Appendix to: Abstract Interpretation of ReLU
Neural Networks with Optimizable
Polynomial Relaxations

Phlhpp Kernl[0000700027761877401] and Carsten SinZLQ[0000700017971871802]

L Institute for Theoretical Computer Science, Karlsruhe Institute of Technology,
Am Fasanengarten 5, 76131 Karlsruhe, Germany
philipp.kern@kit.edu, carsten.sinz@kit.edu

2 Karlsruhe University of Applied Sciences,
Moltkestrafte 30, 76133 Karlsruhe, Germany
carsten.sinz@h-ka.de

Abstract. Neural networks have shown to be highly successful in a wide
range of applications. However, due to their black box behavior, their
applicability can be restricted in safety-critical environments, and addi-
tional verification techniques are required. Many state-of-the-art verifica-
tion approaches use abstract interpretation based on linear overapprox-
imation of the activation functions. Linearly approximating non-linear
activation functions clearly incurs loss of precision. One way to over-
come this limitation is the utilization of polynomial approximations. A
second way shown to improve the obtained bounds is to optimize the
slope of the linear relaxations. Combining these insights, we propose a
method to enable similar parameter optimization for polynomial relax-
ations. Given arbitrary values for a polynomial’s monomial coefficients,
we can obtain valid polynomial overapproximations by appropriate up-
ward or downward shifts. Since any value of monomial coefficients can
be used to obtain valid overapproximations in that way, we use gradient-
based methods to optimize the choice of the monomial coefficients. Our
evaluation on verifying robustness against adversarial patches on the
MNIST and CIFAR10 benchmarks shows that we can verify more in-
stances and achieve tighter bounds than state of the art bound propaga-
tion methods.

Keywords: Neural Network Verification - Abstract Interpretation - Poly-
nomial Overapproximation.

A Representation of Polynomials

The efficiency of SIP with polynomial bounds is highly dependent on an efficient
implementation of addition of polynomials, multiplication of a polynomial by
constant matrices, as well as elementwise application of univariate polynomials
and fast, but precise calculation of concrete lower and upper bounds. There-
fore, we utilize the polynomial representation developed for sparse polynomial

2 P. Kern and C. Sinz

zonotopes [2]. In this setting, the tuple
p(x) = (G, E,id) , (1)

where G € R™™ E € N*™ and id € N%, represents a multidimensional poly-
nomial p : R — R"

m d
p(x) =) (a:f) G; (2)
k=1

i=1

with m monomial terms. In the remainder of this paper, we sometimes just
write polynomial instead of multidimensional polynomial where it is clear from
the context. The monomial coefficients for the i-th monomial are stored in the
i-th column G; of the generator matrix and the corresponding powers of the d
variables are stored in the i-th column E; of the exponent matrix. An identifier
for the k-th variable is stored in idx. For example, the tuple

(Ee20).(0020).0)) §

is a representation of the polynomial

= () (s () (2

Given polynomials p : RY — R",p(x) = (G, Ep,id) and ¢ : R — R" q(x) =
(G,, Ey,id) depending on the same input variables x and a matrix A € R*”*", a
representation of the addition of two polynomials is given as

p(x) +q(x) = (G, E,id) G =[G, Gy, E=[E, B . ()

Duplicate monomials —i.e. duplicate columns in E € R™™ _ can be summarized
by only keeping one of these columns along with the sum of the corresponding
columns in the new generator matrix G. This requires scanning the m’ columns of
the new exponent matrix and comparing the d exponents in each column, which
can be done in expected time of O(m’d) using a hash map. Overall, the operation
has an expected time complexity of O(m'(n+d)). If both polynomials share the
same exponent matrix (i.e. E, = E,), there are no redundant monomials and
the expression reduces to

p(x) +q(x) = (G, + G4, E,id) , (6)

thus saving the cost of summarizing duplicate monomials.
The linear map also admits an efficient representation by multiplication with
the generator matrix G:

A p(x) = (A Gp, Ep,id) (7)

NN Verification with Optimizable Polynomial Relaxations 3

For ease of notation, we now let p(x) = (G, E,id) and additionally consider
a polynomial f(y) : R" — R", where all f;(z) = Z?:o a;;x? are univariate
polynomials, each of which can be described by a vector (a0, a1, -..,a;) of
monomial coefficients. The component-wise polynomial map is defined as the
polynomial 7(x) : R? — R™ where 7;(x) = fi(pi(x)), Vi € [n]. We can then
write f;(pi(x)) = Z?:o a;;pi(x)?. Since addition of polynomials was already
introduced above, we only need to consider the operation of raising a polynomial
to a given power j. To this end, we extend the result by [3] for j = 2 to arbitrary
powers j € N_:

p(x)! = <G, B, id> , (8)

with
G = [él G? ' "é(fmzl)} E= [El Bs. "E("TWTII)}

Gi= (al,ag{...,am) le;l Glal E; = 2?;1 o by,

where (ahaszam) is the multinomial coefficient and the index 1 <7 < (J;”izl)
enumerates the possible combinations of ai; +as +- - - 4+, = j such that o > 0.
Note that this number is in ©(m/) for fixed j € N.

The validity of this result can be seen from expansion of p(x)? using the

multinomial theorem:

5 i)}
=1 \k=1

. m d Rt
J E o
= kL G 10
Z <a1’a2"“’am>l];g<<k 1xk) ”) ()

a1 tasttam=j =
a>0

S (ol A e w

a1tazttam=j =1 =1
0

a>

pi(x)?

Straightforward implementation of this formula would require (j ;@11) addi-

tions of the m columns of E € N¥™ and the same amount of multiplications of
the m columns of G € R™*™. However, for j < m at most j elements of o can be
non-zero at the same time. Therefore, the operation requires O((j i’:ﬁ;l) j(d+n))
computations. For fixed j € N, this is equivalent to O(m?(d + n)).

Propagation of a polynomial p(x) through an elementwise polynomial map
r(x) of degree j requires the propagation through the linear part and the poly-
nomial parts of 7(x) and then summarizing duplicated monomials. Computation
of each p(x)* for k = 2,...,j uses O(m*(d+n)) operations and produces O(m")
monomials. Propagation through the linear part requires O(mn) operations and
produces O(m) monomials. During this process O(m?) monomials are created,
whose summarization requires O(m/ (n + d)) operations in expectation. The ex-
pected total number of operations required is therefore in O(m?(n + d)).

4 P. Kern and C. Sinz

Concrete lower and upper bounds p and D of a polynomial p(x) = (G, E, id)
can be efficiently computed via interval arithmetic. To further increase the effi-
ciency and also the tightness of the bounds calculation, we first normalize the
input variables to x € [—1,1]¢ [1]. and then obtain:

p=G'E+G E p=G'E+GE (12)
with
‘ 1, Ey; =0, Vk (constant monomial) 1
E=]:]e=40, Eu mod2=0,Vk E=
em —1, otherwise 1

Note that normalization only has to be done once before propagating the input
set through the network.

B Proof for Time Complexity of Polynomial
Backsubstitution

For convenience, we restate Proposition 1:
Proposition 1.

Proof. In order to analyze the time complexity of Algorithm 2, we step through
the operations one by one. To normalize the inputs to the NN to the range of
[—1, 1], we substitute z; = 1/2(T; — x;)T; + 1/2(z; + T;). Merging this substitution
with the weights and biases of the first layer, we get

. | 1
W1>2+b1:§W1((if§)®i)+§W1(§+i)+b. (13)

Obtaining W, € R™™ and b, € R™ has time complexity O(nm) since it requires
multiplying each column of W; by the respective scaling factor (T; — z;) as well
as a matrix-vector product and vector addition for b.

Concrete upper bounds on ny > Wi% + by can be obtained by setting n; =
W1 + W[(~1) + by (similarly for the lower bound) and thus requires again
O(nm) steps due to the matrix-vector multiplications.

Finding polynomial overapproximations requires computing the exact max-
imum or minimum deviation of the given polynomial to the ReLLU function for
each of the n neurons in the first layer. We make no further assumptions on the
maximization procedure and thus simply denote the runtime by O(nrty) with
T4 representing the time taken by an optimization procedure to calculate the
maximum of a degree d polynomial.

Propagation of an n-dimensional polynomial with m monomial terms through
an elementwise polynomial map of degree d requires O(m?(m+n)) = O(m*n)
operations in expectation and produces an n-dimensional polynomial with m’ €
©(m?) monomials according to Appendix A. During propagation, we jointly

NN Verification with Optimizable Polynomial Relaxations 5

summarize duplicate monomials in 1b(x) and ub(x) to ensure that both have
the same exponent matrix.

Note that all of the above operations only need to be computed once during
execution of Algorithm 2 and that their time complexity is dominated by the
O(m?*1n) operations for the propagation through the polynomial relaxations.

Each iteration of the loop in line 7 is responsible for calculating concrete
bounds on layer i of the NN. To this end, Algorithm 1 is used for linear back-
substitution from layer i down to the second layer, which requires O((i — 1)n?)
operations.

Another important factor is the substitution of the polynomial relaxations
for the first layer in lines 9 and 10. During this step, we need to multiply
It 1=, AT, A~ € R™" with the coefficient matrices Gy, Gy, € R™™ of Ib(x)
and ub(x), requiring O(n?m?) operations. Since 1b(x) and ub(x) have the
same exponent matrix, Equation (6) is applicable and addition is not a fac-
tor in the asymptotic cost. Overall, a single iteration of the for-loop requires
O((i — 1)n3 + n?md) = O((i — 1)n® + n?m?) operations.

Using the backsubstitution approach to calculate bounds for every layer up
until the output layer L involves computing the relaxation for the first hidden
layer once and L — 1 loop iterations. Adding the time complexity of the pre-
vious steps to the overall complexity of the loop, the total expected cost is in
O(m™n + n7y + L?n® + Ln?m?).

C Experimental Results for Runtime

In Proposition 1, we showed that the number of unfixed input dimensions 1.,
has a large impact on the time complexity of Algorithm 2. To investigate the
effect on runtime in practice, we first analyze the runtimes for a single forward
pass of POLYCROWN on the MNIST benchmark set for the properties with
small to intermediate n,, described in Section 4 and compare to the runtime of
a single forward pass of a-CROWN, before looking at the behavior for larger
Ny -

For comparison of the runtime of a-CROWN and POLYCROWN, we we
restrict our analysis to properties, where a-CROWN was able to verify the
property with the initial (unoptimized) relaxation — in these cases, the overall
runtime matches the time for one iteration. This is necessary, since we did not log
the number of iterations taken by a-CROWN, but only its overall runtime for
a verification task, Figure la shows that the time required by a single forward
pass of POLYCROWN already grows polynomially for small to intermediate
Nyn- Interestingly, a single forward pass of a-CROWN takes almost constant
time regardless of n,, — meaning that the algorithm does not capitalize upon
potential runtime savings for small input dimensions. Therefore, a single iteration
of POLYCROWN is indeed faster than a single iteration of a-CROWN for up
to 19-30 unfixed input dimensions depending on the network used. For larger
Nun, however, POLYCROWN’s runtime increases, while a-CROWN’s time still
stays virtually constant.

6 P. Kern and C. Sinz

50
network
mnist-net_256x2.onnx
—x— mnist-net_256x4.onnx

v B mnist-net_256x2
mnist-net_256x4
mnist-net_256x6 40

o

)
&
[]

. . . o POWCROWN | e mnist-net_256x6.0nnx

0.20 ¥ alpha-CROWN c
5 (1) S
5 v 0 g% e
Lo1s ..Il' % it
- b4 Ve
2 et g, '
2 0.10 i b * 980% !l" %
I T ’

..... 10
005 ch’)g
0.00 0 | memsnstE
0 10 20 30 40 100 200 300 400 500
n_unfixed n_unfixed

(a) Small to intermediate number of un- (b) Large number of unfixed input dimen-
fixed input dimensions. sions.

Fig. 1. Runtime on NNs trained on MNIST for a single forward pass for a-CROWN
and POLyCROWN (left) and just POLYCROWN (right) for properties with increasing
number of unfixed input dimensions.

To specifically examine POLYCROWN’s runtime for larger n,,, we con-
ducted as separate experiment. We selected the first 5 images from the MNIST
benchmark set described in Section 4 and increased the number of unfixed input
dimensions n,, from 50 to 500 with a step-size of 25. We then executed PoOLY-
CROWN with 20 iterations of gradient-optimization for each combination of
image, Ny, and MNIST NN with 2,4 and 6 hidden layers of 256 neurons each.
While the average runtimes per iteration for n,, = 50 are quite fast ranging
from 0.07 seconds (2-layer NN) to 0.39 seconds (6-layers), Figure 1b shows a
significant increase to between 18.93 and 47.11 seconds depending on the NN;
when 500 unfixed input dimensions are used.

References

1. Althoff, M., Grebenyuk, D., Kochdumper, N.: Implementation of taylor models in
cora 2018. In: Frehse, G. (ed.) ARCHI18. 5th International Workshop on Applied
Verification of Continuous and Hybrid Systems. EPiC Series in Computing, vol. 54,
pp. 145-173. EasyChair (2018). https://doi.org/10.29007 /zzc7, https://easychair.
org/publications/paper/9Tz3

2. Kochdumper, N.; Althoff, M.: Sparse polynomial zonotopes: A novel set represen-
tation for reachability analysis. IEEE Trans. Autom. Control. 66(9), 4043-4058
(2021). https://doi.org/10.1109/TAC.2020.3024348, https://doi.org/10.1109/TAC.
2020.3024348

3. Kochdumper, N.; Schilling, C., Althoff, M., Bak, S.: Open- and closed-loop neural
network verification using polynomial zonotopes. In: Rozier, K.Y., Chaudhuri, S.
(eds.) NASA Formal Methods - 15th International Symposium, NFM 2023, Houston,
TX, USA, May 16-18, 2023, Proceedings. Lecture Notes in Computer Science, vol.
13903, pp. 16-36. Springer (2023). https://doi.org/10.1007/978-3-031-33170-1\ 2,
https://doi.org/10.1007/978-3-031-33170-1\ 2

