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Abstract
This paper addresses the automation of particle accelera-

tor control through Reinforcement Learning (RL). It high-
lights the potential to increase reliable performance, espe-
cially in light of new diagnostic tools and the increasingly
complex variable schedules of certain accelerators. We fo-
cus on the physics simulation of the AWAKE electron line,
an ideal platform for performing in-depth studies that allow
a clear distinction between the problem and the performance
of different algorithmic approaches for accurate analysis.
The main challenges are the lack of realistic simulations and
partially observable environments. We show how effective
results can be achieved through meta-reinforcement learn-
ing, where an agent is trained to quickly adapt to specific
real-world scenarios based on prior training in a simulated
environment with variable unknowns. When suitable simu-
lations are lacking or too costly, a model-based method using
Gaussian processes is used for direct training in a few shots
only. This work opens new avenues for the implementation
of control automation in particle accelerators, significantly
increasing their efficiency and adaptability.

INTRODUCTION
Reinforcement learning presents significant potential for

addressing control issues that surpass the capabilities of
classical control theory. As a data-driven methodology, RL
acquires knowledge through direct interaction with the sys-
tems it regulates. Despite its impressive real-world achieve-
ments, such as piloting drones with superior skill compared
to human operators [1], RL faces several challenges that com-
plicate its application in real-world scenarios. First, these
algorithms typically require substantial amounts of data to
achieve reliable performance. Secondly, there is an inherent
trade-off between training stability and data efficiency, mak-
ing it difficult to optimise both simultaneously. For particle
accelerator control, leveraging the potential to enhance re-
liable performance is crucial, particularly with the advent
of new diagnostic tools and increasingly complex variable
schedules of some accelerators. Standard off-the-shelf al-
gorithms may not suffice, necessitating the development of
new strategies. We explore two innovative approaches to ad-
dress some of these challenges: Meta-Reinforcement Learn-
ing (Meta-RL) and Model-based Reinforcement Learning
∗ simon.hirlaender@plus.ac.at

Simulation-based RL Model-based RL

How to make RL work 
on accelerator control?

Adapt to real world

Policy to reach target

Exception 

Sufficient Data

Direct model-free 
RL

Find good hyper-parameters

Exception 

High fidelity model

Figure 1: Overview of different approaches to train an RL
algorithm in accelerator controls.

(MBRL). These methods are evaluated using the AWAKE
electron steering environment, which serves as an excellent
benchmark due to its simplicity and non-trivial control task,
yet still corresponds to a real, measurable system. All dis-
cussed approaches have been successfully implemented and
tested in experiments on the actual machine.

METHODICAL APPROACHES

Figure 1 illustrates various applications of reinforcement
learning. It highlights that, when the system is accessible
and adequate data is obtainable from the real system, direct
Model-free RL (MFRL) can be employed using off-the-shelf
algorithms such as on-policy trust region policy optimiza-
tion [2] or sample-efficient off-policy algorithms like soft ac-
tor critic [3]. This is only possible in rare cases [4]. Simula-
tions can be useful for determining optimal hyperparameters
for the RL algorithms and for making decisions regarding the
design of the function approximator before applying direct
MFRL on the machine as done in [5, 6]. In some instances,
simulations are both fast and precise enough to train the
agent entirely in a simulated environment before real-world
application [7]. However, often simulations do not perfectly
model the real-world scenarios, presenting challenges in di-
rectly applying or retraining the agent on the actual machine.
In such situations, Meta-RL is beneficial as it integrates prior
knowledge from the simulations, ensuring stable adaptation
to the real machine in just a few steps. In scenarios lacking
even a simulation, MBRL can be advantageous. MBRL
is noted for its extreme sample efficiency and the poten-
tial to solve tasks in just a few iterations. Nonetheless, this
approach places significant computational demands on mak-
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ing accurate inferences and performing online optimization,
which may be a limiting factor.

Meta Reinforcement Learning
Meta-RL advances machine learning by developing al-

gorithms that are adept at quickly adapting to new tasks,
essentially embodying the concept of “learning to learn” in
RL. Among the notable techniques is Model Agnostic Meta-
Learning (MAML), which seeks an optimal initial model
setting that can be rapidly adjusted to a diverse array of tasks
with minimal modifications, leveraging gradient-based op-
timization to efficiently identify parameters conducive to
quick adaptability [8]. Our focus on MAML stems from its
broad utility and effectiveness across various tasks. Within
this framework, RL tasks are treated as Markov Decision
Processs (MDPs), with variations in tasks reflected through
differences in initial states, dynamics, and rewards. The
versatility of MAML permits customization to diverse prob-
lem types, optimizing learning by fine-tuning initial model
parameters for enhanced performance and adaptability over
conventional pre-training methods. Our implementation of
MAML utilises an action-dependent baseline and a trust
region method, which boost the efficiency and stability of
the learning process [9].

Model-based Reinforcement Learning
Model-based Reinforcement Learning (MBRL) contrasts

with model-free approaches by constructing an internal
model of the world, which it uses to simulate interactions.
This method enhances sample efficiency by reducing the
need for direct system interaction. The process involves
gathering data to refine the model and leveraging the model
to improve the control policy. However, developing an effec-
tive policy can be challenging if the model is under-trained.
The GP-MPC algorithm [10] applied in the AWAKE project,
as described in [11] and [12], employs Gaussian Processs
(GPs) to model system dynamics and quantify epistemic
uncertainty—uncertainty due to limited data—thereby en-
hancing the model’s robustness. The Model Predictive Con-
trol (MPC) aspect optimizes future actions based on these
predictions, adapting to changes in the environment. This
integration results in a highly sample-efficient algorithm,
beneficial in scenarios where data is expensive or difficult
to collect.

PROBLEM DEFINITION
The AWAKE electron line is an excellent environment

for testing various algorithms [5, 12–15]. Initial RL agents
were developed for trajectory optimization on the AWAKE
electron line, aiming to match the efficiency of traditional
Singular Value Decomposition (SVD) algorithms [16] used
in control rooms. These agents guide the beam along a
specified path to achieve critical parameters at the line’s end
for further processes. The electron production at AWAKE
starts with a 5 MV RF gun that boosts electrons to 18 MeV,
traveling through a 12 m beam line to the plasma cell. This

Position

Target trajectory

Current trajectoryΔsi

Correctors (magnets)

Figure 2: Visualization of a beam steering problem in the
AWAKE electron line. Correctors are marked in green and
are succeeded by BPMs, depicted in violet. The state vector
𝑠, consisting of components Δ𝑠𝑖 for each BPM indexed by 𝑖,
represents the distance to the target. The measured trajectory
is shown as a dashed blue line, while the target trajectory is
displayed in red.

path includes a vertical shift of 1 meter and a 60-degree bend
to meet the proton beam at the plasma cell entrance. Beam
trajectory is adjusted using 10 horizontal and 10 vertical
steering dipoles, monitored by 10 Beam Position Monitors
(BPMs) in each plane.

Defining the Markov Decision Process
The electron transfer line and its various components are

modeled using MAD-X [17], which simulates the trans-
fer functions from field to current for different magnets at
normalized strengths. Steering dipoles typically adjust tra-
jectories by about 1 mrad per corrector. Using MAD-X, the
response matrix, which shows BPM changes in relation to
corrector adjustments, is computed. For the RL agent to
operate effectively in the simulated environment, the obser-
vations 𝑠 (BPM deviations from a reference trajectory, as
depicted in Fig. 2) and actions 𝑎 (adjustments to the dipole
currents) need to align with the units and normalization of
the actual equipment settings. The reward metric is the neg-
ative root mean square (RMS) of deviations from the target
trajectory, defined as 𝑟 ∝ −||𝑠||, as shown in Fig. 2. To in-
crease the challenge of the control task, initial trajectories
are purposefully set far from desired paths, and action am-
plitudes are limited. This approach ensures that resolving an
episode is not a simple one-step process but requires a nont-
trivial control strategy. In instances where trajectory devia-
tions become excessively large ||𝑠||max >= 10 mm, resulting
in contact with the beam pipe, which possesses a diameter
of 20 mm, the episode undergoes a reset. Subsequently, the
point of impact on the wall and all ensuing measurements
are assigned a value of 10 mm. This assignment is justified
by the fact that the beam is effectively considered lost beyond
the point of impact.

Distribution of MDP in the AWAKE Environment
To assess different scenarios of realisations of the envi-

ronment we utilize to train agents across a diverse range of
MDPs. We uniformly vary the quadrupole settings in the
AWAKE setup by ±25% from standard values to capture
possible variability and uncertainty of model. Figure 3 dis-
plays the diversity in the linear response matrices used in our
experiments, with the “original task” serving as a baseline,
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situated centrally in the distribution and based on actual mea-
surements. We also present five varied MDP realizations to
illustrate the scope of the task distribution, which remain
fixed to assess the learning progress and the effectiveness
of the algorithms under conditions that mimic real-world
scenarios.
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Figure 3: The response matrices of the different test tasks
as variations of the real settings. Original task corresponds
to measured values of AWAKE.

EXPERIMENTS
To evaluate the adaptability of the MAML and MBRL

frameworks to varying MDPs, these approaches were evalu-
ates on the previously mentioned six test tasks. In all plots
average values over the test tasks are shown in solid lines
with shaded areas indicating standard deviations. The Meta-
RL training involved developing a meta-policy that could
adapt to a broad range of system changes, followed by an
adaptation phase as outlined previously. During testing, a
policy gradient method fine-tuned the meta-policy, targeting
the specific dynamics. Three scenarios were evaluated to
determine how different starting conditions influence agent
performance and adaptability, with results averaged across
the six test tasks as shown in Fig. 4.
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Figure 4: A comparative evaluation of adaptation strategies,
underscoring the efficacy and efficiency of the meta-training
approach.

1. “Classical training with only central task as prior in-
formation”: Begins with a pre-trained agent optimized
for the central task.

2. “Classical training without prior information”:
Starts with randomly selected weights, serving as a
baseline.

3. “Meta trained on the simulation”: Uses weights re-
fined through meta-training for enhanced adaptability.

The results clearly demonstrate the advantages of MAML,
as it rapidly and stably adapts to various scenarios in just

a few steps. The MBRL approach was tested on the six
tasks with no prior training, taking only ten random steps to
probe the system. Results show rapid learning of the control
problem, as depicted in Fig. 5, which illustrates episode
and cumulative lengths (top plot), and total rewards per
episode (bottom plot), demonstrating the GP-MPC’s ability
to optimize its strategy across episodes for enhanced stability
and efficiency in trajectory control within 20 steps.
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Figure 5: Evaluation of the MBRL approach without any
prior training.

CONCLUSION AND OUTLOOK
In conclusion, this study has explored the significant po-

tential of reinforcement learning for controlling particle ac-
celerators, with a particular focus on the AWAKE project.
Through our investigations, we have demonstrated that Meta-
RL and MBRL approaches, especially those leveraging GP-
MPC, provide frameworks for enhancing adaptability and
efficiency in control automation. Our experiments confirm
that Meta-RL facilitates rapid adaptation to new and varying
conditions, markedly improving upon traditional methods
that rely on extensive pre-training on a central task. Mean-
while, the GP-MPC algorithm stands out for its extreme
sample efficiency, enabling effective control with minimal
interaction, which is ideal in environments where data acqui-
sition is challenging. Looking ahead, further improvements
could include using residual models, which enhance adapt-
ability by adjusting from simulated environments to real-
world scenarios and develop more robustness approaches.
Ultimately, the continued development and application of
these advanced RL techniques will play a crucial role in the
future of autonomous control systems for particle accelera-
tors and similar complex systems.
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