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RACE: A Real-Time Architecture )
for Cognitive State Estimation, Gesia
Development Overview and Study

in Progress

Noémie Beauchemin, Alexander John Karran, Jared Boasen, Bella Tadson,
Patrick Charland, Francois Courtemanche, Sylvain Sénécal,
and Pierre-Majorique Léger

Abstract Cognitive load management is important in successful learning, refer-
ring to working memory and other factors related to accomplishing instructional
tasks. Cognitive overload and underload are induced when challenges provided to
the student exceed or underutilize working memory capacity, leading to suboptimal
learning. The link between cognitive load and successful learning is well established.
However, current educational technologies fail to utilize cognitive load effectively
to personalize learning and fail to adapt to the student’s learning pace. Neuroad-
aptive interfaces, specifically Brain-Computer Interfaces, are slowly transforming
the traditional educational landscape offering promising possibilities to enhance and
improve learning experiences by enabling direct communication between the brain
and a computer to adapt instructional content in real-time based on the assessment
of cognitive load brain states. This research-in-progress paper discusses the devel-
opment, following a design science research methodology, of RACE: a novel artefact
consisting of a Closed-Loop Brain-Computer Interface that measures cognitive load
in real-time applied to a memorization-based learning task to adapt the learning Inter-
active User Interface in real-time based on assessed and classified levels of cognitive
load. Specifically, this artefact adapts the speed of information provision and response
time to the learner’s pace to make learning more personalized and effective.
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1 Introduction

The development and integration of technologies into teaching practices have begun
a trend toward transitioning from the more traditional classroom pedagogical models
to online models [1, 2]. Research has shown that the use of technological tools in
learning helps promote engagement and motivation as predictors of success [1, 3].
While technological tools in education have been designed with user Cognitive Load
(CL) as a design consideration [4, 5] very few of these technologies utilize direct
real-time measurements of CL to adapt in real-time, potentially making learning less
personalized [6].

Neuroadaptive technologies, specifically Brain-Computer Interfaces (BCI), are
tools to overcome physical impairments and augment specific cognitive capacities
[7]. Rapid improvements in sensor technologies such as electroencephalogram (EEG)
and methods of classifying brain activity into specific states have shown BCI to be
a useful assistive and interfacing technology [38] for human—machine systems [8].
BCI technology has been defined as “a device that reads voluntary changes in brain
activity, then translates these signals into a message or command in real-time” [9].
BClIs are a core component of systems that utilize the user’s neurophysiological data
as input to a computer system, which then performs actions to adapt, assist or provide
feedback to the operator. A common application of BCI technology is to measure
and classify CL under various conditions. Studies have found correlations between
CL and variance in brainwaves expressed as increases or decreases in o (8—12 Hz)
and 6 (4-8 Hz) in pre-frontal brain regions [10].

In this work-in-progress manuscript, we answer a call for research to investigate
neuroadaptive technology using NeurolS methods [11, 12] and discuss the integration
of a design science approach to developing a research BCI artefact that monitors and
classifies CL in real-time to drive interface adaptions to improve learning outcomes
in an education context. We provide an overview of the requirements analysis, design
choices and overall architecture of the BCI artefact and provide a study methodology
that utilizes the BCI artefact to adapt an interface in two ways: speed of information
presentation and response time, to investigate if these adaptations improve learning
outcomes.

As the means from which to derive requirements for the BCI artefact that meet
the needs of the study, we posit the following research question, “To what extent
does utilizing a real-time BCI that adapts the speed of information provision and
response times based on cognitive load improve learning outcomes in a task involving
memorization of astronomical constellations?”.
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2 Background

Cognitive Load and Learning

Many factors influence learning; however, CL remains a central concept for under-
standing and improving the learning process [5, 13, 14]. Cognitive Load Theory
(CLT), proposed by Sweller [15], posits a cognitive architecture to investigate how
information is processed and retained and centers around the interactions between
Working Memory (WM) and long-term memory [6, 14—16]. It defines CL as the
management of the WM’s limited capacity, i.e. the amount of mental effort an
individual allocates to a task [6].

Cognitive overload or underload during the completion of online or computer-
based learning tasks may occur when WM’s capacity is exceeded or underutilized,
potentially leading to slow learning progress or poor performance [17]. Current
educational technologies consider CL as only one of many factors influencing
learning outcomes and do not emphasize its centrality to the learning process or
how modulating CL may lead to improved learning outcomes [4, 5].

Previous methods of quantifying CL in both research and developing educational
technologies consisted of batteries of subjective measures administered through ques-
tionnaires [14, 18]. However, while these measures provide the learner’s perspec-
tive on their experience, they cannot quantify the amount of mental effort invested
throughout the entire learning process [ 14]. One solution to this problem is to measure
CL directly and in real-time through the brain’s electrical activity using BCI.

Brain-Computer Interfaces

As discussed previously, BCIs are systems that allow the human brain to communi-
cate directly with a computer [19]. BCIs transform brain activity into control signal
data for computer interaction [20, 21]. BCI research has gained in popularity in
the last decade due to its potential clinical application [20]. These systems allow
bypassing the peripheral nervous system for neurorehabilitation in cases of brain
injury, motor disabilities and other medical purposes [19, 22, 23]. BCI technology
has also been used in studies investigating video games [24-29], marketing and
advertisement [30, 31], neuroergonomics and smart environments [32-37], and work
monitoring and safety [38—43]. There are currently three categories of BCI: Active,
where users voluntarily and consciously control their brain activity to directly control
an application [8, 25]; Reactive, a hybrid of Active and Passive paradigms, where
users indirectly modulate their brain activity in response to external stimuli, using
Event-Related Potentials (ERPs) derived from brain activity, to control an application
[8, 251; and Passive, wherein spontaneous brain activity is automatically monitored
to differentiate or quantify mental states, where the user provides no active control
and where feedback is provided as a response from the system [8, 25, 44].



12 N. Beauchemin et al.

Interest in neurotechnology and more specifically passive BCIs has grown rapidly
in the last decade [45]. In a passive BCI, brain activity is classified, then these
classifications are sent to a computer system, which then adapts content or provides
visual feedback, which in turn encourages changes in brain activity as part of a
biocybernetic loop [46]. There are several examples of passive BClIs in the literature
which have been used to support learning tasks [47], increase engagement [48], and
increase performance [49] of learners.

While interest in BCIs has grown substantially, few research papers exist regarding
BCI technologies focused on learning and measuring learner’s CL in real-time.
Furthermore, while the theoretical relationship between learning and cognitive load is
strong, and several research studies [40-42, 47, 48] have been conducted to develop
BClIs to detect levels of CL, none specifically focuses on utilizing CLT and BCI
technology to monitor CL and adapt learning content to the user in real-time.

Speed of Stimulus Presentation in Learning

Learning pace, modulated by the speed of stimulus presentation, has been extensively
studied for decades [50]. The need to adapt, personalize and present content to the
learner’s pace to increase information retention and improve learning has been noted
many times [51-53]. In this context, a BCI could be utilized to monitor CL in real-time
and trigger an interface to adapt and personalize the pace of learning. Most previous
research using BCIs in an educational context applied the technology to assess mental
state concerning interface complexity and CL while using a new interface and not
directly adapting learning content [6, 14, 44, 50]. To our knowledge, the rescarch
presented here is the first of its kind proof of principle as it integrates BCI technology,
real-time measurement of CL and speed of stimulus presentation to create a neuro-
adaptive learning interface. It is, therefore, imperative to follow a rigorous Design
Science Research Methodology to develop a complete and valid solution.

3 Objectives and Methodology

We created our neuro-adaptive artefact in accordance with Brocke et al. [54] and
following Peffers et al.’s [55] Design Science Research Methodology (DSRM). The
DSRM provides a valuable framework for our research use case, given its wide adop-
tion [56] and iterative nature [55]. First, we formulated a problem statement: “design
an artefact that can regulate the level of cognitive load of users while performing
a learning task”. Second, we performed a series of iterative development activities
(Activity 1-6) to develop a valid artefact.

We began our methodological process with Activity I, which consisted of an in-
depth analysis of the current literature concerning our research problem: the absence
of areliable and valid system in the field of education to regulate the cognitive load
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of learners to improve their learning. This analysis was necessary to fully understand
all aspects of the problem and to create a relevant and useful solution. Theoretical
foundations were drawn from previous research on CL and BCIs (see other sections
on CL and BCI), and were applied to our design.

In Activity 2, we explored the state of existing and potential solutions and formu-
lated objectives (see next section) that could help solve the identified problem. To
build our objectives, we examined the rigor of the different methodologies used in
the previous research, thereby following a rigor and relevance process [55, 57]. Since
there are very few studies about BCIs and learning, objectives were aligned with a
Type I use case, which centers the BCI as a tool for research purposes [58].

Subsequently, we proceeded with the Design Cycle throughout Activity 3. We
developed the solution following an iterative process through several research activ-
ities and design-related decisions until the solution fulfilled its objectives extended
over an 8-month period. Specifically, we have conducted 12 main research activi-
tics related to the IUT and the neuroadaptive system through just over 50 pre-tests,
resulting in approximately 45 design-related decisions and iterations.

We then continued with Activity 4, which allowed us to demonstrate with a small
sample of participants that the artifact does indeed adapt in real-time according to a
classification of CL, therefore confirming its feasibility and practical potential. We
were able to test the solution on 10 pre-test participants.

Afterwards, we assessed the quality and validity of the artifact through simulations
to demonstrate that (1) the adaptations occurred as expected and (2) that it met all
the initial design requirements as part of Activity 5. In future steps, we plan to test the
artifact in larger-scale controlled experiments to assess its performance and effect on
cognitive workload in a learning context. We also plan to communicate our DR and
results to the scientific community through publication as part of Activity 6.

To achieve our goal and cover the broadest range of features required to fulfill a
functional BCI artifact, we derived a series of four design objectives (DO).

DO1: The interactive user interface (IUI) should support a learning task which
displays an image of a star constellation with associated multiple-choice answers
and capture feedback (as right or wrong answers) for a predetermined amount of time
adapting to a user’s level of cognitive load. To create the learning task, we adapted
Riopel et al.’s [59] constellation memorization study to create a valid task capable
of inducing CL fluctuations. However, for this study, we selected 32 constellations
based on unfamiliar names or confusingly similar visual forms (see Fig. 1). In our
study, the adaptive parameter influenced by the user’s CL is the speed of information
provision, more precisely (1) the amount of time given to answer and (2) the amount
of time for the answer feedback. Both should have the same duration and change on
the IUI according to the level of the CL classifier. Right or wrong answers should not
affect the speed of information provision. Thereby, the IUI should permit isolation
of the effect of the speed of information provision to adequately measure the CL.
According to the current literature on CL, the TUI should be as clear as possible
by avoiding too many different elements (figures, colors, etc.) and redundant text
to minimize extrancous processing and by avoiding complex sentences to minimize
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L. Example of a Hati fon and tated multiple choices, 2. Omce the time is up, the question is directly followed by the answer

with the timer indicating the amount of time left to anawer. feedback, indicating the right answer,

Fig. 1 Design of the Interactive User Interface (IUI) following the Design Objective 1 (DO1) and
2 (D02)

intrinsic processing and maximize germane processing [60]. The TUI should also
show the right answer even when the user answers correctly. Previous research shows
that even if a right answer is obtained, following feedback is important for better
information retention and to avoid making future mistakes [61, 62]. Finally, the task
duration should be long enough to ensure CL fluctuations over time.

DO2: The system should regulate cognitive load levels through neurofeedback by
adapting the information presentation speed of an interface (i.e., stimulus speed of
presentation) to improve users learning and enhance their performance. The adap-
tation should not obstruct the learning task itself. Therefore, the IUI informs the user
of how many seconds are left to answer the question with a countdown timer right
underneath the multiple-choice answers (see Fig. 1). The countdown timer should
be displayed in a way that is easily perceived by the user without creating anxiety
or stress and without affecting recall performances [63]. Changes in the speed of
information provision have to be relatively subtle to not interfere with the task and
performances, but relevant enough to create a brain state change in the user. Thus,
the amount of time given to answer the question and the amount of time for the
answer feedback both increase or decrease with 1 s jumps at a time, going as high
as 8 s and as low as 3 s each. The minimum was set at 3 s to avoid to avoid transient
brain responses to novel information being confounded with CL classification. The
maximum was established based on pretests and observations of time limits where
participants begin to disengage with the task.

DO3: The system should classify the level of cognitive load continuously and in
real-time and communicate the level of cognitive load to the IUI. To fulfill this
requirement, we used a Lab Streaming Layer (LSL) to communicate CL classifiers
to a Python script that sends the classifiers to the IUI through a Web Socket client.
Classifiers were transmitted from the start to the end of the experiment every six
seconds.

DO4: The system should record and store raw neurophysiological data during use
for post-hoc analysis.
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4 Design and Development

Interactive User Interface and Adaptation Logic

Figure 2 illustrates the proposed artefact’s process flow, which follows the four design
objectives and iterative design activities. The artefact was developed in Simulink
MATLAB (version R2021b, Mathworks MA) and uses a wireless 32-channel active
electrode EEG from G.Tec (g.Nautilus, Austria) to continuously measure brain
activity. To act as a baseline for post-hoc analysis, a small and static black square in
the middle of a gray screen for 1 min and 30 s was displayed before the experiment
began. To train the artefact and set threshold values for a high and low workload
classification, we developed an n-back task where n = 0 and n = 2. Used in many
studies to induce high (2) and low (0) CL through the manipulation of WM [10,
64—07], the n-back task was deemed to be the most appropriate calibration task for
CL classification because it requires the memorization and recall of presented visual
stimuli, similar to the constellation learning task.

To support the instantiation of DO3, the artefact processes end-to-end the acquired
brain signals and classifies CL as low (0), medium (1), and high (2) through a novel
index calculation based on mean alpha band power in the parietal cortex over a
6 s sliding window, stabilized by comparing average CL calculated using a sliding
window of 60 s. Classifications are sent via Lab Streaming Layer (LSL) to a Python
script which then pushes the level of CL to the Interactive User Interface (IUI)
every 6 s through a WebSocket client integrated into a dynamic Web app built with
Angular]JS. We implemented a rule “engine” to allow the web app to switch from
active (experimental) to passive (control) conditions, whereby the neuro-adaptivity
rules are provided through a JSON file on sclecting “active”. When cither option is
selected a personalized link is generated leading to the correct IUT for each participant,
further generating placeholder database entries to store the behavioral and qualitative

Statistical Testing

Speed of
information  Response
provision times
L5 o

User

Sttrnululs speed
et B of presentation
t
[ Feature Extraction H CL Index H Classifier |—-i i |
—_ A A A A —
h'd Y

Measurement Training Signal Acquisition, Inference and Adapiation
Signal Processing Classification
and Storage

Fig. 2 Real-time Architecture for Cognitive State Estimation (RACE), Block process diagram of
the BCI system, moving from User to the IUI
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data for later analyses. The IUI was presented to the participants via Google Chrome.
The TUI displays a constellation image and four multiple-choice questions with a
timer indicating the remaining response time, followed by the correct answer (see
Fig. 1).

The neuro-adaptivity model is integrated into the IUI; when CL is high (2), the
artefact decreases the speed of information provision and increases response time
each by one second (max 8 s). When CL is low (0), the artefact increases the speed
of information provision and decreases response time by one second each (min 3 s).
Starting time is set at 5 s, and no adaptation occurs when the IUI receives a “1”.

S Next Steps: Artifact Evaluation and Experimental Study

We have cvaluated the artefact through pre-tests and confirmed that its develop-
ment meets all the initial design objectives, demonstrates a high level of utility in
learning, and has the potential to go beyond the boundaries of research and labora-
tory application [55, 56, 68]. Our next step is to evaluate the artefact in a controlled
laboratory study with a larger pool of participants. To this end, we developed a
between-subjects study design to isolate the effect of neuro-adaptivity. In group one
(control), the speed of information provision is the same throughout each trial block
(without neuro-adaptivity); in group two (experimental), the speed of information
provision varies according to the participant’s cognitive load level (neuro-adaptivity).
The task involves learning and memorizing as many constellations as possible from
a total of 32 constellations. The task consists of four trial blocks, separated by a
30 s break, where cach constellation is presented two times per trial block. As per
design specification, multiple-choice answers are randomly presented, and the correct
answer’s position between all four possible answers is also randomized. The presen-
tation order of the constellations in each trial block has been pre-randomized and
is identical for all participants. We evaluate participant performance throughout the
experiment. Before the experiment begins, participants are asked to complete a short
questionnaire including the 10-item Edinburgh Handedness Inventory to assess hand-
edness [69], demographic questions and questions about prior level of interest and
knowledge of constellations. A second short questionnaire is presented to the partic-
ipants immediately after the experiment to gather self-repoted data on their expe-
rience, including the NASA-TLX to estimate perceived workload [70], the System
Usability Scale (SUS) to measure the perceived usability of the system [71] and the
5 dimensions of Cognitive Absorption (Temporal Dissociation, Focused Immersion,
Heightened Enjoyment, Curiosity and Control) of the Psychologigal Ownership of
IT (POIT) [72]. The study is currently in progress, we have gathered data for n = 45
participants for evaluation and statistical testing and we look forward to sharing our
preliminary results.



RACE: A Real-Time Architecture for Cognitive State Estimation ... 17

References

10.

1.

12.

14.

15.

16.

17.

20.

21.

22.

23.

Bergdahl, N., Nouri, J., & Fors, U. (2020). Disengagement, engagement and digital skills in
technology-enhanced learning. Education and Information Technologies, 25(2), 957-983.
Alharthi, M. (2020). Students’ attitudes toward the use of technology in online courses.
International Journal of Technology in Education, 3(1), 14-23.

Frrat, M., Kiling, H., & Yiizer, T. V. (2018). Level of intrinsic motivation of distance education
students in e-learning environments. Journal of Computer Assisted Learning, 34(1), 63-70.
Gerjets, P, et al. (2014). Cognitive state monitoring and the design of adaptive instruction in
digital environments: Lessons learned from cognitive workload assessment using a passive
brain-computer interface approach. Frontiers in Neuroscience, 8.

Sweller, J. (2020). Cognitive load theory and educational technology. Educational Technology
Research and Development, 68(1), 1-16.

Kalyuga, S., & Liu, T.-C. (2015). Guest editorial: Managing cognitive load in technology-based
learning environments. Journal of Educational Technology & Society, 18(4), 1-8.

Aggarwal, S., & Chugh, N. (2022). Review of machine learning techniques for EEG based
brain computer interface. Archives of Computational Methods in Engineering, 1-20.

Zander, T. O., & Kothe, C. (2011). Towards passive brain—computer interfaces: Applying
brain—computer interface technology to human—machine systems in general. Journal of Neural
Engineering, 8(2), 025005.

Guger, C., Allison, B. Z., & Gunduz, A. (2021). Brain-computer interface research: A state-
of-the-art summary 10. Brain-computer interface research (pp. 1-11). Springer.

Grimes, D., et al. (2008). Feasibility and pragmatics of classifying working memory load with
an electroencephalograph. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems.

Riedl, R., & Léger, P. (2016). Fundamentals of NeurolS: Studies in neuroscience. In Psychology
and behavioral economics. Springer.

vom Brocke, J., et al. (2020). Advancing a NeurolS research agenda with four areas of societal
contributions. European Journal of Information Systems, 29(1), 9-24.

. van Merriénboer, J. J. G., & Ayres, P. (2005). Research on cognitive load theory and its design

implications for e-learning. Educational Technology Research and Development, 53(3), 5-13.
Mutlu-Bayraktar, D., Cosgun, V., & Altan, T. (2019). Cognitive load in multimedia learning
environments: A systematic review. Computers & Education, 141, 103618.

Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive
Science, 12(2), 257-285.

Sweller, J., van Merrienboer, J. J. G., & Paas, F. G. W. C. (1998). Cognitive architecture and
instructional design. Educational Psychology Review, 10(3), 251-296.

Paas, F.,Renkl, A., & Sweller, J. (2004). Cognitive load theory: Instructional implications of the
interaction between information structures and cognitive architecture. Instructional Science,
32, 1-8.

. Brunken, R., Plass, J. L., & Leutner, D. (2003). Direct measurement of cognitive load in

multimedia learning. Educational Psychologist, 38(1), 53—61.

Shih, J. J., Krusienski, D. J., & Wolpaw, J. R. (2012). Brain-computer interfaces in medicine.
Mayo Clinic Proceedings, 87(3), 268-279.

Lotte, F., et al. (2018). A review of classification algorithms for EEG-based brain—computer
interfaces: A 10 year update. Journal of Neural Engineering, 15(3), 031005.

Dimoka, A, et al. (2012). On the use of neurophysiological tools in is research: Developing a
research agenda for NeurolS. MIS Quarterly, 36(3), 679-702.

Abiri, R., et al. (2019). A comprehensive review of EEG-based brain—computer interface
paradigms. Journal of Neural Engineering, 16(1), 011001.

Chaudhary, U., Birbaumer, N., & Ramos-Murguialday, A. (2016). Brain—computer interfaces
for communication and rehabilitation. Nature Reviews Neurology, 12(9), 513-525.



18

24.

25.

26.

27.

28.

29.

30.

31.

32.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,
45.

46.

47.

N. Beauchemin et al.

Lalor, E. C., et al. (2005). Steady-state VEP-based brain-computer interface control in an
immersive 3D gaming environment. EURASIP Journal on Advances in Signal Processing,
2005(19), 706906.

Ahn, M., et al. (2014). A review of brain-computer interface games and an opinion survey from
researchers, developers and users. Sensors, 14(8), 14601-14633.

van de Laar, B., et al. (2013) Experiencing BCI control in a popular computer game. /[EEE
Transactions on Computational Intelligence and Al in Games, 5(2), 176-184.

Kerous, B., Skola, F.,, & Liarokapis, F. (2018). EEG-based BCI and video games: A progress
report. Virtual Reality, 22(2), 119-135.

Lécuyer, A., etal. (2008). Brain-computer interfaces, virtual reality, and videogames. Computer,
41(10), 66-72.

Labonte-Lemoyne, E., et al. (2018). Dynamic threshold selection for a biocybernetic loop in
an adaptive video game context. Frontiers in Human Neuroscience, 12.

Mashrur, F. R, et al. (2022). BCI-Based Consumers’ choice prediction from EEG signals: An
intelligent neuromarketing framework. Frontiers in Human Neuroscience, 16, 861270.
Bonaci, T., Calo, R., & Chizeck, H. J. (2015). App stores for the brain: privacy and security in
brain-computer interfaces. IEEE Technology and Society Magazine, 34(2), 32-39.
Abdulkader, S. N., Atia, A., & Mostafa, M.-S.M. (2015). Brain computer interfacing:
Applications and challenges. Egyptian Informatics Journal, 16(2), 213-230.

. Lin, C. T,, et al. (2014). Brain computer interface-based smart living environmental auto-

adjustment control system in UPnP home networking. IEEE Systems Journal, 8(2), 363-370.
Kosmyna, N., et al. (2016). Feasibility of BCI control in a realistic smart home environment.
Frontiers in Human Neuroscience, 10.

Tang, J., etal. (2018). Towards BCI-actuated smart wheelchair system. BioMedical Engineering
OnlLine, 17(1), 111.

Carabalona, R., et al. (2012). Light on! Real world evaluation of a P300-based brain—computer
interface (BCI) for environment control in a smart home. Ergonomics, 55(5), 552-563.
Wascher, E., et al. (2023). Neuroergonomics on the go: An evaluation of the potential of mobile
EEG for workplace assessment and design. Human Factors, 65(1), 86—106.

Venthur, B., et al. (2010). Novel applications of BCI technology: Psychophysiological opti-
mization of working conditions in industry. In 2010 IEEE International Conference on Systems,
Man and Cybernetics.

Roy, R. N, etal. (2013). Mental fatigue and working memory load estimation: Interaction and
implications for EEG-based passive BCI. In 2013 35th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC).

Karran, A. J., et al. (2019). Toward a hybrid passive BCI for the modulation of sustained
attention using EEG and fNIRS. Frontiers in Human Neuroscience, 13.

Demazure, T., et al. (2021). Enhancing sustained attention. Business & Information Systems
Engineering, 63(6), 653-668.

Demazure, T., et al. (2019). Sustained attention in a monitoring task: Towards a neuroadaptative
enterprise system interface. In Information systems and neuroscience. Springer International
Publishing.

Knierim, M. T., Zimny, C. & Seitz, J. (2022). Monitoring cognitive load with 3D-printed EEG
headphones.

Krol, L. R., & Zander, T. O. (2017). Passive BCI-based neuroadaptive systems. In GBCIC.
Arico, P, et al. (2018). Passive BCI beyond the lab: Current trends and future directions.
Physiological Measurement, 39(8), 08TR02.

Pope, A. T., Bogart, E. H., & Bartolome, D. S. (1995). Biocybernetic system evaluates indices
of operator engagement in automated task. Biological psychology, 40(1-2), 187-195.
Andreessen, L. M., et al. (2021). Toward neuroadaptive support technologies for improving
digital reading: A passive BCI-based assessment of mental workload imposed by text difficulty
and presentation speed during reading. User Modeling and User-Adapted Interaction, 31(1),
75-104.



RACE: A Real-Time Architecture for Cognitive State Estimation ... 19

48.

49.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

Eldenfria, A., & Al-Samarraie, H. (2019). Towards an online continuous adaptation mechanism
(OCAM) for enhanced engagement: An EEG study. International Journal of Human-Computer
Interaction, 35(20), 1960-1974.

Yuksel, B. F., et al. (2016). Learn piano with BACh: An adaptive learning interface that adjusts
task difficulty based on brain state. In Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems.

Petko, D., Schmid, R., & Cantieni, A. (2020). Pacing in serious games: Exploring the effects of
presentation speed on cognitive load, engagement and learning gains. Simulation & Gaming,
51(2),258-279.

. Najjar, L. J. (1996). Multimedia information and learning. Journal of Educational Multimedia

and Hypermedia, 5(2), 129-150.
O’Byrne, W. 1., & Pytash, K. E. (2015). Hybrid and blended learning: Modifying pedagogy
across path, pace, time, and place. Journal of Adolescent & Adult Literacy, 59(2), 137-140.

. Shemshack, A., & Spector, J. M. (2020). A systematic literature review of personalized learning

terms. Smart Learning Environments, 7(1), 33.

Brocke, J. V., Riedl, R., & Léger, P.-M. (2013). Application strategies for neuroscience in
information systems design science research. Journal of Computer Information Systems, 53(3),
1-13.

. Peffers, K., et al. (2007). A design science research methodology for information systems

research. Journal of Management Information Systems, 24, 45-77.
vom Brocke, J., Hevner, A., & Maedche, A. (2020). Introduction to design science research
(pp- 1-13).

. Hevner, A. R, et al. (2004). Design science in information systems research. MIS Quarterly,

75-105.

. Blankertz, B., et al. (2016). The berlin brain-computer interface: Progress beyond communi-

cation and Control. Frontiers in Neuroscience, 10.

Riopel, M., et al. (2017). Using invariance to model practice, forgetting, and spacing effects.
In EDULEARN17 Proceedings. IATED.

DeLeeuw, K. E., & Mayer, R. E. (2008). A comparison of three measures of cognitive
load: Evidence for separable measures of intrinsic, extraneous, and germane load. Journal
of Educational Psychology, 100(1), 223.

Kulhavy, R. W.(1977). Feedback in written instruction. Review of Educational Research, 47(2),
211-232.

Butler, A. C., Karpicke, J. D., & Roediger, H. L. (2008). Correcting a metacognitive error:
Feedback increases retention of low-confidence correct responses. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 34, 918-928.

Ghafurian, M., Reitter, D., & Ritter, F. E. (2020). Countdown timer speed: A trade-off between
delay duration perception and recall. ACM Transactions on Computer-Human Interaction
(TOCHI), 27(2), 1-25.

Hogervorst, M. A., Brouwer, A. M., & van Erp, J. B. (2014). Combining and comparing
EEQG, peripheral physiology and eye-related measures for the assessment of mental workload.
Frontiers in Neuroscience, 8, 322.

Brouwer, A.-M., et al. (2012). Estimating workload using EEG spectral power and ERPs in
the n-back task. Journal of Neural Engineering, 9(4), 045008.

Wang, S., Gwizdka, J., & Chaovalitwongse, W. A. (2016). Using wireless EEG signals to assess
memory workload in the n-back task. IEEE Transactions on Human-Machine Systems, 46(3),
424-435.

Jansma, J. M., et al. (2000). Specific versus nonspecific brain activity in a parametric N-back
task. Neurolmage, 12(6), 688—-697.

Gregor, S., & Hevner, A. R. (2013). Positioning and presenting design science research for
maximum impact. MIS Quarterly, 37(2), 337-355.

Caplan, B., & Mendoza, J. E. (2011). Edinburgh handedness inventory. In J. S. Kreutzer,
J. DeLuca, & B. Caplan (Eds.), Encyclopedia of clinical neuropsychology (pp. 928-928).
Springer.



20

70.

71.

72.

N. Beauchemin et al.

Hart, S. G., & Staveland, L. E. (1988) Development of NASA-TLX (Task Load Index): Results
of empirical and theoretical research. In Advances in psychology (pp. 139—183). Elsevier.
Brooke, J. (1996). SUS—A quick and dirty usability scale. Usability evaluation in industry,
189(194), 4-7.

Barki, H., Pare, G., & Sicotte, C. (2008). Linking IT implementation and acceptance via
the construct of psychological ownership of information technology. Journal of Information
Technology, 23(4), 269-280.



