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ABSTRACT
The analyses of highly configurable systems, as applied in soft-

ware or automotive domains, yield hard problems due to the ex-

ponentially increasing number of possible product configurations.

Current research identified that such combinatorial optimization

problems, e.g. configuration selection and prioritization, are ideal

targets for expected exponential quantum speedups. However, em-

pirical evidence about the applicability of quantum computing to

these problems is still missing. In this paper, we investigate how

the constraint satisfaction and optimization problems of configura-

tion selection and prioritization can be addressed using quantum

computing. We propose a method to transform the configuration

selection and prioritization problems encoded in attributed feature

models into a quantum mechanical formulation suitable for opti-

mization problems. We provide a Python library to automatically

perform this transformation and apply the Quantum Approximate

Optimization Algorithm (QAOA), such that configuration selec-

tion and prioritization are solved with quantum computers. Our

approach is evaluated regarding feasibility, solution quality, and

scalability. We show that QAOA obtains good results regarding

configuration selection, but for configuration prioritization, the

approach needs further improvement.

CCS CONCEPTS
• Software and its engineering → Software configuration
management and version control systems; • Hardware →
Quantum computation.
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1 INTRODUCTION
Quantum algorithms with proven theoretical speedups exist, such

as a quadratic speedup with Grover’s algorithm [10] and an expo-

nential speedup with Shor’s algorithm [18]. However, current quan-

tum computers in the Noisy Intermediate-Scale Quantum (NISQ)

era face challenges regarding their scalability. Nevertheless, there

exist hybrid optimization algorithms that split the workload be-

tween classical and quantum machines, which can be applied even

in the NISQ era. Current research on the application of quantum al-

gorithms aims to achieve quantum readiness, so that once quantum

hardware matures, its benefits can directly be leveraged.

The analyses of highly configurable systems, as applied in soft-

ware or automotive domains, may be improved using quantum

computing [6]. Problems in these domains are hard to solve due to

the exponentially increasing number of possible product configura-

tions (configuration space explosion). Eichhorn et al. [6] gives an

overview of analyses for configurable systems thatmay be improved

using quantum computing to identify potentials and challenges.

They identified that Boolean satisfiability (SAT) and ILP-based fea-

ture model analysis could potentially be sped up using quantum

algorithms like Grover and the Quantum Approximate Optimiza-

tion Algorithm (QAOA) [7]. However, empirical evidence about

the applicability of quantum computing to these problems is still

missing. Two concrete problems of configuration selection and

prioritization are constraint satisfaction (SAT) and optimization

problems. These problems are promising candidates for hybrid

quantum-classical optimization as they are classically addressed

using approximation algorithms.

In this paper, we investigate if and how the constraint satisfaction

and optimization problems of configuration selection and prioriti-

zation can be addressed using quantum computing. We contribute

a method to transform the problems encoded in attributed feature

models into a quantum mechanical formulation suitable for opti-

mization problems. We provide a Python library to automatically

perform this transformation and execute the Quantum Approx-

imate Optimization Algorithm (QAOA), such that configuration

selection and prioritization are solved with quantum computers. We

evaluate whether QAOA is suitable for these problems (feasibility),

what quality of results are obtained for small problem instances

(solution quality), and how the quantum hardware requirements

scale with problem instances (scalability). We show that QAOA

obtains good results regarding configuration selection, but for con-

figuration prioritization, the approach needs further improvement.
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Figure 1: Circuit representation of the QAOA classical and quantum routine used in this work. The quantum circuit is
parameterized by two parameter vectors ®𝛽 = 𝛽1, ..., 𝛽𝑝 and ®𝛾 = 𝛾1, ..., 𝛾𝑝 , where 𝑝 denotes the number of layers of QAOA. The
operator 𝑈𝐶 is constructed for each problem instance according to the cost function of the optimization problem 𝐶 ( ®𝑥).

2 BACKGROUND
We introduce relevant quantum computing background and refer

the interested reader to the book by Nielsen and Chuang [15].

2.1 Quantum Computing
Quantum Computing utilizes quantum mechanical effects for com-

putation. In contrast to classical computers, whose basic unit of

computation is a bit in one of the two states 0 and 1, the basic unit

of quantum computation is a qubit. A qubit can be in a superposi-

tion of two orthonormal basis states, e.g., the computational basis

states |0⟩ and |1⟩: |𝜓 ⟩ = 𝑎 |0⟩ + 𝑏 |1⟩, where |𝜓 ⟩ denotes the overall
quantum state of the qubit. The factors 𝑎, 𝑏 ∈ C are the probability

amplitudes and the equality |𝑎 |2 + |𝑏 |2 = 1 holds. Measuring a qubit

is a destructive operation that collapses the qubit’s quantum state

into a classical bit with the probability of |𝑎 |2 to 0 and |𝑏 |2 to 1.

Reversible unitary operations 𝑈 can be applied to qubits to change

their state, these are also referred to as gates. Commonly used single

qubit gates relevant for this work are the Hadamard gate 𝐻 , and

the parameterized rotation gates 𝑅𝑥 (𝜃 ) and 𝑅𝑧 (𝜃 ). The Hadamard

gate 𝐻 is referred to as the superposition gate, as it puts a qubit

in state |0⟩ into the equal superposition state |+⟩ = 1√
2

|0⟩ + 1√
2

|1⟩,
and a qubit in state |1⟩ to state |−⟩ = 1√

2

|0⟩ − 1√
2

|1⟩ respectively.
The rotation gates 𝑅𝑥 (𝜃 ) and 𝑅𝑧 (𝜃 ) perform a rotation of 𝜃 around

the 𝑥 and 𝑧-axis on the Bloch sphere respectively. Quantum gates

can also be applied to multiple qubits and common multi-qubit

gates are controlled gates. Controlled gates are often used to in-

troduce entanglement between qubits, as they apply an operation

on a target qubit iff one or multiple control qubits are in |1⟩. E.g.,
multi-controlled 𝑅𝑧 gates may apply 𝑅𝑧 on the target qubit depen-

dent on control qubits. The Ising spin model originally describes

ferromagnetism using a polynomial function of 𝑁 spins 𝑠𝑖 that can

be in the states +1 or −1. The Ising Hamiltonian computing the

energy of a spin configuration 𝑠1, ..., 𝑠𝑁 is given by Lucas [14]:

𝐻 (𝑠1, ..., 𝑠𝑁 ) = −
∑︁
𝑖< 𝑗

𝐽𝑖 𝑗𝑠𝑖𝑠 𝑗 −
𝑁∑︁
𝑖=1

ℎ𝑖𝑠𝑖 ,

where the coefficients 𝐽𝑖 𝑗 and field ℎ𝑖 are real numbers. A quantum

version of this Hamiltonian can be obtained by using Pauli-Z matri-

ces 𝜎𝑧
𝑖
for the spins 𝑠𝑖 [14]. These Ising Hamiltonians will be used

as Cost Hamiltonians in QAOA.

2.2 Quantum Approximate Optimization
Algorithm (QAOA)

The Quantum Approximate Optimization Algorithm (QAOA) [7]

is a prominent NISQ algorithm that splits the workload between

a classical and a quantum computer, which results in shorter, less

error-prone quantum circuits. The quantum computer computes a

task encoded into a parameterized quantum circuit, while on the

classical machine, the results are evaluated to adjust the param-

eters of the circuit using a classical optimizer. QAOA is a hybrid

approximation algorithm tailored to solve combinatorial optimiza-

tion problems. Since its introduction, many variants of QAOA have

emerged, on which a recent review by Blekos et al. [2] gives an

overview. Fig. 1 depicts the QAOA quantum and classical routine

used in this work. The overall goal is to find an optimal bitstring ®𝑥
according to the cost function 𝐶 ( ®𝑥), which is given by the specific

problem.

In each iteration of QAOAalgorithm, the expectation value of

observables ®𝑥 is determined by executing the quantum circuit mul-

tiple times and evaluating the cost of returned solutions using𝐶 ( ®𝑥).
Then a classical optimizer tries to select better parameters of the

circuit for the next iteration. This is repeated until convergence or

until another stop criterion is met.

The QAOA quantum circuit is parameterized by two parameter

vectors
®𝛽 = 𝛽1, ..., 𝛽𝑝 and ®𝛾 = 𝛾1, ..., 𝛾𝑝 containing angles 𝛽 and 𝛾

for each layer 𝑝 of the circuit. Each circuit is initialized in a uniform

superposition state using 𝐻 gates on each qubit. Then 𝑝 layers of

phase separating andmixing operators follow. The phase separating

operators𝑈𝐶 encode the cost function 𝐶 ( ®𝑥) and are parameterized

by ®𝛾 . On the circuit level, we use multi-controlled 𝑅𝑧 gates for this

problem-instance-specific encoding in 𝑈𝐶 . Mixing operators 𝑈𝑀

change the amplitudes of the solutions and are parameterized by

®𝛽 . For this work, we use the original implementation of mixing

22
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Figure 2: Example feature model representing configuration
options of a car in the feature diagram notation with attrib-
uted feature costs.

operators using 𝑅𝑥 gates on each qubit. Using 𝑅𝑧 and 𝑅𝑥 allows for

arbitrary rotations around the Bloch sphere, while the controlled

gates introduce entanglement. Repeated measurement returns the

expectation value for the circuit with current parameters. By eval-

uating the cost function 𝐶 ( ®𝑥), the classical optimizer can make a

selection for the parameters of the next iteration.

3 CONFIGURATION PROBLEMS
Analyzing highly configurable systems yields interesting problems

due to the sheer amount of possible configurations. Each set of se-

lected (and not selected) features represents a unique configuration

of the system. Configurations are often represented in a graphical

notation, a so-called feature model [12].

For this work, we use car configurations as our running example,

which is depicted as a feature model in Fig. 2. All children of the ab-

stract feature car are connected by an and-group. So all mandatory

children body, engine and gear have to be selected in every valid

configuration, but the selection of the features keyless_entry and

power_locks is optional. The or-group denotes that at least one of

the child features has to be selected (logical OR), e.g., the engine
can either be selected as electric, gas or hybrid (electric and gas). If
the children in a group are exclusive (logical XOR), e.g., a gear can
either be manual or automatic, then the alternative group is used.

Finally, cross-tree constraints in the form of a propositional for-

mula can be added below the diagram, e.g., selecting keyless_entry
implies that also power_locks have to be selected.

The feature model encodes constraints describing which configu-

rations are valid. These constraints can be translated into a Boolean

formula in Conjunctive Normal Form (CNF). For example, given the

Boolean formula (𝑥1 ∨ 𝑥2) ∧ 𝑥3 in CNF with the features 𝑥1, 𝑥2, 𝑥3,

then the bitstrings "101", "011" and "111" encode valid assignments

or valid configurations respectively, in which a 1 denotes a selected

and 0 a deselected feature. To obtain a minimal Boolean formula

in CNF, we can omit features that always have to be selected (1)

for a configuration to be valid: the root feature (e.g., car) and all

mandatory child features that can be reached from the root (e.g.,

body, engine and gear), which can be identified by traversing the

feature model. Such a minimal Boolean formula in CNF for the

example is the following:

(𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 ∨ 𝑔𝑎𝑠) ∧ (𝑚𝑎𝑛𝑢𝑎𝑙 ∨ 𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐)
∧ (¬𝑚𝑎𝑛𝑢𝑎𝑙 ∨ ¬𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐) ∧ (¬𝑘𝑒𝑦𝑙𝑒𝑠𝑠_𝑒𝑛𝑡𝑟𝑦 ∨ 𝑝𝑜𝑤𝑒𝑟_𝑙𝑜𝑐𝑘𝑠)

From the 2
6
general possible product configurations over the 6

features, only 18 configurations are valid. Additionally, a variability

model with 𝑛 features 𝑥1, ..., 𝑥𝑛 can assign each feature with at-

tributes 𝑎1, ..., 𝑎𝑛 (e.g., annotate each feature with a corresponding

cost 𝑐1, ..., 𝑐𝑛). For our example, the cost associated with each fea-

ture is depicted in Fig. 2. Such variability models can be represented

by so-called attributed feature models [19].

In this work, we consider two Constraint Satisfaction and Opti-

mization Problems (CSOPs) regarding the choice of configurations

of a highly configurable system; configuration selection and con-

figuration prioritization.

Problem 1: Configuration selection

Given 𝐹𝑀 attributed feature model is a set of 𝑛 ∈ N features

𝐹𝑀 = {𝑥1, ..., 𝑥𝑛} and each feature 𝑥𝑖 contains an

attribute 𝑎𝑖 with 𝑖 ∈ [1, 𝑛]
𝑓 𝑐 ⊆ 𝐹𝑀 a configuration is a set of selected features

𝐶 (𝑓 𝑐): 𝑓 𝑐 ↦→ 𝑟 ∈ R cost function calculating the cost 𝑟

of a configuration 𝑓 𝑐 over the attributes 𝑎 𝑗 of

features {𝑥 𝑗 |𝑥 𝑗 ∈ 𝑓 𝑐}, 𝑗 ≤ 𝑛

Goal Find a valid configuration according to 𝐹𝑀 that is optimal

regarding 𝐶 (𝑓 𝑐) with 𝑓 𝑐 ∈ 𝐹𝐶 , where 𝐹𝐶 is the set all

possible configurations.

E.g., using min𝐶 (𝑥) =
∑
𝑥 𝑐𝑖𝑥𝑖 to find the configuration with

minimal costs. For our example, this would be the configuration

"011000" with only the features 𝑚𝑎𝑛𝑢𝑎𝑙 and 𝑔𝑎𝑠 selected for an

overall cost of 20 + 25 = 45.

Problem 2: Configuration prioritization

Given 𝐹𝑀 , 𝑓 𝑐 , 𝐶 (𝑓 𝑐) from Problem 1

𝑚 ∈ N number of searched configurations

Goal Find the optimal sequence of 𝑚 valid configurations

[𝑓 𝑐0, ..., 𝑓 𝑐𝑚] according to 𝐹𝑀 , in which configurations

are sorted by optimality in accordance with 𝐶 (𝑓 𝑐):
𝐶 (𝑓 𝑐𝑖 ) ≤ 𝐶 (𝑓 𝑐 𝑗 ), 𝑖 < 𝑗, and 𝑖, 𝑗 ∈ [0,𝑚].

E.g., for finding the𝑚 = 3 lowest cost configurations, the desired

solution for the running example would be the following sequence:

("011000", "011001", "101000"). Configurations in the sequence are

ordered ascending by cost, so the first entry is again the minimal

configuration configuration "011000". The second best configuration

"011001" has an additional feature 𝑝𝑜𝑤𝑒𝑟_𝑙𝑜𝑐𝑘𝑠 selected and a cost

of 55 Also with a cost of 55 the third best configuration "101000"

has the features𝑚𝑎𝑛𝑢𝑎𝑙 and 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 selected.

Both these problems are difficult to solve classically due to the

number of possible product configurations, which grows exponen-

tially with the number of features. A survey on classical solutions

for product configuration [16] showed that evolutionary algorithms

are most promising, even though the satisfaction of constraints can-

not be guaranteed. As the best classical algorithmic solutions rely on

approximation, this highlights the need to investigate approaches

to address these problems with quantum computing to achieve

quantum readiness.
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Figure 3: Transformation steps to translate an attributed feature model into a quantum mechanical formulation for QAOA.

4 QUANTUM SOLUTION FOR SELECTION
AND PRIORITIZATION

To solve configuration selection and prioritization using quantum

computing, we propose the following method. The method trans-

forms a problem instance (an attributed feature model) into a quan-

tum mechanical formulation for optimization problems - the Ising

spin model. This problem formulation can then be used in QAOA

as the phase separating operator𝑈𝐶 to run on a quantum computer.

The proposed transformation process is divided into several trans-

formation steps depicted in Fig 3. In general, we split our CSOP

into the constraint satisfaction/validity part encoded in the feature

model, and the optimization part encoded by the cost function. As

an intermediate representation, we use unconstrained binary opti-

mization problems, which are equivalent to Ising Hamiltonians [14].

We will now explain our method step-by-step.

4.1 Configuration Validity
The feature model encoding the validity of configurations is trans-

lated into a Boolean formula in CNF (1). Because this CNF repre-

sentation can contain non-quadratic terms, it is translated into the

form of a Polynomial Unconstrained Binary Optimization prob-

lem (PUBO) (2) - also called Higher-Order Unconstrained Binary

Optimization problem (HUBO / HOBO) in the literature. This trans-

formation can be realized directly with a generalization of the

quadratic penalties described by Glover et al. [9] for the 2-SAT

problem. One can transform an arbitrary clause formula in CNF

(𝑥𝑖 ∨ · · · ∨ 𝑥 𝑗 ∨ ¬𝑥𝑘 ∨ · · · ∨ ¬𝑥𝑙 ) into the clause penalty term

(1 − 𝑥𝑖 ) . . . (1 − 𝑥 𝑗 ) (𝑥𝑘 ) . . . (𝑥𝑙 ). This term evaluates to 1 iff the

clause is unsatisfied, which is the case if all negated features are

selected and non-negated features are not selected, otherwise, it

evaluates to 0. Computing these clause penalties for each clause and

adding them, results in a penalty function 𝑦 ( ®𝑥) that calculates the
overall penalties for the whole Boolean formula given a bitstring ®𝑥 .
Applied to the running example, this yields:

𝑦 ( ®𝑥) = (1 − 𝑥1) (1 − 𝑥2) + (𝑥3) (𝑥4) + (1 − 𝑥3) (1 − 𝑥4) + (𝑥5) (1 − 𝑥6)
= 2 − 𝑥1 − 𝑥2 − 𝑥3 − 𝑥4 + 𝑥5 + 𝑥1𝑥2 + 2𝑥3𝑥4 − 𝑥5𝑥6

The function 𝑦 ( ®𝑥) calculates the number of unsatisfied clauses. In

other words, 𝑦 = 0 indicates that all clauses are satisfied, which

is desired for this problem, e.g. for ®𝑥 ="011000". Our example is a

special case because it contains only quadratic terms, so it is also a

Quadratic Unconstrained Binary Optimization problem (QUBO).

A PUBO can be transformed into a Hamiltonian in the Higher-

order Ising spin model, and a QUBO into a Hamiltonian in the Ising

spin model respectively. For this, the following rules have to be

applied [21]:

• Rewrite variables 𝑥𝑖 to (1 − 𝑧𝑖 )/2, where the new variables

𝑧𝑖 ∈ −1, 1 instead of 𝑥𝑖 ∈ 0, 1.

• Replace occurrences of 𝑧𝑖 with Pauli operator 𝜎𝑧
𝑖
.

The PUBO encoding the feature model constraints can be trans-

formed into a Validity Hamiltonian 𝐻𝑣 in the Higher-order Ising

spin model (3a). For the running example, this results in:

𝑦 (®𝑧) = 2 − 1 − 𝑧1

2

− 1 − 𝑧2

2

− 1 − 𝑧3

2

− 1 − 𝑧4

2
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2
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2
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2
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2
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2
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2
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2
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1

4

+ 𝑧2
1

4
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1
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1
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1
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4

and
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1

1
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𝜎𝑧
4

1
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− 𝜎𝑧
5
𝜎𝑧
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4

Alternatively, given a formula with non-quadratic terms, quadra-

tization [5] can be conducted, resulting in a QUBO (3b) which

then can be transformed into 𝐻𝑣 (3c). The selection of the route in

Fig. 3 is a tradeoff between circuit depth and width, as the PUBO

formulation (route 3a) results in deeper circuits, while the QUBO

formulation (route 3b and 3c) requires additional ancilla qubits due

to introduced auxiliary variables [4].

4.2 Configuration Optimality
The optimality of configurations is encoded in a cost function using

feature attributes. For simplicity, we use a cost function search-

ing for minimal feature costs as in Fig. 2, but an arbitrary cost

function formulated as a minimization problem - even with multi-

ple attributes for each feature - could be modeled similarly. As in

this case, a feature attribute is directly associated with a feature,

these can modeled as min𝑘 ( ®𝑥) = ∑
𝑥 𝑐𝑖𝑥𝑖 (4), where 𝑘 ( ®𝑥) calculates

the overall configuration cost associated with all selected features.

Applied to the example, this yields:

𝑘 ( ®𝑥) = 30𝑥1 + 20𝑥2 + 25𝑥3 + 50𝑥4 + 10𝑥5 + 10𝑥6

This QUBO can be transformed into a feature cost Hamilton-

ian 𝐻fc in step (5) using the transformation explained in step (3),

yielding the following Hamiltonian for the running example:

𝐻fc = 72.5 ∗ 𝐼 − 15𝜎𝑧
1
− 10𝜎𝑧

2
− 12.5𝜎𝑧

3
− 25𝜎𝑧

4
− 5𝜎𝑧

5
− 5𝜎𝑧

6
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Figure 4: Histogram of executing the QAOA circuit for the
example with 𝛼 = 200, 𝑝 = 40 and the final parameters ®𝛽𝑒𝑛𝑑
and ®𝛾𝑒𝑛𝑑 for a total of 256 times.

4.3 Combining Validity and Optimality
Finally, to encode the whole problem, the Hamiltonians 𝐻𝑣 and 𝐻fc
are combined using the regulation parameter 𝛼 which weights the

sub-problem Hamiltonians to ensure that the satisfaction as well

as the optimization are sufficiently considered in the solution (6).

This results in the cost Hamiltonian 𝐻𝐶 = 𝐻fc +𝛼𝐻𝑣 , which we use

as phase separating operator 𝑈𝐶 to encode the instance-specific

information in the QAOA circuit. For example, when choosing

𝛼 = 200 the overall cost results to:

𝐻𝐶 = 272.5 ∗ 𝐼 + 35𝜎𝑧
1
+ 40𝜎𝑧

2
− 12.5𝜎𝑧

3
− 25𝜎𝑧

4
− 55𝜎𝑧

5
+ 45𝜎𝑧

6

+ 50𝜎𝑧
1
𝜎𝑧
2
+ 100𝜎𝑧

3
𝜎𝑧
4
− 50𝜎𝑧

5
𝜎𝑧
6

These Hamiltonians can be directly mapped to a quantum circuit

by introducing a 𝑅𝑧 gate for each single weighted Pauli-Z 𝜎𝑧
𝑖
. Each

quadratic or higher term can be decomposed to a single 𝑅𝑧 and

multiple 𝐶𝑁𝑂𝑇 gates [8]. The 𝑅𝑧 gates are parameterized by 𝛾 and

weighted by the factor of the corresponding 𝜎𝑧
𝑖
.

4.4 Executing QAOA
With this, we can construct a quantum circuit for the phase sep-

arating operator 𝑈𝐶 , and by extension also for the whole QAOA

quantum routine (see Fig. 1 already with a concrete mixing operator

𝑈𝑀 ). This allows the execution of QAOA for a specific instance of

an attributed feature model. After successfully executing QAOA, a

final set of parameters
®𝛽𝑒𝑛𝑑 and ®𝛾𝑒𝑛𝑑 is obtained on which the clas-

sical optimizer converged. Now, the QAOA circuit can be executed

multiple times with these parameters to obtain a histogram of the

number of times each configuration (counts) was measured (see

Fig. 4). In the histogram, only measured configurations encoded

as bitstrings are depicted. The valid configurations are colored in

red and invalid configurations in blue. One can see that all 18 valid

configurations of the running example are present in the example

histogram. Due to the nature of using an approximation algorithm,

also invalid configurations were measured with a low probabil-

ity. The solution to the configuration selection problem "011000"

was obtained most frequently in 20 out of the 256 measurements.

Similarly, regarding configuration prioritization, when searching

Generate

problem

instances

Execute

QAOA

Create 𝜇 − 𝑓
diagrams

Transform

into

PUBO / QUBO

Measure

circuit sizes

Measure

result quality

Answer

RQ1

Answer

RQ2

Answer

RQ3

Figure 5: Evaluation methodology.

𝑚 configurations, one can choose the𝑚 configurations in the his-

togram with the highest counts. In case multiple configurations

have the same count, we use lexicographic rank. For the example

with𝑚 = 3, the three best configurations are highlighted in the

plot.

5 EVALUATION
For evaluation, we pose research questions, develop and conduct

experiments, discuss results, and explain threats to validity.

5.1 Research Questions
We pose the following research questions to evaluate our approach:

RQ1 Can QAOA solve configuration selection and prioritiza-

tion? (feasibility)

RQ2 What is the quality of results produced by QAOA for small

problem instances? (solution quality)

RQ3 How do quantum hardware requirements scale with prob-

lem instance size? (scalability)

First, with RQ1, we evaluate if our approach is suitable for our

configuration problems. Second, with RQ2, we evaluate if the ap-
proach can obtain sufficiently good solutions. We consider small

problem instances due to current hardware and simulation limi-

tations. Last, RQ3 provides insights into the scaling in terms of

quantum resources required for our approach.

5.2 Methodology
Our evaluation methodology is depicted in Fig. 5. A set of problem

instances is required to conduct the evaluation. As attributed feature

models of suitable size are not readily available in the literature, we

chose to generate them. For this, we generate 20 feature models (5

with 6, 11, 16, and 21 features each) using the tool FeatureIDE [20]

to ensure the well-structuredness of the generated models. The

first four columns of Tab. 1 depict information on these problem

instances. Feature costs are generated as random integers from

the interval [10, 100]. For further evaluation, the generated feature

models are transformed into the corresponding QUBO / PUBO

formulation. A Python library
1
was implemented that can be used

to translate arbitrary problem instances into the QUBO / PUBO

formulations, as well as parameterized quantum circuits. For the

parameter 𝛼 we chose the sum of all feature costs times 1.5, which

we empirically determined to be suitable for a set of small instances.

1
https://github.com/KIT-TVA/qc-configuration-problem
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RegardingRQ1, the optimization landscape observable in a 𝜇− 𝑓

diagram [13] gives insights into the suitability of problem instances

for QAOA. A 𝜇 − 𝑓 diagram structures configurations regarding

the energy 𝑓 of a configuration and the arithmetic mean 𝜇 of the

difference of energy between a current configuration and their

nearest neighbors. The energy 𝑓 is obtained by evaluating the cost

Hamiltonian 𝐻𝐶 for the configuration, and the nearest neighbors

are configurations with a Hamming distance of 1. A 𝜇 − 𝑓 diagram

indicates the quantitative structure of the optimization landscape,

defined by the number, size, and depth of ’valleys’ (present at 𝜇 ≥ 0).

A ’thin tail’ structure is favorable for local search routines like

QAOA (see [13]). The characteristic of these thin tails is a central

optimal area that decreases towards the outside in an elongated

fashion. To answerRQ1, we create and analyze such 𝜇− 𝑓 diagrams

for the problem instances.

To answer RQ2, we execute QAOA with 𝑝 = 40 layers and

𝛽 = 0.01, 𝛾 = −0.01 as start parameters for each layer on the

generated set of 20 problem instances using the Python library and

analyze the results with different metrics. We used the COBYLA

optimizer and restricted the maximum number of iterations to

1000 to limit the execution time. For instances 0-4 and instances

6-9, we ran QAOA with both the PUBO cost Hamiltonian and the

quadratized QUBO cost Hamiltonian. For instances 5 and 10-19, we

only considered PUBO variants, as quadratization introduces too

many auxiliary variables to simulate the algorithm in a reasonable

amount of time, because execution time for a PUBO variant with 26

variables is estimated to be multiple weeks per instance. We apply

the following three metrics to the histograms (similar to Fig. 4) we

obtained by running QAOA for the different problem instances. To

analyze validity, we introduce the metric validity quality (VQ):

𝑉𝑄 := 2
#𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ∗

∑
𝑐∈𝐶𝑣

𝑃 (𝑐)
|𝐶𝑣 |

𝐶𝑣 denotes the set of valid configurations. The probability 𝑃 over

these configurations is accumulated and normalized by the ratio

of the number of all possible configurations to the number of valid

configurations. 𝑉𝑄 measures how much higher the average proba-

bility of a valid configuration is using QAOA instead of randomly

guessing. To analyze optimality, we introduce cost quality (CQ):

𝐶𝑄 (𝑚) :=
∑
𝑐∈𝐶𝑣

𝑃 (𝑐)
|𝐶𝑣 |

/∑
𝑚∈𝐶𝑚

𝑃 (𝑚)
𝑚

𝐶𝑚 ⊆ 𝐶𝑣 denotes the set of𝑚 best valid configurations. This metric

measures how much higher the average probability of one of the

best𝑚 configurations is by using QAOA instead of randomly guess-

ing from only valid configurations. To answer if QAOA can be used

to solve configuration prioritization, we evaluate the results using

rank-biased overlap (𝑅𝐵𝑂) [22, Eq. 23] to compare the list of valid

configurations sorted by cost with an equally long list of configura-

tions sorted in descending order of probability. 𝑅𝐵𝑂 measures the

similarity of two lists, with the weight being higher at the head of

the lists. How quickly the weight decreases is determined by the

parameter 𝑝 ∈ 0, 1, with faster decrease for lower values of 𝑝 [22].

Finally, for RQ3, we analyze the quantum circuits created from

the problem instances in the corresponding QUBO / PUBO formu-

lation. To get insights into scalability, we measure the width and

depth of the problem circuit resulting from the phase separating

Table 1: Problem instance sizes and corresponding quantum
circuit depth and width of the phase separating operator 𝑈𝐶

ID # features # clauses

Max # Depth Width

literals PUBO QUBO PUBO QUBO

0 6 7 6 300 67 6 15

1 6 6 2 17 17 6 6

2 6 9 2 11 11 6 6

3 6 8 2 15 15 6 6

4 6 8 2 15 15 6 6

5 11 20 7 813 123 11 29

6 11 18 2 24 24 11 11

7 11 16 6 314 70 11 20

8 11 15 2 26 26 11 11

9 11 21 4 92 53 11 14

10 16 18 6 314 81 16 25

11 16 18 7 744 156 16 32

12 16 20 4 82 52 16 18

13 16 21 6 327 82 16 26

14 16 24 2 33 33 16 16

15 21 29 2 38 38 21 21

16 21 37 4 85 68 21 27

17 21 36 5 149 65 21 25

18 21 26 3 40 40 21 21

19 21 30 6 328 82 21 32

operator 𝑈𝐶 per layer, which in our QAOA variant has the most

impact on scaling. Circuit width refers to the number of qubits

the circuit has and circuit depth refers to the maximal number of

operations on qubits from input until output.

5.3 Results and Discussion
Regarding RQ1, 𝜇 − 𝑓 diagrams for the problem instances were

created. Fig. 6 exemplarily depicts the 𝜇− 𝑓 diagrams for 3 instances

with 6, 11, and 16 features respectively. The optimization landscapes

of our problem instances with more than 6 features show a thin tail

structure, indicating to be favorable for QAOA. We suppose that

the instances with 6 features are too small to show this trend.

RQ1: Can QAOA solve configuration selection and priori-
tization? (feasibility)

The optimization landscapes of our problem instances with

more than 6 features show a thin tail structure in a 𝜇− 𝑓 diagram,

indicating to be favorable for QAOA.

Fig. 7 visualizes the results obtained for the metrics𝑉𝑄 ,𝐶𝑄 , and

𝑅𝐵𝑂 . We observe that the validity quality𝑉𝑄 (see Fig. 7a) increases

for bigger problem sizes, with an average of 300 times higher proba-

bility to measure a valid configuration over an invalid configuration

for instances with 21 features using the PUBO Hamiltonian. We as-

sume this trend results from the restrictive nature of feature models,

in which the amount of valid configurations increases less than the

amount of all possible configurations on average when increasing

the size of feature models. The average cost quality𝐶𝑄 (see Fig. 7b)

also increases for larger problem instances. We also observe 𝐶𝑄

decreasing for larger𝑚, indicating that more optimal configura-

tions are obtained with a higher probability than less optimal ones.

For 𝑅𝐵𝑂 (see Fig. 7c), we observe a downward trend, indicating

that the similarity at the beginning of the sequence of measured

configurations and the optimal sequence decreases for a higher

number of features. However, as we observed for 𝐶𝑄 , the average
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(a) Instance 0 with 6 features (b) Instance 5 with 11 features (c) Instance 10 with 16 features

Figure 6: 𝜇 − 𝑓 diagrams [13] for 3 problem instances.
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Figure 7: Average result quality of 𝑉𝑄 , 𝐶𝑄 , and 𝑅𝐵𝑂 for benchmark instances. Error bars indicate standard deviation. For all
metrics, a higher value indicates better result quality.

probability tends to increase for configurations with lower costs.

Thus, we suspect, that sorting only the beginning of the sequence

of measured configurations could increase the 𝑅𝐵𝑂 value signifi-

cantly. In general, we observed that the quality of results produced

by QAOA is highly dependent on the specific instance, causing a

high standard deviation. In all the plots, the QUBO variant performs

slightly worse than the PUBO variant. Also, the deviation regarding

the 𝑅𝐵𝑂 metric increased when using QUBO. Nevertheless, as we

used an ideal simulator, we didn’t consider noisy quantum gates,

which might favor the QUBO approach requiring fewer gates.

RQ2: What is the quality of results produced by running
QAOA for small problem instances? (solution quality)

QAOA shows good results regarding configuration selection,

as the validity quality 𝑉𝑄 and the cost quality 𝐶𝑄 increase

with problem instance size. However, regarding configuration

prioritization, we observed a decrease in 𝑅𝐵𝑂 with increasing

problem instance size.

Measured circuit width and depth of the phase separating op-

erator 𝑈𝐶 for the problem instances are depicted in the last four

columns of Tab. 1. In general, we can observe, that for the QUBO

variant, the width increases and the depth decreases with a higher

number of literals per clause. Depth also increases with a higher

number of clauses. As the PUBO variant does not require any aux-

iliary variables, the circuit width is equal to the number of features.

The depth depends on the number of clauses and the number of

literals per clause. The exact circuit sizes vary with the structure of

the specific instance.

Nonetheless, we can determine an upper limit for the number of

gates used. As the circuit complexity for the QUBO variant highly

depends on the method used for quadratization [5] we provide the

limit for the PUBO variant. For a clause with 𝑘𝑖 different variables,

we can get 1 to 2
𝑘𝑖

different summands when transforming a CNF

formula into a PUBO depending on howmany variables are negated.

In the worst case, after the tranformation to the Ising model, we

are left with a term containing

∑𝑘𝑖
𝑗=0

(𝑘𝑖
𝑗

)
= 2

𝑘𝑖
different summands.

This means for a CNF formula with 𝑚 clauses, we are left with

O(𝑚 · 2𝑘max ) different summands, with 𝑘max being the maximum

number of literals in a clause. To encode this Ising model in the

quantum circuit, we need 2(𝑞 − 1) 𝐶𝑁𝑂𝑇 gates and one 𝑅𝑧 gate

for a summand with 𝑞 acting qubits and 𝑞 ≤ 𝑘max[8]. In total, the

problem circuit requires O(𝑚𝑘max · 2𝑘max ) gates per layer. Using
gray codes, this number can be reduced further [8].

RQ3: How do quantum hardware requirements scale with
problem instances? (scalability)

Our approach requires qubits equal to the number of features

using PUBO and additional qubits using QUBO formulation.

Circuit depth scales better for QUBO than for PUBO formula-

tion.

27



Q-SE 2024, April 16, 2024, Lisbon, Portugal Joshua Ammermann, Fabian Jakob Brenneisen, Tim Bittner, and Ina Schaefer

5.4 Threats to Validity
5.4.1 Internal threats. The results were obtained using our im-

plementation of the method and algorithm. We performed a code

review on our implementation and manually tested it for small

examples, but cannot assure that no errors occurred.

5.4.2 External threats. One threat to validity is the choice of the

QAOA parameters 𝛼 , 𝛽 , 𝛾 , and 𝑝 . The scope of our evaluation was

limited due to the runtime overhead introduced by simulating quan-

tum computers. We manually investigated the influence of 𝛼 on

some problem instances to derive an initial recommendation for

choosing 𝛼 . The start 𝛽 and 𝛾 were chosen according to [3] and we

analyzed the 𝛽-𝛾 landscape [3] which showed that this choice was

sufficient for our problem instances. The choice of 𝑝 , which gen-

erally increases the performance of QAOA for bigger values, was

also constrained due to simulation overhead. Our evaluation might

be biased by the choice of problem instances. We tried to mitigate

this threat by generating feature models with varying numbers of

features, by generating and investigating 5 models each, and by

using FeatureIDE to ensure well-structuredness. Furthermore, the

restriction on QAOA iterations to 1000 runs might have decreased

result quality but was necessary to limit runtime.

6 RELATEDWORK
Our work is positioned between classical analysis for configurable

systems and the application of hybrid quantum algorithms. We

discuss classical optimization techniques used for product configu-

ration and works applying QAOA to related problems.

A systematic literature review by Ochoa et al. [16] gives an

overview of classical optimization techniques used for product

configuration. Techniques include constraint programming, evolu-

tionary algorithms, integer linear programming, or fuzzy logic [16].

While constraint programming and evolutionary algorithms were

identified as the most commonly used techniques, the latter showed

better performance and scalability [16]. Prioritization has also been

researched concerning the testing of product lines [1, 11, 17]. To

the best of our knowledge, product configuration problems have

not been addressed with quantum computing before.

Blekos et al. [2] give an overview of existing applications of

QAOA. Boulebnane and Montanaro thoroughly investigate the

usage of QAOA for SAT [3]. Further applications are, e.g., on Max-

Cut [21] and Max-3-SAT [23] which also transform a QUBO/PUBO

into the Ising formulation. To the best of our knowledge, no work

addressed a combination of SAT and literal costs using QAOA.

7 CONCLUSION
We proposed a method to transform the configuration selection and

prioritization problems encoded in attributed feature models into a

quantum mechanical formulation suitable for optimization prob-

lems. The method is evaluated for 20 generated problem instances,

showing that QAOA obtains good results regarding configuration

selection, but for configuration prioritization, the approach needs

further improvement. Fine-tuning QAOA with different mixing

operators or classical optimizers, or warm-starting the algorithm

could improve it. Also, the influence and selection of our methods

regulation parameter 𝛼 has to be investigated further.
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