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Two proof-of-principle studies at KARA IBPT
implementing RL “at the edge” ﬂ(IT

Karlsruhe Institute of Technology
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Step 1: trying the concept in a simple problem
Damping of induced betatron oscillations

Step 2: using the validated concept for more difficult endeavors...
Control of the microbunching instability
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First RL deployment in accelerators with purely online % _
training and running on hardware at very low latencies! ~;
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Motivation:

Control of coherent synchrotron
radiation emission

i
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The THz frequency

Great scientific potential!
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= Material characterization

= Lower-energy solution to X-rays
(non-ionizing)

= High-resolution images of the
interior of solid objects (security
screening, artwork analysis)

= Submillimeter astronomy
(chemical abundances and
cooling mechanisms of
molecular clouds)

Frequency of rotation of
small molecules

Duration of collisions
between gas molecules at
room temp.

Peak frequency of
blackbody-like emission of
galaxies
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Oscillation of gaseous and
solid-state plasmas

Frequency of resonance of
electrons in semiconductors

Frequency of
superconducting energy

gaps

Frequency of vibration of
biologically-relevant
collective modes of proteins

"THz techniques” E. Briindermann et al.
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https://link.springer.com/book/10.1007/978-3-642-02592-1

The THz frequency

Great scientific potential!

Common desiderata:

= High peak fields

= Coverage to higher frequencies
with coherent broadband sources

= Full pulse-shaping

= Excellent source stability

Accelerator-based sources

L provide THz radiation with

high brightness, power, and
repetition rate

"Accelerator-Based THz Radiation Sources", A.-S. Miller & M. Schwarz
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More generally:

Single-shot, bunch-by-bunch
diagnostics

T T

Constant delivery of high quality,
intense and stable photon beams

l to a variety of beamlines

Non-destructive

Feedback
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https://link.springer.com/referenceworkentry/10.1007/978-3-030-23201-6_6?noAccess=true

Coherent synchrotron radiation (CSR) &(IT

Karlsruhe Institute of Technology

Synchrotron radiation spectral intensity
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"Accelerator-Based THz Radiation Sources", A.-S. Miller & M. Schwarz
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https://link.springer.com/referenceworkentry/10.1007/978-3-030-23201-6_6?noAccess=true

The microbunching (MBI) instability N(IT

Control for stable, enhanced, or damped CSR e ivertmloodl

micro-structure dynamlcs

CSR power fluctuation | g 16 RL considerations
0.14 = How to influence the
2 ' , 0.12 instability? (actions)
' 0.10 = How fast does the action
2 0.08 need to be to influence a
> s 0.06 physical phenomenon?
. 0.04 = How fast can we detect THz

0 2 4 6 8 10|12 radiation? (observable)
Iong posmon 02.0) time (Ts) = Can we achieve the
required latency?
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o
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We would like a high average,
low variance emission

“Micro-Bunching Control at Electron Storage Rings with Reinforcement Learning”, T.Boltz
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https://publikationen.bibliothek.kit.edu/1000140271

Timescale perspective and requirements A\‘(IT

Karlsruhe Institute of Technology

2 ns (500 MHz)
in multibunch

= Revolution frequency: 2.7 MHz (T, = 370 ns)
= Synchrotron frequency: 7-9 kHz (Tgync = 110-143 us)
= > 300-400 Trey ~ Tsync

» We want to be able to detect light every 2 ns
» \We want to be able to detect light pulses in the ps order
= We want to be able to act every ~ T, (110-143 ps)

Breakthrough in real-time control with reinforcement learning on hardware at KARA - Andrea Santamaria Garcia RL4AA’24 (Salzburg)



Real-time, high-repetition data acquisition &("‘

State-of-the-art detectors

Karlsruhe Institute of Technology
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\ u‘{’\/'i = (m commlssmnmg) “High throughput data streaming of
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3 bunch profiles”, S. Funkner
Far-Field EOSD
Revealing the dynamics of ultrarelativistic non-
“KAPTURE-2. A picosecond sampling system for individual THz pulses with high equilibrium many-electron systems with phase
repetition rate”, M. Caselle space tomography
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https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.22.022801
https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.22.022801
https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.22.022801
https://iopscience.iop.org/article/10.1088/1748-0221/12/01/C01040
https://iopscience.iop.org/article/10.1088/1748-0221/12/01/C01040
https://arxiv.org/pdf/1912.01323.pdf
https://arxiv.org/pdf/1912.01323.pdf
https://arxiv.org/pdf/1912.01323.pdf
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Influencing the instability

CSR self interaction
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Courtesy of T. Boltz

Perturbation of slope at
synchronous position
found to be critical

P N [ [
N I I
| RN |
l l | l
I I I I

long. position (o,0)

Breakthrough in real-time control with reinforcement learning on hardware at KARA - Andrea Santamaria Garcia

CSR power (W)

norm. RF amplitude
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Compensate the effect of the CSR
perturbation by modulating the RF voltage

(amplitude)

Ver =

T T T

Constant
modulation

TR ey ey

5 10
time (Ts)

Sin(2m frpt)

= 170 + Aoa SIN2Tf 00 + Prnoa)

Initial damping, but
quickly out of sync...we
need dynamic control!
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Influencing the instability (simulation)
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Courtesy of T. Boltz

Mitigation via Dynamic RF Amplitude Modulation

Karlsruhe Institute of Technology
CSR signal

micro-structures in phase space

High average, low
, B o - variance CSR!

CSR power (W)

0 5 10 15

RF amplitude modulation
1.006 = S

1.002
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o o
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0.996

0.994,

10 15
time (Ts)

Vrr = sin(2mfrpt) O: Vo + Aroa SINQ7f 00 + Omoa)

Simulation done with [novesa, Vlasov-Fokker-Plack solver developed at KIT
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https://github.com/Inovesa/Inovesa

Control of the microbunching instablity with RL at KARA ﬂ(IT

Karlsruhe Institute of Technology

Short bunch
\1{ Increased
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Low-a, optics = MBI

Bursting can be
controlled with RF
modulations
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Bunch-by- Accelerating

RF cavities

bunch feedback
system

Detailed actuator study was carried out
A. Santamaria Garcia et al, IPAC23-WEPAO018
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https://doi.org/10.18429/JACoW-IPAC2023-WEPA018

How to influence the instability at KARA?

FFT of CSR signal
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Only the LLRF system could influence the MBI

The LLRF needed to be modified by the
manufacturer to accept continuous input signals
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A simple case of online RL.:

damping of induced betatron oscillations
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Damping of transverse oscillations ﬂ(IT

Proposed control loop

e

° Karlsruhe Institute of Technolo
KAPTURE-2 HighFlex 2 ”
signal digitization bunch labeling

(]

BPM signal

analog pulse signal
sampled turn-by-turn

Low-latency high-throughput sampling Custom modular
500 MS/s, 8 channels readout card
Measured latency without fiber, aurora
re-training 2.5 ps protocol 64b/66b
dback Xilinx Versal
s Feedback system
‘, 0.5-2.5 GeV : < Sy | VCK190
- § execute action - X a q
1104 m decide action
Stripline kicker e
2.7MHzrev. freq. #  controlled by Versal and by-  serial Low-tatency RL

inference platform

assing the BBB system
passing y 1.6 Tera FP
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c 1Gb [ Al engines: feature extraction £ o
] and agent inference 3 ©
= S ethernet 8
s ) o
.2 e .
3w % CPU/GPU ARM processor: slow-control 'z:: Action g
L0 o Expected -trai _— g
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= o bt
S x 5 Every 2048 turns

S
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Actor-critic RL
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Training

The weights of both networks are updated
iteratively using gradient descent

The critic assesses how good the current
policy is in terms of expected rewards, and
aims at minimizing the difference between
the expected value and the actual observed
rewards

» Calculation of the observed reward only
needed at backpropagation time

The actor updates updates its policy to
maximize the expected rewards

This happens “offline” using the
experience accumulated

RL4AA’24 (Salzburg)



Damping of transverse oscillations A\‘(IT

H a rdwa re Setu p at KARA Karlsruhe Institute of Technology

Signal to BBB amplifier

“’“'“‘El

Power supply =

v,
Ny

Timing signals

Splitter

,/
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Damping of transverse oscillations &(IT

RL implementation

Karlsruhe Institute of Technology

= Algorithm: Vanilla PPO from Stable Baselines3 = Strategy:

* Actor & critic architecture: 8-16-1 _ 1. Agent acts during 2048 turns (0.74 ms)
" Reward: metric of the beam position (low as possible) 2 Agent stops and is re-trained in a CPU (~2.6 s)

= Observation: last 8 BPM samples 3. New weights are sent to Versal board and agent starts again

le6 le6
3.5 4
—— Untrained agent —— Greedy agent
—— 15 episodes 3.0 4 —— FIR filter
X - g X
34 O —— 30 episodes (&)
_ X —— 45 episodes . 25 X Achieves (sometimes
§ ol —— 60 episodes g © surpassing) performance
= c —— Greedy agent = 1 c of FIR filter control
= o 5 20 o ! ;
c 21 4 N c - (commercial solution)
2 > Damping improves 2 X
s o K_g\ with experience: the s 157 o
& system is learning! &
T 1+ T 10
< <
[=] (=]
N N
5 N 0.5
I T
01 0.0
_0.5 -
0 500 1000 1500 2000 0 500 1000 1500 2000
Turns Tuns
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Damping of transverse oscillations
Time evolution per episode

Horizontal BPM position [mm]

2.0 1

1.5+

Learns by pure interaction with the accelerator
Step O

KIT
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=700
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Damping of transverse oscillations
Time evolution per episode

Horizontal BPM position [arb]

Learns by pure interaction with the accelerator

KIT

Karlsruhe Institute of Technology

Step 0
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2 4
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e}
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A more complicated
case of online RL.:

control of the microbunching instability

oooE
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Control of the microbunching instablity with RL &("‘

Proposed control loop
e N\ KAPTURE-2 HighFlex 2

signal digitization bunch labeling

Karlsruhe Institute of Technology

L. Scomparin et al, IBIC'22-MOP42

W. Wang et al, doi:
10.1109/TNS.2021.3084515

Schottky diode

analog pulse signal —f=>

50 GHz -2 THz

. . o T. Boltz, doctoral thesis
Low-latency high-throughput sampling Custom modular
500 MS/s, 8 channels readout card
Measured latency without fiber, aurora
re-training 2.5 ps protocol 64b/66b

Xilinx Versal
VCK190

[ decide action

Low-latency RL
inference platform
1.6 Tera FP

0.5-25 GeV Feedback system
B execute action

1104 m \

0 Low-level RF amplitude and € ¢ @ \>

2.7MHz rev. freq' i phase modulation control serial
every 6 revolutions

operations/s / \
c 1Gb Al engines: feature extraction % A
= d agent inference - ©
s S ethernet and ag ] 4
=
.2 — .
3® % CPU/GPU ARM processor: slow-control ‘g Action g
o —_—
s g @ Expecte_d re-train RS FPGA: data preparation = E
- Y —e cumulative : a K
s e w reward
Sx 5 of Depends on \ }
ea o 26s decimation
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https://publikationen.bibliothek.kit.edu/1000140271
https://ibic2022.vrws.de/papers/mop42.pdf
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Control of the microbunching instablity with RL &("‘

Hardware setup at KARA Karlrue Institut of Technology
At the beamline In the KARA ring

Voltage
modulation out

¥/

THz signal in

Fiber connection
with THz signal

Versal board (Al inference)
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Control of the microbunching instablity with RL &("‘

RL implementation

Karlsruhe Institute of Technology

= Algorithm: vanilla PPO from Stable Baselines3

Observation = Decimation (two stages):
; : Controls timescale agent “sees”
Last 64 THz signal samples{decimated) ©  agent sees
Circular buffer (keeps last 64 samples in memory) o Rate of action = decimation X Tre

o Makes infererence & training easier (smaller networks)

Z, o We decimate 16 x 6 = 96 (take a sample every 96 revolutions)
€« /L—A > We act every 96 x T, ~ 28 kHz ~ 0.25 x T, ~ 36 us

» We use 440 samples per second

] 50 100 150 200 250

64
% A all .
R - B AM A, A
) 0.0
&6 S 260 460 660 50‘00 10600 15600 20600 25600 30(;00
»/9 Filtering to remove spurious content + decimation
O,
A = Strategy:
1 1. Agent acts during 2048 steps (samples of decimated signal)
° 2. Agent stops and is re-trained in a CPU (takes ~2.6 s)
Action (voltage value) > We train every (2048 x 96) T, = 509 Tgync
Interpolated (smoothed) to avoid sharp steps (cavity interlocks) 3. New weights are sent to Versal board and agent starts again
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Control of the microbunching instablity with RL &("‘

P rel i m i n a ry res U |tS Karlsruhe Institute of Technology
Single bunch, 1 ADC

training 602023 09 29 08 49 13

Energy = 1.3
Current = 0.4199
Alpha = 0.00836

RF voltage = 767.29
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Control of the microbunching instablity with RL &("‘

P rel i m i n a ry res U |tS Karlsruhe Institute of Technology
Single bunch, 1 ADC

training 60 2023 09 29 08 51 33

F0.6
Energy = 1.3

Current = 0.4051
Alpha = 0.00836

RF voltage = 767.11
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Control of the microbunching instablity with RL

Preliminary results
Single bunch, 1 ADC

Action

|
ot
o

Reward
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KAPTURE signal

r0.0
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Energy = 1.3
Current = 0.3947
Alpha = 0.00836

RF voltage = 767.26
fsync = 8.859
Decimation = 16
Ramping steps = 240

-((rollout_ buffer.T[2]-0.3)**2)

Purple: mean of action distribution
(policy output, non cumulated)

Green: action taken from distribution

Real action that reaches the cavity: ?
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Control of the microbunching instablity with RL &("‘

P rel i m i n a ry res U |tS Karlsruhe Institute of Technology
Single bunch, 1 ADC

training 79 2023 09 29 12 48 59

0.2
1.53 Energy = 1.3
0.1 gc Current = 0.2752
= ‘ ‘ o Alpha = 0.00836
2 0.0 : : ‘ l.()l&l RF voltage = 767.16
= | e E fsync = 8.096
| \ I wl L‘mm“lp ! | 0.5 Decimation = 16
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Turns
-((rollout_ buffer.T[2]-0.3)**2)
_50_
B sl Purple: mean of action distribution
é (policy output, non cumulated)
~1501 Green: action taken from distribution
3 E 5 e 5 5 % Real action that reaches the cavity: ?

Training steps
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Control of the microbunching instablity with RL

Preliminary results
Single bunch, 1 ADC

CSR power [arb]

Step 0

2ot 1] 1 . ] 100/
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Control of the microbunching instablity with RL

Preliminary results
Single bunch, 1 ADC

CSR power [arb]
© o o oy b e
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Control of the microbunching instablity with RL

Preliminary results
Single bunch, 1 ADC
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CSR power [arb]
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Main RF voltage amplitude (continuous action)
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Action [arb]
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T IBPT

Karlsruhe Institute of Technology Institute for Beam Physics and
Technology

Dr. Andrea Santamaria Garcia
Al4Accelerators team leader

Thank you for
your attention!

What questions do you
have for me?

andrea.santamaria@kit.edu
https://twitter.com/ansantam
https://www.linkedin.com/in/ansantam/
https://github.com/ansantam
https://instagram.com/ansantam
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