
SIMPLE PYTHON INTERFACE TO
FACILITY-SPECIFIC INFRASTRUCTURE

J. Gethmann∗, E. Blomley, P. Schreiber, M. Schuh, W. Mexner, A.-S. Müller
Karlsruhe Institute of Technology, Karlsruhe, Germany
S. Marsching, aquenos GmbH, Baden-Baden, Germany

Abstract
The various particle accelerators hosted at KIT represent

a complex infrastructure with a live control system inter-
face, a data archive, measurement routines, and storage and
management of metadata, among other aspects. The “KIT
Accelerator Python tools” were created to provide a uni-
fied interface to all aspects of the accelerator infrastructure
for both short-term student projects and basic accelerator
operations. Instead of creating another custom framework,
these sets of tools focus on bridging the gap between well-
established libraries, our facility and accelerator specific
needs. External and accelerator specific libraries are glued
together to provide an interface in order to minimise the tech-
nical knowledge of the accelerator infrastructure needed by
the end user. Best practice software engineering workflows
of continuous integrationn were implemented to provide au-
tomatic testing, packaging, API documentation and release
management. This paper discusses the general motivation
and approach taken to create and maintain such a set of
Python modules.

INTRODUCTION
At KIT, we operate multiple kinds of accelerators (KARA,

FLUTE) and further compact accelerators are in the plan-
ning and building phase. KARA, a 2.5 GeV storage ring, a
part of the KIT Light Source, with a circumference of 110 m.
FLUTE [1] includes a linear accelerator. Further accelera-
tors are planned, e. g. a plasma accelerator and a compact
storage ring within the project cSTART [2]. This paper first
describes the setup of the controls infrastructure, then intro-
duce the requirements for accelerator physics’ experiments
and the control of the machines. Then, the strategies to solve
issues and the decisions made are described. Lastly, we
present some lessons that we learned in the process.

SETUP
The controls infrastructure has to integrate the required

different operation modes of the different KIT accelerators
with a quick and safe access by e. g. non-experienced stu-
dents via users of synchrotron radiation to experts with very
demanding accelerator physics and technology experiments.

The data flow starts by providing live data and control for
machine parameters from magnet power supplies to diag-
nostics instrumentation. Relevant parameters are archived
in databases that are flat for performance reasons and are
furthermore highly available. Snapshots of machine settings
∗ gethmann@kit.edu

can be saved to and restored from relational databases for
selections of groups, e. g. the pre-accelerator synchrotron, in
short booster, settings can be restored independently from
the storage ring’s settings. Furthermore, there exist elec-
tronic lab notebooks for routine operation and certain typ-
ical experiments. For machine optimisation purposes and
typical measurements needed for beam dynamics simula-
tions, MATLAB® routines write their outputs to a central
file storage.

Though the controls architecture for the different accelera-
tors is similar, there are logical stand-alone systems for each
accelerator requiring different addresses and namespaces.

REQUIREMENTS
For different stakeholders, the requirements differ. Espe-

cially for students and visiting researchers, it is necessary
to get easy and quick access to certain sub-systems without
in-depth knowledge of how exactly these systems are set
up or interact with each other. They do not need to know
from which control system component the data originates
nor which protocol that systems speaks. Another crucial
point is a quick setup, possibly with limited permissions
granted. Facility scientists need access to a broad variety of
data and therefore have to interact with many systems at the
same time. However, the knowledge of the specifics of each
particular system is typically not required. Finally, there are
the developers of such systems who want to have maintain-
able and flexible code, which is reusable and actually used.
This includes to adopt FAIR principles. We need straightfor-
ward access to all systems without the domain knowledge of
the individual sub-systems or the infrastructure’s topology.

In the past, we struggled with these different user groups
trying to solve similar issues with their own individual
scripts. Such scattered scripts were often written in dif-
ferent languages, with different levels of code quality and
focusing on different aspects of the same task. This resulted
in making these scripts very hard to share, maintain and
re-use, especially across different user groups. The user
experience of systems with different interfaces for similar
behaviour is not good and can lead to errors in the worst
case. Lastly, substantial inside knowledge is required to be
aware of such scattered scripts and where they can be found.

APPROACH
Instead of creating another framework or a generic scien-

tific library, our approach bundles existing ones for conve-
nient ways to use them for the KIT accelerators according
to our needs.

13th Int. Workshop Emerging Technol. Sci. Facil. Controls PCaPAC2022, Dolní Brežany, Czech Republic JACoW Publishing

ISBN: 9 7 8 - 3 - 9 5 4 5 0 - 2 3 7 - 0 ISSN: 2 6 7 3 - 5 5 1 2 d o i : 1 0 . 1 8 4 2 9 / J A C o W - P C a P A C 2 0 2 2 - T H P P 9

User Interfaces and Tools

THPP9

51

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



In general, our packages provide an abstraction layer to-
wards the various libraries. We initialise them with site-
specific settings in advance, like server addresses and con-
figuration settings, because the user does not need to know
this information. In addition, changing of backend libraries
can be done transparently for the user with this approach.
Furthermore, the user does not need to know if some parts of
the infrastructure moved to a different location, e. g. because
of a new URL for a new version of a REST-API.

Nowadays, distributable well-structured Python packages
can be created comparably easily with bootstrapping tools
like PyScaffold. This enables one to use packages instead
of a bunch of more or less sorted Python scripts where you
cannot handle dependencies on each other or on third party
packages well, unless you have only a single repository,
which includes everything. The latter is not what we want,
especially as some packages depend on large libraries like
scikit-learn or software that is either hard to set up and con-
figure or serves only a few special needs. Installing such
software should neither be mandatory for users nor required
on embedded systems. With our approach, we can use these
packages for different use-cases such as pre-processing for
machine learning pipelines on the KIT computer clusters,
for the daily needs on one’s office workstation, as well as
for developments inside the accelerator control system. Es-
pecially the latter will be much more important in the near
future with the increasing usage of Python SoftIOCs [3].

For office and data science applications, distributable
Python packages are the preferred format for installation
as the installation procedure of such is operating system-
independent. It is already known to many users and usable
without additional permissions beyond network access. Nev-
ertheless, for the internal accelerator networks we prefer to
build our own Debian packages.

Style guides can help to get on board as a person unfamil-
iar with the respective code base. However, they are arbitrary
in some way and may result in so-called “bike shedding” dis-
cussions, so we took black’s approach [4] and used a set of
well-established linters, formatters and style guide checkers.
Providing feedback on the formatting, linting and API doc-
umentation already at an early stage helps us to maintain
readable and documented code. Good and common tooling
provides automatic formatting. Code review of consistently
formatted code with documentation is far more enjoyable
and lets one focus on the logic rather than the style.

We try to have a high test coverage to ensure reliable
productive code and to avoid re-introducing bugs, which
have already been fixed in the past. Furthermore, tests can
provide examples of the intended use, if no example code
exist. We use pytest [5] with the coverage plug-in for testing
as it makes testing more convenient than the build-in unittests
and might nudge students, scientists and other users into
writing tests for their personal code.

We host the packages and documentation on a website as
they are the interface for most of the end users, who use the
libraries but do not develop them. We plan to integrate this
functionality into our GitLab setup.

DECISIONS
Python Packages

Nowadays, Python is the eco-system of choice both for
(data-)scientists and for many software developers. The sci-
entific libraries eco-system is extensive, thanks to its proper
C-API. As it is open source and provides multiple program-
ming paradigms, including object orientation, it is very pop-
ular among software developers. Hence Python is a good
language to wrap existing APIs to control and archiving sys-
tems. We developed two kinds of packages: data aggregation
wrappers and helper libraries. The first one is for

• archived data,
• electronic lab notebooks,
• live data,
• our settings database, and
• for general data formats and access of different kinds.
They wrap the different data sources and provide coher-

ent and simple interfaces with sane default settings for our
facility.

The second one, the helper libraries take care of the in-
teraction between the other libraries and selection of the
correct settings for the accelerator of choice.

Besides the Python packages, we provide Debian pack-
ages for the in-use Ubuntu LTS systems. These systems are
part of our accelerator network and thus are well defined,
have no connection to the internet, and no packages are
meant to be installed by local users, consequently pip is not
installed. That is why, we build our Python packages with
all their dependencies that are not part of existing Ubuntu
repositories.

Development Workflow
Changes to the tooling are made in a central management

repository, and an automated workflow takes care of syn-
chronising these changes across all packages. Each project
can be separated into a tooling part, which is very similar
for each project, and the actual code part. For creating a new
package, we have got an extension for PyScaffold, which
takes care of setting up the tooling part. In the case the
tooling is adjusted, a central management repository auto-
matically takes care of keeping it synchronised across the
packages.

For existing projects, people can contribute in various
ways, depending on their experience and the effort they
want to invest; filing bugs or requesting features in the is-
sue tracker, fixing small bugs via a web-UI or working on
a locally cloned project. In the latter case, it is advised to
install pre-commit [6]. This tool activates a set of Git pre-
commit hooks that enforce our style guide. The pre-commit
hooks run on the client side and already fix the code, or at
least warn the developer about issues, which would lead to
a failure in the continuous integration test pipeline.

On the server side we use GitLab, which is hosted on
premise with access to our internal data sources, so we can
run tests that can rely on these internal APIs. GitLab pro-
vides an issue tracker, continuous integration (CI) infras-

13th Int. Workshop Emerging Technol. Sci. Facil. Controls PCaPAC2022, Dolní Brežany, Czech Republic JACoW Publishing

ISBN: 9 7 8 - 3 - 9 5 4 5 0 - 2 3 7 - 0 ISSN: 2 6 7 3 - 5 5 1 2 d o i : 1 0 . 1 8 4 2 9 / J A C o W - P C a P A C 2 0 2 2 - T H P P 9

THPP9

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

52 User Interfaces and Tools



tructure, a Docker registry, a Python repository, a proper
web-editor for small changes and previewing Markdown or
ReStructuredText, and might be used for serving documen-
tation and Debian packages in the future. This ensures that
both, users and maintainers, only have to deal with a single
platform.

Figure 1: GitLab continuous integration. Besides the usual
linting, testing, building, releasing, there is a setup, installa-
tion testing and publishing step. Besides some steps act on
Python and Debian packages as well as documentation.

For the continuous integration we make use of custom
Docker containers with pre-installed environments for the
individual steps of the pipeline. The containers are managed
in a dedicated project alongside the actual packages. Fig-
ure 1 shows the workflow. In the setup step we take care
of updating the configuration and the template files of the
project. As it is done for every new merge request, the dif-
ferent projects do not diverge in their overall structure and
style. In the linting and testing part, checks are done again to
enforce that code on the main branch is as easy to understand
as tooling can guarantee. The build step not only builds the
Python packages, but also the Debian packages and artifacts
such as the documentation in HTML. In that way the code
reviewer can study such tangible by-products and artifacts.
As we build Debian packages, which might have dependen-
cies on further packages, we have a dedicated “installation
testing” step as part of the pipeline. During that stage the
Debian packages are installed and tested as done during an
update and as done in a green field, to ensure that conflicting
dependencies do not disrupt or stop the processes on the
production computers in either of these scenarios. The last
step of the merge pipeline is to publish the packages and
documentation to our internal repositories.
We try to create merge requests and code reviews for all of
our code, so that more people are familiar with the code base.
Best practices are taught and releases of malfunctioning code
are minimised.

The release step is a dedicated manual step including a
major, minor or patch release decision. Compiling the re-
lease notes, tagging the commits and moving the repositories
to the stable branch is then done automatically. As an addi-
tional security measure, our control-system computers use
an Apt repository that does not automatically receive newly
published packages. Instead, a separate process has to be
triggered manually to update the packages in that repository.
This completes the release cycle.

LESSONS LEARNED
It turned out to be good to have one single source of truth

for templates, configuration files, etc. for our tools and to
invest some time into automation. Thereby, files can be
automatically updated in all projects when a new merge
requests is opened, so that new conventions can easily be
propagated. Also having a dedicated testing project turned
out to be helpful to test changes of the CI configurations.

Firstly, building own Docker images for the CI saves re-
quests to Docker Hub and, makes a big difference in CI
pipeline run time. Secondly, the images come with the cor-
rect versions of the checking tools, which have to be kept
synchronised with the local checks (pre-commit) to avoid
frustration of code contributers and error tracking in the CI
pipelines. Therefore, version pinning of the tools is neces-
sary and can also be checked automatically.

Though we only enforce API documentation, investing
additional time in writing easy accessible examples and
“how-to-use” documentation increases the user-friendliness
and adoption rate, eventually leading to a re-usable and
sustainable code base.

Last but not least, it makes sense to automate the release
process to enable new releases often, especially when new
projects with many new features and more mature packages
with minor fixes co-exist.

SUMMARY
We developed a set of Python packages to provide con-

sistent interfaces to the KIT accelerators and facility infras-
tructure, making it useful for all levels of users—may it be
for student projects or expert tasks in the control system
itself. The libraries are developed and maintained by using
a modern software development cycle in form of continuous
integration with automated code checks, tests, and package
releases. This makes the code maintainable, extendable and
easy to use for all stakeholders.
We adopted GitLab, because it provides a single platform of
this complex setup without the need to manage and maintain
many individual solutions.

ACKNOWLEDGEMENTS
We thank E. Bründermann proof reading and value com-

ments and recommendations.

REFERENCES
[1] M. J. Nasse et al., “FLUTE: A versatile linac-based THz

source”, Rev. Sci. Instrum., vol. 84, p. 022705, 2013.
doi:10.1063/1.4790431

[2] A. Papash, E. Bründermann, and A.-S. Müller, “An Optimized
Lattice for a very Large Acceptance Compact Storage Ring”, in
Proc. IPAC’17, Copenhagen, Denmark, May 2017, pp. 1402–
1405. doi:10.18429/JACoW-IPAC2017-TUPAB037

[3] SoftIOC,
https://github.com/dls-controls/pythonSoftIOC

[4] black https://github.com/psf/black
[5] pytest https://pytest.org
[6] pre-commit https://pre-commit.com

13th Int. Workshop Emerging Technol. Sci. Facil. Controls PCaPAC2022, Dolní Brežany, Czech Republic JACoW Publishing

ISBN: 9 7 8 - 3 - 9 5 4 5 0 - 2 3 7 - 0 ISSN: 2 6 7 3 - 5 5 1 2 d o i : 1 0 . 1 8 4 2 9 / J A C o W - P C a P A C 2 0 2 2 - T H P P 9

User Interfaces and Tools

THPP9

53

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I


