May, 2024

Simulation of plastic pyrolysis in fluidized bed

Feichi Zhang, Salar Tavakkol, Thorsten Zirwes, Dieter Stapf

Institute for Technical Chemistry (ITC)

Outline

Institute for Technical Chemistry

Why Chemical Recycling

- □ ~ 400 Mt plastic wastes per year
- 9% recycled, 69% landfilled and incinerated, 22% mismanaged
- Contaminated and mixed plastics cannot be recycled by mechanical recycling
- □ Solution: chemical recycling via pyrolysis
- Promising in lab-scale experiments
- Challenges: process control, economic viability, scale-up

Objectives

- Simulation of plastic pyrolysis in fluidized bed
- Heat transfer vs. pyrolysis reaction

Pyrolysis: degradation of plastic polymers at high temperature into their chemical building blocks

Simulation setups

- □ Fluidized bed at lab-scale
- Cylinder: d = 5 cm, L = 60 cm
- Bed material: sand/695 g
- Sand/PSD: $d_s = 0.23$ mm
- Fluidizing agent: N₂
- LDPE: monodisperse
- Fluidizing agent: N₂

□ Challenges

- Euler-Lagrange/4-way 1.
- 2. Contact heat transfer
- 3. Single-step reaction

Karlsruher Institut für Technologie

Hydrodynamics

Cold fluidized bed: good agreement with experiments and between 2D/3D setups

Hydrodynamics

Enhanced bubble formation for up-scaled fluidized bed

Operating conditions for plastic pyrolysis

	[mm]	[m/s]	[%]	[°C]	
Reference case:	2	0.212	2	500	
Particle diameter:	1.5	0.212	2	500	
	2.5	0.212	2	500	
Superficial velocity:	2	0.153	2	500	
	2	0.297	2	500	
Share of plastics:	2	0.212	1	500	
	2	0.212	4	500	
Reactor temperature	2	0.212	2	470	
	2	0.212	2	530	

Void

Effect of particle size

 $\Box d_P \uparrow$ leads to

- slower heating
- slower conversion
- smaller pyrolysis temperature
- smaller reaction rate

□ Faster conversion at enhanced heating

 $X = \frac{m_{p,0} - m_p}{m_p}$

 $m_{p,0}$

Conversion progress:

Feichi Zhang | Simulation of plastic pyrolysis in fluidized bed

Effect of superficial velocity

\Box Subordinate influence of u_G

D Note: strong impact of u_G on

pyrolysis products

Effect of reactor temperature

 $\Box T_R \uparrow$ leads to

- faster heating
- faster conversion
- higher pyrolysis temperature
- larger reaction rate

Effect of share of plastics

 $\Box y_{P}^{\uparrow}$ leads to

- slower heating
- slower/delayed conversion
- more conversion in low T-range
- slightly higher pyrolysis temperature
- slightly higher conversion rate

Institute for Technical Chemistry

Single particle in hot gas and fluidized bed

- □ Faster heating/pyrolysis in fluidized bed
- \rightarrow Prediction of pyrolysis behavior based on 0D simulation?

0D setup

Summary

□ Simulation of plastic pyrolysis in fluidized bed

hydrodynamics, heat transfer, slow chemistry

□ Influence of operating conditions

□ Heat transfer vs. pyrolysis reaction

□ Faster conversion due to enhanced heating

Karlsruher Institut für Technologie

Outlook

Detailed kinetics, mixed plastics, up-scaling, melting, continuous feeding, thermally thick/nonideal particles

Heat Transfer – Validation

Good agreement between 2D/3D setups and simulations using different no. of LPs

Lagrange parcels	0.47 mil.	0.94 mil.
<i>h_B</i> [cm]	42.5	43.0
∆ <i>p</i> [mbar]	38.3	38.3
\overline{k}_{S} [mJ/kg]	85.6	89.2
α [W/m²/K]	234	235
Comput. time. [h]	0.33	0.62

Gas phase	2D	3D
h _B [cm]	42.5	39.2
∆ <i>p</i> [mbar]	38.3	36.0
\overline{k}_{S} [mJ/kg]	85.6	89.2
α [W/m²/K]	234	235
Comput. time. [h]	0.33	3.22

