
JOURNAL OF LATEX CLASS FILES, 2023 1

Performance Analysis of ASR-UKFs for
Supercapacitor SoC Estimation in Hybrid Energy

Storage Systems
Davide Fusco, Seyede Masoome Maroufi, Student Member, IEEE, Francesco Porpora, Member, IEEE, Mauro Di

Monaco, Member, IEEE, Giovanni De Carne, Senior Member, IEEE, Giuseppe Tomasso, Member, IEEE

Abstract—Due to their high specific power and durability,
supercapacitors are promising candidates to be formed with
batteries in Hybrid Energy Storage Systems (HESS). Accurately
determining the supercapacitor’s State of Charge (SoC) rep-
resents a crucial task and improves system performance and
energy management. In this paper, state-of-the-art algorithms
to assess the SoC of supercapacitors are initially described,
and their performances have been compared in simulation and
validated experimentally. To improve the estimation performance,
an Adaptive Square-Root Unscented Kalman Filter method has
been finally proposed in this paper. Two electric circuit models
have been defined for implementing the Kalman filtering method
and analyzing its performance. Numerical results demonstrated
a 7% estimation error reduction in terms of absolute value with
respect to the conventional methods. Moreover, an estimation
error lower than 1.5% has been achieved by the proposed method
in experimental tests under realistic grid power profile, validating
the numerical results and demonstrating the applicability of the
developed estimator for supercapacitor SoC estimation.

Index Terms—Energy Storage, Hybrid energy storage, Kalman
Filter, Parameter estimation, State of Charge, Supercapacitor.

I. INTRODUCTION

One of the leading solutions to address the challenge
of global warming through integrating Renewable Energy
Sources (RES) in the power system is using Energy Storage
Systems (ESS). With the deployment of ESS in an electricity
system, voltage instability, frequency fluctuation, poor power
quality, load-following, and other power system challenges
could be mitigated [1]–[3].

Among the most promising ESSs, electrochemical ones such
as secondary metal-ion batteries and supercapacitors can be
distinguished for their high efficiency, flexibility, and versa-
tility [4]. Despite batteries can be developed for high-power
and/or energy density, they still have a lower power capability
for fast charging/discharging with respect to supercapacitors
[5]. Therefore, in order to achieve high power and energy
density at the same time, a hybrid system consisting of two
ESS can be introduced [6]–[8]. Hybrid Energy Storage System
(HESS) solves the problems faced by the grid integration of
alternative single-energy storage systems regarding simulta-
neously meeting the needs of high specific power and high
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specific energy. Moreover, it helps to reduce the battery’s size
and increase its lifespan [9]–[11]. However, the key issues
are energy management and power sharing between the two
ESS while using them in the hybrid mode [12]. Indeed, high
performances in the HESSs control strategies are achieved by
considering an effective power allocation strategy during sys-
tem operation [13]. For this reason, the knowledge of system
states is of paramount importance. One of the main challenges
is represented by the SoC estimation in energy storage devices
such as Supercapacitors [14]–[16] that represents an indication
of the actual available energy compared to the maximum
energy stored in it. However, commonly adopted methods lack
in considering nonlinear behavior and typical leakage effects
of supercapacitors, thus leading to consistent inaccuracies in
the SoC indication. The more advanced methods in SoC
estimation mostly present a model-based approach and the
most reliable ones are based on the state observers, such as
Kalman Filters (KF), since they are not affected by measure-
ment errors and noise [17], [18]. An Adaptive Square-Root
Unscented Kalman Filter (ASR-UKF) is proposed in [19], [20]
and its higher performance with respect to other algorithms
is proven in the case of battery state of charge estimation
[21]. However, the use of the same filter for supercapacitor
SoC estimation has not been found in the literature, to the
best of the authors’ knowledge. Therefore, an investigation
on their applicability as well as their performance in super-
capacitor state estimation is worth to be performed. Another
important aspect to analyze is the choice of a system model,
which is crucial for ensuring good performances in model-
based state estimation algorithms. Good modeling accuracy
and low computational cost for real-time implementation are
common requirements and Equivalent Circuit Models (ECMs)
are proven to be the best candidates, providing a good trade-
off between accuracy and complexity [22]–[24]. A different
approach is represented by intelligent modeling techniques,
such as data-driven Artificial Neural Networks (ANN) and
fuzzy logic, which result in good modeling capability [25].
However, the considerable effort in the training process and
the need for large amounts of data to ensure robustness and
model accuracy strongly limit their adoption [26].

In this paper, two state estimators, derived by the integration
of different models with an ASR-UKF, have been implemented
for evaluating the estimation performance in supercapacitors.
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The estimators are versatile techniques applicable to superca-
pacitors across various systems, independent of their specific
use. Hence, the suggested approach can be applied across
diverse systems, considering the effort involved in character-
izing and implementing an appropriate model. The focus on
HESS applications stems from the fact that supercapacitors
are frequently used in this field, particularly in conjunction
with high-energy batteries. The estimation performances have
been compared to the main conventional methods commonly
adopted for evaluating the stored energy in supercapacitors,
and the improvements in SoC estimation given by the proposed
algorithm are highlighted. In particular, the following novelties
are presented with respect to the state of the art.

• An ASR-UKF has been designed for Supercapacitor State
of Charge estimation.

• The initialization of the KF has been performed by means
of a parameter estimator tool, alternatively to the more
common trial and error procedures.

• Two different ECM have been integrated with the ASR-
UKF, and their impact on estimation performances has
been evaluated.

• The ASR-UKF approach has been validated experimen-
tally under realistic grid power profiles.

Considering the lack of methodologies for supercapacitor state
estimation based on the ASR-UKF, the proposed method
represents a novel approach for the SoC estimation in superca-
pacitors. Moreover, the performance comparison carried out by
considering two different system models strongly contributes
to further increase the knowledge about SoC estimation for
supercapacitors. The rest of the paper is organized as follows.
In section II, the conventional SoC estimation methods and
the more advanced SR-UKF, with details of the adaptive
algorithm considered for obtaining the proposed ASR-UKF,
are introduced. In section III, the two different electric circuit
models considered in this work are described. Section IV
depicts the numerical results, and section V shows the results
obtained in experimental analysis. In addition, the experimen-
tal results obtained by emulating realistic grid power scenarios
are reported in section VI. Finally, the conclusions are reported
in section VII.

II. STATE OF CHARGE ESTIMATION

In HESS, accurate knowledge of SoC is paramount since
it allows for maximizing system performance and improving
energy management strategies while ensuring safe operating
conditions. Nevertheless, the amount of energy stored in a su-
percapacitor is not directly measurable, and internal nonlinear
phenomena make the online SoC estimation challenging.

A. Conventional methods

Among the conventional methods, the simple capacitive
model considers the supercapacitor as a standard capacitor and
defines the SoC as the ratio between the actual stored energy
and the maximum available energy [27], [28]. The actual
stored energy is derived from the supercapacitor terminal
voltage measurement, while the maximum available energy
is derived from its capacity and nominal voltage values. This

estimation method is identified as the State of Art, and the
related SoC calculation results (SoCSoA) are as follows:

SoCSoA =
1
2Cnv

2
sc

1
2CnV 2

n

=
v2sc
V 2
n

(1)

where vsc is the measured capacitor voltage, and Cn and
Vn are the rated capacity and voltage, respectively. This
definition is mostly used thanks to its simplicity and easy
implementation. However, the supercapacitor non-linear be-
havior, comprising internal losses and internal charge redistri-
bution effect, is not taken into account in this method, which
inevitably leads to consistent errors in SoC tracking. A more
accurate indication can be achieved by monitoring the energy
accumulated in internal modeled capacitance if a R-C multi-
branch model is implemented. In this way, the internal charge
redistribution is also taken into consideration [29]. In detail,
the SoC given by a multi-branch model, namely SoCMB ,
results as follows:

SoCMB =

∑n
i=1

1
2Civ

2
i

Emax
(2)

where n is the number of internal states included in the
model, Ci and vi is the modeled internal capacitance values of
the supercapacitor and the voltage across them, respectively,
and Emax represents the characterized maximum energy con-
sidering all the internal states. Alternatively, the Coulomb
Counting method is commonly used in real-world applications
for online estimation purposes. It relies on the integration of
the supercapacitor current over time to the online evaluation
of the stored energy. Starting from a known initial state SoC0,
the actual SoC value SoCCC at time t is obtained as follows:

SoCCC = SoC0 −
1

CAh

∫ t

0

Isc (t) dt (3)

where CAh is the rated capacity expressed in ampere-hour,
and Isc is the measured current. However, this method is
sensitive to measurement error and noise, and estimation
performance also relies on the accuracy of the initial estimated
SoC value. As a consequence, the estimation performance
worsens over time [28]. The accumulated error is usually
cleared, assuming a linear relationship between SoC and the
Open Circuit Voltage (OCV). OCV is used to interpolate the
initial value SoC0, but it has to be previously determined
in offline characterization. The OCV-SoC relation ignores the
typical nonlinear behavior of the supercapacitors, such as the
voltage-dependent capacity term. Moreover, a minimum rest
period with zero current is needed to properly observe the
OCV, which is rarely feasible in practical applications.

Above mentioned methods are suitable in many cases when
accuracy is not of primary importance and simplicity of
implementation is needed. On the other hand, in the HESS
application field, estimation accuracy plays an important role
in energy management and real-world effects impacting the
supercapacitor’s available energy. For instance, the internal
charge redistribution and leakage effect cannot be neglected.
Hence, more advanced and reliable approaches are worth to
be considered.
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TABLE I
STATE OF THE ART ON SUPERCAPACITOR SOC ESTIMATION METHODS

Reference Method Supercap
application Real-Time

Different
models

comparison

Training
data

required

[30] ASR-UKF ✗ ✓ ✗ ✗
[23] UKF ✓ ✗ ✗ ✗
[31] ANN ✗ ✗ ✗ ✓
[25] ANN ✓ ✗ ✗ ✓
[27] KF ✓ ✓ ✗ ✗
[28] Luenberger ✓ ✓ ✗ ✗
[32] KF-PF ✓ ✗ ✗ ✗

[33] Multi-
observer ✓ ✗ ✗ ✗

Proposed
method ASR-UKF ✓ ✓ ✓ ✗

B. Kalman Filtering Method
Kalman Filter (KF) as an optimal state estimator [17] in

linear systems was introduced in 1960. During the past years,
KFs have been adopted in the implementation of several
nonlinear applications. The Extended Kalman Filter (EKF)
achieves the integration of a nonlinear model by means of a
first-order Taylor-series expansion [18]. An application of the
Kalman filtering method for SoC tracking in suppercapacitors,
by considering a three-branch model, has been proposed in
[27]. The method has been validated over a series of charg-
ing/discharging profiles but only the simple capacitive model
has been included in the comparison. The Unscented Kalman
Filter (UKF) introduces a deterministic sampling approach,
increasing robustness to strong nonlinearities in the system
[34]. The method has been proposed for supercapacitor SoC
estimation by considering a first-order dynamic Equivalent
Circuit Model in [23]. The experimental results demonstrated
its robustness to parameter variation. However, the estimation
performances have not been compared with other methods or
supercapacitor models.
The Square-Root Unscented Kalman Filter (SR-UKF) repre-
sents a more efficient mathematical implementation, as stated
in [35], and its integration with an adaptive algorithm has been
proposed in [30]. The higher estimation accuracy compared
to the other KFs has been reported [36], but its application
to supercapacitor SoC estimation is not documented in the
actual literature. The adoption of a fractional order model,
leading to a fractional Kalman filtering approach, is discussed
in [32]. This model involves identifying a considerable number
of parameters, and the combination of the Kalman filter with
a particle filter (KF-PF) introduces significant complexity.
Although [32] reports good estimation accuracy, the estimation
performed on a host PC does not ensure real-time execution,
and only a comparison with the Ampere-hour integral method
is provided.
Another estimation scheme, based on a multiobserver frame-
work, is presented in [33]. This method achieves accurate and
robust SoC estimation but requires additional modeling effort
due to the integration of multiple models. Furthermore, the ex-
perimental validation was conducted using experimental data
in the Matlab/Simulink environment, and real-time execution

has not been addressed. A comparison between the proposed
estimation method and the main contributions from the state-
of-the-art literature is summarized in Table I, highlighting the
main benefits and drawbacks of the mentioned estimators.

In this paper, the adaptive algorithm presented in [19],
[30] for Lithium-Ion batteries SoC estimation has been im-
plemented for the state estimation of supercapacitors. The
considered adaptive law updates the covariance matrices at
each iteration step based on the voltage residual covariance,
which is calculated to represent the error of the model output
estimated by the filter compared to the measured output. The
obtained algorithm overcomes the initial parameter tuning
issue while improving the estimation performance and robust-
ness under real operating conditions. More details regarding
the main operations of the ASR-UKF algorithm for SoC
estimation and the related implementation are reported in [19],
[35].

C. Kalman Filter Initialization
In Kalman Filtering methods, an initial calibration based on

system dynamics has to be made to guarantee the algorithm’s
best performance and robust operation. In particular, the mea-
surement noise covariance R, the process noise covariance Q,
and the initial state covariance S0, are set as diagonal matrices.
This means only the auto-covariance terms are considered, and
the involved noise terms are independent. Since these factors
influence filter convergence and estimation performance, a
charging/discharging current profile can be defined to vali-
date their initialization. Therefore, as part of the modeling
procedure, an optimal calibration is achieved by fitting the
filter estimated state variables onto the ideally simulated ones
by means of the ”Parameter Estimator” app tool in Matlab-
Simulink®. The toolbox implements the nonlinear least square
solver to minimize the error in the chosen model outputs.
The obtained parameters represent the optimal choice for
the Kalman Filter initialization in the predefined operating
conditions.

III. SUPERCAPACITOR MODEL

A proper model of the real system needs to be defined to im-
plement an effective and reliable model-based state estimation
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Fig. 1. Supercapacitor equivalent models: (a) Three-Branch Electric Circuit Model and (b) Generic n-Order Dynamic Equivalent Circuit Model.

algorithm, such as the Kalman Filtering method. Mainly, two
different Equivalent Circuit Models (ECM), namely the three-
branch model and the first-order ECM, can be considered for
representing the supercapacitor’s behavior. The first one has
been proven as the best trade-off between model accuracy
and computational cost for real-time implementation [22],
[37]. Still, a lack of explicit SoC derivation from the model
equations has to be taken into account, which makes its
identification not a straightforward task. On the other hand,
dynamic ECMs including a direct correlation between the
actual SoC state and the modeled Open Circuit Voltage, as
well as the additional model parameters, present an easier
SoC identification by integrating its computation with the
model equations. Despite their lower accuracy in represent-
ing the supercapacitor nonlinear behavior with respect to
three-branch models, the applicability of first-order dynamic
ECMs for supercapacitor SoC estimation has been reported
in the literature [23], [24]. However, a comparison between
the different modeling techniques and their impact on SoC
estimation performances is poorly documented. In this section,
the investigation of supercapacitor modeling approaches is
reported. The aforementioned ECMs have been considered for
representing the supercapacitor’s behavior, and their suitability
for SoC estimation techniques as well as the related impact on
the model-based estimation performance have been analyzed.

A. Three-Branch Equivalent Circuit Model

Fig. 1(a) illustrates the electrical circuit of a three parallel
branches dynamic model [38]. It comprises a main RC branch
with two parallel-connected RC branches. In the main branch,
the basic nonlinear capacitive effect is represented by the
capacitor C (v) connected in series with the resistor R. The
capacitance dependency on the voltage is taken into account
as follows:

C (v) = C0 +Kv · v0 (4)

where C0 represents the fixed capacitance of the supercapac-
itor and Kv is the factor describing the dependency of the
capacitance on its voltage v0. The two additional RC branches,
namely R1 −C1 and R2 −C2, are included in the model for
distinguishing two different time constants, accounting for the
dynamics related to the ion diffusion effect [38]. A leakage
resistor Rleak for representing the self-discharge effect is also
included, and its value is usually declared on the manufacturer
datasheet. According to Kirchhoff laws, system equations can

be worked out from the ECM as follows:

C (v0)
dv0

dt
= −

Rp

R0

(
1
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+
1

R2

)
v0 +
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R0R1
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+
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R0R2

v2 +
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I
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=

Rp
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Vt =
Rp

R0

v0 +
Rp

R1

v1 +
Rp

R2

v2 + RpI

(5)

where Rp = R0 ∥ R1 ∥ R2 ∥ Rleak and v1 and v2 are the
voltages on capacitors C1 and C2, respectively.

Considering x = [v0, v1, v2] the state variables, the discrete-
time model equations can be derived as shown in (6) and
(7), where Ts is the period of the execution time-step, and
k indicates the discrete k-th iteration. As can be noticed, the
model is highly effective if the objective is voltage monitoring
since the internal voltages of the supercapacitors are the
state variables, but in the model, there is not an explicit
relation with the SoC. Therefore, the voltages across the
three modeled internal capacitors (v0, v1, and v2) have been
considered for enabling the SoC computation, according to (2).
In addition, considering the minimum operating voltage of a
supercapacitor, usually determined as half of the maximum
voltage, a relative indication has been adopted according to
(8):

SoC3B =

∑n
i=1

1
2Civ

2
i − Emin

Emax − Emin
(8)

where Emin is the minimum necessary energy to be stored in
the supercapacitor to operate it fully, and it is defined as:

Emin =

n∑
i=1

1

2
Civ

2
min (9)

B. First-order dynamic Equivalent Circuit Model

Electric circuit models are widely adopted in battery state of
art for representing equivalent electrical behavior. The electri-
cal characteristic of a supercapacitor can be considered similar
to the battery case if the different voltage range exhibited by
the device is taken into account. Therefore, the behavior of a
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supercapacitor can be represented by an ideal voltage source
(Voc) connected in series with a resistor R0 and one or more
parallel branches Ri-Ci, as illustrated in the model equivalent
circuit in Fig. 1(b).

In this paper, a first-order ECM has been considered, since
it is proven to provide good modeling accuracy and acceptable
complexity in comparison with higher order ECMs. Moreover,
considering the typical voltage response of a supercapacitor
it results sufficiently accurate for reproducing the modeled
electrical behavior [28]. The model includes an Open Circuit
Voltage (Voc) representing the SoC-dependent voltage shown
by the device in no-load condition, an equivalent series internal
resistance R0 mainly due to non-ideal contacts and electrodes,
and a R1 − C1 branch related to the internal charge redistri-
bution and ion diffusion effect. The selected model allows
for representing the main nonlinear supercapacitor behavior
and results in a locally observable ECM providing the SoC
information as an explicit state variable [23], [39]. Since SoC
is a variable in the system, the Coulomb Counting method
is included in the model, and the following equations are
obtained: 

SoC = SoC0 −
1

3600 · CAh

∫ t

0

Isc (t) dt

dv1

dt
= −

v1

R1C1

+
Isc

C1

Vt = Voc − R0 · Isc − v1

(10)

where v1 is the voltage across the R1 − C1 branch, and Isc
is the current flowing in the supercapacitor, being positive for
discharging and negative for the charging phase. The state
variables are chosen as x = [SoC, V1] and the discrete-time
model equations are derived as shown in (11) and (12).

[
SoCk+1

V1,k+1

]
=

 SoCk −
Ts

3600 · CAh

· Isc

(
Ts

R1C1

)
· V1,k +

Ts

C1

· Isc

 (11)

Vt,k = Voc −R0 · Isc − V1,k (12)

C. Model Parameters Extraction

The models mentioned in section III-A and III-B have
been characterized in a laboratory environment testing an
EATON 166F supercapacitor (model XLR-48R6167-R) as
Device Under Test (DUT). The main characteristics of the
device and their nominal values, given by the manufacturer,
are reported in table II. Note that, in the three-branch ECM,
the parameters are not correlated to the SoC values since they
are constant at any SoC condition of the supercapacitor. The

TABLE II
EATON XLR 166F SUPERCAPACITOR SPECIFICATIONS

Parameter Value
Capacitance (F) 166
Maximum working voltage (V) 48.6
Equivalent Series Resistance (mΩ) 5
Nominal leakage current (mA) 5.2
Stored energy at the maximum voltage (Wh) 54
Nominal continuous current (A) 86
Peak power (kW) 118
Pulse current (A) 2200

capacity variability is expressed by means of the Kv factor,
which multiplied by the voltage v0 represents the capacitance
dependency on the voltage, according to (4).

A charging/discharging repeating cycle has been experimen-
tally performed by imposing constant current steps on the
device to calibrate the three-branch model. In this way, the
DUT is charged and discharged four times between a selected
minimum voltage level and its nominal value, applying 20
seconds rest period between each phase of the test. The
supercapacitor voltage and current measurements during the
experimental characterization are illustrated in Fig. 2(a). The
extraction of the model parameters has been made by means of
the “Parameter Estimator” tool in Matlab-Simulink®. It allows
for fitting the model voltage curve to the measured one by
selecting the same current input given by the experimental
test. As a solver, the nonlinear least square method has been
selected, and the obtained parameters are reported in table III.

The second model in the analysis involves SoC-dependent
parameters to enable direct observability of the State of
Charge as a state variable. Therefore, a specific procedure for
characterizing the model parameters is needed. The model is
widely adopted for Lithium-Ion batteries, and a well-known
characterization procedure is the Hybrid Pulsed Current Char-
acterization (HPPC) [40]. It involves 20 seconds of current
pulses executed at incremental SoC values, assuming it to be
unaffected by the short duration of the pulses. However, in
the case of a supercapacitor, the same assumption is harder
to guarantee due to the device’s lower capacity. Hence, the
similar Positive Pulsed Current (PPC) approach was adopted
[41] and shorter current pulses were exploited for increas-
ing the supercapacitor SoC and concurrently identifying the
parameters of the equivalent circuit model. The procedure
has been performed at different charging/discharging current
levels, and Fig. 2(b) shows the current and voltage acquired
during a nominal current test as an example. It consists in
constant current pulses maintained for the necessary time to

[
V0,k+1

V1,k+1

V2,k+1

]
=



(
1 −

RpTs
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(
1
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+
1
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(
1 +

RpTs

R1R2C2

)
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1
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+
1

R0

))
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R2C2
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 (6)

Vt,k =
Rp

R0
v0,k +

Rp

R1
v1,k +

Rp

R2
v2,k +RpIk (7)
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TABLE III
FITTED PARAMETERS FOR THE THREE-BRANCH SUPERCAPACITOR MODEL

Parameter C0 (F ) Kv (F/V ) R0 (mΩ) R1 (Ω) C1 (F ) R2 (Ω) C2 (F ) Rleak (kΩ)
Value 132.78 1.08 5.2 11.01 6.61 159.96 2.38 9.5

TABLE IV
EXTRACTED PARAMETERS WITH PPC PROCEDURE FOR THE FIRST ORDER ECM

SoC (%) Voc (V ) R0 (mΩ) R1 (mΩ) C1 (kF ) SoC (%) Voc (V ) R0 (mΩ) R1 (mΩ) C1 (kF )

Discharge

10 6.08 2.7 2.6 4.77

Charge

10 5.98 2.8 1.2 7.55
20 11.28 2.7 2.1 5.47 20 11.62 2.8 1.6 6.23
30 16.28 2.7 1.9 5.97 30 16.92 2.7 1.8 5.95
40 21.09 2.7 1.8 5.79 40 21.92 2.7 2.1 5.64
50 25.73 2.6 1.7 5.65 50 26.71 2.7 2.5 5.25
60 30.27 2.7 1.6 5.63 60 31.34 2.7 2.8 4.82
70 34.73 2.8 1.4 5.75 70 35.85 2.6 3.2 4.42
80 39.14 2.8 1.1 5.52 80 40.26 2.8 3.3 4.31
90 43.51 2.6 0.8 3.90 90 47.03 2.6 4.0 3.78
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Fig. 2. Experimental characterization of the supercapacitor: measured current
and corresponding terminal voltage during the procedure related to (a) three-
branch model and (b) first-order dynamic Equivalent Circuit Model.

charge or discharge the DUT by a 10% SoC value. Between
two consecutive pulses, a 20 seconds rest time is observed.
The voltage measured during each resting interval is used
for parameter estimation, which results related to the SoC
value reached during the previous current pulse. In particular,
the series resistance Ro is responsible for the voltage drop
∆V occurring at the moment the current is stopped, and it
is derived by dividing ∆V by the current pulse amplitude.
The second part of the voltage relaxation is modeled by the
fitting of an RC exponential voltage response curve, thus ob-
taining the values of R1 and C1. The different procedures for
characterizing the two models were executed with a nominal
current amplitude of 86 A for charging and discharging the
supercapacitor. The model parameters obtained from the PPC
characterizing procedure are listed in table IV, distinguished
in the charging and discharging phases.

IV. NUMERICAL RESULTS

To compare their performances, all the SoC estimation
methods mentioned in the previous section have been imple-
mented in Matlab-Simulink. The three-Branch model and the
first-order ECM have been implemented as a plant model for
simulating the supercapacitor behavior and random noise has
been added to voltage and current measurements for reproduc-
ing a realistic acquisition environment. The model equations
described in sections III-A and III-B have been included in
two different ASR-UKFs for evaluating the impact of the
two modeling approaches on the proposed adaptive algorithm.
Moreover, all the estimation results have been scaled down to
represent the SoC state with respect to the voltage operating
range of the supercapacitor, thus obtaining a relative indication
for a more practical SoC evidence and an effective comparison
between the different methods. Finally, the absolute value of
the error with respect to the reference SoC, computed as in
(13), has been considered as a performance indicator for each
method.

ε = |SoCest − SoCref | (13)

where SoCest is the estimated SoC. Similar to the modeling
procedure, a constant current is imposed on the device for pre-
charging it to the minimum operating voltage. After a resting
time, a sequence of charging and discharging pulse current
is adopted for testing the performances of the estimation
algorithms. The numerical SoC estimation results obtained
from the four SoC computation methods are shown in Fig.
3(a), where the true SoC reference SoCref has been computed
on the basis of the ideal internal supercapacitor voltages. The
SoCSoA and the SoCCC are the SoC estimations resulting
from the State of the Art and the Coulomb Counting methods,
according to (1) and (3), respectively. The SoC estimation
results obtained from the proposed adaptive algorithm inte-
grated with the first-order ECM and the three-branch ECM
are indicated as ASR-UKFECM and ASR-UKF3B, respectively.
The estimation errors with respect to the reference SoC are
illustrated in Fig. 3(b). The conventional methods and the
ASR-UKF integrating the first-order ECM achieved similar es-
timation performances, reaching a maximum estimation error
of above 8% in absolute value. The significant uncertainty of
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Fig. 3. Numerical results for SoC estimation: (a) SoC estimation results and (b) errors with respect to the ideal SoC reference.
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Fig. 5. Supercapacitor SoC estimation hardware diagram.

these methods is mainly due to the smaller device capacity and
the higher current rates in faster time periods with respect to a
typical battery storage application. In particular, the Coulomb
Counting method results in worse estimation performances
when applied to supercapacitors, since it does not take into
account nonlinear behaviors such as the typical supercapacitor
internal voltage redistribution and voltage-dependent capacity.
On the other hand, the proposed ASR-UKF guarantees the best
estimation performances if the three-branch model is consid-
ered for representing the supercapacitor dynamic behavior, in
which case an estimation error lower than 1% in absolute value
has been achieved during the entire test profile.

V. EXPERIMENTAL RESULTS

An experimental setup has been carried out to validate the
numerical results and the proposed SoC estimation algorithm.
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Fig. 6. Experimental results for real-time SoC estimation: (a) SoC estimation
results and (b) errors with respect to the ideal SoC reference.

The ASR-UKF has been implemented with the models de-
scribed in sections III-A and III-B and a real-time comparison
between their performance and the conventional methods,
namely the simple SoC definition and the Coulomb Counting,
has been performed. The Eaton supercapacitor considered for
the numerical analysis has been adopted for performing the
experimental validation of the SoC estimation methods. As
shown in Fig. 4, the supercapacitor has been connected to
a Spitzenberger&Spies DM 15000 PAS amplifier used as a
bidirectional current source, depending on the imposed current
profile. All the SoC estimation methods mentioned in section
II, have been implemented in an Opal OP4510 real-time
simulator in order to compare their performances with respect
to the ideal SoC reference. The SoC estimation task by means
of Kalman filtering methods has been set by considering 0.5 s
of time step, while the Coulomb Counting and the SoCsimple
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computations have been executed at 50 µs of time step. The
diagram of the overall setup is shown in Fig. 5, highlighting the
SoC estimation and the measurement tasks performed by the
Opal simulator. This also allows for automatically acquiring
voltage and current measurements as well as the experimental
estimation results. The power amplifier is controlled by a No-
vacor Real-Time Digital Simulator (RTDS), which elaborates
all the necessary signals to perform the tests automatically.
In detail, the current profile adopted for characterizing the
first model (Fig. 2) has been considered for comparing dif-
ferent SoC estimation methods for Supercapacitors as well.
Voltage dividers and current transducers have been adopted
to implement a real-world acquisition environment for the
estimation algorithms. Fig. 6 shows the results achieved from
the experimental test, where each SoC estimation is compared
to the reference ideal SoC profile, and the absolute error
is considered as a performance indicator. In addition, the
temperature of the device under test was monitored during
the entire experimental procedure by means of a thermistor
placed inside the supercapacitor, which was provided by the
EATON manufacturer. A maximum excursion with respect to
the ambient temperature lower than 3°C during the overall test
has been measured. Therefore, the temperature impact on the
estimation results has been considered negligible during the
experimental analysis. For what concerns the SoC computation
task, the proposed algorithm, which includes the superca-
pacitor three-branch model, allows for achieving the lowest
estimation error during the overall test case, as illustrated in
Fig. 6(b). Indeed, a maximum error between 6% and 8% is
achieved by the Coulomb Counting and the simple capacity
methods, while a noisy result can be noticed in the SoCSoA

estimation, mostly due to the voltage measurement noise in
the experimental setup. Similarly, the estimation error of the
ASR-UKF, integrated with the first-order dynamic equivalent
circuit model, reaches a peak value above 6%. On the other
hand, if the three-branch model represents the supercapacitor
dynamic behavior, despite a slight performance decrease with
respect to the numerical results, the proposed estimator ensures
an error lower than 2% with respect to the supercapacitor
SoC computed in ideal conditions. Therefore, the experimental
results validate the performance of the proposed ASR-UKF
with the adoption of a three-branch ECM for representing the
supercapacitor behavior, which allows for achieving the lowest
SoC estimation error among the considered SoC estimators in
real-time experimental tests.

VI. EXPERIMENTAL VALIDATION UNDER REALISTIC GRID
POWER PROFILES

Further experimental tests have been performed considering
a 1-hour time window extracted from a standard daily power
profile measured in a German MV/LV substation [42], which
replicates the realistic conditions usually faced when an HESS
is adopted. As a plant model, a HESS has been considered,
which includes a Supercapacitor module and a Lithium-Ion
battery pack, adopting a Low-Pass Filter (LPF) control strategy
for allocating the power profiles to the ESS technologies. As a
result, the low-frequency variating current has been allocated

to the battery, while the supercapacitor has been considered to
dampen the current transients and provide the high-frequency
power supply required. Moreover, the supercapacitor reference
power profile has been scaled down to the EATON superca-
pacitor voltage and current operating ranges to reproduce in
a real-time experimental setup the same scenario experienced
in the MV/LV substation. In Fig. 7, the daily power profile is
shown, where the 1-hour time window considered in the test
is highlighted. The extracted 1-hour power profiles allocated
to the battery and the supercapacitor by means of the low-
pass filter are depicted in Figs. 7(b) and 7(c), respectively.
Figure 7(d) shows the supercapacitor current profile imposed
by the power amplifier during the experimental test. It has
been obtained by scaling down the power profile to the
supercapacitor operating range and dividing the power by the
rated voltage of the device. In Fig. 7(e), the SoC computed
in ideal conditions and selected as a true reference value,
and the SoC estimated by the two conventional methods as
well as the estimation performed by the proposed method, are
shown. As shown in Fig. 7(f), similar results to the previous
tests have been confirmed. The simple capacity model reflects
the voltage measurement noise, while the Coulomb Counting
method error is included in the 6%− 8% range. On the other
hand, with the proposed ASR-UKF, the error is reduced from
the 2% − 4% range to below 1.5% during the entire test
when the three-branch model is considered, thus confirming
the better performances in a realistic scenario as well.

VII. CONCLUSION

This paper proposes a novel method based on the Adap-
tive Square-Root Unscented Kalman Filter for estimating a
supercapacitor’s State of Charge. This method was initially
developed for batteries and its adaptation to supercapacitors’
high variable charging and discharging currents has been
discussed in this paper. The three-branch and First-order
dynamic electric circuit models have been implemented to
represent supercapacitors’ behavior and SoC estimation under
the new technique. With the help of the Matlab-Simulink®

toolbox, an optimal initial calibration of the Kalman filter
has been obtained. The SoC estimation for a supercapacitor
has been experimentally validated by adopting an EATON
166F supercapacitor. Both Novacor RTDS and Opal OP4510
real-time simulators have been used to control the amplifier
and implement the SoC estimation methods, respectively. The
results have been compared with the conventional methods,
namely the Coulomb Counting and the simple capacitive
model, demonstrating the better estimation performance of the
proposed method. Further experimental tests under realistic
grid power profiles have been performed by considering a 1-
hour time window extracted from a German MV/LV substation
standard daily power profile. Therefore, the applicability of the
estimation algorithm in a Hybrid Energy Storage System has
been proven by adopting a classic low-pass filter for power
profile allocation. Future developments will be regarding the
adoption of advanced power allocation and energy manage-
ment controllers and the impact of the proposed method on
the system performances will be investigated.
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Fig. 7. Experimental results for SoC estimation of supercapacitor in a HESS: (a) daily power reference profile in a German MV/LV substation and considered
1-hour window; (b) power profile allocated to the battery; (c) power profile allocated to the supercapacitor; (d) supercapacitor current profile scaled down to
its operating range; (e) SoC estimation results and (f) absolute errors with respect to the ideal SoC reference.
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