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Abstract
This study introduces a novel approach to longitudinal

phase space density tomography in an electron storage ring,
using constraints imposed by the Vlasov-Fokker-Planck
equation. The Vlasov-Fokker-Planck equation provides a
comprehensive description of the evolution of density func-
tions in phase space, accounting for both deterministic and
stochastic processes. Measurements of the turn-by-turn
bunch profile in electron storage rings offer a time-dependent
projection of the phase space. Hence, observing the bunch
profile evolution of charged particles in regimes charac-
terised by rich phase space dynamics presents a challenging
inverse problem for reconstructing phase space densities.

In this work, we present a tomographic method for recon-
structing the longitudinal phase space density of an elec-
tron bunch at the Karlsruhe Research Accelerator (KARA).
This method utilizes simulated data and applies the Vlasov-
Fokker-Planck equation to drive the reconstruction process.

INTRODUCTION
In electron accelerators, understanding longitudinal phase

space density’s crucial role in accelerator performance sets
the stage for the Vlasov-Fokker-Planck equation (VFPE),
which effectively models electron beam density evolution
by merging electron dynamics under electromagnetic fields
with stochastic interactions from the Fokker-Planck equa-
tion.

Solving the VFPE for simulating the bunch longitudinal
phase space evolution helps in understanding instabilities
caused by factors like beam-beam interactions, wakefield
effects, and micro-bunching instabilities. Conversely, phase
space density tomography is the inverse problem which is
mainly used as an diagnostic tool. It involves reconstructing
the distribution of particles in phase space based on mea-
sured data. This approach is critical for understanding the
real dynamics of a beam.

The work of [1] has proved that the longitudinal phase
space density of an electron bunch in synchrotrons can be
reconstructed utilizing a collection of bunch profile mea-
surements from a single-shot electro-optical (EO) sampling
system [2]. The study relies on the progressive rotation
of the phase space during turn-by-turn bunch profile mea-
surements and the simplification of the dynamics by a rigid
rotation assumption. Considering this, tomography of the
phase space density is comparable to a patient rotation in a
static CT scanner [3]. Therefore, out-of-the-box tomography
methods, for example Filter Back Projection (FBP), can be
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used for phase-space reconstruction when the phase space re-
mains constant for at least half of the synchrotron oscillation
period. However, this approach may encounter challenges
when the phase space deforms within each rotation, poten-
tially resulting in significant distortions or inaccuracies in the
reconstructed phase space density from the input sequence
of measurements.

Phase space density tomography including individual par-
ticle dynamics has been developed by [3–8]. The seminal
work of Hancock presented a hybrid tomography method
which incorporates particle tracking to the well know Al-
gebraic Reconstruction Techniques (ART) [9]. Although
phase space density tomography has demonstrated its utility
in proton accelerators, its application in electron acceler-
ators encounters limitations. This is primarily due to the
inadequacy of particle tracking methods to accurately char-
acterize the self-interaction within the electron distribution,
crucial for understanding the dynamics of electron bunches.
This becomes apparent, for example, in low momentum com-
paction operation mode, where micro-bunching instabilities
can be observed. Furthermore, tracking macro particles to
reduce complexity results in uneven spatial representation,
with some regions densely populated and others sparse, lead-
ing to high shot noise, thus affecting the accuracy of density
calculations [10].

The development of longitudinal phase space density to-
mography methods specifically designed for electron ac-
celerators is fundamental to study and control the complex
dynamics of electron bunches, particularly in accelerators
such as fourth generation light sources, where the stability
of the beam is key to achieve brilliant photon beams.

PROBLEM STATEMENT
The phase space reconstruction problem can be ap-

proached as a partial differential equation constrained op-
timization problem as in Eq. 1, where the goal is to min-
imize the error between bunch profile measurements, ̄𝜌𝑛,
and phase space projections, 𝜌(𝑞, 𝑡𝑛). The objective func-
tion is defined by the total distance between measured bunch
profiles, and their respective phase space density projections.

min
𝜓∗

𝑚
∑
𝑛=1

‖𝜌(𝑞, 𝑡𝑛) − ̄𝜌𝑛‖2 + 𝜆𝑅(𝜓)

s.t. 𝜕𝜓
𝜕𝑡 + 𝜕𝐻

𝜕𝑝
𝜕𝜓
𝜕𝑞 − 𝜕𝐻

𝜕𝑞
𝜕𝜓
𝜕𝑝 = 𝛽𝑑

𝜕
𝜕𝑝(𝑝𝜓) + 𝐷𝜕2𝜓

𝜕𝑝2 ,

𝜓(𝑞, 𝑝, 𝑡1) = 𝜓∗,
(1)

where 𝜓 is the phase space density, 𝑚 is the number of mea-
surements, 𝐻 is the Hamiltonian of the system, 𝛽𝑑 and 𝐷
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are the damping and drift parameters, and 𝑞 and 𝑝 are the
canonical coordinates position and momentum, respectively.
The phase space density projection is determined by inte-
grating along the momentum axis. The incorporation of
regularization terms 𝜆𝑅(𝜓), plays a crucial role in mitigat-
ing challenges such as noise in measurement data and the
ill-posed nature of the inverse problem.

The solution of the VFPE gives the temporal evolution of
the density function. This essentially correlates the phase
space density at a given time, 𝜓(𝑞, 𝑝, 𝑡), with the next phase
space 𝜓(𝑞, 𝑝, 𝑡 + Δ𝑡), for a small Δ𝑡. To simplify the algo-
rithm, the minimization aims to determine the initial phase
space density, 𝜓∗, from a sequence of bunch profile mea-
surements.

PHASE SPACE DENSITY TOMOGRAPHY
This research uses the numerical solver Inovesa, a VPFE

solver developed at KIT [11]. This software is based on
the work of Warnock and Ellison [12], which simplifies and
solves the VFPE through operator-splitting into three opera-
tors. The ”rotation” (R) and ”wake potential” (K) operators
are derived from the Vlasov part of the equation through the
application of the Liouville theorem, while the ”damping
and diffusion” (D) operator comes from the Fokker-Planck
terms through numerical differentiation

𝜓(𝑞, 𝑝, 𝑡 + Δ𝑡) ≈ D ∘ R ∘ K(𝜌(𝑡)) ∘ 𝜓(𝑞, 𝑝, 𝑡). (2)

Operators in Eq. 2 may not be linear. The method in this work
linearizes the operators into matrix form using Lagrange
Polynomial interpolation.

Operators 𝑅 and 𝐾 arise from Liouville’s theorem applied
to the Vlasov equation, ensuring density conservation along
particle paths, as shown in Eq. 3 for a discretized phase
space, where 𝑥′ and 𝑦′ are founded by the inverse dynamics
of the particle.

𝜓(𝑥, 𝑦, 𝑡 + Δ𝑡) = 𝜓(𝑥′, 𝑦′, 𝑡). (3)

The bi-cubic Lagrange polynomial interpolation for the 𝑥′

and 𝑦′ is:

𝜓(𝑥, 𝑦, 𝑡 + Δ𝑡) ≈ ∑
𝑘

∑
ℎ

𝜓(𝑥𝑘, 𝑦ℎ, 𝑡)𝐿ℎ(𝑦′)𝐿𝑘(𝑥′), (4)

where 𝜓(𝑥𝑘, 𝑦ℎ, 𝑡) are prior known density values on the
discrete phase space, with 𝑘 and ℎ spanning over four close
nodes on the 𝑥 and 𝑦 axis, respectively. 𝐿𝑘(𝑥′) and 𝐿ℎ(𝑦′)
are the Lagrange polynomials at coordinates set by inverse
dynamics. This bi-cubic interpolation approach allows for
axis-wise interpolation without inter-axis correlation, thus
independent operators per axis.

To allow for matrix operator representation, the dis-
crete phase space is expressed as a vector. The new one-
dimensional coordinate 𝑠 is defined as follows:

𝑠 ∶= 𝑁 × 𝑥 + 𝑦 + 1, (5)

where 𝑥 and 𝑦 are the discrete coordinates within the square
phase space grid, and 𝑁 is the length of its side. The inter-
polation in one axis can be expressed in terms of 𝑠 as:

𝜓(𝑠𝑖, 𝑡 + Δ𝑡) = ∑
𝑗

𝜓(𝑠𝑗, 𝑡)𝐿𝑗(𝑟′
𝑖 ). (6)

Here 𝑟′
𝑖 is the continuous one-dimension coordinate corre-

sponding to the inverse particle dynamic: 𝑥′ or 𝑦′.
Eq. 6 can be expressed as a transition matrix, L, for all

instances of 𝑠. The weights of matrix L depend on the La-
grange polynomials at the interpolated continuous coordi-
nate 𝑟′

𝑖 . Matrix L correspond to the interpolation in one
axis, with 4 nodes points, cubic interpolation, per interpo-
lation (row) of the matrix. Multiplying two matrices for
different coordinates yields a matrix with 16 coefficients,
characteristic of bi-cubic interpolation.

The operator D is calculated by approximating the first and
second derivatives of phase space to momentum, as shown
in Eq. 7, using the derivatives of the Lagrange polynomials
[13].

𝜕𝜓
𝜕𝑡 = 𝛽𝑑

𝜕
𝜕𝑝(𝑝𝜓) + 𝐷𝜕2𝜓

𝜕𝑝2 ,

𝜓(𝑞, 𝑝, 𝑡 + Δ𝑡) = 𝜕𝜓
𝜕𝑡 Δ𝑡 + 𝜓(𝑞, 𝑝, 𝑡).

(7)

The matrix notation for the presented operators over the
phase space is expressed as:

𝜓(𝑠, 𝑡 + Δ𝑡) = L ⋅ 𝜓(𝑠, 𝑡). (8)

The evolution of phase space density is expressed in terms
of the matrix operators as follows:

𝜓(𝑠, 𝑡 + Δ𝑡) = D ⋅ RK ⋅ RD ⋅ K(𝜌(𝑡)) ⋅ 𝜓(𝑠, 𝑡). (9)

The operator R is divided into the drift operator RD and
the RF kick operator RK for axis-specific application. The
transformation M for brief intervals Δ𝑡 is defined as:

M(𝜌(𝑡)) = D ⋅ RK ⋅ RD ⋅ K(𝜌(𝑡)), (10)

furthermore

𝜓(𝑠, 𝑡 + Δ𝑡) = M(𝜌(𝑡)) ⋅ 𝜓(𝑠, 𝑡). (11)

Note that although the operator matrices start sparse, matrix
M becomes densely populated over iterations. The transfer
matrices D, RK, and RD stay constant, but the wake field
transfer matrix changes with the bunch profile at a time 𝑡.

The bunch profile corresponds to a projection to the q-axis
of the phase space density. At time 𝑡 + Δ𝑡 the relation is as
follows:

𝜌(𝑞, 𝑡 + Δ𝑡) = ∫ 𝜓(𝑞, 𝑝, 𝑡 + Δ𝑡)d𝑝. (12)

Equation 12 can be expressed in discrete terms utilizing a
projection matrix, W, as follows:

𝜌(𝑥, 𝑡 + Δ𝑡) = W ⋅ 𝜓(𝑠, 𝑡 + Δ𝑡). (13)
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(a) (b) (c) (d)

Figure 1: (a) Target phase space. (b)Method: IRconstr_ls, m: 164, RMS: 3.8e−04. (c) Method: IRnnfcgls, m: 64 first
sequence, RMS:3.1e−03. (d) Method: IRnnfcgls, m: 64 random from half synchrotron period, RMS: 5.1e−04.

Subsequently, by substituting Eq. 11 into Eq. 13, the latter
can be expressed as:

𝜌(𝑥, 𝑡 + Δ𝑡) = W ⋅ M(𝜌(𝑡)) ⋅ 𝜓(𝑠, 𝑡). (14)

Equation 14 not only correlates a specific phase space with
the next bunch profile but also links it to future profiles. With
𝑚 bunch profile measurements, the relationship to the initial
phase space density is as follows:

W ⋅ 𝜓1 = ̄𝜌1

W ⋅ M( ̄𝜌1) ⋅ 𝜓1 = ̄𝜌2

W ⋅ M( ̄𝜌2) ⋅ M( ̄𝜌1) ⋅ 𝜓1 = ̄𝜌3

...
W ⋅ M( ̄𝜌𝑚−1) ⋯ M( ̄𝜌1) ⋅ 𝜓1 = ̄𝜌𝑚

(15)

In order to improve readability the variables in 𝜓 and ̄𝜌 have
been omitted and substituted only by a sub-index denoting
time. The first equation links the initial bunch profile mea-
sured ̄𝜌1 and its phase space density 𝜓1 via the projection
matrix W. The next equation ties the second bunch pro-
file ̄𝜌2 to 𝜓1, using both the transfer matrix M( ̄𝜌1) and W.
Subsequent equations have a comparable structure, allowing
Eq. 15 to be represented in condensed matrix form as:

̃W ⋅ 𝜓 = 𝜌, (16)

where ̃W is the dynamic projection matrix constructed along-
side the arrival of bunch profile measurements, 𝜓 denotes
the target phase space density as a vector, and 𝜌 represents
the vector-form bunch profile measurements.

Employing the methodology delineated in this section,
the inverse challenge of reconstructing phase space density,
as shown in Eq. 1, can be reformulated as follows:

min𝜓 ‖ ̃W𝜓 − 𝜌‖2 + 𝜆𝑅(𝜓). (17)

Equation 17 presents a classical tomography problem, ad-
dressed with established inverse algorithms.

RESULTS
The tomography problem of Eq. 17 was solved using

Inovesa-simulated bunch profiles, with a dataset of 164 mea-
surements spanning half a synchrotron period. To solve

Eq. 17, we employed algorithms from the ”IR Tools” Mat-
lab library [14], testing 15 algorithms and different subset
of sampling measurements, chosen either sequentially or
randomly from the 164 bunch profiles.

RMS errors were determined through a comparative anal-
ysis between the simulated phase space density, Fig. 1(a),
and outcomes derived from every algorithmic combination,
utilizing simulated bunch profiles as inputs.

The lowest error was achieved with IRconstr_ls
(Fig. 1(b), a method using 164 bunch profiles with projected-
restarted constraints optimization method [14]. For trials
with a subset of 64 bunch profiles, IRnnfcgls proved most
effective, employing a flexible CGLS (Krylov subspaces)
approach for non-negative constraints [15]. Randomly se-
lected measurement subsets outperformed sequential selec-
tions, as they cover a 180-degree rotation, whereas sequential
selections sample less than 90 degrees. These results are
illustrated in Figures 1(c) and 1(d). It is important to notice
that IRnnfcgls is three times faster than IRconstr_ls and
thirty times faster that IRart (ART method), consistently
across all scenarios.

CONCLUSION
The algorithm introduced in this study demonstrates re-

markable accuracy and adaptability for reconstructing longi-
tudinal phase space density. Future endeavors may apply this
algorithm to empirical data collected through the electro-
optical system at KARA.

A parallel computing-based efficient implementation is
planned to expedite the construction of the dynamic projec-
tion matrix, 𝑊̂, recognized as the algorithm’s most compu-
tationally demanding component.
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