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Abstract
In this article, we study an update of the traditional subchannel approxima-
tion utilizing local reduced order bases. Through employing the symmetries and
periodicity of a 7-pin bundle, the global domain is decomposed into numerous
repeating subdomains following several dividing strategies. We locally study the
reduced basis generated by proper orthogonal decomposition. We analyze the
similarities, assessing the truncation error and the distance between the linear
subspaces spanned by the reduced bases. We focus on the first stage of building
a reduced order model, the generation of the reduced subspace, which is usu-
ally not regarded in detail in our application problem. Our assessment related
to flow blockage in liquid metal-cooled nuclear reactors, a postulated high-risk
accident that results in potential fuel damage.
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1 INTRODUCTION

Nuclear reactors of generation IV are being developed to increase the safety, reliability, and sustainability of atomic
power. Among the considered designs, the liquid metal cooled fast reactors (LMFRs) seem to be the most competi-
tive designs.1 Nevertheless, LMFR development is not free of challenges. For most LMFRs, the pitch-to-diameter ratio
of fuel rods is smaller than in light water reactors. Consequently, coolant channels are narrow and more likely to
be blocked.2,3

Jam of flow channels has unwanted consequences, resulting in a local temperature increase, both in coolant and
cladding, that could even lead to the failure of the latter. Note that the local obstruction has a negligible effect on the total
mass flow rate, which increases the difficulty of its detection.4

Thus, the necessity of investigating obstructed bundles in LMFRs has been widely recognized. The analysis includes
numerical simulations performed with different methods, which have been published. These can be classified into three
large categories: system codes, subchannel codes, and computational fluid dynamics (CFD).

System codes were already used to analyze and design reactors since the 1960s. They were mainly 1D analyses, often
involving assumptions and simplifying the core into several channels. They were intended to investigate the responses of
the whole reactor under flow blockages.5–7
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The next generation of software development, involved the Subchannel codes, which utilize a coarse discretization to
model the reactor core. Consequently, they were adopted to investigate the effect of parameters with limited computa-
tional cost. They were able to predict the flow and temperature distribution in steady state and transient conditions.8–10

However, their low spatial resolution prevents them from obtaining accurate flow behavior. They also use simplified gov-
erning equations that cannot resolve many thermal hydraulic phenomena. Empirical ad hoc models based on experiments
are required to complement the formulation.11,12

In spite of their shortcomings, subchannel codes can be considered the workhorse with which most existing reactors
were assessed in the 1970s and 1980s. However, their drawbacks led the research community to turn to more modern
techniques, inspiring us to carry out this work.

In the CFD approach, one constructs a full order model (FOM) to simulate the flow and heat transfer with high
fidelity.10,13,14 However, this exactness comes with nuisances: CFD is numerically intensive. This characteristic often
makes conducting a large parametric study infeasible. This situation is even aggravated due to the computational require-
ments for the simulation of reactor fuel assemblies, which are exceptionally high.3,15,16 Accuracy requirements can only
be satisfied by generating a detailed geometrical representation of the domain. This implies the exact modeling of small
structures on a large model. Of particular importance are thin wires wrapped around the rods. This increases the difficulty
of generating a high-quality mesh.

Performing FOMs with CFDs for a wide range of parameters is often prohibitively expensive. Therefore, alternative
methodologies have been developed to overcome this difficulty. Among them, for its relevance in our study, we may
mention reduced order models (ROMs). Compared to FOMs, ROMs are more efficient in simulating the dynamics of
thermal hydraulic systems. Nevertheless, ROMs are not self-standing methodologies. High-fidelity simulations should
be performed and post-processed to construct a ROM. However, once ROM is available, simulations can be carried out
cheaply with high accuracy. This makes the approaches prone to carry out extensive parametric studies and uncertainty
quantification.17–20

ROMs can be constructed by diminishing the degrees of freedom of a problem. Throughout the available techniques
employed to carry out such a task, we note that the reduced basis method, which can generate optimized vector spaces
with restricted dimensions, is a well-established procedure.21 Among reduced basis procedures to obtain reduced bases
of large datasets, Proper orthogonal decomposition (POD) has become a widely used method over the last decades.22–29

In conjunction with (Petrov-)Galerkin projection, it has been successfully applied to compute reduced bases and build
corresponding ROMs.

Regarding the treatment of the geometrical space, reduced basis methodologies can follow global or local
approaches.30 In global formulation, the reduced basis is obtained to optimally capture the dominant flow patterns in the
whole domain. In contrast, the local technique decomposes the whole domain into parts, where a series of reduced bases
are constructed. In both cases, the singular value decomposition (SVD) method30,31 or the greedy-type algorithms32–34

can be employed to construct bases. Among the advantages of the local technique, one may mention its improved ability
to represent partial patterns. This translates into the basis with vectors of lower dimensions.32 Global approaches require
larger reduced spaces, higher computational power, and storage.

Local strategies, often regarded as less sound in the past, are nowadays a relatively mature method adopted in many
investigations. A general review in which generalized information on the topic has been gathered in Reference 35. In the
following discussion, we will involve the concept of so-called archetype components, which are used in the partitioning of
geometries. These are paradigmatic patches or pieces that can be used to represent all other subdomains and to assemble
the whole domain. The definition of partition is not unique and varies depending on the model problem. In the literature,
we have identified two main strategies to achieve the localized approach. They regard the way in which the high resolution
calculations are performed and how the snapshots are collected.

1. The first strategy considers global high fidelity results. Those are then split into partitions with different sizes and
shapes. The dimension reduction procedure is then applied locally. Thus, each part is associated with its own reduced
basis. Henceforth, the ROM is built up coupling multiple patches and minimizing discontinuities at subdomain
interfaces.31,36–40

2. The second approach involves dividing the total domain into pieces from the beginning. This approach assumes that
some symmetries, similarities and so forth exist in the domain, which can be assembled with a few types of archetype
parts. The FOM calculations are performed in the archetypes –one or a few subdomains–, in which the snapshots
are also gathered. The rest of the domain is disregarded. ROM is then built by standard techniques. Nevertheless,
continuity constraints or parametric boundary conditions are imposed to combine the multiple local ROMs.41–47 This
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approach only requires local high fidelity solutions to generate the reduced spaces, which boosts the efficiency of the
process. However, extra considerations of the interface conditions increase the complexities.

In this article, we will consider a third procedure, in which we will base our investigation. It combines the ideologies
of the aforementioned two treatments to construct the reduced basis. Our physical model, the fuel assembly of an LMFR
consists of repeating parts and has symmetries, and can be reconstructed considering a few archetype subdomains. We
will extract local snapshots from global FOM solutions and generate the corresponding reduced basis for each type of
subdomain. Note that this local approach can be advantageously utilized for our peculiar geometry. Besides, it is not novel.
It was recently applied in some investigations.48–50

Conceptually, for a periodic and symmetric geometry, the domain decomposition adopted to construct the local
reduced basis is an approach not far from the mindset utilized in developing subchannel codes, where the divi-
sion of the global domain was also an essential issue. Still, there are remarkable advantages to using a reduced
basis method. Note that the subchannel approach was also commonly referred to as a Lumped parameter model.11,12

As its name indicates, the technique implies that an area is divided into homogenized and symmetric control vol-
umes (also called subchannels). In each of them, only one single value is defined and spatial gradients of vari-
ables do not exist. The method was reasonable at a time contemporary with the development of early comput-
ers when hardware soon reached its limits. It allowed us to bring computational analysis to guide the design of
nuclear cores.

Nowadays, increasing computing power allows researchers to follow more subtle approaches. Thus, adopting, in some
sense, the ideology of the subchannel method does not mean renouncing to consider spatial gradients. The usage of
a reduced basis extracted in a small domain –channel– from a high fidelity solution allows to consider few values per
domain –order of ten– while keeping an accurate flow description.

Periodicity and symmetry also allow us to expect that the dominant flow features under different conditions are very
close in different locations. In mathematical terms, we are approximating a flow in subdomains by subspaces spanned by
reduced bases. Therefore, similarities between flow patterns should translate into closeness among the reduced subspaces.
A concept that can be characterized by the distances between subspaces.

Distance and metrics are classical mathematical notions that have been amply generalized to characterize a vast
type of systems. Its encyclopedic review, involving their characteristics and properties, can be found in Reference
51. In this research, we are particularly concerned by the methods adopted to measure the distance between linear
subspaces.

In this regard, we are actually interested in examining a reduced subspace of dimension k inside a high dimen-
sional -fidelity- subspace of dimension n. The distances we may wish to quantify are those among different local
reduced bases, arising from different locations or simulations, of similar -but not forcefully equal- dimensions k
and k′ ≪ n.

The level of abstraction, in which the similarity in the local reduced basis is characterized by the distance among
the reduced subspaces of each piece, has many advantages. Particularly, it allows us to apply the existing theory of
distances among subspaces. In this regard, we need to mention the fundamental concept of the Grassmann man-
ifold52–54 to provide a general frame to measure distances between linear k-dimensional subspaces included in a
n-dimensional one.

Inside this theoretical environment, several definitions of distance exist to measure the similarities among subspaces
for both equi-dimensional and non-equi-dimensional cases. A comprehensive review can be found in Reference 53.
The different expressions are due to heterogeneous conceptual approaches to consider the measurement. Their concrete
description will be addressed in detail in Section 4.

This article is devoted to analyzing the local reduced bases, including their potentiality and differences. In frames of
a contemporary subchannel-inspired approach to nuclear engineering, the flows consist of repetitive pieces with sym-
metries. Thus, we study the possibility of creating a generic subdomain-level reduced basis to approximate high-fidelity
solutions of cases varying in physical conditions. In addition, some factors, including the effect of domain decomposition
strategies, are considered.

To achieve this goal, we first describe the simulations performed on which we base our analysis in Section 2.
In Section 3, we describe the POD vectors characterizing their capability of reproducing the calculations by the
truncation error of the reduced basis. Finally, in Section 4, we address the problem in terms of distances among
subspaces.
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2 HIGH FIDELITY SIMULATIONS

2.1 Physical model

The flow domain utilized in this study is a 7-pin bare rod bundle arranged in a hexagonal array, see Figure 1. The work-
ing fluid, liquid lead-bismuth eutectic (LBE), is bounded by bundle walls, marked in green. The flow moves along the
longitudinal direction. The geometrical parameters of the bundle correspond to the ones studied in the experiments of
Reference 4. A bundle consists of seven rods with a diameter of 8.2 mm and a length of 300 mm. The rods are arranged
with a centroid pitch of 10.49 mm and a wall rod pitch of 10.58 mm equivalent to a hydraulic diameter of 6.52 mm.

High-fidelity simulations were carried out employing incompressible Reynolds-Averaged Navier–Stokes (RANS)
equations. All the calculations were steady-state and performed using an OpenFOAM solver, SimpleFoam.55–57 This
procedure is especially suited for incompressible turbulent flow.

To close the RANS equations, we selected the standard k − 𝜖 model58,59 to account for terms corresponding to
turbulence. The standard wall function58 was involved to represent the flow in near-wall regions.

The effect of blockage is an important point for this research. It is characterized as a porous medium, for which the
detailed simulations are complicated. Hence, we chose the Darcy-Forchheimer law to model that region. The hydraulic
resistance is thus approximated as an additional source term in the momentum equation. The model has been widely
used due to its potential for flow simplification.60,61

The bundle mesh is displayed in Figure 2. To attain reasonable solutions, the grid should satisfy some requirements.
Recall that the standard k − 𝜖 model and standard wall function are adopted. Therefore, the size of the first layer of cells
ensures that y+ is around 60.58,59,62 For cells further away from the wall, a slightly larger thickness is adopted. Moreover,
the aspect ratio –the ratio of the longest to the shortest edge– should be maintained in a suitable range,63 which is taken
to be about 5.5—the maximum. To verify the constraints mentioned above, a structured hexahedral mesh with 806,400
cells was employed in the simulations.

2.2 Subdomains

As mentioned in Section 1, the fundamental idea of subchannel codes lies in dividing the total domain into sub-pieces.11

One of those divisions is displayed in Figure 3, including inner, edge, and corner sub-blocks. Such is similar to the local

F I G U R E 1 Tube bundle layout.

F I G U R E 2 Mesh employed.
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F I G U R E 3 Divisions of the 7-pin tube bundle; green: Inner subchannel; orange: edge subchannel; red: corner subchannel; gray: rod.

T A B L E 1 Domain decomposition strategies.

Strategy Pieces Figure Pieces Num. cells

1 3 Figure 4 Ω1a 200

Ω1b 900

Ω1c 540

2 3 Figure 5 Ω2a 1200

Ω2b 2200

Ω2c 1080

3 1 Figure 6 Ω3 4480

4 1 Figure 7 Ω4 8960

F I G U R E 4 First decomposition strategy: (A) Strategy adopted; (B)–(D) Subdomains.

domain decomposition applied in POD and reviewed above. In both cases, the tiling is based on a geometrical structure
showing symmetries like the bundle in Figure 1.

The division into repeating parts is not unique and may influence the performance of the POD basis (as did in subchan-
nel codes). To investigate that impact, four decompositions are applied, see Table 1. In all cases, based on the experience
gained utilizing subchannel codes9,64,65 and with the aim of simplifying our study, we assigned a single length of all
subdomains set to be 10 mm.

In the first strategy, the whole bundle can be built utilizing three subdomains, Ω1a, Ω1b and Ω1c, Figure 4. From the
figure, we can observe that an inner subchannel consists of six Ω1a; an edge subchannel contains two Ω1a and two Ω1b;
and a corner subchannel is the makeup of two Ω1c.

The second strategy follows the same ideology as the subchannel codes, see Figure 5. TheΩ2a,Ω2b andΩ2c are applied
to construct the global domain.

Larger parts are employed in the third and fourth strategies. For the third decomposition strategy, Figure 6, the domain
Ω3 contains an inner and edge subchannels and two halves of a corner subchannel. Ultimately, the fourth strategy utilizes
the largest elements. Element Ω4 of Figure 7 is the makeup of two duplicate Ω3.

 10970207, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7552 by K
arlsruher Institut F., W

iley O
nline L

ibrary on [12/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



6 of 29 RUAN et al.

F I G U R E 5 Second decomposition strategy: (A) Strategy adopted; (B)–(D) Subdomains.

F I G U R E 6 Third decomposition strategy: (A) Strategy adopted; (B) Subdomains.

F I G U R E 7 Fourth decomposition strategy: (A) Strategy adopted; (B) Subdomains.

2.3 Simulation setups

The physical model and simulation methods shown in previous sections should be completed with adequate physical
setups. In the approach followed, heat transfer was overall neglected. The imposed momentum boundary conditions are
listed below.

In the inlet, zero pressure gradient 𝜕np = 0 and a prescribed velocity u = uin was imposed. Velocities adopted can be
seen in the third column of Table 2. In the outlet, zero velocity gradient, 𝜕nu = 0, and zero pressure p = 0 were defined.
Finally, bundle and tube walls were regarded as impermeable. Also, zero pressure gradient 𝜕np = 0 and the no-slip
boundary condition was imposed.

Concerning the fluid properties, lead-bismuth eutectic at 493 K, is characterized66 by a density 𝜌= 10427.6 kg m−3 and
by a dynamic viscosity of 𝜇 = 2.2 × 10−3 Pas.
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T A B L E 2 Physical conditions of FOM simulations.

Case No. Blockage Inlet velocity [m/s] Profile

1 None 1.74 Uniform

2 None 1.74 Fully developed

3 None 1.0 Uniform

4 Figure 8A 1.74 Uniform

5 Figure 8B 1.74 Uniform

6 Figure 8C 1.74 Uniform

F I G U R E 8 Transversal section at half-length. Blockage for Cases 4, 5, and 6.

Six steady state FOM simulation cases are listed in Table 2. They intend to study the influence of two effects: inlet
boundary conditions (Cases 1, 2, and 3) and blockage (Cases 4, 5, and 6).

Let us consider Case 1 as a base case. A uniform inlet velocity of 1.74 m s−1 was adopted. That corresponds to the
maximum mean flow rate used in an experimental study.4 Case 2 regards a fully developed flow distribution. Its mean
speed is equal to case one. Its goal is to study the influence of flow distribution at the inlet. Case 3 was performed to
investigate the effect of the inflow magnitude.

The second group of simulations (4, 5, and 6) were conducted to reveal the impact of flow impediment. Simulations
regard three cases with different numbers of obstructed inner subchannels displayed in Figure 8. The blockage is of the
same size as the subdomain Ω2a with a length of 30 mm (see Figure 5). It is longitudinally located in the middle of the
bundle. The Reynolds number for an inlet velocity of 1.74 m s−1 is 6.0 × 104. For Case 2, where the mean inflow is 1.0 m s−1,
the value is 3.4 × 104. Hence, all simulations are turbulent according to empirical correlations proposed by Cheng and
Todreas.67

2.4 Results and analysis

The simulations were validated by comparing the pressure drop results against the well-known correlations of Blasius68

and Cheng and Todreas.67 They showed excellent agreement with these references.
For the investigation reported in this article, it is important to discuss some results concerning the veloc-

ity distribution significantly downstream. Therefore, we study it near the outlet and in the neighborhood of the
blockage.

Figure 9 shows the scaled velocity magnitude, Umag, in a transversal section of the outlet for all six cases. The absolute
velocities are scaled by dividing the constant inlet values of each configuration, see Table 2. Although the inflow condition
is different, the scaled profiles at the outlet for Cases 1, 2, and 3 are nearly equivalent. Regardless of the inflow conditions
of Case 1, at the channel exit, the flow field becomes almost fully developed and thus very comparable to Case 2. Case 3,
in which inflow is lower, shows a re-scaled velocity profile of Case 1.

Blocked cases (4, 5, and 6) show a dissimilar pattern. The velocity in the blocked subchannels remains much lower
than in the previous cases. This happens even considering that the outlet is relatively far away from the blockage (130 mm).
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F I G U R E 9 Scaled velocities magnitude (divided by the constant inlet values of each configuration, see Table 2). Transversal cuts at the
outlets.

F I G U R E 10 Longitudinal cuts of velocity profiles near the blockage for Cases 4, 5, and 6. The axial range of the cut is from 110 to
240 mm, measured from the inlet plane.

Fluid speed in neighboring subchannels is also smaller than in Case 1. In contrast, motion in the edge and corner
subchannels is relatively higher.

The velocity distribution near the blockage is displayed in Figure 10. The longitudinal location of the cut ranges from
110 to 240 mm, measured from the inlet plane. The results indicate a low-velocity region upstream of the obstruction.
This region could be characterized by poor heat convection. The jam significantly affects flow velocity, creating an area of
low motion even far away from there. Indeed, a larger blocking area leads to a more substantial low-velocity region near
the blockages, especially downstream.
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3 POD AND REDUCED BASIS

3.1 Snapshots and POD

By performing a simulation on FOMs, we obtain high-fidelity discrete solutions of different variables (e.g., velocity and
pressure). We carry out i cases differing in physical settings. The results can be stored in a matrix, S ∈ RM×n, composed
of M vectors u1, … ,uM ∈ Rn called snapshots. In this research, we treat each variable separately. n corresponds to the
dimensions of the physical subdomain, aka the number of cells. Note that the original snapshot indicates a state vector,
that is, the FOM solution, of a system at a particular time.69 In our study, a set of steady state data were gathered. The states
restricted in subdomains were extracted. Therefore, the snapshots considered in this article denote geometric snapshots
and/or spatial snapshots.

One of the main goals of this study is to extract flow features in subdomains. Thus, M can have different meanings
for the decomposition strategies already mentioned in Section 2.1. The domain is decomposed into m repetitive regions.
We may treat the i simulations in two different ways. We may regard them individually (see Figure 11, each vector of the
matrix represents the high fidelity solution in a subdomain for an individual case), in which case M = m, or alternatively,
multiple simulations can be gathered so that M = i ×m. An example of the matrix gathering the snapshots for two cases is
shown in Figure 12, where the M = 2 ×m. The matrix has two sub-blocks, each containing m snapshots for Cases 4 and 5,
respectively. Remark that we performed several simulations and utilized different domain division strategies. Therefore,
many case- and subdomain-specific snapshot matrices were collected.

In this research, POD employing the SVD algorithm was adopted to build a reduced basis. Note that we generated
various reduced bases with respect to the aforementioned case- and subdomain-specific snapshot matrices. The POD

F I G U R E 11 Matrix (S ∈ RM×n, where M = m) containing snapshots, u1, … ,um ∈ Rn, for an individual steady state case.

F I G U R E 12 Matrix (S ∈ RM×n, where M = 2 ×m) containing snapshots, u1,i, … ,um,i ∈ Rn (where i is 4 or 5), for two steady state
cases, that is, Cases 4 and 5.
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10 of 29 RUAN et al.

basis, defined as Φ, obtained by the span of the first N reduced basis vectors is the best N-dimensional approximation of
the snapshot matrix S.70

The percentage of energy corresponding to the neglected M − N vectors is denominated truncation error 𝜀.70,71* This
magnitude can be computed in terms of the sum of the squares of the M − N singular values, 𝜎, as

𝜀 = ||S − ΦΦTS||F
||S||F

=

√
∑M

j=N+1𝜎
2
j

√
∑M

j=1𝜎
2
j

, (1)

where || ⋅ ||F denotes the Frobenius norm of the matrix.
In many engineering practical cases, singular value decay is exponential, guaranteeing a few POD modes to achieve

a high energy threshold.35 Thus, 𝜀 constitutes a criterion to select N.

3.2 Reduced basis and truncation error

In this research, snapshots were sampled from the six high-fidelity simulations. In terms of geometry, sampling included
all the subdomains except those in the area of the blockage. Figure 13 displays iso-surfaces of the first four modes of axial
velocity in the inner subchannel obtained from Case 1.

We may analyze the shapes of the vectors. Without blockages (Figure 13), the fluid flows alongside the axial direction
freely. Therefore, variations are mainly due to wall friction and are thus small in the longitudinal direction. This physical
behavior is captured by the first and second modes, where iso-surfaces mimic distances from the walls. Vectors one and
two are reciprocal. Variations not determined by distances to the walls are set aside for higher orders. Changes in the
direction perpendicular to the walls are accounted for by the third vector. Secondary currents are only included in the
fourth mode.

Configuration of the basis vectors in Case 5 is significantly affected by the existence of blockages (Figure 14). Like
in Case 1, the pattern of the first basis vector is still governed by axial motion. Nevertheless, its shape no longer mim-
ics strictly wall distance. Changes in the wall-normal direction start appearing in the second and third modes. These
changes are induced by the low-velocity region downstream of the obstruction, in agreement with the characteristics
already shown in Figure 10. Finally, the fourth basis vector is strongly influenced by stagnant areas upstream of the block-
age. The notable gradient in the longitudinal direction is due to this issue. Secondary channel currents are relegated to
higher modes.

F I G U R E 13 Iso-surfaces of the first four velocity basis vectors for Case 1. Shown is the longitudinal component Uz in Ω2a domain (see
Figure 5B).
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3.3 Truncation error

Reduced basis retains only the first N vectors. This induces a dissimilarity that we denote truncation error, Equation (1).
This magnitude is an essential criterion to qualify the suitability of an approximation basis, measuring its capacity for
reconstructing the fields. Note that we computed respective reduced bases for each type of subdomain whose shapes
were displayed in Section 2.2. In the following figures, the results are shown as a function of the number of vectors of the
basis. That means for an archetype partition, for example, Ω1a, the same amount of vectors are utilized to truncate every
Ω1a-type subdomain. In addition, we expected the division strategies to affect the percentage of neglected flow energy.

The truncation error of the small subdomainΩ1a and the subchannel oneΩ2a is presented in Figure 15. For unblocked
cases (1, 2, and 3), only a few modes are necessary to reproduce the flow features. This is due to the simplicity of the flow
field and the symmetries existing in the channel. For cases with obstacles (4, 5, and 6), blockage leads to significant local
variations of the motion. The number of modes required to reach the same accuracy increases dramatically. See that flow
complexity was already noted in Section 3.2. Notably, this resulted in more complicated basis vectors (compare Figures 13
and 14). However, even in blocked cases, 20 modes are enough to retain more than 99% of the energy of the original flow
field.

F I G U R E 14 Iso-surfaces of the first four velocity basis vectors for Case 5. Shown is the longitudinal component Uz in Ω2a domain (see
Figure 5B).

F I G U R E 15 Truncation error 𝜀 of the velocity in Ω1a and Ω2a of all cases.
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12 of 29 RUAN et al.

F I G U R E 16 Comparison of truncation error 𝜀 of the velocity for (A) unblocked and (B) blocked problems.

Results above reveal that errors in Ω1a and Ω2a are not the same. The error in subdomains built by four strategies (as
listed in Table 1) is presented in Figure 16A, which reveals that error descends exponentially with N, the number of basis
vectors. This trend is similar in different subdomains. In this unblocked case, considering 20 modes decreases the error
to the order of 1 × 10−4, a very low value for most applications.

Compared to the case of Figure 16A, the decay of the obstructed case of Figure 16B is two orders of magnitude slower.
The trend is similar in different subdomains, except Ω4, which experiences a drastic decay.

The location of the subdomains influences the error registered. Note that obstructions are exclusively located in the
inner subchannel. This leads to a larger truncation error in domainsΩ1a andΩ2a than inΩ1b andΩ2b. Remark the relative
location and geometrical pattern of the subspaces shown in Figures 4 and 5.

We may now expand our analysis to find out the geometrical 3D distribution of error, 𝜖3D. It is a field whose element
contains a relative truncation error for each cell. Analogously to Equation (1), we define the 3D error as

𝜖3D = |
|(I − ΦΦ

T)S||∕|S|, (2)

where S is a snapshot matrix and Φ is a matrix containing the reduced basis vectors. The Φ is directly computed using
POD for S, indicating the 3D contour is reproduced by its own reduced basis. The | ⋅ | and ∕ are element-wise absolute
value and division operators, respectively.

Note that the whole geometry is assembled by several types of partitions, for example, Ω1a, Ω1b and Ω1c. Thus,
the following 3D results apply the same number of vectors for each subdomain type in the calculations. The 3D
error 𝜀3D for Case 1 reconstructed by its own modes is shown in Figure 17. 5 and 20 modes are used in the
figure. This global 3D representation is built considering the first decomposition strategy of Figure 4. Retaining five
modes, the error is about 0.2% in most parts of the bundle. The inaccuracy reduces below 0.1% when 20 modes
are utilized.

For the fifth case –blockage–, the 3D error is displayed in Figure 18. Results reveal that the maximum inaccuracies
appear in the region near the blockages. Retaining five modes, dissimilarities in the inlet and the blockages-neighboring
region are higher than 5%. An accurate representation of velocity in the inlet requires utilizing 20 modes. The results
indicate that five modes can well represent the velocity field for an unblocked case. With jams, the velocity distribution
upstream and downstream of the blockages is comparatively more complicated, Figure 10. The velocity modulus is low
in that region. Thus, the relative error is higher than 5% even when using 20 modes in low-velocity domains, although
this is not significant.

Besides, in both cases, high local error exists in the inlet. Since the dominant modes –the first ones– capture the axial
flow in most subdomains and the extensive variations near blockages, extra modes are needed to represent the uniform
inlet velocity more accurately.
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RUAN et al. 13 of 29

F I G U R E 17 3D truncation error 𝜖3D of the velocity field for Case 1. The contour is reproduced with (A) 5 and (B) 20 modes in Ω1a, Ω1b

and Ω1c.

F I G U R E 18 3D truncation error 𝜖3D of the velocity field for Case 5. The contour is reproduced with (A) 5 and (B) 20 modes in Ω1a, Ω1b

and Ω1c.

3.4 Representative subspace

In the simulations, we have carried out, several distinct physical settings were assumed. This resulted in various particular
solutions that nevertheless show some common patterns.

In the local reduced basis technique we are following, we are utilizing a division of the space into subdomains
with a relatively small tiling. We utilize the same partitioning in all simulations. Therefore, it is reasonable to expect
that a certain –probably high– level of similarity exists among the results obtained locally for some or many of
the sub-domains. This similarity should translate into a likeness among the reduced basis arising from each of the
individual cases.
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14 of 29 RUAN et al.

In these frames, it is reasonable to study whether the bases arising from a single experiment can supplant all others
with acceptable accuracy. This can be claimed utilizing Equation (1). This time the snapshot collection S and the reduced
basis Φ, correspond to different cases. We call this approximation error and denote it by 𝜀R.

𝜀R =
||Si − ΦRΦT

RSi||F

||Si||F
, (3)

where Si indicates a snapshot matrix obtained from any case i, and ΦR is a reduced basis constructed from a so-called
representative case. Hence, i ≠ R in the following comparisons.

For the rest of this section, we will apply the representative reduced basis ΦR, obtained from Case 5, to approximate
the snapshots of all other calculations. This choice is based on the results in Section 4 and the qualitative estimation
for the flow features based on our knowledge and experience. On them, it appears that the subspace obtained from this
case seems to be more prone to be able to substitute all others. Besides, the same number of vectors are also utilized to
approximate each type of subdomain, denoted Ω1a, Ω2a, Ω3 and so forth.

Figure 19 displays 𝜀R in subdomains Ω1a. We notice that all curves show a decline. They decrease quickly in the first
20 modes, and then the decay rate slows. For unblocked cases (i.e., Cases 1, 2, and 3), we can observe that the error is less
than 1% when using more than ten modes. Then they descend gradually to the order of 1 × 10−4. For blocked cases (i.e.,
Cases 4 and 6), the errors are higher than those of previous ones. All errors decrease to 1% after 20 modes. However, the
curves of Cases 4 and 6 remain higher than 1 × 10−3 even adopting 100 modes.

It is interesting to study the influence of the domain decomposition strategies proposed in Section 2.2. We plot errors
for chosen subdomains for Cases 1 and 4 in Figure 20. In both cases, the errors go down with the increase in the number of
modes. Figure 20A shows the results for Case 1. The drop of the curves is rapid within ten modes and then becomes linear.
In the whole process, a smaller subdomain usually results in a lower error level. The error for the smallest subdomain,
Ω1a, appears to be always the lowest. The last point will be discussed later regarding further results.

For the blocked condition, Case 4, errors are presented in Figure 20B. Notice that the existence of jams leads to a higher
approximating deviation than the former results. Remark that the distinctions in Ω1a are much lower than the others.
The former remains under 0.5% when using more than 20 modes. However, for the others, the errors amount to 2% at
that point. Furthermore, their values decrease more slowly. The curves ofΩ2a andΩ3 require 40 extra modes to underlay
under 1%. The error in Ω4 stays nearly unchanged even if the number of modes increases from 20 to 80. Thus, applying
more than 20 modes in Ω4 to construct ROMs does not yield a significant improvement in accuracy.

As remarked in Section 3.1, the POD basis is the optimized low-dimensional representation of a high-fidelity data
set. Approximating a snapshot through a subspace corresponding to another database—the reduced basis of Case
5—introduces an additional discrepancy. Exploring the relations between truncation (on its own reduced basis) 𝜀 and
approximation error (on a reduced basis corresponding to another set) 𝜀R is thus very meaningful. The comparisons of
the two are displayed in Figure 21. The figure contains the results in domain Ω1a.

F I G U R E 19 Error 𝜀R obtained approximating Cases 1, 2, 3, 4, and 6 based on the representative basis of Case 5. The Effect of physical
setups.
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RUAN et al. 15 of 29

F I G U R E 20 Error 𝜀R obtained approximating Cases 1 and 4 based on the representative basis of Case 5. The effect of division shapes.

F I G U R E 21 Comparison of the inaccuracy utilizing its own reduced basis (truncation error 𝜀) and the one of Case 5 (approximation
error 𝜀R). Velocity in Ω1a for (A) unblocked (1, 2, and 3) and (B) blocked cases (4 and 6).

Figure 21A shows the notable difference between the two errors for unblocked situations. The gap between the curves
enlarges with the mode number. Notice that at the point of 20th mode, 𝜀 underlies 1 × 10−4, while 𝜀R remains at 2 × 10−2.

The comparisons between Cases 4 and 6 are shown in Figure 21B. The distinctions between the two errors are narrow
regarding the previous comparisons. Within the first 20 modes, they are comparable. In contrast, the difference cannot
be neglected after 40 modes. Considering the flow complexities induced by the flow obstruction, we necessitate more
reduced basis vectors to approximate the high-fidelity solutions with acceptable accuracy.

Previous quantities based on the Frobenius norm consider overall results. We now analyze the 3D distribution of the
approximation error, which can be computed similarly to Equation (2). In the following results, an identical number of
vectors were adopted to compute the 𝜀R of all divisions of each shape.

Figure 22 shows the 3D error for Case 1. The values are computed adopting 20 velocity modes in subdomainsΩ1a,Ω1b
and Ω1c. Remark that the velocity in blockage-neighboring regions might be close to zero, so the 3D relative errors are
weighted with a small value to eliminate the extremely huge local errors. The weight factor is appropriately selected as
1% of the maximum velocity. The local error stays around 1% in the whole bundle. However, the inner subchannels are
not well approximated. Recall that blockages are located in inner subchannels. Thus, dominant modes capture the flow
pattern near the obstruction. Notice that the maximum magnitude appears in the inlet, indicating that flow features of
uniform inflow are not well captured.

 10970207, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7552 by K
arlsruher Institut F., W

iley O
nline L

ibrary on [12/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



16 of 29 RUAN et al.

F I G U R E 22 3D approximation error of the velocity for Case 1. The contour is reconstructed by using 20 vectors of ΦR in Ω1a, Ω1b and
Ω1c.

F I G U R E 23 3D approximation error of the velocity for Case 4. The contour is reconstructed by 20 modes of ΦR in Ω1a, Ω1b and Ω1c.

The 3D plot for Case 4 is shown in Figure 23. We see that the error remains under 5% in most locations except near
the blockages. As displayed in Figure 18, the maximum also appeared around the blocking regions.

4 DISTANCES BETWEEN LINEAR SUBSPACES

Due to the geometric particularities of the bundle –symmetries, pitch, and so forth–, it is conceivable that the principal
components of the flow in some or many subdomains have some degree of similarity. We intend now to characterize this
by analyzing the distances between them.

4.1 Introduction and definition

The definition of distances among high dimensional linear subspaces is not trivial.72 It is carried out in frames of a compact
smooth manifold called Grassmannian, Gr(k,n). This construction parameterizes all k-dimensional linear subspaces of
a n-dimensional vector space.

We consider at this stage the solutions of two simulations that we name A, B. By simulation, we denote a col-
lection of solutions sampled, for example, at different times, and arranged in matrix form. We defined the fields in
vector form as ai and bi, with i being any of the times involved. Certainly, A = (a1, a2, … , an) and B = (b1, b2, … , bn).
We obtain a reduced basis for each of them by applying the singular value decomposition procedure. Those are X =
(x1, x2, … , xm), Y = (y1, y2, … , ym), where xi and yi are the ortho-normal vectors of the reduced basis. Let us define
X̂ = span(x1, x2, … , xk) and Ŷ = span(y1, y2, … , yk). The distance we are interested in is d(X̂ , Ŷ ). To simplify the notation,
we drop circumflex accents and denote the subspace and the matrix containing its basis vectors, implicitly identifying both
concepts.

For the subspaces X ,Y ∈ Gr(k,n), we create a matrix XTY , and apply the singular value decomposition algorithm to
it. We get

XTY = LΣRT
, (4)

where Σ = diag(𝜎1, … , 𝜎k) are the singular values, fulfilling 1 ≥ 𝜎1 ≥ · · · ≥ 𝜎k ≥ 0.
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RUAN et al. 17 of 29

T A B L E 3 Distances defined on Gr(k,n) in terms of principal angles and orthonormal bases.54

No. Distance Principal angles Orthonormal bases Range

1 Grassmann dGr(k,n)(X ,Y ) =
(∑k

i=1𝜃
2
i

)1∕2
||cos−1 ∑||F [0, k𝜋∕2]

2 Asimov d𝛼

Gr(k,n)(X ,Y ) = 𝜃k cos−1||XTY ||2 [0, 𝜋∕2]

3 Chordal d𝜅

Gr(k,n)(X ,Y ) =
(∑k

i=1sin2
𝜃i

)1∕2 1
√

2
||XXT − YY T||F [0,

√
k]

4 Projection d𝜋

Gr(k,n)(X ,Y ) = sin 𝜃k ||XXT − YY T||2 [0, 1]

5 Procrustes d𝜌

Gr(k,n)(X ,Y ) = 2
(∑k

i=1sin2(𝜃i∕2)
)1∕2

||XL − YR||F [0,
√

2k]

6 Spectral d𝜎

Gr(k,n)(X ,Y ) = 2 sin(𝜃k∕2) ||XL − YR||2 [0,
√

2]

7 Binet–Cauchy d𝛽

Gr(k,n)(X ,Y ) =
(

1 −
∏k

i=1cos2
𝜃i

)1∕2
(1 − (det XTY )2)1∕2 [0, 1]

8 Fubini–Study d𝜙

Gr(k,n)(X ,Y ) = cos−1
(∏k

i=1 cos 𝜃i

)

cos−1| det XTY | [0, 𝜋∕2]

9 Martin d𝜇

Gr(k,n)(X ,Y ) =
(

log
∏k

i=11∕cos2
𝜃i

)1∕2
(−2 log det XTY )1∕2 [0,+∞)

We now introduce a fundamental concept, that of the principal angle. The principal angles 𝜃1 ≤ · · · ≤ 𝜃k between the
two subspaces are formulated as

𝜃i = cos−1
𝜎i, i = 1, … , k. (5)

Each of them is formed among the rays defined by pairs of principal vectors (fi, gi), which can be computed as,
[
f1, … , fk

]
= XL,

[
g1, … , gk

]
= YR. (6)

Note that principal angles play a notable role in the theory of distances among linear subspaces. Remark that it has
been proven that any definition of distance must be done as a function of principal angles.54 Various widely accepted
distances between linear subspaces are listed in Table 3.53,54

4.2 Interpretation

Even if the definitions of distances in the table seem complicated at first glance, they have precise physical meanings. In
the paragraphs below, we will attempt its clarification.

As shown above, each of the i principal angles represents the dissimilarities among the corresponding pair of principal
vectors. The principal angles can be arranged in a vector (𝜃1, … , 𝜃k), whose module can be characterized by different
norms. In those terms, Grassmann distance corresponds to the Euclidean norm and Asimov’s to the uniform of that
vector containing the principal angles. We may also see the principal angles as the sides of a k-dimensional parallelogram,
in which the Grassmann distance corresponds to the sum of the diagonals of that parallelogram.

The inconsistency between two subspaces can be indicated in several ways, that is, by studying the dissimilarities in
all or the worst direction. Note that this ideological difference not only links Grassmann and Asimov distances, but will
also connect Projection-Chordal and Spectral-Procrustes distances. Remark that when two subspaces almost overlap but
are very distinct in one dimension, considering just the largest component might emphasize dissimilarities, failing to
represent the real closeness among them.

Let us recall now that the projection matrix on an X subspace is given by P = XXT. In these terms, distances three and
four are the norm of the difference between the projectors of the two subspaces. Chordal distance utilizes the Frobenius
norm, which is the Euclidean norm relating to all singular values of the difference matrix. Projection distance –2-norm–
only considers the largest singular value. Regarding angles, the Chordal formula can be interpreted as the Euclidean
norm of the areas of the parallelograms created by each pair of principal vectors. The Projection form only evaluates the
maximum one.†

Following Equation (6), the matrices XL, YR contain the principal vectors by columns. Procrustes distance can be
regarded as the Euclidean norm of singular values of the metric matrix among principal vectors, while Spectral distance
uses only the maximum singular value. In terms of angles, Spectral can be reformulated as

√
2
√

1 − cos 𝜃k. Since the
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18 of 29 RUAN et al.

principal vectors are normalized, cos 𝜃k is regarded as the inner product of the less aligned pair, (gk, fk). Therefore, 1 −
cos 𝜃k denotes the deficit due to this misalignment. Procrustes adopts the Euclidean norm of the misalignment for each
pair of principal vectors.

The determinant of a matrix gives the signed volume of the parallelotope generated by the vectors given by its
columns.73 An identity matrix may be interpreted as a k-dimensional hypercube that has a volume -determinant- of 1.
Therefore, det

(
XTY

)
gives the volume of a k-dimensional parallelotope generated by the linear transformation XTY . If

the two orthogonal matrices are the same, then XTY leads to an identity matrix, and the volume of the parallelotope is 1.
When two subspaces become less similar, the parallelotope is distorted, resulting in a smaller volume.

Binet–Cauchy distance corresponds to this volume deficit. Alternatively, we can give an interpretation in terms of
principal angles. The misalignment between vectors forming the parallelotope generated by XTY can be characterized by
their inner product. Since all vectors involved are normalized, the inner product is itself specified by their cosines.

Note that the volume is bounded by zero and one, so it can be converted into an angle via arccosine. This is the
definition of the Fubini–Study formula in terms of orthonormal bases.

Finally, we remark that the log-determinant function can be interpreted as the unit ellipsoid generated by the linear
transformation XTY , xTXTYx ≤ 1. Its volume is proportional to the square root of the product eigenvalues of XTY . Note
that the matrix is a shrinking linear transformation. This fact allows us to define the Martin distance as a measure of
this volume reduction.

4.3 Gathered snapshots

As a first study, we collected the snapshots of all six cases into a common data set. The reduced basis was obtained by
POD and represents the dominant flow patterns in all cases. Note that the common patterns are the dominant as a whole
and should not forcefully include all dominant modes –up to an accuracy threshold– of each case. With this study, we
intend to analyze whether a single common basis can accurately reconstruct the flow patterns in all cases. The patterns
not included can be actually interpreted as the distance between the individual and the common basis.

Remark that the importance of lower modes is more significant than higher ones. Above a certain number, vectors are
just due to the numerical noise that exists in the solutions, for which comparisons are irrelevant. Therefore, to exclude
this impact, in the subsequent paragraphs, we only compare the first 20 and 40 vectors for unblocked and blocked cases,
respectively.

4.3.1 Basic comparisons of all distances

Distances between the subspace generated by the gathered reduced basis and those corresponding to Cases 1 and 5 are
displayed in Figure 24 for domainΩ1a. Remark that the subspaces contain an equal number of vectors in the calculations.

F I G U R E 24 Subspace distance between velocity modes of gathered and Cases 1 and 5 in Ω1a.
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RUAN et al. 19 of 29

The results in Figure 24A reveal that the dominant modes of Case 1 and the ones of the gathered database are very
dissimilar. The results corresponding to Case 5 are displayed in Figure 24B. They also show an upward trend but a smaller
slope compared to the one in Case 1. Thus, the common database is dominated by cases with blockages.

Of particular interest in understanding the dissimilarities among subspaces are the smaller principal angles. For a
ROM, they correspond to basis vectors that will probably be the ones with larger amplitudes. They also contain the most
significant flow patterns.

In Case 1 Figure 24A, the agreement between the lower modes of the gathered and own subspaces is relatively poor.
Note that Asimov, Projection, Spectral, and Binet-Cauchy distances reach their upper bounds in less than five modes,
while that happens in Case 5 only after twenty modes. The Grassmann, Chordal, and Procrustes distances grow in a
similar way. According to the definitions of distances, the last ones consider the effect of all principal angles, while Asimov,
Projection, and Spectral only consider the maximum one. Therefore, this result indicates that as early as the fifth mode,
the subspaces are orthogonal in one dimension for Case 1. But even if the agreement is better with Case 5, the angle is
as large as 𝜋∕4 for the 15th mode. Note also the relatively low importance of the first angles for calculating the distance,
despite its importance for the ROM. Computing distances with several modes, the larger –last– principal angle is dictating
the trend compared to the others.

Regarding the Binet-Cauchy distance, we observe that for Case 1, it reaches its maximum after five modes. This indi-
cates that the linear transformation by the matrix XTY has converted the parallelotope into a body of at least a dimension
less.

Finally, the Martin distance increases with a larger trend than the others. This means that in both cases, the
transformation of the matrix is far from an ideal sphere, becoming a significantly deformed ellipsoid.

Observe that the above comparison illustrates that all distances vary similarly until reaching their upper bound.

4.3.2 Effect of blocked and unblocked conditions

In the previous figures, we just present results subjected to Cases 1 and 5. We will show that these two suffice to represent
the blocked and unblocked scenarios. To do it, we now repeat the comparisons under the same conditions as before. For
the clarity of the discussion, we restrict ourselves to two distances, that of Grassmann and Fubini–Study. The selection
does not reduce the pertinence of the description since the two metrics can represent the two typical trends shown in
Figure 24.

In Figures 25 and 26, we confirm that the distance of unblocked conditions is much higher than that of blocked ones.
The dominant flow modes without blockages correspond to axial flow. In contrast, the flow behavior near the jams has a
transversal component, resulting in a more complex pattern. The gathered dominant modes are built to capture the latter.
This results in smaller distances to blocked cases.

F I G U R E 25 Grassmann distance between velocity modes of gathered and cases in Ω1a and Ω2a.
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20 of 29 RUAN et al.

In both comparisons –following the trend of Figure 25–, the distance related to Case 5 is the smallest, indicating that
the dominant features are more similar to that case than the others. Besides, we also remark that distances are smaller in
the subdomain Ω1a. Thus, the snapshots can be better approximated using the domain decomposition strategy regarding
smaller subdomains.

The curves displayed in Figure 26 show a different trend compared to the previous results. For Fubini distance, all lines
fastly reach a maximum for sufficiently high N. As discussed beforehand, the Fubini–Study gives the value of the arccosine
of the volume of a transformed n-dimensional parallelotope. If there exists an extensive rotation in one dimension, the
parallelotope is significantly compressed after the linear transformation XTY and leads to a minimal volume. That is why
the upper bound 𝜋∕2 for the Fubini–Study is rapidly obtained.

This peak can be explained regarding the reduced basis of the gathered case, mainly accounting for the flow distortions
induced by blockages. In Ω2a, Cases 1, 2, and 3 reach the peak in less than five modes. Such variation is also observed in
Ω1a. Contrarily, the results of Cases 4, 5, and 6 arrive the highest after 35 modes (in Figure 26A).

4.3.3 Effect of the subdomains

To gain further knowledge about the effect of domain decomposition strategies, the Grassmann and Fubini distances of
different divisions are compared in Figures 27 and 28.

F I G U R E 26 Fubini–Study distance between velocity modes of gathered and cases in Ω1a and Ω2a.

F I G U R E 27 Grassmann distance for velocity modes in Ω1a, Ω2a, Ω3, and Ω4 between gathered and Cases 1 and 5.
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As shown in Figure 27, we observe that a reduced subdomain size generally results in smaller distances, and the
difference increases with the mode number. Distances in Ω1a are smaller than in the others. Although the size of Ω2a
is smaller than Ω3, the distances among them are relatively small. Remark that the blockages are located exclusively in
inner subchannels. Therefore, flow patterns are simpler in edge and corner zones. The flow complexity is restricted to
domain Ω2a, while parts Ω2b and Ω2c remain quite simple. Hence, it is slightly advantageous to follow a division strategy
with more partitions, the one of strategy 2. In strategy 4, the complexity touches the whole enlarged domain.

Tendencies are exacerbated by Fubini distance in Figure 28. For Case 1, all lines reach the highest point after only five
modes. Without the extra flow features near the blocking regions, Case 1 is far away from the gathered snapshots. For
Case 5, the Fubini–Study distance gives a similar trend as Grassmann.

4.4 Separated comparison of blocked and unblocked cases

Results in Section 4.3 indicate that the reduced basis of blocked and unblocked cases behave distinctively. Thus, the
distances among these cases are now analyzed separately. Grassmann and Fubini–Study distances for cases with and
without blockages are shown in Figures 29 and 30, respectively. The figures display the comparisons of velocity modes in
subdomain Ω1a.

F I G U R E 28 Fubini–Study distance for velocity modes in Ω1a, Ω2a, Ω3, and Ω4 between gathered and Cases 1 and 5.

F I G U R E 29 Grassmann distance among velocity modes in Ω1a of unblocked cases (i.e., Cases 1, 2, and 3) and blocked cases (i.e., Cases
4, 5, and 6).
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F I G U R E 30 Fubini–Study distance among velocity modes in Ω1a of unblocked cases (i.e., Cases 1, 2, and 3) and blocked cases (i.e.,
Cases 4, 5, and 6).

For the no-obstructions cases of Figure 29A, we see that the Grassmann method gives a relatively low distance between
Cases 1 and 3, which is within 𝜋∕6 even when the mode number is increased to 20. This is also confirmed by the
Fubini–Study approach in Figure 30A. Remark that Cases 1 and 3 differ only in the inflow velocity. That accounts for the
distances appearing in the figure.

An important feature of the plots is the peak of 𝜋∕6 we can observe in the fifth mode. Then the distance decreases
again after it. That corresponds to a situation in which the bases for the two cases are very similar but with two vectors
swapped. Note that from the POD procedure, the ordering of the vectors corresponds to their relative importance in the
collection of snapshots. Due to the swapping and adding an extra coordinate into the two subspaces, the distinction is
greatly diminished.

Considering the relations between Cases 2 to 1 and 3 (in Figure 29A), the Grassmann distance rises gradually, indi-
cating the growing dissimilarities among them. Nevertheless, there are valleys for both curves in mode 14. That effect is
also caused by the sequential exchange of modes, as mentioned above.

The Fubini–Study distance, see Figure 30A, presents a maximum value of 𝜋∕2 after nine modes. The
increased value compared to that of Cases 1 and 3 is due to the flow distribution at the inflow. Case 2 is
fully developed, hence their modes cannot capture flow patterns regarding the developing process of the flow as
in 1 and 3.

The results of Grassmann distance for blocked cases are displayed in Figure 29B. Here, the discrepancy among
the three conditions increases even when a few modes are considered. The level of 𝜋∕2 is reached already with
three dimensions. The lines fluctuate around this value for the following 20 modes. This pattern can be confirmed in
Figure 30B. The values of 𝜋∕2 for a few modes, as shown in Figure 30B, are related to some particular perpendicu-
lar vectors. Increasing the number of modes, the distances decrease dramatically and then jump again. This implies
that similar flow patterns are of different but close importance for the three cases. Therefore, for the first 25 modes,
the global content –not its relative importance– is comparable. The peaks do not occur in the same locations for the
three comparisons (e.g., Cases 4 and 5 around mode 18). The influence of the blockage ratio in the flow features
is significant.

From the above comparisons, we conclude that the change in inlet velocity results in relatively low distances for
unblocked conditions. The existence of blockages significantly impacts the corresponding reduced subspaces, leading to
a few perpendicular vectors between the subspaces.

As a general conclusion on the relative usability of the distances, the results indicate that the Fubini–Study,
Asimov, Projection, Spectral, and Binet-Cauchi distances show better performance in measuring very close
subspaces, while Grassmann, Chordal, Procrustes, and Martin can better capture conditions that are more
dissimilar.
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4.5 Distances among subspaces of different dimensions

4.5.1 General definitions

The methodology to calculate distances between subspaces of non-equal dimensions is described in detail by Ye et al. in
Reference 54. Here we just provide minimal information for completion.

Assume we have two subspaces X ∈ Gr(k,n) and Y ∈ Gr(l,n), and let k ≤ l ≤ n. We define two subsets

Ω+(X) ∶= {E ∈ Gr(l,n) ∶ X ⊆ E} ,
Ω−(Y ) ∶= {F ∈ Gr(k,n) ∶ F ⊆ Y} ,

whereΩ+(X) contains all extensions of X into a subspace of l dimension, andΩ−(Y ) represents the set of all restrictions of
Y into k.

Two definitions of the distances between X and Y can be formulated in terms of the restriction 𝛿1(X ,Ω−(Y )) and the
extensions 𝛿2(Ω+(X),Y ). They are formulated as

𝛿1(X ,Ω−(Y )) = min
F∈Ω−(Y )

𝛿(X ,F), (7)

and

𝛿2(Ω+(X),Y ) = min
E∈Ω+(X)

𝛿(E,Y ). (8)

The two formulations are equal,54
𝛿1(X ,Ω−(Y )) = 𝛿2(Ω+(X),Y ) = 𝛿(X ,Y ).

As in Section 4.1, we may formulate the distance in terms of principal angles. That can be computed by Equation (4).
Then, the Grassmann distance is given by

𝛿(X ,Y ) = dGr(k,n)(X ,Ω−(Y )) =

( k∑

i=1
𝜃i(X ,Y )2

)1∕2

. (9)

Similarly, the other definitions of distances in Table 3 in terms of principal angles can be utilized.

4.5.2 Comparison among individual and gathered subspaces

We start now analyzing if individual subspaces can be included in the gathered one, provided the latter is much larger.
The reduced basis of gathered snapshots contains flow features of all cases, with and without blockages. Since

a case can only be optimally approximated by its own reduced basis, one should use more dimensions of the gath-
ered basis for the same accuracy. Therefore, we compute distances between each individual subspace and the gathered
one. In the comparison, we take a relatively low dimension for each individual subspace and vary the one of the
gathered. Note that the distance denotes the amount of individual flow information not involved in the gathered
subspace.

Note that the Grassmann and Fubini–Study metrics are extensively used in the above analysis. Thus, to better
understand the properties of the other distances, Martin and Projection approaches are utilized for comparisons in the
subsection. The results applying the two approaches are plotted in Figure 31 where velocity modes in the domainΩ2a are
compared. We select ten modes for each individual case while varying the dimension of the gathered basis in the range
of 10 to 40.

Results of Figure 31A indicate that the Martin distances of unblocked cases decrease linearly, that is, slowly.
The lines of Cases 1 and 3 almost overlap. This is because their modes are very similar. Case 2 has a lower trend,
revealing that, in this case, its subspace is closer to the gathered basis. That was not detected in the previous
comparisons.
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F I G U R E 31 Martin and projection distance between the different number of velocity modes of gathered (x-axis) and cases (10 modes)
in Ω2a.

The distances of obstructed cases to the common subspace are smaller than previous ones. The three results quickly
decline when increasing the x-axis from 10 to 15. The curves are smaller than 𝜋∕2 after 20 modes and stay at a relatively
low value. We can see that the distance of Case 5 is the lowest in the whole range.

The Projection distances are displayed in Figure 31B. Observe that the distance of non-jammed cases is nearly one.
Thus, at least one perpendicular principal vector exists between the two bases.

For blocked cases, the distances continuously decrease. The value is lower than one when employing 15 gathered
modes. So there are normal vectors at that point. Even considering the maximum principal angles, all lines are less than
0.4 after 25 modes. That reveals the flow features caused by blockages are well captured –and dominant– in gathered
modes.

4.5.3 Independent comparison between blocked and non-blocked cases

We confirmed that unblocked and blocked cases contain different flow patterns. Therefore, we compare the distances
among them separately.

Figure 32 represents the Projection distances of cases without obstacles. In the diagram, the velocity modes in subdo-
main Ω2a are shown. The dimension of Cases 2 and 3 is kept constant to five. The modes of Case 1 are increased from 5
to 20.

We notice that the distance between Cases 1 and 2 decreases by adding the sixth mode. Then it remains around 0.8
even if we use 20 modes. We can thus state that a certain proportion of flow characteristics in Case 2 cannot be represented
by the modes of Case 1.

The result for Cases 1 and 3 remains at one until the ninth mode is included. Then it remains very low in the rest
of the scope. That emphasizes that the content of the two bases is almost the same, but the modes appear in a different
order. The reduced subspace of Case 3 can include that of Case 1, and vice-versa, provided enough additional modes are
included.

Results for the blocked cases shown in Figure 33 illustrate the Projection distance among them. We keep the dimen-
sions of Cases 4 and 6 constant and equal to ten and set the range of variation for Case 5 from 10 to 40. More modes are
required to capture the flow complexities of blocked regions. Hence, we use ten basis vectors instead of five as a basic case
here.

Notice that the two results decrease gradually. But the value is higher than 0.75 even with 30 modes. Considering the
diversity in blocking, there are some dissimilarities between the jammed cases. Thus we cannot get a relatively low value
as in Figure 32. However, in the comparisons of 4 and 5 with a maximum principal angle remaining under one, there are
no normal directions, and a larger similarity between the subspaces can be obtained by increasing the dimension of the
basis.
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RUAN et al. 25 of 29

F I G U R E 32 Projection distance between the different number of velocity modes of unblocked cases in Ω2a. Case 1 (x-axis); Cases 2
and 3 (5 modes).

F I G U R E 33 Projection distance between the different number of velocity modes of blocked cases in Ω2a. Case 5 (x-axis); Cases 4 and 6
(10 modes).

The comparison of Cases 5 and 6 shows a different trend. The line starts at a value close to one, denoting the existence
of at least one orthogonal dimension among them. Then, a sharp descent can be observed at the 13th mode. We may
explain this decrease in view of flow patterns. Vectors contain some features that are relevant to Case 6. A similar behavior
also exists in the comparison of Cases 4 and 5. The descent is also found, here in its 32nd mode.

5 CONCLUSIONS

In this research, we have intentionally focused on the first stage of the creation of a reduced model: the construction of
a linear reduced subspace. The selection of a local method, four domain decomposition strategies, and six calculations
considering different factors increase the complexity of the problem. Those should be studied and, if possible, optimized.
In particular, we regard: (a) the determination of appropriate geometrical divisions; (b) the possibility of the creation of
a sub-optimal but common subspace for all calculations; and (c) the quantification of the differences among the various
options.

To address such issues, in the context of our applied research, we have performed a series of high-fidelity simula-
tions for a 7-pin nuclear fuel bundle, employing an in-compressible OpenFOAM solver. We have applied this to a severe
accident relevant to the nuclear industry. The geometry contains a high degree of symmetry and a repetitive disposi-
tion. Calculations address several physical scenarios, including instances containing flow blockage, a condition highly
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pertinent to this study. Four domain decomposition strategies are utilized to collect the information. Optimal bases are
extracted with POD for the ulterior analysis.

A first analysis of the potential accuracy achievable with a reduced basis may be derived by assessing the truncation
error. This magnitude describes the errors among fields and their reduced equivalent reconstructions utilizing the POD
basis. We can conclude that no matter which subdomains are adopted, all cases can be well represented by subspaces
derived from their own snapshot collection (individual subspaces).

A representative subspaces, generated from Case 5, were also applied to reconstruct the other cases. This constituted
an attempt to consistently approximate all patterns based on a unique calculation. The procedure can produce acceptable
reconstructions for conditions without obstructions. However, the approach is challenged due to the flow complexities
around the obstacles. The variations of the previous two approximations emphasize the limitations of using an external
reduced basis.

Regarding the tilling of the space, we have concluded that we can generally obtain more accurate representations
utilizing small subdomains.

The results indicate dissimilarities among the different calculations. Those naturally translate into differing reduced
subspaces. The distances between these linear subspaces are employed as a quantitative measure.

In these terms, we observed that the subspace created on snapshots gathered from all cases (gathered-subspace) shows
dissimilarities with each subspace obtained from individual collections. The metrics are distinct for the three blocked
scenarios but are relatively close for the three unblocked ones.

Based on this behavior, cases could be separated into two distinct groups depending on whether they are obstructed
or not. This division emphasizes the remarkable difference in reduced basis vectors due to physical configurations.

Significant fluctuations were observed in the distances among subspaces. Those depend on the number of dimensions
of the reduced basis and vary wildly. We have concluded that they are due to flow patterns that have similar features but are
differently ordered in different cases. Therefore, we infer that significant potential benefits can be gained by considering
vectors of similar importance in packs. Adding or removing several additional dimensions can considerably improve the
coherence among reduced bases.

The possibility of creating a typical reduced basis by significantly increasing the dimension of the gathered-subspace
has been studied by analyzing the distances among subspaces with different dimensions. In cases with blockage,
low-dimensional individual subspaces become closer to the gathered one when the dimension of the gathered subspace
increases. Nevertheless, non-blocked cases cannot be really included in the gathered subspace.

Although the results denote some dissimilarities, we perceive that the local POD basis captures abundant physical fea-
tures in flow fields. Compared to subchannel codes, which only define a single lumped variable in each subdomain, POD
basis vectors are possible to represent the 3D flow fields with acceptable accuracy. However, completed implementations,
including spatial domain decomposition strategies and the construction of ROMs, need further investigation.

Finally, we address the more technical part: the quantification of the distance among subspaces. Different distances
with distinct meanings were utilized. We conclude that all of them are practical to measure distinctions between subspaces
and show advantages in specific conditions due to their characteristics. Those considering metrics in all coordinates, like
Grassmann, Chordal, Procrustes, and Martin approaches, are preferable for subspaces of high dissimilarities. Asimov,
Projection, Spectral, Binet-Cauchy, and Fubini–Study methods emphasize the metric in one direction. Therefore, they are
practical to discover the existence of a single quasi-perpendicular coordinate. This is advantageous for subspaces showing
a high similarity.
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ENDNOTES
∗The projection matrix of a vector in space Φ is P = Φ

(
ΦTΦ

)−1ΦT. For orthogonal vectors ΦTΦ = I, thus P = ΦΦT.
†The absolute error of the projection of a vector a onto a subspace X is given by E =

(
I − XXT

)
a. According to Cauchy–Schwarz inequality,

the norm of the normalized projection error ||e|| = ||
(

I − XXT
)

a||∕||a|| ≤ ||I − XXT||. Thus Projection distance and the difference between the
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two projection errors can be connected through the inverse triangular inequality, ||XXT − YY T||2 = ||I − YY T −
(

I − XXT
)
||2 ≥ ||I − YY T||2 −

||
(

I − XXT
)
||2 So Projection expression is a measurement related to the difference between 2-norm of normalized projection error of the two

subspaces. Chordal manner utilizes the Frobenius norm.
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