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Abstract

We present the first nonlinear, gyrokinetic, radially global simulation of a discharge of the
Wendelstein 7-X-like stellarator, including kinetic electrons, an equilibrium radial electric field,
as well as electromagnetic and collisional effects. By comparison against flux-tube and
full-flux-surface simulations, we assess the impact of the equilibrium ExB-flow and flow shear
on the stabilisation of turbulence. In contrast to the existing literature, we further provide
substantial evidence for the turbulent electron heat flux being driven by trapped-electron-mode
and electron-temperature-gradient turbulence in the core of the plasma. The former manifests as
a hybrid together with ion-temperature-gradient turbulence and is primarily driven by the finite
electron temperature gradient, which has largely been neglected in nonlinear stellarator
simulations presented in the existing literature.
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1. Introduction

Due to the effectiveness in optimising neoclassical phys-
ics proven in [l], plasma turbulence has become the key
driver of heat and particle transport in the plasma core of the
Wendelstein 7-X (W7-X) stellarator [2].

The most prominent types of instabilities potentially
driving turbulence in W7-X plasmas so far are the ion-
temperature-gradient-mode  (ITG), electron-temperature-
gradient-mode (ETG) and trapped-electron-mode (TEM).
In highly electromagnetic regimes of future experiments,
instabilities such as kinetic-ballooning-modes, might become
relevant [3, 4].

Although studies of ETG turbulence in stellarators date
back as early as 2002 [5], its impact on transport processes
in W7-X remains a subject of ongoing debate. It was argued
in [6] that it should be negligible for W7-X, while it was con-
cluded in [7] that ETGs could be the primary contributor to
anomalous electron heat transport in certain experimental dis-
charges. In contrast, extensive studies have focused on turbu-
lence driven by ITG and TEM. It has been suggested that TEM
turbulence is relatively weak in W7-X due to the ‘maximum-
J’ property, where most trapped electrons reside in regions of
positive average magnetic field curvature [8—10]. However, it
is worth mentioning that many, though not all, of those stud-
ies consider TEMs that are primarily driven by a finite dens-
ity gradient rather than a finite electron temperature gradient
(ETG). As a result, the most significant contributor to turbu-
lence in the core of W7-X was hypothesised to be ITG, with
TEMSs only expected to be found in the edge region, if at all
[2, 11].

Numerical studies on this subject, typically within the
framework of gyrokinetic theory, have faced certain limit-
ations. For instance, while works like [9, 12—-15] consider
experimental scenarios with realistic plasma dynamics, their
simulations are limited to flux-tube (FT) domains. As such,
effects like variations in the geometry perpendicular to the
magnetic field lines and radial variation of the background pro-
files on the plasma dynamics cannot be captured accurately in
this approach. Moreover, the full-flux-surface (FFS) simula-
tions performed in [9] employed an adiabatic electron model,
therefore leaving the effect of a radial electric field on TEM
turbulence and ITG-TEM-hybrid scenarios unexplored.

Conversely, global nonlinear simulations, like those in [4,
16-20], often rely on analytical profiles or use simplifying
assumptions, such as assuming an adiabatic electron model,
neglecting collisions or neglecting electromagnetic effects.
While each giving valuable insights into the behaviour of the
underlying scenarios, the possibility of performing fully non-
local simulations with realistic parameters is still unexplored.

We start lifting these constraints in this work by present-
ing a global simulation of experimental discharge parameters
of W7-X using the GENE-3D code [16, 21]. The simulation
employs a kinetic electron model, accounting for electromag-
netic effects from magnetic flutter, collisions, and an equilib-
rium radial electric field. The only neglected effect is magnetic
compression, which is expected to have a minor influence due
to the overall low plasma-/3 in the scenario. To the best of the

authors’ knowledge, this simulation marks a pioneering effort
of its kind for stellarators. We aim to compare the obtained
heat flux levels against those from radially local FT and FFS
simulations. This comparison will help assess the impact of
the radial electric field and its shear while also expanding
the scope of diagnostics available for analysing turbulence
characteristics. Moreover, we challenge the prevailing hypo-
thesis regarding trapped electron modes (TEM) being benign
in the core of W7-X plasmas [2, 11]. Concurrently, we assess
the influence of electron-scale turbulence, particularly driven
by ETG modes, on the overall electron heat flux. Identifying
and differentiating between these various turbulence types is
highly significant, considering they demand distinct mitigation
strategies [22, 23].

The rest of this paper is structured as follows: section 2
introduces the details of the experimental discharge considered
throughout this work. In section 3, the heat fluxes predicted
by simulations with different computational domains are com-
pared and the effect of the radial electric field on the overall
transport is discussed. Subsequently, the predicted heat fluxes
are compared against those derived from a power balance ana-
lysis. The characteristics of ion-scale turbulence in the dis-
charge’s core region are investigated in section 4, showing
evidence for TEM contributing significantly to the total trans-
port. In section 5, the contribution of ETG turbulence on the
electron heat flux is explored, and the reasons for its varying
strength at different radial positions are discussed. Finally, in
section 6, we justify the significance of these results in the
experimental context, even though they may not align per-
fectly with power balance.

2. Details of the discharge

In the rest of this work, we consider an experimental
Electron-Cyclotron-Resonance-Heated (ECRH) discharge of
W7-X. Specifically, our focus is on the W7-X programme
20181016.037 [9], for which the corresponding time traces can
be found in figure 1. For our purposes, the discharge phase
of t=4-5s is particularly well-suited. It can be considered
a representative scenario for gas-fuelled standard discharges
within W7-X. The relevant background density and temperat-
ure profiles are shown in figure 2, together with the equilib-
rium radial electric field calculated by the neoclassical trans-
port code DKES [24] One thing to note is that T; > T, for
some positions beyond py /= 0.5. This contradicts the expect-
ations for a plasma solely heated by ECRH, as the ions are only
heated through equipartition with the electrons. However, this
discrepancy is of minor concern to us. To analyse turbulent
dynamics beyond comparing the different simulation models,
we largely focus on the region py; < 0.5, as will become clear
in subsequent discussions.

3. Comparison of computational domains

As a first step, we compare the heat fluxes predicted by FT,
FFS and radially global simulations, as each model offers dis-
tinct diagnostic capabilities. For instance, while flux-surface
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Figure 1. Time traces of the line-integrated density (blue), ECRH heating power (orange) and diamagnetic energy (green) of the W7-X
programme 20181016.037. The area marked in grey at t =4-5s corresponds to the shot phase considered in this investigation.
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Figure 2. Density, temperature and radial electric field profiles corresponding to the grey area in figure 1. Top: profiles, bottom:
corresponding (normalised) gradients. Bottom right: normalised flow-shear rate, defined in equation (4). The red lines indicate the limits of

the domain simulated with GENE-3D.

and global simulations can provide the spatial patterns of tur-
bulence across the entire surface, FT simulations can isolate
single toroidal modes in linear simulations, which will prove
valuable in the subsequent analysis.

The FT simulations presented in this work were performed
with the GENE code, whereas FFS and radially global simula-
tions were performed with GENE-3D. While detailed discus-
sions about their algorithms can be found in [25, 26] and [16,
21], respectively, we note here that both codes use the Clebsh-
type spatial coordinates

X = d pPror
y=o08,Cya=o0g,Cy (07/(x) - ¢) (D
z=o0g,0".

Here, pior = 1/ Pror / Degge 1s used as a radial coordinate,

where @ is the toroidal flux and ®eqge its value at the last
closed flux-surface. The binormal coordinate y is based on
the field line label « at a fixed flux-surface, where ¢(x) is
the rotational transform, and 6* and ¢ are the poloidal and
toroidal PEST angles [27], respectively. The quantity op, is
the sign of the poloidal magnetic field and ensures that the
parallel coordinate z is always in the direction of the back-
ground magnetic field By. Furthermore, the effective minor
radius @ = \/Peqee/ (7 Brer) is defined via the toroidal mag-
netic flux at the edge, as well as the magnetic field strength
Byt at the axis and the variable C, is defined via the reference
position x as C, = xo[¢(x0)|. We use the velocity v|| parallel to
the magnetic field and the magnetic moment p = m,v% /(2Bo)
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Figure 3. Time trace of the volume-averaged heat flux of the global simulation. The black dashed line indicates the starting point for

computing averaged quantities.

as velocity space coordinates for each species o. Finally, one
can also show that the equilibrium magnetic field By can be
written as

By = ByetC (x) Vx x Vy, 2)

where C = x|¢(x)]/ (xo0|¢(x0)])-

In the following, we consider the radial domain pg, €
[0.275,0.925], which accounts for roughly 65% of the entire
inner plasma volume. The global simulation performed with
GENE-3D uses a resolution of (325,256, 126,64, 16) points
in the (x,y,z,v)|,p)-directions, respectively. The corres-
ponding numerical box dimensions are (Ly,Ly,Ly,,L,) =
(259.437, ps,265.472, ps,3.45, V4,6, 11.9, T (x0) /Bret), COV-
ering one fifth of the surface in the binormal direction by
utilising the five-fold symmetry of W7-X. The spatial box
is given in units of the ion sound Larmor radius ps = c,/€2,,
which is defined via the sound velocity cg Te(xo)/my
and the proton Larmor frequency 2, = eBret/(mpc). The par-
allel velocity box is given in units of the thermal velocity
Vin,e = /2T (x0)/ms of species o. Using approximately 2.8
million core hours on the MPCDF cluster Raven, the sim-
ulated plasma is saturated based on the time traces of the
volume-averaged heat fluxes illustrated in figure 3. To the
author’s knowledge, this simulation marks the first instance of
a global gyrokinetic simulation conducted with experimental
discharge parameters from W7-X, incorporating kinetic elec-
trons and accounting for electromagnetic effects. The heat
flux profiles are then compared with those obtained by radi-
ally local simulations, carried out at the radial positions py,; =
[0.4,0.5,0.6,0.7,0.8]. The comparison is shown in figure 4.
The FFS simulations are also performed, covering one fifth of
the respective surface. In these simulations, numerical boxes

of (Ly, Ly, ,Ly,) = (225 ps,3vn,o (%0),9T0,5 (x0) / Bret) and res-
olutions of (ny,ny,nz,ny, ,n,) = (225,256,128,32,9) were
sufficient for most cases. However, the velocity space had to
be adapted to (Ly, , Ly, ny, ,ny) = (6,12,64,12) for the simu-
lations at py,r = 0.4 and 0.5. Unless stated otherwise, a finite
equilibrium ExB-flow corresponding to the local value of
the nominal radial electric field E; = —d¢y(x)/dx is included
in the simulations. Both types of simulations assumed zero-
Dirichlet boundary conditions for the radial domain, neces-
sitating the use of a Krook damping operator in 5% of the
grid points at each of the two boundaries for numerical sta-
bility. In addition, numerical heat and particle sources with
amplitudes of kg = 0.02 and xp = 0.02 were used to avoid
relaxation of the background profiles. Furthermore, numerical
hyper-diffusion with amplitudes (n,ny,7,) = (0.5,0.5,27)
for the global and (7.,7y,n,;) = (0.5,0.2,27) for the radially
local simulations. For details on the implementation of the
numerical damping schemes, the reader is referred to [16].

Four FT simulations were performed at o=
[0,0.25,0.5,0.75]x /5 using GENE instead of GENE-3D at
each radial position. Since it uses a Fourier representation in
the binormal direction, the numerical boxes were chosen to
be (ky,minaLvH 7LIL) = (005 p;l,Svthﬁ(Xo),gTO’a (X())/Bref)
with ky min =27/L, and kymin = 27/L,. Resolutions of
(s iy iy oy my) = (128,64,128,32,9) were found to be
sufficient. The radial box sizes are selected to be approxim-
ately L, ~ 225p, and are adjusted according to constraints
imposed by the magnetic shear §(xg) = —xodIn(¢)/dx|y—y,
[28]. In cases where the shear becomes too small, peri-
odic boundary conditions in the z direction are assumed.
In addition, hyper-diffusion with amplitudes (77kxv77ky777z) =
(0.0,0.1,27) were used.

In figure 4, we observe a reasonable agreement in heat
flux levels between the local and global simulations within the
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Figure 4. Comparison of the radial heat flux profile obtained from the global simulation with those obtained by flux-tube (left) and
full-flux-surface (right) simulations. Shaded regions indicate standard deviation in time of the global simulation.

core. However, significant discrepancies arise between the FT
and global results in the outer region, reaching up to a factor of
two difference at pi, = 0.8. On the contrary, FFS and global
simulations match better, displaying a relative error of approx-
imately 30% at the same position. The discrepancies in figure 4
can partly be attributed to how each simulation model handles
the external radial electric field. FT simulations can eliminate a
constant radial electric field by coordinate transformation into
a reference frame that rotates with the flow velocity, unlike
in FFS simulations, as the binormal variation of the magnetic
field breaks rotational invariance. Global simulations naturally
account for the radial variation of the electric field, therefore
including a sheared flow in the system, which is known to sta-
bilise turbulence. However, local simulations can approxim-
ate ExB-flow shear by linearising the normalised flow velocity
around the respective flux-surface:

b () (Eroco)

=

VEU:_

) ¢ (x) — YexB (X0) (56—560)> )]

Here, 4gxp represents the normalised shearing rate given by

YExB (xo) E—% <?((xx))> B
dE, E R

with X = pypior and E; = T, (x0)E;/ (ea).

Incorporating the sheared ExB-flow in the radially local
simulations notably influences the outer radial region, as
depicted in figure 5. Given the relatively low shear rate in

“

’
X=X0

the inner region, it is understandable that the transport levels
remain largely unaffected, although agreement between local
and global simulations becomes worse at py, = 0.6, some-
thing that is left to be explored in the future. Repeating the
FFS simulation at py,, = 0.8, excluding the constant equilib-
rium ExB-flow shows that the constant local radial electric
field does not notably influence the transport levels at this
position, as can be seen in table 1. However, when factor-
ing in the flow shear, there is a reduction of about 20%—
25% in heat fluxes for both FT and FFS simulations. With
this, the ion heat flux calculated by the latter is reduced to
a level agreeing with the global results within error bars.
This underscores the significant impact of sheared equilib-
rium ExB-flows on turbulence in stellarators, emphasising the
necessity to consider these dynamics in gyrokinetic simula-
tions. Such considerations are especially crucial in advanced
scenarios, like those involving pellet fuelling, where an even
more pronounced radial variation in the electric field can
be found [9]. In addition, we see from figures 4 and 5 that
the three simulation models agree well with each other in
the core of the plasma, allowing us to use all of them for
the subsequent analysis of ion-scale turbulence found in this
scenario.

4. Analysis of ion-scale turbulence in the core

Having compared the discharge’s heat fluxes levels computed
by the different simulation models, we focus on the detailed
analysis of its turbulent plasma dynamics. To this end, we
compare the global heat flux profiles predicted by GENE-3D
against the anomalous heat fluxes calculated with the NTSS
code [29] as the difference between total and neoclassical
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Figure 5. Same as figure 4 but linearised flow shear was added for the radially local simulations.

Table 1. Ion and electron heat fluxes at por = 0.8 as predicted by
different models.

Qions ‘A (MW) Qelectrons -A (MW)
Flux-tube 3.344+0.11 0.80+0.02
Flux-tube (with 4gxB) 2.344+0.04 0.60+0.01
Flux-surface (no Ey) 2.324+0.06 0.4440.01
Flux-surface (with E;) 2.30£+0.05 0.4440.01
Flux-surface (with E; &4exg)  1.77 £0.03 0.36£0.01
Global 1.77 £0.08 0.304+0.02

heat flux obtained with DKES in figure 6. The comparison
between the turbulent heat fluxes derived from power bal-
ance and GENE-3D indicates a good agreement in ion heat
flux up to pyr = 0.5. Beyond that, GENE-3D predicts heat
fluxes well above those given by NTSS, even exceeding the
total ECRH heating power shown in figure 1. In contrast, the
electron heat flux is below the power balance prediction over
the entire radial domain. Therefore, we primarily consider the
region with py, < 0.5 for in-depth investigations of turbulence
characteristics.

It was proposed by [2, 11] that ITG would primarily
govern the plasma core’s turbulence, while any presence of
TEMs would likely manifest in the plasma edge. However,
the findings depicted in figure 6, both from GENE-3D and
NTSS analyses, suggest that this hypothesis might only hold
partly true. As supported by [30], ‘pure’ ITG turbulence
can be expected to drive mainly ion heat flux with only
little impact on the electron channel. In contrast, GENE-
3D and NTSS predictions predict either Q. > Q; or Q. >
Q; within the core, which can also be anticipated if direct
plasma heating is only applied to the electrons. Given that

electromagnetic turbulence should be subdominant for the
plasma-{ of the discharge, TEM turbulence emerges as a likely
candidate.

We have selected the flux-surface at py,, = 0.4 as repres-
entative for detailed analysis within the inner plasma core.
Figure 7 shows the spatial heat flux distribution for electron
and ion channels along the parallel coordinate z and the field-
line label «. Notably, the ion heat flux exhibits a predom-
inant single central peak, contrasting the electron heat flux,
which displays multiple maxima along z at fixed a.. The dis-
tinction becomes notably clearer when comparing the paral-
lel structure at o =0 from FT simulations with both the mag-
netic field structure and the binormal magnetic field curvature
ICy = — (Bo x V|By|) - e, shown in figure 8, where e, is the
covariant binormal basis vector. The ion heat flux seems to
peak where K, is the most negative, which is typical for tor-
oidal ITG [31, 32]. Conversely, the electron heat flux shows
a more pronounced influence from the magnetic well struc-
ture. This is evident as the electron heat flux displays a local
minimum at z =0, even though the curvature has a local min-
imum. Furthermore, its local maxima coincide closely with
the magnetic wells’ minima, which is typical for trapped-
electron modes [31]. The combination of both structural fea-
tures in the different particle channels suggest the presence
of a hybrid ITG-TEM mode, further supported by the linear
FT simulations depicted in figure 9. In there, all the analysed
modes exhibit a positive frequency, therefore propagating in
the ion-diamagnetic direction. However, one can observe that
ions and electrons have positive and comparable contributions
to the linear growth rates [33] and therefore both drive the
respective instability. It was shown in [31] that in the case
of pure ITG or TEM the instabilities were primarily driven
by the ions and the electrons, respectively, which is not the
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Figure 6. Comparison of the radial heat flux profile obtained from the global simulation with the anomalous heat fluxes derived from power
balance using NTSS. Shaded regions indicate standard deviation in time of the global simulation.
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Figure 7. Electron and ion heat fluxes at pior = 0.4, obtained by the global simulation, as a function of the parallel coordinate z and the

field-line label av.

case for the instabilities considered in figure 9, as all of them
have comparable growth rate contributions coming from ions
and electrons. Furthermore, one can rule out the presence of
ion-driven trapped-electron-modes [34], which were shown
in the same publication to feed mainly on the free energy of
the ions. As a consequence, it stands to reason that the lin-
ear modes presented here can be characterised as ITG-TEM
hybrid modes, which is further justified when considering the
quasilinear heat flux ratios that are shown in figure 9 as well. It
was argued in [35] that comparable heat flux estimates indicate
a strong coupling between both particle channels and indicate
the presence of hybrid ITG-TEM modes, further supporting

our hypothesis. Furthermore, one can notice in the growth
rate spectrum that there is no decrease within the scanned
wavenumber range. However, it becomes evident that these
small-scale modes do not significantly contribute to the non-
linear transport, as the corresponding nonlinear heat flux spec-
tra shown in figure 10, are primarily dominated by wavenum-
bers up to kyps ~ 1.

We finalise this investigation by assessing the impact of
each temperature gradient on the transport channels. While
this approach is not fully rigorous, it provides valuable insights
into the contributions of various turbulence types to the overall
system dynamics. Table 2 shows that excluding the normalised
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ratio.

ETG, compared to the nominal parameters, has a negligible
impact on the ion heat flux. It remains similar to the nominal
case within error bars. Conversely, in this scenario, the electron
heat flux reduces by approximately 85%, leading to the ion
channel dominating the total transport. As shown in figure 11,
the modified ion heat flux exhibits a ballooning-type structure
along the magnetic field lines, including significantly stronger
contributions around z=0 in contrast to that with nominal
gradients. Comparable structures were documented in [9] for
a case categorised as ITG-driven, which we conclude is also

the dominant type of turbulence if the ETG is neglected. The
fact that the electron heat flux reduces significantly and one
observes a transition to a different type of turbulence under-
lines the significance of this particular branch of TEM com-
pared to those primarily driven by an electron density gradi-
ent, which have received more attention in existing literature
[8, 9, 36, 37].

In summation, evidence derived from the power bal-
ance, heat flux structure, and linear FT analysis within this
section collectively suggests that in contrast to the proposition
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Figure 10. Nonlinear heat flux spectra for the bean-shaped flux-tube at por = 0.4; left: ion heat flux, right: electron heat flux.

Table 2. Heat fluxes of flux-tube simulations at pior = 0.4, « = 0,
for nominal parameters and either electron or ion temperature
gradient set to zero.

Case Qions -A (MW) Qeleclrons .\ (MW)
Nominal 0.424+0.05 0.49+£0.07
a/Lt, =0 0.49+0.06 0.07£0.01
a/Lt, =0 0.0140.00 0.18 +:0.01

outlined in [2, 11], TEM turbulence seems to be present
within the core of the gas-fuelled discharge in W7-X, at least
for the specific discharge under consideration. However, the
applicability of this observation for general experimental scen-
arios requires further exploration, a task reserved for future
investigations.

5. Impact of ETG turbulence

As shown in figure 6, there is a strong alignment between the
anticipated anomalous ion transport derived from power bal-
ance analysis and the one computed using GENE-3D within
the core region. However, the predicted electron transport
remains notably lower. It is crucial to notice that our focus has
predominantly been on turbulence at ion lengthscales thus far.
Consequently, the remaining contribution to the electron flux
might be driven by ETG turbulence, which has not yet been
captured in our simulations.

To this end, we perform additional FT sim-
ulations using an adiabatic ion model. We con-
sider the FTs at «=][0,0.25,0.5,0.75]7/5 for pir =
[0.3,0.4,0.5,0.6,0.7,0.8,0.9]. The numerical resolution and
box sizes remain the same as those used in the ion-scale

simulations in section 3, with the exception being the use of
the electron sound Larmor radius p, for normalisation instead
of the ion sound Larmor radius p;.

The resulting fluxes, measured in megawatts, are averaged
over the field-line labels and added to the ion-scale elec-
tron heat flux predicted by GENE-3D via linear interpola-
tion in the radial coordinate. Figure 12 shows the updated
global flux profiles. In there, we observe that the contribution
from electron-scale turbulence is negligible in the outer radial
region. Nevertheless, ETG turbulence seems to be responsible
for more than 50% of the turbulent electron heat flux within the
plasma core. Our findings corroborate those in [7], which iden-
tified ETG turbulence as a possible primary driver for elec-
tron heat transport in the core for certain experimental scen-
arios. However, the electron-scale contribution to their dis-
charges was identified as even stronger than for the present
case.

In order to understand why electron-scale transport is neg-
ligible in the edge region in comparison with that in the
core region, one has to consider several possible factors. As
illustrated in figure 13, the heat flux exhibits a near-constant
behaviour despite variations in the field-line label. Hence,
the selection of the FT or subsequent averaging procedures
should be negligible for the remaining discussion. Previous
investigations into ETG dynamics in Wendelstein 7-AS [5]
and similar simulations conducted in tokamaks [25] have
suggested that collisionality and plasma-S exert only minor
influence on the electron-scale transport levels. However,
the same studies indicated that the electron-to-ion temperat-
ure ratio 7 = T /T; and the normalised Debye length /A\De =S

Ape/ pe = \/ B2,/ (47 c®mene(x)) notably affect ETG turbu-

lence. As depicted in figure 14, the reduction in 7 does not
seem to account for the decreasing contribution of ETG to the
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Figure 12. Comparison of the radial heat flux profile with the anomalous heat fluxes derived from power balance analysis. The dark red line
shows the sum of electron heat fluxes of (separated) ion- and electron-scale simulations. Shaded regions indicate standard deviation in time

of the global simulation.

overall flux, as a decrease in 7 theoretically implies destabil-
isation toward the outer region [5]. Beyond the variation in 7,
figure 14 shows that Abe increases towards the edge, which is
thought to have a stabilising influence on ETG turbulence. We
repeated the FT simulations while artificially setting Ape =0
to investigate this. The results presented in figure 15 indicate
that the stabilisation attributed to Debye shielding falls short
in explaining the radial changes in electron-scale transport.

Notably, the difference between both models diminishes sig-
nificantly towards the edge. In addition to geometric factors
like magnetic field curvature, the normalised gradient ratio
Ne = L, /Ly, is known to influence transport significantly, as
a decrease tends to stabilise ETG turbulence. This effect was
proposed to explain the low electron-scale transport in the
outer region of a discharge discussed in [6]. If this were
the primary driver, neglecting the density gradient should
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Figure 14. Variation of the temperature ratio 7 = Tt /T; (red) and the normalised Debye length (blue) as a function of the radial coordinate.

logically yield a radial flux profile that increases towards
the edge together with the normalised ETG, which drives
ETG.

However, while the decrease of 7. along the radial direc-
tion aligns with the notion of stabilisation through the dens-
ity gradient, figure 16 reveals that eliminating the density
gradient still leads to a decrease in heat flux towards the
edge.

Having eliminated all other options, we conclude that
ETG transport is not stiff enough, meaning that the heat
flux does not increase sufficiently fast enough with increas-
ing background drive, to compensate for the decrease in

density and temperature towards the outer regions. To con-
firm this, we show the radial profile of the normalised elec-
tron heat flux and the Gyrobohm scaling factor profile in
figure 17. In there, we see that the normalised heat flux not-
ably increases by more than an order of magnitude towards
the edge, coinciding with the growing normalised ETG.
However, the Gyrobohm scaling factor drops rapidly over two
orders of magnitude from the core to the edge. Consequently,
it becomes evident that the normalised flux fails to grow
fast enough with the background drive. As a result, the
product of these two factors decreases as the radial position
increases.
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6. Assessment of the particle flux

While we have presented a first-of-its-kind simulation of
experimentally relevant parameters of a gas-fuelled ECRH
discharge in W7-X, it is reasonable to question the validity
of the conclusions drawn. This scepticism is justified as the
simulated heat fluxes still fail to agree with the power balance
predictions, even with the additional electron-scale contribu-
tions. Particularly, establishing a correlation between simu-
lation and experiment for the outer region beyond pyr = 0.5
is challenging due to the overestimation observed in the ion

0 (orange); bottom:

heat flux calculated by GENE-3D. A more robust approach
would involve a comprehensive coupling of several codes,
such as GENE-3D, GENE (for ETG simulations), a neoclas-
sical solver like KNOSOS [38], and other codes, to a trans-
port code like Tango [39—41], in order to iteratively evolve
the background profiles self-consistently until agreement with
power balance is reached. While such an approach is routinely
done for tokamaks [42, 43] already, it is only done globally
using an adiabatic electron model [19] or within a FT frame-
work with kinetic electrons [44] for stellarator geometries.
Expanding the GENE-3D-Tango methodology to incorporate
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Figure 18. Radial profiles of contributions to the electron particle flux.

The neoclassical particle flux, calculated with DKES, is shown in

blue. In contrast, the anomalous flux, calculated with GENE-3D, is shown in orange.

kinetic electrons currently exceeds the scope of this paper but
remains a target for the future.

Nevertheless, we can further strengthen the argument for
the importance of TEM and ETG turbulence in the core of gas-
fuelled ECRH plasmas without matching power balance by
examining the individual contributions to the electron particle
flux. While the experimental flux value remains unknown due
to significant systematic uncertainties, it is plausible to assume
that, for a purely gas-fuelled discharge, the total particle flux
will tend towards zero or, at least, be very close to it deep
within the plasma core. A qualitative assessment of the particle
flux levels depicted in figure 18, when compared with findings
from [15], suggests that the anomalous particle flux predicted

by GENE-3D appears too positive to align with the exper-
iment. Typically, neoclassical transport is directed outward
[45, 46], necessitating an inward turbulent particle flux when
approaching the magnetic axis, a trend not observed here.
Additionally, as highlighted in [15], an inward anomalous
particle flux can be achieved by reducing the density gradient,
increasing the ETG, or a combination of both. Considering that
these adjustments would further increase the drive for VT,-
TEM and ETG turbulence, it stands to reason that when match-
ing experimental heat and particle fluxes, the contributions of
electron-induced turbulence to the electron heat flux would
likely be even more pronounced than under the nominal pro-
files used in this analysis.
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In summary, our findings provide robust evidence for the
presence of trapped-electron turbulence within the core of gas-
fuelled ECRH discharges, manifested in the form of ITG-
TEM hybrids and ETG turbulence. Their relevance in high-
performance discharges, such as those employing pellet fuel-
ling, remains an avenue yet to be explored.

7. Conclusions

This paper delves into plasma turbulence analysis in an exper-
imental ECRH discharge of W7-X using GENE-3D and
GENE. Our study unveils that while FT and FFS simula-
tions reasonably approximate the heat flux levels predicted by
radially global simulations within the plasma core, they sig-
nificantly overestimate transport in the outer plasma region.
However, factoring in the shearing of external ExB-flow helps
mitigate this discrepancy to some extent, underscoring its
pivotal role in stabilising turbulence, even in standard stellar-
ator discharges.

Moreover, we have provided substantial evidence support-
ing the existence of TEM turbulence within the plasma core,
challenging previous notions proposed in existing literature
[2, 11]. Although not solely accountable for transport, these
modes were distinctly evident in the form of ITG-TEM
hybrids, predominantly driven by the ETG.

Additionally, our study demonstrates, within our specific
case, the substantial contribution of electron-scale simulations
to electron heat flux in contrast to the suggestion of weak
ETGs in W7-X outlined in [6]. We observed a diminishing
impact of these modes in the plasma’s outer radial region,
attributed to the normalised ETG transport not increasing rap-
idly enough towards the edge to offset the decrease in the
Gyrobohm scaling factor resulting from lower electron tem-
perature and density.

Finally, we support the validity of our findings despite not
aligning with transport predictions from power balance ana-
lysis. We assert that the impact of electron-induced turbulence
is expected to significantly increase if background profiles are
modulated to achieve experimentally realistic heat and particle
fluxes.

In the future, we will extend these studies to a broader
range of experimental discharge in order to generalise our
claims, while additionally coupling GENE-3D simulations to
the transport code Tango as shown in [19, 47] in order to
achieve flux matching with the experiment. In addition, global
simulations offer a direct comparison with turbulent fluctu-
ation measurements via synthetic diagnostics [48] in order to
identify signals of TEM in experimental discharges.
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