

Breakthrough in real-time control with reinforcement learning on hardware at KARA

<u>A. Santamaria Garcia</u>, L. Scomparin, E. Blomley, E. Bründermann, M. Caselle, A. Kopmann, J. L. Steinmann, C. Xu, J. Becker, A.-S. Müller

Two proof-of-principle studies at KARA implementing RL "at the edge"

Step 1: trying the concept in a simple problem Damping of induced betatron oscillations

Step 2: using the validated concept for more difficult endeavors... Control of the microbunching instability

First RL deployment in accelerators with purely **online training** and **running on hardware** at very low latencies!

Motivation:

Control of coherent synchrotron radiation emission

The THz frequency

Great scientific potential!

The THz frequency

Great scientific potential!

Karlsruhe Institute of Tech

Common desiderata:

- High peak fields
- Coverage to higher frequencies with coherent broadband sources
- Full pulse-shaping
- Excellent source stability

More generally:

"Accelerator-Based THz Radiation Sources", A.-S. Müller & M. Schwarz

Coherent synchrotron radiation (CSR)

"Accelerator-Based THz Radiation Sources", A.-S. Müller & M. Schwarz

The microbunching (MBI) instability

Control for stable, enhanced, or damped CSR

RL considerations

- How to influence the instability? (actions)
- How fast does the action need to be to influence a physical phenomenon?
- How fast can we detect THz radiation? (observable)
- Can we achieve the required latency?

"Micro-Bunching Control at Electron Storage Rings with Reinforcement Learning", T.Boltz

Timescale perspective and requirements

Real-time, high-repetition data acquisition

State-of-the-art detectors

RL4AA'24 (Salzburg)

Influencing the instability

CSR self interaction

 $\hat{V}(t) = \hat{V}_0 + A_{mod} \sin(2\pi f_{mod} + \varphi_{mod})$

time (T_s)

Courtesy of T. Boltz

Influencing the instability (simulation)

Mitigation via Dynamic RF Amplitude Modulation

Simulation done with Inovesa, Vlasov-Fokker-Plack solver developed at KIT

Courtesy of T. Boltz

How to influence the instability at KARA?

- Only the LLRF system could influence the MBI
- The LLRF needed to be modified by the manufacturer to accept continuous input signals

A simple case of online RL:

damping of induced betatron oscillations

Proposed control loop

Actor-critic RL

Training

- The weights of both networks are updated iteratively using gradient descent
- The critic assesses how good the current policy is in terms of expected rewards, and aims at minimizing the difference between the expected value and the actual observed rewards
 - Calculation of the observed reward only needed at backpropagation time
- The **actor** updates updates its policy to maximize the expected rewards

This happens "offline" using the experience accumulated

Hardware setup at KARA

L. Scomparin

RL implementation

- Algorithm: Vanilla PPO from Stable Baselines3
- Actor & critic architecture: 8-16-1
- **Reward**: metric of the beam position (low as possible)
- Observation: last 8 BPM samples

- Strategy:
 - 1. Agent acts during 2048 turns (0.74 ms)
 - 2. Agent stops and is re-trained in a CPU (~2.6 s)
 - 3. New weights are sent to Versal board and agent starts again

L. Scomparin

L. Scomparin

Learns by pure interaction with the accelerator

Step 0

Step 0

-4002 -600Horizontal BPM position [arb] 1 -800 Reward [arb] 0 -1000-1200-2 -1400Extraction septum on 250 750 1000 1250 1500 1750 20 40 80 Ó 500 2000 60 100 0 Training steps Time [turns]

Karlsruhe Institute of Technolog

L. Scomparin

A more complicated case of online RL:

control of the microbunching instability

Proposed control loop

Karlsruhe Institute of Technology

Control of the microbunching instablity with RL Hardware setup at KARA

At the beamline

In the KARA ring

RL implementation

Algorithm: vanilla PPO from Stable Baselines3

- Interpolated (smoothed) to avoid sharp steps (cavity interlocks)
- 3. New weights are sent to Versal board and agent starts again

Preliminary results

Single bunch, 1 ADC

Preliminary results

Single bunch, 1 ADC

RF voltage = 767.11 Ramping steps = 240

-((rollout_buffer.T[2]-0.3)**2)

Purple: mean of action distribution (policy output, non cumulated)

Green: action taken from distribution

Real action that reaches the cavity: ?

Preliminary results

Single bunch, 1 ADC

RF voltage = 767.26Ramping steps = 240

-((rollout buffer.T[2]-0.3)**2)

Purple: mean of action distribution (policy output, non cumulated)

Green: action taken from distribution

Real action that reaches the cavity: ?

Preliminary results

Single bunch, 1 ADC

Preliminary results

Single bunch, 1 ADC

L. Scomparin

Preliminary results

Single bunch, 1 ADC

L. Scomparin

Control of the microbunching instablity with RL Preliminary results Single bunch, 1 ADC L. Scomparin 10 1.2 Main RF voltage amplitude (continuous action) 8 1.0 CSR power [arb] Action [arb] 8.0 6 0.6 4 0.4 2 0.2 THz signal 0 0.0 0 25000 50000 75000 100000 125000 150000 175000 200000 Time [turns]

Thank you for your attention! What questions do you have for me?

Institute for Beam Physics and Technology

Dr. Andrea Santamaria Garcia Al4Accelerators team leader

andrea.santamaria@kit.edu https://twitter.com/ansantam https://www.linkedin.com/in/ansantam/ https://github.com/ansantam https://instagram.com/ansantam