KIT | KIT-Bibliothek | Impressum | Datenschutz

An Architecture for Context-Aware Food and Beverage Preparation Systems

Müller, Michael ORCID iD icon 1; Kraus, David ORCID iD icon 1; Lukezic, Nikola ORCID iD icon 1; Guissouma, Houssem 1; Sax, Eric 1
1 Institut für Technik der Informationsverarbeitung (ITIV), Karlsruher Institut für Technologie (KIT)

Abstract:

This paper introduces a universal architecture for CONtext-aware Food and bEverage preperation System (CONFES) addressing the optimization issue in food and beverage preparation, with the aim of achieving nutritious, sustainable, and tasteful results. The concept is based on a comprehensive review of the state of the art in Machine Learning (ML) approaches for food preparation, and the latest technical developments in Cyber-Physical System (CPS). The system requirements, overarching architecture, essential components, and data model for CONFES are defined, leading to a more concrete case study. The latter describes a context-aware coffee machine as a practical implementation of the proposed architecture. The study demonstrates how CONFES can be customized to meet the specific requirements of a coffee machine, showcasing the adaptability and versatility of the overall architectural framework. The research findings contribute to the development of intelligent and context-aware systems in the domain of food and beverage preparation.


Preprint §
DOI: 10.5445/IR/1000173413
Veröffentlicht am 28.08.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Technik der Informationsverarbeitung (ITIV)
Publikationstyp Buchaufsatz
Publikationsdatum 06.09.2024
Sprache Englisch
Identifikator ISBN: 978-3-031-66428-1
ISSN: 2367-3370
KITopen-ID: 1000173413
Erschienen in Intelligent Systems and Applications – Proceedings of the 2024 Intelligent Systems Conference (IntelliSys) Volume 2. Ed.: K. Arai
Verlag Springer Nature Switzerland
Seiten 486–500
Serie Lecture Notes in Networks and Systems ; 1066
Bemerkung zur Veröffentlichung -
Vorab online veröffentlicht am 31.07.2024
Schlagwörter Context-aware systems, recipe recommendation, sustainable food preparation, machine learning, food waste reduction
Nachgewiesen in Scopus
Dimensions
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page