

ON INDUSTRIAL FURNACES AND BOILERS

2 - 5 April 2024 - Algarve, Portugal

Particle-resolved numerical simulation of pyrolysis process

of a non-ideal plastic particle

Feichi Zhang, Salar Tavakkol, Akshay Somvanshi, Flavio Galeazzo, Dieter Stapf

Institute for Technical Chemistry (ITC)

Motivation

- ~350 Mt plastic waste per year worldwide
 - 9% recycled, 22% mismanaged
- Advantages
 - Contaminated/mixed plastics
 - Significant reduction of CO₂ emission
- Challenges
 - Process design, efficiency, product yield, scale-up, economic viability
- Design and optimization of pyrolysis process via <u>numerical simulation</u>

Objectives

Effect of particle morphology

Homogeneous/thermally thin

- Heat transfer vs. pyrolysis reaction 0
- Lagrangian vs. Eulerian modeling 0

https://www.oecd.org/environment/plastic-pollution-is-growing-relentlessly-as-waste-management-and-recycling-fall-short.htm

Mismanaged 22%		Landfilled 49%	Incinerated 19%	Rec. 9%
2	23.07.2024	Zhang et al.: Particle-resolved numerical simulation of pyrolysis process of a non-ideal plastic particle	Department of Chemical and	Process Engineering

Resolved

Simulation of multiphase flows

Following the motion of the fluid element

Karlsruher Institut für Technologie

Department of Chemical and Process Engineering

23.07.2024 Zhang et al.: Particle-resolved numerical simulation of pyrolysis process of a non-ideal plastic particle

3

Two-fluid model (TFM)

- OpenFOAM for multiphase flow simulation ٠
- Two sets of balance equations for gas and ٠

solid phases in Eulerian framework

Heterogeneous reactions (pyrolysis) ٠

Department of Chemical and Process Engineering

Simulation setups

- □ Single PE plastic particle
 - 2 mm 6 mm
 - Sphere, cylinder, shell
- \square 3D with ca. 400,000 cells / Δ = 0.35 mm
- Objectives
 - Heat transfer vs. pyrolysis reaction
 - Development of sub-models
- □ Challenges:
 - Resolution of boundary layers
 - Physical simulation time up to 40 min
- Computing time
 - HPC with 320 cores for 3 days

Department of Chemical and Process Engineering

5 23.07.2024

Zhang et al.: Particle-resolved numerical simulation of pyrolysis process of a non-ideal plastic particle

Overview of simulation cases

Morpholoy	d [mm]	Mass [mg]	Re [-]	Bi [-]	<i>Py^I</i> [-]
	1.8	3	0.56	0.31	3.47
Sphere	2.7 at 450, 470 and 490 ℃	10	0.83	0.33	1.54
	4	32	1.24	0.34	0.70
	6	107	1.85	0.36	0.31
	3.2/ AR0.5	10	0.97	0.13	1.12
	2.4/ AR1	10	0.74	0.11	1.95
Cylinder	2/ AR2	10	0.62	0.20	2.81
	2.4/ AR1 Vertical	10	0.37	0.09	0.33
Shell	Inner: 2 Outer: 2.9	10	0.83	0.33	1.47

 $Re = \frac{\rho V d_p}{\mu_g}$

 $Bi = \frac{\alpha \cdot d_p}{\lambda_p}$

 $Py^{I} = \frac{\lambda_{p}}{k \cdot \rho_{p} \cdot c_{p,p} \cdot d_{p}^{2}}$

Department of Chemical and Process Engineering

Engler-Bunte-Institute/Division for Combustion Technology

Zhang et al.: Particle-resolved numerical simulation of pyrolysis process of a non-ideal plastic particle

Comparison with TG experiments

T_{max}=450°C T_{max}=470°C 0000 $m_0 - m$ TG experiment by [1] 6000 000 0.9 0.9 m_0 d_p = 1.82 mm 0.8 0.8 Ø 0 <u>m_p = 3 mg</u> 0.7 0.7 000 O ____0.6 • ____ • v_{gas} = 2.5 cm/s 0.6 0 ₩ 0.5 0 ₩ 0.5 000 • $T_0 = 300 \text{ K}$ О 0.4 0.4 200 • p₀ = 1 bar 0 0.3 0.3 10 0 b $\beta = 12$ K/min 0.2 0.2 0 TFM TFM 0.1 0.1 Lagrange Lagrange time [min] time [min] O Exp. **O** Exp. Ceamanos et al. Journal of Analytical 0 0 55 55 30 35 40 45 50 60 30 35 40 45 50 60 and Applied Pyrolysis 65, 93110, 2002.

23.07.2024

7

Zhang et al.: Particle-resolved numerical simulation of pyrolysis process of a non-ideal plastic particle

Department of Chemical and Process Engineering

Flow fields around particles

Department of Chemical and Process Engineering

Zhang et al.: Particle-resolved numerical simulation of pyrolysis process of a non-ideal plastic particle

Effect of particle morphology

Significant influences of particle shape and flow direction

Strong increase of pyrolysis time with particle size

Department of Chemical and Process Engineering

9 23.07.2024

Zhang et al.: Particle-resolved numerical simulation of pyrolysis process of a non-ideal plastic particle

Effect of reactor temperature

- Faster conversion at increased ambient temperature due to
 - Increased reaction rate
 - Increased pyrolysis temperature

Department of Chemical and Process Engineering

Zhang et al.: Particle-resolved numerical simulation of pyrolysis process of a non-ideal plastic particle

Particle-resolved vs. Lagrangian simulation

- Faster heating and conversion for particle-resolved simulation
- Larger difference for larger particle
 - Velocity/temperature boundary layers are not resolved for Lagrangian approach
 - Lagrangian method assumes homogeneity

Department of Chemical and Process Engineering

11 23.07.2024

Zhang et al.: Particle-resolved numerical simulation of pyrolysis process of a non-ideal plastic particle

Core particle temperature

Engler-Bunte-Institute/Division for Combustion Technology

Karlsruher Institut für Technologie

Pyrolysis reaction vs. heat transfer

Pyrolysis number: ratio of time scales between chemical reaction and convective heat transfer

$$Py = \frac{\tau_c}{\tau_h} = \frac{\alpha}{k_r \rho_p c_p d_p}$$

- Decrease of \(\tau_Py\) with Py at constant reactor temperature
- Quasi-linear increase of τ_Py with Py at constant particle diameter

12

Conclusion

Significantly influence of particle shape and flow direction

- Slower pyrolysis for larger particle
- Quasi-linear increase of pyrolysis time with increasing gas temperature
- Strong deviations betw. Lagrangian and Eulerian methods for large particles
- Enhanced heat results in a higher pyrolysis temperature and faster conversion
- Strong correlations betw. pyrolysis time and pyrolysis number

Thank You

Department of Chemical and Process Engineering