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Abstract
Reinforcement learning (RL) is applied to control the mi-

crobunching instability (MBI) in synchrotron light sources.
Here the interaction of an electron bunch with its emitted
coherent synchrotron radiation leads to complex non-linear
dynamics and pronounced fluctuations. Addressing the con-
trol of intricate dynamics necessitates meeting stringent
microsecond-level real-time constraints. To achieve this,
RL algorithms must be deployed on a high-performance
electronics platform. The KINGFISHER system, utilizing
the AMD-Xilinx Versal family of heterogeneous computing
devices, has been specifically designed at Karlsruhe Institute
of Technology (KIT) to tackle these demanding conditions.
The system implements an experience accumulator architec-
ture to perform online learning purely through interaction
with the accelerator while still satisfying strong real-time
constraints. The preliminary results of this innovative con-
trol paradigm at the Karlsruhe research accelerator (KARA)
will be presented. Notably, this represents the first exper-
imental attempt to control the MBI with RL using online
training only.

INTRODUCTION
Electron storage rings are a possible source for the pro-

duction of bright, high repetition rate, terahertz-range radi-
ation [1]. Strong coherent emission is possible when mi-
crostructures smaller than the wavelength of the emitted
radiation appear in the bunch charge distribution. This can
be achieved through the microbunching instability (MBI),
where finger-like microstructures in the longitudinal phase-
space interact with their own emitted coherent synchrotron
radiation (CSR). The microstructure rotation in the phase-
space due to synchrotron motion, produces CSR fluctuations
at a multiple of the synchrotron frequency, called the burst-
ing or “finger” frequency[2]. When the self-interaction is
strong enough the phase-space distribution is periodically
blown-up, dispersing the microstructures and thus stopping
the CSR. The instability is triggered again when the syn-
chrotron radiation damping increases the charge density [2–
4].

At the Karlsruhe research accelerator (KARA), this phe-
nomena is observed in the short bunch operation mode
with low momentum compaction factor 𝛼𝑐 at an energy
of 1.3 GeV, where the bunch length is reduced compared to
the optics at 2.5 GeV for regular synchrotron operation and
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photon science experiments. The bursting and slow-bursting
frequencies have a timescale of ≈ 30 kHz and of ≈ 200 Hz
respectively, albeit being strongly dependent on the specific
settings of accelerating voltage and optics [2]. These insta-
bilities hinder the usage of the CSR for material science or
medical applications, where the radiation output typically
needs to be constant for the detection systems.

A candidate technique to control these instability is rein-
forcement learning (RL), a class of machine learning (ML)
algorithms [5]. The application of RL methods to real-world
systems is usually hindered by the large quantities of training
data required, which at accelerators with low repetition rates
becomes prohibitive to collect. This issue is overcome by
pre-training, or fully training, on a simulated version of the
environment.

For control problems like the MBI, simulations are com-
putationally expensive, necessitating significantly more time
compared to conducting tests directly on the accelerator. The
rate at which training data is produced at KARA is sufficient
to allow training without simulation, but leads to stringent
real-time constraints, not allowing the use of the conven-
tional implementations of RL algorithms. In this work, we
use the experience accumulator technique described in [6]
to perform real-time online training.

So far, the two main attempts at controlling the MBI have
been provided in [7] and [8]. These two approaches are very
different. The work of [7] experimentally verifies the use
of classical control techniques to target the slow-bursting.
In [8] a simulation study uses RL techniques to control the
bursting behavior, in conditions where the slow-bursting is
not present.

In this work, we perform experimental tests of RL con-
trol of the slow-bursting. Nonetheless the system described
can also be applied to the problem of controlling “finger”
bursting.

METHODS
The system described in [5, 6] to control the horizontal

betatron oscillations (HBO) at KARA was adapted to con-
trol the MBI. A schematic representation is shown in Fig. 1.
The CSR from a single bunch is detected with a Schottky
diode, whose signal is then digitized and sent over a digital
Aurora fiber link by a custom KAPTURE-2 [9] and High-
Flex 2 system. The RL agent inference is performed on
the KINGFISHER platform using an AMD-Xilinx Versal
VCK190 evaluation board.

Thanks to the systematic study carried out in [10], it was
shown that accelerating voltage modulations through the
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Figure 1: Schematic of the experimental setup employed at KARA. On the accelerator side, following a counter-clockwise
signal path, the light is digitized and fed into the AMD-Xilinx Versal VCK190 evaluation card, were the RL agent resides.
The training data is sent to a computer in the control room, while the action is applied to the LLRF system.
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Figure 2: Reward as a function of training step with and
without feedback from the RL agent. The blue lines mark
the episodes shown in Fig. 3.

radiofrequency (RF) system can affect the instability. Thus,
the action signal from the agent was applied as a voltage
modulation to the Dimtel LLRF9 [11] low-level radiofre-
quency (LLRF) system controlling one of the two RF sta-
tions of KARA, consisting of two cavities each. In order
to do this, a custom serial interface was added to the unit
that allows an external device to add an 11 bit amplitude
and 13 bit phase offset to the LLRF set-point, corresponding
respectively to full scale values of ±100 kV and ±5.6°. A
new sample is requested by the LLRF every 6 revolutions,
corresponding to a sample rate of ≈450 kHz.

The signal processing chain, with the agent inference, is
analogous to the one in [6]. The RL agent policy is en-
coded into a 64 neuron, one hidden layer, fully connected
neural network (NN). A window of the latest 64 CSR sig-
nal samples is used as the input to the NN. A design like
this would make the agent sensitive only to those number

of samples, but, as discussed in the introduction, the MBI
has different timescales that might be of interest for control
experiments. Specifically, slow-bursting is characterized by
oscillations that would not be perceivable with this setup.
Because of this, two decimation stages are applied, each
with its own decimation factor and 128-coefficients finite
input response (FIR) filters. In order to adapt the decimated
rate back to the one requested by the LLRF, an interpolation
stage is added to the action. Similarly, a 128-coefficient FIR
filter is used. Gaussian noise is added to the output action
in order to drive the exploration of the agent.

The same experience accumulator architecture described
in reference [6] is employed. A low-latency real-time agent
is deployed to the AI Engines of the Versal board and in-
teracts with KARA at a rate of ≈28 kHz with a decimation
factor of 96, with the interaction being monitored and stored
in memory. The training is asynchronously performed on
a computer in the control room (as shown in Fig. 1) using
the Stable-baselines3 [12] implementation of the proximal
policy optimization (PPO) algorithm [13]. The new NN
coefficients are then uploaded to Versal to obtain new train-
ing data. For the experiments described in this work, 2048
decimated data samples were taken, with a decimation factor
of 96, corresponding to 72 ms or ≈ 670 synchrotron peri-
ods. The reward engineering is performed live on KARA,
as the reward function can be modified at training time. The
accelerator working conditions are reported in Table 1.

DISCUSSION AND OUTLOOK
Due to the low beam lifetime in low-𝛼𝑐 operation mode,

the beam current decays rapidly. Given the strong depen-
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Figure 3: CSR signal in three training episodes showing the strong dependence on beam current. An RL agent data
acquisition (red) is compared with one without feedback (grey), in order to high-light the effect of the controller.

Table 1: KARA Machine Parameters Used During the Ex-
periment

Parameter Value

Energy 1.3 GeV
RF frequency 499.750 MHz
RF voltage 767 kV
Synchrotron frequency 9.3 kHz
𝛼𝑐 6.7 × 10−4

Bunch current 0.1 mA to 0.7 mA

dence of the MBI dynamics with bunch current [2, 8], a
reference acquisition without agent action, i.e. with the
feedback switched off, was taken after each training data
acquisition. Several different reward functions and decima-
tion/interpolation settings were tested. An example of the
episode reward as a function of the number of training steps
is shown in Fig. 2. The reward function was defined as

𝑅(𝑥𝑖) = −(𝑥𝑖 − ̄𝑥)2, (1)

where 𝑥𝑖 is the 𝑖-th decimated CSR signal sample, and ̄𝑥 is the
average of the signal over the entire episode. This function
was chosen to try and minimize the variance of the signal.
The decay of the bunch current leads to a decrease in CSR
output, in turn increasing the reward. Thus, it is important to
compare the agent reward with a baseline acquisitions with
the feedback switched off, in order to disentangle the contri-
bution to the reward increase due to the agent and the one
due to the current decay. Three of these training episodes are
shown in Fig. 3, with their corresponding reward shown in
Fig. 2. In the left panel, the untrained agent is not affecting
the slow-bursting behavior, while the bursting is filtered out
by the decimation filter, so it is present but not visible. In
the no-action signal of the central panel, the bursting is still
present, albeit with a lower amplitude due to the decay of the
current. The RL agent managed to maintain the fluctuations
at a lowered and stable level, after an initial transient. In the
right panel, the current falls below the slow-bursting thresh-
old. The RL agent at this point did not train fast enough to
adapt to the quickly changing dynamics, and is thus exciting

the instability. Despite the varied results, it is important to
notice that the RL agent consistently performs better than
the no-action baseline, as shown in the accumulated reward
over time (Fig. 2), except at the very end, precisely due to
the transition below threshold.

The fact that the controller does not perform well at high
currents might indicate a fundamental characteristic of the
controllability of the MBI, for which studies are so-far miss-
ing in literature.

A potential effect impacting the effectiveness of the agent
is the chosen Gaussian noise. Specifically, the noise has
high-frequency components that are likely filtered out by
the response of the RF cavities. A smoother exploration
noise could potentially mitigate this phenomenon. Addition-
ally, the problem is partially observable, meaning that the
observations given to the agent are not sufficient to fully
know the state of the system, in this case represented by the
phase space distribution. Adding the latest actions to the
observation vector usually gives more information about the
current state.

CONCLUSION
A promising approach to control the MBI has been intro-

duced, alongside the first experimental implementation of
RL employing solely online training for this problem. The
current hardware design allows adaptation to the wide va-
riety of timescales the instability presents. Moreover, clear
improvements are proposed that will increase the perfor-
mance of the trained RL agent allowing a systematic study
of this technique, currently underway at KARA.

This work represents a first step towards an autonomous
system capable of tailoring terahertz radiation to the user’s
needs, thanks to the self-learning capabilities of RL.
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