
Complete Game Logic with Sabotage
Noah Abou El Wafa

Karlsruhe Institute of Technology

Karlsruhe, Germany

Carnegie Mellon University

Pittsburgh, USA

noah.abouelwafa@kit.edu

André Platzer

Karlsruhe Institute of Technology

Karlsruhe, Germany

Carnegie Mellon University

Pittsburgh, USA

platzer@kit.edu

ABSTRACT
Game logic with sabotage (GLs) is introduced as a simple and natural

extension of Parikh’s game logic with a single additional primitive,

which allows players to lay traps for the opponent. GLs can be used

to model infinite sabotage games, in which players can change the

rules during game play. In contrast to game logic, which is strictly

less expressive,GLs is exactly as expressive as the modal 𝜇-calculus.

This reveals a close connection between the entangled nested recur-

sion inherent in modal fixpoint logics and adversarial dynamic rule

changes characteristic for sabotage games. A natural Hilbert-style

proof calculus for GLs is presented and proved complete using syn-

tactic equiexpressiveness reductions. The completeness of a simple

extension of Parikh’s calculus for game logic follows.

CCS CONCEPTS
• Theory of computation → Logic; Proof theory;Modal and
temporal logics.

KEYWORDS
game logic, 𝜇-calculus, proof theory, completeness, expressiveness,
sabotage games

ACM Reference Format:
Noah Abou El Wafa and André Platzer. 2024. Complete Game Logic with
Sabotage. In 39th Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS ’24), July 8–11, 2024, Tallinn, Estonia. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3661814.3662121

1 INTRODUCTION
Games such as the Ehrenfeucht-Fraïssé game are invaluable tools
in the study of logic [18] and some deep results about logic can
be proved with the help of games [3, 26]. Logic can even be given
meaning via games in the form of game-theoretical semantics [27].

Dually, logical methods are frequently used to study games [15].
Logic and games meet most directly in logics specifically designed
for the study of games, such as game logic (GL) due to Parikh [35],
which allows reasoning about the existence of winning strategies
in a game. This requires giving exact meaning to general games, a
nontrivial task for games that are not limited to a fixed number of
rounds. Nested alternating least and greatest fixpoints can provide

This work is licensed under a Creative Commons Attribution International 4.0
License.
LICS ’24, July 8–11, 2024, Tallinn, Estonia
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0660-8/24/07
https://doi.org/10.1145/3661814.3662121

the correct denotational semantics for games, when they are used

to reflect the alternating responsibilities of the respective players

at their decision points in the dynamic games [35].

Fixpoints also play an important role in logic, for example in

modal fixpoint logics such as the modal 𝜇-calculus (L𝜇). L𝜇 is where
logic, games and fixpoints begin to converge. In fact game logic

can be expressed in the modal 𝜇-calculus using alternating fixpoint

formulas to directly capture the semantics of alternating game play.

However this first encounter is imperfect. After 20 years it was

shown that GL is in fact strictly less expressive than L𝜇 [9].
The purpose of this paper is to remedy this situation by unifying

the three fundamental concepts of logic, games, and fixpoints in

a small and natural completion of game logic, which is shown to

be equivalent to the fixpoint logic L𝜇 and to have a complete proof

calculus. This identification of fixpoints with games eliminates the
difference between interactive game play and alternating fixpoints!

The key insight behind this paper is that, because game logic can

already express sufficient adversarial dynamics to express the al-

ternating fixpoints of L𝜇 and is merely lacking a suitable way of

referring to fixpoints by their respective fixpoint variables, this de-

ficiency can be solved in a parsimonious and purely game-theoretic

way. This is done in game logic with sabotage (GLs), a new extension

of GL. In game logic with sabotage, reference can be expressed, not

through the unstructured use of fixpoint variables as in the modal

𝜇-calculus, but by using a simple game operator ∼𝑎 that changes the
rules of subsequent game play. Playing the game ∼𝑎 has the effect
that the game 𝑎 is reserved exclusively for one player in the future.

This can be used to change the rules of a game dynamically accord-

ing to rules that are explicit in the original game. This simple and

natural mechanism of imperative game play is expressively equiv-
alent to the functional mechanism of unstructured nested named

(co)recursion with the fixpoint variables in the alternating fixpoints

of L𝜇 . The role the sabotage ∼𝑎 plays in establishing the equiex-

pressiveness reveals an interesting connection between games with

sabotage and the nesting of fixpoints in the modal 𝜇-calculus which

have previously been studied separately.

Formulas of the modal 𝜇-calculus are frequently easiest to un-

derstand through their corresponding validity or model-checking

games [34]. This is complicated by the unstructured goto-like ac-

tion a fixpoint variable induces. Game logic with sabotage avoids

this problem, as GLs formulas describe two-player games built up

from simple connectives and, instead of fixpoint variables, players

only need to consider the previously committed acts of sabotage,

making game logic with sabotage a very intuitive logic with very

high expressive power. By the equivalence of L𝜇 and GLs, many

desirable properties of the modal 𝜇-calculus, such as decidability

and the small model property, transfer to game logic with sabotage

1

Corrected Version of Record. V1.1. Published August 1, 2024.

https://orcid.org/0000-0002-3987-9919
https://orcid.org/0000-0001-7238-5710
https://doi.org/10.1145/3661814.3662121
https://doi.org/10.1145/3661814.3662121
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3661814.3662121&domain=pdf&date_stamp=2024-07-08

LICS ’24, July 8–11, 2024, Tallinn, Estonia Noah Abou El Wafa and André Platzer

for free. And as L𝜇 is precisely the bisimulation-invariant fragment

of monadic second-order logic [28], this expressive completeness

also holds for GLs. Moreover, completeness of an axiomatization of

GLs can be obtained through the translation. This is in contrast to

the original axiomatization for game logic, for which completeness

is still open after four decades [29] despite considerable attention

[22]. GLs promises to be a useful tool for understanding GL. For
instance the completeness of GLs yields a completion of Parikh’s

proof calculus for GL, which axiomatizes GL completely. To the

best of our knowledge this is the only complete proof calculus for

game logic to date. The embedding from game logic with sabotage

to the modal 𝜇-calculus also suggests that the same property can

be expressed significantly more concisely in game logic with sabo-

tage than in the modal 𝜇-calculus showing that, while theoretically

equivalent, they are practically very different.

The equiexpressiveness proof of L𝜇 and GL is modular, which

simplifies the proofs and illuminates the differences between the

modes of expression in game and fixpoint logics. The proof builds on

a homomorphic translation between fixpoint logic and an extension

of GL with the recursion from L𝜇 transferred to games (recursive

game logic RGL). However owing to the sequential composition

of games, the expressive power of RGL is the same as the highly

expressive fixpoint logic with chop (FLC), which is far beyond L𝜇 .
The next key step in the proof is the identification of the fragment

of RGL formulas corresponding to L𝜇 formulas. Using sabotage,

this fragment can be captured merely with simpler iteration games

and no general form of recursion. These semantic translations are

then used to transform proofs from fixpoint logics to game logics

and proofs with recursive games to proofs with iteration games

and sabotage. The correctness of these transformations is shown

by proving the syntactical provability of the correctness of the

translations in the proof calculi and in this way lifting semantic
equiexpressiveness proofs to syntactic completeness proofs.

The contributions of this paper are fourfold. Firstly, GLs, a new
minimal, natural, concise and intuitive extension of game logic is

introduced. Secondly, it is shown thatGLs is expressively exactly as
powerful as the modal 𝜇-calculus and, consequently, many desirable

logical properties of L𝜇 transfer to GLs. Thirdly, a sound proof

calculus forGLs is presented, proved complete, and completeness is

transferred to obtain a complete extension of Parikh’s GL calculus.

Fourthly, RGL is introduced and proved equiexpressive to FLC.

Outline. Basic definitions are recalled in Section 2. Section 3 in-

troduces game logic with sabotage (GLs) and another extension of

GL, called recursive game logic (RGL), that will play an interme-

diary role in translating between the modal 𝜇-calculus and game

logic with sabotage and is of independent interest. Section 4 briefly

recalls the definitions of two modal fixpoint logics: the modal 𝜇-

calculus and fixpoint logic with chop. In Section 5, the expressive

power of fragments of recursive game logic is compared to modal

fixpoint logics, and the equiexpressiveness of recursive game logic

and fixpoint logic with chop, as well as of the modal 𝜇-calculus and

game logic with sabotage, are shown. In Section 6, an axiomatiza-

tion for game logic with sabotage is presented and its completeness

is proved by reduction to completeness of the modal 𝜇-calculus.

The completeness of a simple extension of Parikh’s GL calculus

follows. All omitted proofs are in the full version [2].

Related Work. Sabotage games have been considered to model

algorithms under adversarial conditions and in learning [25, 44].

Previous work using modal logic in Sabotage Modal Logic (SML)

[7, 44] differs from game logic with sabotage. Unlike in GLs, where
sabotage ismodelled as changing themeaning of the game described

syntactically, SML describes sabotage as changing the structure of

interpretation. The sabotage 𝜇-calculus was investigated for mod-

elling infinite sabotage games [41]. In contrast to GLs, satisfiability
for SML is undecidable and lacks the finite model property [31].

Applications of game logic are reported elsewhere [36–39]. The

relation of games, game logic, fixpoints and the modal 𝜇-calculus

has been considered extensively [9, 12, 17, 19, 24, 28, 34, 35, 42]. The

modal 𝜇-calculus and its relation to model checking is well-studied

[10, 11, 20, 40]. Completeness for game logic was conjectured [35].

A completeness proof based on a cut-free calculus for L𝜇 [4] was
suggested for game logic [22]. It was recently shown not to work

[29]. Relative completeness of differential game logic, an extension

of game logic with differential equations, has already been proved

[37]. For first-order versions of game logic and the modal 𝜇-calculus

equiexpressiveness and relative completeness were shown [1].

2 PRELIMINARIES
Effectivity Functions. A monotone function𝑤 : P(𝑋) → P(𝑋)

is called an effectivity function [21]. The semantics of a game will

be given in terms of an effectivity function, where 𝑤 (𝐴) denotes
the winning region, i.e. the set of all states from which a given

player can win into the goal region 𝐴. Such functions are naturally

monotone, as any point in the winning region for a goal 𝐴 is also

in the winning region for the larger goal 𝐵 ⊇ 𝐴. Let W(𝑋) be the
set of all effectivity functions ordered by point-wise inclusion, i.e.

𝑤 ⊆ 𝑢 if𝑤 (𝐴) ⊆ 𝑢 (𝐴) for all 𝐴 ⊆ 𝑋 .

Definition 2.1. (1) Given a set 𝐴 ⊆ 𝑋 , the intersection effec-

tivity function is 𝐴? (𝐵) = 𝐴 ∩ 𝐵 and the constant effectivity

function is 𝑐𝐴 (𝐵) = 𝐴 for all 𝐵 ⊆ 𝑋 .
(2) For an effectivity function 𝑤 ∈ W(𝑋) its dual is 𝑤d (𝐴) =

𝑋 \𝑤 (𝑋 \𝐴) for all 𝐴 ⊆ 𝑋 .
(3) An effectivity function𝑤 ∈ W(𝑋) is relational if there is a

relation 𝑅 ⊆ 𝑋 × 𝑋 on 𝑋 such that

𝑤 (𝐴) = 𝑅 ◦𝐴 = {𝑟 : ∃∃∃𝑠 ∈ 𝐴 𝑟𝑅𝑠}.

(4) For an effectivity function𝑤 ∈ W(𝑋) define

𝜇𝐴.𝑤 (𝐴) =
⋂

{𝐴 ∈ P(𝑋) : 𝑤 (𝐴) ⊆ 𝐴}

(5) For a transformation 𝐹 : W(𝑋) → W(𝑋) onW(𝑋) define

𝜇𝑤.𝐹 (𝑤) =
⋂

{𝑤 ∈ W(𝑋) : 𝐹 (𝑤) ⊆ 𝑤}

As usual 𝜇𝐴.𝑤 (𝐴) and 𝜇𝑞.𝐹 (𝑞) are the least fixpoints of𝑤 and 𝐹 ,

respectively, provided 𝐹 is monotone [5]. In the sequel it will be

necessary to work with fixpoints of monotone functions on P(𝑋)
and also with fixpoints of monotone functions on W(𝑋). Under
some conditions the latter can be viewed pointwise as the former.

Lemma 2.2. Suppose 𝐹 : W(𝑋) → W(𝑋) is monotone and
𝐹 (𝑢) (𝐴) = 𝐹 (𝑐𝑢 (𝐴)) (𝐴) for all 𝑢 ∈ W(𝑋) and all 𝐴 ⊆ 𝑋 , then

(1) (𝜇𝑢.𝐹 (𝑢)) (𝐴) = 𝜇𝐵.(𝐹 (𝑐𝐵) (𝐴))
(2) (𝜈𝑢.𝐹 (𝑢)) (𝐴) = 𝜈𝐵.(𝐹 (𝑐𝐵) (𝐴))

2

Complete Game Logic with Sabotage LICS ’24, July 8–11, 2024, Tallinn, Estonia

Neighbourhood and Kripke Structures. Throughout the paper fix
countably infinite sets P of propositional constants, V of fixpoint

variables, and G of atomic games, respectively.

Game logic and themodal 𝜇-calculus can be interpreted over coal-

gebraic structures [16]. While the modal 𝜇-calculus is commonly

interpreted over Kripke structures, game logic was originally inter-

preted over the more general class of neighbourhood models [33].

The results in this paper hold for both classes of models equally.

Definition 2.3. A monotone neighbourhood structure is a triple N
consisting of a set of states |N | and functions

N(·) : P→ P(|N |) N (·) : G→ W(|N |)

assigning a valuation N(𝑃) to every atomic proposition 𝑃 ∈ P
and an effectivity function N(𝑎) to every atomic game 𝑎 ∈ G. The
structure N is a Kripke structure iff each N(𝑎) is relational.

3 EXTENSIONS OF GAME LOGIC
3.1 Game Logic with Sabotage
Game logic with sabotage (GLs) is an extension of game logic defined

by adding the sabotage action games ∼𝑎. Formulas and games of

GLs are given by the following grammar:

𝜑 ::= 𝑃 | ¬𝜑 | 𝜑 ∨𝜓 | ⟨𝛼⟩𝜑

𝛼 ::= 𝑎 | ∼𝑎 | 𝛼d | ?𝜑 | 𝛼 ∪ 𝛽 | 𝛼 ; 𝛽 | 𝛼∗

where 𝑃 ∈ P and 𝑎 ∈ G. Syntactically, game logic (GL) is the
fragment without sabotage actions ∼𝑎.

The formula ⟨𝛼⟩𝜑 expresses that player Angel has a winning

strategy in the game 𝛼 to reach one of the states in which 𝜑 is true.

The test game ?𝜑 is lost prematurely by Angel unless the formula 𝜑

is true in the current state. The choice game 𝛼 ∪ 𝛽 allows Angel to

choose between playing 𝛼 or 𝛽 . To play the sequential game 𝛼 ; 𝛽

is to play 𝛽 after 𝛼 (unless a player already lost the play of 𝛼). The

repetition game 𝛼∗ allows Angel to decide after each completed

round of 𝛼 whether to stop playing 𝛼 or to repeat 𝛼 . The dual

operator
d
flips games around to the opponent’s perspective and is

used to define the Demonic sabotage, test, choice, and repetition.

The additional primitive ∼𝑎 is the sabotage action. When ∼𝑎 is
played, Angel sabotages the atomic game 𝑎. It has the effect that,

should Demon try to play 𝑎 at any point in the subsequent game

(by reaching 𝑎d), he loses the game prematurely. But if Angel plays

𝑎 after it has been sabotaged by ∼𝑎 it will simply be skipped and

the game continues in the same state. The atomic game 𝑎 remains

sabotaged throughout the game. The only thing that may change

is the last player to commit the sabotage action. If Demon at some

later point manages to play a sabotage action of the same atomic

game ∼𝑎d, the game will then be sabotaged in the dual way. That

means the next time Angel plays 𝑎 she loses the game immediately.

Once a sabotage action has been played for an atomic game it can

only change hands, but will not be played normally again.

Sabotage may be viewed as setting a trap for the opponent. After

playing the sabotage action game ∼𝑎 the atomic game 𝑎 becomes a

trap for Demon that Angel can simply evade. Viewed differently,

if Angel plays ∼𝑎, she claims the atomic game 𝑎 for herself. The

opponent is not allowed to play 𝑎 and would forfeit the game by

trying, unless he first claims𝑎 for himself. Playing∼𝑎d dually means

the game 𝑎 belongs to Demon until it returns to Angel. The effect of

the claim is that the subsequent rules for playing 𝑎 and 𝑎d change
as in Table 1.

Table 1: Effect of Rule Changes by ∼𝑎 and ∼𝑎d

Owner of 𝑎 Rules for 𝑎 Rules for 𝑎d

Neither ∅ 𝑎 played normally 𝑎d played normally

Angel ⋄ 𝑎 skipped Angel wins 𝑎d

Demon ⋄ Demon wins 𝑎 𝑎d skipped

Abbreviations and Conventions. The dual game connectives for

Demon’s choice, test and repetition are defined as in game logic.

That is 𝛼 ∩ 𝛽 abbreviates (𝛼d ∪ 𝛽d)d, which leaves the choice of

whether to play 𝛼 or 𝛽 to Demon. Analogously ¿𝜑 represents a

test Demon needs to pass (?𝜑)d and 𝛼× is the repetition (𝛼d∗)d
controlled by Demon. The box modality [𝛼]𝜑 ≡ ¬⟨𝛼⟩¬𝜑 and the

propositional connectives∧,→,↔ and⊤,⊥ are defined as usual. By

convention sequential composition ; binds stronger than choice∪,∩
and conjunction and disjunction bind stronger than implication.

Example: Crossing Bridges. A simple bridge crossing game illus-

trates sabotage. Suppose Angel and Demon begin on the bank of a

river with two different bridges 𝑎 and 𝑏. Demon begins the game

by choosing one of the two bridges and sabotaging it. Subsequently

Angel chooses which one of the two bridges to cross. If Angel

chooses to cross the bridge that Demon has sabotaged, she loses.

Angel knows which bridge has been sabotaged. The GLs game

(∼𝑎d ∩ ∼𝑏d); (𝑎 ∪ 𝑏)
captures this game. If Angel’s objective is merely to cross any bridge,

she has a winning strategy. That is what it means for the formula

⟨(∼𝑎d ∩ ∼𝑏d); (𝑎 ∪ 𝑏)⟩⊤
to be satisfied in the current state. If Angel wants to ensure that

she reaches a point on the other side in which 𝑃 holds and only 𝑎

leads to such a point, then Demon has a winning strategy to thwart

Angel. The following formula says exactly that:

(⟨𝑎⟩𝑃 ∧ ⟨𝑏⟩¬𝑃) → [(∼𝑎d ∩ ∼𝑏d); (𝑎 ∪ 𝑏)]¬𝑃

Infinite Plays. In game logic with sabotage just as in game logic

it is possible for the two players to play infinitely long. Angel could

for example choose to repeat the atomic game 𝑎 in (𝑎)∗ every time.

In this case the game never comes to an end. This strategy cannot be

winning, since the semantics of infinite plays is defined so that the

player who causes the game to be infinite (by repeating a subgame

infinitely often that is not contained in another subgame that is

repeated infinitely often) loses.

Example: The Euler Path Game. An example to illustrate the

potential concision of game logic with sabotage compared to the

modal 𝜇-calculus is the Euler path game, which captures the exis-

tence of an Euler path in a graph. A related, but slightly simpler

problem is defining, with a formula𝜓 , the states corresponding to

nodes from which there is a path reaching a state in which 𝑃 is true

using each edge 𝑎𝑖 at most once. The formula

⟨(𝑎1;∼𝑎d1 ∪ . . . ∪ 𝑎𝑘 ;∼𝑎
d

1
)∗⟩𝑃

3

LICS ’24, July 8–11, 2024, Tallinn, Estonia Noah Abou El Wafa and André Platzer

captures this. It can be viewed as modelling a game in which Angel,

trying to make her way across several bridges connecting a town,

can choose to take any available link 𝑎𝑖 she likes. However upon

her crossing Demon sabotages the bridge (∼𝑎d
𝑖
), so that the next

time Angel attempts to cross (𝑎𝑖), the bridge collapses and she loses.

Hence Angel wins exactly if she can find a way to a place where 𝑃

is true without ever crossing the same bridge twice.

For the Euler path game the additional restriction that every

bridge must be taken once needs to be added. This can be done

with a second sabotage mechanism as follows.

⟨∼𝑏d
1
; . . .∼𝑏d

𝑘
; (𝑎1;∼𝑎d1 ;∼𝑏1 ∪ . . . ∪ 𝑎𝑘 ;∼𝑎

d

𝑘
;∼𝑏𝑘)

∗
;𝑏1; . . . ;𝑏𝑘 ⟩⊤

The additional atomic games 𝑏𝑖 are initially sabotaged by Demon

and ensure that Angel cannot ultimately pass the checkpoints

𝑏1; . . . ;𝑏𝑘 unless she has undone each of the initial Demonic sabo-

tage actions (∼𝑏d
𝑖
), which she can do only by crossing all bridges.

The Euler path example illustrates that GLs and L𝜇 are two

substantially different specification languages. In L𝜇 the shortest
known formula to express the Euler path property simply lists all

potential Euler paths. (Here 𝑆𝑘 is the symmetric group of degree 𝑘 .)∨
𝜎∈𝑆𝑘

⟨𝑎𝜎 (1) ⟩⟨𝑎𝜎 (2) ⟩. . . ⟨𝑎𝜎 (𝑘) ⟩⊤

This also indicates that sabotage descriptions can be significantly

more concise than the corresponding L𝜇 versions. In the example

the length of the Euler path GL formula is linear in the size of the

graph 𝑘 , whereas the length of the L𝜇 formula is factorial in 𝑘 .

3.2 Recursive Game Logic
The equiexpressiveness of game logic with sabotage and the modal

𝜇-calculus will be proved in a modular way. Unlike GL the modal

𝜇-calculus allows for nested recursive reference and this gap be-

tween rlGL and L𝜇 will be closed first by introducing an extension

of game logic that extends it with an analogous form of game ref-
erence. However reference added to GL goes beyond the modal

𝜇-calculus and the expressive power is equivalent to fixpoint logic

with chop (see Section 4)! For a schematic overview of how the

logics introduced in the sequel relate to one another see Figure 1 in

Section 5.

Recursive game logic (RGL), an extension of game logic, admits

arbitrarily recursive and corecursive games. This increases the

expressive power of game logic greatly and serves as the technical

intermediary connecting game logic with sabotage to the modal

𝜇-calculus. The syntax of recursive game logic (RGL) is defined by

the following grammar

𝜑 ::= 𝑃 | ¬𝜑 | 𝜑 ∨𝜓 | ⟨𝛼⟩𝜑

𝛼 ::= 𝑎 | 𝑥 | 𝛼d | ?𝜑 | 𝛼 ∪ 𝛽 | 𝛼 ; 𝛽 | r𝑥 .𝛼

where 𝑃 ∈ P, 𝑎 ∈ G and 𝑥 ∈ V. Additionally the restriction is placed
on games that games ?𝜑 are only allowed for closed formulas 𝜑 and

that free variables 𝑥 can only be bound by r𝑥 .𝛼 if 𝑥 appears only in

the scope of an even number of dual operators ·d in 𝛼 . Syntactically
the only difference between recursive game logic and game logic is

that repetition games 𝛼∗ have been replaced by recursive subgames
of the form r𝑥 .𝛼 and that games 𝑥 to recursively call a subgame

have been added.

Intuitively a recursive game r𝑥 .𝛼 is played just like 𝛼 until the

subgame is called again because 𝑥 is encountered. In this case

the game is interrupted and the players begin another recursive

subgame of r𝑥 .𝛼 . Once the players finish playing this subgame, they

continue to play the interrupted game in the state they reached,

3.2.1 Notation. The formula (game) obtained from 𝜑 (𝛼) by replac-

ing every free appearance of 𝑥 by the game 𝛽 is denoted 𝜑
𝛽
𝑥 (𝛼

𝛽
𝑥).

The abbreviations for the usual propositional symbols and the De-

monic connectives are defined just as in GLs. The dual corecursive
version

r𝑥 .𝛼 of a recursive subgame is defined as (r𝑥 .𝛼d 𝑥d𝑥)d. This
game is played similarly to r𝑥 .𝛼 . The only difference is which of

the players is held responsible if the game is played infinitely long.

If the largest subgame that is repeated infinitely often during a play

is a recursive game of the form r𝑥 .𝛼 , then Angel loses the game. If

the largest such game is of the form

r𝑥 .𝛼 , then Demon loses.

3.2.2 Examples. An example of a game with recursion is

r𝑥 .(𝑐 ∪ 𝑎;𝑥 ;𝑏).

The recursive subgame declaration does not require either player

to make a move. The first move of the game is Angel’s and she gets

to choose whether to play 𝑐 or 𝑎;𝑥 ;𝑏. In the first case 𝑐 is played

and the game ends. If she chooses to play 𝑎;𝑥 ;𝑏, then, after 𝑎, the

game is continued by playing the game referred to by 𝑥 , which is

r𝑥 .(𝑐 ∪ 𝑎;𝑥 ;𝑏) again. However after this game is completed, 𝑏 will

be played still before the full game finally ends. A run of the game

behaves like 𝑎𝑛 ; 𝑐 ;𝑏𝑛 for some 𝑛 ≥ 0, which cannot be described in

Parikh’s game logic, which lacks the facilities to retain the number

of games 𝑏 that still have to be played after Angel chooses to stop

the repetition by playing 𝑐 .

3.2.3 Game Logic. Syntactically, Parikh’s game logic (GL) [35]
is the fragment of recursive game logic with restricted repetition.

Instead of arbitrary (co)recursive games r𝑥 .𝛼 and

r𝑥 .𝛼 only iteration

games of the form 𝑎∗ are permitted. Iteration games are defined by

𝛼∗ ≡ r𝑥 .(𝛼 ;𝑥 ∪ ?⊤) .

Here Angel chooses whether to play 𝛼 and then continue with

𝛼∗ or whether to end the game in the current state. The Demonic

iteration game is 𝛼× ≡ (𝛼d)∗d. The semantics of game logic with

sabotage will be defined so that it agrees with the usual semantics,

i.e. game logic with sabotage is a genuine extension of game logic.

3.3 Semantics of Game Logics
A denotational semantics for recursive game logic and game logic

with sabotage can be defined in a simple and compositional way.

Superficially both semantics are different from the usual semantics

of game logic. However it will be shown that for GL formulas the

semantics of RGL and GLs agree with the standard GL semantics.

3.3.1 Semantics of Game Logic with Sabotage. The semantics of

a GLs game depends on the sabotage actions that players have

played in the run of the game so far. To keep track of these, games

and formulas of game logic with sabotage must be evaluated in

a context. A context is a function 𝑐 : G → {∅,⋄, ⋄} indicating

which player has last sabotaged an atomic game (recall Table 1).

All contexts are assumed to have finite support, that is 𝑐 (𝑎) = ∅ for

4

Complete Game Logic with Sabotage LICS ’24, July 8–11, 2024, Tallinn, Estonia

all but finitely many 𝑎. Let C be the set of all contexts and let 𝑐∅
be the constant context without any atomic games sabotaged, i.e.

𝑐∅ (𝑎) = ∅ for all 𝑎. For any set𝑈 ⊆ |N | × C and any context 𝑐 ∈ C
let𝑈 ↾𝑐 = {𝜔 : (𝜔, 𝑐) ∈ 𝑈 } be the projection on |N |. And for 𝑎 ∈ G
the ⋄-sabotage winning region of 𝐴 ⊆ |N | × C is

𝐴⋄
𝑎 = {(𝜔, 𝑐) : (𝜔, 𝑐 ⋄𝑎) ∈ 𝐴}.

To interpret an atomic game 𝑎, it is necessary to consider the

context in which it is played. If one of the players has already sabo-

taged 𝑎, the normal rules no longer apply. To take this into account

the semantics N(𝑎) ∈ W(|N |) is lifted to N̂ (𝑎) ∈ W(|N | × C).
For every 𝑈 ⊆ |N | × C the lifting is defined by (𝜔, 𝑐) ∈ N̂ (𝑎) (𝑈)
iff

(1) 𝑐 (𝑎) = ∅ and 𝜔 ∈ N (𝑎) (𝑈 ↾𝑐) or
(2) 𝑐 (𝑎) = ⋄ and (𝜔, 𝑐) ∈ 𝑈

If 𝑎 has never been sabotaged (i.e. 𝑐 (𝑎) = ∅), Angel can win game 𝑎

from a position𝜔 in context 𝑐 into the set𝑈 exactly if she can win a

game of 𝑎 played according to the usual rules into𝑈 ↾𝑐 . If 𝑎 belongs
to Angel (i.e. 𝑐 (𝑎) = ⋄), she can also win exactly if the current state

𝜔 and context 𝑐 are already in𝑈 . However if 𝑎 belongs to Demon

(i.e. 𝑐 (𝑎) = ⋄), Angel has already lost. This formalizes the effect of

rule change as described in Table 1. For any context 𝑐 dual context 𝑐

turns Angelic sabotages into Demonic sabotages and vice versa:

𝑐 (𝑎) =

∅ if 𝑐 (𝑎) = ∅
⋄ if 𝑐 (𝑎) = ⋄
⋄ if 𝑐 (𝑎) = ⋄

For a set 𝐴 ⊆𝑊 × C the sabotage complement is 𝐴C = {(𝜔, 𝑐) :
(𝜔, 𝑐) ∉ 𝐴} and for a function𝑤 ∈ W(𝑊 × C) the sabotage dual is

𝑤D (𝐴) = 𝑤 (𝐴C)C .

The sabotage dual extends the notion of the ordinary dual to sabo-

tage games. For the lifted semantics (𝜔, 𝑐) ∈ (N̂ (𝑎))D (𝑈) iff
(1) 𝑐 (𝑎) = ∅ and 𝜔 ∈ (N (𝑎))d (𝑈 ↾𝑐) or
(2) 𝑐 (𝑎) = ⋄ or
(3) 𝑐 (𝑎) = ⋄ and (𝜔, 𝑐) ∈ 𝑈
The semantics of formulas and games of game logic with sabo-

tage with respect to a monotone neighbourhood structure is defined

by mutual induction on the definition of formulas and games of

game logic with sabotage.
1

Definition 3.1. For any monotone neighbourhood structure N
the semantics of a GLs formula 𝜑 is a set N⟦𝜑⟧s ∈ P(|N | × C)

N⟦𝑃⟧s = N(𝑃) × C N⟦⟨𝛼⟩𝜑⟧s = N⟦𝛼⟧s (N⟦𝜑⟧s)

N⟦¬𝜑⟧s = N⟦𝜑⟧sC N⟦𝜑 ∨𝜓⟧s = N⟦𝜑⟧s ∪ N⟦𝜓⟧s

1
Unlike for sabotage modal logic [6] the semantics is not defined in terms of a changing

model. Instead the state space is enlarged to contain the states of the structure and

independently keep track of the sabotage actions played. The definition is similar in

spirit to the modified semantics for the sabotage 𝜇-calculus [6]. Unlike in the definition

of the modal 𝜇-calculus augmented with sabotage [41] the traps set persist throughout

multiple repetitions of game 𝛼∗
instead of resetting without cause.

and of aGLs game𝛼 is an effectivity functionN⟦𝛼⟧s ∈ W(|N |×C)

N⟦𝑎⟧s = N̂ (𝑎) N⟦?𝜑⟧s (𝐴) = N⟦𝜑⟧s ∩𝐴
N⟦∼𝑎⟧s (𝐴) = 𝐴⋄

𝑎 N⟦𝛼 ∪ 𝛽⟧s = N⟦𝛼⟧s ∪ N⟦𝛽⟧s
N⟦𝛼d⟧s = N⟦𝛼⟧sD N⟦𝛼 ; 𝛽⟧s = N⟦𝛼⟧s ◦ N⟦𝛽⟧s
N⟦𝛼∗⟧s (𝐴) = 𝜇𝐵.(𝐴 ∪ N⟦𝛼⟧s (𝐵))

The semantics of ∼𝑎 illustrates the role of the context. Playing
the sabotage action ∼𝑎 changes the context and assigns player ⋄
the game 𝑎 to keep track of the Angelic sabotage.

The interpretation of negation and dualization is subtle, as these

need to take into account the sabotage structure. For example in

the game ⟨∼𝑎⟩¬⟨𝑎⟩⊤ the negation also flips the sabotage status.

It can not be interpreted as saying Angel does not win ⟨𝑎⟩⊤ after

Angel has sabotaged 𝑎 by ∼𝑎. Instead it means Angel does not

win ⟨𝑎⟩⊤ if 𝑎 was last sabotaged by Demon. The equivalent formula

in normal form ⟨∼𝑎⟩⟨𝑎d⟩⊥makes this clear. This subtlety can easily

be avoided by working with games in normal form (Section 3.3.3).

3.3.2 Semantics of Recursive Game Logic. Because recursive game

logic contains games of the form r𝑥 .(𝑐 ∪ 𝑎;𝑥 ;𝑏) unlike in game

logic the semantics of such a game can no longer be defined as the

fixpoint of a function between power sets. The plays of 𝑏 that will

take place after Angel chooses to play 𝑐 must be taken into account.

The semantics of recursive game logic is defined with respect

to both a monotone neighbourhood structure and a valuation. A

valuation is a function 𝐼 : V→ W(|N |) assigning an interpretation
to every variable 𝑥 ∈ V. Given a valuation 𝐼 , a variable 𝑥 ∈ V and

an effectivity function 𝑤 ∈ W(|N |) let 𝐼 [𝑥 ↦→ 𝑤] denote the

valuation that agrees with 𝐼 , except that 𝐼 [𝑥 ↦→ 𝑤] (𝑥) = 𝑤 .

Definition 3.2. For any monotone neighbourhood structure N
and any valuation 𝐼 define the semantics N⟦𝜑⟧𝐼 ∈ P(|N |) and
N⟦𝛼⟧𝐼 ∈ W(|N |) by mutual induction for RGL formulas 𝜑 :

N⟦𝑃⟧𝐼 = N(𝑃) N⟦𝜑 ∨𝜓⟧𝐼 = N⟦𝜑⟧𝐼 ∪ N⟦𝜓⟧𝐼

N⟦¬𝜑⟧𝐼 = |N | \ N⟦𝜑⟧𝐼 N⟦⟨𝛼⟩𝜑⟧𝐼 = N⟦𝛼⟧𝐼 (N⟦𝜑⟧𝐼)
and for RGL games 𝛼 :

N⟦𝑎⟧𝐼 = N(𝑎) N⟦?𝜑⟧𝐼 (𝐴) = N⟦𝜑⟧𝐼 ∩𝐴

N⟦𝑥⟧𝐼 = 𝐼 (𝑥) N⟦𝛼 ∪ 𝛽⟧𝐼 = N⟦𝛼⟧𝐼 ∪ N⟦𝛽⟧𝐼

N⟦𝛼d⟧𝐼 = (N⟦𝛼⟧𝐼)d N⟦𝛼 ; 𝛽⟧𝐼 = N⟦𝛼⟧𝐼 ◦ N⟦𝛽⟧𝐼

N⟦r𝑥 .𝛼⟧𝐼 = 𝜇𝑢.N⟦𝛼⟧𝐼 [𝑥 ↦→𝑢]

For closed formulas the superscript 𝐼 is dropped. As usual the

notation N ⊨ 𝜑 means that N⟦𝜑⟧𝐼 = |N | for all valuations 𝐼 .
Moreover write ⊨ 𝜑 if N ⊨ 𝜑 for all monotone neighbourhood
structures N , and write ⊨𝐾 𝜑 if K ⊨ 𝜑 for all Kripke structures K .

The semantics of recursive subgames is well-defined and the

meaning of games r𝑥 .𝛼 can be seen to be the least fixpoint by

monotonicity of the function 𝑢 ↦→ N⟦𝛼⟧𝐼 [𝑥 ↦→𝑢] . The proof of this
(Lemma 3.5) uses a normal form transformation for rlGL games.

3.3.3 Normal Form. For some proofs it is important that negation

is only applied to propositional atoms, and the duality operator

is only applied to atomic games and free variables. Formulas and

games that satisfy this condition are said to be in normal form.

5

LICS ’24, July 8–11, 2024, Tallinn, Estonia Noah Abou El Wafa and André Platzer

Definition 3.3. By mutual recursion on RGL formulas and games

define the syntactic complement 𝜑 of an RGL formula

𝑃 = ¬𝑃 ¬𝜑 = 𝜑 𝜑 ∨𝜓 = 𝜑 ∧𝜓 ⟨𝛼⟩𝜑 = ⟨𝛼d⟩𝜑

and the syntactic dual 𝛼d of a RGL game as follows

(𝑎)d = 𝑎d (𝑥)d = 𝑥d (𝛼d)d = 𝛼

(?𝜑)d = ¿𝜑 (𝛼 ∪ 𝛽)d = 𝛼d ∩ 𝛽d (𝛼 ; 𝛽)d = 𝛼d; 𝛽d

(r𝑥 .𝛼)d =

r𝑥 .(𝛼d 𝑥d𝑥)

By induction on the definition the syntactic complement and dual

semantically correspond to set complements and dual functions:

Lemma 3.4. For any RGL formula 𝜑 and for any RGL game 𝛼 :

N⟦𝜑⟧𝐼 = |N | \ N⟦𝜑⟧𝐼 and N⟦𝛼d⟧𝐼 = (N⟦𝛼⟧𝐼)d

A formula 𝜑 and a game 𝛼 of RGL is said to be in normal form
if negation is applied only to atomic propositions and the dual

operator is applied only to atomic games and free variables. The

following grammar describes the formulas and games of recursive

game logic in normal form:

𝜑 ::= 𝑃 | ¬𝑃 | 𝜑 ∨𝜓 | 𝜑 ∧𝜓 | ⟨𝛼⟩𝜑

𝛼 ::= 𝑎 | 𝑎d | 𝑥 | 𝑥d | ?𝜑 | ¿𝜑 | 𝛼 ∪ 𝛽 | 𝛼 ∩ 𝛽 | 𝛼 ; 𝛽 | r𝑥 .𝛼 | r𝑥 .𝛼

with the usual assumptions that 𝜑 in ?𝜑 or ¿𝜑 is closed and 𝑥d does

not appear in the scope of a recursive game r𝑥 .𝜑 or

r𝑥 .𝜑 . For every
RGL formula 𝜑 the formula 𝜑 is an equivalent formula in normal

form by Lemma 3.4, called the normal form of 𝜑 . Similarly for every

GLs game 𝛼 the game 𝛼d
d
is the equivalent normal form of 𝛼 .

Lemma 3.5. If r𝑥 .𝛼 is an RGL game, then 𝐹 : 𝑢 ↦→ N⟦𝛼⟧𝐼 [𝑥 ↦→𝑢]
is monotone.

The notions of syntactic negation and syntactic dual can be

extended to game logic with sabotage by defining

(∼𝑎)d = ∼𝑎d (𝑎∗)d = (𝑎d)×

Again the definition ensures that the syntactic negation and dual

coincide with the semantic notions.

Lemma 3.6. For any GLs formula 𝜑 and any GLs game 𝛼 :

N⟦𝜑⟧s = N⟦𝜑⟧sC N⟦𝛼d⟧s = N⟦𝛼⟧sD

Analogously to game logic with sabotage a formula 𝜑 and a

game 𝛼 is said to be in normal form if negation is only applied to

atomic propositions and the dual operator is only applied to atomic

game and sabotage actions. The formulas and games of game logic

with sabotage in normal form are given by the following grammar

𝜑 ::= 𝑃 | ¬𝜑 | 𝜑 ∨𝜓 | ⟨𝛼⟩𝜑

𝛼 ::= 𝑎 | 𝑎d | ∼𝑎 | ∼𝑎d | ?𝜑 | ¿𝜑 | 𝛼 ∪ 𝛽 | 𝛼 ∩ 𝛽 | 𝛼 ; 𝛽 | 𝛼∗ | 𝛼×

As was the case for RGL, any GLs formula 𝜑 has its normal form 𝜑

and any game GLs game 𝛼 also has its normal form 𝜑d
d
.

Corollary 3.7 (Normal Form). Any formula and any game of
RGL or GLs is equivalent to its normal form.

3.3.4 Semantic Compatibility. GL is a syntactic fragment of RGL
(Section 3.2.3) and also the fragment of GLs without sabotage ac-
tions. However the definitions of the semantics of both extensions

are superficially different from the usual semantics of game logic. In

the case of game logic with sabotage the semantics of the iteration

games (Section 3.2.3) is in terms of a fixpoint of a monotone opera-

tor P(|N |×C) → P(|N |×C), whereas in Definition 3.2 they are in
terms of a fixpoint of a transformationW(|N |) → W(|N |). The
next two lemmas show that the two coincide with the definition

in terms of operators P(|N |) → P(|N |), and thus that recursive

game logic is indeed an extension of Parikh’s game logic.

Lemma 3.8. If 𝛼 is a GL game then

N⟦𝛼∗⟧𝐼 (𝐴) = 𝜇𝐵.(𝐴 ∪ N⟦𝛼⟧𝐼 (𝐵))

For a proof see the long version [2].

The GLs semantics given to a formula, that is syntactically also

a GL formula, coincide with the usual semantics:

Proposition 3.9. If 𝜑 is a formula and 𝛼 a game of GL then

N⟦𝜑⟧ = N⟦𝜑⟧s↾𝑐∅ N⟦𝛼⟧(𝑈 ↾𝑐∅) = N⟦𝛼⟧s (𝑈)↾𝑐∅ .

Game logic with sabotage is an extension of Parikh’s game logic.

Proof. This is proved by a simple mutual induction on formulas

and games. The case of repetition games uses Lemma 3.8. □

A GLs formula 𝜑 holds in a structure N (N ⊨ 𝜑) if N⟦𝜑⟧s ⊇
|N | × {𝑐∅}. This captures the intended semantics of 𝜑 as being

evaluated when no sabotage has taken place initially, by requiring

the formula to hold in every state in the special context 𝑐∅ in which

no atomic game has been sabotaged. AGLs formula 𝜑 is valid (⊨ 𝜑)
if N ⊨ 𝜑 for all monotone neighbourhood structures N . Note that 𝜑

is valid iff N⟦𝜑⟧s ⊇ |N | × C for all monotone neighbourhood

structures N . Write ⊨𝐾 𝜑 if K ⊨ 𝜑 for all Kripke structures K . For

formulas 𝜑 in the common syntactic fragment the overloading of

notation for game logic formulas is justified by Proposition 3.9.

4 MODAL FIXPOINT LOGICS
The Modal 𝜇-Calculus. This section recalls two modal fixpoint

logics. Of particular interest is the modal 𝜇-calculus (L𝜇) [10], be-
cause of its desirable logical properties. It has decidable satisfiability

and model checking problems, the finite model property and comes

with a natural complete proof calculus. The syntax of L𝜇 is given
by the following grammar:

𝜑 ::= 𝑃 | ¬𝑃 | 𝑥 | 𝜑 ∨𝜓 | 𝜑 ∧𝜓 | ⟨𝑎⟩𝜑 | [𝑎]𝜑 | 𝜇𝑥 .𝜑 | 𝜈𝑥 .𝜑

for 𝑃 ∈ P, 𝑎 ∈ G and 𝑥 ∈ V. The modal 𝜇-calculus extends basic

(multi)-modal logic with fixpoint operators 𝜇𝑥 .𝜑 and 𝜈𝑥 .𝜑 . These de-

note the least and greatest fixpoints of 𝜑 in the sense that 𝜇𝑥 .𝜑 (𝑥) is
equivalent to 𝜑 (𝜇𝑥 .𝜑). The syntax enforces that fixpoint variables 𝑥
can appear only positively in order to ensure that the semantics of

fixpoint operators 𝜇𝑥 .𝜑 denote the desired extremal fixpoints.

Fixpoint Logic with Chop. An interesting extension of the modal

𝜇-calculus is fixpoint logic with chop [32]. Although it lacks some of

the nice properties of the modal 𝜇-calculus, its high expressiveness

is useful to establish a close correspondence with the game logics

6

Complete Game Logic with Sabotage LICS ’24, July 8–11, 2024, Tallinn, Estonia

from the previous section via a natural translation. The following

grammar defines the syntax of fixpoint logic with chop (FLC) [32]

𝜑 ::= id | 𝑃 | ¬𝑃 | 𝑥 | 𝜑∨𝜓 | 𝜑∧𝜓 | ⟨𝑎⟩𝜑 | [𝑎]𝜑 | 𝜑◦𝜓 | 𝜇𝑥 .𝜑 | 𝜈𝑥 .𝜑

for 𝑃 ∈ P, 𝑎 ∈ G and 𝑥 ∈ V. Fixpoint logic with chop is conceptu-

ally close to the modal 𝜇-calculus. However fixpoint variables do

not range over predicates (elements of P(|N |)), but over transfor-
mations (monotone functions inW(|N |)) instead. Consequently
formulas denote predicate transformers which admit a natural no-

tion of concatenation ◦ and identity transformation id. As in the

modal 𝜇-calculus the definition syntactically restricts to positive

appearances of 𝑥 , in order to ensure the well-definedness of the

semantics of the fixpoint operator. The notation for syntactic sub-

stitution 𝜑
𝜓
𝑥 is the same as in recursive game logic.

Semantics of Fixpoint Logic with Chop. The semantics of fixpoint
logic with chop is defined with respect to a monotone neighbour-

hood structure and a valuation 𝐼 : V → W(|N |). By structural

induction on formulas 𝜑 define the set N⟦𝜑⟧𝐼 ∈ W(|N |)

N⟦id⟧𝐼 = id N⟦𝜑 ∨𝜓⟧𝐼 = N⟦𝜑⟧𝐼 ∪ N⟦𝜓⟧𝐼

N⟦𝑃⟧𝐼 = N(𝑃) N⟦𝜑 ∧𝜓⟧𝐼 = N⟦𝜑⟧𝐼 ∩ N⟦𝜓⟧𝐼

N⟦¬𝑃⟧𝐼 = |N | \ N (𝑃) N⟦⟨𝑎⟩𝜑⟧𝐼 = N(𝑎) ◦ N⟦𝜑⟧𝐼

N⟦𝑥⟧𝐼 = 𝐼 (𝑥) N⟦[𝑎]𝜑⟧𝐼 = N(𝑎)d ◦ N⟦𝜑⟧𝐼

N⟦𝜇𝑥 .𝜑⟧𝐼 = 𝜇𝑞.N⟦𝜑⟧𝐼 [𝑥 ↦→𝑞] N⟦𝜑 ◦𝜓⟧𝐼 = N⟦𝜑⟧𝐼 ◦ N⟦𝜓⟧𝐼

N⟦𝜈𝑥 .𝜑⟧𝐼 = 𝜈𝑞.N⟦𝜑⟧𝐼 [𝑥 ↦→𝑞]

The semantics of 𝜇 and 𝜈 formulas denotes extremal fixpoints, since

the semantics of FLC define a monotone function:

Lemma 4.1. The function 𝐹 : 𝑞 ↦→ N⟦𝜑⟧𝐼 [𝑥 ↦→𝑞] is monotone.

The semantics of a formula of fixpoint logic with chop is de-

fined as a monotone function. To assign a truth value, the function

can be evaluated at ∅ so that a formula 𝜑 holds in N (N ⊨ 𝜑) if

N⟦𝜑⟧𝐼 (∅) = |N | for all 𝐼 . (The choice of ∅ is arbitrary but irrel-

evant and any FLC definable set can be used equivalently [32].)

By monotonicity of the semantics this ensures that N ⊨ 𝜑 iff

N⟦𝜑⟧𝐼 (𝑈) = |N | for all 𝐼 and all𝑈 ⊆ |N |. Moreover write ⊨ 𝜑 if

N ⊨ 𝜑 for all monotone neighbourhood structures N and ⊨𝐾 𝜑 if

K ⊨ 𝜑 for all Kripke structures K .

The semantics of L𝜇 formulas with respect to the FLC semantics

coincide with the usual semantics of the modal 𝜇-calculus [32].

Negation in Fixpoint Logic with Chop. The negation of a formula

of fixpoint logic with chop is defined syntactically as usual:

𝑃 = ¬𝑃 ⟨𝑎⟩𝜑 = [𝑎]𝜑 𝜑 ∨𝜓 = 𝜑 ∧𝜓 𝜇𝑥.𝜑 = 𝜈𝑥 .𝜑

¬𝑃 = 𝑃 [𝑎]𝜑 = ⟨𝑎⟩𝜑 𝜑 ∧𝜓 = 𝜑 ∨𝜓 𝜈𝑥.𝜑 = 𝜇𝑥 .𝜑

𝑥 = 𝑥

The syntactic definition of negation corresponds semantically

to complementation:

Lemma 4.2. N⟦𝜑⟧𝐼 (∅) = |N |\N⟦𝜑⟧𝐼 c (∅) for all FLC formulas𝜑 ,
where 𝐼 c (𝑥) = (𝐼 (𝑥))c is the pointwise complement of 𝐼 .

Proof. By a straightforward induction on FLC-formulas. □

GL

Lµ

GLs

FLC

RGLrlGL

L∗ Ls
Lemma 5.7

♭
♯

⊂

♯ ♭

♮ c

♯ ♭

⊂

⊂⊂

Figure 1: Translations between Fixpoint and Game Logics

With the syntactic negation, implication and equivalence can

be defined in fixpoint logic with chop. The implication 𝜑 → 𝜓 is

viewed as an abbreviation for 𝜑 ∨𝜓 in FLC.

The Modal ∗-Calculus. Restricting the fixpoints in FLC to struc-

tured ones as they appear in game logic yields a logic we call the

modal ∗-calculus, which is the exact modal fixpoint logic equivalent

of game logic. The syntax of the modal ∗-calculus (L∗) is defined as

𝜑 ::= id | 𝑃 | ¬𝜑 | 𝜑 ∨𝜓 | ⟨𝑎⟩𝜑 | 𝜑 ◦𝜓 | 𝜑∗

This can be viewed as a fragment of FLC by interpreting ¬𝜑 as 𝜑

and 𝜑∗ as an abbreviation for 𝜇𝑥 .(id ∨ 𝜑 ◦ 𝑥), where 𝑥 is fresh.

5 EXPRESSIVENESS
The semantics of game logic and the modal 𝜇-calculus are in many

ways similar and game logic can express large parts of the modal

𝜇-calculus. In particular it spans the entire fixpoint alternation hier-

archy of the modal 𝜇-calculus [8]. Nevertheless, game logic is less

expressive than the modal 𝜇-calculus [9]. This section introduces

natural translations to show that, at the level of fixpoint logic with

chop and recursive game logic, modal fixpoint logics and game

logics can be identified completely. From this identification, the

relationship of the expressiveness of game logic as a modal fixpoint

logic and the expressiveness of the modal 𝜇-calculus as a game logic

can be determined completely.
Figure 1 gives a schematic overview of the translations between

the logics. All inclusions in the illustration are strict. Game logic is

strictly less expressive than the modal 𝜇-calculus [9] and the modal

𝜇-calculus is strictly less expressive than FLC [32]. The fragments

rlGL and L𝑠 are introduced in this section and the translations are

presented and proved correct.

A formula 𝜑 of RGL is well-named if it does not bind the same

variable twice and no variable appears both free and bound. Every

formula is equivalent to a well-named formula by bound renaming.

5.1 Equiexpressiveness of FLC and RGL
5.1.1 Translation from fixpoint logic with chop to recursive game
logic. Any formula 𝜑 of FLC can be expressed equivalently as a

RGL game. The translated RGL game 𝜑♯- is defined by induction on

7

LICS ’24, July 8–11, 2024, Tallinn, Estonia Noah Abou El Wafa and André Platzer

the syntax of FLC formula 𝜑 as follows:

(id)♯- = ?⊤ (𝑃)♯- = ?𝑃 ; ¿⊥ (𝜑 ∨𝜓)♯- = 𝜑♯- ∪𝜓 ♯-

(𝑥)♯- = 𝑥 (¬𝑃)♯- = ?¬𝑃 ; ¿⊥ (𝜑 ∧𝜓)♯- = 𝜑♯- ∩𝜓 ♯-

(⟨𝑎⟩𝜑)♯- = 𝑎;𝜑♯- (𝜇𝑥 .𝜑)♯- = r𝑥 .𝜑♯- (𝜑 ◦𝜓)♯- = 𝜑♯-;𝜓 ♯-

([𝑎]𝜑)♯- = 𝑎d;𝜑♯- (𝜈𝑥 .𝜑)♯- = r𝑥 .𝜑♯-

The translation 𝜑♯- of a FLC formula 𝜑 is always a RGL game in

normal form. The RGL formula corresponding to 𝜑 is 𝜑♯ ≡ ⟨𝜑♯-⟩⊥.

Proposition 5.1 (♯ Sound). For any FLC formula 𝜑 the transla-
tion satisfies N⟦𝜑⟧𝐼 = N⟦𝜑♯⟧𝐼 . Hence N ⊨ 𝜑 iff N ⊨ 𝜑♯ .

Proof. By structural induction on 𝜑 . □

5.1.2 Translation from recursive game logic to fixpoint logic with
chop. Conversely any formula of recursive game logic can be ex-

pressed equivalently in fixpoint logic with chop. To do this, fix two

fresh variables u, v. Intuitively the purpose of these variables is to

mark the end of the game, so that it can later be replaced by its

game continuation. The difference between the two variables is

that v marks games that end in fixpoint variables, while u marks

the end of all other games. This distinction will only be important

later when considering a particular subclass of formulas.

By Corollary 3.7 the translation can be defined by induction on

the grammar of formulas and games in normal form. For any RGL
formula 𝜑 and RGL game 𝛼 define by induction an FLC formula 𝜑♭

(𝑃)♭ = 𝑃 (𝜑 ∨𝜓)♭ = 𝜑♭ ∨𝜓♭ (⟨𝛼⟩𝜑)♭ = 𝛼♭ 𝜑
♭

u,v

(¬𝑃)♭ = ¬𝑃 (𝜑 ∧𝜓)♭ = 𝜑♭ ∧𝜓♭

and the FLC formula 𝛼♭

(𝑎)♭ = ⟨𝑎⟩u (𝛼 ∪ 𝛽)♭ = 𝛼♭ ∨ 𝛽♭ (?𝜓)♭ = 𝜓♭ ∧ u

(𝑎d)♭ = [𝑎]u (𝛼 ∩ 𝛽)♭ = 𝛼♭ ∧ 𝛽♭ (¿𝜓)♭ = ¬(𝜓)♭ ∨ u

(𝑥)♭ = 𝑥 ◦ v (r𝑥 .𝛼)♭ = (𝜇𝑥 .𝛼♭ id

u,v) ◦ u

(𝛼 ; 𝛽)♭ = 𝛼♭ 𝛽
♭

u,v (r𝑥 .𝛼)♭ = (𝜈𝑥 .𝛼♭ id

u,v) ◦ u

Note that 𝜑
𝜓
u,v denotes the formula obtained by simultaneously

replacing all appearances of u and v in 𝜑 by𝜓 . This is different from

successive substitution 𝜑
𝜓
u
𝜓
v . The substitutions here are always

admissible, that is no fixpoint construct captures a free variable. In

fact none of the variables that are substituted (u, v) even appears in

the context of a fixpoint in the translation. (The variables u, v are
fresh and do not appear in the original formula or game.)

Proposition 5.2 (♭ Sound). For any well-named RGL formula 𝜑
and any well-named RGL game 𝛼 in normal form

(1) N⟦𝜑⟧𝐼 = N⟦𝜑♭⟧𝐼 (𝐴) for any 𝐴 ⊆ |N |
(2) N⟦𝛼⟧𝐼 ◦𝑤 = N⟦𝛼♭⟧𝐼 [u,v ↦→𝑤]

Hence N ⊨ 𝜑 iff N ⊨ 𝜑♭.

Theorem 5.3 (Eqiexpressiveness for FLC). Recursive game
logic (RGL) and fixpoint logic with chop (FLC) are equiexpressive.

5.2 The Modal 𝜇-Calculus as a Game Logic
In this section the precise extension of game logic that corresponds

to the modal 𝜇-calculus is identified. The lack of the fixpoint vari-

ables of the modal 𝜇-calculus in game logic was remedied by in-

troducing recursive subgames. This allows the modal 𝜇-calculus to

be understood as a game logic where games are played in a tail-

recursive way, which captures the regularity of themodal 𝜇-calculus

in the context of recursive game logic.

A game 𝛼 of recursive game logic is right-linear in 𝑥 if it has

no subgame 𝛽 ;𝛾 where 𝑥 is free in 𝛽 . A game 𝛼 is right-linear if it
contains a subgame r𝑥 .𝛽 only if 𝛽 is right-linear in 𝑥 . A formula 𝜑

of recursive game logic is right-linear if all its subgames are right-

linear. The fragment of RGL consisting only of right-linear formulas

and games is called right-linear game logic (rlGL).
The translation ♯- transforms formulas of the modal 𝜇-calculus

to right-linear game logic, since the game 𝛼 in all sequential games

𝛼 ; 𝛽 introduced in the translation ♯- is of the form 𝑎, 𝑎d, ?𝑃 or ?𝑃 . For

the converse, the translation ♭ can be modified to ensure that it only

produces L𝜇 formulas. For any rlGL formula𝜑 and any rlGL game 𝛼 ,

the L𝜇 formulas 𝜑 ♭
and 𝛼 ♭

are defined by structural induction. The

definition of 𝛼 ♭
is identical to the definition of 𝛼♭ in Section 5.1.2,

except for the following cases

(𝑥) ♭= 𝑥 (𝛼 ; 𝛽) ♭= 𝛼 ♭𝛽 ♭

u (r𝑥 .𝛼) ♭= 𝜇𝑥 .𝛼 ♭

Note that 𝜑 ♭
is a modal 𝜇-calculus formula, as it does not men-

tion ◦. This is a generalization of a prior translation [22].

Proposition 5.4 (♭Sound). The translation 𝜑 ♭of a well-named
rlGL formula 𝜑 in normal form satisfies N⟦𝜑 ♭⟧𝐼 = N⟦𝜑♭⟧𝐼 .

Theorem 5.5 (Eqiexpressiveness for L𝜇). Right-linear game
logic (rlGL) and the modal 𝜇-calculus (L𝜇) are equiexpressive.

Proof. As noted 𝜑♯ is a formula of right-linear game logic pro-

vided 𝜑 is a formula in the modal 𝜇-calculus. This shows that right-

linear game logic is at least as expressive as the modal 𝜇-calculus.

The converse follows from Corollary 3.7 and Proposition 5.4. □

The next result is a consequence of Propositions 5.1, 5.2 and 5.4

and captures that the translations are inverse to each other.

Corollary 5.6 (Semantic Inverses). The formulas ⊨ 𝜑 ↔ 𝜑♯ ♭

and ⊨ 𝜓 ↔ 𝜓 ♭♯ are valid for all well-named L𝜇 formulas 𝜑 and all
well-named rlGL formulas𝜓 in normal form.

5.3 Game Logic as a Fixpoint Logic
Recall from Section 4 that the modal ∗-calculus is the fragment

of fixpoint logic with chop, which contains no fixpoints except in

the form 𝜑∗. Because the fixpoint structure in the modal ∗-calculus
mirrors the structure in game logic, the translations between RGL
and FLC also show the equiexpressiveness of the modal ∗-calculus
andGL. This identifies the exact modal fixpoint logic corresponding

to Parikh’s original game logic.

The technical notion of formula separability will be used for the

proof. A formula 𝜑 of the modal 𝜇-calculus is separable if it contains
fixpoints only in the forms 𝜇𝑥 .(𝜓 ∨ 𝜌) and 𝜈𝑥 .(𝜓 ∧ 𝜌) where 𝜌 does

8

Complete Game Logic with Sabotage LICS ’24, July 8–11, 2024, Tallinn, Estonia

not mention 𝑥 and𝜓 has no variable other than 𝑥 free. Let L𝑠 denote
the set of separable formulas of the modal 𝜇-calculus.

Lemma 5.7. (1) If 𝜑 is a L∗ formula, then 𝜑♯ is a GL formula.
(2) Any L𝑠 formula is equivalent to an L∗ formula.
(3) If 𝜑 is a well-named GL formula in normal form, then 𝜑 ♭is

an L𝑠 formula.

Theorem 5.8 (Eqiexpressiveness for GL). Game logic (GL),
the modal ∗-calculus (L∗), and the separable fragment of the modal
𝜇-calculus (L𝑠) are equiexpressive.

The equivalence between the separable fragment of the modal

𝜇-calculus and game logic has been shown [14, Theorem 3.3.10].

Theorem 5.8 adds to this equivalence the modal ∗-calculus. It is
still open whether game logic is equivalent to the two variable

fragment of L𝜇 . By Theorem 5.8 this can be reduced to the question

of whether every two-variable L𝜇 formula is expressible in L∗.

5.4 Game Logic with Sabotage as Right-linearity
Although sabotage actions are far from naturally expressible in

rlGL, they do not add expressive power. This shows that game logic

with sabotage is, like game logic, a fragment of the modal 𝜇-calculus.

The difficulty in embedding GLs into rlGL is that the ownership

information about previously committed acts of sabotage must be

taken into account. This can be done by coding this information

on the sabotaged atomic games into the nesting structure of the

fixpoint variables. To simplify this coding, it uses simultaneous

fixpoints, which do not add to the expressive power. This is captured

by the following rendition adapting Beckić’s Theorem to rlGL.

Theorem 5.9 (Beckić). For variables 𝑥1, . . . , 𝑥𝑛 and rlGL games
𝛼1, . . . , 𝛼𝑛 there are rlGL games 𝛽1, . . . , 𝛽𝑛 such that

©«
N⟦𝛽1⟧𝐼
N⟦𝛽2⟧𝐼

.

.

.

N⟦𝛽𝑚⟧𝐼

ª®®®®¬
= 𝜇

©«
𝑤1

𝑤2

.

.

.

𝑤𝑛

ª®®®®¬
.

©«
N⟦𝛼1⟧𝐼 [®𝑥 ↦→ ®𝑤]

N⟦𝛼2⟧𝐼 [®𝑥 ↦→ ®𝑤]

.

.

.

N⟦𝛼𝑚⟧𝐼 [®𝑥 ↦→ ®𝑤]

ª®®®®®¬
Let r𝑖 (𝑥1, . . . , 𝑥𝑛) .(𝛼1, . . . , 𝛼𝑛) denote the rlGL game 𝛽𝑖 .

Proof. An adaptation of Beckić’s Theorem [5, Lemma 1.4.2]. □

Fix for every possible context 𝑐 ∈ C a fresh variable 𝑦𝑐 . For any

formula 𝜑 and any game 𝛼 of game logic with sabotage a transla-

tion 𝛼𝑐 depending on the context 𝑐 is defined. The context allows

the translation to depend on the state of sabotage of atomic games.

Moreover the translation of games will contain free variables 𝑦𝑐 .

Those mark the end of the game and keep track of the context

in which this end has been reached. This allows a compositional

definition of the translation. For a context 𝑐 , a GLs formula 𝜑 and a

GLs game 𝛼 in normal form, the rlGL games 𝜑𝑐 and 𝛼𝑐 are defined

by mutual induction on the GLs formulas 𝜑 and games 𝛼 :

(𝑃)𝑐 = ?𝑃 ; ¿⊥ (𝜑 ∨𝜓)𝑐 = 𝜑𝑐 ∪𝜓𝑐

(¬𝑃)𝑐 = ?¬𝑃 ; ¿⊥ (𝜑 ∧𝜓)𝑐 = 𝜑𝑐 ∩𝜓𝑐

(𝑎)𝑐 =

𝑎;𝑦𝑐 if 𝑐 (𝑎) = ∅
𝑦𝑐 if 𝑐 (𝑎) = ⋄
?⊥ if 𝑐 (𝑎) = ⋄

(𝑎d)𝑐 =

𝑎d;𝑦𝑐 if 𝑐 (𝑎) = ∅
¿⊥ if 𝑐 (𝑎) = ⋄
𝑦𝑐 if 𝑐 (𝑎) = ⋄

(∼𝑎)𝑐 = 𝑦
𝑐
⋄
𝑎

(?𝜑)𝑐 = 𝜑𝑐 ∩ 𝑦𝑐 (𝛼 ∪ 𝛽)𝑐 = 𝛼𝑐 ∪ 𝛽𝑐

(∼𝑎d)𝑐 = 𝑦
𝑐 ⋄𝑎

(¿𝜑)𝑐 = 𝜑𝑐 ∪ 𝑦𝑐 (𝛼 ∩ 𝛽)𝑐 = 𝛼𝑐 ∩ 𝛽𝑐

The translations of atomic games and sabotage games illustrates the

importance of translating relative to a context. The translation of

formulas ⟨𝛼⟩𝜑 and games 𝛼 ; 𝛽 and 𝛼∗, 𝛼× is slightly more involved.

For the first two define

(⟨𝛼⟩𝜑)𝑐 = 𝛼𝑐 𝜑
•
;?⊥
𝑦•

(𝛼 ; 𝛽)𝑐 = 𝛼𝑐 𝛽
•

𝑦•

where the notation 𝛼𝑐
𝛽•

𝑦•
means that any instance of a variable 𝑦𝑒

is replaced by 𝛽𝑒 , the translation of 𝛽 with respect to context 𝑒 .

This shows the role of the variables 𝑦𝑐 as placeholders for the

continuation of the game. In the translation (𝜓)𝑐 ∩ (𝜑)𝑐 ; ?⊥ of

formula (⟨?𝜓 ⟩𝜑)𝑐 , variable 𝑦𝑐 is a placeholder for the formula (𝜑)𝑐 .
For the translation of an iteration game, all possible ways of

playing this game, depending on what has been sabotaged and how,

are considered simultaneously. To this end, fix for a context 𝑐 and

fixpoint games 𝛼∗ and 𝛼× a list of all contexts 𝑐1, . . . , 𝑐𝑚 that satisfy

𝑐𝑖 (𝑎) = ∅ if 𝑎 and 𝑎d do not appear in 𝛼 . The translation of the

repetition games is defined simultaneously for all 𝑐𝑖

(𝛼∗)𝑐𝑖 = r𝑖 (𝑧𝑐1 , . . . , 𝑧𝑐𝑛) .(𝑦𝑐1 ∪ 𝛼𝑐1
𝑧𝑐•
𝑐•
, . . . , 𝑦𝑐𝑛 ∪ 𝛼𝑐𝑛 𝑧𝑐•𝑦𝑐•)

(𝛼×)𝑐𝑖 = r

𝑖 (𝑧𝑐1 , . . . , 𝑧𝑐𝑛) .(𝑦𝑐1 ∩ 𝛼𝑐𝑛
𝑧𝑐•
𝑦𝑐•
, . . . , 𝑦𝑐𝑛 ∩ 𝛼𝑐𝑛 𝑧𝑐•𝑦𝑐•)

where the 𝑧𝑐• are fresh variables. Observe that the translation of

any GLs game is a right-linear game logic game and the translation

of any GLs formula is a closed right-linear game logic game.

The next proposition shows that the translation is correct.

Proposition 5.10 (·𝑐𝑆𝑜𝑢𝑛𝑑). Let 𝐼 (𝑦𝑒) = 𝑈 ↾𝑒 . For any GLs for-
mula 𝜑 and any GLs game 𝛼 in normal form

N⟦𝜑⟧s↾𝑐 = N⟦𝜑𝑐⟧(∅) N⟦𝛼⟧s (𝑈)↾𝑐 = N⟦𝛼𝑐⟧𝐼 (∅)

The translation of a game logic with sabotage formula into a

formula of right-linear game logic potentially grows very quickly.

The upper bound on the length of the translation of a fixpoint game

obtained from the above proof is
2

|𝛼𝑐 | ≤ (𝐾 · |𝛼 |) (3
ℓ)↑↑𝑑 ,

where𝐾 is a constant,𝑑 is the fixpoint nesting depth of𝛼 and ℓ is the

number of atomic games for which there are sabotage actions in 𝛼 .

This comes from the fact that the translation of any game 𝛼 con-

siders all of the up to 3
ℓ
-many relevant contexts. The only known

transformation from vectorial fixpoints to non-vectorial nested

fixpoints as in Theorem 5.9 grows exponentially in the formula

size. Consequently every fixpoint leads to a doubly exponential

blow-up in length. In [13] it is shown that reducing vectorial fix-

points to non-vectorial fixpoints is at least as hard as solving parity

games, for which the existence of a polynomial time algorithm is

a longstanding open question. It has been conjectured [11] that a

vectorial fixpoint formula can be exponentially smaller than the

shortest equivalent non-vectorial formula.

While it is unclear to what extent this upper bound is optimal,

it suggests that complex formulas of the modal 𝜇-calculus may be

expressed much more succinctly in game logic with sabotage.

2
The up-arrow notation𝑛 ↑↑𝑚 denotes𝑚-fold iterated exponentiation, i.e.𝑛 ↑↑ 0 = 1

and 𝑛 ↑↑ (𝑚 + 1) = 𝑛𝑛↑↑𝑚 .

9

LICS ’24, July 8–11, 2024, Tallinn, Estonia Noah Abou El Wafa and André Platzer

5.5 Sabotage Memory
This section shows how a GLs game can use sabotage to model

memory. This expressive power will be used to translate from rlGL
into GLs. It is straightforward to store Boolean information by

sabotaging a fresh atomic game. However as it will be necessary

for both players to retrieve the information stored in the game,

two atomic games are used to store a bit. This makes it possible to

define a game ?a that Angel can skip if the value associated to 𝑎 is

true. If the value is false, Angel loses the game prematurely.

To encode this formally in GLs, consider a list a = 𝑎1, . . . , 𝑎𝑛 of

atomic games and define a composite game a:=𝑖 by

∼𝑎d
1
; . . . ;∼𝑎d𝑛 ;∼𝑎𝑖

for all 1 ≤ 𝑖 ≤ 𝑛. In this context, ?a=𝑖 is synonymous notation

for 𝑎𝑖 . As long as sabotage actions for any atomic game 𝑎𝑖 only

appear in the context of a:=· then, after a game of the form a:=𝑖 has
been played once, Angel can win the game ?a= 𝑗 exactly if the last

time a subgame of the form a:= 𝑗 has been played was with 𝑖 = 𝑗 .

In case 𝑛 = 2 the list a = (𝑎1, 𝑎2) is used to memorize a binary

value. Writing a! for a:=1 is viewed as setting the value of a to true.

Similarly the game ¬a! representing a:=2 is understood to set the

value of a to false. Then the game ?a can be defined as ?a=1 and
has the desired property described above. Dually, define ?

da to stand
for 𝑎d

2
. This game is skipped if the value for a is true and Demon

loses otherwise. Similarly Demon tests if the value for a is false

by playing ?

d¬a, defined as 𝑎d
1
. Note that (¬a!)d is equivalent to a!,

(?¬a)d is equivalent to ?

da and (?a)d is equivalent to ?

d¬a.

5.6 Right-linear Game Logic as Sabotage
With the help of sabotage memory, it is possible to express every

right-linear game logic formula in game logic with sabotage and

consequently also every modal 𝜇-calculus formula. This shows that

game logic with sabotage is an expressive completion of game logic

as a fragment of the modal 𝜇-calculus.

The challenge of the converse translation from rlGL to GLs is
that the arbitrarily nested recursive games of rlGL need to be turned
into structured repetition games of game logic with sabotage. Us-

ing sabotage, players can force the behaviour of nested recursive

games onto structured repetition games. To facilitate this, fix fresh

atomic games x1 and x1 for every variable 𝑥 and let x = (x1, x2) as
sabotage memory. By mutual induction define the translation of a

rlGL formula in normal form into a GLs formula 𝜑♮

(𝑃)♮ = 𝑃 (𝜑 ∨𝜓)♮ = 𝜑♮ ∨𝜓 ♮ (⟨𝛼⟩𝜑)♮ = ⟨𝛼♮-⟩𝜑♮

(¬𝑃)♮ = ¬𝑃 (𝜑 ∧𝜓)♮ = 𝜑♮ ∧𝜓 ♮

and the translation of a normal form rlGL game into a GLs game 𝛼♮-

(𝑎)♮- = 𝑎 (?𝜑)♮- = ?𝜑♮ (𝛼 ∪ 𝛽)♮- = 𝛼♮- ∪ 𝛽♮-

(𝑎d)♮- = 𝑎d (¿𝜑)♮- = ¿𝜑♮ (𝛼 ∩ 𝛽)♮- = 𝛼♮- ∩ 𝛽♮-

(𝛼 ; 𝛽)♮- = 𝛼♮-; 𝛽♮- (r𝑥 .𝛼)♮- = ¬x!; (?¬x; x!;𝛼♮- ¬x!𝑥)∗; ?x

(𝑥)♮- = 𝑥 (r𝑥 .𝛼)♮- = x!; (?dx;¬x!;𝛼♮- x!𝑥)
×
; ?

d¬x

The translation is into a GLs game with variables, where in GLs
the variables are viewed as atomic games. This is necessary for a

compositional definition. For a rlGL game 𝛼 the GL formula 𝛼♮ is

defined to be ⟨𝛼♮-⟩⊥.
Intuitively the translation of the fixpoints uses rule changes to

remove the choices from the repetition game. In a normal 𝛼∗ game

it is Angel’s choice whether to continue playing the game 𝛼 or not.

However in general r𝑥 .𝛼 games, this choice is made differently. If

the variable 𝑥 is reached the game must be repeated. If the game

ends without reaching this variable it must not be repeated. The
translation enforces this deterministic behaviour of the repetition

game in a
∗
iteration game via tests. Although the

∗
iteration game

theoretically allows Angel to stop prematurely, Angel is constrained

by the complementary tests ?x and ?¬x at the beginning of the loop
body and after the loop. Throughout the play of 𝛼 the players use x
tomemorize whether a variable 𝑥 has been reached in which case ?x
stops Angel from ending the game prematurely. Otherwise Angel

cannot safely repeat the game.

Proposition 5.11 (♮ Sound). For any well-named formula 𝜑 of
rlGL in normal form, the translation 𝜑♮ is a GLs formula with

N⟦𝜑♮⟧s↾𝑐∅ = N⟦𝜑⟧ .

Theorem 5.12 (Eqiexpressiveness). Game logic with sabotage,
right-linear game logic and the modal 𝜇-calculus are equiexpressive.

Proof. By Propositions 5.10 and 5.11 and Theorem 5.5. □

This completes the picture of the relative expressiveness of the

game logics and fixpoint logics in Figure 1. The equiexpressiveness

of GLs and the L𝜇 means that game logic with sabotage inherits

many of the nice properties of the modal 𝜇-calculus for free.

Theorem 5.13 (Meta properties). Game logic with sabotage has
the small model property and its satisfiability problem is decidable.

Proof. The modal 𝜇-calculus has these properties [40, 43], and

they transfer to game logic with sabotage by Theorem 5.12. □

According to the definition of RGL and GLs, games may contain

tests of arbitrary formulas. For example the formula ⟨?(⟨𝑎⟩𝑃)⟩𝑃
is a well-formed game logic formula. This rich-test version is in

contrast to the poor-test version in which only tests of Boolean

combinations of literals (i.e. formulas 𝑃 and ¬𝑃) are allowed. As a
corollary of the equiexpressiveness results it follows that rich-tests

(and even anything beyond literals) do not add expressive power.

Corollary 5.14 (Tests). The poor-test versions of game logic,
right-linear game logic, recursive game logic and game logic with
sabotage are equiexpressive with their respective rich-test versions.

Proof. For game logic and right-linear game logic this can be

seen by translating into the corresponding fragment of fixpoint

logic with chop via ♭ or ♭, since the backward translation via ♯

yields an equivalent (Corollary 5.6) poor-test formula, since the

translation ♯ only introduces tests of literals. If 𝜑 is a GLs formula

then 𝜑𝑐∅ is an equivalent rlGL formula. By the above there is an

equivalent poor-test rlGL formula 𝜓 and hence 𝜓 ♮
is a poor-test

GLs formula equivalent to 𝜑 . In fact, these merely test literals. □

10

Complete Game Logic with Sabotage LICS ’24, July 8–11, 2024, Tallinn, Estonia

6 AXIOMATIZATION
This section introduces natural proof calculi for rlGL and GLs.
Kozen’s original calculus for L𝜇 and its monotone variant are re-

called, since completeness for these game logics is obtained from

completeness for the modal 𝜇-calculus.

6.1 Proof Calculi for the Modal 𝜇-Calculus
Because this paper is also concerned with the modal 𝜇-calculus

interpreted over neighbourhood structures, the monotone modal
𝜇-calculus mL𝜇 [23], the restriction of Kozen’s calculus for the

modal 𝜇-calculus for neighbourhood structures, is recalled here. The

monotone modal 𝜇-calculus consists of all propositional tautologies

together with all instances of the following axioms:

(𝜇) 𝜑
𝜇𝑥.𝜑
𝑥 → 𝜇𝑥 .𝜑

(𝛼) 𝜎𝑥.𝜑 ↔ 𝜎𝑦.𝜑
𝑦
𝑥 (𝑦 fresh, 𝜎 ∈ {𝜇, 𝜈})

The rules of the proof calculus are:

(MP)

𝜑 𝜑 → 𝜓

𝜓
(M𝑎)

𝜑 → 𝜓

⟨𝑎⟩𝜑 → ⟨𝑎⟩𝜓 (FP𝜇)
𝜑
𝜓
𝑥 → 𝜓

𝜇𝑥.𝜑 → 𝜓

Write mL𝜇 ⊢ 𝜑 if there is a Hilbert style proof of 𝜑 in the mono-

tone modal 𝜇-calculus. Note that this is a subset of Kozen’s proof

calculus for the modal 𝜇-calculus [30]. Adding the following two

axioms yields the full Kozen calculus.

([]⊤) [𝑎]⊤ ([]∧) [𝑎]𝜑 ∧ [𝑎]𝜓 → [𝑎] (𝜑 ∧𝜓)

Write L𝜇 ⊢ 𝜑 if there is a Hilbert-style proof in this calculus of

the formula 𝜑 . The reverse implication of []∧ is derivable by M𝑎 .

Kripke’s distribution axiom (𝐾) is also derivable in this calculus.

(See the long version [2].) The two proof calculi for L𝜇 are complete:

Proposition 6.1 (Walukiewicz [45]). Kozen’s calculus is sound
and complete with respect to Kripke structures. That is ⊨𝐾 𝜑 iff
L𝜇 ⊢ 𝜑 for L𝜇 formulas 𝜑 .

Proposition 6.2 (Enqvist, Seifan, Venema [23]). The monotone
modal 𝜇-calculus is sound and complete with respect to monotone
neighbourhood structures. That is ⊨ 𝜑 iffmL𝜇 ⊢ 𝜑 for L𝜇 formulas 𝜑

6.2 Proof Calculi for Game Logics
6.2.1 Parikh’s Proof Calculus for Game Logic. Parikh proposed a

similar Hilbert-style proof calculus for game logic [35]. It consists

of all propositional tautologies as axioms together with the axioms

(∪) ⟨𝛼 ∪ 𝛽⟩𝜑 ↔ ⟨𝛼⟩𝜑 ∨ ⟨𝛽⟩𝜓

(;) ⟨𝛼 ; 𝛽⟩𝜑 ↔ ⟨𝛼⟩⟨𝛽⟩𝜑

(∗) 𝜑 ∨ ⟨𝛼⟩⟨𝛼∗⟩𝜑 → ⟨𝛼∗⟩𝜑

(
𝑑
) ⟨𝛼d⟩𝜑 ↔ ¬⟨𝛼⟩¬𝜑

(?) ⟨?𝜑⟩𝜓 ↔ 𝜑 ∧𝜓

and the following rules

(MP𝐺)
𝜑 𝜑 → 𝜓

𝜓
(M𝐺)

𝜑 → 𝜓

⟨𝛼⟩𝜑 → ⟨𝛼⟩𝜓 (FP∗)
𝜌 ∨ ⟨𝛼⟩𝜓 → 𝜓

⟨𝛼∗⟩𝜌 → 𝜓

If a GL formula is provable in this calculus, write GL ⊢ 𝜑 . If 𝜑 is

provable in the same calculus with the additional two axioms []⊤
and []∧, write GL +𝐺 ⊢ 𝜑 .

6.2.2 A Proof Calculus for Right-linear Game Logic. The proof

calculus for game logic can be extended to a proof calculus for

right-linear game logic by adding the following axioms and rule:

(BR) ⟨𝜎𝑥.𝛼⟩𝜑 ↔ ⟨𝜎𝑦.𝛼 𝑦𝑥 ⟩𝜑 (𝑦 fresh, 𝜎 ∈ {r, r})

(r) ⟨𝛼 r𝑥.𝛼
𝑥 ⟩𝜑 → ⟨r𝑥 .𝛼⟩𝜑

(FPr)
⟨𝛼 𝛽 ;?𝜓 ;

¿⊥
𝑥 ⟩𝜑 → ⟨𝛽⟩𝜓

⟨r𝑥 .𝛼⟩𝜑 → ⟨𝛽⟩𝜓 (𝛼 right-linear in 𝑥)

Note that the axiom ∗ and the rule FP∗ do not need to be added

to the calculus explicitly as these are derivable from r and FPr
respectively. The rule FPr is a version of the least fixpoint rule for

right-linear games. As before for a rlGL formula 𝜑 write rlGL ⊢ 𝜑
if 𝜑 is provable in this calculus and rlGL +𝐺 ⊢ 𝜑 if 𝜑 is provable

with the two additional axioms []⊤ and []∧.
A more general proof calculus for full recursive game logic is

of interest as well. Because there cannot be a recursive and com-

plete such calculus, only the calculus for right-linear game logic is

considered here.

Remark 6.3. In the three calculi restricting rule M𝐺 to range only

over atomic games 𝑎, dual atomic games 𝑎d and variables 𝑥 does not

weaken the proof calculi, since the more general rule is derivable.

With the more general M𝐺 it is clear that if GL ⊢ 𝜑 , then GL ⊢ 𝜑 𝛼𝑥
by substituting free occurrences of 𝑥 across the entire proof.

Theorem 6.4 (rlGL Soundness). For any rlGL formula 𝜑
(1) ⊨ 𝜑 if rlGL ⊢ 𝜑
(2) ⊨𝐾 𝜑 if rlGL +𝐺 ⊢ 𝜑

Proof. The proof is a straightforward extension of the sound-

ness proof for Parikh’s game logic calculus. Soundness of the rule

FPr is shown in the long version [2]. □

Proposition 6.5. The following are derivable in the rlGL calculus:
(¿) ⟨¿𝜑⟩𝜓 ↔ (𝜑 → 𝜓)

(∩) ⟨𝛼 ∩ 𝛽⟩𝜑 ↔ ⟨𝛼⟩𝜑 ∧ ⟨𝛽⟩𝜓

(®r) ⟨r𝑥 .𝛼⟩𝜑 → ⟨𝛼 r𝑥.𝛼
𝑥 ⟩𝜑

(FP

r

)

⟨𝛽⟩𝜓 → ⟨𝛼 𝛽 ;?𝜓 ;
¿⊥

𝑥 ⟩𝜌
⟨𝛽⟩𝜓 → ⟨ r𝑥 .𝛼⟩𝜌 (𝛼 right-linear in 𝑥)

(RL) ⟨𝛼⟩𝜑 ↔ ⟨𝛼 𝑥 ;?𝜑 ;
¿⊥

𝑥 ⟩𝜑 (𝛼 right-linear in 𝑥)

Axioms ¿, ∩ and rule FP

r

are the dual versions to the Angelic

axioms ?,∪ and the Angelic rule FPr. Axiom ®r is the reverse version
of r and axiom RL captures the right-linearity of 𝛼 in 𝑥 syntactically.

6.3 Completeness for Right-linear Game Logic
The translations between right-linear game logic and the modal

𝜇-calculus show not only equiexpressiveness, but also that the proof

calculi are equivalent. This enables the transfer of completeness

from the modal 𝜇-calculus to right-linear game logic.

The translations between right-linear game logic and the modal

𝜇-calculus have been proved sound semantically. In order to use

11

LICS ’24, July 8–11, 2024, Tallinn, Estonia Noah Abou El Wafa and André Platzer

these to relate the proof calculi, the soundness of the translation

needs to be proved in the calculus itself. Since each calculus can

only talk about formulas in its respective language the relevant

soundness here is that of Corollary 5.6. This is proved by induction

on a well-order on all formulas defined in the long version [2].

Lemma 6.6 (Provable Inverses). (1) rlGL ⊢ 𝜑 ↔ 𝜑 ♭♯ for
any well-named rlGL formula 𝜑 in normal form

(2) mL𝜇 ⊢ 𝜑 ↔ 𝜑♯ ♭for any well-named L𝜇 formula 𝜑

The key is that proofs in the modal 𝜇-calculus can be turned

into right-linear game logic proofs. Since the modal 𝜇-calculus is

complete and has the same expressive power as right-linear game

logic it follows that any formula 𝜑 is provable up to translation.

Theorem 6.7 (Eqipotency). Right-linear game logic and the
modal 𝜇-calculus prove the same formulas (modulo translation).

(1) mL𝜇 ⊢ 𝜑 iff rlGL ⊢ 𝜑♯ for closed well-named L𝜇 formulas 𝜑

(2) rlGL ⊢ 𝜑 iff mL𝜇 ⊢ 𝜑 ♭for closed well-named rlGL formulas 𝜑
in normal form

As the translations are semantically correct and preserve prov-

ability, completeness of rlGL follows with Proposition 6.2.

Theorem 6.8 (rlGL Completeness). For any rlGL formula 𝜑
(1) ⊨ 𝜑 iff rlGL ⊢ 𝜑
(2) ⊨𝐾 𝜑 iff rlGL +𝐺 ⊢ 𝜑

Proof. (1) The ⇐ implication is by Theorem 6.4. For the ⇒
implication, consider first the case that 𝜑 is closed. By BR assume

without loss of generality that 𝜑 is well-named. By Corollary 3.7

and Lemma 6.10 assume that 𝜑 is in normal form. The following

chain of equivalences proves the first claim of the theorem

⊨ 𝜑

iff ⊨ 𝜑 ♭
(Propositions 5.2 and 5.4)

iff mL𝜇 ⊢ 𝜑 ♭
(Proposition 6.2)

iff rlGL ⊢ 𝜑 (Theorem 6.7)

For non-closed 𝜑 , for each free variable 𝑥 in 𝜑 fix fresh atomic

games 𝑏𝑥 and let �̃� be the closed formula obtained from 𝜑 by re-

placing all 𝑥 by 𝑏𝑥 . Then ⊨ 𝜑 iff ⊨ �̃� and rlGL ⊢ 𝜑 iff rlGL ⊢ �̃� , so
the equivalence holds, since in the proof calculus free variables and

atomic games are interchangeable.

(2) Analogous to (1). See the long version [2] for details. □

6.4 Completeness of Game Logic with Sabotage
The complete proof calculus for GL can be extended to a complete

proof calculus for GLs by adding axioms for the sabotage actions.

To simplify the formulation of these axioms some notation is intro-

duced. The axioms will affect subformulas that occur potentially

deep inside a formula. A formula-context 𝐶 (•1, . . . , •𝑛) is a GLs for-
mula 𝜑 with distinguished atomic games •𝑖 . The GLs formula𝐶 (𝛼•)
is obtained from 𝜑 by replacing every •𝑖 by 𝛼𝑖 , and the subscript is

dropped if there is only one •𝑖 . A formula-context 𝐶 is said to be

𝑎-free if it does not mention 𝑎, 𝑎d, ∼𝑎 or ∼𝑎d.
The sabotage axioms for GLs are summarized in Figure 2. Ax-

ioms ∼, ∼, ≈ and ≈ syntactically capture the immediate effect of a

(∼) ⟨∼𝑎;𝑎⟩𝜑 ↔ ⟨∼𝑎⟩𝜑

(∼) ¬⟨∼𝑎d;𝑎⟩𝜑

(≈) ⟨∼𝑎;∼𝑎⟩𝜑 ↔ ⟨∼𝑎⟩𝜑

(≈) ⟨∼𝑎;∼𝑎d⟩𝜑 ↔ ⟨∼𝑎d⟩𝜑

(∼◦) ⟨∼𝑎⟩𝐶 (𝛼•; ¿⊥) ↔ 𝐶 (∼𝑎;𝛼•; ¿⊥) (if 𝐶 is 𝑎-free)

(≃) 𝐶 (∼𝑎) ↔ 𝐶 (?⊤) (if 𝑎, 𝑎d ∉ 𝐶)

(�) ⟨∼𝑎⟩(𝐶 (∼𝑎d) ↔ 𝐶 (∼𝑎d;∼𝑏±d)) (if ∼𝑎 guards 𝑏 in 𝐶)

(∥) ⟨∼𝑎⟩(𝐶 (𝑎) ↔ 𝐶 (𝑎;∼𝑏±d)) (if 𝑎 remembers ∼𝑏±d in 𝐶)

(Υ) ⟨a:=𝑖⟩(𝐶 (𝛽) ↔ 𝐶 (⋃
1≤ 𝑗≤𝑛?a= 𝑗 ; a:= 𝑗 ; 𝛽)) (∼𝑎±d

𝑖
only in a)

Figure 2: The Axioms for Game Logic with Sabotage

sabotage action and axiom ∼◦ allows reasoning about effects deep
within a formula. Axioms ≃ and � allow the uniform removal of

sabotage actions which do not have any effect. In ≃ the atomic

games 𝑎, 𝑎d are never played, so sabotaging 𝑎 does not change

anything. In � the sabotage action ∼𝑎 is ineffective because 𝑏 is

guarded. An atomic game 𝑏 is said to be guarded by ∼𝑎 in 𝐶 if 𝑏, 𝑏d

and ∼𝑎 appear only in the form 𝑎;𝑏, 𝑎;𝑏d, and 𝑎;∼𝑎 respectively.
Guardedness ensures that 𝑏 can never be played after ∼𝑎d has been
played. The ∼𝑎±d in the axiom stands for either ∼𝑎 or ∼𝑎d every-
where. A close syntactic relationship between the value of a and
a sabotage action persists through a play and this is captured by

axiom ∥, where 𝑎 remembers ∼𝑏±d in 𝐶 if ∼𝑎 appears in 𝐶 only as

∼𝑎;∼𝑏±d. This condition ensures that whenever Angel can play

𝑎, this is because she has previously sabotaged 𝑎 and at the same

time 𝑏 was sabotaged. This sabotage remains in effect, so that the

additional sabotage ∼𝑏±d has no effect on the play. In axiom Υ it

is assumed that the games ∼𝑎𝑖 , ∼𝑎d𝑖 appear only in the memory

games a:= 𝑗 in𝐶 and 𝛽 . Axiom Υ is sound, since at any stage during

the play of𝐶 there will be a value in the range 1, . . . , 𝑛 associated to

the sabotage memory a = 𝑎1, . . . , 𝑎𝑛 . The value can be determined

by branching over all possible values and re-assigning the deter-

mined value afterwards is sound as it has no effect, but is useful in

inductive proofs.

The proof calculus for game logic with sabotage is Parikh’s

original proof calculus for game logic (Section 6.2.1) together with

the additional axioms from Figure 2. If there is a Hilbert-style proof

of 𝜑 in this calculus consisting only of GLs formulas, write GLs ⊢ 𝜑 .
The proof calculus for GLs can be modified to Kripke structures, by

adding the two axioms []⊤ and []∧. Write GLs +𝐺 ⊢ 𝜑 if there is

a proof of 𝜑 in this extension.

Theorem 6.9 (GLs Soundness). For any GLs formula 𝜑
(1) ⊨𝐾 𝜑 if GLs +𝐺 ⊢ 𝜑
(2) ⊨ 𝜑 if GLs ⊢ 𝜑
The equivalence of a formula with its normal form (Corollary 3.7)

can be proved syntactically.

Lemma 6.10 (Provable Normal Form). Any formula and any
game of RGL or GLs is provably equivalent to its normal form.

6.5 Proof Transformations
This section shows that the translation respects the proof calculus.

Combined with the semantic correctness of the translation this

12

Complete Game Logic with Sabotage LICS ’24, July 8–11, 2024, Tallinn, Estonia

enables the transfer of completeness from rlGL toGLs. The key fact
needed about the translation is that the sabotage paraphrasing of

recursive games provably behaves the same as the extremal fixpoint

it denotes. As a consequence, rlGL proofs can be translated to GLs.

Proposition 6.11 (♮ Transformation). For a well-named right-
linear game logic formula𝜑 in normal form if rlGL ⊢ 𝜑 thenGLs ⊢ 𝜑♮ .

Lemma 6.12 (Provable Inverse). Suppose 𝜑 is a formula of game
logic with sabotage in normal form then GLs ⊢ (𝜑𝑐∅)♮ → 𝜑 .

Theorem 6.13 (Game Logic with Sabotage Completeness).

Game logic with sabotage is sound and complete. That is for all GLs
formulas 𝜑 :

⊨ 𝜑 iff GLs ⊢ 𝜑

Proof. The ⇐ implication holds by Theorem 6.9. For ⇒ by

Corollary 3.7 and Lemma 6.10 assume that 𝜑 is in normal form. If 𝜑

is a valid formula of GLs, the translation ⟨𝜑𝑐∅ ⟩⊥ is a valid right-

linear game logic formula by Proposition 5.10, closed and in normal

form. Hence rlGL ⊢ 𝜑 by Theorem 6.8. and by Proposition 6.11 also

GLs ⊢ (𝜑𝑐∅)♮ . Finally by Lemma 6.12 and MP𝐺 , GLs ⊢ 𝜑 . □

6.6 Completion of Parikh’s Calculus for GL
Game logic with sabotage is the expressive completion of game logic

as a fragment of the modal 𝜇-calculus (Section 5). Next a completion
of Parikh’s proof calculus for game logic (GL) is obtained from the

complete GLs proof calculus from Section 6.4.

The axiomatization of game logic with sabotage is an extension

of game logic with the set of sabotage axioms from Figure 2. No

additional rules are added. By Theorem 6.13 every valid GL for-

mula is provable in the GLs calculus. Such a proof is almost a GL
proof, except that MP𝐺 may introduce GLs formulas that are not

expressible in GL. In this case the sabotage actions in the intro-

duced formula can be viewed as atomic games from a distinguished

set of atomic games. For a set of of atomic games Γ ⊂ G let SΓ

be the set of axioms from Figure 2 which do not mention atomic

games from Γ. Let SΓ be the set of GL formulas obtained from SΓ

by replacing all sabotage actions ∼𝑎 by some fresh atomic game 𝑎.

Taken as axioms these GL formulas (!) suffice to complete Parikh’s

proof calculus for game logic. Write GL + SΓ ⊢ 𝜑 if there is a proof

of 𝜑 in Parikh’s calculus from these axioms and GL +𝐺 + SΓ ⊢ 𝜑 if

there is a proof with the additional axioms []⊤ and []∧.

Theorem 6.14 (GL Completeness). For any GL formula 𝜑 let Γ
be the set of atomic games in 𝜑 . Then:

(1) ⊨ 𝜑 iff GL + SΓ ⊢ 𝜑
(2) ⊨𝐾 𝜑 iff GL +𝐺 + SΓ ⊢ 𝜑

Proof. For⇐ (Soundness), suppose GL + SΓ ⊢ 𝜑 and consider

a monotone neighbourhood structure N . A proof for GLs ⊢ 𝜑 can

be obtained by uniformly replacing every one of the fresh atomic

games 𝑎 (from SΓ) by ∼𝑎 in the proof GL + SΓ ⊢ 𝜑 . Every instance

of an axiom from SΓ is an instance of the original GLs version. By
soundness (Theorem 6.9) and Proposition 3.9 conclude that ⊨ 𝜑 .

For⇒ (Completeness), suppose𝜑 is a validGL formula. As in the

proof of Theorem 6.13 obtain a proof ofGLs ⊢ 𝜑 . By the construction
of this proof (Proposition 6.11) the GLs proof of 𝜑 contains games

of the form ∼𝑎 only for atomic games that do not appear in 𝜑 . The

GLs proof of 𝜑 can be transformed into a GL proof by uniformly

replacing every game of the form ∼𝑎 by the fresh atomic game 𝑎.

Instances of the axioms from Figure 2 in the original proof become

instances of axioms in SΓ . Hence the modified version of the proof

is a GL proof of 𝜑 from the axioms in SΓ .

The case for Kripke structures is analogous using GL +𝐺 . □

The results in this section pave the way for using the proof cal-

culus for GLs to resolve the question of completeness of Parikh’s

axiomatization for GL through a proof transformation by eliminat-

ing instances of axioms from SΓ .

7 CONCLUSION
This paper studies how logic, games, and fixpoints meet by intro-

ducing two different extensions of game logic. The first, game logic

with sabotage, allows players to sabotage their opponent, while the

second, recursive game logic, adds recursive games.

Not only is game logic with sabotage (GLs) well-suited for de-

scribing and investigating gameswith rule changes by logical means

but, surprisingly, game logic with sabotage has a number of ad-

ditional advantages over game logic. Unlike game logic (GL), the
extension GLs allows exactly the right amount of state to increase

its expressive power to match the modal 𝜇-calculus, without sacri-

ficing the desirable logical properties of game logic.

The advantage of recursive game logic (RGL) is that it allows
the description of games featuring arbitrarily nested (co)recursive

games. Unlike ordinary game logic, the extended version is sig-

nificantly more expressive than the modal 𝜇-calculus, although it

remains syntactically close toGL. This paper identified the fragment

of RGL that corresponds exactly to the modal 𝜇-calculus in expres-

siveness and transferred completeness of the modal 𝜇-calculus to

obtain a complete and natural proof calculus for this fragment.

It was shown that game logic with sabotage and the modal 𝜇-

calculus are equivalent in expressiveness via a syntactically provable
translation going through the right-linear fragment of recursive

game logic. Completeness of the natural Hilbert style proof calculus

for game logic with sabotage GLs was obtained as a consequence.

This is in contrast to game logic GL for which completeness of the

natural proof calculus is not known [29]. Completeness of game

logic with sabotage was used to obtain the completeness of a modest

extension of Parikh’s proof calculus for game logic GL.

Future Research. The completeness of game logic with sabotage

suggests an interesting approach to studying proof calculi for game

logic. It reduces the problem of the completeness of Parikh’s axiom-

atization of game logic to eliminating instances of the new axioms

in a proof. Equiexpressiveness with L𝜇 indicates that atomic games

for sabotage are worth studying further.

The translation from GLs into L𝜇 leads to a non-elementary

blow-up in formula length. This raises the question whether this

increase is necessary and if better algorithms exist that directly

target the model checking and satisfiability problems of GLs.

ACKNOWLEDGMENTS
An Alexander von Humboldt Professorship supported this research.

13

LICS ’24, July 8–11, 2024, Tallinn, Estonia Noah Abou El Wafa and André Platzer

REFERENCES
[1] Noah Abou El Wafa and André Platzer. 2022. First-Order Game Logic and Modal

Mu-Calculus. arXiv:2201.10012

[2] Noah Abou ElWafa and André Platzer. 2024. Complete Game Logic with Sabotage.

arXiv:2404.09873

[3] S. Abramsky and P.-A. Mellies. 1999. Concurrent games and full completeness.

In Proceedings. 14th Symposium on Logic in Computer Science. IEEE, Trento, Italy,
431–442. https://doi.org/10.1109/LICS.1999.782638

[4] Bahareh Afshari and Graham E. Leigh. 2017. Cut-free completeness for modal

mu-calculus. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2017, Reykjavik, Iceland, June 20-23, 2017. IEEE Computer Society, Reykjavik,

1–12. https://doi.org/10.1109/LICS.2017.8005088

[5] André Arnold and Damian Niwinski. 2001. Rudiments of mu-calculus. Studies in
Logic and the Foundations of Mathematics, Vol. 146. North Holland Publishing

Co., Amsterdam.

[6] Guillaume Aucher, Johan van Benthem, and Davide Grossi. 2015. Sabotage

Modal Logic: Some Model and Proof Theoretic Aspects. In Logic, Rationality, and
Interaction - 5th International Workshop, LORI 2015 Taipei, Taiwan, October 28-31,
2015, Proceedings (LNCS, Vol. 9394), Wiebe van der Hoek, Wesley H. Holliday, and

Wen-Fang Wang (Eds.). Springer, Taipei, 1–13. https://doi.org/10.1007/978-3-

662-48561-3_1

[7] Guillaume Aucher, Johan van Benthem, and Davide Grossi. 2018. Modal logics

of sabotage revisited. J. Log. Comput. 28, 2 (2018), 269–303. https://doi.org/10.

1093/LOGCOM/EXX034

[8] Dietmar Berwanger. 2003. Game Logic is Strong Enough for Parity Games. Studia
Logica 75, 2 (2003), 205–219. https://doi.org/10.1023/A:1027358927272

[9] Dietmar Berwanger and Giacomo Lenzi. 2005. The Variable Hierarchy of the

𝜇-Calculus Is Strict. In STACS 2005, Volker Diekert and Bruno Durand (Eds.).

Springer, Berlin, Heidelberg, 97–109. https://doi.org/10.1007/978-3-540-31856-

9_8

[10] Julian Bradfield and Colin Stirling. 2007. Modal Mu-Calculi. In Handbook of
Modal Logic, Patrick Blackburn, Johan Van Benthem, and Frank Wolter (Eds.).

Studies in Logic and Practical Reasoning, Vol. 3. Elsevier, Amsterdam, 721–756.

https://doi.org/10.1016/S1570-2464(07)80015-2

[11] Julian Bradfield and Igor Walukiewicz. 2018. The mu-calculus and Model Check-

ing. In Handbook of Model Checking, Edmund M. Clarke, Thomas A. Henzinger,

Helmut Veith, and Roderick Bloem (Eds.). Springer International Publishing,

Cham, 871–919. https://doi.org/10.1007/978-3-319-10575-8_26

[12] Julian C. Bradfield. 1996. The Modal mu-calculus Alternation Hierarchy is Strict.

In CONCUR ’96, Concurrency Theory, 7th International Conference, Pisa, Italy,
August 26-29, 1996, Proceedings (LNCS, Vol. 1119), Ugo Montanari and Vladimiro

Sassone (Eds.). Springer, Pisa, 233–246. https://doi.org/10.1007/3-540-61604-7_58

[13] Florian Bruse, Oliver Friedmann, and Martin Lange. 2015. On guarded trans-

formation in the modal 𝜇-calculus. Log. J. IGPL 23, 2 (2015), 194–216. https:

//doi.org/10.1093/JIGPAL/JZU030

[14] Facundo Carreiro. 2015. Fragments of fixpoint logics. Ph. D. Dissertation. Univer-
sity of Amsterdam.

[15] Krishnendu Chatterjee, Thomas A. Henzinger, and Nir Piterman. 2007. Strategy

Logic. In CONCUR 2007 - Concurrency Theory, 18th International Conference,
CONCUR 2007, Lisbon, Portugal, September 3-8, 2007, Proceedings (LNCS, Vol. 4703),
Luís Caires and Vasco Thudichum Vasconcelos (Eds.). Springer, Lisbon, 59–73.

https://doi.org/10.1007/978-3-540-74407-8_5

[16] Corina Cîrstea, Clemens Kupke, and Dirk Pattinson. 2009. EXPTIME Tableaux for

the Coalgebraic 𝜇-Calculus. In Computer Science Logic, Erich Grädel and Reinhard
Kahle (Eds.). Springer, Berlin, Heidelberg, 179–193. https://doi.org/10.1007/978-

3-642-04027-6_15

[17] Pierre Clairambault. 2009. Least and Greatest Fixpoints in Game Semantics. In

Foundations of Software Science and Computational Structures, 12th International
Conference, FOSSACS 2009, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceedings
(LNCS, Vol. 5504), Luca de Alfaro (Ed.). Springer, York, 16–31. https://doi.org/10.

1007/978-3-642-00596-1_3

[18] Andrzej Ehrenfeucht. 1961. An application of games to the completeness problem

for formalized theories. Fundamenta Mathematicae 49 (1961), 129–141. https:

//api.semanticscholar.org/CorpusID:118038695

[19] E. Allen Emerson and Charanjit S. Jutla. 1991. Tree Automata, Mu-Calculus and

Determinacy. In 32nd Annual Symposium on Foundations of Computer Science, San
Juan, Puerto Rico, 1-4 October 1991. IEEE Computer Society, San Juan, 368–377.

https://doi.org/10.1109/SFCS.1991.185392

[20] E. Allen Emerson, Charanjit S. Jutla, andA. Prasad Sistla. 2001. Onmodel checking

for the 𝜇-calculus and its fragments. Theor. Comput. Sci. 258, 1-2 (2001), 491–522.
https://doi.org/10.1016/S0304-3975(00)00034-7

[21] Sebastian Enqvist, Helle Hvid Hansen, Clemens Kupke, Johannes Marti, and

Yde Venema. 2019. Completeness for Game Logic. In 34th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2019, Vancouver, BC, Canada, June
24-27, 2019. IEEE, Vancouver, 1–13. https://doi.org/10.1109/LICS.2019.8785676

[22] Sebastian Enqvist, Fatemeh Seifan, and Yde Venema. 2018. Completeness for

the modal 𝜇-calculus: Separating the combinatorics from the dynamics. Theor.

Comput. Sci. 727 (2018), 37–100. https://doi.org/10.1016/j.tcs.2018.03.001

[23] Sebastian Enqvist, Fatemeh Seifan, and Yde Venema. 2019. Completeness for

𝜇-calculi: A coalgebraic approach. Ann. Pure Appl. Log. 170, 5 (2019), 578–641.
https://doi.org/10.1016/J.APAL.2018.12.004

[24] Alessandro Facchini, Yde Venema, and Fabio Zanasi. 2013. A Characteriza-

tion Theorem for the Alternation-Free Fragment of the Modal µ-Calculus. In

Proceedings of the Twenty-Eighth Annual IEEE Symposium on Logic in Com-
puter Science (LICS 2013). IEEE Computer Society Press, New Orleans, 478–487.

https://doi.org/10.1109/LICS.2013.54

[25] Nina Gierasimczuk, Lena Kurzen, and Fernando R. Velázquez-Quesada. 2009.

Learning and Teaching as a Game: A Sabotage Approach. In Logic, Rationality,
and Interaction, Xiangdong He, John Horty, and Eric Pacuit (Eds.). Springer, Berlin,
Heidelberg, 119–132.

[26] Yuri Gurevich and Leo Harrington. 1982. Trees, Automata, and Games. In Pro-
ceedings of the 14th Annual ACM Symposium on Theory of Computing, May 5-7,
1982, San Francisco, California, USA, Harry R. Lewis, Barbara B. Simons, Wal-

ter A. Burkhard, and Lawrence H. Landweber (Eds.). ACM, San Francisco, 60–65.

https://doi.org/10.1145/800070.802177

[27] Jaakko Hintikka. 1982. Game-theoretical semantics: insights and prospects. Notre
Dame Journal of Formal Logic 23, 2 (1982), 219–241.

[28] David Janin and Igor Walukiewicz. 1996. On the Expressive Completeness of

the Propositional mu-Calculus with Respect to Monadic Second Order Logic. In

CONCUR ’96, Concurrency Theory, 7th International Conference, Pisa, Italy, August
26-29, 1996, Proceedings (LNCS, Vol. 1119), Ugo Montanari and Vladimiro Sassone

(Eds.). Springer, Pisa, 263–277. https://doi.org/10.1007/3-540-61604-7_60

[29] Johannes Kloibhofer. 2023. A note on the incompleteness of Afshari & Leigh’s sys-

tem Clo. https://doi.org/10.48550/arXiv.2307.06846 arXiv:2307.06846 [math.LO]

[30] Dexter Kozen. 1983. Results on the Propositional 𝜇-Calculus. Theor. Comput. Sci.
27, 3 (1983), 333–354. https://doi.org/10.1016/0304-3975(82)90125-6

[31] Christof Löding and Philipp Rohde. 2003. Model Checking and Satisfiability

for Sabotage Modal Logic. In FST TCS 2003: Foundations of Software Technology
and Theoretical Computer Science, 23rd Conference, Mumbai, India, December
15-17, 2003, Proceedings (LNCS, Vol. 2914), Paritosh K. Pandya and Jaikumar

Radhakrishnan (Eds.). Springer, Mumbai, 302–313. https://doi.org/10.1007/978-

3-540-24597-1_26

[32] Markus Müller-Olm. 1999. A Modal Fixpoint Logic with Chop. In STACS 99, 16th
Annual Symposium on Theoretical Aspects of Computer Science, Trier, Germany,
March 4-6, 1999, Proceedings (LNCS, Vol. 1563), Christoph Meinel and Sophie Tison

(Eds.). Springer, Trier, 510–520. https://doi.org/10.1007/3-540-49116-3_48

[33] Sara Negri. 2017. Proof theory for non-normal modal logics: The neighbour-

hood formalism and basic results. IfCoLog Journal of Logics and their Applica-
tions 4, 4 (2017), 1241–1286. http://www.collegepublications.co.uk/downloads/

ifcolog00013.pdf

[34] Damian Niwinski and Igor Walukiewicz. 1996. Games for the mu-Calculus. Theor.
Comput. Sci. 163, 1&2 (1996), 99–116. https://doi.org/10.1016/0304-3975(95)00136-
0

[35] Rohit Parikh. 1983. Propositional game logic. In 24th Annual Symposium on
Foundations of Computer Science. IEEE, Tucson, 195–200. https://doi.org/10.1109/

SFCS.1983.47

[36] Marc Pauly and Rohit Parikh. 2003. Game Logic - An Overview. Stud Logica 75,
2 (2003), 165–182. https://doi.org/10.1023/A:1027354826364

[37] André Platzer. 2015. Differential Game Logic. ACM Trans. Comput. Log. 17, 1
(2015), 1. https://doi.org/10.1145/2817824

[38] André Platzer. 2017. Differential Hybrid Games. ACM Trans. Comput. Log. 18, 3
(2017), 19:1–19:44. https://doi.org/10.1145/3091123

[39] André Platzer. 2018. Logical Foundations of Cyber-Physical Systems. Springer,
Cham. https://doi.org/10.1007/978-3-319-63588-0

[40] Vaughan R. Pratt. 1981. A Decidable mu-Calculus: Preliminary Report. In 22nd
Annual Symposium on Foundations of Computer Science, Nashville, Tennessee,
USA, 28-30 October 1981. IEEE Computer Society, Nashville, 421–427. https:

//doi.org/10.1109/SFCS.1981.4

[41] Philipp Rohde. 2006. On the 𝜇-Calculus Augmented with Sabotage. In Foundations
of Software Science and Computation Structures, 9th International Conference,
FOSSACS 2006, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2006, Vienna, Austria, March 25-31, 2006, Proceedings
(LNCS, Vol. 3921), Luca Aceto and Anna Ingólfsdóttir (Eds.). Springer, Vienna,

142–156. https://doi.org/10.1007/11690634_10

[42] Colin Stirling. 1996. Games and Modal Mu-Calculus. In Tools and Algorithms
for Construction and Analysis of Systems, Second International Workshop, TACAS
’96, Passau, Germany, March 27-29, 1996, Proceedings (LNCS, Vol. 1055), Tiziana
Margaria and Bernhard Steffen (Eds.). Springer, Passau, 298–312. https://doi.org/

10.1007/3-540-61042-1_51

[43] Robert S. Streett and E. Allen Emerson. 1989. An Automata Theoretic Decision

Procedure for the Propositional Mu-Calculus. Inf. Comput. 81, 3 (1989), 249–264.
https://doi.org/10.1016/0890-5401(89)90031-X

[44] Johan van Benthem. 2005. An Essay on Sabotage and Obstruction. InMechanizing
Mathematical Reasoning: Essays in Honor of Jörg H. Siekmann on the Occasion
of His 60th Birthday, Dieter Hutter and Werner Stephan (Eds.). Springer, Berlin,

14

https://arxiv.org/abs/2201.10012
https://arxiv.org/abs/2404.09873
https://doi.org/10.1109/LICS.1999.782638
https://doi.org/10.1109/LICS.2017.8005088
https://doi.org/10.1007/978-3-662-48561-3_1
https://doi.org/10.1007/978-3-662-48561-3_1
https://doi.org/10.1093/LOGCOM/EXX034
https://doi.org/10.1093/LOGCOM/EXX034
https://doi.org/10.1023/A:1027358927272
https://doi.org/10.1007/978-3-540-31856-9_8
https://doi.org/10.1007/978-3-540-31856-9_8
https://doi.org/10.1016/S1570-2464(07)80015-2
https://doi.org/10.1007/978-3-319-10575-8_26
https://doi.org/10.1007/3-540-61604-7_58
https://doi.org/10.1093/JIGPAL/JZU030
https://doi.org/10.1093/JIGPAL/JZU030
https://doi.org/10.1007/978-3-540-74407-8_5
https://doi.org/10.1007/978-3-642-04027-6_15
https://doi.org/10.1007/978-3-642-04027-6_15
https://doi.org/10.1007/978-3-642-00596-1_3
https://doi.org/10.1007/978-3-642-00596-1_3
https://api.semanticscholar.org/CorpusID:118038695
https://api.semanticscholar.org/CorpusID:118038695
https://doi.org/10.1109/SFCS.1991.185392
https://doi.org/10.1016/S0304-3975(00)00034-7
https://doi.org/10.1109/LICS.2019.8785676
https://doi.org/10.1016/j.tcs.2018.03.001
https://doi.org/10.1016/J.APAL.2018.12.004
https://doi.org/10.1109/LICS.2013.54
https://doi.org/10.1145/800070.802177
https://doi.org/10.1007/3-540-61604-7_60
https://doi.org/10.48550/arXiv.2307.06846
https://arxiv.org/abs/2307.06846
https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.1007/978-3-540-24597-1_26
https://doi.org/10.1007/978-3-540-24597-1_26
https://doi.org/10.1007/3-540-49116-3_48
http://www.collegepublications.co.uk/downloads/ifcolog00013.pdf
http://www.collegepublications.co.uk/downloads/ifcolog00013.pdf
https://doi.org/10.1016/0304-3975(95)00136-0
https://doi.org/10.1016/0304-3975(95)00136-0
https://doi.org/10.1109/SFCS.1983.47
https://doi.org/10.1109/SFCS.1983.47
https://doi.org/10.1023/A:1027354826364
https://doi.org/10.1145/2817824
https://doi.org/10.1145/3091123
https://doi.org/10.1007/978-3-319-63588-0
https://doi.org/10.1109/SFCS.1981.4
https://doi.org/10.1109/SFCS.1981.4
https://doi.org/10.1007/11690634_10
https://doi.org/10.1007/3-540-61042-1_51
https://doi.org/10.1007/3-540-61042-1_51
https://doi.org/10.1016/0890-5401(89)90031-X

Complete Game Logic with Sabotage LICS ’24, July 8–11, 2024, Tallinn, Estonia

Heidelberg, 268–276. https://doi.org/10.1007/978-3-540-32254-2_16

[45] Igor Walukiewicz. 1995. Completeness of Kozen’s Axiomatisation of the Propo-

sitional mu-Calculus. In Proceedings, 10th Annual IEEE Symposium on Logic in

Computer Science, San Diego, California, USA, June 26-29, 1995. IEEE Computer

Society, San Diego, 14–24. https://doi.org/10.1109/LICS.1995.523240

15

https://doi.org/10.1007/978-3-540-32254-2_16
https://doi.org/10.1109/LICS.1995.523240

	Abstract
	1 Introduction
	2 Preliminaries
	3 Extensions of Game Logic
	3.1 Game Logic with Sabotage
	3.2 Recursive Game Logic
	3.3 Semantics of Game Logics

	4 Modal Fixpoint Logics
	5 Expressiveness
	5.1 Equiexpressiveness of FLC and RGL
	5.2 The Modal mu-Calculus as a Game Logic
	5.3 Game Logic as a Fixpoint Logic
	5.4 Game Logic with Sabotage as Right-linearity
	5.5 Sabotage Memory
	5.6 Right-linear Game Logic as Sabotage

	6 Axiomatization
	6.1 Proof Calculi for the Modal mu-Calculus
	6.2 Proof Calculi for Game Logics
	6.3 Completeness for Right-linear Game Logic
	6.4 Completeness of Game Logic with Sabotage
	6.5 Proof Transformations
	6.6 Completion of Parikh's Calculus for GL

	7 Conclusion
	Acknowledgments
	References

