculated from vegetation onset

(DWD, 2023b) and CERRA
reanalysis (Schimanke et al., 2021)

Soil drought intensity* 4 km - During vegetation period (Zink
et al., 2016)

Vapour pressure deficit 5.5 km Pa Calculated as 75%-quartile of daily
maximum during growing period
(March-October) from CERRA
reanalysis (Schimanke et al., 2021)

Climatic water balance* 1 km mm Calculated from DWD (2023d,
2023e) as anomaly from DWD
(2023f)

Hot days* 1 km days DWD (2023a)
Biomass 100 m Mg/ha ESA Biomass CCI (Santoro &

Cartus, 2023)
Net Primary Productivity 500 m kgC/m²/

year
Running, S. and Zhao, M. (2021)

*Variable also for the year prior to the first occurrence of standing deadwood
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deadwood maps as a response and 21 environmental predictor variables (Table 4.1).
We dropped predictor variables with correlations higher than 0.7 to rule out
multicollinearity, so that the ecologically more meaningful variable remained
(Figure 4.2). An overview of the originally selected environmental variables along
with the rationale for the selection of variables can be found in Appendix A6.

Figure 4.2: Correlation plot for the selected 21 environmental predictor variables and
standing deadwood. Variables with correlations higher than 0.7 were dropped for
subsequent analyses.

We separately analysed the seven main tree species—as defined by the German
national forest inventory—Fagus sylvatica, Quercus spp., Picea abies, Pinus sylvestris,
Abies alba, Pseudotsuga menziesii, and Larix spp.. We ran random forest models for
each species individually. For every model, we randomly sampled 32 000 observa-
tions (Sentinel-2 pixel equivalents), half with and half without standing deadwood.
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To build temporally transferable models, we sampled 4 000 observations per each
year of first occurrence. For every model, we calculated permutation importances
and accumulated local effects (ALE, Apley and Zhu, 2020). Permutation impor-
tance measures the increase in model prediction error after permuting a variable’s
values, and is a straightforward means for identifying important variables. ALE
plots further describe how a variable influences model predictions on average
and can help understand the direction of a variable’s effect. ALE plots are an
alternative to the well-known partial dependence plots (Friedman, 2001) but they
are less prone to erroneous results due to intercorrelated variables and are less
computational demanding (Apley & Zhu, 2020). We repeated this procedure 100

times for every species and averaged the permutation importances and accumu-
lated local effects. Based on model residuals, we calculated Moran’s I to rule
out spatial autocorrelation for the models (with all values being below 0.04). All
analyses were conducted in R language (R Core Team, 2022) using the packages
’ranger’ for the random forest implementation (Wright & Ziegler, 2017) and ’iml’
for the accumulated local effects (Molnar et al., 2018).

4.3 Results

In 2018 1.4 ± 1.0% and an approximate area of 179 kilohectares (kha) of Germany’s
forests were dead (Figure 4.3). The largest share corresponds to Pinus with
113 ± 81 kha, which equates to 4.4 ± 2.9% of all Pinus trees in Germany. In 2019,
standing deadwood increased for most species and particularly for Picea (6.3 ± 2.1%,
88 ± 39 kha) and Pinus (6.7 ± 3.8%, 201 ± 118 kha). 334 ± 189 kha of forest died in
2019, approximately 2.5 ± 1.4% of the forested area in Germany. In 2020, the
total amount of new standing deadwood slightly decreased to 2.6 ± 1.3% and
307 ± 151 kha. For Picea (8.3 ± 2.5%, 146 ± 44 kha), Fagus (3.5 ± 1.5%, 17 ± 8.2 kha)
and Quercus (2.1 ± 0.8%, 2.1 ± 1.2 kha) standing deadwood peaked in 2020. In 2021,
mortality rates further decreased for all species. Accumulated over the years, in
total 978 ± 529 kha of forest died from 2018 to 2021, accounting for 7.9 ± 4.4% of the
forested area in Germany. The variation around the mean of the different threshold
values for the determination of the first occurrence of standing deadwood was
high for some species, particularly Pinus. Detailed statistics of the temporal
development of standing deadwood for the different species can be found in
Appendix A8.

The mortality patterns between 2018–2021 varied considerably by region (Fig-
ure 4.4a). The most affected regions in terms of area of standing deadwood
(Figure 4.4b) were Süder Uplands (region ID D38, 74.2 kha) and Harz (D37,
47.2 kha), followed by Fläming Heath (D11, 26.5 kha), Elbe-Mulde-Plain (D10,
26.1 kha), Brandenburg Heath and Lake District (D12, 25.1 kha), Lower Saxon Hills
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Figure 4.3: Temporal development of new standing deadwood from 2018 to 2021

for main tree species (Abies, Fagus, Larix, Picea, Pinus, Pseudotsuga, and Quercus) in
Germany. A) The proportion of standing deadwood (% of the respective species),
B) total affected area of the species (kha). The thick line represents the mean of
the various threshold values, the correspondingly coloured ribbon the standard
deviation.

(D36, 20 kha), Middle Elbe Plain (D09, 19.3 kha), and Wendland and Altmark (D29,
19 kha). The most affected regions in terms of percentage of standing deadwood
(Figure 4.4c) were Harz (D37, 30.2%), Elbe-Mulde-Plain (D10, 21.4%), Middle Elbe
Plain (D09, 21.1%), Saxon-Bohemian Chalk Sandstone Region (D15, 18.4%), Süder
Uplands (D38, 17.1%), Wendland and Altmark (D29, 16.8%), Fläming Heath (D11,
16.4%), and Lusatian Basin and Spreewald (D08, 12.6%). A detailed overview
of the accumulated standing deadwood during 2018–2021 for the major natural
regions of Germany can be found in Appendix A9.
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Figure 4.4: Accumulated standing deadwood from 2018–2021 for the major natural
regions in Germany. (A) Map of accumulated standing deadwood in percent of the
forested area. For visualization purposes, the maps from Schiefer et al. (2023a) were
aggregated to 5 km spatial resolution. Most affected regions are highlighted with a
bold outline, and region names along with the IDs (according to the official naming
convention) are given in the figure. For the names of all other regions, see 5.4. (B)
Total area [kha] and (C) percent [%] of affected forest areas for the major natural
regions in Germany.

The mean explained variance (coefficient of determination R²) of the species-
specific random forest models was 0.68 for Pinus, 0.64 for Abies, 0.6 for Fagus, 0.46

for Quercus, 0.43 for Picea, 0.43 for Pseudotsuga, and 0.36 for Larix. The random
forest permutation importance (Figure 4.5) reveals that climate and weather
were the most important environmental factors explaining standing deadwood

73



4 large-scale remote sensing reveals that tree mortality in

germany appears to be greater than previously expected

Figure 4.5: Variable permutation importance of the random forest models. Variables
are in descending order according to their median variable importance over all
species.

dynamics. Late frost was the most important variable (median permutation
importance RMSE across species = 15.3%) followed by canopy height (15.2%) as
the only non-climate/weather variable in the top group. Variable importances
ranked three to ten were climatic water balance (14.3%), hot days (13.7%), climatic
water balance of the prior year (13.2%), vapour pressure deficit (12.1%), late
frosts of the prior year (11.7%), hot days of the prior year (11.6%), precipitation
seasonality (10.6%), and precipitation of the warmest quarter (10.5%). The least
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important climatic variable was temperature annual range (7.4%, rank 18). The
edaphic variables soil drought intensity (9.8%), sand content (9.4%), and soil
drought intensity of the prior year (9%) were less important for the models than
the climatic variables. Net primary productivity (9.2%) and biomass (9%) ranked
13 and 15 in variable importance. The forest stand-related variables stand age
(8.3%) and tree species richness (7.3%) ranked 17 and 19. Slope (9.1%) was the
most important variable with the topographic site conditions. The aspect variables
northness (4.7%) and eastness (4.1%) were the overall least important variables.
Abies showed the highest importances for most of the variables, except for canopy
height, biomass, stand age, and tree species richness. Lowest importances were
observed for Pinus for most of the variables. Variables from the year of first
of occurrence of standing deadwood were more important than the respective
variables from the prior year.

Detailed relationships were obtained using the local effect plots created for
each of the 21 predictor variables (Figure 4.6). Surprisingly, late frosts showed no
clear effect across species despite its high variable importance. Pseudotsuga, Picea,
and Abies, however, showed a decreased mortality with more days of late frost,
indicating a tolerance to frosts. For Fagus the effect was reverse with an increased
mortality with more days of late frost. Late frosts of the prior year showed a clearer
picture with an increased mortality with more days with late frosts for Quercus,
Pinus, Fagus, and Larix. Abies, Pseudotsuga, and Picea were again more tolerant to
late frosts. The effect of canopy height was similar across all species, with smaller
trees linked to more and taller trees linked to less standing deadwood. This effect
was largest for Larix and smallest for Abies. The effect of the climatic water balance
was the same for all species and a more negative climatic water balance was linked
to more standing deadwood, except for Abies that was inverted. For Picea, a
smaller deficit was sufficient for increased mortality. Since Abies largely occurs
at higher altitudes with higher precipitation, the precipitation amounts are still
sufficient to compensate for the observed effect of the climatic water balance. The
climatic water balance of the prior year showed the same general trends but with
a smaller effect. Hot days are defined as days with a maximum temperature above
30 °C. The effect of hot days on the fraction of standing deadwood was similar for
all species, with higher mortality with more hot days. When exceeding 11 to 17

hot days, depending on the species, more standing deadwood was observed. The
effect of more hot days on standing deadwood was stronger for the current than
the previous year. The largest effect of hot days for both years was observed for
Abies and Fagus.

The differences in the effects between the species were greatest for vapour
pressure deficit. Quercus, Larix, Pinus, Pseudotsuga, and Picea behaved similarly
with increasing fraction of standing deadwood at higher vapour pressure deficits.
However, the deficit at which the effect changed to more standing deadwood was
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Figure 4.6: Accumulated local effect (ALE) plots for the 21 environmental predictor
variables in descending order based on variable permutation importance. A positive
value on the y-axis means contributing to more standing deadwood, negative values
to less. ALEs are depicted separately for the seven main tree species (Abies, Fagus,
Larix, Picea, Pinus, Pseudotsuga, and Quercus) in Germany. The solid lines show the
mean effect across all repetitions, with the transparent ribbon denoting the standard
deviation.
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considerably higher for Pinus at 2.1 kPa compared to 1.5–1.7 kPa for the other
four species. For Abies and Fagus a lower vapour pressure deficit was linked
to more standing deadwood, and for Fagus a higher deficit even was linked to
less standing deadwood. The effect of precipitation varied among the species
with higher seasonality. Picea, Pseudotsuga, and Abies benefitted from higher
precipitation seasonality and standing deadwood decreased, whereas standing
deadwood for Fagus and Quercus increased. We observed increased mortality
of Fagus in regions with a higher total precipitation during the warmest quarter.
Higher soil drought intensities (both years) were linked to increased mortality, but
the accumulated local effect was small. Only Abies experienced higher mortality
rates than the other species when soil drought intensity of the year prior to dieback
exceeded 10. The species showed different sensitivities towards sand content and
its associated low water retention capacity. Whereas standing deadwood only
increased at sand contents larger than 75% for Picea, Quercus, Larix, Pseudotsuga,
and Pinus, higher amounts of standing deadwood were already observed at 30%
sand content for Fagus and Abies. Lower net primary productivity and lower
biomass were both linked to increased amounts of standing deadwood. Stand
age showed only a small effect, with slightly increased mortality for younger
stands. For the topographical conditions, slopes above 15° featured more standing
deadwood, but the aspect components northness and eastness had no clear effect.
For Larix, Pseudotsuga, Pinus, and Abies, tree species richness had no clear effect. A
higher tree species richness was linked to more standing deadwood for Quercus
and Fagus. Picea showed a contrasting effect, with less standing deadwood in
more diverse forests.

4.4 Discussion

4.4.1 Pattern of tree mortality in Germany

The 2018–2021 summer droughts resulted in excess tree mortality rates in large
parts of Central and northeastern Germany. Compared to the nationwide forest
condition survey (BMEL, 2023), both assessments reveal a legacy effect, with
standing deadwood only increasing sharply in the second consecutive drought
year in 2019. However, our results indicate overall higher amounts of standing
deadwood and an earlier increase in dieback after the 2018–2021 summer droughts.
Whereas in 2018 the official statistics from the forest condition survey report
0.51% of standing deadwood in Germany (BMEL, 2023), our analysis resulted
in 1.4 ± 1.0%. In 2019, this percentage already increased to 2.5 ± 1.4% (for the
single year) in our analysis, but only 0.9% (accumulated) in the survey. The steep
increase in standing deadwood in 2020 was also mirrored in the forest condition
survey with 2.25%, while our analysis revealed 2.6 ± 1.3% standing deadwood.
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The highest percentage of standing deadwood in the forest condition survey is
reported in 2021 with 2.35% in contrast to the 1.3 ± 0.6% found in our study.

We suspect several reasons for the differences between our analysis and the
forest condition survey: Firstly, the forest condition survey is based on observations
of individual dead trees (n = 9,688 from 402 sample plots according to BMEL, 2023)
and is reported on the total number of trees in the survey. Whereas a large
number of small individuals that were not affected by mortality might result in
lower estimates of the forest condition survey, larger tree individuals might have
an overly large impact on the cover value from the remote sensing perspective.
Therefore, a direct comparison of this individual tree-based survey with the area-
based remote sensing analysis is hampered. Secondly, the differences may be
explained from the different perspective, as remote sensing data assesses tree
mortality patterns from the bird’s-eye perspective, while the forest condition
survey data is recorded from the ground. The upper parts of the canopy are
subject to higher levels of solar radiation, increased atmospheric coupling and
long water conduits to the canopy and are, hence, particularly susceptible to
dieback. The upward looking perspective of the forest condition survey can
impede the view of this upper canopy (e.g., due to crown overlap and dense
undergrowth) and result in an underestimation of standing deadwood. Lastly, our
estimates of standing deadwood from Schiefer et al. (2023a) do not necessarily
include only tree individuals but also partially dead tree crown or branches, which
may result in higher estimates of standing deadwood.

Our observations of the temporal patterns confirm the findings of Thonfeld
et al. (2022) and Global Forest Watch (GFW, 2023; Hansen et al., 2013). However,
with 978 ± 529 kha from 2018–2021, our results suggest almost twice the amount
of standing deadwood compared with 501 kha mapped by Thonfeld et al. (2022)
and 543 kha mapped by the Global Forest Watch (GFW, 2023; Hansen et al.,
2013). Although both products do not explicitly map tree mortality but also
include other sources of forest loss, for example logging and windthrow, they
detect considerably less forest loss. Thonfeld et al. (2022) used Sentinel-2 and
Landsat 8 time series and calculated anomalies in the disturbance index. Index-
based approaches circumvent the need for training data for supervised mapping
approaches, but at the same time become hard to validate and interpret. The
coarser spatial resolution of Landsat 8 (30 m) together with a binary classification
(dead, not dead) does not fully reveal the scattered nature of canopy dieback and
might hence lead to an underestimation of tree mortality (Cheng et al., 2024).
Likewise, the forest loss maps from the Global Forest Watch (GFW, 2023; Hansen
et al., 2013) also rely on the 30 m Landsat data and accordingly do not detect
small-scale patterns, e.g., single dead tree crowns or patches thereof, and hence
might underestimate forest loss (Galiatsatos et al., 2020; Hartmann et al., 2018b).
The observed increase in accumulated standing deadwood in Germany peaked
in 2019 and 2020 (see Figure 4.3), one year after the consecutive drought years
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of 2018 and 2019 (Schnabel et al., 2022; Schuldt et al., 2020). The subsequent
decrease in standing deadwood can be attributed to lower mortality rates in the
following years. The produced maps exclusively depict standing deadwood. The
decline can therefore also be attributed to the falling of dead parts of the tree
crown or windthrow as natural causes. Anthropogenic causes include the removal
of standing dead trees, which is a common forest management practice to prevent
spreading of pest insects or to save timber values (Weslien et al., 2024).

Deviations from the standing deadwood cover fractions with other remote
sensing products or field-based surveys may also stem from biases of the standing
deadwood map used in this study. For example, we observed that sometimes the
product of Schiefer et al. (2023a) overpredicted tree mortality near forest edges,
roads, and paths. Another potential source of overestimation in our study is the
shallow crown of some species, such as Pinus. Especially under dry conditions,
the forest floor showing through the sparse canopy might be interpreted as a
standing deadwood signal. Insect infestation can also lead to defoliation (Haynes
et al., 2014; Skrzecz et al., 2020), which further thins out the crown, but the trees
subsequently recover. This may be particularly true for the Pinus-dominated
northeastern parts of Germany, and is reflected in the large standard deviation of
standing deadwood from the sensitivity analysis of the different thresholds (see
Figure 4.3).

The respective region was not recorded as being so severely affected by Thon-
feld et al. (2022). However, for coniferous species the authors excluded pixels
with NDVI values smaller than 0.5 from the analysis, which might underestimate
standing deadwood in the case of Pinus, as the NDVI of Pinus is generally not
very pronounced. We found coniferous species to show much higher rates of
tree mortality, especially Pinus and Picea but also Pseudotsuga, compared to de-
ciduous species. In the underlying tree species map (Blickensdörfer et al., 2024),
Pseudotsuga and Abies showed the lowest accuracies (User’s accuracy 37.07 ± 1.33

for Pseudotsuga and 24.65 ± 1.95 for Abies) and were often confused with Picea.
Therefore, standing deadwood of Pseudotsuga and Abies is likely to be overesti-
mated in our analysis. In our assessment, conifers often died back over larger
areas in a short timespan, while for deciduous species smaller patches of standing
deadwood accumulated over the years. This assessment matches our observations
from the field, where broadleaved species usually showed gradual dieback of the
canopy (i.e., dieback of single branches or parts of the crown), whereas coniferous
species tended to die completely at one point in time.

4.4.2 Atmospheric conditions as main driver of tree mortality

We identified atmospheric conditions (i.e., late frosts, climatic water balance, hot
days, and vapour pressure deficit) to be the most important predictors of tree
mortality. The most important variable was late frost, although the accumulated
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local effect was small. One reason for this may be that late frosts tend to have a
large effect at a local level and are hence very important, but do not constitute a
universal effect across the whole of Germany. Late frost occurs when tree buds
have burst and leaves sprouted after spring warming, followed by temperatures
well below zero. Late frosts often occur locally, which might explain the small
accumulated local effects in our large-scale analysis. Especially for Quercus and
Fagus (but also Pinus), more late frosts were associated with more standing
deadwood. In the future, it is expected that late frosts will increase as a result of
climate change (Vautard et al., 2023), putting vast areas of broadleaved trees at
particular risk, given they are more susceptible to late frost events than conifers
(Fisichelli et al., 2014).

Our results on the importance of the respective environmental variables (see
Figure 4.5) confirm the importance of hotter droughts, in which atmospheric
drought is accompanied by heat (Allen et al., 2015; Hartmann et al., 2022), for
tree mortality during 2018–2020. Soil conditions were not as important as atmo-
spheric drought and high temperatures. During drought, some tree species can
compensate for water loss and prevent the death of plant material through various
mechanisms (McDowell et al., 2022). Under simultaneous heat and drought, i.e.,
hotter droughts, negative impacts are aggravated because of greater atmospheric
demands (higher vapour pressure deficit) and greater soil moisture limitations
(Grossiord et al., 2020; Hartmann et al., 2022). In the first drought year in 2018,
the trees already suffered damages (Schuldt et al., 2020) and thus started with
significant abiotic and biotic legacies, such as depleted soil water reservoirs and
damages to the tree’s water transport system (McDowell et al., 2022), into the
consecutive drought years 2019 and 2020. These legacies likely induced the pro-
nounced increases in tree mortality we observed during the subsequent drought
years. Similarly, tree growth and physiological stress responses were found to be
even more pronounced in 2019 than in 2018 as a result of such abiotic and biotic
legacies (Schnabel et al., 2022). The predicted increase in such consecutive and
hotter droughts (Hari et al., 2020) will likely further increase the risk for forest
dieback events in the future.

4.4.3 Mixed effect of forest composition and structure

4.4.3.1 Canopy height and stand age

Canopy height was the second most important variable based on random forest
permutation importances, with a consistent effect across all species that smaller
trees showed greater mortality and were more affected than tall trees. The same
trend but with lower absolute accumulated local effect was found for stand age,
where younger stands had higher mortality than older stands. Lower canopies
would be rather young and dense stands, whereas higher canopies are often
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structurally more diverse. Competition may be more severe in young stands, and
additional constraints on resources may create severe shortages in many trees,
ultimately resulting in increased mortality. In our study, we cover all forest man-
agement types across Germany, including naturally grown forests and plantations.
We assume plantations with young and small stands to be exceptionally prone to
competition-induced tree mortality, which might amplify mortality risks. These
findings are consistent with Kulha et al. (2023) who examined mortality risks using
national forest inventory data across Germany. Our results indicate that compe-
tition among younger and lower stands contributed more to the tree mortality
pattern observed, and hence, that the effect of canopy height alone is smaller than
found in other studies, where tree height largely explained mortality risks during
droughts leaving especially larger trees at risk due to hydraulic vulnerability
(Bennett et al., 2015; Gora & Esquivel-Muelbert, 2021; Stovall et al., 2019, 2020).
Stovall et al. (2019, 2020) argue, that the intensity of an intrinsic height-mortality
relationship is controlled by other factors, including environmental gradients of
temperature, water, or competition. Based on our results, this height-mortality
relationship would be reversed. Instead, we rather observe a mixed effect of forest
composition and structure—including height. This observation supports findings
by Stephenson and Das (2020) who found mortality to be more dependent on
height-related changes in forest composition, rather than an intrinsically higher
vulnerability of higher trees.

4.4.3.2 Site productivity and biomass

With increasing atmospheric CO² concentrations, increasing average temperatures,
and a longer growing season in the future, an increase in forest productivity is
expected (Lindner et al., 2014; McDowell et al., 2020). Higher site productivity
increases growth rates of trees and may induce a higher susceptibility to embolisms
and hydraulic failure during drought conditions (Pretzsch et al., 2018). At the
same time, older trees usually have a reduced plasticity to changing environmental
conditions and higher biomass that comes with higher maintenance costs, reducing
soil water availability faster and therefore increasing drought stress and mortality
risk (Jump et al., 2017). Consequently, Socha et al. (2023) found older and highly
productive stands to be more susceptible to drought-induced tree mortality in
Pinus dominated stands in Poland. In contrast, our results showed that a higher
net primary productivity and a larger biomass decreased tree mortality. However,
the different spatial resolutions of the input data should be considered when
interpreting these results. Whereas standing deadwood was resolved at 10 m
and tends to represent individual trees, the biomass (100 m) and net primary
productivity (500 m) layers show averaged values at the stand level. Results from
local-level studies are consistent with the mechanistic explanation for the mortality
of taller, older and more productive tree individuals. However, this effect appears
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to be mitigated at the landscape level, as the few large tree individuals do not
contribute as much to productivity as the many young trees that grow back. Older
and more productive stands therefore coped better with the observed prolonged
and repeated hotter droughts. On average, these stands were therefore better
adapted to extreme climatic conditions, for instance due to a deeper root system
or greater water storage capacity, which can mitigate drought effects.

4.4.3.3 Tree species richness

The effect of tree species richness on tree mortality remains debated. In general,
former studies on tree species richness effects on mortality yielded mixed results,
with some species profiting from diversity and others not, depending on their
functional traits (Blondeel et al., 2024; Depauw et al., 2024; Liu et al., 2022; Searle
et al., 2022). For instance, Hajek et al. (2023) reported both synergistic tree species
interactions in mixtures depending on the examined species during the 2018

hotter drought in an experimental setup. Across Germany, a higher degree of
conspecific neighbours was recently shown to increase mortality risks relative to
heterospecific neighbours using national forest inventory data in a study by Kulha
et al. (2023). Here, we found that a higher tree species richness was not linked to
lower tree mortality for most species and that tree species richness was generally
less important than abiotic predictors and canopy height for explaining mortality
patterns. However, the two broadleaved species Fagus and Quercus experienced
higher mortality with increased tree species richness. One may speculate that
the increased tree mortality for these species in mixed forests is caused by a
higher competition for water in more productive mixed stands (Bauhus et al.,
2017). However, our purely observational approach does not allow testing this
assumption or rule out a potential confounding of this diversity effect with other
abiotic variables, which would require explicit comparisons of mixtures with all
of their constituent monocultures under comparable site conditions (see Baeten
et al., 2013; Depauw et al., 2024). Therefore, future studies should aim to decipher
the mechanisms that caused the increased mortality rates of Fagus and Quercus
we observed. In contrast, Picea benefited from more diverse forest stands, and we
observed larger amounts of standing deadwood in monocultures.

There is ample evidence that species mixing reduces the effect of specialist pests
and pathogens (Jactel et al., 2021; Messier et al., 2022). Especially for Picea the
reason for large-scale die-off is therefore the interaction of drought stress and bark
beetle outbreaks, which can only propagate to this extent in vast monocultural
stands. Pinus is also often planted in monocultures in Germany and died over
extensive areas during 2018–2021. In contrast to Picea, however, the diversity of
tree species was not related to mortality, presumably due to the regional lack of
specialized pests. Stephenson et al. (2019) also highlighted this effect and found
the combined effects of the presence of specialized bark beetles and drought
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stress to greatly increase tree mortality. Despite the current absence of specialized
pathogens and pests for some tree species, under changing climatic conditions,
new specialized diseases are likely to spread and to put currently less affected
tree species at risk.

4.5 Conclusion

Using a wall-to-wall remote sensing product with high spatial detail, we revealed
almost twice as much standing deadwood in Germany during 2018–2021 than
other sources, but different methodical approaches cannot be ruled out as rea-
sons, for example, the different perspectives of satellite data and ground-based
observations (such as the national forest condition survey), a high spatial detail
of the employed remote sensing data that also captures scattered tree mortality,
and an upscaling method based on actual observations of standing deadwood
instead of index anomalies. In conclusion, remote sensing provides a valuable
landscape-level view on tree mortality, complementing the insights on tree mortal-
ity processes we have from ground-based forest assessments. We found a complex
interplay of environmental predictors, with extreme atmospheric conditions, i.e.,
hotter droughts but also late frosts, being the most important predictors for the
observed tree mortality. The species’ response varied greatly, and the revealed
patterns provide important information for climate change adaptation. Mainly
the coniferous species Picea and Pinus died, as they are not well adapted to hotter
droughts. However, the extreme atmospheric conditions also put broadleaved
species at risk, and particularly late frost events after vegetation onset played
an important role in this respect. Our results showed that stand structure and
composition influences tree mortality and, hence, that management of forest
structure and composition can help mitigate the risks of global warming. Mono-
cultures were particularly prone to mortality where pests interacted with drought.
However, some species (Fagus and Quercus) also experienced higher mortality in
more species-rich stands, an observation that warrants further investigations into
unfavourable site conditions as a common reason for failure to achieve dominance
and increased mortality but also into the trait-based mechanisms driving tree
diversity effects on tree mortality at the stand and landscape scale.

Our results at the landscape level suggest that small, young stands contributed
to more overall tree mortality in Germany due to competition for resources during
extreme weather conditions than large tree individuals. Species information was
crucial for interpreting patterns and predictors of tree mortality, and underlines
the need for a heterogeneous database for upscaling local observations of standing
deadwood to the landscape level. Adequate maps of standing deadwood are
required, to gain insights on tree mortality processes at continental or global
scales. This can only be accomplished if the scientific community contributes to the
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collective gathering of reference data from multiple regions and biomes to improve
the upscaling of standing deadwood observations from local-level to landscape-
level, e.g., in initiatives such as www.deadtreath.earth. Due to limited availability
or limitations of computing power and models, environmental variables are often
only considered as observations of points in time. The provision of corresponding
time series data and the development of suitable models for investigating the
complex spatio-temporal patterns should be advanced, considering the urgency
of globally increasing tree mortality.
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Remote sensing lags far behind its potential for large-scale analyses of vegetation,
mainly for two reasons: (1) suitable methods for harnessing the large volume of
remote sensing data are missing and (2) a lack of ground reference data. Deep
learning has emerged as one of the most promising methods to cope with large
amounts of data, and its potential in remote sensing of vegetation has meanwhile
been demonstrated in numerous studies. However, ground reference data is
persistently lacking. As a result, deep learning in remote sensing of vegetation
has not yet been fully explored. This thesis hence aims to overcome reference
data scarcity and to further evaluate the potential of deep learning in vegetation
remote sensing. In the first two studies, I addressed the question, whether deep
learning algorithms are suited to efficiently analyse the dense information of
current remote sensing data. While the first study focused on very high spatial
resolution of uncrewed aerial vehicle (UAV) data (chapter 2), the second study
also focused on temporally high resolved satellite image time series (chapter 3).
From the results of the first study, I conclude that convolutional neural networks
(CNNs) are ideally suited to harness the detailed spatial information of UAV
imagery. This leads to the second research question, whether a concerted use of
CNN and UAV is capable of closing the reference data gap on tree mortality. To
address this question, I developed an approach to scale up UAV-based reference
data to satellite level and investigated the potentials of this upscaling approach
for the estimation of standing deadwood cover at landscape-level (chapter 3). In
the final study, I investigated whether deep learning and the developed upscaling
approach aid in identifying and understanding the environmental drivers of tree
mortality at landscape-level (chapter 4)? In the following sections, I will synthesize
the overarching insights from the three studies presented. I will highlight the
potential of deep learning in vegetation remote sensing and how these techniques
may contribute to an improved understanding of tree mortality. In conclusion,
I will outline the critical challenges that must be addressed for the successful
implementation of deep learning methods in vegetation remote sensing.

5.1 Advancing vegetation remote sensing with deep learn-
ing algorithms

5.1.1 Spatial pattern extraction using convolutional neural net-
works

Current remote sensing sensors provide large volumes of data with constantly
increasing spatial, temporal, and spectral resolution. Handling this complexity
requires efficient remote sensing methods to answer pressing ecological questions.
With the use of UAVs, very high spatial resolution imagery are readily available.
In the first two studies, I used CNNs to automatically segment and identify tree
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species (chapter 2) and standing dead trees (chapter 3) from UAV-imagery. With
an overall accuracy of 0.89 and an F1-score of 0.73 for the separation of 14 classes
(i.e., nine tree species, three genera, deadwood, and forest floor) in the first study, I
found CNNs to be particularly well suited to harness the dense spatial information
of UAV-imagery. Supporting these findings, I found similarly good results in the
second study, with an F1-score of 0.85 for the segmentation of standing deadwood.
Both results were achieved using U-net CNN-architecture and on RGB-imagery
only. Newer model architectures even resemble the textural representations on
several hierarchical levels (i.e., atros convolution) and may perform better than the
fairly standard U-net. Both results are reported pixel-based at the original image
resolution (i.e., <4 cm) and hence also comprise smaller artefacts, such as canopy
gaps or crown overlap, that are also hardly semantically separable for any human
interpreter. Due to their end-to-end learning capabilities and inference speed
once a model is trained, CNNs are favourable over traditional machine learning
methods or manual digitization for the interpretation of very high-resolution
UAV-imagery.

CNNs even require the rich spatial detail provided by UAVs (chapter 2) when
vegetation with only subtle features or differences thereof is being targeted. A
lower spatial resolution, however, is sufficient for distinct features, such as promi-
nent flowering, fruiting, or branching pattern. Administrative (e.g., flight per-
missions) and technical circumstances (e.g., battery capacity) limit the areawide
coverage of UAVs and hence also the applicability for stand-alone large-scale tasks.
This limitation suggests a transfer to orthoimagery acquired from aircraft, which
features larger coverage and typically comes with a spatial resolution of 10 cm
or above. Several studies used such aerial imagery to map (standing) deadwood
(Jiang et al., 2019; Sani-Mohammed et al., 2022; Sylvain et al., 2019). Countrywide
mapping of dead tree crowns over Luxembourg using aerial orthoimagery has
succesfully been demonstrated by Schwarz et al. (2023). As I have shown in the
second study (chapter 3) CNNs are ideally suited for separating dead from live
trees due to distinct visual features. If widely available, aerial imagery from
aircraft is also suitable for mapping deadwood at the landscape-level (Schwarz
et al., 2023). However, due to high acquisition costs and the time-consuming
nature of aerial surveys, the temporal resolution is lower compared to satellite
data. For other tasks, such as tree species classification, the spatial resolution of
10 cm alone would not suffice (chapter 2).

In conclusion, CNNs require a spatial resolution for some tasks that current
satellite missions and aerial surveys do not provide. Undoubtedly, remote sensing
data with very high spatial resolution is—regardless of the platform—currently
not feasible for global applications, be it due to the limited spatial coverage or the
disproportionate storage requirements. This highlights the necessity to employ
and further investigate multimodal remote sensing approaches.
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The end-to-end learning capabilities and flexible architectures of CNNs also
ensure the extension of their application to the spectral domain. Due to high costs
of data acquisition and complex data processing, hyperspectral data and studies
using CNNs on hyperspectral data respectively are rare, but their results are
promising (e.g., Fricker et al., 2019; Marconi et al., 2022). However, the number
of trainable parameters of a CNN increases with each additional spectral band
and with it the computational demand of the model and hence, its applicability.
Computational demand is also an issue when tweaking a CNN for accuracy. As
I have demonstrated in the first study (chapter 2), memory may be exhausted
when a higher spatial resolution or larger tiles are used for CNN-training. Such
technical constraints can be decisive for the successful utilization of deep learning
in remote sensing analyses.

The size of the tiles that went into the CNNs was not per se decisive for the
accuracy of the models. If there are no prominent features, smaller tiles better
represent less frequent data points in the data set. Larger tiles are less prone to
edge effects, resulting in smoother predictions. However, the maximum tile size
is limited by the available memory. Consequently, a high computing power is
required to conduct large-scale analyses and to uncover and explore ecological
relationships at entire landscapes.

5.1.2 Harnessing the temporal dimension with long short-term mem-
ory networks

This thesis demonstrates that CNNs are an ideal tool for extracting and processing
spatial information from remote sensing data. CNNs are also a suitable means to
exploit the spectral dimension of remote sensing data. The constant stream of high
temporal resolution remote sensing data requires adequate data analysis methods.
Convolutions are also employed to extract information from temporal signals (see
for example Pelletier et al., 2019a), but some algorithms are specifically designed to
analyse sequential data (i.e., RNN, LSTM, and transformer). In the second study
(chapter 3), I therefore evaluated long short-term memory networks for harnessing
the temporal dimension. I used an LSTM for predicting the fraction of standing
dead trees per pixel from satellite image time series. The LSTM achieved good
results, considering the subtle and dynamic nature of the tree mortality process
studied. In comparison with a shallow machine learning approach (i.e., random
forest), the LSTM achieved comparable Pearson’s r and RMSE, but lower model
bias. I tested several band input combinations from spectral information from
Sentinel-2 bands, structural information from Sentinel-1 backscatter (CARD-BS)
and interferometric coherence (CARD-COH6), and additional vegetation indices
kNDVI and NDWI. The model with all available information performed best.
The improved performance when including the vegetation indices contradicts the
assumption that the end-to-end capabilities of deep learning approaches do not
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require feature engineering. Nonetheless, the complexity of the data is high when
several data types are incorporated. Since vegetation indices are often based on
physical principle, incorporating such physical constrains facilitates the learning
process. The length of the satellite image time series was restricted to two years,
given that the ground truth data partly originate from the year 2018 and that
Sentinel data only date back until 2016 with the operational mode of the satellites.
This period may be too short for the model to learn typical vegetation dynamics
and patterns, and covering more phenological cycles might improve the results.

In conclusion, LSTMs were well suited to analyse the dense temporal informa-
tion from satellite image time series. LSTMs better accounted for the temporal
dependencies in the data and were superior over a shallow machine learning ap-
proach. LSTMs are capable to analyse the remote sensing signal of vegetation that
emerges from a complex interaction of biophysical and biochemical components
and changes during the phenological cycle. With adjustments in the temporal
and spatial matching of the ground reference data (see next chapter), improved
models, and longer time series deep learning approaches can be expected to
further improve.

5.2 Leveraging deep learning for comprehensive landscape-
level analyses

In the previous section, I highlighted the possibilities of deep learning for extract-
ing data representations for vegetation analyses from the spatial, spectral, and
temporal dimensions of remote sensing data. CNNs are a powerful tool to extract
spatial pattern from image data and LSTMs to extract sequential information from
satellite image time series. Very high-resolution imagery from UAVs alone is
sufficient for studies with a local focus, but not suited for large-scale tasks due to
the limited spatial coverage. Deep learning-based downscaling approaches, may
incorporate the temporal information from satellite imagery available over large
areas. An example of such a downscaling approach are multi-branch architec-
tures, where one branch is trained with high-resolution image data while another
branch processes temporal information from satellite data time series. The learned
features from both branches are jointly interpreted in the decision layer, thereby
enhancing predictions compared to singular models (see, for example, Labenski
et al., 2023). However, the limited coverage of the high-resolution imagery still
constrains downscaling models for area-wide inference. Repeatedly acquired
multispectral aerial orthoimagery is more extensively available, but I showed
that the spatial resolution provided restricts its application only to tasks with
clearly discernible features of vegetation (chapter 2). Depending on the platform,
satellite data has a high temporal resolution but an insufficient spatial resolution
for CNN-applications (i.e., 10 m of Sentinel-2 or 30 m of Landsat). Other satellite
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platforms offer higher spatial resolutions (i.e., Dove constellation with 3 m) but
the same limitations as for aerial orthoimagery apply.

Integrating the various data sources and harnessing the different resolutions in
an holistic approach remains an open challenge in remote sensing of vegetation.
Large-scale remote sensing of vegetation is deemed to stay behind its potential
when only one of the data sources is utilized—even for deep learning methods.
This is merely an issue of deep learning itself and not restricted to global but also
regional scales. Rather, it all boils down to the lack of the necessary reference data.
At the global scale, we are not yet there in terms of reference data availability to
fully exploit the potential of deep learning.

5.2.1 Integrating multidimensional remote sensing data

One of the most promising avenues in this regard is the integration of different
dimensions and data sources of Earth observation data, enabled by the flexible
architecture of deep learning models. The various specialized deep learning layers
can be linked together and enable simultaneous analysis of several dimensions.
For instance, convolutional long short-term memory networks (ConvLSTM) as
proposed by Shi et al. (2015). A ConvLSTM replaces the internal matrix mul-
tiplications in an LSTM with convolutions, thereby propagating spatial data
representations through the temporal dimension. ConvLSTMs can hence learn
spatio-temporal data representations. They were first introduced by Shi et al.
(2015) for short-term prediction of future precipitation from spatio-temporal radar
intensity maps. Not only did this approach accelerate model prediction over
large areas due to the patch-based inference, but also outperformed a standard,
pixel-based LSTM. ConvLSTMs have been adapted for remote sensing of vegeta-
tion: Ahmad et al. (2023) used a ConvLSTM for predicting NDVI from MODIS
satellite data to estimate crop growth and yield. Li et al. (2023) tested different
levels of integration of spatial and temporal information for classifying crops from
Sentinel-2 images. Rußwurm and Körner (2018) and Shen et al. (2021) mapped
land cover types from Sentinel-2 and Landsat 8 time series respectively. Results
of the studies indicated that spectral-spatial image data were more important
than temporal information (Li et al., 2023; Shen et al., 2021) and through the
end-to-end learning capabilities cloud coverage could be learnt jointly with the
classification task (Rußwurm & Körner, 2018; Shen et al., 2021). Regarding the
length of the time series, longer series were conducive for model accuracy (Shen
et al., 2021). The unanimous result of the studies was a better model performance
the more dimensions were integrated. However, field crops are typically grown
in clearly defined, homogeneous entities and an application of ConvLSTM for
vegetation assessment in more heterogeneous and dynamic environments, such as
tree mortality, is yet to be tested.
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Convolutional neural networks (CNNs) are mostly used on RGB images but
are not restricted in their number of input bands. The number of input layers can
be extended to match the number of bands from hyperspectral images to extract
spatial pattern along single bands in the electromagnetic spectrum. In a transposed
form, CNN interpret the hyperspectral signal pixel-based in a sequential manner
(e.g., see Cherif et al., 2023, who simultaneously derived 20 plant traits from
hyperspectral canopy spectra). Both applications only learn data representations
from one of the dimensions. Harnessing both the spatial and spectral domain
simultaneously can be accomplished in a spatio-spectral approach also using
ConvLSTM (e.g., Hu et al., 2020; Wang et al., 2021, for land use land cover
classification of hyperspectral images). The developed models with spatio-spectral
feature extraction show the highest accuracies on benchmark datasets. Such
benchmark datasets often deal with the classification of settlement areas or field
crops that feature clear boundaries and little to no class transitions. They provide a
valuable contribution to the development of new model architectures, but studies
often do not go beyond pure laboratory studies. The transition from the spatially,
temporally and spectrally relatively static tasks on benchmark datasets to dynamic
vegetation processes has yet to be done.

5.2.2 Closing the reference data gap on tree mortality

In this thesis, I presented an upscaling-approach from the UAV to the satellite scale.
The approach was successful in closing the reference data gap on tree mortality.
The foundation of the approach is the automated CNN-based segmentation of
very high resolution UAV-imagery, which I explored in the first two studies
(chapter 2 and 3). The actual upscaling happens in the subsequent step, where
the CNN-predictions serve as reference data for an LSTM to predict the pixelwise
fraction of standing dead trees from satellite image time series. Advantages of
this upscaling approach are manifold. So were the data representations learned
by the CNN good enough for rapid generation of ample reference data over wide
areas. With heterogeneous input data, the degree of generalization of CNNs is
high and the model can be applied to unseen data once it is trained. The use of
UAVs facilitates the acquisition of reference data even in previously inaccessible
terrain. Moreover, this reference data is collected from a shared perspective with
satellite data, and hence, gives it matching geometric properties. These data are
spatially explicit and directly applicable as ground reference.

Several criteria must be met for successful upscaling. The geolocation errors of
both UAV and satellite data as well as the structure from motion processing step
for UAV-data may cause relative positional inaccuracies that exceed the spatial res-
olution of satellite data. The positional accuracy is usually known, and the spatial
matching must be subsequently optimized if necessary. Automated co-registration
methods, such as scale-invariant features transform (SIFT), are not feasible in that
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case due to the very different spatial resolutions. A simple optimization method
may suffice that resamples the UAV-imagery to the satellite data and iteratively
shifts and rotates the UAV data to find the maximum correlation of the spectral
bands available in both datasets. I tested such an optimization in the second
study, but results were inconclusive (chapter 3). Potential reasons for this were a
mismatch between UAV acquisition time and satellite overpass and the resulting
differences in lighting situation, such as cast shadows. This already illustrates
the second premise for the upscaling approach, namely temporal alignment. As
described above, the temporal alignment in the diurnal cycle rather affects the
spatial match (because of shadowing effects), while a temporal alignment in the
annual cycle is critical for phenology-related vegetation status. When the raw
image data (e.g., spectral reflectance) and not derivatives thereof (e.g., segmented
tree crowns) shall be used, also a spectral registration needs to be considered, but
these applications are seldom.

Finally, the spatial and temporal transferability of the CNN used for creating the
reference data is important and can ultimately be attributed to two factors: deep
learning capabilities itself (see section 5.1) and a large and heterogeneous data set.
The data set in this thesis comprises UAV imagery from 176 individual sites with
at least 1 ha coverage distributed over six study regions in Germany and Finland.
It includes several forest types under different managements with varying species
mixtures. UAV data were acquired in the years 2017–2021 using two different
sensors and a ground sampling distance of 0.65–3.39 cm. With this data set, spatial
and temporal transferability of the deep learning models could be shown in this
thesis. In conclusion, the concerted use of UAV-based RGB-imagery and CNNs
was capable of ending reference data scarcity on tree mortality in Germany. Its
application is not limited to tree mortality, but is generally suitable for scaling
local observations to landscapes. For the integration of UAV and satellite data,
spatial and temporal consistency of the data sources is key. Focus should be on
the collection of a large and heterogeneous data set with a diversity of vegetation
structure, vegetation types, backgrounds, focal views, and resolutions, thereby
ensuring model transferability.

5.3 Enhanced understanding of tree mortality by land-
scape-level analyses

Information on tree mortality at the landscape level is crucial as it forms the
basis for estimating biomass and contributes to climate modelling. Nationwide
statistics on tree mortality are collected annually in Germany through the national
forest condition survey, and an increase in standing deadwood has been observed
since 2019. Since the survey is based on the sampling of approximately 10 000

individual trees from 402 systematically distributed field plots, landscape-level
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interpretations of the statistics may be flawed. Landscape-level assessment of tree
mortality using remote sensing methods is no novelty and has been demonstrated
in numerous studies (e.g., Brodrick & Asner, 2017; Byer & Jin, 2017; Hansen et al.,
2013; Thonfeld et al., 2022). Due to the coarser spatial resolution (i.e., 30 m or
above) and the lack of explicit reference data on dead trees, it is difficult to make
accurate estimates of small-scale and scattered occurrences of deadwood, and
therefore mortality is likely underestimated (Cheng et al., 2024). Hence, it is not
surprising that with the approach presented here, which utilizes spatially explicit
reference data and a higher spatial resolution (10 m), I found twice the amount
of deadwood in Germany during 2018–2021 compared to the forest condition
survey and other remote sensing methods. The spatial and temporal patterns
found were consistent with other surveys. Overall, the results do not contradict
each other; rather, they demonstrate that the method presented here can provide
complementary and more detailed insights, but also that tree mortality in Germany
is more severe than previously thought.

Several mechanisms that have been identified as causal for tree mortality at
the individual tree level from field-based studies have not been investigated or
confirmed at the landscape-level (McDowell et al., 2022). While, for example, small
and young trees are subject to increased competition for resources (Kulha et al.,
2023; Stephenson & Das, 2020), large and old trees have an elevated mortality risk
due to accumulated damage (Bennett et al., 2015; Stovall et al., 2019, 2020). For
comprehensive accounting of tree mortality at the landscape level, the impact of
both processes is crucial, and my analyses revealed that there was an increase in
mortality among smaller (younger) stands. The influence of tree species richness
is also not generically understood. While many studies have found a generally
positive effect of tree species richness on reducing mortality (cf. Anderegg et
al., 2018; Schnabel et al., 2021), analyses of extensive forest inventory data in
North America revealed increased mortality with rising tree diversity (Searle et al.,
2022). Results from this thesis support the latter, and increased tree mortality was
observed in more species-rich stands. But, monocultures were particularly prone
when specialised pests interacted with drought. Even though the results of this
purely observational approach should not be overinterpreted, they clearly show
that the mechanisms identified at the local level may manifest differently at the
landscape level. While forest management towards heterospecific stands might
foster productivity (Anderegg et al., 2018; Schnabel et al., 2021) and thus higher
carbon sequestration, this effect might be inverted when tree mortality increased
during drought.
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5.4 Outlook

With the recent technological advancements and the development of appropri-
ate hardware, deep learning has become a valuable tool in remote sensing. It
holds great potential for detecting vegetation patterns and changes from Earth
observation data and outperforms shallow machine learning through a range of
features, such as flexible model architectures, end-to-end learning, convolutions
for extracting spatial patterns, and recurrence for extracting temporal patterns.
This thesis showed some great potentials of deep learning in remote sensing of
vegetation, either in stand-alone local-level studies, as a tool for reference data
generation or for satellite image time series interpretation. I further presented an
upscaling approach capable of landscape-level applications. There are still several
challenges to fully realize the potential of deep learning in vegetation remote
sensing, including, for example, integration of data and dimensions, processing
environment, and data sharing. In the following, I will address some key points
in that regard.

Cloud computing and EO frameworks

The surge in publications on the subject of deep learning in remote sensing of
vegetation highlights the relevance of the topic and the necessity to fully utilize
the available big data. Deep learning offers fundamental features that improve the
extraction of vegetation patterns from remote sensing data (see section 5.1) but
the integration of the individual components has yet to be refined.

As I could show in this thesis, deep learning provides the appropriate tools to
extract the spatial, temporal, and spectral information from remote sensing data
to provide insights into vegetation and its condition. In the era of big data, the
availability of remote sensing data is no longer a limitation and deep learning
methods can be used to provide reference data for large-scale analyses. Access
to the large amounts of data is provided by cloud platforms. This has laid the
groundwork, but the challenge is to bring together deep learning and big data for
vegetation monitoring. To concentrate on ecological questions, several challenges
need to be solved. The handling of large volumes of remote sensing data should
become more user-friendly. Satellite data is available in various processing levels,
generated by different processors, and is available on different platforms with
varying degrees of timeliness. Depending on the platform, access from raw data
to analysis-ready data can be provided. The pre-processing steps are not always
sufficiently documented or cannot be controlled, which is a basic requirement for
reproducible research. While such data cubes are sufficient for some applications,
the process chain must be controllable and reproducible for research purposes.
In this work, ForceEO (Frantz, 2019) was used for this purpose. There are several
alternative applications, but no general standards, and focus should therefore be
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on simplification and the development of community standards (e.g., openEO API,
https://openeo.org).

In the present thesis, remote sensing based upscaling and ecological modelling
using environmental predictors were separated into two models. By the flexible
architecture of neural networks, different data types and sources can also be
intertwined in one model. The increased information content may improve the
models, but requires the processing of the corresponding data within the same
framework. This integration of additional explanatory, non-remote sensing data
must therefore also be ensured. To adhere to the principle of “bringing users
to the data, rather than data to the user”, the deep learning models must also
be able to run on a remote machine or a cloud environment. In addition to the
corresponding software, the high computing power requirements of the more
complex architectures must be met.

Towards open data, code, and models

To answer urgent ecological questions with the methods of remote sensing, four
criteria must be met: (1) availability of suitable remote sensing data, (2) com-
prehensive and meaningful environmental data with high temporal and spatial
resolution, (3) suitable methods for evaluating the data and (4) suitable refer-
ence data. In the era of big data, remote sensing data with different spatial,
temporal and spectral resolutions is available. The general suitability of deep
learning for the analysis and interpretation of multidimensional remote sensing
data could be demonstrated in this thesis. Furthermore, this thesis presented
an upscaling method capable of generating sufficient reference data. Two ini-
tiatives that have already adopted or pursue this upscaling idea are MillionTrees
(https://milliontrees.idtrees.org) that attempts to collect one million annotations of
trees in RGB imagery and deadtrees.earth (https://deadtrees.earth) that curates an
open database for remote sensing tree mortality data. Such data sharing initiatives
are an identified necessity (Hammond et al., 2022) for the collection of the large
amounts of data needed for global tasks. They also enable the collection of very
heterogeneous data from different sensors, with different resolutions, focal views,
vegetation types and structure, backgrounds, etc., which are important for the
generalisation and transferability of models (Weinstein et al., 2020). Without these
real-world data sets, gaining insights from remote sensing data for large-scale
ecological questions will stagnate. In contrast to ecological theory, progress in the
development of deep learning methods thrives on trial and error. By curating and
providing such datasets, new deep learning architectures can be tailored directly
to the needs of ecology in a way that would not be possible with the existing and
rather technical benchmark datasets. Due to this need, I have published my data
including tree annotations in the two data sets FORTRESS (Schiefer et al., 2022a)
and FORTRESSdead (Schiefer & Kattenborn, 2024). For ease of reproducibility,

95

https://openeo.org
https://milliontrees.idtrees.org
https://deadtrees.earth


5 synthesis

the developed code from the three studies is also published at https://github.
com/FelixSchiefer/TreeSeg, https://github.com/FelixSchiefer/TreeMortality, and
https://github.com/FelixSchiefer/TreeMortalityPattern.

Data sharing also creates opportunities to develop new approaches that would
not be possible with solitary data sets and without cooperation. For example,
linking citizen science plant photographs from the iNaturalist database with trait
information from the TRY database for trait mapping at global scale (Schiller et al.,
2021; Wolf et al., 2022). Or transfer learning from iNaturalist plant photographs to
UAV-imagery for comprehensive mapping of (invasive) plant species (Soltani et al.,
2022). These experimental studies highlight the potential that shared datasets can
offer and showcase the strengths of combining big data and deep learning for
insights on global patterns of vegetation.

A new form of sharing that is particularly effective for deep learning approaches
is the sharing of pre-trained networks or weights. Unlike machine learning
approaches, it may be useful to pre-train the networks on generic data. In
this way, basic features such as corners, edges, or abstract shapes are already
learned, and the models perform better when applied to a particular task. Transfer
learning, i.e., the transfer of pre-trained networks, improves model accuracies and
is already common practice. The collection of data, as the initiatives described
above do, again increases the volume of remote sensing data by copying the data.
A promising approach to minimize this data stream and volume is federated
learning, where the data remains decentralized, and the network is also trained
decentralized in different nodes on multiple machines. As the data remains local,
licensing and data privacy issues can be avoided. Such a decentralized approach
is an ideal complement to the existing cloud platforms on which the satellite data
is stored.

Future efforts should therefore focus on building a framework that brings
together the important components of remote sensing: the framework should cover
the access and processing of satellite data time series, the integration of explanatory
environmental variables, the provision of reference data or the methods to generate
suitable reference data, and methods for the integrated interpretation of spatially,
temporally and spectrally multidimensional remote sensing data. Emphasis
should also be given to user-friendliness and access under the FAIR principles
(i.e., findability, accessibility, interoperability, and reusability, Wilkinson et al.,
2016) to make remote sensing of vegetation accessible to a wide audience. Cloud
computing platforms and resources, as well as federated learning, could be an
integral part.
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Appendix A1

Table A1: CNN model results using three different cost functions: (1) categorical
cross-entropy (CCE), (2) weighted CCE with inversely proportional weights according
to the area-related share of the species, and (3) squared weighted CCE with squared
inversely proportional weights. All results are based on a CNN with 128 × 128 pixel
RGB + nDSM input tiles at 2 cm spatial resolution.

F1-Score CCE weighted
CCE

squared
weighted

CCE

Picea abies 0.93 0.93 0.91

Fagus sylvatica 0.90 0.90 0.89

Abies alba 0.86 0.86 0.84

Pseudotsuga menziesii 0.90 0.89 0.89

Pinus sylvestris 0.89 0.91 0.90

Acer spp. 0.65 0.80 0.65

Fraxinus excelsior 0.86 0.87 0.32

Larix decidua 0.88 0.83 0.83

Quercus spp. 0.66 0.58 0.61

Carpinus betulus 0.38 0.38 0.53

Tilia spp. 0.37 0.50 0.17

Betula pendula 0.35 0.27 -
Forest floor 0.84 0.83 0.82

Deadwood 0.77 0.72 0.73

Mean F1-Score 0.73 0.73 0.65

Overall Accuracy 0.89 0.89 0.87

97



5 synthesis

Appendix A2

Table A2: Site-specific F1-Scores for the study regions Southern Black Forest (SBF),
Northern Black Forest (NBF), Dresden Heath (DDH), Karlsruhe-Bretten (KAB),
Hainich National Park (HAI), and Helsinki (FIN)

Tile size [pixel] Spatial resolution [cm]
RGB RGB + nDSM RGB + nDSM

plotID AOI year 128 256 512 128 256 512 2 4 8 16 32
CFB003 SBF 2019 0.77 0.81 0.83 0.82 0.83 0.74 0.83 0.78 0.73 0.53 0.53

CFB008 SBF 2017 0.74 0.76 0.80 0.83 0.79 0.82 0.79 0.74 0.76 0.71 0.48

CFB014 SBF 2017 0.82 0.83 0.76 0.91 0.91 0.87 0.91 0.84 0.82 0.63 0.52

CFB019 SBF 2017 0.70 0.74 0.69 0.75 0.74 0.70 0.74 0.72 0.63 0.78 0.67

CFB021 SBF 2019 0.81 0.68 0.68 0.78 0.69 0.72 0.69 0.78 0.74 0.69 0.61

CFB030 SBF 2017 0.63 0.73 0.66 0.59 0.76 0.75 0.76 0.76 0.64 0.52 0.40

CFB031 SBF 2017 0.83 0.81 0.81 0.81 0.81 0.82 0.81 0.79 0.75 0.73 0.72

CFB035 SBF 2017 0.84 0.85 0.69 0.88 0.87 0.87 0.87 0.81 0.72 0.72 0.62

CFB037 SBF 2017 0.99 1.00 1.00 0.99 0.99 1.00 0.99 0.97 1.00 0.96 0.95

CFB044 SBF 2017 0.84 0.88 0.91 0.91 0.83 0.91 0.83 0.89 0.83 0.76 0.60

CFB045 SBF 2017 0.75 0.60 0.73 0.77 0.62 0.74 0.62 0.62 0.60 0.37 0.39

CFB050 SBF 2017 0.80 0.83 0.77 0.87 0.84 0.75 0.84 0.78 0.54 0.65 0.50

CFB053 SBF 2017 0.68 0.76 0.74 0.69 0.77 0.71 0.77 0.69 0.62 0.59 0.60

CFB056 SBF 2017 0.73 0.72 0.68 0.76 0.74 0.62 0.74 0.66 0.56 0.55 0.54

CFB057 SBF 2017 0.62 0.70 0.60 0.75 0.61 0.71 0.61 0.59 0.51 0.54 0.53

CFB061 SBF 2017 0.66 0.66 0.60 0.68 0.72 0.76 0.72 0.71 0.37 0.42 0.46

CFB071 SBF 2017 0.90 0.93 0.92 0.93 0.94 0.92 0.94 0.93 0.84 0.75 0.66

CFB073 SBF 2019 0.77 0.70 0.70 0.70 0.75 0.72 0.75 0.77 0.68 0.59 0.34

CFB084 SBF 2017 0.61 0.66 0.68 0.79 0.86 0.66 0.86 0.60 0.71 0.52 0.69

CFB085 SBF 2017 0.87 0.92 0.85 0.90 0.91 0.88 0.91 0.88 0.73 0.74 0.51

CFB089 SBF 2017 0.78 0.86 0.83 0.85 0.85 0.78 0.85 0.77 0.56 0.61 0.47

CFB091 SBF 2017 0.64 0.74 0.69 0.68 0.71 0.69 0.71 0.54 0.48 0.45 0.38

CFB096 SBF 2017 0.78 0.78 0.63 0.84 0.79 0.68 0.79 0.83 0.55 0.59 0.53

CFB106 SBF 2017 0.79 0.83 0.80 0.88 0.86 0.76 0.86 0.65 0.57 0.69 0.65

CFB110 SBF 2017 0.66 0.86 0.72 0.72 0.71 0.74 0.71 0.72 0.48 0.51 0.83

CFB111 SBF 2017 0.82 0.85 0.58 0.72 0.82 0.63 0.82 0.60 0.58 0.69 0.49

CFB114 SBF 2019 0.68 0.70 0.59 0.76 0.69 0.64 0.69 0.64 0.53 0.64 0.36

CFB117 SBF 2017 0.71 0.60 0.57 0.61 0.61 0.75 0.61 0.53 0.43 0.37 0.31

CFB121 SBF 2017 0.67 0.69 0.54 0.83 0.72 0.52 0.72 0.56 0.60 0.56 0.41

CFB122 SBF 2017 0.91 0.86 0.87 0.86 0.89 0.85 0.89 0.81 0.58 0.54 0.86

CFB124 SBF 2017 0.76 0.77 0.75 0.76 0.76 0.54 0.76 0.77 0.51 0.53 0.54

CFB125 SBF 2017 0.61 0.78 0.56 0.75 0.78 0.50 0.78 0.55 0.56 0.51 0.49

CFB128 SBF 2019 0.62 0.70 0.68 0.67 0.74 0.73 0.74 - - - -
CFB129 SBF 2017 0.58 0.63 0.56 0.60 0.56 0.49 0.56 0.53 0.60 0.56 0.44

CFB130 SBF 2019 0.74 0.86 0.76 0.85 0.87 0.86 0.87 0.81 0.78 0.67 0.53

CFB133 SBF 2017 0.85 0.89 0.87 0.90 0.90 0.89 0.90 0.86 0.75 0.76 0.62

CFB134 SBF 2017 0.83 0.71 0.89 0.73 0.88 0.89 0.88 0.87 0.71 0.76 0.56

CFB140 SBF 2017 0.59 0.70 0.68 0.67 0.79 0.73 0.79 0.70 0.47 0.47 0.49

CFB151 SBF 2017 0.81 0.84 0.84 0.77 0.87 0.85 0.87 0.73 0.59 0.48 0.40
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Table A2 continued from previous page

Tile size [pixel] Spatial resolution [cm]
RGB RGB + nDSM RGB + nDSM

plotID AOI year 128 256 512 128 256 512 2 4 8 16 32
CFB153 SBF 2019 0.67 0.92 0.74 0.71 0.70 0.70 0.70 0.93 0.59 0.71 0.75

CFB156 SBF 2017 0.85 0.86 0.80 0.88 0.88 0.85 0.88 0.85 0.84 0.76 0.62

CFB162 SBF 2017 0.77 0.83 0.70 0.74 0.87 0.82 0.87 0.81 0.70 0.61 0.66

CFB163 SBF 2017 0.74 0.82 0.78 0.73 0.67 0.69 0.67 0.62 0.68 0.55 0.48

CFB167 SBF 2017 0.86 0.88 0.81 0.83 0.88 0.82 0.88 0.89 0.82 0.83 0.74

CFB171 SBF 2017 0.87 0.88 0.89 0.89 0.88 0.91 0.88 0.88 0.86 0.77 0.61

CFB173 SBF 2017 0.73 0.80 0.81 0.81 0.86 0.83 0.86 0.81 0.79 0.70 0.68

CFB184 SBF 2017 0.78 0.81 0.86 0.83 0.83 0.87 0.83 0.77 0.64 0.62 0.52

HAI038 NPH 2019 0.90 0.75 1.00 0.79 0.77 0.82 0.77 0.72 0.61 0.67 0.57

HAI039 NPH 2019 0.73 0.56 0.52 0.61 0.71 0.30 0.71 0.49 0.25 0.51 0.49

HAI040 NPH 2019 0.62 0.46 0.45 0.79 0.46 0.70 0.46 0.49 0.35 0.26 0.63

HAI050 NPH 2019 0.61 0.47 0.95 0.59 0.54 0.95 0.54 0.34 0.47 0.26 0.46

Minimum 0.58 0.46 0.45 0.59 0.46 0.30 0.46 0.34 0.25 0.26 0.31

1st Quartile 0.67 0.70 0.68 0.72 0.72 0.70 0.72 0.63 0.55 0.52 0.48

Median 0.76 0.78 0.74 0.78 0.79 0.75 0.79 0.76 0.62 0.61 0.53

Mean 0.75 0.77 0.74 0.78 0.78 0.75 0.78 0.73 0.63 0.61 0.56

3rd Quartile 0.83 0.86 0.83 0.85 0.87 0.85 0.87 0.81 0.73 0.71 0.62

Maximum 0.99 1.00 1.00 0.99 0.99 1.00 0.99 0.97 1.00 0.96 0.95
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Appendix A3

For a qualitative inspection and to obtain a causal explanation for our results in
terms of spatial resolution we visualized the filters learned by the CNN. This can
be done by creating input images that maximize the activation of a specific CNN
layer and thus contain the visual patterns that the respective filter is maximally
responsive to. To obtain the filter visualizations we started from an all gray image
with some random noise and calculated the mean activation of the selected filter in
our target layer. Subsequently, we computed the gradients of this activation with
regard to the input image and updated the image in a way that it would activate
the selected filter more strongly. By multiplying the gradients with a learning rate
of 10. we accelerated the generation of distinct visual patterns. We repeatedly
applied this gradient ascent step for 60 times, which eventually resulted in the
visualizations of the filters that maximize the CNN layer activations. (Figure 2.6)
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Appendix A4

Figure A1: Scatterplot of observed fractional cover values of standing deadwood [%]
and random forest model predictions (S1+S2+VI, 12 Sentinel-2 bands) from 5-fold
cross-validation. Each dot represents a 10 m Sentinel-2 pixel with reference data
available from the UAV scale. Pearson’s r of 0.67 and RMSE of 0.22 are similar to the
LSTM results. However, values close to 0 and 1 were poorly predicted, reflecting in a
relatively high model bias with a slope value of 2.04 from the TLS regression.
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Appendix A5

Table A3: Summary statistics for the sites from the six study regions Southern Black
Forest (SBF), Northern Black Forest (NBF), Dresden Heath (DDH), Karlsruhe-Bretten
(KAB), Hainich National Park (HAI), and Helsinki (FIN)

site year region
total
area
[ha]

dead-
wood
[ha]

dead-
wood
[%]

CNN
precision

CNN
recall

CNN
F1

LSTM
RMSE

CFB005 2017 SBF 1.98 0.018 0.009 0.979 0.885 0.929 0.151

CFB008 2017 SBF 2.06 0.078 0.038 0.871 0.632 0.732 0.186

CFB014 2017 SBF 1.81 0.006 0.003 0.971 0.595 0.737 0.165

CFB017 2017 SBF 0.96 0.004 0.004 0.980 0.927 0.953 -
CFB019 2017 SBF 1.86 0.010 0.005 0.984 0.707 0.823 0.112

CFB020 2017 SBF 1.10 0.020 0.018 0.934 0.758 0.837 0.155

CFB030 2017 SBF 2.09 0.000 0.000 0.000 0.000 - -
CFB031 2017 SBF 1.23 0.000 0.000 - - - 0.019

CFB035 2017 SBF 1.85 0.001 0.001 - - - -
CFB036 2017 SBF 1.53 0.001 0.001 0.969 0.834 0.896 -
CFB044 2017 SBF 1.15 0.010 0.009 0.973 0.832 0.897 0.348

CFB045 2017 SBF 1.13 0.033 0.029 0.905 0.849 0.876 0.190

CFB046 2017 SBF 2.03 0.047 0.023 0.899 0.656 0.759 0.214

CFB050 2017 SBF 1.41 0.024 0.017 0.841 0.814 0.827 0.221

CFB053 2017 SBF 1.32 0.022 0.017 0.975 0.748 0.846 0.157

CFB055 2017 SBF 1.32 0.007 0.006 0.693 0.176 0.281 0.046

CFB056 2017 SBF 2.06 0.002 0.001 0.871 0.120 0.211 -
CFB057 2017 SBF 1.68 0.006 0.003 0.912 0.728 0.809 0.020

CFB060 2017 SBF 1.02 0.006 0.006 0.896 0.695 0.782 0.254

CFB065 2017 SBF 1.43 0.005 0.003 0.940 0.889 0.914 0.207

CFB071 2017 SBF 1.79 0.013 0.007 0.544 0.240 0.333 0.045

CFB084 2017 SBF 1.59 0.002 0.002 0.955 0.438 0.600 -
CFB085 2017 SBF 1.32 0.003 0.002 0.975 0.575 0.724 -
CFB089 2017 SBF 1.47 0.001 0.000 - 0.000 - -
CFB091 2017 SBF 1.18 0.004 0.003 0.964 0.784 0.864 0.122

CFB094 2017 SBF 1.77 0.011 0.006 0.853 0.695 0.766 0.097

CFB096 2017 SBF 1.55 0.015 0.010 0.930 0.721 0.812 0.119

CFB098 2017 SBF 1.26 0.009 0.007 0.788 0.928 0.852 -
CFB103 2017 SBF 1.53 0.008 0.005 0.741 0.804 0.771 0.078

CFB106 2017 SBF 1.33 0.002 0.001 0.993 0.501 0.666 -
CFB108 2017 SBF 0.72 0.003 0.005 0.109 0.803 0.192 -
CFB111 2017 SBF 2.47 0.007 0.003 0.991 0.432 0.602 0.201

CFB117 2017 SBF 1.23 0.015 0.012 0.264 0.501 0.346 0.030
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Table A3 continued from previous page

site year region
total
area
[ha]

dead-
wood
[ha]

dead-
wood
[%]

CNN
precision

CNN
recall

CNN
F1

LSTM
RMSE

CFB119 2017 SBF 1.84 0.036 0.020 0.842 0.942 0.889 0.228

CFB121 2017 SBF 1.59 0.000 0.000 - 0.000 - -
CFB122 2017 SBF 1.16 0.002 0.001 0.928 0.903 0.915 -
CFB124 2017 SBF 0.96 0.004 0.004 0.196 0.439 0.271 -
CFB125 2017 SBF 1.90 0.001 0.000 - - - -
CFB129 2017 SBF 1.31 0.007 0.005 0.839 0.642 0.728 0.175

CFB133 2017 SBF 1.62 0.002 0.001 0.000 0.000 - 0.501

CFB134 2017 SBF 1.23 0.002 0.002 0.000 0.000 - 0.073

CFB136 2017 SBF 1.33 0.002 0.002 0.797 0.711 0.752 0.222

CFB137 2017 SBF 1.17 0.011 0.010 0.858 0.892 0.875 0.386

CFB140 2017 SBF 1.19 0.002 0.001 0.949 0.686 0.796 -
CFB141 2017 SBF 1.10 0.004 0.004 0.504 0.951 0.659 -
CFB156 2017 SBF 1.55 0.002 0.001 1.000 0.067 0.125 0.128

CFB162 2017 SBF 1.20 0.003 0.003 0.725 0.167 0.271 -
CFB163 2017 SBF 1.17 0.001 0.001 - 0.000 - -
CFB164 2017 SBF 1.33 0.009 0.007 0.877 0.771 0.821 -
CFB167 2017 SBF 1.47 0.002 0.002 0.995 0.660 0.794 -
CFB171 2017 SBF 1.16 0.000 0.000 - - - -
CFB172 2017 SBF 1.33 0.020 0.015 0.950 0.953 0.952 0.175

CFB173 2017 SBF 1.17 0.015 0.012 0.955 0.619 0.751 0.010

CFB182 2017 SBF 1.18 0.001 0.001 - 0.000 - -
CFB184 2017 SBF 1.67 0.021 0.012 0.937 0.766 0.843 0.185

CFB188 2017 SBF 1.19 0.003 0.003 0.778 0.969 0.863 0.197

CFB037 2018 SBF 0.94 0.000 0.000 - - - -
CFB039 2018 SBF 1.42 0.002 0.001 - - - 0.265

CFB061 2018 SBF 1.63 0.010 0.006 0.983 0.734 0.841 0.086

CFB110 2018 SBF 1.55 0.004 0.002 0.992 0.496 0.661 -
CFB151 2018 SBF 1.81 0.001 0.001 0.982 0.142 0.248 0.124

CFB002 2019 SBF 1.32 0.066 0.050 0.828 0.751 0.787 0.243

CFB003 2019 SBF 1.28 0.041 0.032 0.932 0.863 0.896 0.088

CFB005 2019 SBF 1.50 0.025 0.017 0.950 0.881 0.914 0.151

CFB008 2019 SBF 1.38 0.079 0.057 0.857 0.751 0.800 0.186

CFB010 2019 SBF 1.43 0.225 0.157 0.976 0.713 0.824 0.248

CFB014 2019 SBF 1.81 0.014 0.008 0.930 0.596 0.726 0.165

CFB015 2019 SBF 1.83 0.072 0.039 0.947 0.927 0.937 0.255

CFB018 2019 SBF 1.13 0.002 0.002 0.939 0.760 0.840 -
CFB021 2019 SBF 1.02 0.013 0.013 0.988 0.537 0.696 0.044

CFB028 2019 SBF 1.75 0.033 0.019 0.731 0.933 0.820 0.090

CFB039 2019 SBF 1.60 0.010 0.006 0.944 0.569 0.710 0.265
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Table A3 continued from previous page

site year region
total
area
[ha]

dead-
wood
[ha]

dead-
wood
[%]

CNN
precision

CNN
recall

CNN
F1

LSTM
RMSE

CFB045 2019 SBF 1.26 0.023 0.018 0.809 0.850 0.829 0.190

CFB046 2019 SBF 1.33 0.071 0.054 0.971 0.748 0.845 0.214

CFB047 2019 SBF 1.52 0.074 0.048 0.964 0.841 0.898 0.302

CFB048 2019 SBF 1.40 0.015 0.011 0.926 0.779 0.846 0.186

CFB059 2019 SBF 1.29 0.097 0.075 0.938 0.900 0.919 0.183

CFB060 2019 SBF 1.34 0.043 0.032 0.930 0.626 0.749 0.254

CFB061 2019 SBF 1.19 0.016 0.013 0.935 0.814 0.870 0.086

CFB065 2019 SBF 1.33 0.013 0.010 0.563 0.735 0.638 0.207

CFB066 2019 SBF 1.12 0.009 0.008 0.570 0.885 0.693 0.028

CFB069 2019 SBF 1.34 0.014 0.010 0.771 0.869 0.817 0.427

CFB073 2019 SBF 1.34 0.004 0.003 0.222 0.611 0.326 -
CFB077 2019 SBF 1.01 0.015 0.015 0.939 0.694 0.798 0.099

CFB079 2019 SBF 1.63 0.005 0.003 0.878 0.384 0.534 0.140

CFB083 2019 SBF 1.18 0.001 0.001 - - - -
CFB113 2019 SBF 1.32 0.024 0.018 0.839 0.781 0.809 0.142

CFB114 2019 SBF 1.36 0.005 0.004 0.992 0.511 0.674 0.079

CFB118 2019 SBF 1.35 0.012 0.009 0.815 0.873 0.843 0.135

CFB128 2019 SBF 1.40 0.025 0.018 0.957 0.575 0.719 0.002

CFB129 2019 SBF 1.34 0.018 0.014 0.950 0.801 0.869 0.175

CFB130 2019 SBF 1.66 0.003 0.002 0.984 0.659 0.789 -
CFB133 2019 SBF 1.56 0.002 0.002 0.874 0.934 0.903 0.501

CFB153 2019 SBF 1.53 0.000 0.000 0.000 0.000 - -
CFB156 2019 SBF 1.60 0.015 0.010 0.932 0.900 0.916 0.128

CFB161 2019 SBF 1.04 0.111 0.107 0.957 0.931 0.944 0.248

CFB165 2019 SBF 1.41 0.007 0.005 0.955 0.833 0.890 0.226

CFB176 2019 SBF 1.12 0.008 0.007 0.945 0.726 0.821 -
CFB188 2019 SBF 1.10 0.010 0.009 0.946 0.917 0.931 0.197

HAI038 2019 HAI 2.08 0.069 0.033 - - - 0.232

HAI039 2019 HAI 1.53 0.001 0.001 - - - -
HAI040 2019 HAI 1.86 0.017 0.009 0.079 0.194 0.112 0.137

HAI050 2019 HAI 1.52 0.003 0.002 - 0.000 - -
KAB001 2019 KAB 3.03 0.046 0.015 0.891 0.460 0.607 0.115

KAB003 2019 KAB 3.57 0.005 0.001 0.863 0.697 0.771 0.187

KAB005 2019 KAB 13.00 0.069 0.005 0.874 0.217 0.348 0.295

KAB009 2019 KAB 3.91 0.195 0.050 0.888 0.328 0.479 0.182

KAB010 2019 KAB 3.71 0.018 0.005 0.809 0.605 0.692 0.250

KAB011 2019 KAB 2.88 0.043 0.015 0.757 0.526 0.621 0.185

NBF003 2019 NBF 14.50 1.433 0.099 0.939 0.908 0.923 0.232

NBF004 2019 NBF 15.23 3.076 0.202 0.872 0.906 0.889 0.211
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Table A3 continued from previous page

site year region
total
area
[ha]

dead-
wood
[ha]

dead-
wood
[%]

CNN
precision

CNN
recall

CNN
F1

LSTM
RMSE

NBF005 2019 NBF 13.83 0.515 0.037 0.900 0.839 0.868 0.296

NBF006 2019 NBF 16.01 0.659 0.041 0.907 0.749 0.820 0.227

NBF007 2019 NBF 16.32 0.136 0.008 0.756 0.773 0.764 0.221

NBF008 2019 NBF 12.80 0.150 0.012 0.783 0.898 0.836 0.163

NBF009 2019 NBF 10.91 0.121 0.011 0.886 0.930 0.907 0.191

NBF010 2019 NBF 10.39 1.110 0.107 0.948 0.830 0.885 0.298

NBF011 2019 NBF 7.14 0.061 0.009 0.925 0.877 0.901 0.121

NBF012 2019 NBF 9.28 0.015 0.002 0.759 0.824 0.790 0.295

NBF013 2019 NBF 12.31 0.318 0.026 0.864 0.891 0.877 0.266

NBF014 2019 NBF 8.71 0.053 0.006 0.942 0.728 0.821 0.215

CFB001 2020 SBF 1.29 0.031 0.024 0.892 0.506 0.645 0.178

CFB009 2020 SBF 1.53 0.025 0.016 0.891 0.789 0.837 0.074

CFB019 2020 SBF 1.75 0.009 0.005 0.918 0.924 0.921 0.112

CFB031 2020 SBF 1.55 0.006 0.004 0.973 0.966 0.969 0.019

CFB034 2020 SBF 1.28 0.004 0.003 0.848 0.690 0.761 0.187

CFB044 2020 SBF 1.44 0.008 0.005 0.911 0.714 0.800 0.348

CFB050 2020 SBF 1.41 0.046 0.033 0.956 0.756 0.844 0.221

CFB057 2020 SBF 1.70 0.012 0.007 0.991 0.737 0.845 0.020

CFB058 2020 SBF 1.43 0.022 0.015 0.916 0.843 0.878 0.123

CFB068 2020 SBF 1.81 0.014 0.008 0.945 0.383 0.545 -
CFB072 2020 SBF 1.33 0.010 0.008 0.970 0.696 0.811 -
CFB091 2020 SBF 1.16 0.052 0.045 0.984 0.904 0.942 0.122

CFB096 2020 SBF 1.75 0.041 0.024 0.884 0.727 0.798 0.119

CFB101 2020 SBF 1.27 0.027 0.022 0.757 0.548 0.635 0.284

CFB104 2020 SBF 1.76 0.180 0.102 0.976 0.546 0.700 0.255

CFB107 2020 SBF 1.90 0.182 0.096 0.892 0.931 0.911 0.201

CFB111 2020 SBF 2.15 0.061 0.028 0.973 0.840 0.902 0.201

CFB119 2020 SBF 2.00 0.032 0.016 0.928 0.890 0.908 0.228

CFB131 2020 SBF 1.15 0.003 0.003 0.889 0.651 0.752 0.288

CFB135 2020 SBF 1.77 0.008 0.005 0.940 0.522 0.671 0.087

CFB138 2020 SBF 1.75 0.014 0.008 0.972 0.841 0.902 0.016

CFB140 2020 SBF 1.24 0.003 0.002 0.970 0.782 0.866 -
CFB148 2020 SBF 1.54 0.006 0.004 0.924 0.807 0.862 0.205

CFB151 2020 SBF 1.08 0.020 0.018 0.947 0.520 0.672 0.124

CFB171 2020 SBF 1.71 0.001 0.000 - - - -
CFB172 2020 SBF 1.43 0.009 0.006 0.600 0.903 0.721 0.175

CFB177 2020 SBF 1.34 0.007 0.005 0.964 0.881 0.921 0.040

CFB178 2020 SBF 1.64 0.017 0.010 0.564 0.802 0.662 0.367

CFB180 2020 SBF 1.38 0.017 0.013 0.965 0.817 0.885 0.378
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Table A3 continued from previous page

site year region
total
area
[ha]

dead-
wood
[ha]

dead-
wood
[%]

CNN
precision

CNN
recall

CNN
F1

LSTM
RMSE

CFB183 2020 SBF 1.85 0.025 0.013 0.057 0.816 0.107 0.377

CFB184 2020 SBF 1.43 0.019 0.013 0.933 0.721 0.813 0.185

CFB900 2020 SBF 5.80 0.072 0.012 0.910 0.688 0.784 0.150

FIN001 2020 FIN 22.76 0.304 0.013 0.921 0.775 0.841 0.168

FIN002 2020 FIN 19.09 0.266 0.014 0.894 0.652 0.754 0.245

FIN003 2020 FIN 20.19 0.135 0.007 0.888 0.699 0.782 0.219

CFB900 2021 SBF 5.62 0.060 0.011 0.818 0.864 0.841 0.150

CFB910 2021 SBF 6.58 0.380 0.058 0.942 0.891 0.916 0.244

CFB921 2021 SBF 10.52 0.248 0.024 0.965 0.743 0.840 0.192

CFB922 2021 SBF 2.88 0.029 0.010 0.956 0.789 0.864 0.195

CFB923 2021 SBF 3.00 0.051 0.017 0.935 0.908 0.921 0.196

CFB931 2021 SBF 8.58 1.299 0.151 0.937 0.875 0.905 0.242

CFB932 2021 SBF 4.70 0.179 0.038 0.951 0.772 0.852 0.189

CFB933 2021 SBF 4.84 0.040 0.008 0.867 0.795 0.830 0.121

CFB941 2021 SBF 9.62 0.749 0.078 0.928 0.781 0.848 0.184

CFB942 2021 SBF 12.19 0.600 0.049 0.926 0.867 0.896 0.197

DDH001 2021 DDH 4.02 1.009 0.251 0.952 0.889 0.919 0.203

DDH002 2021 DDH 2.14 0.134 0.062 0.924 0.898 0.911 0.273

DDH003 2021 DDH 6.24 1.248 0.200 0.968 0.924 0.945 0.223

DDH004 2021 DDH 1.52 0.071 0.046 0.888 0.810 0.847 0.183

DDH005 2021 DDH 20.48 2.057 0.100 0.868 0.865 0.866 0.212

DDH006 2021 DDH 1.77 0.110 0.062 0.853 0.902 0.877 0.232

DDH007 2021 DDH 1.11 0.056 0.051 0.858 0.745 0.797 0.109

DDH008 2021 DDH 3.47 0.075 0.022 0.668 0.817 0.735 0.107

NBF001 2021 NBF 1.71 1.113 0.651 - - - 0.175

NBF002 2021 NBF 0.36 0.245 0.681 - - - 0.195
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Appendix A6

Table A4: Environmental predictor variables
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Appendix A7

Figure A2: Correlation plot for all environmental predictor variables and standing
deadwood. Variables with correlations higher than 0.7 were dropped for the analysis.
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Appendix A8

Table A5: Standing deadwood for the seven dominant tree species in Germany over
the years 2018–2021

Species Year
Area [kha]

(mean)
Area [kha]

(sd)
Percent [%]

(mean)
Percent [%]

(sd)
all 2018 178.67 126.26 1.44 1.01

2019 333.68 188.89 2.58 1.45

2020 307.24 151.05 2.62 1.31

2021 158.27 63.14 1.33 0.64

acc. 977.87 529.35 7.97 4.41

Abies 2018 4.48 4.32 0.27 0.23

2019 4.34 3.92 0.32 0.29

2020 5.71 4.81 0.26 0.21

2021 3.04 2.15 0.18 0.12

acc. 17.57 15.20 1.03 0.86

Fagus 2018 2.11 1.75 0.63 0.39

2019 7.49 4.36 2.05 1.03

2020 17.09 8.27 3.51 1.56

2021 10.16 4.17 1.96 0.80

acc. 36.85 18.55 8.15 3.78

Larix 2018 7.50 6.10 0.63 0.49

2019 10.10 7.81 0.84 0.62

2020 5.61 4.41 0.43 0.33

2021 2.60 1.93 0.21 0.16

acc. 25.81 20.25 2.11 1.60

Picea 2018 38.16 22.38 1.75 0.92

2019 88.03 38.63 6.28 2.09

2020 146.09 44.27 8.36 2.55

2021 105.79 28.65 5.10 1.51

acc. 378.07 133.93 21.49 7.06

Pinus 2018 113.30 81.60 4.44 2.95

2019 201.88 118.79 6.75 3.85

2020 115.95 78.18 6.59 3.77

2021 29.58 21.77 2.22 1.41

acc. 460.71 300.35 20.00 11.98

Pseudotsuga 2018 3.10 2.32 1.05 0.76

2019 6.54 4.43 2.09 1.34

2020 6.75 4.22 2.03 1.23

2021 2.94 1.80 0.88 0.53

acc. 19.33 12.77 6.04 3.87

Quercus 2018 0.37 0.34 0.21 0.14
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Table A5 continued from previous page

Species Year
Area [kha]

(mean)
Area [kha]

(sd)
Percent [%]

(mean)
Percent [%]

(sd)
2019 1.00 0.61 0.84 0.26

2020 2.19 1.28 2.11 0.87

2021 0.71 0.33 1.38 0.46

acc. 4.26 2.56 4.54 1.73

other 2018 9.65 7.51 1.56 1.20

2019 14.31 10.50 2.05 1.47

2020 7.86 5.78 1.31 0.95

2021 3.45 2.64 0.66 0.49

acc. 35.27 26.43 5.57 4.12
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Appendix A9

Table A6: Accumulated standing deadwood during 2018-2021 for the major natural
regions of Germany

Major natural regions of Germany Forested
area
[kha]

Standing
deadwood

ID Name (eng.) Name (ger.)
Area
[kha]

Percent
[%]

D01 Mecklenburg-Western
Pomeranian Littoral

Mecklenburgisch-
Vorpommersches
Küstengebiet

50.58 0.48 0.95

D02 Northeast Mecklenburg
Plain and Szczecin La-
goon

Nordostmecklenburgisches
Tiefland mit Oderhaf-
fgebiet

96.15 1.09 1.14

D03 Hinterland of the Meck-
lenburg Lake Plateau

Rückland der
Mecklenburg-
Brandenburgischen
Seenplatte

155.76 2.16 1.39

D04 Mecklenburg Lake
Plateau

Mecklenburgische Seen-
platte

265.71 3.3 1.24

D05 Mecklenburg-
Brandenburg Plateau
and Upland

Mecklenburg-
Brandenburgisches
Platten- und Hügelland

264.2 18.19 6.88

D06 East Brandenburg
Plateau

Ostbrandenburgische
Platte

84.32 1.3 1.54

D07 Oder Valley Odertal 14.02 0.48 3.43

D08 Lusatian Basin and
Spreewald

Spreewald und
Lausitzer Becken-
und Heideland

143.36 18.08 12.61

D09 Middle Elbe Plain Elbtalniederung 91.39 19.31 21.13

D10 Elbe-Mulde Plain Elbe-Mulde-Tiefland 121.82 26.06 21.4
D11 Fläming Heath Fläming 161.75 26.51 16.39

D12 Brandenburg Heath
and Lake District

Brandenburgisches
Heide- und Seengebiet

322.12 25.08 7.79

D13 Upper Lusatian Plateau Oberlausitzer Heide-
land

119.34 8.3 6.95

D14 Upper Lusatian Oberlausitz 44.92 4.37 9.72

D15 Saxon-Bohemian Chalk
Sandstone Region

Sächsisch-Böhmisches
Kreidesandsteingebiet

24.68 4.54 18.39

D16 Ore Mountains Erzgebirge 156.22 7.56 4.84

D17 Vogtland Vogtland 94.89 4.86 5.12
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Table A6 continued from previous page

Major natural regions of Germany Forested
area
[kha]

Standing
deadwood

ID Name (eng.) Name (ger.)
Area
[kha]

Percent
[%]

D18 Thuringian Basin and
Peripheral Uplands

Thüringer Becken und
Randplatten

220.28 9.79 4.45

D19 Saxon Lowland and
Saxon Uplands

Erzgebirgsvorland und
Sächsisches Hügelland

96.06 5.4 5.62

D20 Eastern Harz Foreland Mitteldeutsches
Schwarzerdegebiet

11.77 1.37 11.67

D21 Schleswig-Holstein
Marsh

Schleswig-
Holsteinische Marschen
und Nordseeinseln

1.17 0.01 0.45

D22 Schleswig-Holstein
Geest

Schleswig-
Holsteinische Geest

73.75 0.4 0.54

D23 Schleswig-Holstein Up-
lands

Schleswig-
Holsteinisches Hügel-
land

68.95 0.3 0.44

D24 Lower Elbe Marsh Unterelbeniederung
(Elbmarsch)

3.92 0.07 1.9

D25 Lower Ems and Weser
Marshes

Ems-Weser-Marsch 3.44 0.03 0.8

D26 East Frisian Geest Ostfriesisch-
Oldenburgische Geest

28.77 0.17 0.58

D27 Stade Geest Stader Geest 84.11 0.66 0.79

D28 Lüneburg Heath Lüneburger Heide 283.3 15.34 5.41

D29 Wendland and Altmark Wendland und Altmark 112.82 18.99 16.83

D30 Dümmer and Ems-
Hunte Geest

Dümmer
Geestniederung und
Ems-Hunte-Geest

148.26 2.22 1.5

D31 Weser-Aller Plains and
Geest

Weser-Aller-Tiefland 135.45 5.75 4.25

D32 Lower Saxony Börde Niedersächsische Bör-
den

9.81 0.13 1.3

D33 North Harz Foreland Nördliches Harzvor-
land

33.54 2.04 6.07

D34 Westphalian Lowland Westfälische Tieflands-
bucht

122.38 2.99 2.44

D35 Lower Rhine Plain and
Cologne Lowland

Kölner Bucht und
Niederrheinisches
Tiefland

95.53 2.7 2.83

D36 Lower Saxon Hills Niedersächsisches Berg-
land

361.5 19.98 5.53
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Table A6 continued from previous page

Major natural regions of Germany Forested
area
[kha]

Standing
deadwood

ID Name (eng.) Name (ger.)
Area
[kha]

Percent
[%]

D37 Harz Harz 156.42 47.16 30.15

D38 Süder Uplands Sauerland 433.56 74.2 17.11

D39 Westerwald Westerwald 152.71 12.87 8.43

D40 Lahn Valley Lahntal und Limburger
Becken

9.17 0.3 3.25

D41 Taunus Taunus 129.13 7.04 5.45

D42 Hunsrück Hunsrück 153.37 4.58 2.99

D43 Moselle Valley Moseltal 25.73 0.33 1.28

D44 Middle Rhine Valley Mittelrheingebiet 35.89 1.24 3.46

D45 Eifel and Venn Foreland Eifel und Vennvorland 239.97 9.95 4.15

D46 West Hesse Uplands Westhessisches Berg-
und Beckenland

143.98 6.02 4.18

D47 East Hesse Upland Osthessisches Bergland 326.82 13.01 3.98

D48 Thuringian-Franconian
Highlands

Thüringisch-
Fränkisches Mittel-
gebirge

296.6 16.4 5.53

D49 Gutland (Bitburg Land) Gutland (Bitburger
Land)

24.34 0.32 1.3

D50 Palatine-Saarland
Muschelkalk Region

Pfälzisch-
Saarländisches
Muschelkalkgebiet

33.58 0.31 0.93

D51 Palatine Forest (the
Haardt)

Pfälzer Wald (Haardtge-
birge)

133.11 2.12 1.59

D52 Saar-Nahe Hills Saar-Nahe-Berg- und
Hügelland

157.89 1.81 1.15

D53 Upper Rhine Plain Oberrheinisches
Tiefland

186.11 3.04 1.63

D54 Black Forest Schwarzwald 397.68 5 1.26

D55 Odenwald-Spessart-
Rhön

Odenwald, Spessart
und Südrhön

339.89 2.99 0.88

D56 Main Franconia Plateau Mainfränkische Platten 120.47 1.65 1.37

D57 Neckar and Tauber Gäu
Plateaus

Neckar- und Tauber-
land, Gäuplatten

218.15 0.98 0.45

D58 Swabian Keuper-Lias
Lands

Schwäbisches Keuper-
Liasland

199.92 0.44 0.22

D59 Franconian Keuper-
Lias Lands

Fränkisches Keuper-
Liasland

325.97 4.91 1.5

D60 Swabian Jura Schwäbische Alb 233.82 0.36 0.16

D61 Franconian Jura Fränkische Alb 281.11 1.79 0.64
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Table A6 continued from previous page

Major natural regions of Germany Forested
area
[kha]

Standing
deadwood

ID Name (eng.) Name (ger.)
Area
[kha]

Percent
[%]

D62 Upper Palatine-Upper
Main Hills

Oberpfälzisch-
Obermainisches
Hügelland

117.88 1.3 1.1

D63 Upper Palatine-
Bavarian Forest

Oberpfälzer und Bay-
erischer Wald

346.9 5.05 1.46

D64 Iller-Lech Plateau Donau-Iller-Lech-
Platten

202.97 0.7 0.34

D65 Lower Bavarian Upland
and Isar-Inn Gravel
Plateau

Unterbayerisches
Hügelland und Isar-
Inn-Schotterplatten

288.55 2.26 0.78

D66 Pre-Alpine Hills and
Moorland

Voralpines Hügel- und
Moorland

280.51 0.92 0.33

D67 Swabian-Bavarian Pre-
alps

Schwäbisch-
Oberbayerische Vo-
ralpen

158.84 4.4 2.77

D68 Northern Limestone
Alps

Nördliche Kalkalpen 50.82 4.95 9.75

D69 Dinkelberg and Upper
Rhine Valley

Hochrheingebiet und
Dinkelberg

8.62 0.06 0.67

D70 German Bight Deutsche Bucht - - -
D71 Dogger Bank Doggerbank und an-

grenzende zentrale
Nordsee

- - -

D72 Western Baltic Westliche Ostsee 0.14 0 0.73

D73 Eastern Baltic Östliche Ostsee 0.68 0.01 1.47
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Forrester, D. I., Dawud, S. M., Finér, L., Pollastrini, M., Scherer-Lorenzen,
M., Valladares, F., Bonal, D., & Gessler, A. (2014). Tree diversity does not
always improve resistance of forest ecosystems to drought. Proceedings of
the National Academy of Sciences, 111(41), 14812–14815. https://doi.org/10.
1073/pnas.1411970111

Hajek, P., Mörsdorf, M., Kovach, K. R., Greinwald, K., Rose, L., Nock, C. A.,
& Scherer-Lorenzen, M. (2023). Quantifying the influence of tree species
richness on community drought resistance using drone-derived NDVI
and ground-based measures of Plant Area Index and leaf chlorophyll
in a young tree diversity experiment. European Journal of Forest Research.
https://doi.org/10.1007/s10342-023-01615-3

Hamdi, Z. M., Brandmeier, M., & Straub, C. (2019). Forest Damage Assessment
Using Deep Learning on High Resolution Remote Sensing Data. Remote
Sensing, 11(17), 1976. https://doi.org/10/gh3dqq

Hammond, W. M., Williams, A. P., Abatzoglou, J. T., Adams, H. D., Klein, T.,
López, R., Sáenz-Romero, C., Hartmann, H., Breshears, D. D., & Allen,

123

https://doi.org/10/gh3c7c
https://doi.org/10.3390/s8042136
https://doi.org/10.3390/s8042136
https://doi.org/10.1038/s41477-021-00879-0
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10/gh3ctq
https://doi.org/10.1111/nph.16485
https://doi.org/10.1111/nph.16485
https://doi.org/10.1073/pnas.1411970111
https://doi.org/10.1073/pnas.1411970111
https://doi.org/10.1007/s10342-023-01615-3
https://doi.org/10/gh3dqq


references

C. D. (2022). Global field observations of tree die-off reveal hotter-drought
fingerprint for Earth’s forests. Nature Communications, 13(1), 1761. https:
//doi.org/10.1038/s41467-022-29289-2

Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukav-
ina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R., Kommareddy,
A., Egorov, A., Chini, L., Justice, C. O., & Townshend, J. R. G. (2013). High-
Resolution Global Maps of 21st-Century Forest Cover Change. Science,
342(6160), 850–853. https://doi.org/10/f5h5c2

Hari, V., Rakovec, O., Markonis, Y., Hanel, M., & Kumar, R. (2020). Increased
future occurrences of the exceptional 2018–2019 Central European drought
under global warming. Scientific Reports, 10(1), 12207. https://doi.org/10.
1038/s41598-020-68872-9

Hart, S. J., & Veblen, T. T. (2015). Detection of spruce beetle-induced tree mortality
using high- and medium-resolution remotely sensed imagery. Remote Sens-
ing of Environment, 168, 134–145. https://doi.org/10.1016/j.rse.2015.06.015

Hartling, S., Sagan, V., Sidike, P., Maimaitijiang, M., & Carron, J. (2019). Urban
Tree Species Classification Using a WorldView-2/3 and LiDAR Data Fusion
Approach and Deep Learning. Sensors, 19(6), 1284. https://doi.org/10/
gh3dnn

Hartmann, H., Bastos, A., Das, A. J., Esquivel-Muelbert, A., Hammond, W. M.,
Martínez-Vilalta, J., McDowell, N. G., Powers, J. S., Pugh, T. A., Ruthrof,
K. X., & Allen, C. D. (2022). Climate Change Risks to Global Forest Health:
Emergence of Unexpected Events of Elevated Tree Mortality Worldwide.
Annual Review of Plant Biology, 73(1), 673–702. https://doi.org/10.1146/
annurev-arplant-102820-012804

Hartmann, H., Moura, C. F., Anderegg, W. R. L., Ruehr, N. K., Salmon, Y., Allen,
C. D., Arndt, S. K., Breshears, D. D., Davi, H., Galbraith, D., Ruthrof, K. X.,
Wunder, J., Adams, H. D., Bloemen, J., Cailleret, M., Cobb, R., Gessler, A.,
Grams, T. E. E., Jansen, S., . . . O’Brien, M. (2018a). Research frontiers for
improving our understanding of drought-induced tree and forest mortality.
New Phytologist, 218(1), 15–28. https://doi.org/10.1111/nph.15048

Hartmann, H., Schuldt, B., Sanders, T. G. M., Macinnis-Ng, C., Boehmer, H. J.,
Allen, C. D., Bolte, A., Crowther, T. W., Hansen, M. C., Medlyn, B. E., Ruehr,
N. K., & Anderegg, W. R. L. (2018b). Monitoring global tree mortality
patterns and trends. Report from the VW symposium ‘Crossing scales and
disciplines to identify global trends of tree mortality as indicators of forest
health’. New Phytologist, 217(3), 984–987. https://doi.org/10/gn93j8

Haynes, K. J., Allstadt, A. J., & Klimetzek, D. (2014). Forest defoliator outbreaks
under climate change: effects on the frequency and severity of outbreaks
of five pine insect pests. Global Change Biology, 20(6), 2004–2018. https :
//doi.org/10.1111/gcb.12506

124

https://doi.org/10.1038/s41467-022-29289-2
https://doi.org/10.1038/s41467-022-29289-2
https://doi.org/10/f5h5c2
https://doi.org/10.1038/s41598-020-68872-9
https://doi.org/10.1038/s41598-020-68872-9
https://doi.org/10.1016/j.rse.2015.06.015
https://doi.org/10/gh3dnn
https://doi.org/10/gh3dnn
https://doi.org/10.1146/annurev-arplant-102820-012804
https://doi.org/10.1146/annurev-arplant-102820-012804
https://doi.org/10.1111/nph.15048
https://doi.org/10/gn93j8
https://doi.org/10.1111/gcb.12506
https://doi.org/10.1111/gcb.12506


Hell, M., Brandmeier, M., Briechle, S., & Krzystek, P. (2022). Classification of
Tree Species and Standing Dead Trees with Lidar Point Clouds Using
Two Deep Neural Networks: PointCNN and 3DmFV-Net. PFG – Journal of
Photogrammetry, Remote Sensing and Geoinformation Science, 90(2), 103–121.
https://doi.org/10.1007/s41064-022-00200-4

Hengl, T. & Parente, L. (2022). Soil sand content [%] for continental Europe at 30

m spatial resolution for period 2000-2020: Open Soil Data Cube for Europe.
https://doi.org/10.5281/zenodo.6574856

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Compu-
tation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

Hoeser, T., & Kuenzer, C. (2020). Object Detection and Image Segmentation with
Deep Learning on Earth Observation Data: A Review-Part I: Evolution and
Recent Trends. Remote Sensing, 12(10), 1667. https://doi.org/10 .3390/
rs12101667

Hu, W.-S., Li, H.-C., Pan, L., Li, W., Tao, R., & Du, Q. (2020). Spatial–Spectral
Feature Extraction via Deep ConvLSTM Neural Networks for Hyperspectral
Image Classification. IEEE Transactions on Geoscience and Remote Sensing,
58(6), 4237–4250. https://doi.org/10.1109/TGRS.2019.2961947

Huang, J., Kautz, M., Trowbridge, A. M., Hammerbacher, A., Raffa, K. F., Adams,
H. D., Goodsman, D. W., Xu, C., Meddens, A. J. H., Kandasamy, D., Ger-
shenzon, J., Seidl, R., & Hartmann, H. (2020). Tree defence and bark beetles
in a drying world: carbon partitioning, functioning and modelling. New
Phytologist, 225(1), 26–36. https://doi.org/10.1111/nph.16173

Hufkens, K., Friedl, M., Sonnentag, O., Braswell, B. H., Milliman, T., & Richardson,
A. D. (2012). Linking near-surface and satellite remote sensing measure-
ments of deciduous broadleaf forest phenology. Remote Sensing of Environ-
ment, 117, 307–321. https://doi.org/10.1016/j.rse.2011.10.006

Jactel, H., Moreira, X., & Castagneyrol, B. (2021). Tree Diversity and Forest Resis-
tance to Insect Pests: Patterns, Mechanisms, and Prospects. Annual Review
of Entomology, 66, 277–296. https://doi.org/10.1146/annurev-ento-041720-
075234

Jégou, S., Drozdzal, M., Vazquez, D., Romero, A., & Bengio, Y. (2017). The One
Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic
Segmentation. 2017 IEEE Conference on Computer Vision and Pattern Recogni-
tion Workshops (CVPRW), 1175–1183. https://doi.org/10/ghm4tr

Jiang, S., Yao, W., & Heurich, M. (2019). Dead wood detection based on semantic
segmentation of VHR aerial CIR imagery using optimized FCN-Densenet.
The International Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, XLII-2-W16, 127–133. https://doi.org/10.5194/isprs-
archives-XLII-2-W16-127-2019

Jones, H. G., & Vaughan, R. A. (2010). Remote Sensing of Vegetation: Principles,
Techniques, and Applications. Oxford University Press.

125

https://doi.org/10.1007/s41064-022-00200-4
https://doi.org/10.5281/zenodo.6574856
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.3390/rs12101667
https://doi.org/10.3390/rs12101667
https://doi.org/10.1109/TGRS.2019.2961947
https://doi.org/10.1111/nph.16173
https://doi.org/10.1016/j.rse.2011.10.006
https://doi.org/10.1146/annurev-ento-041720-075234
https://doi.org/10.1146/annurev-ento-041720-075234
https://doi.org/10/ghm4tr
https://doi.org/10.5194/isprs-archives-XLII-2-W16-127-2019
https://doi.org/10.5194/isprs-archives-XLII-2-W16-127-2019


references

Joyce, K. E., Anderson, K., & Bartolo, R. E. (2021). Of Course We Fly Unmanned—
We’re Women! Drones, 5(1), 21. https://doi.org/10.3390/drones5010021

Jump, A. S., Ruiz-Benito, P., Greenwood, S., Allen, C. D., Kitzberger, T., Fensham,
R., Martínez-Vilalta, J., & Lloret, F. (2017). Structural overshoot of tree
growth with climate variability and the global spectrum of drought-induced
forest dieback. Global Change Biology, 23(9), 3742–3757. https://doi.org/10.
1111/gcb.13636

Kaartinen, H., Hyyppä, J., Vastaranta, M., Kukko, A., Jaakkola, A., Yu, X., Pyörälä,
J., Liang, X., Liu, J., Wang, Y., Kaijaluoto, R., Melkas, T., Holopainen, M.,
& Hyyppä, H. (2015). Accuracy of Kinematic Positioning Using Global
Satellite Navigation Systems under Forest Canopies. Forests, 6(9), 3218–3236.
https://doi.org/10/f7v2tp

Kändler, G., & Cullmann, D. (2015). Regionale Auswertung der Bundeswaldinventur
3. Wuchsgebiet Schwarzwald. Forstliche Versuchs- und Forschungsanstalt
Baden-Württemberg (FVA). Freiburg, Germany. Retrieved January 23, 2024,
from https://www.fva-bw.de/fileadmin/user_upload/Daten_und_Tools/
Monitoring/BWI/Ergebnisse_BWI3/Wuchsgebiet_Schwarzwald.pdf

Kattenborn, T., Eichel, J., & Fassnacht, F. E. (2019a). Convolutional Neural Net-
works enable efficient, accurate and fine-grained segmentation of plant
species and communities from high-resolution UAV imagery. Scientific
Reports, 9(1), 17656. https://doi.org/10/gh3dqn

Kattenborn, T., Eichel, J., Wiser, S., Burrows, L., Fassnacht, F. E., & Schmidtlein, S.
(2020). Convolutional Neural Networks accurately predict cover fractions
of plant species and communities in Unmanned Aerial Vehicle imagery.
Remote Sensing in Ecology and Conservation, 6(4), 472–486. https://doi.org/
10/gh3dpv

Kattenborn, T., Leitloff, J., Schiefer, F., & Hinz, S. (2021). Review on Convolutional
Neural Networks (CNN) in vegetation remote sensing. ISPRS Journal of
Photogrammetry and Remote Sensing, 173, 24–49. https://doi.org/10/ghtrws

Kattenborn, T., Lopatin, J., Förster, M., Braun, A. C., & Fassnacht, F. E. (2019b). UAV
data as alternative to field sampling to map woody invasive species based
on combined Sentinel-1 and Sentinel-2 data. Remote Sensing of Environment,
227, 61–73. https://doi.org/10/ghrvsr

Kattenborn, T., Schiefer, F., Frey, J., Feilhauer, H., Mahecha, M. D., & Dormann,
C. F. (2022). Spatially autocorrelated training and validation samples inflate
performance assessment of convolutional neural networks. ISPRS Open
Journal of Photogrammetry and Remote Sensing, 5, 100018. https://doi.org/10.
1016/j.ophoto.2022.100018

Kattge, J., Bönisch, G., Díaz, S., Lavorel, S., Prentice, I. C., Leadley, P., Tautenhahn,
S., Werner, G. D. A., Aakala, T., Abedi, M., Acosta, A. T. R., Adamidis,
G. C., Adamson, K., Aiba, M., Albert, C. H., Alcántara, J. M., Alcázar
C, C., Aleixo, I., Ali, H., . . . Wirth, C. (2020). TRY plant trait database –

126

https://doi.org/10.3390/drones5010021
https://doi.org/10.1111/gcb.13636
https://doi.org/10.1111/gcb.13636
https://doi.org/10/f7v2tp
https://www.fva-bw.de/fileadmin/user_upload/Daten_und_Tools/Monitoring/BWI/Ergebnisse_BWI3/Wuchsgebiet_Schwarzwald.pdf
https://www.fva-bw.de/fileadmin/user_upload/Daten_und_Tools/Monitoring/BWI/Ergebnisse_BWI3/Wuchsgebiet_Schwarzwald.pdf
https://doi.org/10/gh3dqn
https://doi.org/10/gh3dpv
https://doi.org/10/gh3dpv
https://doi.org/10/ghtrws
https://doi.org/10/ghrvsr
https://doi.org/10.1016/j.ophoto.2022.100018
https://doi.org/10.1016/j.ophoto.2022.100018


enhanced coverage and open access. Global Change Biology, 26(1), 119–188.
https://doi.org/10.1111/gcb.14904

Khatri-Chhetri, P., van Wagtendonk, L., Hendryx, S. M., & Kane, V. R. (2024).
Enhancing individual tree mortality mapping: The impact of models, data
modalities, and classification taxonomy. Remote Sensing of Environment, 300,
113914. https://doi.org/10.1016/j.rse.2023.113914

Killough, B. (2018). Overview of the Open Data Cube Initiative. IGARSS 2018 -
2018 IEEE International Geoscience and Remote Sensing Symposium, 8629–8632.
https://doi.org/10.1109/IGARSS.2018.8517694

Kislov, D. E., & Korznikov, K. A. (2020). Automatic Windthrow Detection Using
Very-High-Resolution Satellite Imagery and Deep Learning. Remote Sensing,
12(7), 1145. https://doi.org/10/gh3dns

Komárek, J. (2020). The perspective of unmanned aerial systems in forest man-
agement: Do we really need such details? Applied Vegetation Science, 23(4),
718–721. https://doi.org/10/gh3c6x

Kong, Y.-L., Huang, Q., Wang, C., Chen, J., Chen, J., & He, D. (2018). Long
Short-Term Memory Neural Networks for Online Disturbance Detection in
Satellite Image Time Series. Remote Sensing, 10(3), 452. https://doi.org/10.
3390/rs10030452

Kulha, N., Honkaniemi, J., Barrere, J., Brandl, S., Cordonnier, T., Korhonen, K. T.,
Kunstler, G., Paul, C., Reineking, B., & Peltoniemi, M. (2023). Competition-
induced tree mortality across Europe is driven by shade tolerance, pro-
portion of conspecifics and drought. Journal of Ecology, 111(10), 2310–2323.
https://doi.org/10.1111/1365-2745.14184

Labenski, P., Ewald, M., Schmidtlein, S., & Fassnacht, F. E. (2022). Classifying
surface fuel types based on forest stand photographs and satellite time
series using deep learning. International Journal of Applied Earth Observation
and Geoinformation, 109, 102799. https://doi.org/10.1016/j.jag.2022.102799

Labenski, P., Ewald, M., Schmidtlein, S., Heinsch, F. A., & Fassnacht, F. E. (2023).
Quantifying surface fuels for fire modelling in temperate forests using
airborne lidar and Sentinel-2: potential and limitations. Remote Sensing of
Environment, 295, 113711. https://doi.org/10.1016/j.rse.2023.113711

Lang, N., Jetz, W., Schindler, K., & Wegner, J. D. (2023). A high-resolution canopy
height model of the Earth. Nature Ecology & Evolution, 7(11), 1778–1789.
https://doi.org/10.1038/s41559-023-02206-6

Lefèvre, S., Tuia, D., Wegner, J. D., Produit, T., & Nassar, A. S. (2017). Toward Seam-
less Multiview Scene Analysis From Satellite to Street Level. Proceedings of
the IEEE, 105(10), 1884–1899. https://doi.org/10.1109/JPROC.2017.2684300

Leitão, P. J., Schwieder, M., Pötzschner, F., Pinto, J. R. R., Teixeira, A. M. C.,
Pedroni, F., Sanchez, M., Rogass, C., Linden, S. v. d., Bustamante, M. M. C.,
& Hostert, P. (2018). From sample to pixel: multi-scale remote sensing

127

https://doi.org/10.1111/gcb.14904
https://doi.org/10.1016/j.rse.2023.113914
https://doi.org/10.1109/IGARSS.2018.8517694
https://doi.org/10/gh3dns
https://doi.org/10/gh3c6x
https://doi.org/10.3390/rs10030452
https://doi.org/10.3390/rs10030452
https://doi.org/10.1111/1365-2745.14184
https://doi.org/10.1016/j.jag.2022.102799
https://doi.org/10.1016/j.rse.2023.113711
https://doi.org/10.1038/s41559-023-02206-6
https://doi.org/10.1109/JPROC.2017.2684300


references

data for upscaling aboveground carbon data in heterogeneous landscapes.
Ecosphere, 9(8), e02298. https://doi.org/10/gfmb5q

Lepš, J., & Hadincová, V. (1992). How reliable are our vegetation analyses? Journal
of Vegetation Science, 3(1), 119–124. https://doi.org/10.2307/3236006

Li, Q., Tian, J., & Tian, Q. (2023). Deep Learning Application for Crop Classification
via Multi-Temporal Remote Sensing Images. Agriculture, 13(4), 906. https:
//doi.org/10.3390/agriculture13040906

Li, W., Fu, H., Yu, L., & Cracknell, A. (2017). Deep Learning Based Oil Palm
Tree Detection and Counting for High-Resolution Remote Sensing Images.
Remote Sensing, 9(1), 22. https://doi.org/10/gh3dp3

Lillesand, T. M., Kiefer, R. W., & Chipman, J. W. (2015). Remote sensing and image
interpretation (Seventh edition). John Wiley & Sons, Inc.

Lindner, M., Fitzgerald, J. B., Zimmermann, N. E., Reyer, C., Delzon, S., van
der Maaten, E., Schelhaas, M.-J., Lasch, P., Eggers, J., van der Maaten-
Theunissen, M., Suckow, F., Psomas, A., Poulter, B., & Hanewinkel, M.
(2014). Climate change and European forests: What do we know, what are
the uncertainties, and what are the implications for forest management?
Journal of Environmental Management, 146, 69–83. https://doi.org/10.1016/j.
jenvman.2014.07.030

Liu, X., Frey, J., Denter, M., Zielewska-Büttner, K., Still, N., & Koch, B. (2021).
Mapping standing dead trees in temperate montane forests using a pixel-
and object-based image fusion method and stereo WorldView-3 imagery.
Ecological Indicators, 133, 108438. https://doi.org/10.1016/j.ecolind.2021.
108438

Liu, X., Huang, Y., Chen, L., Li, S., Bongers, F. J., Castro-Izaguirre, N., Liang,
Y., Yang, B., Chen, Y., Schnabel, F., Tang, T., Xue, Y., Trogisch, S., Staab,
M., Bruelheide, H., Schmid, B., & Ma, K. (2022). Species richness, func-
tional traits and climate interactively affect tree survival in a large for-
est biodiversity experiment. Journal of Ecology, 110(10), 2522–2531. https:
//doi.org/10.1111/1365-2745.13970

Lobo Torres, D., Queiroz Feitosa, R., Nigri Happ, P., Elena Cué La Rosa, L., Mar-
cato Junior, J., Martins, J., Olã Bressan, P., Gonçalves, W. N., & Liesenberg, V.
(2020). Applying Fully Convolutional Architectures for Semantic Segmen-
tation of a Single Tree Species in Urban Environment on High Resolution
UAV Optical Imagery. Sensors, 20(2), 563. https://doi.org/10/ghm4s6

López-Jiménez, E., Vasquez-Gomez, J. I., Sanchez-Acevedo, M. A., Herrera-Lozada,
J. C., & Uriarte-Arcia, A. V. (2019). Columnar cactus recognition in aerial
images using a deep learning approach. Ecological Informatics, 52, 131–138.
https://doi.org/10/gh3dms

Lowe, D. G. (2004). Distinctive Image Features from Scale-Invariant Keypoints.
International Journal of Computer Vision, 60(2), 91–110. https://doi.org/10.
1023/B:VISI.0000029664.99615.94

128

https://doi.org/10/gfmb5q
https://doi.org/10.2307/3236006
https://doi.org/10.3390/agriculture13040906
https://doi.org/10.3390/agriculture13040906
https://doi.org/10/gh3dp3
https://doi.org/10.1016/j.jenvman.2014.07.030
https://doi.org/10.1016/j.jenvman.2014.07.030
https://doi.org/10.1016/j.ecolind.2021.108438
https://doi.org/10.1016/j.ecolind.2021.108438
https://doi.org/10.1111/1365-2745.13970
https://doi.org/10.1111/1365-2745.13970
https://doi.org/10/ghm4s6
https://doi.org/10/gh3dms
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94


Ma, L., Liu, Y., Zhang, X., Ye, Y., Yin, G., & Johnson, B. A. (2019). Deep learning in
remote sensing applications: A meta-analysis and review. ISPRS Journal of
Photogrammetry and Remote Sensing, 152, 166–177. https://doi.org/10/gf3s65

Main-Knorn, M., Pflug, B., Louis, J., Debaecker, V., Müller-Wilm, U., & Gascon, F.
(2017). Sen2Cor for Sentinel-2. Image and Signal Processing for Remote Sensing
XXIII, 10427, 37–48. https://doi.org/10/gm2trw

Marconi, S., Weinstein, B. G., Zou, S., Bohlman, S. A., Zare, A., Singh, A., Stewart,
D., Harmon, I., Steinkraus, A., & White, E. P. (2022). Continental-scale
hyperspectral tree species classification in the United States National Eco-
logical Observatory Network. Remote Sensing of Environment, 282, 113264.
https://doi.org/10.1016/j.rse.2022.113264

McDowell, N. G., Allen, C. D., Anderson-Teixeira, K., Aukema, B. H., Bond-
Lamberty, B., Chini, L., Clark, J. S., Dietze, M., Grossiord, C., Hanbury-
Brown, A., Hurtt, G. C., Jackson, R. B., Johnson, D. J., Kueppers, L., Lichstein,
J. W., Ogle, K., Poulter, B., Pugh, T. A. M., Seidl, R., . . . Xu, C. (2020).
Pervasive shifts in forest dynamics in a changing world. Science, 368(6494),
eaaz9463. https://doi.org/10.1126/science.aaz9463

McDowell, N. G., Coops, N. C., Beck, P. S. A., Chambers, J. Q., Gangodagamage,
C., Hicke, J. A., Huang, C.-y., Kennedy, R., Krofcheck, D. J., Litvak, M.,
Meddens, A. J. H., Muss, J., Negrón-Juarez, R., Peng, C., Schwantes, A. M.,
Swenson, J. J., Vernon, L. J., Williams, A. P., Xu, C., . . . Allen, C. D. (2015).
Global satellite monitoring of climate-induced vegetation disturbances.
Trends in Plant Science, 20(2), 114–123. https://doi.org/10/f62b9j

McDowell, N. G., Sapes, G., Pivovaroff, A., Adams, H. D., Allen, C. D., Anderegg,
W. R. L., Arend, M., Breshears, D. D., Brodribb, T., Choat, B., Cochard, H., De
Cáceres, M., De Kauwe, M. G., Grossiord, C., Hammond, W. M., Hartmann,
H., Hoch, G., Kahmen, A., Klein, T., . . . Xu, C. (2022). Mechanisms of
woody-plant mortality under rising drought, CO2 and vapour pressure
deficit. Nature Reviews Earth & Environment, 3(5), 294–308. https://doi.org/
10.1038/s43017-022-00272-1

Meddens, A. J. H., Hicke, J. A., & Vierling, L. A. (2011). Evaluating the potential
of multispectral imagery to map multiple stages of tree mortality. Remote
Sensing of Environment, 115(7), 1632–1642. https://doi.org/10.1016/j.rse.
2011.02.018

Meddens, A. J. H., Hicke, J. A., Vierling, L. A., & Hudak, A. T. (2013). Evaluating
methods to detect bark beetle-caused tree mortality using single-date and
multi-date Landsat imagery. Remote Sensing of Environment, 132, 49–58.
https://doi.org/10.1016/j.rse.2013.01.002

Meng, R., Wu, J., Zhao, F., Cook, B. D., Hanavan, R. P., & Serbin, S. P. (2018). Mea-
suring short-term post-fire forest recovery across a burn severity gradient
in a mixed pine-oak forest using multi-sensor remote sensing techniques.

129

https://doi.org/10/gf3s65
https://doi.org/10/gm2trw
https://doi.org/10.1016/j.rse.2022.113264
https://doi.org/10.1126/science.aaz9463
https://doi.org/10/f62b9j
https://doi.org/10.1038/s43017-022-00272-1
https://doi.org/10.1038/s43017-022-00272-1
https://doi.org/10.1016/j.rse.2011.02.018
https://doi.org/10.1016/j.rse.2011.02.018
https://doi.org/10.1016/j.rse.2013.01.002


references

Remote Sensing of Environment, 210, 282–296. https://doi.org/10.1016/j.rse.
2018.03.019

Meraner, A., Ebel, P., Zhu, X. X., & Schmitt, M. (2020). Cloud removal in Sentinel-
2 imagery using a deep residual neural network and SAR-optical data
fusion. ISPRS Journal of Photogrammetry and Remote Sensing, 166, 333–346.
https://doi.org/10.1016/j.isprsjprs.2020.05.013

Messier, C., Bauhus, J., Sousa-Silva, R., Auge, H., Baeten, L., Barsoum, N., Bru-
elheide, H., Caldwell, B., Cavender-Bares, J., Dhiedt, E., Eisenhauer, N.,
Ganade, G., Gravel, D., Guillemot, J., Hall, J. S., Hector, A., Hérault, B.,
Jactel, H., Koricheva, J., . . . Zemp, D. C. (2022). For the sake of resilience
and multifunctionality, let’s diversify planted forests! Conservation Letters,
15(1), e12829. https://doi.org/10.1111/conl.12829

Meynen, E., & Schmithüsen, J. (Eds.). (1953). Handbuch der naturräumlichen Glieder-
ung Deutschlands (Vol. 1-9). Selbstverl. der Bundesanst. für Landeskunde,
Selbstverl. der Bundesanst. für Landeskunde und Raumforschung.

Michez, A., Piégay, H., Lisein, J., Claessens, H., & Lejeune, P. (2016). Classifica-
tion of riparian forest species and health condition using multi-temporal
and hyperspatial imagery from unmanned aerial system. Environmental
Monitoring and Assessment, 188(3), 146. https://doi.org/10/f8q9wp

Milodowski, D. T., Mitchard, E. T. A., & Williams, M. (2017). Forest loss maps from
regional satellite monitoring systematically underestimate deforestation in
two rapidly changing parts of the Amazon. Environmental Research Letters,
12(9), 094003. https://doi.org/10.1088/1748-9326/aa7e1e

Molnar, C., Casalicchio, G., & Bischl, B. (2018). iml: An R package for Interpretable
Machine Learning. Journal of Open Source Software, 3(26), 786. https://doi.
org/10.21105/joss.00786

Monahan, W. B., Arnspiger, C. E., Bhatt, P., An, Z., Krist, F. J., Liu, T., Richard, R. P.,
Edson, C., Froese, R. E., Steffenson, J., Lammers, T. C., & Frosh, R. (2022). A
spectral three-dimensional color space model of tree crown health. PLOS
ONE, 17(10), e0272360. https://doi.org/10.1371/journal.pone.0272360

Morales, G., Kemper, G., Sevillano, G., Arteaga, D., Ortega, I., & Telles, J. (2018).
Automatic Segmentation of Mauritia flexuosa in Unmanned Aerial Vehicle
(UAV) Imagery Using Deep Learning. Forests, 9(12), 736. https://doi.org/
10/gh3c6w

Müller, K., & Wickham, H. (2019, June 6). tibble: Simple Data Frames (Version 2.1.3).
Retrieved January 23, 2024, from https://cran.r-project.org/web/packages/
tibble/index.html

Natesan, S., Armenakis, C., & Vepakomma, U. (2019). ResNet-based tree species
classification using UAV images. ISPRS - International Archives of the Pho-
togrammetry, Remote Sensing and Spatial Information Sciences, XLII-2-W13,
475–481. https://doi.org/10/gh3dn7

130

https://doi.org/10.1016/j.rse.2018.03.019
https://doi.org/10.1016/j.rse.2018.03.019
https://doi.org/10.1016/j.isprsjprs.2020.05.013
https://doi.org/10.1111/conl.12829
https://doi.org/10/f8q9wp
https://doi.org/10.1088/1748-9326/aa7e1e
https://doi.org/10.21105/joss.00786
https://doi.org/10.21105/joss.00786
https://doi.org/10.1371/journal.pone.0272360
https://doi.org/10/gh3c6w
https://doi.org/10/gh3c6w
https://cran.r-project.org/web/packages/tibble/index.html
https://cran.r-project.org/web/packages/tibble/index.html
https://doi.org/10/gh3dn7


Nevalainen, O., Honkavaara, E., Tuominen, S., Viljanen, N., Hakala, T., Yu, X.,
Hyyppä, J., Saari, H., Pölönen, I., Imai, N. N., & Tommaselli, A. M. G. (2017).
Individual Tree Detection and Classification with UAV-Based Photogram-
metric Point Clouds and Hyperspectral Imaging. Remote Sensing, 9(3), 185.
https://doi.org/10/f93bgd

Nezami, S., Khoramshahi, E., Nevalainen, O., Pölönen, I., & Honkavaara, E. (2020).
Tree Species Classification of Drone Hyperspectral and RGB Imagery with
Deep Learning Convolutional Neural Networks. Remote Sensing, 12(7), 1070.
https://doi.org/10/gh3dpx

Obladen, N., Dechering, P., Skiadaresis, G., Tegel, W., Keßler, J., Höllerl, S., Kaps,
S., Hertel, M., Dulamsuren, C., Seifert, T., Hirsch, M., & Seim, A. (2021).
Tree mortality of European beech and Norway spruce induced by 2018-2019

hot droughts in central Germany. Agricultural and Forest Meteorology, 307,
108482. https://doi.org/10.1016/j.agrformet.2021.108482

Ollinger, S. V. (2011). Sources of variability in canopy reflectance and the conver-
gent properties of plants. New Phytologist, 189(2), 375–394. https://doi.org/
10.1111/j.1469-8137.2010.03536.x

Osco, L. P., Arruda, M. d. S. d., Marcato Junior, J., da Silva, N. B., Ramos, A. P. M.,
Moryia, É. A. S., Imai, N. N., Pereira, D. R., Creste, J. E., Matsubara, E. T.,
Li, J., & Gonçalves, W. N. (2020). A convolutional neural network approach
for counting and geolocating citrus-trees in UAV multispectral imagery.
ISPRS Journal of Photogrammetry and Remote Sensing, 160, 97–106. https :
//doi.org/10/ghmdt9

Osco, L. P., Marcato Junior, J., Marques Ramos, A. P., de Castro Jorge, L. A.,
Fatholahi, S. N., de Andrade Silva, J., Matsubara, E. T., Pistori, H., Gonçalves,
W. N., & Li, J. (2021). A review on deep learning in UAV remote sensing.
International Journal of Applied Earth Observation and Geoinformation, 102,
102456. https://doi.org/10.1016/j.jag.2021.102456

Pause, M., Schweitzer, C., Rosenthal, M., Keuck, V., Bumberger, J., Dietrich, P.,
Heurich, M., Jung, A., & Lausch, A. (2016). In Situ/Remote Sensing In-
tegration to Assess Forest Health—A Review. Remote Sensing, 8(6), 471.
https://doi.org/10.3390/rs8060471

Pelletier, C., Webb, G. I., & Petitjean, F. (2019a). Temporal Convolutional Neural
Network for the Classification of Satellite Image Time Series. Remote Sensing,
11(5), 523. https://doi.org/10.3390/rs11050523

Pelletier, C., Webb, G. I., & Petitjean, F. (2019b). Deep Learning for the Classification
of Sentinel-2 Image Time Series. IGARSS 2019 - 2019 IEEE International
Geoscience and Remote Sensing Symposium, 461–464. https://doi.org/10/
gkqvmk

Ploton, P., Mortier, F., Réjou-Méchain, M., Barbier, N., Picard, N., Rossi, V., Dor-
mann, C., Cornu, G., Viennois, G., Bayol, N., Lyapustin, A., Gourlet-Fleury,
S., & Pélissier, R. (2020). Spatial validation reveals poor predictive perfor-

131

https://doi.org/10/f93bgd
https://doi.org/10/gh3dpx
https://doi.org/10.1016/j.agrformet.2021.108482
https://doi.org/10.1111/j.1469-8137.2010.03536.x
https://doi.org/10.1111/j.1469-8137.2010.03536.x
https://doi.org/10/ghmdt9
https://doi.org/10/ghmdt9
https://doi.org/10.1016/j.jag.2021.102456
https://doi.org/10.3390/rs8060471
https://doi.org/10.3390/rs11050523
https://doi.org/10/gkqvmk
https://doi.org/10/gkqvmk


references

mance of large-scale ecological mapping models. Nature Communications,
11(1), 4540. https://doi.org/10/ghbcv5

Pohl, F., Werban, U., Kumar, R., Hildebrandt, A., & Rebmann, C. (2023). Observa-
tional evidence of legacy effects of the 2018 drought on a mixed deciduous
forest in Germany. Scientific Reports, 13(1), 10863. https://doi.org/10.1038/
s41598-023-38087-9

Popp, M. R., & Kalwij, J. M. (2023). Consumer-grade UAV imagery facilitates
semantic segmentation of species-rich savanna tree layers. Scientific Reports,
13(1), 13892. https://doi.org/10.1038/s41598-023-40989-7

Pretzsch, H., Biber, P., Schütze, G., Kemmerer, J., & Uhl, E. (2018). Wood density
reduced while wood volume growth accelerated in Central European forests
since 1870. Forest Ecology and Management, 429, 589–616. https://doi.org/10.
1016/j.foreco.2018.07.045

Qian, W., Huang, Y., Liu, Q., Fan, W., Sun, Z., Dong, H., Wan, F., & Qiao, X. (2020).
UAV and a deep convolutional neural network for monitoring invasive
alien plants in the wild. Computers and Electronics in Agriculture, 174, 105519.
https://doi.org/10/gh3dk2

R Core Team. (2020). R: A language and environment for statistical computing. R
Foundation for Statistical Computing (Version 3.6.3). Vienna, Austria. https:
//www.R-project.org/

R Core Team. (2022). R: A language and environment for statistical computing. R
Foundation for Statistical Computing (Version 4.2.2). Vienna, Austria. https:
//www.R-project.org/

Rakovec, O., Samaniego, L., Hari, V., Markonis, Y., Moravec, V., Thober, S., Hanel,
M., & Kumar, R. (2022). The 2018–2020 Multi-Year Drought Sets a New
Benchmark in Europe. Earth’s Future, 10(3). https://doi.org/10 .1029/
2021EF002394

Reeb, R. A., Aziz, N., Lapp, S. M., Kitzes, J., Heberling, J. M., & Kuebbing,
S. E. (2022). Using Convolutional Neural Networks to Efficiently Extract
Immense Phenological Data From Community Science Images. Frontiers in
Plant Science, 12. https://doi.org/10.3389/fpls.2021.787407

Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., &
Prabhat. (2019). Deep learning and process understanding for data-driven
Earth system science. Nature, 566(7743), 195–204. https://doi.org/10/
gfvhxk

Rezaee, M., Mahdianpari, M., Zhang, Y., & Salehi, B. (2018). Deep Convolutional
Neural Network for Complex Wetland Classification Using Optical Remote
Sensing Imagery. IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, 11(9), 3030–3039. https://doi.org/10/gfbdd8

Roberts, D. R., Bahn, V., Ciuti, S., Boyce, M. S., Elith, J., Guillera-Arroita, G.,
Hauenstein, S., Lahoz-Monfort, J. J., Schröder, B., Thuiller, W., Warton,
D. I., Wintle, B. A., Hartig, F., & Dormann, C. F. (2017). Cross-validation

132

https://doi.org/10/ghbcv5
https://doi.org/10.1038/s41598-023-38087-9
https://doi.org/10.1038/s41598-023-38087-9
https://doi.org/10.1038/s41598-023-40989-7
https://doi.org/10.1016/j.foreco.2018.07.045
https://doi.org/10.1016/j.foreco.2018.07.045
https://doi.org/10/gh3dk2
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1029/2021EF002394
https://doi.org/10.1029/2021EF002394
https://doi.org/10.3389/fpls.2021.787407
https://doi.org/10/gfvhxk
https://doi.org/10/gfvhxk
https://doi.org/10/gfbdd8


strategies for data with temporal, spatial, hierarchical, or phylogenetic
structure. Ecography, 40(8), 913–929. https://doi.org/10.1111/ecog.02881

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks
for Biomedical Image Segmentation. In N. Navab, J. Hornegger, W. M.
Wells, & A. F. Frangi (Eds.), Medical Image Computing and Computer-Assisted
Intervention – MICCAI 2015 (pp. 234–241). Springer International Publishing.
https://doi.org/10/gcgk7j

Running, S. & Zhao, M. (2021). MODIS/Terra Net Primary Production Gap-Filled
Yearly L4 Global 500m SIN Grid V061. https://doi.org/10.5067/MODIS/
MOD17A3HGF.061

Rußwurm, M., & Körner, M. (2017). Temporal Vegetation Modelling Using Long
Short-Term Memory Networks for Crop Identification from Medium- Res-
olution Multispectral Satellite Images. 2017 IEEE Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), 1496–1504. https://doi.
org/10/gkqvm2

Rußwurm, M., & Körner, M. (2018). Multi-Temporal Land Cover Classification
with Sequential Recurrent Encoders. ISPRS International Journal of Geo-
Information, 7(4), 129. https://doi.org/10.3390/ijgi7040129

Safonova, A., Hamad, Y., Alekhina, A., & Kaplun, D. (2022). Detection of Norway
Spruce Trees (Picea abies) Infested by Bark Beetle in UAV Images Using
YOLOs Architectures. IEEE Access, 10, 10384–10392. https://doi.org/10.
1109/ACCESS.2022.3144433

Safonova, A., Tabik, S., Alcaraz-Segura, D., Rubtsov, A., Maglinets, Y., & Herrera, F.
(2019). Detection of Fir Trees (Abies sibirica) Damaged by the Bark Beetle
in Unmanned Aerial Vehicle Images with Deep Learning. Remote Sensing,
11(6), 643. https://doi.org/10/gh3dnj

Sani-Mohammed, A., Yao, W., & Heurich, M. (2022). Instance segmentation of
standing dead trees in dense forest from aerial imagery using deep learning.
ISPRS Open Journal of Photogrammetry and Remote Sensing, 6, 100024. https:
//doi.org/10.1016/j.ophoto.2022.100024

Santoro, M., & Cartus, O. (2023). ESA Biomass Climate Change Initiative (ESA
Biomass CCI): Global datasets of forest above-ground biomass for the years
2010, 2017, 2018, 2019 and 2020. https://doi.org/gr5z26

Santos, A. A. d., Marcato Junior, J., Araújo, M. S., Di Martini, D. R., Tetila, E. C.,
Siqueira, H. L., Aoki, C., Eltner, A., Matsubara, E. T., Pistori, H., Feitosa,
R. Q., Liesenberg, V., & Gonçalves, W. N. (2019). Assessment of CNN-
Based Methods for Individual Tree Detection on Images Captured by RGB
Cameras Attached to UAVs. Sensors, 19(16), 3595. https://doi.org/10/
ghmdt4

Schall, P., Schulze, E.-D., Fischer, M., Ayasse, M., & Ammer, C. (2018). Relations
between forest management, stand structure and productivity across differ-

133

https://doi.org/10.1111/ecog.02881
https://doi.org/10/gcgk7j
https://doi.org/10.5067/MODIS/MOD17A3HGF.061
https://doi.org/10.5067/MODIS/MOD17A3HGF.061
https://doi.org/10/gkqvm2
https://doi.org/10/gkqvm2
https://doi.org/10.3390/ijgi7040129
https://doi.org/10.1109/ACCESS.2022.3144433
https://doi.org/10.1109/ACCESS.2022.3144433
https://doi.org/10/gh3dnj
https://doi.org/10.1016/j.ophoto.2022.100024
https://doi.org/10.1016/j.ophoto.2022.100024
https://doi.org/gr5z26
https://doi.org/10/ghmdt4
https://doi.org/10/ghmdt4


references

ent types of Central European forests. Basic and Applied Ecology, 32, 39–52.
https://doi.org/10/gfnbpj

Schiefer, F., Frey, J., & Kattenborn, T. (2022a). FORTRESS. https://doi.org/https:
//doi.org/10.35097/538

Schiefer, F., Frick, A., Frey, J., Koch, B., Zielewska-Büttner, K., Junttila, S., Schmidt-
lein, S., & Kattenborn, T. (2022b). Predicting fractional cover of standing
deadwood at landscape level based on long short-term memory networks
and Sentinel time series. Living Planet Symposium (2022), Bonn, Germany,
23.05.2022 – 27.05.2022. https://doi.org/10.5445/IR/1000167639

Schiefer, F., & Kattenborn, T. (2024). FORTRESSdead. https://doi.org/10.35097/
yARnkDzIcZIPSQhI

Schiefer, F., Kattenborn, T., Frick, A., Frey, J., Schall, P., Koch, B., & Schmidtlein, S.
(2020). Mapping forest tree species in high resolution UAV-based RGB-
imagery by means of convolutional neural networks. ISPRS Journal of
Photogrammetry and Remote Sensing, 170, 205–215. https://doi.org/10/
ghrrhs

Schiefer, F., Kattenborn, T., Frick, A., Frey, J., Schall, P., Koch, B., & Schmidtlein, S.
(2021). Mapping forest tree species in high resolution UAV-based RGB-
imagery by means of convolutional neural networks. European Geosciences
Union General Assembly (EGU 2021), Online, 19.04.2021 – 30.04.2021. https:
//doi.org/10.5445/IR/1000167640

Schiefer, F., Schmidtlein, S., Frick, A., Frey, J., Klinke, R., Zielewska-Büttner, K.,
Junttila, S., Uhl, A., & Kattenborn, T. (2023a). UAV-based reference data for
the prediction of fractional cover of standing deadwood from Sentinel time
series. ISPRS Open Journal of Photogrammetry and Remote Sensing, 8, 100034.
https://doi.org/10.1016/j.ophoto.2023.100034

Schiefer, F., Schmidtlein, S., Frick, A., Frey, J., Klinke, R., Zielewska-Büttner, K.,
Uhl, A., Junttila, S., & Kattenborn, T. (2023b). Data package v2: UAV-based
reference data for the prediction of fractional cover of standing deadwood
from Sentinel time series. https://doi.org/10.5445/IR/1000158765

Schiefer, F., Schmidtlein, S., Hartmann, H., Schnabel, F., & Kattenborn, T. (n.d.).
Large-scale remote sensing reveals that tree mortality in Germany appears
to be greater than previously expected. (under review) Forestry: An Interna-
tional Journal of Forest Research.

Schiller, C., Schmidtlein, S., Boonman, C., Moreno-Martínez, A., & Kattenborn,
T. (2021). Deep learning and citizen science enable automated plant trait
predictions from photographs. Scientific Reports, 11(1), 16395. https://doi.
org/10.1038/s41598-021-95616-0

Schimanke, S., Ridal, M., Le Moigne, P., Berggren, L., Undén, P., Randriamampi-
anina, R., Andrea, U., Bazile, E., Bertelsen, A., Brousseau, P., Dahlgren, P.,
Edvinsson, L., El Said, A., Glinton, M., Hopsch, S., Isaksson, L., Mladek,
R., Olsson, E., Verrelle, A., & Wang, Z. (2021). CERRA sub-daily regional

134

https://doi.org/10/gfnbpj
https://doi.org/https://doi.org/10.35097/538
https://doi.org/https://doi.org/10.35097/538
https://doi.org/10.5445/IR/1000167639
https://doi.org/10.35097/yARnkDzIcZIPSQhI
https://doi.org/10.35097/yARnkDzIcZIPSQhI
https://doi.org/10/ghrrhs
https://doi.org/10/ghrrhs
https://doi.org/10.5445/IR/1000167640
https://doi.org/10.5445/IR/1000167640
https://doi.org/10.1016/j.ophoto.2023.100034
https://doi.org/10.5445/IR/1000158765
https://doi.org/10.1038/s41598-021-95616-0
https://doi.org/10.1038/s41598-021-95616-0


reanalysis data for Europe on single levels from 1984 to present. https:
//doi.org/https://doi.org/10.24381/cds.622a565a

Schnabel, F., Liu, X., Kunz, M., Barry, K. E., Bongers, F. J., Bruelheide, H., Fichtner,
A., Härdtle, W., Li, S., Pfaff, C.-T., Schmid, B., Schwarz, J. A., Tang, Z., Yang,
B., Bauhus, J., von Oheimb, G., Ma, K., & Wirth, C. (2021). Species richness
stabilizes productivity via asynchrony and drought-tolerance diversity in a
large-scale tree biodiversity experiment. Science Advances, 7(51), eabk1643.
https://doi.org/10.1126/sciadv.abk1643

Schnabel, F., Purrucker, S., Schmitt, L., Engelmann, R. A., Kahl, A., Richter, R.,
Seele-Dilbat, C., Skiadaresis, G., & Wirth, C. (2022). Cumulative growth and
stress responses to the 2018–2019 drought in a European floodplain forest.
Global Change Biology, 28(5), 1870–1883. https://doi.org/10.1111/gcb.16028

Schuldt, B., Buras, A., Arend, M., Vitasse, Y., Beierkuhnlein, C., Damm, A., Gharun,
M., Grams, T. E. E., Hauck, M., Hajek, P., Hartmann, H., Hiltbrunner, E.,
Hoch, G., Holloway-Phillips, M., Körner, C., Larysch, E., Lübbe, T., Nelson,
D. B., Rammig, A., . . . Kahmen, A. (2020). A first assessment of the impact
of the extreme 2018 summer drought on Central European forests. Basic
and Applied Ecology, 45, 86–103. https://doi.org/10/gm7jmn

Schuster, M., & Paliwal, K. (1997). Bidirectional recurrent neural networks. IEEE
Transactions on Signal Processing, 45(11), 2673–2681. https://doi.org/10.
1109/78.650093

Schwantes, A. M., Swenson, J. J., & Jackson, R. B. (2016). Quantifying drought-
induced tree mortality in the open canopy woodlands of central Texas.
Remote Sensing of Environment, 181, 54–64. https://doi.org/10.1016/j.rse.
2016.03.027

Schwarz, S., Werner, C., Fassnacht, F. E., & Ruehr, N. K. (2023). Forest canopy
mortality during the 2018-2020 summer drought years in Central Europe:
The application of a deep learning approach on aerial images across Lux-
embourg. Forestry: An International Journal of Forest Research, cpad049. https:
//doi.org/10.1093/forestry/cpad049

Searle, E. B., Chen, H. Y. H., & Paquette, A. (2022). Higher tree diversity is linked to
higher tree mortality. Proceedings of the National Academy of Sciences, 119(19),
e2013171119. https://doi.org/10.1073/pnas.2013171119

Senf, C., Buras, A., Zang, C. S., Rammig, A., & Seidl, R. (2020). Excess forest mortal-
ity is consistently linked to drought across Europe. Nature Communications,
11(1), 6200. https://doi.org/10/gm7vhk

Senf, C., Pflugmacher, D., Zhiqiang, Y., Sebald, J., Knorn, J., Neumann, M., Hostert,
P., & Seidl, R. (2018). Canopy mortality has doubled in Europe’s temperate
forests over the last three decades. Nature Communications, 9(1), 4978. https:
//doi.org/10/gfq7h6

135

https://doi.org/https://doi.org/10.24381/cds.622a565a
https://doi.org/https://doi.org/10.24381/cds.622a565a
https://doi.org/10.1126/sciadv.abk1643
https://doi.org/10.1111/gcb.16028
https://doi.org/10/gm7jmn
https://doi.org/10.1109/78.650093
https://doi.org/10.1109/78.650093
https://doi.org/10.1016/j.rse.2016.03.027
https://doi.org/10.1016/j.rse.2016.03.027
https://doi.org/10.1093/forestry/cpad049
https://doi.org/10.1093/forestry/cpad049
https://doi.org/10.1073/pnas.2013171119
https://doi.org/10/gm7vhk
https://doi.org/10/gfq7h6
https://doi.org/10/gfq7h6


references

Senf, C., Sebald, J., & Seidl, R. (2021). Increasing canopy mortality affects the
future demographic structure of Europe’s forests. One Earth, 4(5), 749–755.
https://doi.org/10/gpg6ms

Senf, C., & Seidl, R. (2021). Mapping the forest disturbance regimes of Europe.
Nature Sustainability, 4(1), 63–70. https://doi.org/10/ghbmqz

Shen, J., Tao, C., Qi, J., & Wang, H. (2021). Semi-Supervised Convolutional Long
Short-Term Memory Neural Networks for Time Series Land Cover Classifi-
cation. Remote Sensing, 13(17), 3504. https://doi.org/10.3390/rs13173504

Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-k., & Woo, W.-c. (2015). Con-
volutional LSTM Network: A Machine Learning Approach for Precipitation
Nowcasting. Advances in Neural Information Processing Systems, 28. Retrieved
April 10, 2024, from https://papers.nips.cc/paper_files/paper/2015/hash/
07563a3fe3bbe7e3ba84431ad9d055af-Abstract.html
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