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Abstract

Today, stochastic dual dynamic programming (SDDP) is one of the state-of-the-
art algorithms to solve multistage stochastic optimization problems. One of its
key ideas, borrowed from Benders decomposition, is to decompose a multistage
problem into several subproblems which are coupled by so-called value functions.
As these functions are not known explicitly, they are iteratively approximated using
cutting-planes (linear cuts). However, in order for this to work, several crucial
assumptions have to be satisfied, among them linearity (or at least convexity) of
all occurring functions as well as stagewise independence of the uncertain data. In
many applications, this is not guaranteed. For this reason, various enhancements
of SDDP have been proposed which allow to relax some of these assumptions.

The research in this thesis addresses an open challenge in this regard, which
is to extend SDDP to problem classes for which non-convexities arise in the value
functions, and thus linear cuts are not sufficient to guarantee (almost sure) con-
vergence to an optimal solution. The focus is on three specific types of problems:
a) including integrality constraints, b) including non-convex functions, c¢) with the
uncertain data modeled by a non-convex autoregressive process. It is shown that
in all three cases a tight approximation of the value functions can be achieved
using special non-convex cuts. By careful design, based on these results solution
methods with proven convergence are developed, the one for case ¢) being the first
of its kind. This extends the toolbox of SDDP-like algorithms substantially.

In addition, a novel framework is presented to generate linear cuts with favor-
able properties, which may help to improve the computational performance of the
existing SDDP-derivative stochastic dual dynamic integer programming (SDDiP).
Finally, as many of the proposed linear and non-convex cuts rely on special La-
grangian relaxations, a detailed theoretical study of these relaxations and their
properties with respect to the value functions is conducted.

All algorithmic contributions are tested in case studies on real-world applica-
tions, such as unit commitment, hydrothermal scheduling or lot-sizing, confirming
their effectiveness and their potential. However, the studies also reveal that due
to a considerable computational overhead in generating and incorporating the
proposed (non-convex) cuts, efficiency and computational tractability still remain

major challenges for SDDP-like algorithms given non-convex problems.
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Chapter 1

Introduction

1.1 Motivation and research outline

In many decision-making situations in practice, multiple subsequent decisions have
to be taken that are coupled by their effects on a common system state. Often
at least some of the decision-relevant data are subject to uncertainty. In order
to hedge against the risk of bad outcomes, this uncertainty should be taken into
account in the decision-making. To compute an optimal policy of decisions, this
situation can be mathematically modeled as a multistage stochastic optimization

problem and can then be solved by a suitable solution method.

In order to keep this kind of problem tractable, it is usually assumed that the
uncertainty is modeled by discrete and finite random variables, and thus can be
represented by a finite scenario tree. However, even with this assumption, solving
a multistage stochastic optimization problem as a standalone problem is usually
computationally intractable. Therefore, a common idea, borrowed from Benders
decomposition (Benders, 1962)), is to decompose it into several subproblems which
are coupled by so-called value functions. As these value functions are not known
explicitly, they are iteratively approximated using cutting-planes (also called linear
cuts or Benders cuts). If all subproblems are linear (or at least convex) without
integer constraints, then the value functions are convex, and therefore these ap-
proximations are sufficient to guarantee finite convergence to an optimal solution.
This constitutes the algorithm nested Benders decomposition (NBD) (Birge, [1980)).

3



4 1 Introduction

In general, the size of finite scenario trees grows exponentially in the number of
stages of the multistage problem. Therefore, despite being preferrable to solving a
single problem, applying NBD becomes too expensive for all but moderately sized
scenario trees. As long as the uncertainty in the problem data is stagewise inde-
pendent, however, the scenario tree collapses to a recombining tree. This means
that the number of subproblems to be solved grows only linearly in the number of
stages, even if the total number of considered scenarios is still exponential in the
number of stages. This gap in the number of subproblems and scenarios can be
exploited by considering only a sample of scenarios in each iteration, while still ap-
proximating all value functions. In this case, still (almost sure) finite convergence
can be proven. This is the key principle of stochastic dual dynamic programming
(SDDP) (Pereira and Pinto, |1991)). To this date, it is one of the state-of-the-art
algorithms to solve multistage stochastic linear (or convex) programs.

This thesis makes several contributions to the research on SDDP and related
decomposition algorithms. It is composed of five scientific papers collectively.

Since its invention, SDDP has been applied in numerous case studies, most
prominently, but not exclusively in power system optimization. Also various at-
tempts have been made to modify the algorithm, either to improve its computa-
tional performance or to relax some of its crucial assumptions and to extend it
to more general problem classes. Therefore, SDDP has developed into a broad

research field. This motivates the first major contribution of this thesis.

(1) We provide a comprehensive tutorial-type review of SDDP as a research field.
[Fillner and Rebennack (2023), see Paper [A]

One of the open challenges that is identified is to develop effective and efficient
extensions to cases in which the subproblems and the associated value functions
become non-convex. In such cases, linear cuts are not sufficient to guarantee (al-
most sure) convergence of NBD or SDDP to an optimal solution because in general,
either validity or tightness of these cuts is compromised. The main research ob-
jective of this thesis is to contribute to closing this research gap. The focus is on

three specific types of problems:
a) problems including integrality constraints,

b) problems including non-convex functions,
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c¢) problems for which the uncertain data is modeled by a non-convex autore-

gressive (AR) process.

All these cases are relevant in practice, for instance they may occur in unit com-
mitment (Zou et al., 2019a; Hjelmeland et al., 2019) or hydrothermal scheduling
(Lohndorf and Shapiro, 2019) problems.

For case a), a first pivotal approach exists in stochastic dual dynamic inte-
ger programming (SDDiP), an SDDP-variant where instead of classical Benders
cuts linear cuts are generated based on Lagrangian duality (Zou et al. 2019b)).
If all state variables coupling the stages are binary, it can be shown that these
Lagrangian cuts are tight, and thus sufficient to ensure (almost sure) finite conver-
gence of NBD or SDDP. However, to exploit this approach in the case of general
mixed-integer state variables, the state variables have to be approximated using
binary variables, which is computationally costly. Moreover, this requires a de-
cision on the number of binary variables in advance, usually without knowledge
which choice will be sufficient to guarantee a certain approximation quality.

Additionally, for cases a) and b) the generation of non-convex cuts in extensions
of SDDP based on augmented Lagrangian duality has been proposed during our
work on this thesis (Ahmed et al., 2022 [Zhang and Sun|, |2022). We still proceeded
with our work, but with taking these new research findings into account.

Overall, in this thesis, we show that for all three cases, a), b) and c¢) a tight
approximation of the non-convex value functions can be achieved by using care-
fully designed non-convex cuts. These cuts can be incorporated into NBD-like or
SDDP-like algorithms to develop solution methods with proven convergence. More

precisely, we make the following contributions.

(2) With respect to case a), we investigate how SDDiP can be “dynamized”
in the sense that the binary approximation of the state variables is refined
throughout the solution process if necessary instead of being static. This
can be done without compromising the validity of previously generated cuts.
Interestingly, as we show, following this approach leads to a lift-and-project
cut generation process, which results in tight non-convex cuts approximating
the non-convex value functions in the original state space. We call the re-
sulting algorithm Dynamic SDDiP and prove its convergence. We also show

in detail how our non-convex cuts and their generation process differ from
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the proposals in [Ahmed et al.| (2022); [Zhang and Sun (2022), and explain
the strengths and weaknesses of each approach.
[Fiillner and Rebennack| (2022); [Fllner et al.| (2024b), see Papers |B| and

(3) With respect to case b), we propose a new solution framework that can be
seen as an extension of NBD to general non-convex multistage stochastic
problems; and may be generalized to include sampling in the future. Es-
sentially, this framework incorporates Dynamic SDDiP and dynamically re-
fined piecewise linear relaxations of nonlinear functions as key components.
This method is called non-convez nested Benders decomposition (NC-NBD).
Again, we provide a convergence proof. Apart from the method in [Zhang
and Sun| (2022) NC-NBD is the first exact solution method for this general
problem class. In contrast to the former, nonlinear problems only have to be
solved occasionally instead of each iteration.

[Fiillner and Rebennack! (2022), see Paper

(4) With respect to case c), we propose an extension of SDDP that can handle
non-convex log-linear AR processes describing the uncertainty in the right-
hand side of a multistage stochastic linear problem. A major component of
this extension is the generation of cuts that are non-convex in the history
of the AR process, but still linear in the original state variables. As we
show, this allows for incorporation of these cuts into SDDP. For this type of
problem, our work is the first one that does not require an approximation
of the AR process. Therefore, it allows for more flexibility and accuracy in
modeling uncertain data in SDDP.

[Fillner and Rebennack| (2024)), see Paper [E]

In addition to studying non-convex approximations, we also make contributions
to the generation of linear cuts, which are for instance used in SDDiP or heuristic

approaches to solve non-convex problems.

(5) Based on recent advances for Benders decomposition (Fischetti et al., [2010;
Brandenberg and Stursberg, 2021; Hosseini and Turner, 2021) and two-stage
stochastic programming (Chen and Luedtke, [2022) we present a novel frame-
work to generate Lagrangian cuts with favorable properties, such as maxi-

mum cut depth, facet-defining behavior or Pareto-optimality. These cuts
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may prove helpful in improving the computational performance of SDDiP.
[Fiillner et al] (20244)), see Paper D]

Finally, as many of our proposed solution methods and (linear or non-convex)
cuts rely on the concepts of Lipschitz regularization and Lagrangian duality, we

shed light on both concepts from a theoretical perspective.

(6) We provide a thorough theoretical study on Lipschitz regularization, La-
grangian duality and their relations to the value functions as well as each
other. In particular, we analyze in detail the effects that so-called copy
constraints and Lipschitz regularization have on Lagrangian duals, the gen-
eration of Lagrangian cuts and the properties of those cuts. By doing that,
we are able to generalize the tightness result from SDDiP (Zou et al.; 2019b)
to the Lipschitz regularized case.

[Fillner et al.| (2024Db), see Paper |C]

In order to evaluate the performance of our theoretical and algorithmic contri-

butions, we also study them computationally.

(7) We conduct several computational experiments and case studies on real-
world applications, such as unit commitment, hydrothermal scheduling or
lot-sizing problems, to test the proposed solution methods. The results con-
firm their effectiveness and their potential. However, the studies also re-
veal a considerable computational overhead in generating and incorporating
the proposed (non-convex) cuts in many cases. This shows that efficiency
and computational tractability still remain major challenges when applying
NBD-like and SDDP-like algorithms to non-convex problems.

1.2 Structure of the thesis

This thesis is organized in two parts. Part || provides a general overview on the
research conducted in this thesis and puts the individual scientific papers into con-
text. In Chapter 2] some theoretical background is introduced. In Chapter [3] then
the research objectives of this work are motivated. The conducted studies and
their main contributions are summarized in Chapter [d Finally, Chapter [5] con-

cludes with a summary, discusses limitations of the presented results and provides
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an outlook on potential future research directions. Part [[I] of this thesis contains

the full manuscripts of all five scientific papers.



Chapter 2
Theoretical background

In this section, we introduce some notation and give a basic overview on the
theoretical background that is required to understand the motivation for as well
as the main contributions of the research presented in this thesis. For details, we
refer to the papers in Part [}

2.1 Mathematical definitions

First, we present some important mathematical concepts that are used throughout
this thesis. We define R := R U {£o0}.

Definition 2.1.1 (Convex set). A set M C R™ is called convex if for all X € (0,1)
and all z,y € M also A\x + (1 — N)y € M.

Definition 2.1.2 (Epigraph). Let f : R — R be a function. Then the set
epi(f) == {(x,a) creR" aeR a> f(:n)}

is called the epigraph of f.

Definition 2.1.3 (Convex function). A function f : R* — R is convex if its

epigraph epi(f) is a convex subset of R"F1.

The last definition is taken from Rockafellar| (1970). Note that it deviates
from the most common definition of convex functions, but is more convenient in

our context, as it allows f(-) to take infinite values. Moreover, any function f(-)

9



10 2 Theoretical background

satisfying the standard definition can be extended to one satisfying the definition

presented above.

Definition 2.1.4 (Lipschitz continuous function). Let M C R™ and let ||| be
some norm. A function f : M — R is Lipschitz continuous on M (with respect to
I-l) if there exists some constant L > 0 such that for all x,y € M

[f(@) = f(y)l < Lllx =yl

2.2 Multistage decision processes

One of the main premises in multistage stochastic programming is that in some
given system, several subsequent decisions have to be taken over a known and
finite time horizon [T] := {1,...,T}, with T' € N. More precisely, on each stage
t € T decisions x; € R% have to be taken, where d; € N denotes the dimension.

The challenge is that these subsequent decisions are not independent of each
other, but coupled. This means that taking a specific decision at one point of
time may restrict the feasible decisions that can be taken at later points. We
should note that in multistage stochastic programming x; takes both the role of a
decision variable (or action) that is actively taken by the decision-maker and an
underlying system state variable that these decisions rely on. Sometimes, purely
local decisions are modeled by additional vectors y; € R% d, € N, but we abstain
from this in this introduction. In dynamic programming, on the contrary, actions
and states are clearly distinguished in notation.

The second main premise is that some of the data in the decision-making
problem are uncertain and only revealed over time. Usually, the first stage data
are assumed deterministic, but we include it in our formal description.

For each stage t € [T, let (£, .%;,[P;) denote a probability space, and let
the sigma algebras define a filtration .#; C %5--- C %p. Then, for each t,
we can define an .%#;-measurable random vector & : €2, — R* x; € N, on this
probability space to model the uncertain data of this stage. To distinguish the
random vectors &; from their realizations &, we use bold font. In general, bold
font is used to signify random vectors. The support of &; is denoted by =;, with =;
a singleton. We can combine all random vectors to a stochastic process (&;)cqr

with realizations & := (&,...,&r).
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Reconsidering the decision process given this uncertainty, the paradigm is that
at the first stage, decisions x; are taken which hedge against the uncertainty over
the whole time horizon [T] (so-called here-and-now decisions). On all following
stages t = 2,...,T, in contrast, decisions x; can be taken after the uncertain
data for that specific stage has realized, that is, new information can be taken
into account (so-called wait-and-see decisions). In other words, the decision z;
can be taken dependent on how the uncertain data up to stage t unfolds. This
makes x;(+) a function of &, and by coupling a function of the whole history
1) = (&, ..., &-1). Importantly, x,(-) is also F-measurable, and thus non-
anticipative, meaning that it does only depend on historic realizations, but does
not anticipate future events.

The multistage decision process with uncertainty is visualized in Figure [2.1]

& &3 ér

%o Z1 Z2 x3 Tr—1 zp

Figure 2.1: Multistage decision process with uncertainty (&; is deterministic).

A common example to illustrate this is a hydrothermal power system in which
a thermal generator and a hydro power plant are available to meet the electricity
demand over time at minimum cost. Whereas thermal generation is cost-intensive
due to the necessity to purchase fuel, draining water from a hydro reservoir through
a turbine to generate electricity has almost no operational cost. Therefore, given
an electricity demand at some stage t, the naive strategy is to use as much hydro
power as possible to satisfy the demand. However, this kind of strategy completely
neglects the future consequences of this decision. Using too much water at stage
t may lead to a shortage of water later on, especially in dry periods without
considerable inflows. This may directly translate to higher costs or a shortage of
power at later stages. Moreover, future inflows are uncertain. For this reason,
the potential value of storing water for later stages should already be taken into
account in the decision-making at stage t. In other words, the ability to store

water in reservoirs leads to a temporal coupling of the decisions over the stages.
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The considered decisions x; may have to satisfy certain constraints. For in-
stance, in our previous power system example, the thermal generation and hydro
generation together have to meet the demand at each stage t. Mathematically,
the constraints can be modeled using some .Z;-measurable set-valued mapping
X (x4_1,&), which is defined by several equations and inequalities. Moreover, we
may enforce that z; (or some of its components) are only allowed to take inte-
ger values. In addition to constraint satisfication, an objective function fi(-, &) is
used to evaluate the quality of different decisions z; given a realization &. In our
previous example, the objective function measures the costs.

The aim in the decision-making process is then to come up with a sequence of

decision functions (mt(f[t])) ool also called policy, which provides feasible decisions

for each stage t € [T] andtea[lmost every realization of the uncertain data, while
minimizing (or maximizing) the objective function on average. Therefore, we
consider (conditional) expected values in the objective function. This decision-
making problem can be modeled as an optimization problem. We formalize this
in Sect. and refer to it as a multistage stochastic program (MSP).

If & are continuous random vectors, then for all but very special cases, this op-
timization problem becomes computationally intractable (Rebennack, 2016)). For
this reason, in practice usually the true distributions are approximated by discrete
ones, for example using a sample average approzimation (SAA) (Shapiro et al.|
2014). For the remainder of this thesis, we simply assume that & is a discrete
and finite random variable for all ¢ € [T'] with a known conditional distribution
Fl¢,_,, given a history {—yj. This implies that over the whole time horizon, the
data process (&)icir) can only take finitely many different realizations £, called
scenarios, which we index by s € S, where § is a discrete index set.

In this setting, the uncertainty in the problem can be represented by a finite

scenario tree, as illustrated in Figure [2.2

2.3 A single-problem formulation

Using the previously described ingredients, we can now formalize MSP. There are
different approaches to do this. We start with formulating it as a single optimiza-

tion problem.
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Figure 2.2: Finite scenario tree for an example with 7" = 4. It models 18 scenarios
€5, with ¢ highlighted.

Scenario representation. Given our assumption of discrete and finite ran-
dom vectors, we can formulate MSP as a finite-dimensional optimization prob-
lem by replacing each decision function x;({) with a finite number of variables
Tys, 8 € S. As becomes clear from Figure 2.2] to ensure non-anticipativiy, we have
to make sure that x;; = x;¢ for all ¢t € [T] and all s’ € Sy, where the latter is the
set of scenarios that share the same node of the tree with scenario s at stage t.

This yields the problem

[ i fl(x1)+2ps( ZTft(xts,étS))

FLrEze BT seS t=2,..,

v = (¢ s.t. T € Xy (2.1)
Tys € Xp(x4-15,&)) VseSVE=2,...,T

Tps = Ty Vs €S,8 €8Sy, VE=2,...,T.

\

This deterministic problem is often referred to as the extensive form of MSP. In
the case that f;(-) and all functions describing X;(-, &) are linear, it is a large-scale
linear program (LP).
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Nodal representation. A second way to formulate the extensive form of MSP
avoids using stage indices t and scenario indices s, but represents the scenario tree
using a set of nodes N. The root node is denoted by r. We define N := N\ {r}
to address the set of nodes without the root node, N to address the set of nodes
without leaf nodes and denote by N/ (¢) the nodes at stage t. For each node n € N,
the unique ancestor node is denoted by a(n), and for each n € N, and the set of
child nodes is denoted by C(n). The probability for some node n is p,, > 0. The
transition probabilities between adjacent nodes n,m € N can then be determined
as Pnm ‘= ”—T:. Using these definitions, problem can be expressed as

p

minN fr(x,) + anfn(xna &n)

Tn,NE N
x ne
YT Vst x, € X, (2.2)

Ty € Xn(Zamy, ) VN € N.

In particular, this formulation does not require explicit non-anticipativity con-
straints, as they are implicitly considered by the nodal connections. Therefore,
when we consider the full scenario tree, we mostly revert to this notation for the
remainder of this chapter. However occasionally, we introduce deviating notation

as well if this proves beneficial for later chapters.

The main issue with formulation is that due to introducing a separate
variable x,, for each node n € A/, and the number of nodes growing exponentially
in the number of stages T (see Figure , the problem size grows exponentially
in T" as well. Therefore, for large scenario trees, the problem becomes too large
to be solved by monolith solution methods. For this reason, a lot of research in
multistage stochastic programming is devoted to solution methods that decompose
problems of type . In the next section, we introduce one natural way to achieve

such a decomposition.

For the remainder of Part [, we take the following two assumptions with re-
spect to problems (and analogously). First, we assume that the sets
X (Tq(ny, &) are compact sets for all 4z, and &,. Second, we assume that A} is
non-empty and that we have relatively complete recourse. This means that for any
node n and any feasible 4,y there also exists some x,, € X, (%q(n),&n). Finally,

we assume that the functions f,(-) are at least lower semicontinuous (l.sc.) for all
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n € N. These assumptions combined guarantee that problem is feasible and
takes a finite optimal value v*. This allows us to focus on the main contributions
of our research without having to consider cases of infeasibility or unboundedness.
Note, however, that in some of the research papers in Part [l of this thesis, slightly

different assumptions are taken, depending on the specific context.

2.4 Dynamic programming equations

As discussed before, solving MSP in its extensive form is often computationally
prohibitive. Therefore, usually decomposition methods are applied in the solution
process. An intuitive way to decompose the problem is readily available from the
scenario tree depicted in Figure 2.2} The problem can be decomposed by stages
and scenarios, or in other words, by nodes of the scenario tree. In order to still solve
the original problem, the nodal subproblems have to be coupled. This yields the
so-called dynamic programming equations (DPE), which exploit the well-known

optimality principle by Richard E. Bellman (Bellman, |1957)).
For any node n € N the DPE are given by

H:}in fn(In) + QC(n) (‘rn)
s.t. Ty € Xn(l'a(n))a

Qun(Ta(m)) == {

where

QC(n)(wn) = Z panm(xn)

meC(n)

For leaf nodes n € N, we set Qc(»)(2,) = 0. For the root node, we obtain

. min  f(x,) + Qe (1)
v = Zr
S.t. x, € Xl.

The functions Q,(-) are called value functions and the functions Qe(ny(-) are
called ezpected value functions (or cost-to-go functions). These functions are the

focal point of the research presented in this thesis.
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Note that we define all (expected) value functions as functions mapping from
R% d, € N, to R, meaning that they take the value 400 for values of Tq(n) for

which the subproblems are infeasible.

2.5 Approximating value functions

Whereas the DPE provide a way to decompose MSP into smaller subproblems,
applying them in a solution method is challenging. The main challenge is that
the (expected) value functions are not known explicitly. More precisely, they can
be evaluated for any sequence (z,)nepr, but they are not known in a functional
form. For this reason, a common approach is to iteratively approximate them,
an idea that traces back to Benders decomposition (Benders| [1962) and Kelley’s
cutting-plane method (Kelley, 1960).

We denote the approximations of the expected value functions Qcp)(-) by
Qe (1) and refer to them as cut approzimations. By replacing Qc(n)(-) in prob-
lem formulation with Qc(n)(-), we obtain the approzimate value function and

subproblems

@, (o)) = {Hﬁn pin St (2.4)

st. T, € Xp(Ta(m)).

The iteration index ¢ highlights that the approximations are iteratively updated
within the solution method.

This approximation approach is often referred to as single-cut because the ex-
pected value functions Qe¢n)(-) are each approximated by a single batch of cuts.
Alternatively, each value function @,,(-),m € C(n), can be approximated sepa-
rately (multi-cut approach). For MSPs usually a single-cut approach is preferred
for computational reasons, as much less cuts are added.

In any case, the cut approximations should satisfy some important properties,

which we present in their form for a single-cut approach:

e Validity. They should be valid underestimators, i.e., for any 4, any n € N
and any x,, they should satisfy

Qe (Tn) = Qe ()
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This is important to consistently obtain lower bounds for v*.

e Tightness. They should be tight approximators in the sense that for any ¢
and any n € N, whenever the cut approximation is updated from Qé(n)(-)

to chﬁ)() at some point z’,, it should satisfy

ch-l(—i)(x;) = 2?(2)(5”;) = Z anQﬂl(iﬁ%)

meC(n)

This is important in order to achieve exact approximations and to solve the

original MSP eventually.

e Lipschitz continuity. If the state variables x,, (or at least some of their
components) are continuous, the cut approximations should be Lipschitz
continuous. This is required to ensure (finite) convergence of the solution
method to the true solution of MSP, as it ensures that the tightness property
also leads to a sufficient improvement of the approximation quality in a
neighborhood of ¢ . It also prevents the cut approximations from becoming

arbitrarily steep, which is important to prevent numerical issues.

How the approximations Dc(n)(-) can be determined for a specific instance of
MSP is highly dependent on the properties of Q¢(,)(-), which in turn depend on

the specific properties of the objective functions f,,(-) and the constraint sets X, ().

2.6 Multistage stochastic linear programs

A special class of MSP that is well-explored in the literature is the class of mul-
tistage stochastic linear program (MSLP). Here, the objective function f,(-) is a
linear function f,(z,) = ¢!z, for all n € N with some coefficient vector ¢, € R,
Moreover, for any n € N and x,(,), the set X, (z4(n)) is defined by finitely many
affine functions, thus a convex polyhedron. In particular, all variables in z,, are
continuous, so no integer requirements exist. More specifically, the constraint sets

can be defined as

Xn(xa(n)) = {$n € X, C R Tnxa(n) + W, x, = hn} (25)
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with a non-empty polyhedron X, e.g., modeling non-negativity constraints, and
coefficient matrices 7),, W,, and vectors h,, of appropriate dimension. It is the
coefficients in T,,, W,,, h,, and ¢, that may be subject to uncertainty.

As indicated before, for MSLPs, the (expected) value functions @, (-) and
Qcm)(+) have some favorable properties (see |Birge and Louveaux (2011), Chap-
ter 3 for an idea of the proof).

Lemma 2.6.1. For any node n € N, the functions Q,(-) defined in [2.3)), and for
any node n € /\N/, the functions Qe (-) defined in (2.4) are piecewise linear and

convex functions in T,y on R and x, on R™, respectively.

The convexity implies that these functions can be approximated from below
by linear cuts (cutting-planes), while the piecewise linearity implies that in fact
finitely many such functions suffice to achieve an exact representation of the true
function. The main reason is that the elements T,, h,, and 4,y only appear in the
right-hand side (RHS) of the LP (2.3)). Therefore, the feasible set of its LP dual
is independent of those elements. As it possesses finitely many extreme points,
and by strong duality for LPs, the value function @,(-) can be expressed as the
pointwise maximum of finitely many affine functions, which is piecewise linear and
convex. From its definition, the same follows for Q) (-).

By approximating Q¢(,)(-) with linear cuts and taking the pointwise maximum
of these cuts, the cut approximations Qc(n)(-) are piecewise linear and convex
as well. This also allows to still express the subproblems as LPs. Moreover,
by backward recursion from stage 7', the above properties do also hold for the

approximate value functions.

Lemma 2.6.2. For any stage n € N, the function Q () defined in (2.4) and its

. . . . . . dﬂ, n
expectation Qc(n)(~) are piecewise linear and convex functions in q@) on Rém.

2.7 Nested Benders decomposition

We present nested Benders decomposition (NBD) as a first solution method for
MSLPs. It was first introduced in (Birge, 1980) and basically extends Benders
decomposition (Benders, |1962) and the L-shaped method (van Slyke and Wets,
1969) to MSLPs.
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The main idea of NBD is to traverse the scenario tree in forward and backward
direction in each iteration to improve the cut approximations Qg (-) of Qc()(-)
until convergence is achieved and an optimal solution for MSLP, i.e., an optimal

policy and the optimal value v*, are computed.

We explain this in more detail now. In each iteration ¢, first a forward pass
through the tree is conducted. Starting with stage 1, the approximate subprob-
lem ([2.4) is solved for each node, and the obtained solution z¢ is handed forward
to all successor nodes where it enters the subproblems as a parameter. We call
x! a trial solution because it is the current candidate for an optimal solution to
the true subproblem. Following this approach, trial solutions are computed for all

nodes n € N, defining a trial policy.

Evaluating this feasible trial policy in the original objective function, we obtain
an upper bound to v*:

7= fi(zh) + anczx;.

neN

The forward pass is illustrated in Figure 2.3
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Figure 2.3: Forward pass illustration for NBD.
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In the following backward pass through the scenario tree, starting with nodes
n € Nr_1, the approximate subproblems are updated by improving the cut
approximations Qé(n)(-). To this end, the LP duals of the (already updated)
approximate subproblems of each successor node m € C(n) are solved. Then,
the optimal dual multipliers 7’ to the coupling constraints T,,x, + W = hp,

z+1(

and the optimal value @) ) are handed back to node n. There, a new linear

7’L

cut can be generated using formula

QC(n) -Tn = Z panH_l Z (57zn>—r(xn_x;)a

meC(n meC(n)
where !, := —(ni )TT,,. This type of cut is often called Benders cut because it
is constructed in the same way as in Benders decomposition (Benders| 1962). By
defining
Bemy = Z (85)
meC(n)
and

Oy = D pam@ () = (Beg)

meC(n)

it can also be expressed as

i i o\ T
Qen) (Tn) > gy + (Beqny) Tn-

Quantity aé(n) is called the cut intercept and 5é(n) is called the cut gradient.
With this cut, the cut approximation Dé(n)(-) is updated to Qg(“fl)()

At the end of the backward pass, by solving the first-stage approximate sub-
problem (2.4)) a lower bound v* for the optimal value v* of MSLP is obtained. If
vt — v’ < ¢ for some predefined tolerance € > 0, then NBD terminates with an

(approximately) optimal solution to MSLP. Otherwise, a new iteration is started.
The backward pass is illustrated in Figure [2.4]

An exemplary piecewise linear and convex expected value function Qe (-) and
some related cuts are depicted in Figure [2.5]
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Figure 2.4: Backward pass illustration for NBD.

Recall that the dual feasible set for each node does not change during the algo-
rithm and only possesses finitely many extreme points. Therefore, by restricting
to dual extreme points in the cut generation process, only finitely many differ-
ent Benders cuts can be generated. As these cuts are also valid and tight, finite
convergence of NBD can be established (Birge, |1980)).

Despite these merits, NBD comes with a significant computational bottleneck.
Compared to solving the extensive form of MSLP, there is no need to solve a single
problem that grows exponentially in size in T'. Nevertheless, solving the DPE may
still be computationally intractable for large scenario trees because the number
of subproblems to be solved in each iteration grows exponentially in 7. For this
reason, NBD is only a reasonable solution method for problems with a moderate
number of stages. In the next sections, we present SDDP, which can be interpreted

as a derivative of NBD that avoids this computational hurdle to a certain degree.
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Figure 2.5: Piecewise linear and convex expected value function Q¢ (-) with three
exemplary cuts.

Still, many of our research papers in Part [[I] of this thesis make contributions
related to NBD. The reason is that deriving results in a form that suffices NBD is
more general, as these results automatically translate to SDDP as well, and thus

can be used for both solution methods.

2.8 Stagewise independent uncertainty

We now focus on stochastic dual dynamic programming (SDDP) as an alternative
solution method for MSLPs. In many practical applications it is the state-of-the-
art approach for these kind of problems. A crucial difference between NBD, as
presented in the last section, and SDDP is that the latter, at least in its standard
form, requires the data process (& )cr) to be stagewise independent. This means
that for all ¢ € [T], the random vector & has to be independent of the history
§[t—1) of the process. In particular, if modeled using a scenario tree, each node has
an equivalent set of successor nodes. This is illustrated in Figure [2.6] where the

same color indicates equivalent nodes.

A more condensed and adequate representation of a stagewise independent
data process (&) with discrete and finite random vectors & for all ¢ € [T]
can be achieved using a recombining tree or scenario lattice. This is illustrated in
Figure for the same case as before.
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t=1 t=2 t=3 t=4

Figure 2.6: Finite scenario tree under stagewise independence. Same colors indi-
cate same realizations and probabilities.

t=1 t=2 t=3 t=4

Figure 2.7: Recombining tree under stagewise independence. Same colors indicate
same realizations and probabilities.

In the following, when we assume stagewise independence, we denote the real-
izations of & by &;,7 =1,...,q, with ¢ € N, and the associated probabilities by
ptj. Importantly, Figures and show different representations of the same
data process, so both trees encode the same number |S| = Htem q: of scenarios.

Under stagewise independence, the DPE that we presented in Sect. simplify
significantly. In particular, there exist only ¢, value functions and only one single

expected value function for each stage t =2,... 7.
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As there exists no nodal dependence, to present the DPE we may revert to
using the stage index t again. For any stage t = 2,...,7T and any realization
&7 =1,...,q, the DPE read

ngn fe(xy, &) + Qura ()

(2.7)
st xp € X(wi-1, &),

Qt(ﬂft*l,&j) = {

where
qt+1

Qri1(me) == Z D1, Qer1 (@, Er )
=1

In contrast to before, here the expectation is unconditional. For the first stage,

we obtain

. mi1n fl(ll?1) + Q2(331)
v = Z
s.t. x1 € A

Analogously, also the approximate subproblems simplify. For instance, for

t=2,...,T and any realization &;,j = 1,..., ¢, they become

min - fi(xe, &) + Qi ()

| (2.8)
s.t. Ty € Xt(xz_lygtj)-

Qi(xi—hgtj) = {

2.9 Stochastic dual dynamic programming

In this section, we present SDDP in its standard form, as proposed by Pereiral
and Pinto| (1991)). In general, the functional principle of SDDP is very similar to
NBD. As for NBD, each iteration consists of a forward pass and a backward pass
through the scenario tree, which due to stagewise independence can be modeled
as a recombining tree, though.

The main difference is that in contrast to considering all scenarios s € S in each
iteration, only a subset L C § is sampled. With respect to Figures and this
means that only a subset of paths through the tree is considered in each iteration.
Usually |K| is chosen much smaller than |S]|, in many implementations even || =
1 is standard. This sampling does not only reduce the computational effort in
the forward pass, but especially in the backward pass where only 1 + |K| ZtTZQ Gt

subproblems have to be solved. This number is linear in 7', whereas the total
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number of scenarios |S| grows exponentially in 7' (Rebennackl 2016). Note that
based on this sampling step, the forward pass is often referred to as a forward

simulation.

Without stagewise independence, sampling reduces the computational effort
per iteration, but may as well lead to a higher number of required iterations until
convergence because not all nodes of the scenario tree are visited in each iteration.
In contrast, under stagewise independence, the uncertainty can be modeled by a
recombining tree and there exists only one set of value functions and one expected
value function per stage. This means that even if only a sample of scenarios is
visited per iteration, still all nodes are visited and all cut approximations are

updated in each iteration. This is crucial for the performance of SDDP.

The property that cuts derived for a specific sampled scenario &k € K are
also valid for all other scenarios s € § is often referred to as cut-sharing in the
literature (Infanger and Morton, 1996]). This makes sense from the perspective of
a classical scenario tree, see Figure 2.6 where cut coefficients are derived for nodes
in a specific sample path, but are also valid for all equivalent nodes in other parts
of the tree. From the perspective of a recombining tree, cuts are shared among
scenarios because these scenarios share the same nodes in the recombining tree,

and thus the same value functions.
We present a pseudo-code of SDDP in Algorithm [1]
We should address two more important topics with respect to SDDP. First,

due to the sampling, in contrast to NBD no valid upper bound for v* is computed
in each iteration. By evaluating the trial points obtained for the sampled scenarios

in the objective function, i.e., computing

. 1 r .
U = Kl Z Z (&) i, (2.9)

kel t=1

we only obtain an unbiased estimator of the true upper bound w¢. This is also
referred to as a statistical upper bound. In particular, i is not guaranteed to
exceed v*, it may even fall below v'.

A direct consequence of this aspect is that the stopping criterion of NBD cannot

be carried over to SDDP. Instead, different stopping criteria have been proposed
for SDDP. Pereira and Pinto| (1991) initially suggested to stop SDDP as soon as
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Algorithm 1 Standard SDDP

1: Initialize cut approximations Q}(-) for all t =2,... T.
2: Initialize lower bound with v° = —oo0.

3: Set iteration counter to i < 0.

4: while Stopping criterion not satisfied do

10:
11:
12:
13:
14:
15:
16:

17:
18:
19:
20:
21:
22:

Set ¢ «— i+ 1.
Sample a subset L C S of scenarios. > Forward pass
for stages t € [T] do
for samples k € K do
Solve the stage-t subproblem ([2.8)) associated with Qz(myﬁ LED) to

obtain trial point zi*.

end for
end for
If required, compute an upper bound estimate v% according to .
for stagest =1T,...,2 do > Backward pass
for samples k € K do
for realizations j =1,...,q; do
Solve the stage-t subproblem (2.8)) associated with Qiﬂ (x|, EF).
Store the optimal value and dual vector 7™
end for

Use relation to create a new cut for Qy(-).
Update the cut approximation Qi(-) to Q;"'(-) using relation (2.6)).
end for
end for
Solve the first-stage subproblem to obtain a lower bound v'.

23: end while

the lower bound v is contained in the confidence interval that can be derived for

vy. However, this approach has several flaws, such as incentivizing premature

stopping (Shapiro|, [2011). Therefore, in practice, usually more pragmatic criteria

are used, e.g., stopping after a finite number of iterations or cuts, or when the

lower bounds v’ show no significant improvement over several iterations.

Second, for small |K|, the upper bound estimate (2.9)) has almost no explana-

tory power with respect to the true upper bound #°, and thus the quality of the

identified policy. To evaluate the policy obtained in SDDP, in practice therefore

often an additional forward simulation is conducted after SDDP has terminated.

For this simulation a much higher number of sample paths through the scenario

tree is used, e.g. |[KC| € {1000, 10000}, leading to a reasonable estimator Ty.
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In the presented form, and given that an independent random sampling pro-
cedure is used in line 6 of Algorithm [I} SDDP can be shown to converge with
probability 1 to an optimal policy of MSLP in a finite number of iterations (al-
most sure finite convergence) (Philpott and Guan 2008).

Despite its computational advantages compared to NBD and performing well
for several MSLPs in practice, SDDP is still computationally expensive in the
worst-case, though. Its worst-case complexity is only polynomial in ¢;, but expo-
nential in 7" and the state dimension d; (Lan, 2022; |Zhang and Sun, 2022).

2.10 Expanding the state space

As pointed out before, a crucial requirement for the functioning of standard SDDP
is stagewise independence of the uncertainty in the data. In many practical ap-
plications, this assumption is not satisfied. For this reason, for cases of stagewise
dependent uncertainty, various modifications of SDDP are proposed in the litera-
ture. One approach is to extend SDDP to Markov chain uncertainty, which can also
be represented by a scenario lattice. The idea is then to approximate the occurring
stagewise dependent uncertainty by a Markov chain, and thus make it applicable
to SDDP (Lohndorf and Shapiro, 2019). Other approaches are combining SDDP
with an underlying Markov chain (Philpott et al., 2013)), using conditional cuts
(van Ackooij and Warin, 2020)), using saddle cuts (Downward et al., [2020) or dual
variants of SDDP (Guigues et al., 2023)). The last two approaches are specifically
suited for stagewise dependent uncertainty occurring in the objective function.
Often, the uncertainty can also be modeled by an AR process. A prominent
example is the modeling of hydro inflows into reservoirs in power system applica-
tions (de Matos and Finardi, [2012)). As long as the AR process is linear, SDDP
can be applied in a straightforward way by increasing the dimension of the state
variables. This is why this approach is mostly known as expanding the state space.

We illustrate this using a simple process of form

&= O&—1 + 1. (2.10)

Here, ¢, is a vector of autoregressive coefficients and 7, are realizations of a stage-

wise independent random variable 7, representing the error term.
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The key idea now is to consider (z;_1,&_1) as the system state i.e., interpreting
&1 as an additional state variable (Shapiro et al.,2013). By doing this and adding
equation to the problem formulation (2.7)), for any ¢ € [T'] and any realization
j=1,...,q of n;, we obtain value functions

min  fi(z, &) + Q1 (v, &)

Tty

Qt(mt—lv gt—la nt]) = s.t. Ty € Xt(xt—la gt)
&t = Oe&e—1 + My

This approach manages to reformulate the problem in such a way that the
remaining uncertain data exhibits stagewise independence, and thus cuts can be
naturally derived as functions in x;_; and &_;, and shared between scenarios. In
return, the state and decision space dimensions increase. It is important to note,
however, that it is not necessarily required to add the AR process formula
to the constraints explicitly. It may also be evaluated outside of the subproblems
to obtain & and taken into account in the cut generation process to derive tailor-
made cut intercept formulas, which allow cuts to be adapted to a specific history
&1 (Infanger and Morton, 1996; |Rebennack, 2016)).

2.11 Stochastic dual dynamic integer programming

One of the key ingredients of NBD and SDDP as solution methods for MSLPs
is the approximation of (expected) value functions with tight linear cuts that are
constructed using LP duality. As we have seen, after finitely many steps, an exact
representation of the value functions is possible. When some or all components of
the state variable x; have to satisfy integer requirements, i.e., the problem at hand
is a multistage stochastic mized-integer linear program (MS-MILP), the previously
presented cut generation approach is not sufficient to ensure convergence to an
optimal solution.

First, the subproblems in the DPE occurring in SDDP are mixed-integer
linear programs (MILPs) instead of LPs. Therefore, the approach of using LP
duals is not applicable. It is possible to derive Benders cuts using the duals of
the LP relaxzation of subproblems , but these cuts are not guaranteed to be
tight for Q;(+). Second, even if Lagrangian duality is used as an alternative that
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applies to MILPs, the strong duality property that is required for tightness is not
guaranteed to hold. Third, and related to second, in contrast to the continuous
linear case, the value functions Q;(-) and expected value functions Q,(-) are not
guaranteed to be piecewise linear and convex. Therefore, approximating them by
linear cuts that are both tight and valid may not be possible. We discuss this in
more detail in Chapter

Still, some extensions of SDDP to MS-MILPs have been put forward that
come with convergence guarantees. The most prominent one is SDDiP (Zou et al.,
2019b).

Here, to generate cuts, first a copy variable z; for the current state z¢ ; is
introduced together with some constraint set Z;. It allows to replace zi ; by a

decision variable in the original constraints. The subproblems become

Iggizrtl fi(xy, &) + Qi)

Qz(xfe 1 §tj) _ st m € Xt(sztj)
g -1 '

Then, a Lagrangian relaxation is considered where the copy constraint is re-

laxed. This yields the inner problem

min fi(x, &) + Qi(x,) — W:zt

1 Tt 2t

K3 .

Ly(m) = st =€ Xy(2, &)
2y € Zt

for some dual multipliers 7, € R%-1, and the outer (Lagrangian dual) problem

max L (m) + )2l . (2.11)

Tt

By solving the outer problem (2.11]), and using the optimal dual multipliers 7’

and the value £/ (7?), a valid cut for Q,(+) can be derived as

Qu(w1) > L () + () "y
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As shown in |Zou et al.| (2019b)), when the state variables are pure binary, i.e.,
z; € {0,1}%, and the set Z, is chosen as Z, = {0,1}*" or Z, = [0,1]%, these
cuts are also tight in the sense defined before. Therefore, the same convergence
properties hold as for SDDP.

In cases where the state variables are not binary, but satisfy some bound con-
straints x;; € [0,U;], with U; € R, for all components j = 1,...,d;, it is pro-
posed to replace them with a finite number of binary state variables and to solve
the obtained approximation of the original MS-MILP (Zou et al.,; 2019b)). More
precisely, let f;; € (0,1] be some grid precision. Then, using additional binary
variables Ay, k =1,..., Ky, for K;; = |logy(U;)] + 1 Ky, x¢j can be replaced by
the quantity SI0% 25718, Ay

If z,; € Z for some component j, this representation can be made exact for
By = 1, if 2;; € R, then only an approximation is possible, with the quality
controlled by the precision ;.



Chapter 3
Research objectives

In this chapter, we motivate the research objectives and topics that are studied in
this thesis.

3.1 The state of research on SDDP

In its standard form SDDP is a rather simple algorithm, only consisting of a
forward simulation and a backward pass through a recombining scenario tree,
iteratively generating cuts for the expected value functions; see Sect.[2.9] However,
since its invention it has gained enormous interest in research from a theoretical
perspective, with respect to computational improvements, and in practice where
it is applied to numerous case studies and to this date is one of the state-of-the-
art algorithms to tackle large-scale MSLPs. Therefore, it has developed into a
wide-ranging research area.

From a theoretical perspective, standard SDDP comes with a variety of nec-
essary assumptions, among them linearity of all involved functions, no integer
constraints, relatively complete recourse, discrete and finite random variables &;,
and crucially, stagewise independence of the data process (&;)cir). Many of these
assumptions may not be satisfied in practice. For instance, many applications
require integer constraints, e.g., to model investment decisions in generation ex-
pansion problems or start-up or shut-down constraints in unit commitment prob-
lems. As another example, hydro inflows into reservoirs usually show a temporal

correlation, and thus may not be modeled appropriately assuming stagewise inde-

31



32 3 Research objectives

pendence. For these reasons, there has been a legitimate interest in relaxing some
of the standard assumptions and making SDDP applicable to a broader class of
problems.

Finally, SDDP has been observed to show slow convergence, with lower bounds
stalling prematurely for some practical problems (Avila et al., 2024). As a conse-
quence, various acceleration techniques have been proposed.

Due to the sheer amount and the variety of proposed extensions, it becomes
increasingly difficult to keep track of the state of research on SDDP. Therefore, the
first research objective of this thesis is to shed light on SDDP as a research field,
exploring existing extensions, their strengths and weaknesses as well as giving an

outlook on future research on SDDP.

Research objective 1. Provide a comprehensive survey and review of
SDDP as a research field.

3.2 Non-convex value functions

In Papers|[B|to[E] we focus on one specific class of challenges with respect to SDDP.
Previously, we have pointed out that a crucial property for the functioning of
NBD and SDDP is that the (expected) value functions are piecewise linear and
convex functions in the state variables. This prerequisite allows a valid, tight and
finite approximation of these functions using Benders cuts, meaning that after
finitely many of these linear cuts the original functions can be reproduced. This is
important to establish the known convergence results for both solution methods.
NBD and SDDP can be enhanced to nonlinear convex problems, for which
the (expected) value functions remain convex, but are no longer guaranteed to be
piecewise linear, without changing the cut generation mechanism (Girardeau et al.
2015; \Guigues, 2016). However, for many practical applications this generalization
is not sufficient. Instead, many multistage decision-making problems in practice
can only be modeled appropriately by MSPs which, if reformulated as DPE ,
lead to non-convezr (expected) value functions. These value functions cannot be
tightly approximated from below using linear cuts in general. Either valid linear
cuts can be derived that approximate them from below, but lack the tightness

property, or tight affine functions can be derived that may violate validity.
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The main research question of this thesis is how SDDP (and related decompo-

sition methods such as NBD) can be enhanced to these kind of problems.

Research objective 2. Develop approaches to deal with non-convex (ex-
pected) value functions and achieve tight approximations in SDDP and re-

lated decomposition methods.

We specifically deal with three different and prominent cases in which non-

convex value functions may occur.

e Case 1: Integer variables. If the subproblems contain mixed-integer vari-
ables, then even if all occurring functions are linear, the (expected) value
functions are not guaranteed to be convex. In fact, they are not even guar-
anteed to be continuous. This is illustrated in Figure [3.1a]

e Case 2: Non-convex functional description. If the subproblems con-
tain non-convex functions in the objective or nonlinear functions in the con-
straints, such that the feasible set X;(x;_1, &) is non-convex, then even if no
integer variables are present, the (expected) value functions become nonlin-

ear non-convex. This is illustrated in Figure [3.1b]

e Case 3: Non-convex stagewise dependent uncertainty. Recall the
linear AR process to model the uncertain data in MSLP. Now assume
that this AR process is more generally defined by & = b;(&j—1),7¢) for some
non-convex function (). By using the expanding-the-state-space approach
and adding this AR model equation to the subproblem constraints, the fea-
sible set becomes non-convex in the new state variable {;_;;. Thus, we are
back to Case 2. Even if the model equation is only considered implicitly
when evaluating &; and when generating cuts, the (expected) value functions

can be shown to be non-convex in {;_y) in general.

Clearly, also combinations of these three cases are possible. This is illustrated
in a venn diagram in Figure It is also highlighted which case or combination
of cases is studied in which research paper in Part [lI] of this thesis.

We discuss the motivation for studying these specific cases in more detail below

and also put forward more specific research objectives for each of them.
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(a) Mixed-integer linear subproblem. (b) Nonlinear non-convex subproblem.

Figure 3.1: Examples of non-convex value functions.

Before we do this, we take a general perspective on dealing with non-convex

value functions in MSP. In principle, three different approaches can be taken.

e Approach I: Using non-convex cuts. The idea is to approximate the

non-convex (expected) value functions with non-convex functions, which we
also refer to as cuts for convenience. In contrast to linear cuts, if chosen

appropriately, these cuts can be tight without compromising validity.

Approach II: Using linear cuts under tightness-ensuring conditions.
Here, linear cuts are generated irrespective of the non-convexity of the value
functions. However, to achieve tightness and convergence guarantees, certain
conditions have to be met, e.g. binary state variables z;_; in SDDiP. Apply-

ing this approach may also involve a reformulation of the original problem.

Approach III: Using linear cuts without tightness. Similarly to Ap-
proach IT valid linear cuts are generated, but without tightness-ensuring
conditions. This leads to a heuristic version of SDDP or related decompo-
sition methods without convergence guarantees. However, it may still yield
satisfactory policies in practical applications, where decomposition methods

are often terminated before convergence is achieved anyway.

We should mention that in two-stage stochastic programming a fourth approach

is common where convergence can be guaranteed by branching on the first-stage
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Non-convex
functional
description

Figure 3.2: Venn diagram of properties of MSP which lead to non-convex (ex-
pected) value functions. Circles with letters indicate which case is studied in
which research paper in Part |E| of this thesis.

Table 3.1: Classification of research papers in this thesis.

Studied approximation approach

Studied case Approach I Approach IT  Approach III

Case 1 and and |§| and |§|
Case 2 Bl
Case 3

variables, even if non-tight cuts are used. For a multistage setting this approach
is not applicable, though, as it requires branching in all nodes but the leaf nodes,

which is computationally too expensive.

In this thesis, we are interested in solution methods with convergence guaran-
tees, so we mainly focus on Approaches I and II. However, all the results presented
for Approach IT may also be applied heuristically when pursuing Approach III. Ta-
ble classifies our research papers (see Part [LI] of this thesis) with respect to the

cases of non-convexity and the chosen approach to address this uncertainty.
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3.2.1 Using non-convex cuts for MS-MILPs

As described in Sect. if all state variables z;_; in an MS-MILP are binary,
SDDiP is guaranteed to converge to an optimal policy in finitely many steps almost
surely. It only differs from SDDP in the aspect that special Lagrangian cuts
are generated instead of classical Benders cuts. If the state variables are not
binary, it is proposed to approximate them with binary variables. Whereas this
approximation can be made exact for bounded integer state variables, this is not
the case for generally continuous state variables. Nonetheless, Zou et al.| (2019b))
show that given the feasibility assumption of complete continuous recourse, which
is considerably stronger than relatively complete recourse, but ensures Lipschitz
continuity of the value functions, the problem can be solved to arbitrary precision

by choosing a sufficiently large number of binary variables.

However, this approach comes with some drawbacks. The assumption of com-
plete continuous recourse is rather strong and not necessarily satisfied in applica-
tions. More crucially, identifying a sufficiently high number of binary variables is
difficult in practice, as it requires knowledge of problem-specific constants. There-
fore, a suitable binarization precision has to be estimated in advance. If it is chosen
too coarse, then the solved problem may strongly deviate from the original MS-
MILP. If it is chosen very finely, then the state space may become unnecessarily

large, negatively affecting the computational performance.

These observations create the demand for a dynamic version of SDDiP where
the binary approximation is refined dynamically if required throughout the solution
process. Importantly, previously generated cuts should remain valid in order to

avoid that the approximations of Q,(-) have to be started from scratch.

Research objective 2.1. Develop an extension of SDDiP where the state
binarization is dynamically refined if required without destroying the validity

of previously generated cuts.

A second objective that is naturally arising in the context of non-convex value
functions is to explore if some tight non-convex approximations of the value func-

tions could be derived.
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Research objective 2.2. Develop a method to generate tight non-convex

cuts for the value functions that are practically applicable.

Interestingly, as we shall see in Sect. [£.3] pursuing research objective [2.1] nat-

urally leads to non-convex cuts, thus also addresses research objective [2.2]

During the work on this project, some first solution methods that make use of
non-convex cuts in MS-MILPs have already been proposed (Ahmed et al., 2022;
Zhang and Sun|, 2022). Basically, both methods generate cuts based on solving
augmented Lagrangian dual problems. Even with these methods already published,
working on the above research objectives was continued, but taking the new insight
into account. In Sect.[4.3]and [4.4] we explain in detail the relations and differences

between our research results and the two prior proposals.

3.2.2 Using non-convex cuts for general MS-MINLPs

With SDDiP a decomposition method exists that extends SDDP to the broader
problem class of MS-MILPs. A natural follow-up research question is how to fur-
ther extend it to a general non-convex multistage stochastic mized-integer nonlinear
program (MS-MINLP), which also contains non-convex functions in the objective
and constraints. Being able to handle this type of problem is practically relevant,
as some effects in applications can only be modeled appropriately by nonlinear
functions, e.g., the valve-point effect of thermal generators (Pedroso et al., [2014)

or the water head effect in hydro reservoirs (Cerisola et al., |2012).

However, these types of problems pose the additional challenge that all sub-
problems are nonlinear problems, and thus notoriously harder to solve than LPs
or MILPs. Therefore, previous attempts at generalizations of SDDP in this di-
rection either used convexifications and linear cuts (Cerisola et al.l 2012} Steeger
and Rebennack], [2017) or required specific assumptions to be satisfied, for instance
monotonicity of the value functions (Philpott et al., 2020). We try to come up

with a more general method.

Research objective 2.3. Develop a method that extends SDDP or NBD

to non-convex mized-integer nonlinear programs (MINLPs).
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Again, we have to mention the work by Zhang and Sun (2022), which was
published during this research project and qualifies for research objective We
contrast it with our work and highlight our unique contributions in Sect.

3.2.3 Using linear cuts for MS-MILPs

In addition to our work on tight non-convex approximations, we also try to con-
tribute to improving SDDiP and the generation of linear Lagrangian cuts. These
types of cuts are still relevant in solving MS-MILPs because the generation and

incorporation of non-convex cuts may require excessive computational resources.

A main computational challenge for SDDiP itself is that solving Lagrangian
dual problems in each iteration requires significant time, which is even aggravated if
a state binarization is applied. This is already pointed out in the original SDDiP
work (Zou et al., [2019b)), and as a remedy Lagrangian cuts are combined with

cheaper cuts, such as (strengthened) Benders cuts.

Moreover, despite their favorable, convergence-ensuring tightness properties,
Lagrangian cuts may not always yield the best possible approximations of the
(expected) value functions in practice. Sometimes there may exist alternative
cuts, possibly not tight at x! ;, that may significantly speed-up the convergence

process due to improving the approximation outside of z_;.

Finally, especially when a state binarization is applied and cuts are only gener-
ated at extreme points of the state space, the dual problems are often degenerate,
so that infinitely many different Lagrangian cuts may be generated, which may

drastically differ in their approximation quality outside of z!_,.

Given these challenges, our amibition is to improve the computational perfor-
mance of SDDIiP, either by generating the standard Lagrangian cuts faster or by

generating different Lagrangian cuts with computationally preferable properties.

Research objective 2.4. Study possible modifications of the generation
process for Lagrangian cuts in MS-MILPs in order to improve the computa-

tional performance of SDDiP or related methods relying on these cuts.
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3.2.4 Dealing with non-convex stagewise dependent uncertainty

As mentioned before, if we allow the data process (&).ciry to be stagewise de-
pendent and to be described by a non-convex AR process, the (expected) value
functions occurring in SDDP are no longer guaranteed to be convex in the history
§[t—1], Which serves as a new state variable.

Due to this challenge, so far extensions of SDDP to AR processes have been
mostly limited to different types of linear processes (Guigues, [2014; [Infanger and
Morton), [1996; |Lohmann et al., 2016; Queiroz and Morton, 2013). An exception
is the work by Guigues (2014) where convex AR processes are considered. In
this case the (expected) value functions remain convex, though, so linear cuts can
be derived to tightly approximate them. Another exception are special nonlinear
processes studied by [Infanger and Morton| (1996) which still satisfy some linearity
or additivity properties.

However, non-convex AR processes are appropriate models in many practical
applications. For instance, log-linear AR processes (also called geometric AR
processes) are prominently used to model hydro inflows in hydrothermal scheduling
problems (de Matos and Finardi, 2012; Lohmann et al.| 2016; Shapiro et al., 2013,
where the requirement of non-negativity cannot be satisfied by linear AR processes.

This example shows that an extension of SDDP to more general AR processes
is practically relevant. Currently, these processes either have to be linearized, or
users have to revert to other modeling techniques, e.g. using Markov chain SDDP
(Lohndorf and Shapiro, [2019). Our research goal is to adapt SDDP to being able
to handle more general AR processes algorithmically. Importantly, the focus is on
deriving closed-form cut formulas given these type of processes, so that the cut

generation and evaluation remains computationally tractable.

Research objective 2.5. Extend SDDP to more general, especially non-
convex classes of AR processes, such that the cut generation and evaluation

remains computationally tractable.







Chapter 4
Research studies and contributions

The following sections summarize the main contributions of this thesis. For de-
tailed descriptions of the methodology and the results, the reader is referred to the

research papers in Part [[I]

4.1 A review on SDDP

In Paper [A] we provide a comprehensive tutorial-type review on SDDP as a re-
search field. The review comprises a detailed introduction to the main concepts
behind SDDP, an overview on the variety of existing algorithmic extensions and
modifications of SDDP, a discussion of its strengths and weaknesses as well as
an outlook on future research directions. The review is addressed to a broad au-
dience: researchers in the stochastic programming community working on SDDP
(or related methods) that try to get a clear picture of the current state of the re-
search; practicioners that want to apply SDDP to real-world problems; or novices
to SDDP, e.g., scientists from different research communities, that look for an

accessible introduction to the research area.

The review is divided into four parts. Part I explains the main mechanism
behind SDDP. First, some relevant preliminaries are introduced and then the
algorithm is presented in its basic form. In this part, special attention is directed
to 9 assumptions that we identified to be crucial for the functioning of SDDP.

In addition, its convergence properties and its complexity are discussed in detail.

41
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Also, we point out the differences between SDDP and related solution methods
such as NBD or stochastic dynamic programming.

Part Il summarizes applications and implementations of SDDP.

Part III then discusses how the previously identified key assumptions can
be relaxed when working with SDDP. Among others, this includes dealing with
continuous random variables, distributional uncertainty, risk-aversion, stagewise-
dependent uncertainty or non-convexities.

Part IV presents a multitude of approaches to improve the computational per-
formance of SDDP. The motivation behind this is that it is observed to converge
very slowly for some types of problems in practice (Avila et al., 2024)).

Finally, we present an outlook on future research on SDDP. We identify 7
sub-areas of research on SDDP that should deserve special attention. Particularly
noteworthy is the potential of borrowing successful techniques from reinforcement
learning, which shares many similarities with multistage stochastic programming,

and incorporating them into SDDP.

4.2 The role of copy constraints and Lipschitz reg-

ularization

Dealing with SDDP-related decomposition methods in the context of integer vari-
ables often makes use of Lagrangian-type relaxations to generate cuts instead of
the weaker LP relaxations. This is the case for SDDiP (Zou et al., 2019b)), but also
for the non-convex cuts in (Ahmed et al., 2022; Zhang and Sun| 2022)), which are
generated using augmented Lagrangian dual problems. Also our own work heavily
relies on these ideas.

A second important concept from the literature that we rely on is Lipschitz
regularization, which we borrow from (Zhang and Sun|, [2022). Lipschitz regular-
ization of subproblems is helpful in allowing to work with Lipschitz continuous
value functions even without strong recourse assumptions.

Applying Lagrangian relaxation and Lipschitz regularization in our own work,
and extending their usage beyond known results, requires a profound understand-
ing of both techniques. Therefore, in Sect. 3-4 of Paper [C| we deeply analyze

them and provide new theoretical insight on their main properties and how they
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relate to each other. In particular, we investigate in detail the effects that copy
constraints and Lipschitz regularization have on the generation and the properties
of Lagrangian cuts.

With respect to the role of copy constraints z; = ! |, we show that accom-
panying the new copy variables z; with additional constraints z; € Z; leads to
Lagrangian cuts with different properties depending on the choice of Z;. In par-
ticular, we highlight that the tightness result from SDDiP (Zou et al., |2019b) is
actually based on the choice of appropriate sets Z; and not on the introduction of
copy constraints itself.

With respect to Lipschitz regularization, we generalize some existing results on
Lagrangian relaxation. It is well-known that solving the Lagrangian dual problem
to a subproblem is equivalent to solving a specific convexification of said subprob-
lem, and that the optimal value of both problems coincides with the value of the
closed convex envelope of the value function Qy(-) at x¢ ;. Furthermore, it is
well-known that Lipschitz regularizations in the primal space are directly linked
to norm bounds in the dual space. We manage to combine these results: We show
that given some fixed norm ||-|| and some parameter o; for the Lipschitz regulariza-
tion, solving a norm-bounded Lagrangian dual problem of the stage-t subproblem,
where the dual norm to ||-|| is used, is equivalent to solving a specific convexifica-
tion of the Lipschitz regularized subproblem, and that the optimal value of both
problems coincides with the value of the closed convex envelope of the reqularized
value function QF(-;o4-||) at z¢_,.

We use this novel result to show that Lagrangian cuts obtained from norm-
bounded dual problems are tight for the closed convex envelope of the regularized
value functions Qf(-;0¢|-||). As long as all state variables are binary, similar to
SDDiP, tightness for the true regularized value functions can be achieved, given
that oy is sufficiently large or that ||-|| is chosen as the 1-norm. This generalizes

the tightness result from Zou et al. (2019b)) to the Lipschitz regularized case.

4.3 Dynamic SDDiP

With respect to research objective [2.1, we propose a method called Dynamic SD-

DiP, which enhances SDDiP such that the binary approximation precision can
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be refined within the solution method, while not compromising the validity of
previously generated cuts.

Importantly, this contribution is not related to a single paper, but to Papers
and [C] In Paper [B] a larger decomposition framework is introduced, see Sect. [4.4]
and its inner loop can be interpreted as a dynamic version of SDDiP, even though
it is only applied to a deterministic problem there. Based on some technical
assumptions, also a convergence proof is presented. In Sect. 5 of Paper [C] these
algorithmic ideas are extended to the stochastic case. Moreover, a more rigorous
theoretical analysis is provided. In particular, it is shown how convergence can be

achieved when the technical assumptions from Paper [B] are dropped.

4.3.1 Theoretical results

We present Dynamic SDDiP in more detail now. The first main difference to
SDDiP is that no static binary approximation of the state space is applied. Instead,
the solution method operates in the original state space, which implies that the
original MS-MILP is solved, and that all cuts are expressed in the original state
variables x;_i.

In order to obtain tight cuts, the tightness result from SDDiP is exploited,
stating that Lagrangian cuts are tight if the state variables are binary. To this
end, a temporary lifting to the binary space is conducted (the associated precision
is refined if the solutions in the forward pass do not improve for a predefined
number of iterations). Then, tight Lagrangian cuts are computed in this binary
space. In order to use them in the original subproblems, these cuts are projected
back to the original state space. This procedure is crucial to ensure that the cuts
remain valid, even if the precision of the binarization is refined later on. This
lift-and-project idea is illustrated in Figure [4.1], which is taken from Paper [C]

We now address the projection of cuts. In Paper [C] we coin the pointwise
maximum of this projection the cut projection closure (CPC). Importantly, the
CPC is a non-convex function in the original state variables x;_1, thus a non-convex
cut for the non-convex expected value function Q,(-). This means that addressing
research objective [2.1] implicitly leads to addressing research objective as well.
To make sure that the subproblems remain MILPs, the CPC can be expressed

through linear constraints by introduction of additional (binary) variables.
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Trial point
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Figure 4.1: The lift-and-project cut generation approach from Dynamic SDDiP.

For the convergence of Dynamic SDDIiP, it is required that the CPCs pos-
sess certain properties: they should be valid, tight and Lipschitz continuous, cf.
Sect. 2.5 We call such CPCs sufficient.

Under certain assumptions, the CPC can be shown to be tight at the so-called
anchor point xfg;t_l. In some sense, this is the point closest to the trial point
x!_, which can be described exactly using the current state binarization. The
distance between xﬁB;t_l and z!_, can be controlled using binary refinements. The
idea is that under Lipschitz continuity of the CPC, then also the error in the cut
approximation can be controlled, thus leading to some notion of tightness at z}_,
as well. However, in order for this to be true, it has to be ruled out that with a
binarization refinement also the Lipschitz constant of the CPC increases. In other
words, the CPC has to be Lipschitz continuous with a constant independent of
the binarization precision. Otherwise, the CPCs may become infinitely steep and
convergence is not guaranteed.

To ensure Lipschitz continuity of the CPCs, it is reasonable to consider Lips-

chitz continuous (expected) value functions within the algorithm. Therefore, we

borrow the idea from |Zhang and Sun| (2022) to apply a Lipschitz regularization

with parameter o; to the subproblem at stage t. If o; is chosen sufficiently large
for all ¢ € [T1, still the original MS-MILP is solved (Zhang and Sunl [2022).
In the forward pass of Dynamic SDDiP, Lipschitz regularized subproblems are

solved. For the cuts generated in the backward pass, the goals of cut tightness
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and Lipschitz continuity independent of the binarization precision have to be rec-
onciled. As we show in Paper [C] this can be achieved by careful design, that is
choosing appropriate weighted norms to bound the Lagrangian dual problem in

the lifted binary space.

4.3.2 Comparison with existing approaches

Dynamic SDDiP differs from related methods in the literature. We provide a
detailed comparison in the supplementary material to Paper [C|

Compared to standard SDDiP there is no need for a static and permanent
state binarization nor has the precision of this binarization to be fixed in advance.
Instead, the binarization is used only temporarily to ensure tightness of the ob-
tained CPCs, and refined dynamically within the algorithm. Importantly, with
these refinements, all previously generated cuts remain valid. This is not possible
in the standard SDDiP framework, where refinements shift the value functions of
the approximating problem downwards at the risk of existing cuts being violated.

Working in the original state space also comes with the advantage that the
original MS-MILP is solved, given that all o;,¢ € [T, are chosen sufficiently large.
In contrast, for standard SDDiP with state binarization only an approximation of
this problem is solved.

Dynamic SDDiP only requires relatively complete recourse combined with a
Lipschitz regularization of the value functions, instead of taking the stronger com-
plete continuous recourse assumption, which may not be satisfied in practice. This
approach also has the advantage that all required Lipschitz constants are known
at all times.

Compared to SLDP and its generalization in |[Zhang and Sun| (2022), the differ-
ences are more subtle. For convergence purposes, all approaches require Lipschitz
continuity of the considered value functions to prevent the generated cuts from
becoming infinitely steep close to discontinuities. Again, SLDP assumes complete
continuous recourse to ensure Lipschitz continuity of the true value functions,
while Zhang and Sun| (2022) suggest to consider Lipschitz regularizations of the
value function. We follow the latter approach in combination with relatively com-
plete recourse. In Zhang and Sun| (2022) no recourse assumption is taken, but

in return the state variables x;_; are only allowed to enter the objective function.
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This means that constraints depending on x;_; have to be modeled using indicator
functions.

Whereas SLDP solves standard subproblems in the forward pass, in [Zhang
and Sun (2022) and Dynamic SDDiP Lipschitz regularized subproblems are con-
sidered. In the backward pass, SLDP deals with an augmented Lagrangian dual
problem without bounds on the dual multipliers. Our proposed method deals with
a Lagrangian dual problem with norm bounds in a lifted space. The method from
Zhang and Sun| (2022) is the most general one, as it includes both an augmenting
term in the objective and norm bounds on the dual multipliers.

The proposed Dynamic SDDiP method comes with some drawbacks compared
to the other approaches. First, the CPC requires more (binary) variables and
constraints to be reformulated using MILP constraints than the cuts from |[Ahmed
et al.| (2022)). Second, the dual problem has to be solved in a higher-dimensional
space due to the state binarization.

On the other hand, Lagrangian dual problems are in general less costly to
solve than the augmented dual problems in |/Ahmed et al.| (2022); |Zhang and Sun
(2022). Moreover, a computational comparison for a simple illustrative example,
see the supplementary material to Paper[C], indicates that our proposed non-convex
cuts may yield better approximations of Q,(-) at regions different from the trial
point z! ;. In particular, the Lipschitz cuts from [Ahmed et al| (2022) may be
unnecessarily steep, as their slope is pre-determined. Similar observations can be
made for augmented Lagrangian cuts, especially if the dual multipliers are not
bounded and if the Lipschitz constant estimates are too high. If the estimate is
too small, the non-convex cuts are not guaranteed to be valid, though.

Finally, we should note that the generalized conjugacy cuts from Zhang and
Sun/ (2022) have not been tested computationally yet, but were rather introduced

in the context of a complexity analysis.

4.3.3 Limitations and outlook

Whereas Dynamic SDDiP yields an interesting way to solve MS-MILPs in theory,
its practical value to solve these type of problems in real-world applications is yet
to be proven. So far, Dynamic SDDiP has only been applied to small illustrative

problems or to case studies as part of a larger solution framework, see Sect. [4.4]



48 4 Research studies and contributions

but not as a standalone method. Therefore, in an ongoing research project it is
currently applied to a unit commitment problem. An implementation in Julia is
available in the GitHub project DynamicSDDiP. j1 (Fillner, |2024a)).

The main limitation of Dynamic SDDiP in its current form is that it requires a
lot of computational effort. First, expressing the CPCs through MILP constraints
is complex and may increase the size of the subproblems quickly. Second, com-
puting the CPC is computationally costly, as Lagrangian dual problems have to
be solved for each node that is visited in the backward pass. It is yet to be de-
termined if the gain in tightness compared to linear cuts and the gain in dynamic
compared to standard SDDiP are worth the additional effort. A possible com-
promise is to combine the non-convex CPCs with standard linear cuts, so that
expensive non-convex cuts are only generated if required in the solution process.

Another research direction that could be worthwhile to explore is to find more
efficient ways to represent the CPC using MILP constraints. So far, we used a
Big-M approach to reformulate the KKT conditions of the projection problem.
However, different approaches are possible, e.g., using SOS-1 conditions or apply-

ing novel techniques from bilevel optimization.

4.4 Non-convex nested Benders decomposition

In Paper [B] we address research objective 2.3 and propose a new framework to
solve multistage (stochastic) non-convex MINLPs. We refer to this method as
non-convex nested Benders decomposition (NC-NBD). Although the results in the
paper are presented for deterministic problems, by traversing the complete scenario
tree as in NBD they can be extended to stochastic problems in a straightforward
manner. Therefore, for convenience we still refer to the considered problems as
multistage stochastic problems in the following. If sampling should be included as

in SDDP, some careful modifications are required, as we discuss below.

4.4.1 Theoretical results

The NC-NBD framework assumes (relatively) complete recourse of the MS-MINLP

and continuity or Lipschitz continuity of all occurring functions. Other than that,
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no specific assumptions are taken. In particular, z;_; is allowed to enter the
constraint set X; at stage ¢.

It is shown that NC-NBD converges to an approximately optimal solution in
finitely many iterations. To our knowledge, apart from the decomposition method
in [Zhang and Sun| (2022), it is the only proven exact solution method for general
MS-MINLPs. For a comparison between both methods, see the following section.

The NC-NBD framework combines piecewise linear relaxations, Lipschitz reg-
ularization, binary approximation and cut generation in a novel, unique and dy-
namic fashion. By dynamic we mean that all approximations (piecewise linear ap-
proximation, state binarization, cut approximation) are refined dynamically where
and when it is reasonable during the solution process.

The basic concept is that the considered MS-MINLP is iteratively approxi-
mated by MS-MILPs, which are obtained by expressing piecewise linear relax-
ations of all occurring nonlinear functions as MILP models. These relaxations in
turn can be obtained by computing piecewise linear approximations and shifting
them down sufficiently (Burlacu et al.; 2020; |GeiBler, 2011)). Due to the relaxation
property, the MILPs are outer approzimations, so their optimal values v* are lower
bounds for v*.

In more detail, NC-NBD consists of two nested loops. In the outer loop, with
iteration index ¢, DPE for the true MS-MINLP are considered. The occurring non-
convex value functions Q;(-) are replaced with cut approximations Q(-) that are
composed of non-convex cuts. The generation of these cuts takes place in the inner
loop of the framework. Therefore, the outer loop only contains a forward pass.
If the whole scenario tree is traversed, a valid upper bound @ can be computed.
Moreover, the first-stage problem yields a lower bound v¢. If both bounds are
sufficiently close, the outer loop, and by that NC-NBD terminates. Otherwise, for
each stage t € [T'], the piecewise linear relaxations are improved in a neighborhood
around the current optimal solution z¢. Importantly, as we show in the paper, this
can be done in such a way that the existing cut approximations remain valid, so
the approximation does not have to be started from scratch.

After each outer loop iteration, the current MS-MILP approximation is solved
in an inner loop. This is done using an NBD-based decomposition method that,
apart from not sampling in the forward pass, is equivalent to Dynamic SDDiP, see
Sect. . In particular, this implies that the (expected) value functions occurring
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in the outer loop are approximated by non-convex cuts, namely CPCs. Again, by
careful construction, all existing cuts remain valid with future refinements.

The main steps of the framework are illustrated in Figure 4.2]

e-optimal
solution of (P)

Outer Loop
Problem
Solved?

Solve Outer

Problem (P) satisfying Pl(;ge;&flse 'Lmear
elaxations Loop Problems

Al) a A2
(A1) and (A2) Refinement

OUTER LOOP

Outer

Approximation (P) non-convex
cuts

INNER LOOP

Solve (P) with
Dynamic SDDiP

Figure 4.2: Illustration of the main steps of NC-NBD.

Importantly, to solve the MS-MILPs in the inner loop, the regularization pa-
rameters o; have to be chosen sufficiently large for each t € [T]. Given that the
sufficient level may change with the piecewise linear refinements in the outer loop,
it may be required to update o; iteratively as well. In our computational tests,
this was rarely the case, though.

Finally note that the convergence proof in Paper [B| requires a very technical
assumption for the non-convex cuts in the inner loop (Assumption (A4)). However,
as discussed in the previous chapter on Dynamic SDDiP, it is shown in Paper [C]

how this assumption can be avoided.

4.4.2 Comparison with existing approaches

For the inner loop and Dynamic SDDiP, most of the relevant differences to existing
solution methods have already been discussed in Sect. [£.3] However, we should
emphasize that specifically in the NC-NBD setting where an MS-MINLP is solved
in a larger framework, and MILPs are only solved in an inner loop, it is crucial

that (1) the state binarization precision can be refined dynamically (the required



4.4 Non-convex nested Benders decomposition 51

precision may differ for different MILPs constructed in the outer loop), (2) all
previously generated cuts remain valid and (3) the cuts generated in the inner
loop are expressed in the state variables x; ; that are used in the outer loop
problems. Therefore, standard SDDiP cannot be used effectively in this setting.
With regard to the overall framework, as mentioned before, the method pro-
posed in [Zhang and Sun| (2022) is also an exact solution method for MS-MINLPs.
Some main differences to our approach have already been pointed out in Sect.
on Dynamic SDDiP. Additionally, NC-NBD differs in consisting of two nested
loops. This leads to a more complex framework, but it also means that MINLPs
only have to be solved occasionally during outer loop iterations, whereas the
method in [Zhang and Sun| (2022) proposes to solve MINLP subproblems in each
iteration. This is computationally challenging. Finally, the method in |[Zhang and
Sun! (2022)) was mostly developed as a means to conduct a complexity analysis. In

contrast to NC-NBD, it has not been applied to a case study yet.

4.4.3 Case study and computational results

We test NC-NBD in experiments for moderate-sized instances of a deterministic
unit commitment (UC) problem. To this end, it is implemented in Julia in the
NCNBD. j1 project [Fillner| (2021)) (this project is deprectated by now, and currently
only the related DynamicSDDiP. j1 project is maintained).

We run experiments for two different variants of a UC with continuous and
binary state variables. In the base instances, the objective function is nonlinear
concave, as it includes emission costs which are modeled by a quadratic cost curve.
In the wvalve-point instances, the valve-point effect for thermal power plants is
considered (Pedroso et al., 2014), which leads to a non-convex objective function
including a sinusoidal term. The tested instances have between 2 and 36 stages
and contain 3 to 10 thermal generators, resulting in 6 to 20 state variables.

For small problems, it can be verified that NC-NBD converges to the exact
global solutions. This illustrates the efficacy of NC-NBD to solve MS-MINLPs.
However, the observed solution times are very long due to the large computational
overhead of solving Lagrangian dual problems in each iteration of the inner loop,
as well as due to quickly growing subproblems, caused by modeling the piecewise

linear relaxations and the non-convex cuts. Still, NC-NBD manages to outper-



52 4 Research studies and contributions

form some conventional global solvers for problems with 36 stages, but a moderate
number of state variables and nonlinearities. Moreover, in retrospect, the im-
plementation of NC-NBD could have been accelerated substantially, as became
apparent in later tests of Dynamic SDDiP. Therefore, it should be competitive

also for a smaller number of stages.

4.4.4 Limitations and outlook

The main limitation of NC-NBD is the huge computational cost of combining sev-
eral approximations, and especially solving Lagrangian dual problems in each inner
loop iteration and MINLP subproblems in each outer loop iteration. Therefore, in
its current form it is rather of theoretical interest.

However, we see some potential to improve NC-NBD in the future. First, the
Lagrangian dual problems could be solved more efficiently or with a less strict op-
timality tolerance. Second, the non-convex cuts could be combined with standard
linear cuts to accelerate the solution process. In our experiments, so far we focused
on using only the non-convex CPCs to approximate the value functions. Third,
as mentioned for Dynamic SDDiP already, more research could be conducted on
more efficiently representing the CPCs through MILP constraints. Finally, for a
problem at hand, tailor-made piecewise linear relaxations could be used instead of
using a general purpose implementation compared to our experiments.

In the future, NC-NBD could also be tested on stochastic instances of unit
commitment, however, realistically this requires working on the above performance
improvements first. If sampling shall be included, also the stopping criterion for
the inner loop has to be adapted accordingly, otherwise this loop may never be
left. Additionally, when it comes to proving convergence, it has to be taken into
account that sampling may be applied (independently) in both the inner loop and

the outer loop.

4.5 A new framework to generate Lagrangian cuts

In Paper D] we present a new framework to generate Lagrangian cuts in decompo-
sition methods for MS-MILPs such as SDDiP. In doing that, we address research
objective [2.4
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4.5.1 Theoretical results

The new framework is based on a similar proposal that has been made for standard
Benders cuts in Fischetti et al.|(2010)) and has seen further development and deeper

analysis in Brandenberg and Stursberg| (2021)); |[Hosseini and Turner; (2021)).
A key difference to the tranditional generation approach from SDDiP (Zou

et al., 2019b)) is that the considered Lagrangian relaxation is not derived imme-
diately from the stage-t subproblem. Instead, first a feasibility problem for the
epigraph of Q;H() is formulated. To be precise, given a trial point (x!_,,6?), with
6 the value Q!(z!_,) of the current cut approximation at stage ¢ — 1, the problem
checks if this point is contained in the epigraph of Q;H() If this is the case, the
optimal value of this feasibility problem is zero, otherwise it is +00. Now, for this
feasibility problem a Lagrangian relaxation can be derived by relaxing the copy

constraints z; = x;_; plus the constraint containing 0;.

This type of Lagrangian relaxation has already been presented in |Chen and
Luedtke| (2022) for two-stage stochastic MILPs. However, not only do we extend
it to multistage problems, the framework we develop based on this relaxation is also
more general and allows for the generation of various different types of Lagrangian

cuts, whereas in (Chen and Luedtke (2022)) only one specific case is considered.

An important observation is that the derived Lagrangian dual problems are un-
bounded whenever (z¢_,,0!) is not contained in the epigraph of the closed convex
envelope of Q;H() To generate a reasonable Lagrangian cut, a bounded problem
should be solved, though, as this allows to select the dual optimal solution as the
cut coefficients. We present different normalization constraints that are sufficient
to achieve this. We show that depending on the chosen normalization, Lagrangian
cuts satisfying different quality criteria can be obtained, e.g., deep cuts, facet-
defining cuts or Pareto-optimal cuts. In doing that, we draw on similar results
that have been presented for Benders decomposition recently and extend them to
the stochastic and Lagrangian setting (Brandenberg and Stursberg), |2021; Hosseini
and Turner, [2021)). In particular, we distinguish linear normalizations (yielding
LN cuts) and norm-based normalizations (yielding deep cuts). Moreover, we in-

vestigate in detail the geometrical ideas and relations behind these normalizations.

For LN cuts the coefficients of the normalization constraints have to be chosen

carefully to make sure that the normalized Lagrangian dual problem is in fact
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bounded. Geometrically, we show that this is related to the identification of core
points in the epigraphs of Q:H() For MS-MILPs, identifying such core points
can be quite challenging, especially in the presence of integer requirements. We

propose five heuristic approaches for the computation of core point candidates.

By incorporating the new cut generation framework we obtain alternative ver-
sions of NBD or SDDiP. We prove that under the assumption of binary state
variables, NBD still converges to an optimal solution in a finite number of iter-
ations. This proof can be extended to prove almost sure finite convergence for
SDDiP using the same arguments as in |Zou et al.| (2019b)).

Our framework allows for a lot of flexibility in cut generation, and thus notably
extends the toolbox of SDDiP. The hope is that for a given MS-MILP this can be
exploited to identify a type or a combination of different types of Lagrangian cuts
that significantly accelerate(s) SDDiP.

4.5.2 Computational results

We perform extensive computational tests for SDDiP to assess the quality of La-
grangian cuts generated using the new framework. To this end, they are added
as a feature to the existing GitHub project DynamicSDDiP.jl1 (Fillner, 2024a)).
For comparison, in our experiments we also generate Benders cuts, strengthened
Benders cuts and the standard Lagrangian cuts from SDDiP (Zou et al., [2019b)).

All tests are performed on instances of a capacitated lot-sizing problem (CLSP)
from the literature. This problem has continuous state variables, so we use a binary

approximation of the state space with a discretization precision of 1.0.

We run different batches of tests. First, we test SDDiP using only one type of
cut per run. After that, we combine Lagrangian cuts with strengthened Benders
cuts to accelerate the solution process. In addition to standard SDDiP with state
binarization, we also test it without state binarization. Whereas this method has

no convergence guarantees, the dual problems are solved much faster.

Overall, our results show significant improvements of the obtained lower bounds
in SDDiP (compared over time, not over iterations) in all cases if using our pro-
posed cuts: with state binarization, without state binarization, combined with

strengthened Benders cuts or applying the cuts on their own. With state bina-
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rization, especially LN Lagrangian cuts yield strong improvements, without state
binarization also deep cuts perform reasonably well.

We also show that SDDiP can be further accelerated by restricting the dual
space in the Lagrangian dual problems, even though this again annuls the theo-
retical convergence guarantees. This approach had been previously suggested by
Chen and Luedtke| (2022).

However, despite these favorable results, we also observe that better lower
bounds do not necessarily translate to better performances of the obtained policies
in an in-sample simulation after SDDiP has terminated. In this regard, often
policies obtained by using strengthened Benders cuts show the best performance.
Moreover, for problems with more than 4 stages none of our test instances manages
to close the optimality gap sufficiently, so even after hours of run time the observed
gaps are still considerable. This shows that even with carefully modifying the cut
generation process, solving large-scale MS-MILPs in reasonable time remains an

open challenge.

4.5.3 Limitations and outlook

The main limitation of the new cut generation framework is that, despite improving
the lower bounds in SDDiP it does not always lead to better-performing policies
because as standard SDDiP, it struggles to close the optimality gap for CLSP.

A major aspect in that regard is that the framework requires a multi-cut ap-
proach where all value functions are approximated separately, see Sect. [2.5] This
is computationally expensive because ¢; cuts are added at stage t per iteration.

We show in the supplementary material of Paper [D] how our framework can be
extended to a single-cut setting. However, first this variant has not been tested in
our experiments so far. Second, the dimension of the dual space is increased sig-
nificantly. Third, this approach only allows for a partial decomposition of the La-
grangian dual problems. Still, we reckon that trying to compute deep Lagrangian
cuts or LN Lagrangian cuts in a single-cut framework in a computationally efficient
way could be an interesting research direction.

In addition, the computational performance of our proposed cut generation
framework could be improved in several ways. The solution of independent La-

grangian duals could be parallelized. Moreover, the dual space restriction sug-
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gested by (Chen and Luedtke (2022) looks promising to reduce the computational
effort while not compromising cut quality by too much. We think that future
research could focus more on priorly restricting the dual space to reduce the com-
putational effort for solving Lagrangian dual problems.

Other points of interest with respect to future research are addressing numerical
issues, which occasionally occur for LN cuts, identifying core points, or solving
Lagrangian dual problems more efficiently in general.

Moreover, although we do not explore and test this in Paper [D] we expect that
the new cut generation framework may also be applied when Lagrangian duality is
used to derive non-convex cuts, e.g., Dynamic SDDiP or NC-NBD. However, these
methods do rely on Lipschitz regularizations and solving bounded Lagrangian dual
problems, so the framework would have to be adapted to this setting first.

Finally, so far, only tests for CLSP have been conducted and included in Pa-
per [D] For the future, further tests are planned on a capacitated facility location

problem with pure binary state variables and local integer constraints.

4.6 Non-linear cut-sharing in SDDP

In Paper [E] we address research objective [2.5) and extend the toolbox of SDDP
to stagewise dependent uncertainty occurring in the RHS of MSLPs that is mod-
eled by nonlinear, possibly non-convex AR processes. Our results allow for more

flexibility, and therefore potentially more accuracy in modeling uncertainty in the
RHS when dealing with MSLPs.

4.6.1 Theoretical results

The theoretical results of the paper consist of two major parts.

First, we deal with general AR processes of type & = b(§t—1], 1), where by(-) is
a nonlinear, possibly non-convex function. As explained in Sect. [3.2.4] in this case
the common approach to interpret the history {;_) as an additional state vector
leads to non-convex (expected) value functions. Therefore, linear cuts are not suf-
ficient for valid and tight approximations, and thus cannot guarantee convergence
of SDDP. We show that instead, cuts can be derived that are linear in the origi-

nal state variables z;_;, but non-convex in the history £,y of the considered AR
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process, therefore allowing for valid and tight approximations of the non-convex

expected value functions.

For these cuts, however, the computational tractability becomes a major chal-
lenge for SDDP-type algorithms. In the presented form, the cut formulas at stage ¢
require a recursion over the scenario tree from stages T to t + 1, which is computa-
tionally infeasible in most cases. On the other hand, converting them into closed-
form cut formulas that can be evaluated without said recursion is not possible in

general. Therefore, applying them within SDDP is computationally intractable.

Second, we deal with a special class of nonlinear AR processes, which we refer
to as log-linear (periodic) AR processes. These processes are widely used to model
non-negative stochastic inflows within hydrothermal systems (Shapiro et al., [2013]).

By exponentiation, it can be shown that these processes satisfy & = b;(¢ [t—1]» M)
with b(-) a function of type ™ [[, .,y §;fitik) with coefficients ¢\' ™ k € [t —1].
The upper index is put in brackets to distinguish it from exponents.

For this class of AR processes, we are able to develop tractable closed-form cut
formulas. The associated cuts are valid and tight. Importantly, they are nonlinear,
possibly non-convex in §j_y), but linear in z,_;. Therefore, it is possible to incor-
porate them into the SDDP subproblems without compromising their linearity (as
long as the model equation is not introduced as an explicit constraint). If solvers
do not allow for this, the derived formulas can be used to adapt the intercept of a
given cut to a scenario at hand, thus to share the cut with that particular scenario.
To our knowledge, Paper [E]is the first work proposing nonlinear cuts and showing
how they can be used within SDDP in this context.

Note that even under special conditions where both the (expected) value func-
tions and our proposed nonlinear cuts become convez, our cuts may yield superior
results compared to the linear cuts proposed in|Guigues| (2014). The reason is that
both types of cuts are tight, but the nonlinear cuts provide a better approximation

outside of the current trial point z}_;.

4.6.2 Computational results

To assess the performance of SDDP incorporating our proposed nonlinear cuts,

we perform computational tests for a long-term hydrothermal scheduling problem
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(LTHS) with stochastic inflows. Our version of SDDP is implemented in Julia and
available in the GitHub project LogLinearSDDP. j1 (Fiillner, 2024b)).

We use data of the Brazilian power system with 4 energy-equivalent reservoirs,
95 generators and a planning horizon of 60 months (plus additional 60 months to
remove end-of-horizon effects) (Shapiro et al., 2013). We run tests using log-linear
AR processes with two different lag orders, which have been fitted on historical
data. For comparison, we also consider standard SDDP with different linearized

AR processes of lag order 1.

First of all, the results of our experiments show that our proposed version of
SDDP works as intended. Furthermore, in an out-of-sample simulation performed
after termination of SDDP, the policies obtained from our proposed version of
SDDP outperform those obtained using standard SDDP with linearized inflow
models. More precisely, assuming that the log-linear AR process provides an
accurate representation of the inflows, our tailor-made version of SDDP allows

for a 7-10% reduction of total costs on average compared to standard SDDP.

These performance gains have to be taken with some caution, though. The
main reason is that the average inflow level is consistently lower for the log-linear
models than for the linearized models (about 3-4% difference for the largest reser-
voir). This means that the policies obtained from standard SDDP are trained on
an inflow level that is not really comparable to that from the log-linear models,
which may explain the worse performance on out-of-sample data from the log-
linear models. On the other hand, it is important to clarify that the differences
in inflow levels are not deliberately chosen, but arise as a direct consequence of
fitting two different types of AR models on the historical data. A simulation anal-
ysis indicates that scenarios obtained from the log-linear models better match the
statistical properties of the historical data. Similar observations had been made in
Lohndorf and Shapiro| (2019)) before. Hence, based on the available data, the log-
linear models should provide a more accurate representation of the inflows. From
that perspective, the differences in inflow levels and out-of-performance costs high-
light the importance of incorporating nonlinear inflow models directly into SDDP

instead of linearizing them.
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4.6.3 Limitations and outlook

The main drawback of our approach is that we observe a considerable computa-
tional overhead using the proposed non-convex cut formulas in SDDP. For 1000
iterations, our version of SDDP takes about 5-6 hours instead of less than one hour
run time for standard SDDP. This overhead is mostly caused by the requirement
to iterate over all existing cuts when computing cut intercept factors or adapting
the cut intercepts to a given scenario.

A possible remedy is that our methodology can be naturally extended to a
hybrid version of SDDP where a log-linear AR process and non-convex cuts are
used in early stages, while a linearized process and linear cuts are used in later
stages of the MSLP. This extension is explained in the supplementary material to
Paper [E] but has not been tested computationally yet. Additionally, the efficiency
of our implementation could be improved to reduce the computational overhead
of using our proposed non-convex cuts.

In the future, research experiments could be conducted for a case study with a
convex log-linear AR process. This would allow to get an unbiased comparison of
the performance of our proposed non-convex cuts and standard linear cuts, as the
same inflows can be used in both cases. In the previous tests, such a comparison
is not possible because the results are highly affected by the differences of the AR
models themselves.

Finally, with respect to our work on general non-convex AR processes, exploring
the usage of approximations for the cut intercepts could be worthwhile in order to
avoid the costly recursion over the scenario tree. We provide some first theoretical
results pointing in this direction in Paper [E] but a more detailed study is left for

future research.






Chapter 5

Conclusion

5.1 Summary

This dissertation extends SDDP and related decomposition methods, such as NBD

or SDDiP, in several ways.

First, a dynamic version of SDDiP is presented in which the binary approxi-
mation of the state variables is dynamically refined and only applied temporarily

in order to generate tight non-convex cuts in a lift-and-project scheme.

Second, a generalization of NBD-like and SDDP-like algorithms to general non-
convex multistage stochastic MINLPs is proposed. It combines piecewise linear
approximations, regularization and the lift-and-project approach from Dynamic

SDDiP in a unique fashion.

Third, an extension of SDDP is presented that allows to handle stagewise
dependent uncertainty in the right-hand side that is modeled by log-linear autore-
gressive processes. This contribution allows for more flexibility and accuracy in
modeling uncertain data in SDDP, without the need to linearize the stochastic

processes.

Fourth, a novel framework is presented to generate Lagrangian cuts in multi-
stage stochastic programming. Depending on the choice of a normalization con-

straint, Lagrangian cuts satisfying different cut quality criteria can be generated.

As the backbone of the algorithmic ideas, new theoretical results on Lagrangian

duality, Lagrangian cuts and Lipschitz regularization are developed.

61
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The proposed solution methods can be applied in several real-world decision-
making problems, especially in the energy sector, e.g., unit commitment problems,

hydrothermal scheduling problems or generation expansion problems.

5.2 Ciritical reflection and outlook

In their current form, most of the extensions of SDDP presented in this thesis are
rather of theoretical interest, and may serve as a basis for future research, instead
of being immediately applicable to large-scale instances of multistage stochastic
problems in real-world applications.

As the common denominator among all methods relying on Lagrangian relax-
ation, i.e., Dynamic SDDiP, NC-NBD and generating Lagrangian cuts, we observe
a huge computational bottleneck in solving the Lagrangian dual problems. More-
over, some of these methods involve approximations, such as binary approximation,
piecewise linear approximation or non-convex cuts, which require the introduction
of several additional (binary) variables and constraints. This lets the considered
subproblems grow quickly, and slows down the solution process tremendously over
time. Although the proposed methods have convergence guarantees and are shown
to improve the approximation quality compared to existing solution methods, it
is therefore not clear in general, and probably problem-dependent, if this gain
in approximation quality is worth the additional effort. Even if, it has to be
considered that an improvement in that regard does not necessarily translate to
better-performing policies in in-sample or out-of-sample simulations.

An exception is the proposed SDDP version for log-linear AR processes, which
shows considerable computational overhead as well, but within reasonable limits.
Also, the increased accuracy of modeling the uncertain data seems to warrant the
additional effort, as the obtained policies differ significantly from those obtained
using conventional techniques.

For the above reasons, further research, especially on computational improve-
ments, is required for a widespread application of the proposed extensions of SDDP.
In this thesis we point out that there exists significant room for improvement in
different directions. However, it is important to keep in mind that the tackled
problems are multistage/dynamic, non-convex and stochastic, thus very complex

by nature and expected to be computationally challenging to solve.
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Abstract

We provide a tutorial-type review on stochastic dual dynamic programming (SDDP), as
one of the state-of-the-art solution methods for large-scale multistage stochastic programs.
Since introduced about 30 years ago for solving large-scale multistage stochastic linear
programming problems in energy planning, SDDP has been applied to practical problems
from several fields and is enriched by various improvements and enhancements to broader
problem classes. We begin with a detailed introduction to SDDP, with special focus on
its motivation, its complexity and required assumptions. Then, we present and discuss
in depth the existing enhancements as well as current research trends, allowing for an
alleviation of those assumptions.

1 Introduction

In many decision-making situations at least some of the data are uncertain. While this
uncertainty is often disregarded, the importance of taking it into account during the
decision process was already recognized in 1955 by George Dantzig [44]. In stochastic
programming, a common approach to achieve this is to split up this process into two
different stages: At the first stage, decisions have to be taken before any uncertain
data are revealed and to hedge against the existing uncertainty (so-called here-and-
now decisions). At the second stage, corrective actions, called recourse or wait-and-
see decisions, can be taken, once the realization of the uncertain data is known [26].
Typically, the aim is to determine an optimal decision rule in expectation or with respect
to some risk measure.

In many practical applications, not only two, but multiple subsequent decisions have
to be taken [7]. If these decisions cannot be taken independently, but are coupled by
their effects on a system state, e.g., hydroelectric generation affecting the water level
of a reservoir, or orders affecting the size of an inventory stock, this can be modeled
as a multistage stochastic problem with several subsequent recourse decisions (this is
also referred to as dynamic programming, and was recently coined sequential decision
problem in [170]). In such a problem, trade-offs have to be made between using an
existing resource immediately or saving it up for later stages, taking into account the
future uncertainty.

Stochastic dual dynamic programming (SDDP) is an algorithm to tackle such mul-
tistage stochastic problems in order to compute, or at least approximate, an optimal



I6)

policy, that is, a strategy or decision rule providing the best here-and-now decision as
well as the best wait-and-see decisions for any stage and any given realization of the
uncertain data. It was first proposed by Pereira and Pinto in 1991 in [153].

Historically, SDDP has its roots in two separate research streams dealing with se-
quential decision problems. The first one is stochastic dynamic programming (SDP),
which is closely related to stochastic optimal control and Markov decision processes.
Here, a crucial assumption is that the uncertain data on different stages of the decision
process are independent of each other (or at least Markovian). In this case, multistage
stochastic problems can be expressed by dynamic programming equations (DPE), which
decompose the large-scale problem by stages into several smaller subproblems. These
DPE exploit the famous optimality principle by Bellman [13], which allows one to ex-
press the optimal objective value from some stage ¢ onwards, given some state z;_1,
recursively by means of some stage-t objective function and a so-called expected value
function Q(+), modeling the expected optimal objective value from stage ¢+ 1 onwards,
given the new state x;. We formally introduce these concepts in Sect. 2.4.

The DPE can be solved exactly by SDP solution methods, such as value iteration
[13]. Basically, this method is based on traversing the stages backwards and evaluat-
ing the expected value functions Qy(-) for all possible states x;_; (concept of a lookup
table). Each such evaluation requires solving an optimization problem for all possible
realizations of the uncertain data, which, in turn, requires finding an optimal decision
over all possible actions. For this evaluation to be possible, it is assumed that the state
space, the action space and the scenario space are finite — otherwise they have to be
discretized. However, even in the discrete case, enumerating all possible combinations
is computationally intractable for all but low dimensions, as the number of evaluations
suffers from combinatorial explosion. This phenomenon is known as the curse of dimen-
stonality of SDP [169]. In order to circumvent this, approzimate dynamic programming
(ADP) methods have been developed, where expected value functions are approximated
instead of being evaluated exactly (or where optimal policies are approximated using
different strategies) [169, 170]. SDDP can be regarded as one such method. Due to its
close relation with SDP it also heavily relies on the assumption of stagewise indepen-
dence.

A second perspective on SDDP is one from stochastic programming. Traditionally,
in this field, multistage uncertain data are often modeled by a scenario tree, which
branches at each stage and consists of finitely many possible scenarios. Scenario trees
do not require the stochastic data process to be stagewise independent. Using finite sce-
nario trees and assuming linearity, a multistage stochastic program can be reformulated
as a large-scale linear programming problem [179]. However, in this extensive form such
a problem usually is way too large to be solved by monolithic approaches, since the num-
ber of decision variables and constraints grows exponentially in the number of stages.
To cope with this challenge, special solution techniques are required which decompose
the problem. Based on the L-shaped method for solving two-stage stochastic programs
[228] (a special variant of Benders decomposition [17]), one such idea is the extension of
Benders-type solution methods to the multistage setting. The nested Benders decom-
position (NBD) method by Birge [24] is such an extension. It can be interpreted as a
nested sequence of solving two-stage stochastic programs while traversing the scenario
tree. In contrast to SDP, in NBD the functions Q;(-) are not evaluated at all possible
states, but iteratively approximated by linear functions called cutting-planes or cuts,
starting from a rough initial relaxation. Such approximation is possible, since Q,(+) can
be proven to be convex in x;_; for LPs. It also allows to consider a continuous state
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space without discretization.

While NBD is a reasonable method to solve multistage stochastic linear programs
of moderate time horizons (maximum 4 or 5 time steps), for larger problems, it is still
computationally prohibitive, as the scenario tree grows exponentially in the number of
stages. As a relief, several methods have been proposed to combine the cutting-plane
approximations in NBD with sampling techniques from simulation [38, 53, 102]. The
most prominent among these methods is SDDP. From this perspective, SDDP can be
considered a sampling-based variant of NBD. In order to use the sampling step in a
beneficial way, compared to NBD, SDDP comes with the additional prerequisite that
the data process is stagewise independent.

Application-wise, the development of SDDP is closely related to hydrothermal op-
erational planning, which attempts to determine cost-optimal generation decisions for
thermal and hydroelectric power plants over several stages, while ensuring system bal-
ance and satisfaction of technical constraints. Since future water availability is affected
by uncertain inflows into hydro reservoirs, this optimization problem can be considered
multistage, stochastic, and thus very complex.

Prior to SDDP, various solution techniques had been proposed to tackle this type of
problem. Among those are simulation models, linear programming techniques (either
based on assuming inflows as deterministic or based on reformulating stochastic LPs into
a deterministic equivalent), special variants of dynamic programming and SDP [230].
However, all of these techniques either do not consider the uncertain nature of inflows,
suffer from the aforementioned curses of dimensionality or do not guarantee convergence.
For operating a large-scale power system dominated by hydro power these shortcomings
are severe, as they prohibit a cost-minimal and reliable, but at the same time computa-
tionally efficient operational planning. The development of SDDP by Pereira and Pinto
was directly driven by the endeavor to replace SDP with a more efficient optimization
technique in operating the Brazilian power system. While it avoids some of the com-
putational drawbacks of SDP or NBD (sometimes advertized as “breaking the curse of
dimensionality”), SDDP comes with its own shortcomings, as we thoroughly discuss in
this paper.

Since its invention in 1991 SDDP has gained enormous interest, both from a theoreti-
cal and an application perspective. To this date, it can be considered one of the state-of-
the-art solution methods for large-scale multistage stochastic problems. For this reason,
it is used in various practical applications to optimize decision processes, for instance
hydrothermal operational planning, portfolio optimization or inventory management,
see Sect. 9.

Several extensions and improvements of SDDP have been proposed by now, many of
them attempting to relax the originally required theoretical assumptions, making SDDP
applicable to broader problem classes. Others strive for improving the performance of
SDDP because, despite its merits, the algorithm may take too long to converge for large
problem instances.

Due to both, the sheer amount and the variety of proposed enhancements, SDDP
has developed into a wide-ranging research area with several sub-branches, becoming
increasingly difficult to keep track of. In this article, we give a comprehensive tutorial-
type review on SDDP-related research, covering its basic principle and assumptions,
strengths and weaknesses, existing extensions and current research trends.
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1.1 Structure

The structure of this review is summarized in Table 1. The review can be divided into
four major parts. In the first part (Sect. 2 to 8), we discuss the basic mechanism of
SDDP. This includes formal preliminaries to formulate multistage stochastic decision
problems, but also the main algorithmic steps of SDDP and a complexity analysis. In
particular, we point out crucial assumptions for standard SDDP to work. In the second
part (Sect. 9 and 10), we discuss applications, which underline the practical relevance of
SDDP, but also the requirement to relax some of the standard assumptions. In the third
part (Sect. 11 to 20), we discuss various extensions of SDDP to cases where the standard
assumptions are relaxed. These extensions comprise modifications of SDDP itself as well
as modifications or reformulations of the considered decision problems. Finally, in the
fourth part (Sect. 21), we discuss approaches to improve the computational performance
of SDDP.

1.2 Terminology and Notation

As already mentioned, SDDP is linked to several different research fields and com-
munities, such as stochastic programming, dynamic programming, Markov decision
processes, optimal control or reinforcement learning, each using different terminology
and notation. This aggravates a presentation of SDDP in a form that is familiar and
accessible to all those interested.



78 Paper A — SDDP Review

Table 2: Abbreviations that are used throughout the text.

(P)AR (Periodic) Autoregressive process

DPE Dynamic programming equations

LP Linear program

MI(N)LP Mixed-integer (non-)linear program

MSLP Multistage stochastic linear programming problem
NBD Nested Benders Decomposition

RHS Right-hand side

SDP Stochastic Dynamic Programming

SDDP Stochastic Dual Dynamic Programming

To our knowledge, the majority of active research on SDDP is conducted by re-
searchers from the stochastic programming community. For this reason, in many sec-
tions we resort to stochastic programming language and notation. On the other hand,
this review is also dedicated to offer an access to SDDP for practitioners and researchers
from fields in which different perspectives and notation are standard. Therefore, we ad-
dress these differences if required for the understanding of SDDP, and attempt to avoid
heavy mathematical programming notation whenever possible, especially in early sec-
tions introducing SDDP.

For a general, not SDDP-specific, attempt at unifying different disciplines related
to optimization under uncertainty and sequential decision processes into a common
framework, we refer to the excellent book [170].

In the following, we denote random variables by bold letters, e.g., &, and their
realizations by letters in normal font, e.g., £&. To enhance readability, we summarize
some recurring abbreviations in Table 2.

2 Preliminaries for SDDP

In order to present SDDP in its standard form, we start by formally introducing the
considered decision problem. In particular, we point out assumptions which are crucial
for the presented SDDP method to work.

We consider a multistage decision process where decisions x; have to be taken over
some horizon [T] := {1,...,T} consisting of T stages, with the aim to minimize some
objective function subject to constraints. For now, the horizon T is assumed to satisfy
the following condition:

Assumption 1 (Finite and deterministic horizon). The number T € N of stages is
finite and deterministic.

We discuss later how SDDP may be applied to cases where this is not satisfied, see
Sect. 19 and 20.
2.1 Modeling the Uncertainty

The data in the considered decision process can be subject to uncertainty, which is
revealed over time. To this end, we consider a filtered probability space (2, %#,P) with
sample space (2, o-algebra % and probability measure P, which models the uncertainty
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over the horizon [T]. Further let #,..., %r with Fr := % be a sequence of o-
algebras containing the events observable up to time ¢, thus defining a filtration with
F1 C Py C Fr, and let ; be the sample space restricted to stage ¢t € [T']. We then
define a stochastic process (&;)ier) with random vectors &; : ; — R" k; € N, over the
probability space. These random vectors are assumed to be .%#;-measurable functions.
We denote their support by Z; C R* for all ¢ € [T]. For the first stage, the data are
assumed deterministic, i.e., Z is a singleton. For each random vector &;, we denote a
specific realization by &;.

As a crucial ingredient for SDDP to work, we assume that the uncertainty on dif-
ferent stages does not depend on each other.

Assumption 2 (Stagewise independence). For all t € [T], the random vector & is
independent of the history §y_y) := (&1,-..,&—1) of the data process.

Under Assumption 2, the random vectors &; are often referred to as noises. This
assumption is common in dynamic programming, but not standard in stochastic pro-
gramming. In practical applications it may not be satisfied. We address how to apply
SDDP to problems with stagewise dependent uncertainty in Sect. 14.

Additionally, we take the following assumptions for the stochastic process.

Assumption 3 (Known distribution). The probability distribution Fe of the data pro-
cess (&t)ierm) s known.

Assumption 4 (Exogeneity). The random variables & are exogeneous, i.e., the distri-
bution Fe of the data process (&;)icr) is independent of decisions (T4)ic[r)-

Assumption 5 (Finite randomness). The support =, of & is finite for allt € [T]. The
number of noise realizations at stage t € [T is given by ¢ € N with ¢, = 1.

We discuss how to apply SDDP if Assumption 3 is not satisfied in Sect. 13. If
Assumption 4 is not satisfied, the problem is said to have decision-dependent uncertainty
[115]. As this case is not covered in the literature on SDDP so far, we do not discuss
the relaxation of this assumption.

Assumption 5 is a key assumption for SDDP and standard in dynamic programming
and stochastic programming in order to obtain computationally tractable problems.
Whereas there exists no direct extension of SDDP to problems that do not satisfy As-
sumption 5, we discuss possible ways to treat such problems in Sect. 11. As &; is a
discrete and finite random variable for all ¢t € [T}, its distribution F¢ is defined by
finitely many realizations &;;,7 = 1,...,¢q;, and assigned probabilities p;;.

The stagewise independent and finite data process (&;):c[r) can be illustrated by a
recombining scenario tree [179], also called scenario lattice [129]. On each stage t € [T],
its nodes represent the possible noise realizations &;,7 = 1,...,¢:. Due to stagewise
independence (Assumption 2) all nodes at the same stage have an identical set of child
nodes with the same noise realizations and associated probabilities. We call paths
& = (&)teqr) through the complete tree (stage-T) scenarios and index them by s € S.
Note that for each scenario £*, there exists some js € {1,..., ¢} such that & = &;,. The
total number of different scenarios modeled by the tree is [S| = [],c(y) - An example
of a recombining scenario tree is presented in Figure 1.
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t=1 t =2 t =3

Figure 1: Recombining tree with 3 realizations per stage and highlighted scenario £°.

2.2 The Decision Process

With the stochastic process in mind, we can now turn to the decision process. At
stage 1, the here-and-now decision x; is taken to hedge against the uncertainty in the
following stages. At those stages, recourse decisions x; € R" n; € N, can be taken
under knowledge of the realization of the data process at stage t. This decision process
is illustrated in Figure 2.

& & ér

T T2 L3
Q—' t=1 t=2 t=3 e /> =T

Figure 2: Multistage decision process with uncertainty.

In other words, the paradigm is that decisions can be taken after the uncertainty
corresponding to stage ¢t has unfolded (so-called wait-and-see decisions), making @+ (&)
a function of &;, and by that a random variable. We account for that using a bold
symbol. Importantly, @:(-) does only depend on realizations up to stage ¢, but does not
anticipate future events or decisions. Future events are only considered using distribu-
tional information. Therefore, x;(-) is .%#;-measurable [201]. As we will see, x;(-) may
also depend on the choice for x;_1(-) and so on, so that despite stagewise independence
(Assumption 2), z;(-) is actually a function of the whole history £ of the data process.

A sequence of decision functions (a:t(g[t])) [T is called a policy and provides a deci-
sion rule for all stages t € [T'] and any realization of the data process. By the previous
arguments, such a policy is non-anticipative, modeling a sequence of nested conditional
decisions. The aim of the decision process is to determine an optimal policy with respect
to a given objective function and a given set of constraints.

In this context, the following assumptions are standard for SDDP.

Assumption 6 (Linearity). All functions occurring in the objective and the constraints
are linear.

Assumption 7 (Consecutive coupling). Only decisions on consecutive stages can be
linked by constraints.

Assumption 8 (Risk-neutral policy). The aim is to determine an optimal risk-neutral
policy.

As not all of these assumptions are guaranteed to be satisfied for an arbitrary prob-
lem in practice, we discuss possible ways to relax them in Sect. 15 and 16 (for Assump-
tion 6), Sect. 18 (for Assumption 7) and Sect. 12 (for Assumption 8).
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Under Assumptions 6 and 8, the optimization objective can be expressed as

min_ E | Y (e(&) milép) | | (1)

T1,L2,., LT
te(T)

with data vectors ¢, € R™ for all ¢ € [T] and E[] denoting the expected value.

Under Assumptions 6 and 7, for all ¢ € [T], the constraints on the decisions can be
expressed using the .Z;-measurable set-valued mappings X;(-), which for any z;—; and
any & € =; are defined by

Xi(wp_1,&) = {xt € Xi CR™ Ty 1 (&)we1 + Wi(&e)we = ht(&)}- (2)

Here, h; € R™ are real data vectors (for m; € N), T; and W; are real-valued (myy1 X n¢)
and (m; x n;) data matrices and X, is a non-empty polyhedron, e.g., modeling non-
negativity constraints.

As stated before, some (or all) of the problem data can be subject to uncertainty.
Hence, for all t € [T], we consider random variables ¢;(&), Ti—1(&:), Wi(&:) and hi(&)
depending on realizations of &. X; is considered deterministic. Note again that the
first stage is assumed to be deterministic, and that Ty = 0 and xg = 0. Hence, we define
Xy = X1 (o, &1)-

Remark 2.1. For notational simplicity, when we deal with finite random variables & in
this paper, we often index the vectors and matrices ¢y, Ty—1, Wy and hy with j =1,...,q
if we address specific realizations, e.g., ¢tj := ct(&;j).

Remark 2.2 (Dynamic programming perspective). In dynamic programming, Markov
decision processes or optimal control, usually a slightly different perspective on sequential
decision processes is chosen (see [170] for a comprehensive overview). The main dif-
ference is that the occurring variables are differentiated into state variables and actual
decisions. State variables s; € S; model the system state at some stage t. S; is called the
state space. Importantly, state variables may not only comprise the resource state, but
also the information or belief state of a system. Local decision variables model decisions
on a stage t given a state s;. In dynamic programming they are usually discrete and
called actions a; € A¢(st), in optimal control they are usually continuous and called con-
trols uy € Up(st). Ai(s:) and Ui(s:) are the action space or control space, respectively.
The actions or controls are what an agent actually decides on given the current state
st, whereas the new state siy1 is uniquely determined as si11 = Ti(St,ut, 1) using a
given transition function T;(-) which captures the system dynamic. Therefore, from this
perspective, a policy is a sequence of mappings m : Sy — U from the state space to
the control (or action) space. By proper modeling of the state variable, Assumption 7 is
naturally satisfied.

In our above setting, states and actions are intertwined. We can set sy = (x1-1,&)
and uy = x¢ to switch perspectives [6]. The state space, control space and transition
function are then implicitly given by (2) and the definition of &;.

Whereas our above definitions are prevalent in the literature on SDDP, sometimes
also an optimal control perspective is adopted, e.g., in the French community working
on SDDP (see for example [78]). However, in this case usually only the resource state
r is explicitly considered as a state variable (while not including information on &;).
Translating our above setting, this implies that ry = x4_1 with state space Ry = Xy,
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up = x¢ and due to re41 = uz, both the control space Ui(r+, &) and the transition function
Ti(re, ug, &) are given by the equations in (2).

It is worth mentioning that the distinction between state variables and controls (ac-
tions) is not only a matter of notation, though, but also relevant computationally because
the complexity of SDDP differs in the state and control dimension (see also Remark 2.6
and Sect. 4.2).

Given the constraint sets (2) for all ¢ € [T, let Xy := {xo} and recursively define

A = U U Xt(xt—h&)

Tt 1€X—1 §t €S

for all ¢ € [T] [71]. Using these definitions, we are able to state assumptions which we
require for the feasibility of our decision problem:

Assumption 9. (Feasibility and Compactness)

(a) For allt € [T], all x—1 € Xi—1 and almost all & € Zy, the set Xy(xi—1,&) is a
non-empty compact subset of R™ (relatively complete recourse).

(b) The set X, is bounded for all t € [T].

Remark 2.3. Note that the linearity assumption (see Assumption 6), immediately
implies that Assumption 9 (a) is not only satisfied for all x;—1 € Xi—1, but for all
xi—1 € conv(X;_1), where conv(S) denotes the convex hull of a set S.

The set X; € R™ is called reachable set in [71] and effective feasible region in [117].
It may as well be referred to as the state space sometimes, because in our setting x;
also takes the role of a state variable. However, in other cases the larger polyhedral set
X: may be called state space.

The boundedness of X; in (b) is required for some of the convergence results on
SDDP presented in Sect. 4. It follows naturally if X; is bounded, since X; C X;.
Property (a) is convenient, but not necessarily required. We discuss possible ways to
relax it in Sect. 17.

With all the ingredients defined, we can now model the decision problem in a form
that can be tackled by SDDP. Based on its properties, in the following we refer to this
problem as a multistage stochastic linear programming problem (MSLP). If not specified
otherwise, throughout this paper, we assume that (MSLP) satisfies Assumptions 1 to 9.
We first discuss two different modeling approaches which are common in the literature.

2.3 Single-problem Formulation

One way to model the decision problem (MSLP) is to formulate it as a single opti-
mization problem. This modeling approach is common in the stochastic programming
community. The optimization problem can be obtained by combining (1) with the
constraints in (2) for all ¢ € [T].

Then, under Assumptions 1 to 9, (MSLP) can be written as

min E Z (Ct(ft))Tmt(f[t])

T1,L2;.., LT
te([T)

s.t. r1 € X

x (&) € Xi(—1(§p—1)), &) Ve VE=2,...,T
xi(-) Fr-measurable Vi=2,...,T.
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Importantly, the decision variables z; € R™ depend on & (and on z;—1), so in this
representation we optimize over policies. A policy (z¢({[))ier) is called feasible (or
admissible) if it satisfies the constraints in (MSLP) for almost every realization of the
random data [201].

Assumption 9 (a) implies that the feasible set of (MSLP) is compact and non-empty,
and by linearity of the objective (Assumption 6) it follows that v* is finite.

Due to optimizing over policies, without Assumption 5, (MSLP) is an infinite-
dimensional optimization problem. With Assumption 5, however, it can be reformulated
to a more accessible form. More precisely, it can be reformulated to a large-scale de-
terministic problem, the so-called deterministic equivalent of (MSLP) in extensive form
(see [201]). To this end, let S denote the set of all (stage-T') scenarios. Then, for each
scenario s € S a separate copy x} of variables z; can be introduced, so that the opti-
mization over implementable policies translates to an optimization over a finite number
of decision variables. However, the problem size grows exponentially in the number of
stages T. Therefore, even for a finite number of scenarios, this large-scale LP is too
large to be solved by off-the-shelf solvers for all but very small instances.

A preferable solution approach is therefore to use tailored solution techniques which
decompose (MSLP) into smaller subproblems. Note that from Assumption 7 and the
definition of X;(-) in (2), it is evident that the constraints of (MSLP) are block-diagonal,
as only consecutive stages are coupled in the constraints. This is visualized in Figure 3.

fwr] [

T ) xr3 r—-1 XT

Figure 3: Block-diagonal structure of constraints in (MSLP).

This sequential and block-diagonal structure can be exploited to achieve the required
decomposition. This is crucial for the derivation of SDDP. Interestingly, this decom-
position idea directly leads to the second common modeling approach for our decision
problem.

2.4 Dynamic Programming Equations

An alternative, but equivalent way to model (MSLP) is to exploit the well-known op-
timality principle by Bellman [13] and to formulate a recursion of so-called dynamic
programming equations (DPE), where a multistage decision process with stagewise in-
dependent (or Markovian) uncertainty is modeled as a coupled sequence of optimization
problems.

Whereas this modeling approach is often applied in stochastic programming as a way
to reformulate and decompose the single problem (3) into a computationally tractable
form, in dynamic programming it often serves as the starting point of modeling decision
problems. However, in contrast to many approaches in dynamic programming we do
not discretize x;, see also Sect. 5.1.

10
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Under Assumptions 1 to 9, for t =T, ...,2, the DPE are given by

H}Eitn (ct(ft))Txt + Qi1 ()
s.t. Ty € Xt(xtflagt)a

Qi(wr-1,&) = {

where

Qu1(xy) = Eepyy [Quyr (2, §ri1)] (5)

and Oriq(zr) = 0. Q4+, ) is called value function and Qy(-) is called expected value
function, (expected) cost-to-go function, future cost function or recourse function. For
the first stage, we obtain

(6)

. min ¢ z1 + Qp(x1)
Vo= x1
s.t. x € Xy

For a formal proof of the equivalence of (3) and its DPE, we refer to [201] and Sect. 12.
Importantly, in subproblem (4) z; is a deterministic variable and not a function because
a fixed realization of & is considered.

We should emphasize that the equivalence of (3) and its DPE does not require As-
sumption 5. This implies that also the DPE (4)-(6) are computationally intractable in
case of general continuous random variables. While the subproblems are deterministic
and finite-dimensional, there exist infinitely many value functions Q:(+,-) and the eval-
uation of Q;(-) requires the evaluation of (multidimensional) integrals. Therefore, also
from this perspective Assumption 5 is crucial.

Remark 2.4 (Dynamic programming control perspective). Recall Remark 2.2. Using

a distinction between state variables my and controls u, the DPE to (MSLP) can be
formulated as

r,&) = min g, &) + Qean (Te(re, ug, &)).-

Qi(re, &) uteUt(Tt’&)ft( t,6t) 11 (Te(re, we, &) (7)

Bellman Operator. In the French literature on SDDP, in addition to taking the

optimal control perspective discussed in Remarks 2.2 and 2.4, a more formal way to

define theADPE is prevalent, see [71, 119] for instance. To this end, a linear Bellman

operator 9, is introduced, which applied to some lower semicontinuous function V :
R™ — RU {400} is defined as [71]

By(V)(wi1,&) = min(al&)) we+ V(a), (8)

2 €Xe(wr—1,6t)

i.e., it maps (z:—1, &) to the optimal value of an optimization problem containing func-
tion V(-). We can then further define the operator

By (V) (1) = E{%t(V)(xt,l,&)]. 9)

Setting V' to Q:(:) for t = 2,...,T, the (expected) value functions can then be
recursively defined in a very compact form. We summarize the different notations for a

11
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better overview:

%t(QtJrl)(l’t—la §t) = Qt(xtfla ft)
B1(Qir1) (1) = Qe(ws-1)

In the remainder of this work, we stick to notation (4), as it is most common in the
literature on SDDP which we reference in this paper.
We obtain the following properties for the DPE which are standard for SDDP:

Lemma 2.5. Under Assumptions 1 to 9, for the DPFE defined by (4)-(6) the following
properties hold:

(a) We have relatively complete recourse, i.e., for any x,_1 € X;—1, the stage-t sub-
problem Equation (4) is feasible for all & € Z;.

(b) The value functions Q+(+,-) and expected value functions Q:(-) are finite-valued on
conv(X—1) for allt =2,...,T and all § € =;.

(c) Problem Equation (6) is feasible and bounded.

Remark 2.6. In addition to Remark 2.2, we should highlight that (MSLP) (both, in
single-problem formulation (3) and DPE (4)-(6)) can be straightforwardly enhanced with
local decision variables y, € Yy and local constraints, not appearing in different stages.
In principle, they can even be incorporated without changes to our models by extending
the dimension of the (state) variables x; and adapting the matrices Ty and W, accord-
ingly. However, as we explain in Sect. 4, the complexity of SDDP grows exponentially
in the dimension of the state space, so this is computationally detrimental and should
be avoided. Instead, purely local variables and constraints should be handled separately
from the ones we introduced above. This approach is referred to as generalized dual
dynamic programming (GDDP) in [18].

While almost every practical application will require the introduction of these addi-
tional elements, in this work, for the most part we restrict to coupling variables and
constraints which are required to illustrate the mechanics of SDDP.

Remark 2.7. In general, the local objective functions may also include the states x;_q
instead of only depending on x; and &. For notational simplicity, we consider a less
general form of the objective function in this review.

2.5 Approximations of the Value Functions

The main challenge in exploiting the DPE to solve (MSLP) is that the (expected)
value functions are not known in analytical form in advance. The key idea in SDDP
is to iteratively approximate them from below using linear functions, which are called
cutting-planes, or short cuts. Together, these linear functions build polyhedral outer ap-
proximations Q:(-) of Qu(-) for all t = 2,...,T, which we refer to as cut approzimations.
In that regard, SDDP can be considered as a special variant of Kelley’s cutting-plane
method [111] and closely related to Benders decomposition [17], see also Sect. 5.2. Note
that in contrast to SDP this avoids a state discretization, as Qy(-,-) and Q;(-) do not
have to be evaluated at all possible states, but only at well-chosen trial points where
new cuts are constructed, cf. Sect. 5.1.
For this approximation by cuts, the following properties are crucial.

12
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Theorem 2.8 ([26]). Let z;—1 € conv(X;_1). Then, under Assumptions 1 to 9, for all
t=2,...,T and a given noise realization &, the value function Qi(-, &)

(a) is piecewise linear and convex in (hy, Ty—1),
(b) is piecewise linear and concave in cy,
(c) is piecewise linear and convez in xi—1 on conv(Xi—1).

The main idea here is that given the definition of X;_1(+) in (2), hy, Ty—1 and z;_; do
only appear in the right-hand side (RHS) of problem (4). Therefore, the dual feasible
set is independent of those elements. It possesses finitely many extreme points. This
assures piecewise linearity of Q:(-,-), as known from parametric optimization. The
convexity follows with the linearity (Assumption 6) and all vectors and matrices being
part of convex sets.

Theorem 2.8 directly implies the piecewise linearity and convexity of Q:(-).

Corollary 2.9 ([26]). Under Assumption 5 and the premises of Theorem 2.8, for all
t=2,...,T, Qi) is piecewise linear and convez in xi—1 on conv(X;—1).

Theorem 2.8 and Corollary 2.9 also directly imply the Lipschitz continuity of the
(expected) value functions.

Corollary 2.10. Under Assumptions 1to 9, for allt =2,...,T and all & € =y, Qu(+, &)
and Qi(+) are Lipschitz continuous on conv(Xi—1).

Replacing the true expected value functions with cut approximations in (4), we can
define approximate value functions

min (cel€r)) "o + Qe (xe)

(10)
8.t m € Xi(weo1,&).

Q,(w1-1,&) == {

Trivially, for Qpy1(-) = 0, we have Qp41(-) = 0.

Note that apart from x;_; and &, Qt(-, -) is also a function of the cut approximation
9¢+1(+). This is especially relevant when these approximations are iteratively updated
in SDDP, leading to different approximate value functions. Using the Bellman operators

defined in (8)-(9) this can be expressed in a very concise way:
Q,(+) =Be(Qe41) ()

Similarly, we could express this by adding an argument to Q t(-, -), i.e., by writing
Qt(xt_l,ft |Q¢41) or Qt(DtH)(:rt_l,ft). However, for notational simplicity, we do not
state this explicitly, but when dealing with SDDP use the iteration index ¢ for distinc-
tion. This means that Qﬁ(, -) indicates that Qt(-, -) is considered with cut approximation

i1(e):

We summarize the different notations for a better overview:

%t(QtJrl)(xtflvgt) = Qt(xtflvgt)
Bi(Qp 1) (1) = (1) = Be, [Q, (211, &)]

(11)

Finally, we can observe that given that the cut approximations Q¢1(-) are polyhe-
dral, the approximate value functions ¢ t(-, -) inherit the previously stated properties
from Q:(-,-). In particular:

13
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Lemma 2.11. Let 9:1(-) be a polyhedral function. Then, under Assumptions 1 to 9,
for all t = 2,...,T and a given noise realization &, Qt(-,&) 1§ piecewise linear and
convex in xi—1 on conv(Xi—1).

On the other hand, as they are polyhedral, the cut approximations £;(-) for ¢t =
2,...,T are nonlinear functions. Importantly for computations, however, subprob-
lems (10) can be formulated as LPs by using a partial epigraph reformulation and the
fact that Q¢(-) is defined as the maximum of finitely many affine functions (modeled by
some set IC with || € N):

min (Ct(gt))T:Et + 6t+1

z¢,0t 41
Qt(xt—lvft) = s.t. x; € ?_C't(a:t_l,gt) . (12)
- (5Z+1,k-)T$t + 01 > gy, ViVEEK.

This LP contains an additional decision variable 6;,; and finitely many additional
linear constraints indexed by ¢ and k. The structure and indexing of these constraints
become clear in the next section when we present the cut generation process for SDDP.

3 Standard SDDP

We are now able to introduce SDDP in its standard form.

3.1 Main Principle

SDDP cousists of two main steps in each iteration i, a forward pass and a backward pass
through the stages ¢t € [T].

In each forward pass, using the approximate value functions Qz(, -) (recall that this
implies using cut approximation Qj,,(-) in (10)), a sequence of trial points (y)eeqr) is
generated, at which then new cuts are constructed in the following backward pass to
improve the approximation. These trial points are also called incumbents or candidate
solutions, and their sequence is called a state trajectory (especially in optimal control).
The idea behind this approach is that the approximate value functions implicitly define
a feasible (suboptimal) policy for problem (MSLP). The trial points are generated by
evaluating this policy for one or several scenarios which are sampled from S, i.e., by
solving the respective subproblems. This has the advantage that cuts are constructed
at points which (at least for some scenario) are optimal given the current cut approx-
imation. This step can also be interpreted as a Monte Carlo simulation of the current
policy.

In the backward pass, dual information of the subproblems at the trial points is
used to construct cuts, passing them back to the previous stage and updating 2Q%(-) to
Qi) for all t = 2,...,T. This way, if not optimal, the current policy is amended (at
least if the right scenario is sampled). In this step, also a true lower bound v for v* is
determined.

Remark 3.1 (Statistical learning perspective). The basic principle of SDDP can also
be interpreted from a perspective of supervized learning as learning a policy (or expected
value functions Qu(+) for all t = 2,...,T) or training a model of this policy (or cut
approzimations () for all t = 2,...,T) using backpropagation. In the forward pass

14
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the inputs are propagated through the stages using the current model, and in the back-
ward pass cuts (representing the error of the current approzimation) are propagated back
through the stages to update the model.

Algorithm 1 provides a pseudo-code for SDDP. We now provide a more detailed and
technical look at the algorithmic steps.

3.2 Forward Pass

At the start of each iteration 4, at first a subset X C S of scenarios is sampled with
K| < |S] (note that we may equivalently sample stage by stage during the forward
pass). The number of samples |K| may vary by iteration, but we do not state this
possible dependence explicitly. Traditionally, and most commonly, in SDDP some ran-
dom sampling is used, but also a deterministic sampling is possible. We further discuss
sampling techniques in Sect. 6.
Then, at the first-stage, the approximate subproblem

men)lfilr(lxo) Cirml * Qé(ml) (13)
is solved, which yields the trial point 2} = z% for all k € K. Afterwards, for each
stage t = 2,...,T and each sample k € K, recursively the approximate value functions
Qi(xk |, &F) are evaluated (this means that the subproblems (10) are solved for z{* |,
&F and the current cut approximation 9, ,(-)). This way, for each sample k € K, a
sequence of trial points (2}¥)ie[r) is obtained.

The forward pass of SDDP is illustrated in Figure 4 for the recombining scenario
tree from Figure 1 and K = {1,3,9}, i.e., |[K| = 3. The three sampled scenario paths
are highlighted in green. The figure shows that for sample paths €3 and £° the same
node is reached at stage 3.

t=1 t =2 t =3

Figure 4: Hlustration of SDDP forward pass for |K| = 3.

Remark 3.2 (Initialization). Before the first backward pass, the cut approximations
,(-) are not initialized yet, so the forward pass subproblems (13) and (10) are not well-
defined. This can be addressed using different strategies. First, in iteration i = 1 the
forward pass can be skipped, and a feasible state trajectory (il’%)te[T] for the backward pass
can be user-defined or taken randomly instead. Second, such a state trajectory can be
computed heuristically via a greedy approach where Q}(-) = 0 is assumed in the forward
pass subproblems for all t € [T], so no coupling exists in the objective. Third, the cut
approzimations Q,(+) may be initialized with a valid user-defined lower bound 6, for all
t € [T). This approach is taken in the description in Algorithm 1.

15
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Algorithm 1 SDDP

Input: Problem (MSLP) satisfying Assumptions 1 to 9. Bounds 6,,t =2,...,T. Stop-
ping criterion.

Initialization
1: Initialize cut approximations with 6, > @, for all t =2,...,T.
2: Initialize lower bound with v° = —oo0.
3: Set iteration counter to i < 0.

SDDP Loop

4: while Stopping criterion not satisfied do
5: Set i i+ 1.

Forward Pass

6: Sample a subset K C S of scenarios.
7 Solve the approximate first-stage problem (13) to obtain trial point z} = 2%* for
all k € K.

for stagest=2,...,7T do
: for samples k£ € K do
10: Solve the approximate stage-t subproblem (10) associated with
Q;(xﬁl,ff) to obtain trial point zi¥.

11: end for
12: end for

Backward Pass

13: for stagest=1T,...,2 do

14: for samples k£ € K do

15: for noise terms j =1,...,¢ do

16: Solve the updated approximate stage-t subproblem (10) associated
with Q'+ (¥ |, &;). Store the optimal value and dual vector ik,

17: end for

18: Use relations (16)-(17) and (19) to create an optimality cut for Qy(-).

19: Update the cut approximation Q:(-) to Qi (-) using relation (18).

20: end for

21: end for

22: Solve the approximate first-stage problem (20) to obtain a lower bound v’.

23: end while

Output: (Approximately) optimal feasible policy for (MSLP) defined by x! and cut
approximations Qi(-),t = 2,...,T. 2} defines an (approximately) optimal solution
to problem (6) with v} ~ v*.

16
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3.3 Backward Pass

Main Principle. The backward pass starts at stage T. Here, for all samples k € I,
we consider subproblems (10) for the trial point xT 1 computed in the forward pass, all
noise realizations &r;,7 = 1,...,¢r, and QT +1( ) = 0. That is, we consider functions
QlTH(xZ}Zp&U) forj=1,...,qr.

As QiT+1(~,§Tj) is convex in xzp_; by Lemma 2.11, it can be underestimated by a
linear function using some subgradient ﬁiTkj € 8Q?1(~,§Tj) for any j = 1,...,qr and
any k € K:

Q?LI(ITAKT]‘) > Q?_l(xT 1 17) + (Biwy) T (wr—1 — @i )).

Since Qf;rl(-, &rj) is a lower approximation of the true value function Q7 (-, &r;), this
directly implies

Qr(zr—1,ér5) = QM (a1, &r)) + (Bryy) T (wro1 — o).
Taking expectations with respect to &7 on both sides, we obtain

Or(zp_1)
> Be, (@ (21, &r)] + Eey [(B7) " (wr1 — a7y)]

, AT
= Ee, [Q (01, €r) — (By) T2l 1] + (EgT [5h]) Tr_1
qar
= ZPTJ (QiTH o &r) — (ﬂTkg i 1) <ZPTJBTI€]) Tr_1,
=

J——1 J—ey
=iy =07y,

(14)

where we exploit the finiteness of & (Assumption 5). ok, is called cut intercept and
Bi. is called cut gradient. Defining

Py (wr_1) = oy, + (Bpy) w11,

we can express (14) as

Or(zr_1) > ¢y (xr_1). (15)

Inequality (15) defines a cut for the expected value function Qp(-). Such a cut is
constructed for each k € K. With these new cuts, the cut approximation Q&.(-) is
updated to

Qi () _max{QT(:rT D, qsiTl(a;T,l),...7¢iT|,C|(xT,1)}.

Thus, assuming that || does not change over the iterations, Q5'(-) consists of i|K]
affine functions ¢i., (+), cf. formulation (12).

In the same way, for stages t = T — 1,...,2, cuts for Q;(-) can be constructed by
solving subproblems (10) for the trial points %%, computed in the forward pass and
all noise realizations &;,7 = 1,...,¢q;. Importantly, by going backwards through the
stages, at stage t we can already factor in the cuts that have been constructed at the
following stage t + 1, thus using a better approximation as the basis to construct a new
cut. This means that we consider Qiﬂ() and by that Qi+1(~, -) with index ¢ + 1 in the
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backward pass of iteration i.
As for stage T', we obtain

qt T
t(Te-1) > Zpt (QHI z¥ 1, &) — (Bly) Tl 1)‘*‘(2?@‘5%) Ty 1,

= (16)
=wagy, =Bix
where B}kj denotes a subgradient of Qi“(-,ftj) at 2, for k € K,j =1,...,¢. Again,
by defining
Gip(we1) = agy, + (B) T,
we can obtain a cut
Qi(x1-1) > dypo(wr-1) (17)
for each k € K and can update the cut approximation to
QY (1) = max { Qe 1), G (@), Sy (18)

Computing Subgradients. So far, we have discussed the main idea of the cut
generation process in the backward pass of SDDP, which is based on evaluating approx-
imate value functions Q”l( -,-) and using subgradients for them at trial points zi* ;.
For the interested reader we now address in more detail how to compute those subgra-
dients. This step uses dual information, i.e., it is based on the duality theory of convex
programs. For simplicity, we assume X; = {z; ¢ R™ : z, > 0} for all ¢t € [T].

Consider stage T', some k € K and some j € {1,...,qr}. Then, the dual problem to
the linear stage-T' subproblem (10) is

ik T

{H;&X (th —TT_L]{UZqE_l) T

T
s.t. WjTjWT < Crj-

Let W?j be an optimal dual basic solution. Such solution does always exist by

relatively complete recourse and boundedness (see Assumption 9 and Lemma 2.5). By
strong duality of linear programs, it follows

QM (@ &rj) = (hry — Troayaf ) mp’
= — () Ty ol + () Ty
Importantly, the dual feasible set does not depend on x7_1, but remains unchanged

for all trial points. In particular, 7riTkj is always dual feasible, but not necessarily dual
optimal for all zp_;. Therefore, and because of minimization, it follows

Q?I(xT_l’gTj) 2 _(ﬂ—ik]) Tr- 1, LT—1 +( ij)Tth
(TN Ty (o + 2l — 2 )+ () They

"
:Q;H(xT 1€rg) = (mp?) Troyj(er—y — 2ff_y).

18
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Hence,
i kNT
5Tkj = —(mp”) Tr-1

is a subgradient of QiTH(-,ﬁTj) at z% .

The previous derivation provides some additional insight. Since the dual feasible set
is polyhedral and does not depend on x7_1, for each noise term &7, = 1,. .., qr, there
exist only finitely many dual extreme points (dual basic solutions) that can be attained.
Therefore, only finitely many different cut coefficients can be generated. This is crucial
for some convergence proofs of SDDP, as we discuss later.

For earlier stages t =T — 1,...,2, the dual problem to subproblem (10) looks a bit
more sophisticated, as the cut approximations D;ﬂ() have to be taken into account,
which requires additional dual multipliers p; for all cuts r € I';41, where I';4; denotes
the index set of cuts generated for the following stage. However, the derivation is
completely analogous and, again, we arrive at

QU (wi1,&5) = QU (a1, &) — () T (e — 2ity),
so that

i ikj
ﬁtkj = —(m ])Tthl,j (19)
is a subgradient of Qﬁ“(', &;) at zik |, Interestingly, the optimal dual multipliers p:ikj
are not explicitly required in this formula.

3.4 Bounds and Stopping
At the first stage, the subproblem

o= min eron+ QT (o). (20)
is solved. As Q47 (-) is a lower approximation of Qs(+), v* is a valid lower bound to
the optimal value v* of (MSLP). This bound can be initialized with v* = —o0o or any a
priori known lower bound for v*.

In contrast, we are not guaranteed to obtain a valid upper bound for v* during
iterations of standard SDDP, as we only consider a small subset KL C S of all scenarios.
This means that in the forward pass, the feasible policy for (MSLP), which is implicitly
defined by the current cut approximations Qi(-),t = 2,...,T, is only evaluated for a
subset of all scenarios. By evaluating these scenarios in the objective of (MSLP) and
taking the sample average

kek t=1

_ 1 T _
T g SN (eleh)) it (21)
=i (gk)

we only obtain an unbiased estimator of the true upper bound ¥’ (a statistical upper
bound) associated with the current policy, see Sect. 7 for more details.

After each iteration of SDDP, one or several stopping criteria are checked, which
may or may not be based on vi.. We discuss different stopping criteria in detail in
Sect. 7. If SDDP does not stop, a new iteration ¢ + 1 is started with a forward pass.
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It is worth mentioning that the first-stage subproblems (13) and (20) are the same
for consecutive backward and forward passes, and in principle only have to be solved
once. The same is true for consecutive forward and backward pass problems at the final
stage T

3.5 Cut Properties

We discuss convergence of SDDP in Sect. 4. It relies on three key properties of the
derived cuts:

Lemma 3.3. For any stage t = 2,...,T and any k € K, the functions ¢\.(-) are
(a) valid lower approzimations of Q4(-),
(b) tight for Qi*'(-) (as defined in (11)) at zi¥ |,

(c) finite, i.e., only finitely many different cuts can be generated, if we restrict to dual
basic solutions to generate cuts.

Proof. Property (a) follows immediately from (15) and (17). (b) holds because of strong
duality for LPs and taking expected values over the obtained optimal values. Alterna-
tively, we can rearrange the RHS of inequality (16) to obtain

qt
Gip(rio1) = Q@5 )+ p(Bley) (w1 — 2t )). (22)
j=1

Inserting zi¥ | yields ¢}, (ziF,) = QI (ai* ).
Property (c) follows by induction using the arguments on the dual feasible region
previously discussed for stage T O

Note that ¢i, () is not necessarily tight for the true expected value function Qy(-)
in early iterations for ¢t # T, but rather might provide a loose cut only. However,
by the finiteness and tightness properties it can be shown recursively, that eventually
the derived cuts become tight for Q;(-) as well. In fact, after finitely many steps, the
polyhedral function Qy(-) is represented exactly for all ¢ = 2,...,T. This is a key
property for the convergence of SDDP.

3.6 Illustrative Example

To illustrate the key steps of SDDP, we present a simple example.
Example 3.4. Consider the 3-stage (MSLP)

min x; + T + T31 + T30

st. 21 <6
To > & — 21 (23)
T31 — Tz2 = &3 — Ta
x1, T2, T31,T32 = 0,

which is inspired by Example 2 in Chapter 5 of [26]. The uncertain data in the RHS is
stagewise independent and uniformly distributed with & € {4,5,6} and & € {1,2,4}.
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Problem (23) has not entirely the same structure as problem (MSLP), but can be
easily converted to it by introducing slack variables. However, for illustrative purposes,
we abstain from this. The problem can be expressed by means of the value functions

min  x3; + 39
x3
Q3(x27€3) = s.b. X3 —x30 =&3 — X9 (24)
x31,x32 > 0
and

min  xs + Qz(x2)
T3

Q2(z1,62) = 9 s.t. Tg > & — X
) 2 0.

The first-stage problem then is

i min  z; + Qa(z1)
Vo= 1
s.t. 1z €][0,6].

53

The optimal solution is given by x] = 3 with v* = %
As shown in [20], the stage-3 value functions can be written in closed-form as

Qs(xa,&3) = |&3 — x2| for all scenarios. Taking expectations, a closed-form expression
for Qs(+) can be derived, and by recursion we obtain
23 16
? — 3.%'1, xr1 € [O, 1}
1
%—goxl, x1 € [1,2}
59 10
? — jl'], i (S [2,3}
Qa(71) = 47 2
? — gﬁl}l, T S [3,4}
31 2
? — §$1, xr1 € [4,5}
7
g, xr € [5,6}

The optimal value is v* = %.

We apply SDDP for illustration. We assume loose initial bounds 6,05 > —10 for
simplicity. In the forward pass, we sample one scenario path per iteration, i.e., |K| = 1.
In iteration 1, let (&2,&) = (5,4) define this path. Solving the approzimate subprob-
lems (10) for all stages t = 1,2,3 and (&2,&3) = (5,4), we obtain Uy = 6. In fact, this
s no valid upper bound for v*.

In the backward pass, cuts for Q:(-),t = 2,3, are derived at the trial points. For stage
3, the cut gradient is B3(5) = 1. Moreover, Q§(5) = g. With formulas (17) and (22)
this yields the cut Qsz(xa) > —% ~+x9, which is incorporated into the stage-2 subproblems.
Solving these problems yields the cut Qi(z1) > % — 2x1. At the first stage, the lower
bound computes to v' = g

The expected value functions and the obtained cuts for three iterations are depicted in
Figure 5. In the second and the third iteration, the same scenario path (&,&3) = (6,1)
is sampled in the forward pass.
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Figure 6 displays the bounds v' and U for ten iterations of SDDP. It shows that the
lower bounds stabilize quickly at v*, whereas the values of Uy oscillate around v*.

10 % 45

Qo(z1)
Qz(w2)

Figure 5: Expected value functions for Example 3.4 with cuts obtained in first three
iterations depicted in blue, green and red.

SDDP

Bounds

12 3 4 5 6 7 8 9 10
Iteration @

Figure 6: Bounds for 10 iterations of SDDP applied to Example 3.4.

3.7 Policy Assessment

As mentioned before, in standard SDDP no valid upper bound v for v* is determined.
While in each iteration a statistical upper bound (21) can be computed, the number of
samples || may often be too small to appropriately assess the quality of the current
policy. In particular, |K| is often chosen to be 1 in practice, and thus 5}{ is not a
meaningful estimate for v.

Therefore, to assess the obtained policy, usually an additional forward simulation
is conducted once SDDP has terminated. For this simulation a much higher number
of sample paths through the scenario tree is used, e.g. |K| € {1000,10000}, leading
to a reasonable estimator vx. In this step, the simulation can be either performed
in-sample (using sample paths through the recombining scenario tree) or out-of-sample
(using the true underlying distribution, e.g., if & is a continuous random variable that
is discretized to satisfy Assumption 5, see Sect. 11).

Remark 3.5. In the light of Remark 3.1 this policy assessment step can also be in-
terpreted from a statistical learning perspective. After the model has been trained, a

22



96 Paper A — SDDP Review

model validation (using in-sample data) or a model test (using out-of-sample data) are
performed.

4 Convergence and Complexity

The convergence behavior of SDDP has been thoroughly analyzed over the years. We
discuss the main convergence results in this section. We first focus on finite conver-
gence of SDDP, and then discuss the actual convergence rate, i.e., the computational
complexity of SDDP. Our overview is loosely based on the review chapter in [71].

4.1 Finite Convergence

The first convergence analyses related to SDDP have been conducted in [38] and [125],
however implicitly assuming independence of sampled random variables and convergent
subsequences of algorithm iterates. A first complete convergence proof is given by
Philpott and Guan in [164] for the case where uncertainty only enters the RHS of
(MSLP) (in fact, they consider a more general algorithm than SDDP, including sampling
in the backward pass). The same reasoning is used by Shapiro [198] for the case where
also Wy, ¢; and T;_1 are uncertain.

The convergence behavior of SDDP can be explained using two main arguments:
First, as stated in Lemma 3.3, only finitely many different cuts, and by that only finitely
many different cut approximations £;(-) can be constructed for all ¢ = 2,...,T. This
result requires linearity (Assumption 6) and finite random variables (Assumption 5).
Moreover, these finitely many cuts also satisfy some tightness property, which implies
that they are sufficient to exactly represent the polyhedral (expected) value functions
(see Theorem 2.8). For a deterministic algorithm, this would result in finite conver-
gence to the true optimal point and value (see the convergence properties of Benders
decomposition [17] and Kelley’s cutting-plane method [111]).

For SDDP, it has to be taken into account that scenarios are sampled in the forward
pass. This means that the cut approximations might not further improve for some
iterations if the wrong scenarios are sampled. Therefore, the second key argument for
many proofs of finite convergence of SDDP is that each scenario is visited infinitely
many times with probability 1 given that the algorithm does not terminate. Intuitively,
this means that after finitely many iterations the right scenarios will be sampled with
probability 1, leading to the construction of a new cut. This requirement is satisfied
under independent sampling, that is, if the sampling in the forward pass of Algorithm 1
is random and independent of previous iterations. It is also satisfied for an exhaustive
enumeration of all scenarios in the sampling process. We should emphasize that this
argument is purely theoretical in order to establish convergence results for SDDP. When
applying SDDP in practice, it is usually not even possible to sample each scenario once
in reasonable time.

Using these two arguments, the following main convergence result can be obtained

Theorem 4.1 (Almost sure finite convergence of SDDP). Under Assumptions 1 to 9 and
using an independent random sampling procedure in the forward pass, SDDP converges
with probability 1 to an optimal policy of (MSLP) in a finite number of iterations.

Importantly, almost sure finite convergence to an optimal policy of (MSLP) does
not imply that the trajectories (xik)tem, k € K, and the corresponding sample averages
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v obtained in SDDP converge, as both are random and depend on the current sample
K. However, the lower bounds v’ obtained in SDDP converge to v*.

Deterministic Sampling. Recently, convergence analyses of SDDP and related
algorithms have often made use of deterministic sampling techniques instead of random
sampling [10, 11]. Here, the idea is that the approximation error in SDDP can be
controlled and guided to zero in a deterministic way if in each iteration scenarios are
sampled for which the current approximation gap is maximized. This requires, however,
that the approximation gap itself can be bounded rigorously. Therefore, in addition to
the lower cut approximation £;(-) also an upper approximation ;(-) is constructed and
iteratively refined [10, 231], so that deterministic lower bounds v* and upper bounds
7' are computed in each iteration. For more details on deterministic sampling and
deterministic upper bounds we refer to Sect. 6 and 8.

Generalizations. It has been shown that some of the basic assumptions (Assump-
tions 1 to 9) can be relaxed without compromising convergence of SDDP. Girardeau et
al. [78] analyze the case where SDDP is applied to multistage problems with nonlinear
convex subproblems, i.e., Assumption 6 is relaxed. In this case, the value functions
Q+(+) are no longer polyhedral, but still convex. The authors show that almost sure
convergence is still satisfied as long as some convexity and compactness assumptions
and some tightened recourse assumption are satisfied. We discuss this result in detail in
Sect. 15 when we formally introduce convex multistage stochastic nonlinear problems.
The main idea is that even without polyhedrality, Q:(-) can be guaranteed to be Lips-
chitz continuous, so that the approximations of Q;(+) get better in a whole neighborhood
of the trajectories (z}%)ie(r), k € K.

Guigues generalizes this result to the risk-averse case where Assumption 8 is relaxed
[85]. Forcier and Leclere prove convergence for (MSLP) without finite randomness,
i.e., dropping Assumption 5. Further convergence proofs are provided for multi-cut
SDDP [8], SDDP with cut selection [8, 87], adaptive partition-based SDDP [207] (see
also Sect. 21), using SDDP with saddle cuts [55] (see also Sect. 14) and variants of
distributionally robust SDDP [65, 162] (see also Sect. 13), Another proof of almost sure
finite convergence for extensions to non-convex problems is provided in [231].

4.2 Complexity

Theorem 4.1 guarantees almost sure finite convergence of SDDP. While this result is of
theoretical interest, it may not be very relevant in practical applications, as it provides
no result on the rate of convergence. As pointed out in [71] and mentioned before,
especially the argument of scenarios being sampled repeatedly (infinitely many times)
is almost never applicable to SDDP in practice due to the sheer amount of scenarios in
S. Important for the rate of convergence are the computational cost per iteration and
the required number of iterations.

Cost per Iteration. For the computational cost per iteration, the number of LPs
to be solved in the backward pass is crucial. Per sample k£ € K in the forward pass, ¢
subproblems are solved for each stage except for ¢ = 1 in the backward pass. Therefore,
the total number of LPs solved is 1+ |K| Z;‘F:Z ¢;. Hence, the number of problems to be
solved grows linearly in the number of stages 7', in the number of samples || and in
the number of noise terms ¢; [179].

Expected Number of Iterations. The computational bottleneck for SDDP is
the expected required number of iterations to achieve convergence. Recently, there
has been active research on computing theoretical bounds on this number, with Lan
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[117] as well as Zhang and Sun [231] publishing similar results using slightly different
approaches. In both cases, the authors start by considering some case of deterministic
sampling (in [117] the associated algorithm is referred to as explorative dual dynamic
programming (EDDP)) before enhancing their results to the random sampling variant
of SDDP. We discuss deterministic sampling in more detail in Sect. 6. The main idea
to derive iteration bounds is the following: By exploiting Lipschitz continuity of 9Q.(-)
and Q(+), it is possible to control the approximation error also at points where no cuts
are constructed, as long as they lie in a neighborhood of some trial point zi*. If the
state space is bounded for all ¢ € [T] (cf. Assumption 9), it can be completely covered
by finitely many such neighborhoods [231]. A similar reasoning is applied in [71].
More formally, Lan [117] introduces the notion of saturated points T;_1, in which
the approximation of Q.(-) is already e-close for some predefined tolerance € > 0, i.e.,

Qu(Zy—1) — Qj(T4—1) <,

and distinguishable points T;—;, which have at least a d-distance to the set X7 of
already saturated points for some § > 0, that is

Hi‘t,1 — $t71” >0, Vxy_1 € thiltl

If some trial point zi* is saturated and distinguishable, the iteration i can be called
effective [71]. Using deterministic sampling, all iterations in SDDP can be shown to be
effective, and thus the number of iterations can be bounded in the aforementioned way.
For random sampling, this is not true, but the probability for an effective iteration is
at least + with N := 5 n,.

In the light of Assumption 9 (b), for any ¢ € [T, we call the bound D; satisfying

lz: — || < Dy, Vay, x) € X,

the diameter of the state space. Additionally, let L denote a Lipschitz constant for the
objective function of (MSLP), which exists due to Corollary 2.10.
Then, the following complexity results are satisfied by SDDP.

Theorem 4.2 (Complexity of SDDP [117, 231]). Let D, < D for allt € [T]. For some
€ > 0, the (expected) number of required iterations of SDDP (Algorithm 1) to obtain

e an e-optimal solution using deterministic sampling is
— polynomial in T, (%), L and D,
— exponential in ng,

o an e-optimal solution using deterministic sampling, given that X; is finite with
cardinality |X;] < X, is

— linear in T and X
e a (Te)-optimal solution using deterministic sampling is
— linear in T,
— polynomial in T, (%), L and D,
— exponential in ny,
e an e-optimal solution using random sampling is

— polynomial in q;, (é)7 L and D,
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— exponential in T and ny.

This means that for standard SDDP (using random sampling) the expected number
of iterations grows exponentially in the horizon T and the dimension n; of the state
space. This is computationally important. The exponential complexity with respect to
the state dimension is not that surprising, as it is well-known for cutting-plane methods
[146] and inherited by SDDP. Similarly, the exponential complexity with respect to the
number of stages directly follows from the exponential number of scenarios that may
have to be sampled in the worst-case. Interestingly, under deterministic sampling, the
complexity is independent of the number ¢; of noise terms per stage, as this number
only affects the computational cost per iteration.

We see that using some deterministic sampling scheme a polynomial or even linear
iteration complexity in 7' can be achieved, whereas the iteration complexity in the state
space cannot be alleviated [231].

The complexity results in [117, 231] have been further generalized by Forcier and
Leclere [71]. They provide results for a generalized framework of SDDP-related algo-
rithms, including SDDP with inexact cuts or regularization (see also Sect. 21), risk-
averse SDDP (see also Sect. 12) and extensions to convex nonlinear or non-convex
mixed-integer (nonlinear) problems (see also Sect. 15 and 16).

5 Comparison with Related Methods

We briefly compare SDDP to solution methods that it is (historically) related to, as
discussed in Sect. 1.

5.1 Relation to SDP

SDDP is closely related to stochastic dynamic programming (SDP). SDP usually is
applied in a setting where not only state variables, but additional local variables are
considered, see Remarks 2.2 and 2.4. Therefore, the DPE and value functions are
considered in the form of (7), which we repeat here for convenience:

Qi(wi—1,§) = min filuy, &) + Qevr (Te(e—1, ue, &)

ut €U (wr—1,6t)

The main idea of SDP is to explicitly evaluate the (expected) value functions for
all possible cases during a forward or backward iteration through the stages ¢ € [T7.
This is only possible if the support Z; of & and the state space X; C X; are finite for
all ¢t € [T]. Otherwise, infinitely many evaluations would be required. Additionally, it
is required that also the action space Ug(x:—1,&) is finite for all 21 € X;1,& € Ey,
so that the minimum in (7) can be computed by finitely many evaluations. For this
reason, all these sets may have to be discretized first [169].

The computational effort of SDP scales linearly in 7' and in the cardinalities | X/,
|Ui(z1-1,&)| and |Z;|. The three sets might be multidimensional, and thus require to
be discretized in each dimension n;, ny, and ;. Hence, their cardinality grows exponen-
tially in these dimensions, which is computationally prohibitive for high-dimensional
problems. This is known as the curse of dimensionality of SDP, see also Sect. 1.

SDDP avoids the requirements of state space and action space discretization by not
evaluating Qy(-),t € [T, exactly for all (finitely many) possible actions and states, but
approximating them by an iteratively refined polyhedral outer approximation £(-),
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constructed by linear cuts. It can thus be considered an approzimate dynamic program-
ming (ADP) method.

5.2 Relation to NBD

In stochastic programming, it is common practice to consider problems (MSLP) with
finite randomness (Assumption 5), but without the requirement of stagewise indepen-
dence of & (Assumption 2). In that case the uncertainty can be modeled by a finite
scenario tree, which compared to the recombining tree from Sect. 2 exhibits some path
dependence and satisfies the usual tree property that each node n has a finite set of
child nodes C(n), but a unique parent node a(n). An example of a scenario tree with
T = 3 and |S] = 9 is illustrated in Figure 7. This scenario tree represents the same
number of scenarios |S| as the recombining one in Figure 1, but requires Zthz ¢t 41
instead of 3", ¢; + 1 nodes.

©)

Figure 7: Scenario tree with 9 scenarios and £% highlighted.

To solve (MSLP) associated with a general scenario tree, in principle the same ap-
proximation approach as in SDDP can be used. However, due to the path dependence,
the value functions Q:(-,) and expected value function Q;(-,-) depend on the history
&[t—1 of the data process (£t)t€[T]. In other words, each node n has its own value function
Qn(+), and with each node (except for leaf nodes) is associated an expected value func-
tion Qg(n)(-). Therefore, to update the approximations Qé(n)() of all Q¢ (-) in each
iteration, all nodal subproblems have to be solved in the backward pass, which in turn
requires to compute trial points a:fl(n) for all nodes, i.e., solving all nodal subproblems
in the forward pass as well.

Because of its close relation to the L-shaped method for solving two-stage stochastic
linear programs [228] and to Benders decomposition [17] this solution method is called
nested Benders decomposition (NBD) or just nested decomposition. It was first proposed
by Birge in 1985 [25] and can be interpreted as a decomposition method for the extensive
form of the deterministic equivalent of (MSLP). Contrary to SDDP, NBD guarantees
that valid lower bounds v and upper bounds v of v* are determined in each iteration
and by that allows for a deterministic stopping criterion in a straightforward way. The
upper bounds can be computed as

7 :=E

§ T,
cn‘rn:| ’

neT
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where 7 is the set of all nodes in the scenario tree.

On the other hand, due to the sheer amount of subproblems to be solved in each
iteration, which grows exponentially in 7', it is only computationally tractable for prob-
lems of moderate size. By moderate we mean instances with some hundreds or a few
thousand scenarios, and 4 or 5 stages at maximum [227].

Furthermore, for general scenario trees also sampling scenarios from S in the forward
pass does not necessarily help to reduce the computational burden and to speed-up the
solution process, as it reduces the computational effort per iteration, but at the same
time implies that the cut approximations Qé(n)(~) are only improved for some Q¢ (*)
in each iteration.

Under stagewise independence (Assumption 2) this is different. The scenario tree
collapses to a recombining tree. This means that for any stage ¢, many differing scenarios
share the same nodes, and thus value functions. In particular, there exists only one
expected value function Q;(-) for each t = 2,...,T. Therefore, even if only a sample
KC C S of scenarios is considered in each iteration i, still the cut approximations Qi(-)
for all Q;(-) are updated with new cuts.

From this perspective, SDDP can be interpreted as a sampling variant of NBD which
reduces the computational effort per iteration significantly [179], but heavily relies on
stagewise independence of (&;):c[r) in order to leverage the sampling with respect to
value function approximations.

Remark 5.1 (Cut-sharing). In the literature, the aforementioned property of SDDP is
often referred to as cut-sharing. This is best understood by representing the stagewise in-
dependent data process (ét)tE[T] using a standard scenario tree. In this case, at any stage
t, all nodes have the same set of successor nodes. If now only a sample KC of scenarios
is considered in iterations of SDDP, only a subset of nodes is visited. Nonetheless, the
cuts constructed for a specific node are valid for all equivalent nodes in the tree as well,
so they are shared with other nodes/scenarios.

As mentioned above, a recombining scenario tree provides a more precise picture.
For each stage, scenarios share nodes in the recombining tree and there exists only one
function Qy(+) to be approximated, so there is no need to actually share cuts. Therefore,
the phrase cut-sharing is sometimes considered misleading.

5.3 Complexity Comparison

We summarize the main complexity results for SDDP and the related methods in Ta-
ble 3.

In contrast to SDP, SDDP does not require a state space and action space discretiza-
tion. Especially, the latter is computationally important in practice, whereas the former
may yield some computational improvements, but at least does not translate into an
improvement of the worst-case complexity class. On the other hand, SDDP does not
have linear complexity in 7.

Another difference is that SDDP (as NBD and most solvers for the deterministic
equivalent) approximates v* with improving lower (and upper) bounds. This means that
if the computation time is increased also the quality of the approximation improves. On
the contrary, standard solution methods for SDP, such as backward induction, either
manage to solve a problem in a given time limit or not, but do not use improving
approximations. In particular, stopping SDP prematurely does not provide valid bounds
for v*.
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Table 3: Complexity of SDDP and related solution methods.

Det. Equiv. NBD SDDP SDP
Requirements
stagewise independence no no yes yes*
state discretization no no no yes
action discretization no no no yes
Complexity
inT exponential exponential exponential linear
in ny polynomial  exponential exponential exponential
in q polynomial  polynomial polynomial linear
Progressivity
of bounds yes yes yes no

* Markovian uncertainty is possible as well.

Compared to NBD, SDDP mainly reduces the computational effort per iteration
significantly, but does not get rid of the exponential growth of the computational cost
with respect to T'. In return, it heavily relies on stagewise independence (Assumption 2)
and has worse complexity with respect to the state dimension n,.

We can conclude that SDDP, while mitigating some of the weaknesses of SDP and
NBD (sometimes advertized as “breaking the curse of dimensionality”), does not man-
age to leave the respective worst-case complexity classes. On the contrary, it inherits
some of the complexity drawbacks of both methods. Still, in many applications (where
not worst-case complexity is decisive) it shows considerable performance improvements
compared to SDP and NBD, especially for problems with continuous action space, a
medium number of stages T and a moderate state dimension n;. While Theorem 4.2
indicates that convergence may take extremely long in large-scale applications, and too
long to be computationally tractable, SDDP has shown good performance for large-scale
instances of (MSLP) in many applications, as we discuss in Sect. 9. This is also due to
various improvements, which we address in the following sections.

6 Sampling

Sampling is a central element of SDDP, see Sect. 3. In the forward pass, a finite number
|K| of scenarios is sampled to simulate the current policy and compute a trajectory of
trial points (x%k)tem for all £ € K. Often, this sampling is done from a finite set of
scenarios S (see Assumption 5), with || < |S]. Alternatively, it is possible to directly
sample from a given (continuous) distribution.

In this section, we discuss different sampling techniques which can be used in SDDP.
As indicated in Sect. 3 and 4, we can distinguish between random sampling and deter-
ministic sampling methods. In standard SDDP, as originally proposed in [152], random
sampling is used. Here, the main requirement is that the samples should be independent
and identically distributed (i.i.d.). This is important for two reasons:

(1) This way, almost sure finite convergence of SDDP can be ensured, as any scenario
is sampled infinitely many times with probability 1, assuming that the algorithm
does not terminate, see Sect. 4.
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(2) In the originally proposed stopping criterion of SDDP a confidence interval is used,
which is built using the sample mean v (21), see Sect. 7. However, by the Central
Limit Theorem, even an approximate confidence interval can only be obtained for
a sequence of i.i.d. random variables.

6.1 Monte Carlo Sampling

The simplest sampling method satisfying the above requirement is Monte Carlo (MC)
sampling. Here, samples are drawn randomly from the probability distribution of &; in
each iteration, by first sampling from a uniform distribution and then using appropriate
transforms. Under stagewise independence (Assumption 2), this is done independently
for each stage t € [T].

As the quantities v*(¢¥) are i.i.d., the value i (21) that can be computed in the
SDDP forward pass is an unbiased estimator of 7 and according to the Strong Law of
Large Numbers converges to o for |K| approaching infinity. Still, the sampling error
can be significant. The variance of v} can be estimated by Wll (J%’,C)Q. This means
that the variance can be reduced either by increasing the number of samples |K| or by
reducing the sample variance (U%K)Q. Increasing the sample size may look promising at
first glance, but may become computationally intractable in practice [150]. Recall that
for every sample k € K a number of 1 + Ethz q; subproblems has to be solved in the
backward pass of each iteration. Therefore, the more promising approach is combining
MC sampling with variance reduction techniques [150].

6.2 Variance Reduction Techniques

Incorporating variance reduction techniques into sampling in SDDP is studied exten-
sively in [105, 150]. For a review on sampling techniques in stochastic programming in
general, we refer to [104].

Randomized QMC Sampling. In [105], it is proposed to use Quasi-Monte Carlo
(QMC) sampling within SDDP. In this case, instead of randomly sampling from the
uniform distribution, a deterministic sequence of points u',...,u" from (0,1)% is cho-
sen. This is done in such a way that the sampled points fill (0, 1)"* as homogeneously as
possible (so the empirical distribution is as close to a uniform distribution as possible).
Then, after an appropriate transformation, they provide a better representation of &;
than randomly sampled points.

A drawback of QMC methods is that the sample points are not random, the obtained
estimator is biased and no confidence interval can be established. Randomized QMC
(RQMC) methods, where the choice of QMC points is combined with some kind of
randomness, avoid this drawback and allow for standard error estimation [105].

Compared to MC sampling, RQMC methods achieve better convergence rates of
O(|K|~'(log|K|)**), and thus are considered more efficient. However, the convergence
rate depends on the dimension &, of & [105].

Latin Hypercube Sampling. In Latin Hypercube Sampling (LHS) [141], the
space (0,1)" is divided into equidistant subintervals and then scenarios are sampled
from each subinterval in such a way that in each row and column of the grid only one
point is sampled. This is illustrated in Figure 8 (a).

In this way, again, a more homogeneous distribution of the sample points can be
obtained, and compared to MC sampling, the variance can be reduced. On the flipside,
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poor space-filling or correlation between the sample points has to be ruled out, see
Figure 8 (b), which requires significant additional effort.

uz uz

0.25 0.25

uy uy

0.25 0.5 0.75 1 0.25 0.5 0.75 1

(a) Good space-filling. (b) Correlated sample points.

Figure 8: Latin Hypercube Sampling for two dimensions.

Incorporation into SDDP. It is important to notice that while reducing the
variance compared to the classical MC estimators, scenarios sampled by RQMC and
LHS are no longer i.i.d. Therefore, both sampling techniques cannot be incorporated
into SDDP without modification, if convergence properties should not be compromised.
Homem-de-Mello et al. [105] therefore suggest to build sampling blocks. This means
that the total number of samples |K| is divided into M blocks ¢ = 1,..., M with
M > 5 a divisor of |K]. Then, for each block ¢, |[K'| := |K|/M scenarios are obtained
using conditional sampling with RQMC or LHS, which are not independent. For each
k' € K, values v (") are determined and averaged to '

This is repeated for each block £. Then, the mean v of all values v, £ =1,..., M,
and the sample variance are determined. As the scenarios of different blocks are inde-
pendent, this still yields a useful confidence interval to stop the algorithm.

Another challenge reported in [105] is that it is computationally expensive to gen-
erate samples using RQMC for high dimensions. To reduce the computational effort, it
may be reasonable to apply RQMC only to important components, e.g., to early stages
in [T, and standard MC or LHS to the other ones. This strategy is called padding and
applied after 6 or 12 stages for numerical tests in [105].

Experiments in [105] imply that RQMC and LHS both lead to upper bounds v
oscillating around the lower bound v more quickly compared to MC sampling.

6.3 Importance Sampling

In [150], Parpas et al. propose incorporating importance sampling into SDDP. In con-
trast to the previously described techniques, it can be used to obtain i.i.d. samples in
the forward pass.

The main idea of importance sampling in general is to attach different importance
to subregions of the sample space and to sample more often from subregions of higher
importance. In the context of SDDP, this means that it is sampled with priority from
scenarios that contribute more to the value of the expected value functions Q,(-).

This is achieved by sampling from a different distribution than the original one, the
so-called importance sampling distribution, but correcting the bias introduced by this
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difference. Then, an importance sampling estimate of ¥ can be calculated as

TS = S (€AY

K (&

with A(§) = %, where f denotes the original distribution and g the importance
sampling distribution. The likelihood function A(-) is used to correct for sampling from
the wrong distribution. It can be shown that importance sampling can reduce the
variance of sampling estimators significantly. In the SDDP case, as shown in [150], the
variance is minimized for the choice

* o |Qu( 1, &)
W) B Q)

However, clearly, this zero-variance distribution is a theoretical construct and not known,
which is referred to as the curse of circularity. Therefore, it is proposed to first approx-
imate ¢g* using a framework including Kernel density estimation [150].

In numerical experiments, SDDP with importance sampling is shown to outperform
MC and QMC sampling based methods, given that it is difficult to sample from the
original probability distribution and that the original problem has moderate or high
variance [150].

fe(&t)-

6.4 Deterministic Sampling

As already discussed in Sect. 4, in step 6 of SDDP (Algorithm 1) also some deterministic
sampling can be used. In this case, |K| = 1. In the literature, two different approaches
are considered.

Worst Approximation Sampling. The first one requires that in addition to
the (lower) cut approximation 9;(+) of Q;(-) also an upper approximation 9Q;(-) is con-
structed and iteratively refined in SDDP. Assume that in the forward pass on stage
t — 1 the trial point ¢ ; has been computed. Then, for stage ¢ the approximate sub-
problem (10) is solved for x,’éfl and for all noise terms &;;,j = 1,..., ¢, yielding optimal
states z;;. For the next stage, the trial point z} = x; is chosen such that

ax {ﬁi(xt]) — Qi(xtj)} )

j' € argm
j=1,...,q¢

J=1,...
i.e., that the gap between the current upper and lower approximations is maximized.
This corresponds to sampling noise term &;;» on stage t.

This form of deterministic sampling is used for SDDP in [231]. Its computational
drawback is that at each stage ¢: subproblems have to be solved instead of only || < g¢:.
A similar approach was first proposed by Baucke et al. in [10, 11] and called problem-
child node selection. However, their setting differs a bit from original SDDP, as each
subproblem contains specific variables x;;,7 = 1,..., ¢, for all random outcomes, and
therefore in their case only one subproblem has to be solved in the sampling step.
Another related sampling scheme is used in robust dual dynamic programming (RDDP)
[76]. In that case, &; is determined by solving a special upper bounding problem
containing Q;(-)

Explorative Sampling. Explorative deterministic sampling is proposed in [117]
as part of EDDP. It is based on the concepts of saturated and distinguishable points,
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which we introduced in Sect. 4.2. As for the previous sampling scheme, the idea is to
solve the forward pass subproblems for all &;,7 =1,...,¢. Instead of maximizing an
approximation gap, however, the trial point z; = xj is chosen such that

j € argmax min |z — z],
j=1,.,qs TtEX;?
i.e., the minimum distance to already saturated points is maximized. In other words, a
maximum distinguishable point is chosen.
As shown in [71], worst approximation sampling and explorative sampling are equiv-
alent in the sense that both approaches are guaranteed to lead to effective iterations,
see Sect. 4.2.

7 Stopping Criteria

In each iteration i of SDDP, a valid lower bound v* for the optimal value v* is deter-
mined. Additionally, a statistical upper bound v} can be computed. Since the latter
is not necessarily valid, an important question is when to consider an obtained policy
(x¢(£))eerm as (approximately) optimal and to stop the SDDP method. If the stopping
criterion is too conservative, the algorithm may iterate much longer than required, if it
is too optimistic, then SDDP may stop prematurely.

Confidence Stopping Criteria. In their seminal work on SDDP, Pereira and
Pinto propose to use a confidence interval based stopping criterion [153]. An approxi-
mate confidence interval for a true valid upper bound 7 is determined as follows using
the estimates v*(£¥) from (21).

Under random independent sampling, the values v'(¢¥) are i.i.d. random variables
with expected value v and variance (o%)?. Moreover, knowing the sample mean vi. (21),

we can define a standardized random variable
) =i
Zp = X7 (25)

VK

According to the Central Limit Theorem, this random variable asymptotically, that
is, for |K| — oo, follows a standard normal distribution A(0,1). This implies that for
sufficiently large |K|, Z} is approximately standard normal distributed.

Due to symmetry of the standard normal distribution, it follows

P(—21_q/2 < Zy < Zi_a2) ®1—q,

where z,_,/o denotes (1 — §)-quantiles of N'(0,1) for some level a € (0,1).
Inserting (25) and rearranging yields an approximate (1 — «)-confidence interval for
the true upper bound ':
o ot

,Efc‘i‘Zl,g .
K] *VIK]

-
UV 21,%

As o is unknown, it can be replaced by the sample standard distribution 0%7 x Which
is defined by the sample variance

- > (0 (64) — ).

(0hx)? = o
K|~ kek
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In that case, the standardized variable approximately follows a Student’s t-distribution
with degree of freedom |K| —1. In the literature on SDDP, even in this case, the (1 —«)-

confidence interval for the true upper bound ¥* is usually approximated using a standard
Normal distribution [201], though, which yields:

T —2_a T T+ 2 Tox (26)
K= <*1-< y UK 1-&
> VIK| *VIK]

Pereira and Pinto propose choosing a = 0.05, which implies 2,_,/2 = 1.96, and stopping
SDDP if the lower bound v* is included in this confidence interval [153].

As pointed out by Shapiro [198], this stopping criterion has several flaws. For
instance, the higher the sample variance (U%’,C)Q, the earlier v’ exceeds the lower end of
the confidence interval, which provides a misguided incentive to increase (0%7,6)2. The
same is true for increasing the confidence 1—«, which contradicts the intuition behind a.
Additionally, faster stopping can be achieved by reducing the sample size |K|. Finally,
the above stopping criterion may favor premature stopping, as it is rather unlikely that
7" is located exactly at the lower bound of the confidence interval.

For these reasons, Shapiro proposes a more conservative stopping criterion where
SDDP terminates if the difference between the upper bound of the confidence inter-
val (26) and v’ is sufficiently small.

Sometimes it is also suggested to include values v’ (¢F) from previous iterations
J < iin (21), for instance if |K| is too small to obtain a reasonable bound. However,
this destroys the independence between the different samples. Thus, the Central Limit
Theorem can no longer be applied and the confidence-based stopping criteria are not
applicable. [49].

A Hypothesis Test Perspective. Considering that hypothesis tests and confi-
dence intervals are closely related, the above stopping criterion can also be interpreted
in terms of a hypothesis test with hypotheses [105]:

Hy:7' =", against H;:70' #v".

The null hypothesis Hy is tested using the test statistic v}, which is assumed to be
approximately normal distributed. This can again be reasoned using the Central Limit
Theorem for sufficiently large |K|. Then, the region of acceptance for Hy in iteration
i is given by the interval (26): If the lower bound v’ does not exceed the lower bound
of this region, then optimality is rejected. Otherwise, there is no compelling reason to
reject it, so it is retained. By choosing «, the type I error (rejecting optimality although
SDDP has converged) can be controlled. However, this comes at the cost of a possibly
high type II error (stopping the algorithm prematurely) [105].

Different Hypothesis Tests. To avoid stopping prematurely, Homem-de-Mello
et al. [105] propose a modified hypothesis test controlling type I and type II errors
simultaneously. The basic principle is very similar to above, even if it is presented for
a one-sided hypothesis test with Hy : 7 < v’. The key difference is that if v’ lies inside
of the region of acceptance, the hypothesis of optimality is not necessarily retained, but
still may be rejected. In particular, stopping SDDP should be prevented if the true
upper bound @ exceeds the lower bound v’ considerably. As T’ is not known, we cannot
observe when this event occurs, but we can predefine a bound v > 0 on the probability
of stopping given that it happens. For fixed v and «, and given sample estimates, we
can then compute a percentage difference 6° between o* and v?, for which the probability
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of a type II error (premature stopping) is bounded by ~:

If 8 is below some predefined threshold &, the sample estimates guarantee that for
deviations larger than §, the type II error is under control. Therefore, SDDP stops.
Otherwise, the control of the type II error is not considered sufficient, and the algorithm
proceeds. In other words, SDDP only terminates when ' lies inside of the region of
acceptance and when the type II error is bounded by ~ for a sufficiently small percentage
difference §°.

Computational experiments with § = 0.1 and v = 0.05 indicate that this stopping
criterion is effective in preventing SDDP from premature stopping [105]. Still, it is
a heuristic, and so far, no proposed statistical testing procedure guarantees that the
probability of stopping prematurely is bounded by some v > 0 in general.

Predefined Criteria. The previous statistical stopping criteria are computation-
ally demanding and require |K| to be sufficiently large to yield reasonable approximate
confidence intervals. Furthermore, in practical applications (MSLP) is often too large to
achieve convergence in reasonable time. Finally, the statistical stopping criteria do not
necessarily generalize to extensions of SDDP, such as risk-averse variants, see Sect. 12.
Therefore, in practice often more convenient stopping criteria are used for SDDP. For
instance, it is common to stop SDDP after a fixed number of iterations I € N, after a
fixed number of cuts |K|I, after a predefined time or if the lower bounds v* have stalled.
Neither guarantees that an optimal policy is determined, though.

Deterministic Stopping. Finally, SDDP can be stopped deterministically as long
as valid upper bounds % for v* are computed in addition to lower bounds v*. In that case,
for some predefined optimality tolerance ¢ > 0, SDDP stops with an (approximately)
optimal policy if 7° — v’ < e.

This stopping criterion requires significant additional computational effort to de-
termine true upper bounds ©'. Hence, there is a trade-off between achieving a more
reasonable stopping criterion and spending computational resources on computations
offside of the core elements of SDDP. We address how such exact upper bounds can be
computed in the next section.

Summarizing, despite various attempts at developing reasonable termination criteria
for SDDP, optimally stopping SDDP remains an open challenge.

8 Exact Upper Bounds and Upper Approximations

The idea of computing deterministic upper bounds v for v* and deterministic upper
approximations Q;(-) of Q;(-) has drawn a lot of interest in the research community
recently, both in analyzing the convergence behavior of SDDP, see Sect. 4, and in
developing deterministic stopping criteria, see Sect. 7.

An intuitive way to determine upper approximations Q;(-) of Q(-) is based on the
observation that due to convexity of Q,(-) all its secants lie above or on its graph. There-
fore, an upper approximation is possible by a convex combination of points (z:—1, Q¢(z:—1)).
To obtain an approximation on the whole state space, it can be extended using a reg-
ularization with a Lipschitz constant L; of Q;(-). Such constant exists according to
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Corollary 2.10. In this light, ;(-) can be constructed as [231]

o) =co (| min, Q) + Lilara -~} ). 1)

m:l,..., t

where co(f) denotes the convex envelope of function f. This is illustrated in Figure 9.

Q4 (z)

Figure 9: Inner and outer approximation of Q(:).

Alternatively, by interpreting this idea from a set perspective, the convex epigraph
epi(Q;) of Q;(+) can be approximated by the convex hull conv(w}_,, ..., w) of finitely
many points wy_q := (x4_1, Q¢(x4—1)) in epi(Qy).

In principle, there are two different approaches to realize this idea. One uses the
above perspectives, which we refer to as primal, and one is related to some dual per-
spective on SDDP and its value functions [97, 119].

8.1 Primal Inner Approximation

Similar to subproblems (10), based on upper approximations Q;(-) of Q:(-), approxi-
mating subproblems can be defined by replacing Qy(-) with 9Q;(+) in the DPE for all
t € [T]. This idea is first introduced by Philpott et al. [161]. As they consider only the
RHS of (MSLP) to be uncertain, we adopt this assumption, although it is not required.

For stagest = T—1,...,2, each element m in a given set of points z},.. ., miﬁt‘l and
each &;,7 =1,...,q, the following subproblem can be solved by backward recursion:

Qt(xﬁlagtj) =

. min ctTa:t + Qi1 ()
o (28)

st € (xit, &y)-

Here, as indicated in (27), the upper approximation Q;,(-) is defined as a convex

combination of points (m?l, Qt+1(x?’”)) ,m=1,..., M,;. The key difference is that instead
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of Quy1(a}") here Qupq (") :=E [ Qyp1 (@], &141)] is used, as Qu41(+) is not known:

My

min Y 0, Qi (a7)
m=1

My

— s.t. W =
Qi (my) = mz::l Lo (29)

Furthermore, compared to (27) no regularization is used.
By recursion, it can be shown that

@t(‘rﬁlv‘gtj) > Qi1 &)
forallm=1,...,M; 1 and j =1,...,¢. This implies
Qu(afy) = Qul(aLy).
The first-stage problem then yields

min ¢ 21 + Qa(y)
ﬁIA = Tt
s.t. x1 € Ay,

with 774 an exact valid upper bound to v*.

The main challenge with this approach is to appropriately choose the set of points
xy*y,m=1,...,M;_q. On the one hand, they should be chosen such that as much of
X;_1 is spanned as possible. On the other hand, choosing (at least some of) those points
as extreme points leads to M; > 2™ points, i.e., the number of required points grows
exponentially in the dimension of the state space.

An alternative is to use the trial points from the SDDP forward pass [161]. Even
using these points, the computational effort may become excessive, though. Similarly to
the SDDP backward pass, subproblems (28) have to be solved for each stage t € [T, each
point zi*,m = 1,..., M;_;, and each noise term §;;,j = 1, ..., ¢;. However, the number
M;_1 of points to be considered grows with each iteration, as it contains all previous
trial solutions. It is therefore suggested to only use the upper bound computation every
few hundred iterations, and not to permanently incorporate it into the backward pass
[161]. This hinders using the upper bounds 7’4 in the stopping criterion of SDDP in
each iteration, though.

Moreover, the obtained bounds /4 may be very loose, especially in problems (MSLP)
with a high number of stages. Computational tests are required to assess whether the
information gain justifies the additional computational effort and, possibly, higher num-
ber of iterations.

Baucke et al. provide a different perspective on the previous inner approximation
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idea [10]. Instead of (29), they use its dual representation

max z, A+
Qe = m TF (30)
t+1(T¢) = ’ _
st (@) A+ p < Qun(a), m=1,.., M,

This shows that Q;41(+) can be equivalently described by maximizing over the coef-
ficients of all supporting hyperplanes for points (27", Qu1(2}")),m =1,..., M,.

In [10], the dual problem is additionally regularized, i.e., enhanced by constraint
Al € Lg, with L; denoting a Lipschitz constant of @Q,(-,-). This is equivalent to
regularizing the primal problem (29) with the dual norm to ||-||, ¢f. (27). This way, a
reasonable approximation is also achieved for points outside of the convex hull of the
set defined by the points z}*,m =1,..., M,.

Using this expression for the inner approximation functions, Baucke et al. propose
a deterministic algorithm for multistage stochastic convex programs. In their case,
subproblems (28) are solved in each backward pass iteration, and 9, +1(+) is updated
by adding constraint (27*) "\ + p < Q. (2}") for the current iterate z}". The proposed
algorithm differs in further regards from standard SDDP, for instance it requires a multi-
cut approach, see Sect. 21. Moreover, choosing a reasonable and valid value for L; can
be very challenging, but is crucial for the proposed method to work as intended.

8.2 Dual SDDP

To compute deterministic upper bounds v for v* recently a dual perspective on SDDP
and the DPE (4) has gained attention.

Using Convex Conjugates of Value Functions. The first proposal in this
context, by Leclere et al. [119], exploits convex conjugates and the related duality
concepts to derive dual value functions for (MSLP) where uncertainty only appears in
the RHS h¢(&;).

Let f: R* - RU{—o00,00}. Then its conver conjugate f*(-) is defined as [186]

f*(\) == sup ANz — f(z).
zeR"
For (MSLP), the convex conjugates Dy(-) := Q;(-) of the value functions Q,(-) can be
considered as dual value functions for ¢t = 2,...,T. It can be shown that these functions
also satisfy some DPE with linear subproblems on each stage. Whereas Leclere et al.
consider a more general setting including control variables u; (see Remark 2.2), for
(MSLP) as defined in Sect. 2 (and especially under Assumption 5), for t = 2,...,T,
these subproblems can be expressed by

Atshot

qt
min an( — h;rjp/t]' + Dt+1(>\tj))
7j=1

qt qt
Di(Ni-1) = st T, (ZPtthj) - Zptﬂtj +XM-1=0 (31)
=1

=1
W, s = Mj + ¢, i=1. . a
’Ytjgoa jzla"'aqt-
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For the first stage, we obtain a deterministic problem, which by Ty = 0 simplifies to

Di(X\o) = Hﬁlln hy p1 + Dy(Wy iy — 1)

for some arbitrary initial Ay < 0 (note that more general formulations of (MSLP) may
lead to a dependence on Ap).

Using this dynamic recursion, it is possible to apply an SDDP-type algorithm, called
dual SDDP, to Dy(-), using iteratively improving outer approximations D%(-) for Dy(-).
Analogously to SDDP, this iterative method yields a converging deterministic lower
bound for the first-stage optimal value, i.e., D%(N\o) < Di()\g). Applying conjugacy
theory again, we obtain

o' = (D1)"(w0) > Dj(w0) = Q7 (w0) = Qi (o) = v*.

Hence, deterministic upper bounds for v* can be obtained as conjugates of the first-
stage approximations Di(-) evaluated at o = 0, and (v%); defines a sequence converging
to v* [119].

Using the Dual of (MSLP). Guigues et al. propose an alternative way to define
dual value functions and DPE that can be exploited in a dual SDDP algorithm [97].
Instead of working with conjugates of the primal value functions Q;(+), they first derive
the dual to (MSLP) formulated as a single problem (3), and then show that this dual
problem can be decomposed using DPE and dual value functions

qt
. _
max Z;ptj( — hyme + Dt+1(71'tj))
=

Dy(m_y) = (32)

qt
T T
s.t. Zptj (thl,jﬂ-t]') + Wt,177t71 < cp1.
j=1

It can be argued that these dual DPE are simpler and more intuitive, as they do not
require conjugacy theory. Moreover, we immediately obtain that the first-stage optimal
value Dj(mg) equals v* by strong duality for linear programs. Therefore, using outer
approximations D¢ (-) of these value functions in dual SDDP, again a sequence (7*); of
deterministic and valid upper bounds can be computed which converges to v* [97]. On
the other hand, the dual value functions 5t() cannot be directly related to the original
value functions Q,(-).

Remark 8.1. Ewven if the dual DPE (31) and (32) are derived using different tools and
perspectives, they are still closely related. Note that subproblem (31) can be reformulated
as

min Zptj( - htTthj + Dt+1(/\tj))
j:

Dy(M\—1) = L
st T, Zptjutj + X150

j=1
WtTutj :)\tj+ct7 .7: 17"'7Qt~
Using the last constraint, the state \i_1 can be expressed through the dual variables

Wi—1 from the previous stage: A1 = Wtiﬁttq — 1. Fxploiting this, the subprob-
lems only contain dual variables p, which have to be considered as state variables. By
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adapting the optimization sense in the objective, we get exactly the structure of (32).

We can make the following additional observations with respect to the dual DPE (31)
and (32). First, in both cases, the subproblems are not necessarily bounded. Therefore,
in both cases, artificial bounds are introduced. In [97] they are chosen as m € [m,, T,
whereas in [119] Lipschitz continuity of Q;(+) is exploited to impose the bounds || A¢]|co <
L, for Lipschitz constants Ly, t = 2,...,T. It is assumed that these bounds are chosen
sufficiently large to not affect the optimal solutions.

Second, even if the primal DPE (4) are assumed to have relatively complete recourse
(see Assumption 9 and Lemma 2.5), this does not necessarily translate to the dual
subproblems. To ensure feasibility, Guigues et al. propose to either use feasibility cuts
(also see Sect. 17) or a penalization approach [97].

Third, in contrast to the primal perspective, the subproblems do not decompose by
realizations of &, but contain separate dual variables m; (or Ay, fit5, 15, respectively)
for all j = 1,...,¢. In the forward pass of dual SDDP the trial point 7! (or \¢) that is
used as a parameter in the following stage is sampled from these variables.

Finally, if W; and ¢; become uncertain as well, then the value functions and sub-
problems additional depend on &. In fact, in formulation (32) the state space has to be
extended to include the history &1 of the stochastic process, as the problem contains
W;_1 and ¢;—q [97].

Again, an SDDP-type algorithm, also referred to as dual SDDP in [97], can be
applied to the DPE (32). This algorithm is presented in Algorithm 2. The two variants
of dual SDDP have been extended to the risk-averse case [40] (see also Sect. 12) and to
problems with infinite horizon (see also Sect. 19) [200].

Dual Inner Approximation. First and foremost, dual SDDP is an alternative
to (primal) SDDP to approximate v* by converging deterministic upper bounds 7.
However, as shown in [119], if the dual DPE (31) are used, then the obtained approx-
imations Di(-) may be translated to inner approximations Q,(-) of the primal value
functions Q4(-). This way, policies (x:(&y))ieir) for (MSLP) can be computed. The
inner approximations can be computed as Lipschitz regularizations (see Sect. 17) of the
convex conjugate of the outer approximations Di(-), which is shown to be equivalent to
solving problem (30) with regularization ||A||cc < L¢. The key difference to the approach
in [10] is the way the primal supporting points z}* are determined, that is, by the slopes
of the dual outer approximation [119].

Incorporation into SDDP. While dual SDDP can be applied on its own to approx-
imate v*, and even compute policies (%(f[t]))tem, it seems reasonable to incorporate
it into (primal) SDDP in order to compute deterministic upper and lower bounds for
v*. Guigues et al. suggest to use both variants of SDDP in parallel [97]. In contrast,
Leclere et al. propose a framework where primal and dual SDDP are intertwined [119]:

1. Run a forward pass of (primal) SDDP, yielding trial solutions (x});efr) for the
sampled scenario path (the authors choose |K| = 1).

2. Run a backward pass of (primal) SDDP using the trial solutions zi_;, obtaining
new slopes 7! from the cuts.

3. Run a backward pass of dual SDDP using the slopes A = 7, obtaining new cuts
for the dual problem.

4. Run a forward pass of dual SDDP, to obtain a new dual trajectory ()‘i)te[T] and
update the cuts along this trajectory.
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Algorithm 2 Dual SDDP from [97]

Input: Dual to problem (MSLP) satisfying Assumptions 1 to 9. Appropriate multiplier

bounds. Stopping criterion.

Initialization

. Initialize cut approximations with bounded 35?() forallt=2,...,T.

2: Initialize upper bound with 7° = +o0.
3: Set iteration counter to i < 0.

ot

10:

11:
12:

13:

14:

15:
16:

Dual SDDP Loop

: while Stopping criterion not satisfied do

Set 7 <71+ 1.

Forward Pass

Solve the first-stage problem (defined by replacing 52() with 53() and adding
multiplier bounds in (32)). Store the trial point 7¢.

for stagest=2,...,7 do B B
Solve the stage-t subproblem (defined by replacing Dy (-) with D} (-) and
adding multiplier bounds in (32)) for @{_; to obtain 7j;,j =1,...,¢.
Sample 3 from j =1,...,q; and set 7} = 3
end for

Backward Pass

for stagest=1T,...,2 do B
Solve the updated stage-t subproblem (10) (defined by replacing D1 1(-) with
fﬁiﬂ() and adding multiplier bounds in (32)) for 7_,. Store the optimal
value Dy(m?_;) and the optimal dual vector xi ;.

Compute
ay" = Dy(m)_,) - ( tDJ)TWg—l
and
tD’i = —W,iz)_,.
Update the cut approximation of ﬁt() to
55?1(%571) := min {55%(3%71), af)’i + (ﬁtD’i)Tﬂt,l} .

end for
Solve the first-stage problem (defined by replacing Do (-) with 5% (-) and adding
multiplier bounds in (20)) to obtain an upper bound '.

17: end while
Output: Upper bound 7 for v*.
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One computational drawback of this framework, and of dual SDDP in general, is that
each iteration of dual SDDP is much more computational expensive than for standard
(primal) SDDP. This hampers the application of a solely deterministic stopping criterion
for very large problems [97, 119].

9 Applications

In this section, we present different application areas of SDDP. We also point out appli-
cations in which some of the Assumptions 1 to 9 are not satisfied, and therefore either
modifications of (MSLP) or algorithmic extensions are required in order to apply SDDP.
These use cases can be regarded as a motivation for the enhancements of SDDP that
we cover in the following sections.

9.1 Power System Optimization

By far the dominating application field of SDDP is power system optimization, in
particular, the operational planning of energy systems including hydro storages by a
central planner. This is due to its adequacy for such problems, but also due to its
origins in optimizing the operational planning of the Brazilian hydrothermal system
[152, 153].

In general, solving power system optimization problems is a very complex task, as
it allows for incorporation of various technical and economical details and uncertainties
[110, 149, 182, 183, 184, 209, 210, 232]. Including all these details in one single problem
is computationally intractable. Therefore, usually a hierarchy of problems is considered,
dealing with different time-scales and perspectives [47], such as short-term dispatch (a
few days or weeks), mid-term operational planning (1-2 years) and long-term operational
planning (3-5 years) [72, 81]. Results from a long-term model can then be incorporated
into one with a shorter horizon, but more detail in other modeling aspects.

9.1.1 Long-term Operational Planning

SDDP is most prominently used for long-term operational planning (LTOP) of hy-
drothermal power systems, also called long-term hydrothermal scheduling (LTHS). In
the research literature, SDDP has been applied to LTOP of various hydrothermal sys-
tems, with the most prominent ones being the hydro power dominated systems in Brazil
[15, 30, 31, 32, 42, 47, 48, 49, 52, 84, 97, 105, 126, 127, 129, 133, 136, 161, 166, 203,
204, 205, 208, 216, 226], other Central or South American countries [6, 70, 179, 213],
Norway [80, 187] and New Zealand [160, 162, 229]. Additionally, to this day, SDDP is
applied by the Brazilian system operator ONS in practice [134, 135].

The aim in LTOP is to determine an optimal policy for the amount of power to
be generated by thermal and hydroelectrical utilities over some planning horizon of
several years (usually with monthly resolution) such that demand is satisfied, technical
constraints are fulfilled and the expected cost is minimized [160]. The main focus is on
managing hydro reservoirs, and thus the water resource efficiently. This is not trivial.
While there is an incentive to use all the water in a reservoir immediately, as no fuel
costs occur, also the potential value of storing water for later stages has to be considered,
with taking into account the uncertainty of future inflows. For this reason, it can be
beneficial to retain water in wet periods for following dryer periods. The ability to store
water in reservoirs leads to a temporal coupling of the stages. The number of inflow
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realizations ¢; per stage is typically chosen in a range between 20 and 100. For T" = 60,
this yields a scenario tree with about 1.15 - 1078 or 10'%° scenarios. Per forward pass,
either a single scenario [48] or 100 to 200 scenarios are sampled.

LTOP can be used to illustrate some of the challenges and limits of standard SDDP,
and thus motivate the necessity of extensions.

Autoregressive Uncertainty. In LTOP, the main source of uncertainty are future
(usually monthly) inflows into the reservoirs. These inflows often show seasonality and
a temporal or spatial coupling which has to be considered in modeling. Therefore,
usually autoregressive (AR) processes are used to model and forecast them, in particular
periodic autoregressive (PAR) [133, 134] and related models [139]. This means that for
each reservoir and each month a different AR model is fitted, or in other words, that
the parameters in the AR model are allowed to differ between months.

Additionally, often hydro reservoirs are organized in cascade systems. Then, the
generation of one turbine may affect the inflow of downstream reservoirs, such that
they cannot be managed separately. For this reason, inflows often do not only show
temporal correlation and seasonality, but also spatial correlation. To address this,
instead of PAR, spatial periodic autoregressive (SPAR) models can be used [127]. These
models are still linear, but instead of only autoregressive components, i.e., lags of &;; for
some reservoir 4, also lags of the inflows of neighboring reservoirs ¢’ are used to explain
&t Apart from inflow lags, also different exogenous variables, such as climate indices,
precipitation or sea temperature can be used to explain inflows [124, 165].

Whenever an AR process is used for the uncertain data, the assumption of stagewise
independence (Assumption 2) is not satisfied. This motivates an extension of SDDP
able to handle stagewise dependent uncertainty. We discuss this in Sect. 14.

Nonlinear Uncertainty. When modeling hydro inflows, the error terms in the
AR process are usually assumed to be i.i.d. with normal or log-normal distribution
[47, 127]. In the latter case, the model is also referred to as a geometric PAR (GPAR)
model [129]:

(&) = v + @ n(&—1) + ne- (33)

GPAR models are usually more accurate in modeling inflows, as these often tend to
positive skewness and are thus not normally distributed. Moreover, they have the
advantage that the requirement of non-negative inflows is naturally satisfied.

On the other hand, solving (33) for & yields an AR process with multiplicative in-
stead of additive error terms [204], which is a nonlinear model. Incorporating this into
the DPE destroys the convexity of Q;(-), making a direct application of SDDP impossi-
ble. Instead, the nonlinear model has to be approximated linearly [204]. Another idea is
to normalize the inflows first using a Box-cox transformation. As such a transformation
is nonlinear, still a linear approximation is required afterwards, though [168]. Further
strategies to avoid non-negative inflows and nonlinearities are discussed in [47, 177].
In [45] it is suggested to apply bootstrapping to resample directly from the historical
residuals instead of applying a nonlinear transformation.

Continuous Uncertainty and Distributional Uncertainty. As stated before,
usually a normal or log-normal distribution is assumed for the error terms in the in-
flow models, both being continuous distributions (an exception is [171] where inflows
are modeled as a continuous process with discrete random errors). For this reason, the
assumption of finite discrete random variables (Assumption 5) is not satisfied. Addition-
ally, the chosen distribution for the model may not coincide with the true distribution of
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the uncertain data. This raises the questions of how to handle continuous uncertainty
and distributional uncertainty in SDDP. We address these questions in Sect. 11 and
Sect. 13.

Computational Performance. Despite the amenities of SDDP, its performance
may suffer for problems with a large number of state variables, due to its exponential
complexity in the state dimension n;, see Sect. 4.2. For instance, SDDP is computa-
tionally prohibitive for a complete model of the Brazilian energy system consisting of
about 150 thermal plants and more than 150 hydro storages [48]. This is aggravated if
the state dimension is artificially increased, e.g., in order to deal with stagewise depen-
dent uncertainty, see Sect. 14. As a relief, it is common practice to aggregate reservoirs
based on their region and hydrological properties in so-called energy equivalent reser-
voirs (EER) [4], thus reducing the state dimension [135]. However, this comes with an
increased abstraction, and may lead to suboptimal policies. Moreover, as outlined in
[47], the EER modeling may introduce some nonlinearities into the system, which have
to be mitigated by linearization.

The computational complexity with respect to the state space also makes general
performance improvements for SDDP indispensable, which we discuss in Sect. 21.

End-of-horizon Effect. Another challenge when applying SDDP to LTOP in
practice is the so-called end-of-horizon effect. It relates to the effect that obtained
policies do not guarantee a continuous and reliable energy supply after the planning
period, because in an optimal policy, all energy remaining in the reservoirs will be used
at the end of the planning period. A typical planning horizon for LTOP are 5 years
with a monthly resolution, leading to 60 stages. A common practice to mitigate the
end-of-horizon effect is to add 60 more stages to the problem, i.e., to consider a problem
with 120 stages [204], even if only decisions of the first half are about to be implemented.
Alternatively, it seems natural to analyze how SDDP can be applied for problems with
an infinite horizon or with a random horizon, where Assumption 1 is not satisfied. We
address this in Sect. 19 and 20.

Risk-aversion. Due to the high importance of system reliability and stability to
prevent outages and electricity shortages, system planners may favor more risk-averse
policies compared to the risk-neutral ones obtained by standard SDDP. Therefore, there
has been an increased interest recently to take risk aversion into account when applying
SDDP to LTOP [108, 208]. However, as Assumption 8 is no longer satisfied, this requires
to extend standard SDDP to a risk-averse variant. We discuss different approaches to
achieve this in Sect. 12.

9.1.2 Medium-term Operational Planning

Structurally, medium-term operational planning problems (MTOP) do not differ much
from LTOP. The main difference is that a shorter, one- or two-year time horizon is
considered [47, 160, 161, 179].

Price Uncertainty in the Objective. Especially on a medium-term time horizon,
SDDP has also been adopted from the traditional setting with a single system operator
to more market-driven systems, in which several electricity suppliers are active. In such
systems, besides inflows also spot prices can be considered uncertain. This imposes
an additional challenge to SDDP, as it leads to stagewise dependent uncertainty in the
objective. We discuss this in detail in Sect. 14. To deal with this challenge, for instance,
for the operational planning of the Norwegian hydro-storage system, usually a combined
SDP/SDDP approach is used [79, 80, 81, 100, 101].
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Water Head Effect. In LTOP the so-called water head effect of hydro storages is
often disregarded, but it may become decision-relevant in (MTOP). This effect describes
that the production of a hydro plant increases with the net head of the reservoir. As this
production function is multiplied with the water discharge, it introduces non-convexities
to the problem. Therefore, if this nonlinear effect is explicitly considered, suitable
extensions of SDDP to non-convex problem are required [36, 103, 163]. We cover such
extensions in Sect. 16.

9.1.3 More Energy Applications

We briefly summarize further applications of SDDP in power system optimization.

Short-term Dispatch. SDDP is particularly suited for long-term planning, but
it can also be applied to short-term economic dispatch problems [37, 51, 118, 148].
For shorter time horizons, it may be reasonable to include additional system aspects,
for instance power flow and security constraints, reserve energy or different ancillary
services [132, 216]. If security constraints are considered, usually linear DC power flow
models are used, but recently also AC power flow has gained interest [112].

Another research stream considers COy emissions, which can be covered by impos-
ing an emission quota system [14, 180, 178] or by introducing emission trading [181].
The first approach leads to an (MSLP) which has no block-diagonal structure (Assump-
tion 7). We discuss how SDDP can be applied in this case in Sect. 18.

Using a reasonable extension to mixed-integer programs, see Sect. 16, also unit
commitment problems are accessible by the SDDP idea [234].

Different Storage Systems. As different types of storage systems can be modeled
similar to hydro storages, SDDP is also applicable to such systems, for instance, to
optimize gas storage facilities [227] or energy storages in microgrids [22].

Optimal Bidding. Instead of minimizing expected system cost from the perspec-
tive of a central system operator, in strategic bidding problems power plant operators
attempt to determine an optimal bidding policy in order to maximize their expected
revenue, while taking into account information uncertainty, for example with respect to
inflows or the market-clearing price; see [212, 214] for an overview.

Since the future revenue functions of the price-maker have a sawtooth shape, the
resulting problem is non-convex [213]. Therefore, to apply the SDDP idea, tailor-made
extensions are required, e.g., convexifications, approximations by saddle cuts [55] or by
step functions [163, 229]. For methodological details, we refer to Sect. 16.

Recently, also applying SDDP to optimize trading in continuous intraday markets
has gained attention [206].

Investment Planning. An important long-term optimization problem in power
systems is to make optimal (risk-averse) investment decisions, either with respect to the
expansion of renewables [33, 123, 215] or to conventional projects.

For conventional power systems, common investment problems address the ques-
tions of generation expansion or transmission expansion. The main challenge with such
problems is that they naturally impose the introduction of integer decision variables.
Therefore, in such a case relaxations [147] or appropriate extensions of SDDP; e.g., SD-
DiP [234], have to be used (see Sect. 16). Alternatively, SDDP can be incorporated into
a larger Benders decomposition framework, where at the first stage binary investment
decisions are taken and at the second stage a multistage stochastic linear program is
solved by SDDP [178]. Similar applications are considered in [52] and [41] with a special
focus on risk and reliability constraints.
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Coping with Renewable Uncertainty. An increasing share of renewable energy
sources introduces more variability to an energy system, which has to be taken into
account and balanced by appropriate mechanisms. The usage of distributed grid-level
storage, such as batteries or electric vehicles, for smoothing out the variable generation
of renewables is examined using SDDP in [66, 235].

9.2 Water Resource Management

In many energy applications of SDDP, managing water resources plays a key role, as it
couples subsequent stages. Apart from energy optimization, SDDP is also applied to
more general water resource management problems, where not only energy production,
but also water usage for irrigation in agriculture [155, 221], flow requirements for nav-
igation [221], groundwater [137] or ecological constraints [220] are taken into account
in the operational planning of reservoirs. Also related is the problem of river basin
management, [188].

Additionally, SDDP is used for assessing various quantities in hydrological systems,
e.g., the value of water [224], risk for dam projects [2, 223], resource vulnerabilities [189]
or benefits and costs of cooperation or non-cooperation [138, 222].

9.3 Portfolio Management

The optimal management of a portfolio of investments, also referred to as asset alloca-
tion, can be modeled as an (MSLP) [43]. The aim is to distribute a fixed investment
sum among a finite number of assets with uncertain returns, in such a way that the
expected return at the end of the considered horizon is maximized. By selling or buying
certain amounts of assets, the investor can restructure his portfolio in each time period.
Usually, both operations are associated with transactions costs, which leads to a very
complex problem [225].

In the literature on SDDP, asset allocation problems are quite popular to test pro-
posed improvements and enhancements of SDDP, such as regularization [90], cut-sharing
[84] or inexact cuts [8]. Since most investors are risk-averse, asset allocation problems
are a popular application [60, 63, 64, 106, 113, 114], but also one of the main drivers
for the development of risk-averse SDDP, which we introduce in Sect. 12.

For applications of practical interest, asset allocation becomes very challenging, as
pointed out in [225]. First, risk aversion parameters such as \; or «y, see Sect. 12, are
not intuitive to choose in such a way that the true preferences of an investor are appro-
priately represented. For this reason, the authors propose to solve a risk-constrained
model with one-period conditional AVaR constraints instead of a usual risk-averse SDDP
approach. Second, assuming stagewise independence of asset returns may prove unre-
alistic, requiring a more sophisticated approach such as incorporating a Markov chain,
see Sect. 14. Moreover, the large supply of potential assets leads to a high-dimensional
state space.

9.4 Further Applications

Although the focus is on the previous applications, occasionally also other types of ap-
plications are investigated using SDDP. Among those applications are dairy farming
[61, 83], newsvendor problems [5, 150], inventory management [8, 59, 87, 97], lot-sizing
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[218] and routing problems [60]. In [50] and [234] airline revenue management is ex-
plored, which is an established problem in dynamic programming, but requires integer
variables.

10 Software

Until recently, SDDP implementations have been solely restricted to closed research
projects or commercial products. For commercial products, most established is the
SDDP implementation by PSR, a Brazilian energy consultancy [172]. A newer stochastic
programming software, which also includes SDDP ideas, is provided by Quantego and
can be accessed using MATLAB, Python and Java [173]. For research projects, various
different implementations exist, covering programming languages like AMPL, C++,
Fortran, GAMS, Java or MATLAB, see [57].

In the last few years, open-source implementations have gained more and more
interest, with the aim to increase research transparency, enhance research exchange and
benchmarking, and facilitate access to SDDP in industry and science [57]. The most
prominent programming language in this regard is Julia [21], which provides its own
algebraic modeling language JUMP [62] and is increasingly used in operations research
and especially stochastic progamming. By now, with StochDynamicProgram.j1 [120],
StructDualDynProg.jl [121] and SDDP. j1 [57] there exist three SDDP implementations
in Julia. Similarly, SDDP packages are available in MATLAB (FAST [34]), C++ (StOpt
[77]) and Python (msppy [50]).

Currently, SDDP. j1, which is based on the concept of policy graphs [56], can be
considered the most comprehensive package. It provides many of the features described
in this paper, such as cut selection, parallelism, Markov chain SDDP, objective states,
belief states, SDDiP, as well as different stopping criteria and sampling approaches.
Moreover, it includes some of the approaches discussed for distributionally robust and
risk-averse SDDP. However, as most other packages, it requires the underlying stochastic
process to be finite. Thus, if Assumption 5 is not satisfied, some discretization has to
be applied a priori. Then, the results obtained by SDDP are valid for the discretized
problem, but not put into perspective with respect to the true problem. msppy, on the
other hand, integrates both, the discretization by SAA and the solution by SDDP in
one package, and thus can also be applied to problems with continuous uncertainty [50].

A more detailed comparison of currently available libraries is presented in [57].

11 SDDP for Continuous Uncertainty [relaxing Assump-
tion 5]

So far, we assumed the uncertainty in (MSLP) to be modeled by some discrete and
finite random process, see Assumption 5, in order for SDDP to be applicable. Until the
recent work by Forcier and Leclére [71], also all convergence proofs for SDDP leveraged
Assumption 5. However, in many practical applications, this assumption is not justified.
For example, if the stochastic process governing the uncertain data is modeled by a
time series model, the random error terms are usually assumed to follow a continuous
distribution [198], see Sect. 9. In the remainder of this section, we denote a problem
with such a continuous data process by (P). N

As pointed out in Sect. 2.3, for problems with sizes of practical interest, problem (P)
is computationally intractable. Therefore, if the true distribution F¢ of the stochastic
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process (&;):c[r) is continuous, usually an approximation with finitely many scenarios is
used. In the literature on multistage stochastic programming, a variety of techniques are
proposed to generate (and reduce) scenario tree approximations of continuous stochastic
processes. For an overview we refer to [128].

11.1 Sample Average Approximation (SAA)

The most common approximation approach is to use random sampling. That means
that the distribution Fg is approximated using an empirical distribution Fy with a
finite number N of scenarios, which is obtained by sampling from F [198]. This yields
an approximating problem (JBN), which then can be handled by SDDP. Often, this
technique is referred to as sample average approzimation (SAA), especially, if classical
Monte Carlo sampling is used. We discuss SAA and the application of SDDP to solve an
SAA problem in more detail now. For a general analysis of SAA, we refer the interested
reader to [201].

SAA and SDDP. Under stagewise independence of (&;)cr) (Assumption 2), it
is desirable to preserve this property in the SAA problem, especially if the latter should
be solved by SDDP. To achieve this, random sampling can be applied to each stage
t = 2,...,T independently with sample size g; [198]. The obtained SAA has a total
number of N = HtT:2 G: scenarios, i.e., the number of scenarios is exponentially growing
in the number of stages [198].

For the SAA problem (Py), for each stage ¢t = 2,...,T and each sample j =1, ..., G,
the DPE can be written as

. ~ T ~
~ ~ min (¢ (&) ot + Qe (xe)
Qt(xtflvgtj) i_{ o ( ( ])) ~ (34)
s.t. xy € Xt(xt—lygtj)
where
B Q+1 _
Q1(xe) := Mo J; Qer1(2t, E11,5) (35)
and QTH = 0. For the first stage, we obtain
. T S
_ min ¢, 1 + Qo(x
oy = 121 2(1) (36)
s.t. x € Ay

The DPE (34)-(36) can be approached by SDDP as described in Sect. 3. However,
in contrast to the problems considered there, the SAA problems are random, as they
depend on a sample from the true data process (&;):c[r)-

SAA Properties. Since the aim is to solve the original problem (ﬁ), the central
question is how the solution and the bounds obtained by applying SDDP to the SAA
problem (Py) relate to the solution of (P). We denote the optimal value of (P) by
7* and the bounds obtained by SDDP in iteration i with &' and 7. We summarize
important properties of SAA.

(P.11.1) Consistency. It can be shown that the optimal value vx provides a consistent

estimator of the true optimal value v, i.e., limg, 7. Uy = 0* with probability
1 [198, 201]. The intuition behind this is that asymptotically, the structure of
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the true process (§;):cjr) is recovered. In practical applications, increasing g; to
infinity is computationally intractable, though.

(P.11.2) Bias. vy is a biased estimator of v*, more precisely, E[vy] < v* for all N [201],
since only a subset of all scenarios is considered and the decisions are optimized
with respect to these scenarios [48]. This means that solving the SAA problem
provides a (converging) estimator of a lower bound for * [195].

(P.11.3) Lower Bounds. In each iteration i of SDDP, we have 7 < Un. Therefore, E[ﬁl] <
v* [198], and the SDDP lower bound is a statistical lower bound for v*. Note,
however, that both, vy and ﬁi, are lower bounds in expectation only, whereas this
is not clear for one specific SAA problem (Py).

(P.11.4) Upper Bounds. Applying SDDP to the DPE (34)-(36) yields a policy. Under
relatively complete recourse (see Assumption 9) with respect to the true data pro-
cess (&¢)ie[r), this policy also yields feasible decisions if applied to any realization
(&¢)terr) of this true process. By computing

E

> et i) @

with the expectation taken with respect to the true process, a valid upper bound
for 7* can be obtained [198].

(P.11.5) The sample mean ﬁc determined in iteration ¢ in SDDP is an unbiased and con-
sistent estimator of (37). Hence, E [5;4 > v*.

Even with these theoretical properties, solving (]3) using SAA may be computa-
tionally intractable. Shapiro shows that even under relatively complete recourse (see
Assumption 9) and stagewise independence (Assumption 2) of the true data process
(&t)terr); the total number of scenarios required in SAA problem (Py) to solve (P)
with a reasonable accuracy € > 0 grows exponentially in the number of stages [196].
Therefore, he proposes to use smaller sample sizes ¢; for later stages, although then the
accuracy of the solution cannot be guaranteed anymore [197].

Clearly, there exists a trade-off between the quality of the obtained bounds for v* and
the computational tractability of the SAA problem. Approximating Fe with Fy using
very large sample sizes ¢; for all t = 2,..., T, a much better representation of the original
process (£t)t€[T] is obtained, leading to a better approximation of v*. However, in this
case, it may be even impossible to solve the SAA problem to optimality in reasonable
time, as it may take too long until all scenarios are eventually sampled [198]. On the
other hand, a very rough approximation yields a problem (Py), which can be solved
efficiently by SDDP, but does not provide reasonable information about the solution to
the true problem (P) [114].

11.2 Assessing Policy Quality

As it is computationally intractable to solve an SAA problem of (P) with a sample size
that guarantees a predetermined accuracy, in practice, usually moderate sample sizes
are used. For example, in [48], sample sizes with branching numbers ¢ between 5 and
200 are tested.
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The bounds " and fz,c in SDDP are determined using one specific sample of (&;):c[7)-
Therefore, they only measure the in-sample performance of the determined feasible
policy (mt(f[t]))tem. To assess its quality for the original problem (13), i.e., its out-of-
sample performance, it is required to evaluate it with respect to the original process
(Et)te[T]~ Such an evaluation also allows one to compare policies obtained for different
SAA problems, which can be helpful in designing appropriate sampling techniques and
sample sizes [48].

Various techniques have been proposed in stochastic programming to measure the
performance of feasible policies, such as analyzing optimality conditions, assessing so-
lution stability or estimating the optimality gap [48]. Specifically for SDDP, Morton et
al. have made substantial contributions [39, 48, 114], which are based on estimating the
optimality gap ([114] analyzes a risk-averse variant of SDDP, see Sect. 12). We discuss
their ideas for the risk-neutral case thoroughly in the remainder of this subsection. In
accordance with [48], we only consider uncertainty in the RHS of (P).

Estimating the Optimality Gap. For some feasible policy (wt(ﬁ[t])) relT)? let

3(6) = 31, i@ (&) denote the random cost for some arbitrary scenario path & =
(&1,...,&r). From (P.11.4) we have E[v(£)] > v*. Therefore, the optimality gap induced
by policy (:ct(f[t])) te(r] €N be expressed as

A =E[B(E)] -7 > 0.

This gap cannot be directly evaluated because the optimal value v* is not known.
Using some lower bound for v*, A can be overestimated though. Such lower bound is
given by E[v], see (P.11.3). This yields

E[5(6)] — E[@] > A > 0. (38)

Still, the left-hand side of (38) is computationally infeasible to evaluate. It requires
excessive computational effort to evaluate policy (:ct(fm)) te(r] for all possible scenar-
ios to obtain E[v()]. Furthermore, from SDDP only one specific realization of v is
known. Therefore, in [48] it is proposed to use estimators for both terms to derive an
approximate one-sided confidence interval bounding A from above.

Upper Bound Estimation. The SDDP policy (wt(ﬁ[t]))tem is feasible for the

original problem (]3), see (P.11.4). Hence, it can be evaluated for any realization of
(&t)te[r) to assess its out-of-sample performance. Let us sample M, ii.d. scenario
paths from (&;).c(r)- For each of those sampled scenarios & e=1,..., M, the SDDP
subproblems (10) are solved in forward direction, yielding mt(f[ﬂ]) and ¥(&%) [48]. An

upper bound estimator is then defined by the sample mean

1 M, N
Uniy =31 > w(Eh. (39)

=1

Similarly to the in-sample estimator, this estimator is an unbiased and consistent
estimator of E[v(€)]. Its sample variance is given by [48]

% = 1, =3 L) U (40)

Alternatively, an upper bound estimator can be obtained by sampling a finite num-
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ber of different SAA problems, and applying the SDDP policy (mt(f[t])) te[T) to each of
them [39]. This comes at the cost of increased computational effort.

Lower Bound Estimation with Several SAA Problems. From SDDP, only
one single realization of v is known. Hence, it is not directly possible to determine a
sampling error for this point estimate and to derive a confidence interval for E[v].

One approach to derive a lower bound estimator is to solve a finite number of
different SAA problems with SDDP and to determine the mean of the lower bounds
7. To be precise, M; different SAA problems are constructed, each by sampling ¢
realizations per stage from (&;)icir). Then SDDP is run, yielding the lower bounds

o e=1,..., M [48]. The sample mean

1 M,
Ly, := i P (41)
(=1

then defines an estimator for E[v] with sample variance

M,

1
2. ~ 2
of = Mhl;(g — Lag)*

Note that instead of lower bounds ¢, also the optimal values v could be used in
estimator (41) [48]. We already discussed in Sect. 11.1 that it may be computationally
intractable to solve one single SAA problem to optimality, though. Thus, using Dk may
be computationally preferable.

In principle, applying SDDP to not only one, but several SAA problems and building
the mean of the obtained bounds seems very reasonable from a statistical perspective,
as the outcome of one SAA problem is random. This also has another possible benefit:
If SDDP is run for M; different SAA problems (P4 ), each of these problems yields a
different feasible policy. By calculating the upper bound estimator Uy, (39) for each
of them, directly M; different policies could be compared.

However, for problems with multiple stages and for sufficiently high J\Aft, this becomes
computationally intractable, even without solving (ﬁ}v) exactly. Therefore, de Matos
et al. [48] follow the strategy to run SDDP once for some SAA problem with larger
branch size ¢; to determine a high quality policy and then, afterwards, to run SDDP for
M; SAA problems with smaller branch size ¢; only to produce the lower bound estimate
Ly, and assess the quality of that policy. In their numerical tests, they choose values
between 5 and 200 for ¢; and 5 for ¢;. In general, it is not clear though, how to choose g;
to reach a reasonable trade-off between computational tractability and an appropriate
quality of the lower bound estimator.

Lower Bound Estimation with One SAA Problem. An alternative and less
costly lower bound estimator is derived by only using the existing SAA problem, which
has been applied to determine the policy that is to be assessed [48].

The idea is then to use the SDDP outcome v as the point estimate Lj;, for the
lower bound. To estimate the unknown sampling error of ¥, the sampling error of the
in-sample upper bound estimator is used. This means that M; scenarios are sampled
from Fy (the SAA problem distribution), and formulas (39) and (40) with M; in the
role of M, are used to compute an upper bound estimate EMZ and sample error 012. The
idea behind applying this sampling error is that v and E[EML] are equal if SDDP has
been run to optimality. However, this also implies that if SDDP has not converged (or
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if ¢ is not sufficiently large) the sampling error may be underestimated, and thus the
confidence intervals drawn from this become overly optimistic [48].

Confidence Intervals. Using the bound estimators and their sample variances,
asymptotically valid confidence intervals can be derived [48].

ou
00, Uty + tagy10 2
( M, My—1,a \/E}
is an asymptotically valid, and for finite M, approximate, (1 — «)% confidence interval
for E[v(§)]. Here, tar,—1,o denotes the (1 — a)-level quantile of a student’s ¢ distribution
with M, — 1 degrees of freedom. Similarly,

[L ¢ o
M; — Ml—l,aWa o)
1

is an asymptotically valid, and for finite M; approximate, (1 — a)% confidence interval
for v*. Using only one SAA problem, this confidence interval is only valid if SDDP has
converged and if ¢; is sufficiently large. Combining both intervals yields
gy ay

0, Um, — L +itv—1,0—= +tMu—1,a—F—

[ (U, mly ttu-1a /L Mu—1,a \/WJ
as a one-sided approximate confidence interval for the optimality gap A [48]. Here,
[z]4 := max {z,0}.

11.3 Variance Reduction Techniques

Instead of MC sampling, also importance sampling [150] and variance reduction tech-
niques (see Sect. 6.2) can be applied to obtain SAA estimators with reduced bias and
variance.

In [105], numerical tests comparing MC, LHS and RQMC indicate that RQMC yields
the most promising results when it comes to determining representative SAA problems.
In [48] also MC, LHS and RMC are compared for different branch sizes and policy
evaluation strategies. The results indicate that with both LHS and RQMC, a reduction
of bias and sampling error, a higher policy quality and tighter confidence intervals can
be achieved in comparison with MC sampling, especially for smaller branch sizes g;.
For smaller branch sizes LHS appears to be superior, while RQMC yields better results
for larger branch sizes. While showing higher variability for MC sampling, if combined
with RQMC and LHS sampling, the computationally preferable lower bound estimator
using only in-sample scenarios from the existing SAA yields comparable results to the
approach solving several SAA problems [48].

12 Risk-averse SDDP [relaxing Assumption 8|

In SDDP, as described in Sect. 3, a risk-neutral optimal policy is determined for (MSLP)
(see Assumption 8). More precisely, (MSLP) minimizes the expectation of the total
objective value over all stages ¢ € [T'] over feasible policies (x¢(£))se[r), Which satisfy
non-anticipativity and all constraints. Hence, it can be formulated as the single problem
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Equation (3) with objective

min_ E | > (&) zi(&n) | - (42)

T1,L2;..,TT
te[T)

As discussed in Sect. 2.4, this problem can be expressed equivalently using the DPE (4)-
(6). This equivalence is based on two important properties of expected values, first the
so-called tower property

Eﬁt[zt(gt)] = Ef[t_u [Eﬁtlé[tfl] [Zt(ft)H (43)

for some random variable Z;, and second its strict monotonicity (see property (R2’)
below for a formal definition) [199].

Recall that the objective value 3,y (ct(ft))Tmt(ﬁ[t]) is random, and its realizations
depend on realizations of (£t)te[T]~ For some specific realization, the SDDP policy may
produce an objective value which widely deviates from the expectation in (42). In
practice, decision makers are often anxious not only to find a policy causing low costs
on average, but also to avoid the risk of extremely high cost situations. This motivates
to consider risk-averse approaches in stochastic programming.

For multistage stochastic programming, incorporating risk-aversion has been a pop-
ular research topic in the last decade. This includes theoretical fundamentals on dy-
namic risk measures [192] as well as algorithmic developments, such as rolling horizon
approaches with chance constraints or AVaR constraints, which take risk aversion into
account in the constraints of (MSLP) [95, 96]. For SDDP, most focus has been on re-
placing expectations in the objective (42) with some multi-period risk measure R[] (see
below for a formal definition). This yields the multistage risk-averse problem (Pg):

Lmin R [(e(€) @), (er(n) r(Eu)]
s.t. T € X (44)
x € Xy(@e—1(§p-1)), &) VG €E VE=2,...,T
x¢(-) Fr-measurable Vt=2,... T.

We cover risk-averse SDDP in detail in the remainder of this section, but start with
some theoretical concepts.

12.1 Risk Measures

In this section, we introduce some required foundations of risk measures, especially
for multistage problems. As our focus is on algorithmic aspects of SDDP, we refer
to the comprehensive coverage of this topic in [199, 201] for technical definitions and
derivations.

12.1.1 Static Risk Measures

A static (or one-period) risk measure is a function p : Z — R from the space Z of
random variables Z to R := RU {—o00,+oc}. Often, Z is assumed to be £1(9,.7,P),
i.e., the space of all #-measurable functions with finite first moments, as this ensures
well-definedness and finiteness of many common risk measures. Importantly, since ran-
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dom variables are functions themselves, risk measures are actually functionals. This is
sometimes emphasized by calling them risk functionals or risk mappings.
We summarize some well-known static risk measures:

e The expected value E[-] is the most common risk measure. It is completely risk-
neutral.

o The value-at-risk VaR,[-] to level a € (0,1) is defined as the left-side (1 — a)-
quantile of the cumulative distribution of some random variable Z:

VaR,[Z] :=inf{ueR : P(Z<u)>1-a}. (45)

Note that this definition is not used consistently in the literature, and that the
RHS of (45) may also be defined as VaR;_,[Z].

e The average value-at-risk AVaR,[-] to level a € (0,1) for some random variable
Z is defined by [185]

AVaR,|Z] := inf {u ER : u+ éIE 17 - uM} , (46)

where [z]4 is defined as max {x,0}. Note that the infimum is always attained in
our SDDP setting of finite randomness (Assumption 5) and finite value functions
Q:+(+) (see Lemma 2.5).

Remark 12.1. AVaR,][-| is also called conditional value-at-risk, expected short-
fall or expected tail loss. In the literature on risk-averse stochastic programming,
the first alternative is most frequently used with notation CVaR,[:], but to avoid
confusion when we introduce conditional risk measures later, we stick to average
value-at-risk.

Remark 12.2. For finite random variables Z (under Assumption 5 for SDDP),
AVaR,[] may as well be defined as

AVaR,[Z] =E[Z|Z > VaR,|Z]].
It can be shown that an equivalent formulation of AVaR,[Z] is given by [19§]
AVaR,[Z] = VaRa[Z] + éE[[Z — VaR,[Z]] +], (47)

i.e., u* = VaR,[Z] minimizes the RHS in (46).

AVaR,[] has some beneficial properties compared to VaR,[-]. It does not only
consider the probability mass beyond VaR,[:], but also its distribution, e.g., if
it has fat or long tails. Moreover, it allows to retain convexity of optimization
problems, as we discuss later on. VaR,[-] and AVaR,[] are illustrated in Figure 10.

e In stochastic programming, often a convex combination of E[-] and AVaR[] is
considered, that is

ParlZ] == (1 — NE[Z] + AAVaR,[Z] (48)

for some A € [0,1]. The parameters A and « control the risk-aversion. Choosing
A = 0 yields the standard risk-neutral model.
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fz

AVaR,[Z]

Figure 10: VaR,[Z] and AVaR,[Z] for a gamma distributed random variable Z.

e For some v > 0, the entropic risk measure is defined by
1
ENT,[Z] := —log (E[e"7]). (49)
Y

It generalizes E[-] (for v — 0) and esssup[] (for v — 00), where ess sup[Z] denotes
the essential supremum of a random variable Z.

It is often required that risk measures satisfy some special properties, especially in
an optimization context. First, we assume that all considered risk measures are proper.
Another desired property is coherence, a concept introduced by Artzner et al. [3]. We
employ a slightly different definition from [201] and state it for the general case of
continuous random variables:

Definition 12.3. A risk measure p : Z — R is called coherent, if it satisfies
(R1) Convezity: for any Z1,Z2 € Z and all X € [0,1] 4t holds

PAZ1 + (1 - N)Z2) < Mp(Z1) + (1 — N)p(Za),

(R2) Monotonicity: If Zy < Zy almost surely, then p(Z1) < p(Z3),
(R3) Translation Equivariance: If a € R and Z € Z, then p(Z 4+ a) = p(Z) + a,
(R4) Positive Homogeneity: If X > 0 and Z € Z, then p(AZ) = Ap(Z).

A risk measure satisfying only properties (R1), (R2) and (R3) is called convez. In
fact, a key feature of coherent risk measures is that they are convex, and thus convex
objective functions as they appear in (Pg) and its DPE remain convex if p[] is applied
to them. VaR,[-] is not a coherent risk measure, but AVaR,|[-] is [157]. Therefore, in
optimization AVaR,[] is usually preferred over VaR,[].

As we exploit later, for every coherent risk measure there exists a dual representation
as the worst-case expectation over some class of probability distributions over (Q, %)
[3]. More precisely, let P be a convex set of probability measures, then a coherent risk
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Table 4: Properties of common risk measures.

(R1) (R2) (R3) (R4) (R2) (R5)
E[] v
VaRaH -
AVaR,[] Vv
ﬁa,k['] v
v
S

ANENENENAY
ANENENENAN
ANENENENAY

ENT, [}
* only for A

[0,1).

measure p[-] can be expressed as

plZ] = sup Ep[Z]. (50)

We introduce some additional relevant properties.

Definition 12.4. Let p: Z — R be some risk measure. Then, the following properties
can be defined.

(R2’) If the inequalities in (R2) in Definition 12.3 are strict, we call this property strict
monotonicity.

(R5) Law Invariance: p[] is called law invariant with respect to P, if for oll Z,Z' € Z
with the same distribution also p(Z) = p(Z') holds.

Property (R5) implies that the risk measure p only depends on the distribution of
the considered random variable Z.
We summarize properties of the previously introduced risk measures in Table 4.

Remark 12.5. A classical approach in economics is to take risk aversion into account
by means of non-decreasing and convex disutility (or concave utility) functions g : R — R
that are applied to some random wvariable Z before taking expectations. However, the
obtained risk measure p[Z] = E[g(Z)] does not satisfy property (R3) which is required
to equivalently express (Pr) using DPE.

12.1.2 Multi-period Risk Measures

In a multistage setting, static, i.e., one-period, risk measures have to be extended to
several periods, more precisely, to a sequence of random variables Z := Zy,..., Zp,
which in our case model the stagewise objectives of (MSLP). We define such multi-
period risk measures as functionals R : Z — R with Z = 2, x Z, x ... x Zp.

Choosing multi-period risk measures in a reasonable way is a challenging task. First,
it is not clear how risk should be measured in a multistage setting [106]. Several different
options exist [60, 106, 201], such as

R[Z]) = p|Z1 + -+ Z7] (end-of-horizon risk)  (51)
R[Z] = pP1 {Zl + P2| 2, [ZQ +...+ PT|Zp_ [ZT] e H (nested risk) (52)
RIZ] = plZi] + ...+ p|Z7T] (stage-wise risk).  (53)
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Here, p[-] is some static risk measure, and pyz,_,[],t = 2,..., T, is a family of conditional
risk measures, each mapping from Z; to Z;_; and defined as the static risk measure p[-]
conditioned on %1 (or {y_yj, respectively). If p[-] is law-invariant (property (R5)
in Definition 12.4), then pyz, ,[-] can be obtained by replacing the given distribution
with the corresponding conditional distribution [201]. Usually the same static risk
measure p|-] is chosen for all p[-],¢ = 2,...,T. Note that coherence of conditional risk
measures can be defined completely analogously to unconditional ones. The idea of
nested conditional risk measures goes back to Ruszczyiiski and Shapiro [193].

Remark 12.6. Under stagewise independence (Assumption 2), as we assume it for
SDDP, the conditional risk measures pyz,_,[-] in (52) no longer depend on Z;_, and
thus coincide with p[-] [201].

Second, in an optimization context, multi-period risk measures have to be carefully
chosen, in such a way that the resulting problem (Pg) possesses desirable properties.
In addition to convexity, especially time-consistency is a crucial property.

12.1.3 Time Consistency

In the literature, various different definitions of time consistency exist, see among others
[35, 106, 46, 158, 199] and references within. The term is ambiguous in the sense that
it is used for risk measures, policies and optimization problems. We only state some
of these concepts that are relevant for SDDP, and for technical definitions and detailed
discussions refer to [64, 106, 199, 201].

A common definition is that an optimal policy (i‘t(f[t]))tem for (Pr) (see (44)) is
called time consistent if for any 7 € [T], the policy (‘it(g[t]))t:m_,T is optimal for (Pg)
restricted to horizon ¢ = 7,...,T conditional on .%,_; and Fo 1 [201]. This means that
the optimal policy remains optimal after some of the uncertain data has been revealed.
The problem (Pg) is then called weakly time consistent, if at least one of its optimal
policies is time consistent, or time consistent, if every optimal policy is time consistent
[201] (note that there exist deviating definitions in the literature).

Policies obtained using DPE (such as (4)-(6)) naturally satisfy time consistency.
Therefore, the concept of time consistency is closely related to equivalently reformulating
(Pr) (see (44)) into DPE [201]. For nested risk measures R[], see (52), this equivalence
holds under strict monotonicity (property (R2’) in Definition 12.4) of p; (or Ptlgg_y»
respectively) for all ¢t = 2,...,T. More precisely, under (R2’), by interchanging risk
measures and minimization operators, (Pr) with nested risk can be expressed in the
nested fashion [201]

min  (cp(&)) @o + P3lgpy { .

min clT:ztl + p2
r1EX, xo€X2(21)

(54)
ot Py, [ min (cT(gT))T:cT} .. :” ,

xr€XT(TT-1)

which naturally allows for a reformulation to DPE. Note that for stage 2 no conditional
expectation is used as the first-stage data is deterministic. If p; (or pt|£[t]) only satisfy
(R2) instead of (R2’), then only weak consistency of (Pg) is guaranteed, as any optimal
policy for the DPE is also optimal for problem (Pg) with nested risk, but not necessarily
vice versa.
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As indicated by Table 4, AVaR,[-] is not strictly monotone. Therefore, even if
applied in a nested conditional way, time consistency is not assured. In contrast, it
can be ensured using risk measure p, || defined in (48), given that A € [0,1). A
drawback of nested risk is that it is less amenable to suitable interpretations, although
some economic interpretations are possible [190].

For one-period risk measures p[-] that are applied as an end-of-horizon risk mea-
sure (51), it is well known that time consistency is often not satisfied. For instance,
some simple examples in [64, 106] show that using a one-period risk measure p[-], such
as VaR,[-] or AVaR,[-], in this setting leads to time-inconsistent decisions. Moreover, in
[190], an illustrative example is presented in which even under stagewise independence
(Assumption 2), the risk measure pya[-] does not yield time-consistent policies from
an end-of-horizon perspective. To achieve time consistency, it is required that problem
(Pr) (see (44)) with end-of-horizon risk measure p[-] can be converted to an equivalent
problem with nested risk using the corresponding conditional risk measures pj¢[. For
this reason, Dowson et al. [60] define time consistency (in their case referred to as
conditional consistency) of a one-period risk measure p[-] as an equivalence between the
associated end-of-horizon risk and nested risk.

In fact, the only law-invariant coherent one-period risk measures p[-] allowing for
such an equivalent reformulation between an end-of-horizon risk and a nested risk per-
spective are E[-] and esssup[] [201]. Therefore, the coherent and law-invariant risk
measure AVaR,[] does not even guarantee weak time consistency for (Pg) if it is ap-
plied as an end-of-horizon risk measure. It can be shown, though, that the non-coherent,
but convex risk measure ENT,[-] from (49) is conditionally consistent, and thus is suffi-
cient to ensure time consistency of (Pg). The equivalence of different formulations for
problem (Pg) is illustrated in Figure 11.

Decompos- (R2)
End-of-horizon ability Nested Nested Recursive
€| | «——>|
formulation formulation I ®2) formulation IT formulation
(Pr) (12.3), (Pr) (12.3),
with R[] as in (12.9) with R[] as in (12.10) (12.12) DPE to (12.12)

Figure 11: Different forms of (Pr) and conditions for their equivalence.

Remark 12.7. In view of conditional consistency, note that nested risk measures R[]
from (52) can always be expressed equivalently using an associated end-of-horizon risk
measure (51), the so-called composite risk measure. However, as the previous discussion
shows, this composite risk measure only equals p[-] if the latter allows for a decomposition
using its conditional analogues; similar to (43) [199, 201].

Additionally, some notion of time consistency can be satisfied using ezpected con-
ditional risk measures R[-], which measure the risk stage by stage (see (53)), as long
as the included (conditional) risk measures are coherent [106]. Applying such a risk
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measure in (Pg) (problem (44)), we obtain the problem

¢l 1+ pa [(02(52))T$2(§[2])] + Egy, {P3|§[2] [(63(53))Tm3(5[3])ﬂ

-
o+ Eeyy | prigey [(er(@n) T@r(gm)]]
s.t. r1 € X
xr € X(Te-1(§p-1)), &) V&G €E VE=2,...,T
x;(-) Fp-measurable Vt=2,...,T.

ZT1,L2,..,&T

(55)

12.1.4 Polyhedral Risk Measures

Multiperiod polyhedral risk measures R[] are a special type of risk measure, which for
a time horizon of T € N can be formulated as the optimal value of certain T-stage
stochastic linear programs [67]. The arguments of the risk measure, e.g., in our case
the objective function of (MSLP), enter these linear programs on the RHS.

In [93], multiperiod extended polyhedral risk measures are introduced, for which the
corresponding linear program has a slightly more general form. This class comprises
polyhedral risk measures, spectral risk measures and also AVaR,[-]. These risk measures
can be shown to be convex and coherent under certain assumptions [93].

The main strength of (extended) polyhedral risk measures is that they can naturally
be used in a multistage stochastic programming setting. The LP representation of R[]
and the original LP formulation of (MSLP) can be conflated to a single large-scale risk-
neutral linear programming problem (Pg), which allows for a reformulation by means
of DPE [93].

12.2 Towards Considering Risk in SDDP

In the remainder of this section, we discuss the incorporation of risk-aversion into SDDP
from an algorithmic perspective.

The first two methodological studies of risk-averse SDDP are [93] for problems with
end-of-horizon risk (51), in particular using polyhedral risk measures, and [198] for
problems with nested conditional risk mappings (52). Since then several extensions of
SDDP have been proposed based on various risk measures. While some articles on this
topic also cover SAA [114, 198, 204], see Sect. 11, we restrict to finite random variables
here.

Remark 12.8 (SDDP with Polyhedral Risk Measures). As stated in Sect. 12.1.4, poly-
hedral risk measures have the advantage that DPE can be derived in a straightforward
way. These DPE can then be approached by standard risk-neutral SDDP. Guigues and
Romisch derive the associated cut formulas and give a convergence proof for some spe-
cial cases of extended polyhedral risk measures [93] and the special case of spectral Tisk
measures [94]. This approach to SDDP has been successfully applied for AVaR,[-] in
84].

Despite this straightforward approach, polyhedral risk measures also pose a signifi-
cant challenge to SDDP. The stage-t subproblems have to be enhanced with additional
state variables z,_1 and y1,...,yi—1, which are required to store the history of previous
decisions. In general, this is unfavorable, as it may lead to prohibitive computational
cost [161], compare Sect. 4.2. The specific computational cost depends on the chosen
extended polyhedral risk measure.
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12.3 SDDP with Nested Risk Measures

As mentioned in Sect. 12.1.3, to obtain a risk-averse problem (Pg) with time-consistent
solutions, it is often proposed to use (conditional) coherent one-period risk measures
pl-] (or pyg,[-]) for all ¢ € [T] in a nested fashion. This yields the nested problem (54).
We denote its optimal value by v%. As indicated before, we can derive an equivalent
formulation using DPE [201]. Using Remark 12.6 they become

. T
+
Qralei1,&) = {H“gn o St (56)
s.t. xy € Xt(xtflaft)
with some risk-adjusted value function
Orit1(xt) = prs1 [Qroag1 (24, &41)] (57)
and Qg r+1(-) = 0. The corresponding first-stage problem is
: T
min c¢; x; + Q T
v =4 w1 =2(m) (58)
s.t. x € Ay

Fortunately, for coherent risk measures p,[-],¢ € [T], also the nested risk measure
R]-] preserves convexity of Qg ;+1(-). Therefore, a cutting-plane approximation as in
SDDP can be applied.

Nested conditional risk measures are by far the most frequently chosen approach for
risk-averse extensions of SDDP [64, 106, 114, 160, 161, 198, 204]. Most typically, the
risk measure p,,\[-] (see Equation (48)) is used, which is coherent according to Table 4.
For the remainder of Sect. 12.3, we therefore set p;[] = pa, . [-] for all ¢ € [T], if not
specified otherwise.

12.3.1 Reformulating the DPE

The general DPE for (Pg) with nested risk measures are formulated in (56)-(58). To
determine Q,(-),t € [T, for pa ][] specifically, the AVaR of Q,(-,-) has to be evalu-
ated. Using its definition as the optimal value of an optimization problem with decision
variable u € R [185], see (46), we are able to further reformulate the DPE.

Additional State Variable Approach. Using (46), the risk-adjusted value func-
tion (57) can be expressed as

Orv1(w) = iﬂéﬁ Ee, . {(1 — A1) QR 41 (2, E1)
t X (59)
+ At (ut + o [Qrot41(1, Er41) — i +)} :

Recall that \; and a4, t = 2,...,T, are user-controlled parameters.
The minimization over u; can be incorporated into the stage-t subproblems [198],
which yields

T -

o~ i )\

Qrt(we-1,&) = {2?172 (ct(€0)) e+ Mgt + Qg (0, ) (60)
stz € Xi(we—1,&)
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with some modified risk-adjusted value function

Or 1 (T, up) = Ee,.,, {(1 ~ A1) Qi1 (T, €1)

Atr1 [ (61)
+ [QR 11 (e, &1) — Ut]+}7
Q41
QR,T+1('7 ) =0 and Aryq = 0 [198]. The first stage changes to
. min ¢} 21 + Ay + Qroa(,ur)
VU = Z1,u1l (62)
s.t. x1 € AL

The risk-adjusted value functions O 41(-,-) differ from the ones defined in (59),
but can be proven to be convex as well.

With equations (60)-(62), the risk measures p,, ), [-] are incorporated into the sub-
problems, such that only expectations have to be evaluated in the DPE. However, as
pointed out in [114], in comparison with the DPE (4)-(6) of the risk-neutral case, we
still observe some fundamental differences: First, an additional, albeit one-dimensional,
state variable u; € R is introduced at each stage to estimate the VaR-level, augmenting
the state space by one. Second, the risk-adjusted value functions Qg ¢+1(+, -) do not only
depend on z;, but also on u; and parameters A, ;. Third, they contain the nonlinear,
i.e., piecewise linear, function [-]4.

Philpott and de Matos provide an alternative reformulation of the DPE, eliminating
the nonlinear expression via an epigraph reformulation [160]. To this end, the random
term in the brackets in (61) is fully incorporated into the value functions. For ¢ =
2,..., T — 1, this yields

Q’R,t(l'tfly Ut—1, ft)

min (1 -X) ((Ct(ft))Tmt + A1y + éR,H—l(fﬂn Ut)) + &wt (63)

Tt,Ut, Wt Qi

= stz € Xi(wm1, &)

T ~
wy — (Ct({:t)) Ty — )\t+1ut - QR,t-s—l(xuUt) > —Up_1.

Using this formulation, the risk value function is defined more naturally as
Or o1, ur) = Ee,,, [@R,tﬂ(ﬂﬂt, U, Et+1)} . (64)

Again, @R,T+1('> )=0and A\py1 =0.
The first-stage problem reads then

T1,u1,w1 (65)

. min clTxl + Xoug + Qra(z1, u1)
UR =
s.t. w1 € Xy

In comparison to the formulation (60)-(62) by Shapiro [198], additional variables
and constraints have to be introduced. Both formulations allow application of SDDP,
but share the drawback of augmenting the state space. Since the computational effort of
SDDP grows exponentially in the state space dimension, see Theorem 4.2, such increase
should be avoided.

Modifying the Probability Measure. An alternative idea is to exploit that
u* = VaR,[Z] in the definition of AVaR,[Z] (see (46)) and that VaR,[Z] is the (1 —a)-
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quantile of a random variable Z. As we assume finite randomness (Assumption 5)
and solve the subproblems for all realizations &;,j = 1,..., ¢, in the backward pass of
SDDP, this quantile can be manually determined for the value functions [204].
Without loss of generality, assume that for all ¢ = 2,...,T and any fixed trial solution
Z;—1 the values of Qr (%1, &;) are ordered for all j =1,...,¢. That means, we have
Qrt(Ti-1,&n) < -+ < Qre(Ti—1,q,). Then, in (59) the variable u; can be replaced by
the (1 — a)-quantile Qg ¢41(Zt, &41,5+) with j* chosen such that Z;:*:lptﬂ,j > 11—

Orit1(xe) = Ee,,, {(1 — A1) QR 41 (@4, Er1) + At (QR,t+1(3_7t7 §t+1,j*)

+ ai [QR,tH(JCnEtH) - QR,t+1(-ft>€t+1,j*)]+>]

t

(66)

In SDDP, relation (66) cannot directly be applied, since Qg ¢+1(+, &+1,5) is not known
and also not evaluated for all j = 1,...,q+1. However, the same principle can also be
applied to the approximate value functions @, t+1(" Eit1,5)-

In [161], this idea is considered from a dual perspective and used to reformulate the
risk measure (48) even before formulating the DPE. The key idea is to use the dual
representation of AVaR,[-], see (50), which is given by

q
sup Y G Z(&)
¢ j=1
q
AVaR,[Z] = { st Y _pi¢ =1 (67)
=1

CJZOa jzlvaq

1 .
nga, ji=1,...,q.

It shows that AVaR,[-] can be interpreted as some worst-case probability measure P
with p; :=p;¢; forall j=1,...,q.

As shown in [161], using this definition and explicitly computing the supremum, risk
measure (48) can be written as

qt
o Ze) =D piCii Ze(&es) (68)
j=1
with
(]- - )\t)v ] < j*v
1 VR L
1-A At — — n | = *7
(=417 + o (x a n;ﬂ“ ). i=i (69)
A C
(=) +—, ji>J
Qy

Again, note that the true value functions Q;(-) are not known explicitly in advance,
and therefore the worst-case probability measure P stemming from (67) is not known
either. However, it can be approximated in SDDP. In particular, the DPE (56)-(58) and
their approximations can be used with expectations as in standard SDDP, but with a
modified probability measure that is iteratively updated. More precisely, as (;; changes
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with Z;_1, the modified probabilities have to be recomputed for each stage t, iteration 4
and sample k in SDDP. This principle is also extended to general coherent risk measures
in [161].

Recently, this kind of change of the probability measure has also been discussed
in [126]. Instead of determining the ordering and j* based on Qzﬁ() for one specific
iteration ¢, also all previous iterations are taken into account there. More precisely,
the number of iterations in which an index j exceeds VaR,, [QR . +1(:ft, &;)] are counted.
This is considered as a good proxy for the ordering of the actual value functions. The
ordering, and thus the probability measure P, can either be updated dynamically within
SDDP or be determined by running risk-averse SDDP once in advance to identify the
outcomes contributing to AVaR,[-]. The latter approach has the advantage that the
changed probability measure P can be fixed for the following run, which yields a risk-
neutral problem and allows for application of standard SDDP.

Additionally, as pointed out in [126], the approximation of P may also be used in
the forward pass to sample scenarios with “bad” outcomes with higher probability.
This biased sampling can be considered similar to the importance sampling techniques
presented in Sect. 6.

For the third-stage of Example 3.4, the expected risk value function Qg 3(-) obtained
by applying (68) and (69) to (57) is illustrated in Figure 12 for a = 0.05 and different
values of A. It can be seen that with choosing larger values for A, representing a higher
risk-aversion, the stage-3 cost increases compared to the risk-neutral case (A = 0).

[

A=03
A =02
4 A=0.1
A=

Qr 3(z2)

Figure 12: Qg 3(-) from Example 3.4 for o = 0.05 and different values of \.

As an overview, the different forms of DPE for (Pg) using a nested (conditional)
risk measure based on p, »[-] are summarized in Table 5.

12.3.2 Forward and Backward Pass

All approaches in Table 5 to formulate the DPE allow for a solution of a risk-averse
problem (Pg) using SDDP. Some approaches are more efficient, since the state space, the
decision space or the number of constraints are not augmented. Others are advantageous
in the sense that Qg () is expressed by a neat formula, and thus cut formulas can
be derived more easily. With some epigraph reformulation, for all the approaches all
subproblems can be formulated as LPs.

The forward pass of SDDP basically remains the same as for risk-neutral SDDP
from Sect. 3. That is, k € K scenarios are sampled and considered, with K C § and
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Description Source DPE
- general (56)-(58)
- augmented state,
sophisticated formula for Qg ¢(-) [198] (60)-(62)
- augmented state,
additional constraints and variables  [160] (63)-(65)
- VaR,, [Q:(+)] explicitly determined,
sophisticated formula for Qg ¢(-) [204] (60), (62), (66)
- modified probability measure [161]  (56)-(58), (68)-(69)
- modified probability measure [126] (60), (62), (66)

Table 5: DPE formulations for (Pg) using a nested (conditional) risk measure based on
ﬁa,)\H’

|K| < |S]. However, the subproblems and the associated approximate value functions
7%,t(ac§’il, %) differ from the risk-neutral case. Instead of subproblems (10), one of the
DPE from Table 5 are chosen and the occurring risk-adjusted value functions Qg ;41(-)
are replaced by cut approximations Q%’t 410

In the backward pass, as in risk-neutral SDDP, at each stage t = T),...,2, those
subproblems are solved for each trial solution x%’i 1,k € K, and possible stage-t realiza-
tion 5{“] =&, =1,...,q, using an updated cut approximation Qgiﬂ() On stage t,
a new cut for Qg (-) is derived and handed back to stage ¢t — 1. The main difference
to risk-neutral SDDP is again the definition of Qg ((-). Therefore, the cut formulas
have to be adapted to the individual approach chosen. For the technical derivation of

subgradients in such cases, we refer to the references in Table 5.

12.3.3 Upper Bound Determination and Stopping

A challenge in applying SDDP to risk-averse problems is to determine upper bounds
for v%, and allowing for a reasonable stopping criterion. The reason is that most upper
bound construction methods from the risk-neutral case, see Sect. 7 and 8, cannot be
efficiently extended to the risk-averse case.

Recall that in the risk-neutral case, a feasible policy (:(&))tcr) is determined in
the backward pass and evaluated in the forward pass for different scenarios k € I,
yielding a sequence of trial points (xik)tem. Then, a statistical upper bound Tx for v*
is determined as the sample average of the objective values of all these sample paths &,
see (21). Analogously, a true upper bound v can be obtained by taking the expectation
of such objective value for all scenarios £°;s € S.

However, this is possible only due to the tower property (43) of expected values,
which is required for the equivalence of the end-of-horizon formulation (42) and the
nested formulation (54), see the discussion in Sect. 12.1.3. For most coherent risk
measures this property does not hold, and thus a direct analogue to the (statistical)
upper bound (21) from risk-neutral SDDP cannot be constructed.

As determining reasonable upper bounds is an important ingredient of SDDP, de-
veloping appropriate upper bound estimators has been an active research field in the
last decade. In the following, we discuss different approaches that have been proposed.
In reviewing them, we mostly follow the presentation of Kozmik and Morton [114], who
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provide a comprehensive study within their own work on upper bound estimators.

A Sample Average Estimator. In Sect. 12.3.1, we managed to formulate each
pt[-] only by means of expectations in (61). Still, this does not assure the tower property,
since the risk-adjusted value functions Qg ;(+) contain a nested nonlinearity due to the
[[]+-function. However, we can derive an estimator similar to (21) [114]. To this end,
we remove the expectation in (61) to obtain

0u(h) = (1= 2 ((er(€h) "k + ea(€))
A

T ~
+ My + 2E () Tk + e (8) — by
(e 7 +

(70)

where we replace the value functions Qg ++1(-) by the estimator of the following stage.
For stage T it follows 9741(£5) = 0 and for the first stage

0(€") = cf w1 + Da(€Y). (71)

Equation (71) provides a recursive estimator for the cost associated with sample
path £*. This estimator has to be evaluated by backward recursion starting with stage
T. Importantly, formula (70) is only used for upper bound estimation, whereas the
forward and backward problems in SDDP are still based on the original DPE (60)-(62).
Determining estimator (71) for all scenarios ¢*, k € K, sampled in the forward pass of
SDDP, we can form an upper bound estimator

0" = g 2 0(E), (72)

which resembles the sample average estimator (21) from risk-neutral SDDP.

It can be shown that E¢[0(£)] > v5 and that U™ is an unbiased and consistent
estimator of E¢[0(£)], so it is a statistical upper bound [114]. However, U™ is also
observed to have a large variance. Kozmik and Morton [114] identify as the main
reason that only a small portion of the sampled scenarios contributes to estimating
AVaR,[], while most scenarios solely contribute to the expectation. Therefore, a very
large number of scenarios would be required for an appropriate estimate.

More crucially, because expectations are not taken conditionally on each stage as
in (61), and due to to division by o, € (0,1), small or large values are very likely to
propagate from late to earlier stages in the recursion to determine 9(&¥) [114]. Therefore,
the upper bound E¢[0(£)] can significantly deviate from og, i.e., the upper bound
induced by the current policy in SDDP. In computational experiments, an upward bias
is observed that makes U™ practically useless for large 7' [202].

Remark 12.9. We should note that recently a very similar recursive upper bound esti-
mator to 9(€F) and U™ has been proposed in [98], but for a general class of risk measures
instead of only paa[]. The main difference is that there SDDP is applied to a risk-averse
stochastic optimal control model which deviates from our setting introduced in Sect. 2.
In particular, states and controls are explicitly distinguished, and the decision on the
controls is taken before & is realized. In this setting, the negative multiplicative effects
observed in [114, 202] can be circumvented, and a computationally efficient statistical
upper bound is obtained.

Conditional Sampling Estimator. For the above reasons, estimator U™ in (72)
is rarely considered in the literature on risk-averse SDDP. Instead, Shapiro discusses a
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conditional sampling estimator [198]. Here, the idea is to estimate the expectations (61)
in the nested structure conditionally by sampling on each stage. Since in principle, the
upper bound estimator can be determined independently of the scenarios sampled in
the forward pass, we denote the set of samples by M instead of K. M; denotes the
corresponding scenario set for stage t.

For each stage, t = 2,...,T, this yields [114]

D) = T 2 [(1—)\t)((0t(§§nt))T$?lt+@f+1(€§m))

mgEMy
A T N
+ Auy™ + oTz [(Ct( ) a4 of (67 — Uﬁfi} J )

and for the first stage the estimator
U := ¢}z, + 05(&).

As Shapiro himself points out, this estimator has two significant drawbacks. It
requires HtT:2 | M| + 1 subproblems to be solved, which is exponentially growing in the
number of stages. Moreover, the obtained upper bounds are typically not very tight.
Therefore, estimator U¢ should not be useful for large-scale problems [114].

Importance Sampling Estimators. Some of the drawbacks of estimator U” may
also be addressed by importance sampling [113, 114], see Sect. 6 for an introduction.
By sampling scenarios associated with AVaR,[] with higher importance, it is possible
to better represent it, and thus reduce the variance of the estimator. Based on this idea,
Kozmik and Morton put forward different importance sampling upper bound estimators
[114], which are further enhanced in [113].

Using importance sampling with respect to AVaR,[] creates a considerable chal-
lenge, though. In order to determine the importance sampling distribution for some
stage ¢, it has to be identified which scenarios are associated with AVaR,[-] on that
stage, i.e., which of them provide a value Qg (zF_;, ffj) beyond the (1 — a)-quantile. If
we estimate this by solving subproblems for several &f; and determining Qg ¢(zf_,, &),
we face a similar computational burden as for conditional sampling.

Kozmik and Morton propose the following approach: They use an approzimation
function di(xi—1,&:), which estimates the recourse value of the decisions x;_, after &
has been observed [114]. Instead of solving the subproblems for several ffj, they simply
evaluate dy(zF_,, ffJ) and sort these values. Based on the obtained order, it can be de-
cided then which scenarios are used to estimate AVaR,[], i.e., ut := VaRy, [di(xi—1, &)
is determined.

This allows defining an importance sampling distribution depending on x;—1 [114].
For simplicity, we assume that all scenarios are equally likely in the original distribution,
that is, fi(&;) = q% for all j =1,...,q;. Then, it follows:

1

gt(&elre—1) = ZLO‘t‘ZtJl

2(qr — loua)) 7

This distribution ensures that it is equally likely to draw sample observations above
and below ;. Note that the formula presented in [114] looks a bit different, since it is

di(21-1, &) > uy,

di(21—1,&) < .
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presented in the context of SAA.
Defining weights

fi(&)
9e(&tlai-1)

and multiplying them along the sample paths

At(&t‘xt—l) =

AR = [T A(gflzen)

t=2

we can derive the estimator

Ut = Y] > AER(ER). (73)

Z’CG’C kek

This estimator is similar to (72), as the same recursive term 9(¢¥) is used, but combined
with importance instead of standard MC sampling.

With the assumptions of relatively complete recourse (based on Assumption 9) and
stagewise independence (Assumption 2), estimator (73) is asymptotically valid, i.e.,
for |[K| — oo, U converges to E[6(£)] with probability 1 (recall that Ef[6(£)] > vg).
Moreover, for sufficiently good choice of d:(-), it can be expected that the variance is
lower than for U™ [114].

Based on this idea, even better estimators are developed in [113, 114], for example
by not only sampling scenarios associated with AVaR,[-] with higher priority, but also
using only scenarios which contribute to the [-]4-term to estimate AVaR [114]:

Gy = (1= ) ((en(eh) "ok + 741 (69))
{(Ct(ff))Txf‘i‘f’thrl(ft) up_y N

A
+ Mup ) + Zldy(2-1, &) > Ud]a ¢
t—1

Here Z[-] denotes an indicator function. For the first stage it follows
0(€") = ey + 05(ED).

Combining this with (39), we obtain

vh= zke,c NP ILRL

kel

The practical applicability of this estimator relies heavily on satisfaction of the
following goodness assumption with respect to dy(-):

Qri(wi—1,&) > VaRy, [Qr (w1, &) & di(@i—1,&) > VaRa, [de(ze-1,&)],

which means that d;(-) correctly classifies whether a realization is in the upper a-tail of
the recourse value distribution.

It is proven that this estimator is asymptotically valid as well, but also provides
tighter upper bounds than U? in expectation, as long as the above goodness assumption
is satisfied. Moreover, a smaller variance should be expected [114]. Numerical results
in [114] illustrate that even for a medium number of stages, estimator U? provides
significantly better upper bounds than U”,U¢ and U? and that also the variance of the
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estimators is reduced significantly. However, despite reducing the variance, even U*
and U¢ may still show a considerable upward bias with respect to the upper bound T
induced by the current policy [202].

Apart from the above sampling estimators, some completely different strategies may
be used to obtain upper bounds for v} or to define some stopping criteria for SDDP in
the risk-averse case.

Using Deterministic Upper Bounds. As already discussed in Sect. 8, we may
circumvent the determination of sampling-based upper bound estimators completely if
we resort to deterministic upper bounding procedures.

To this end, Philpott et al. [161] extend their inner approximation based upper
bounding procedure from Sect. 8 to the risk-averse case with nested (conditional) co-
herent risk measures. The main downside of this procedure, to require prohibitively
large computational effort for a large number of state variables and an increasing num-
ber of cuts, also holds in this case, though.

The alternative deterministic upper bounding procedure based on dual SDDP [97,
119] has been extended to a risk-averse setting as well [40].

Determining Bad Outcomes in Advance. As discussed in Sect. 12.3.1, following
the approach of a change of probability measure, see (56)-(58) and (68), it is also possible
to run (risk-averse) SDDP once in advance to approximate the probability measure P,
and then a second time, this time fixing the probability measure to the approximation
of P. This is referred to as solving the change-of-measure risk-neutral problem in [126].
Whereas this approach has a lot of computational overhead, the advantage is that a
risk-neutral problem can be solved by SDDP and therefore, also the standard stopping,
upper bounding and policy assessment techniques can be applied. Clearly, solving the
change-of-measure risk-neutral problem is not guaranteed to yield optimal policies for
(Pr), however Liu and Shapiro report that the quality of the policies is similar to those
obtained by risk-averse SDDP [126].

Fixing the Number of Iterations. This approach is proposed by Philpott and
de Matos [160]. They run a risk-neutral variant of SDDP first and then fix the number
of iterations required until termination. The same number of iterations is then used in
the risk-averse case, avoiding the challenge of upper bound evaluation.

In some practical applications, in which it is computationally intractable to deter-
mine a sophisticated upper bound estimator, this approach may be useful. Promising
results are reported in [160]. However, there is no theoretical guarantee to find a suffi-
ciently good solution for a risk-averse version of (Pg) in the same number of iterations
as for a risk-neutral version. Additionally, for large problems it may already take con-
siderably long to run SDDP one time. Running it a second time for risk-averse problem
(Pr) may partially annihilate the computational advantage of avoiding upper bound
estimation.

Lower Bound Stabilization. As for risk-neutral SDDP, instead of using upper
bounds at all, the algorithm can be terminated, once the lower bounds y%z stabilize.
This provides no convergence guarantee but may be worthwhile in large-scale practical
applications where other approaches become computationally prohibitive.

Using Benefit Factors. Instead of the lower bounds vi, it is also possible
to condition termination of SDDP on the improvements of the cut approximations
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%%,t(')’t =2,...,T. For that purpose, Brandi et al. define a benefit factor

z,k = min {1, (gfiil) } ,

t,max

which determines how much a new cut improves the current cut approximation Q%t()
at x{* | [30]. §(x{*,) is the absolute increase, while & .. is a proxy for the maximum
improvement possible. For each sample path k& € K, a total benefit factor can be

determined by
Bi = max {B§7k,8§,7k, . ,B},k} )

The risk-averse SDDP method is then stopped if the values B for all k € K are below
a predefined tolerance, either for one iteration or, alternatively and more robustly, for
a predefined larger number of iterations.

12.4 SDDP with Entropic Risk Measure

As discussed before, nested risk measures come with some drawbacks. Computation-
wise, upper bound determination is very challenging. Additionally, applying a standard
one-period risk measure p[-], e.g., AVaR,[-], as an end-of-horizon risk measure (51)
and (possibly conditionally) in a nested risk measure (52) does not yield equivalent
policies [60] (this is only the case if we take the composite risk measure associated with
the nested risk measure as end-of-horizon risk; however, this risk measure is usually
not known explicitly, see Remark 12.7). This makes nested risk measures difficult to
interpret from an end-of-horizon perspective.

For this reason, Dowson et al. [60] propose to apply one-period conditionally consis-
tent risk measures in the context of SDDP [60], see also [11, 158]. It can be proven that
under some technical assumptions, the class of entropic risk measures ENT,[-] (see (49))
is the only class of risk measures that is conditionally consistent.

As ENT,[-] can be applied in a nested fashion, the DPE (56)-(58) are valid in
this case. Moreover, since ENT,[-] is a convex risk measure, the (risk-adjusted) value
functions are convex. Therefore, SDDP can be applied to derive polyhedral outer ap-

proximations.
As for standard SDDP, first, for each scenario k£ € K and all possible stage-t real-
izations ffj =¢&,,j =1,...,q;, approximate versions of subproblems (56) are solved to

obtain Q;z t(xffl, &:;). Then, based on the dual form of ENT,[-], the following auxiliary
problem can be solved to evaluate the risk-adjusted value function:

ENT, @%J(Zf—la ft)}
at ) 1 qt ﬁt'

max Z@;-Q@zt(wf_h&j) - Zﬁtj -log (])
Dt = ' Tt ) Pty

tj
s.t. Zﬁt] =

15th0> j:1:"'7Qt-

(74)

Here, parameter p;; denotes the nominal probabilities of realizations &;;, which usu-
ally equal qit, and the decision variable p;; denotes an alternative probability based
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on the entropic risk measure. In this way, problem (74) can be regarded as building
the expectation based on some modified probability measure and with some additional
penalty term. Problem (74) can be solved algorithmically, but as stated in [60], also a
closed form for py; can be derived. Using p;; and ENT,, @% t(q:f_l,ft)}, cuts can then
be constructed and handed back to the previous stage.

The entropic risk measure does not only ensure conditional consistency of the ob-
tained policies, but it also allows for upper bound computation as in standard SDDP,
because the tower property can be employed for ENT[:]. However, these advantages
come at the cost of an aggravated interpretation of the risk measure compared to AVaR-
based ones. In this context, it is particularly difficult to make a reasonable choice for
the parameter v, > 0 [60].

12.5 SDDP with Expected Conditional AVaR

Another class of multi-period risk measures that can be used as an alternative to nested
risk measures are expected conditional risk measures, which we briefly introduced in
Sect. 12.1.3 [64, 106]. Here, conditional expectations are used to avoid the risk measure
nesting, which proves beneficial in determining upper bounds in SDDP, as it avoids the
aforementioned computational difficulties, while still time consistency is ensured.

Recall the risk-averse problem (Pg) using expected conditional risk measures stated
in (55). Using p[-] = AVaR,,[]| yields the so called E-AVaR or multi-period average
value-at-risk [106], which goes back to Pflug and Ruszczynski [159].

As stated in [106], by some lengthy reformulations, the objective function of prob-
lem (55) can be expressed in a nested way. Therefore, equivalent DPE can be derived
and time consistency is assured. Moreover, the [-]-function can be reformulated by an
epigraph approach. Then, for t =2,...,T, the DPE read

. 1 .
min —w + U1 + Qr 1 (T, W)
Te,ut4+1,We (g
Qra(Ti—1,up, &) = st z € Xy(we1,&) (75)
’ T
wy— (&) @ > —wy
(o Z 0
with
QVR,tle(l‘t? utJrl) = E5t+1 [QR,t(l‘tfly U, ét)} 5 (76)

Orr11(+-) =0 and first stage

VR = T1,U2 (77)

. min clTxl + ug + QR,2(1“1, us, &)
s.t. x € Ay

In contrast to using nested conditional risk measures, the DPE here only depend
on nested sums of (conditional) expectations, i.e., have the same structure as in the
risk-neutral case. Hence, standard SDDP can be applied. This has the advantage to
allow one to use upper bounding techniques developed for risk-neutral SDDP.
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12.6 Bi-objective SDDP

An alternative to risk-averse formulations that allows one to achieve a trade-off between
obtaining the best policy in expectation (e.g., the policy with the lowest expected costs)
and avoiding bad extreme outcomes (e.g., power outages or load shedding in an electric-
ity network) is to formulate a multistage problem (MSLP) with multiple competing ob-
jectives that are optimized simultaneously. Recently, a variant of SDDP for bi-objective
problems has been put forward by Dowson et al. [58].

Let ¢(&) and ¢,(&) denote the objective coefficients for stage ¢ € [T] and the two
competing objectives. For all but trivial cases, there exists no policy which yields the
best objective value with respect to both objectives

" := min E
1,22, T

Z (Et(ft))th(g[t]):|

te[T)

=3(x)

and

?°:= min E
L1,22;...,&T

Z (Et(ft))th(f[t])} ,

te[T)

=(x)

meaning that the two objectives are truly conflicting.

For this reason, if there is no clear preference for one of the objectives, usually the
alm is to compute Pareto-optimal policies. A policy (a’ct(g[t]))tem is Pareto-optimal if
it cannot be improved in one objective without getting worse in the other one, i.e., if
there exists no other policy (:ct(f[t]))tem such that v(x) > v(&) and v(x) > 9(Z) (or
the other way around). Pareto-optimal solutions are also called non-dominated, and the
set of non-dominated objective vectors is called the Pareto front [58].

A standard approach to compute Pareto-optimal solutions in optimization is to use
some scalarization approach in which both conflicting objectives are combined to a
weighted sum, which is then optimized in a deterministic single-objective problem. In
our case, the DPE (4)-(6) can be adapted to

Qulrr £0,2) = {nytn (Nee(&) + (1 — )\)/C\t(ft))T;L‘t + Qpra(me) (78)
s.t. x4 € Xt(Itfl,ft)
where
Qiy1(xe, A) = Eg,y [Quv1 (w4, €115 M) (79)
and Qri1(zr) = 0. For the first stage, we obtain
. - T
() = {Hﬁn (Ae1 + (1= N)e1) 21+ Qo) (80)
s.t. x1 € &Y.

SDDP can then be applied to these DPE. In the proposed variant, A\ is adapted
dynamically. To this end, in each iteration i, after the backward pass, one stage t € [T
is randomly and independently sampled and the corresponding subproblem is solved
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again for x¥ |, €F and A'. Then, A\’ is updated to A\**!, where the latter is determined
as the closest A to A’ such that the optimal basis of the constraint equation system
changes.

It is proven that this variant of SDDP converges almost surely to the Pareto front
of bi-objective (MSLP) in finitely many iterations. Note that technically speaking
not all Pareto-optimal policies are guaranteed to be identified by SDDP because for
some A multiple optimal policies may exist. However, all Pareto-optimal policies for
which (0(x),v(x)) cannot be represented as a strict convex combination of other non-
dominated objective vectors are identified under weak assumptions [58].

13 SDDP with Unknown Distribution [relaxing Assump-
tion 3]

In Sect. 3 we introduced SDDP assuming that the probability distribution F¢ of the
data process (&;):c[r) governing the uncertainty in problem (MSLP) is known, see As-
sumption 3. This allowed us to sample from this specific distribution in the forward
pass of SDDP or, in case of continuous random vectors, to obtain a finite sample average
approximation, as described in Sect. 11.

In practical applications, usually, the true distribution F¢ is not known, though.
Often, only historical data is available, i.e., some realization of an unknown true dis-
tribution. This data is then used to determine a reasonable estimate for the true
distribution, from which the required samples are taken. However, using such an esti-
mation imposes the risk of overfitting the SDDP policies to this specific distribution,
and thus the available data. Philpott et al. [162] identify this problem as particularly
noteworthy if the number of possible outcomes ¢; per stage is small. For this reason,
it may be reasonable to take a more robust approach and factor in the distributional
uncertainty. Considering this type of uncertainty in SDDP is a young research area.

13.1 Distributionally Robust SDDP

One way to consider distributional uncertainty in SDDP is by integrating ideas from
robust optimization [16, 20] into (multistage) stochastic programming. More precisely,
a set of potential distributions is considered, which is called distributional uncertainty
set or ambiguity set and denoted by P. The expected cost is then minimized over the
worst-case probability distribution from this set. This is called Distributionally Robust
Optimization (DRO).

Usually, the outcomes of the random variables &; are fixed to a finite number of
realizations observed in the historical data. The ambiguity set P; then models a variety
of potential probability measures P, € P, supported on this finite set Z;.

In the following, we restrict to DRO specifically in the SDDP context. For a general
introduction to DRO, we refer to the review [176] and the tutorial [199]. We assume
all assumptions from Sect. 3 to hold, except for Assumption 3. Furthermore, we only
consider uncertainty in the RHS.
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Then, the distributionally robust version of (MSLP) can be written as

min max E Z(Ct(ft))Tﬂ3t(§[t})

z1,@2,.... e PEP
te[T] (81)
s.t. T € Xy
x, € Xp(xp-1(§pp-1)), &) V& EE VE=2,...,T.

Remark 13.1. Distributionally robust stochastic programming is closely related to risk-
averse stochastic programming. In particular, the operator maxpep E[-| can be inter-
preted as a multi-period risk measure R[-]. This risk measure is coherent [199].

For SDDP it is required to reformulate problem (81) by means of DPE. This requires
that each distribution P in the ambiguity set P can be expressed as the cross product
of the respective marginal distributions of random vectors &; [199]. Formally,

’P;:{]P):IPIX...XPT . IPtePhtE[T]}'

The ambiguity sets P; are assumed to be independent of each other. This property is
called rectangularity of P and is reminiscent of the stagewise independence assumption
for vectors &;. Note that P; is a singleton containing one distribution with one possible
realization.

With the ambiguity sets P, then the DPE can be written as

. T
min ¢, ¢ + Qprey1(xt)
Qprt(Ti-1,&) == (82)
st. x € Xp(weo1,&)
with
Qpreti(w) == max Ep,, [Qpri1 (w1, &41)] (83)

Piy1€Pt 41

and Qpgrrii1(zr) = 0. Compared to Sect. 3, here, an inner maximization problem is
introduced when defining Qpr+1(-) to obtain the expected cost over the worst-case
probability measure in P;11. The first-stage problem reads
: T
. min ¢ 1 + Qpra(z1)
Upr = { (84)

1
s.t. x € Ay

How v}p and a corresponding optimal policy can be computed algorithmically,
heavily depends on the specific choice of the ambiguity sets P, t = 2,...,T. Various
ambiguity sets are proposed in the literature. Usually, these sets are defined in such a
way that they contain all distributions, which are in some sense within a given range of
some nominal distribution. This nominal distribution, denoted by P,, in turn, is defined
by probabilities py; = q% for all j =1,...,q, where g; denotes the number of historical
data samples. Based on the measure employed to evaluate the distance between two
distributions or probability measures, respectively, different classes of ambiguity sets
can be defined.

For SDDP, the following three distance measures have been used so far. In [107],
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the /o, metric with parameter r > 0 is used to define the ambiguity set

aqt
P = {Pt © Y pi =1, pi 20, |Ipe — Pirlloo < T} ~ (85)

i=1

A similar metric, but with the ¢3-norm, is used in [162] to define the ambiguity set

qt
P = {Pt : Zpti =1, pi >0, [[pr —pel2 < 7“} . (86)
i=1

This is a special case of the class of ¢-divergence distances, see [12]. Both these dis-
tance measures are only applicable to discrete distributions supported on the observed
historical data points.

On the contrary, the Wasserstein distance allows to compare general distributions
(see for instance [217]). In our case with finite distributions P, and P;, the Wasserstein
distance can be defined by the minimization problem

qt qt

dw (P, Py) :==min ) > |lg — & |2

i=1 j=1

at
s.t. Zzij:pti Yi=1,...,q
j=1

qt

Zzij:ptj Vi=1...,q
i=1

ZZJZO Vi,jzl,...,qt,

where for the norm different choices are possible. It can be interpreted as the amount
of probability mass that has to be moved between the distributions. This distance is
used in [65] to define the Wasserstein ambiguity set

q
Pr = {Pt DY pi =1, pi >0, dw (B, Py) < T‘} : (87)

i=1

In all three cases, very different strategies are chosen to apply SDDP to the nested
min-max structure defined by the DPE (82)-(84).

13.1.1 Reformulation as a Risk-averse Problem

As shown in [107], using the ¢*-ambiguity set (85), the DPE (82)-(84) can be refor-
mulated to those of a risk-averse multistage problem with nested conditional AVaR,[],
that is equations (60)-(62) with

At

¢
Atv1=1—=ppq, = —

[ b
Pii1 — Peya

where p{ ; and p}',; denote the probabilities associated with the probability measures
at the lower and upper bound of ambiguity set (85). Therefore, SDDP can be applied
as in this risk-averse setting.
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13.1.2 Solving the Inner Maximization Problem Separately

Using the ¢2-ambiguity set (86) in the DPE (82)-(84) yields value functions, which can
be proven to remain convex, and thus can be approximated by affine cuts [162].

To derive such cuts, Philpott et al. propose to solve the inner maximization problem
identifying the worst-case distribution separately. In the backward pass, for some stage
t, first the subproblems are solved for all j =1, ..., ¢; as usual. Then, using the obtained
values of Qi(xi’i 1,&tj), the inner maximization problem is solved. This can be done
algorithmically and in some cases even analytically, as shown in [162]. The obtained
worst-case probability measure P* can then be used to compute subgradients and cut
coefficients. Even though these coefficients are determined based on cut approximation
0i*1(.) and on P*, which does not necessarily coincide with the worst-case probability
measure in the true DPE, valid cuts are constructed and convergence is ensured [162].

13.1.3 Using a Dual Representation

If we use the Wasserstein ambiguity set (87) in SDDP, we obtain the inner maximization
problem

qt

max ZPtH,thH(wt,&ﬂ,j)
j=1

Zt:Pt+1

qt  qt

s.t. Z Z dt_,_l,ijztij S 1

i=1 j=1

qt
ag=pi Yi=1,...,q
=1

qt
Zztij =py Vi=1l.... @
i=1
Ztij ZO VL] = 17---7(115
with dyy1,5 = [[€4, — ff+1\|. Duque and Morton [65] suggest to replace this problem

using its dual problem. This way, the value functions can be evaluated by solving the
single-level minimization problem

QDR,t (ﬂft—l s ft) =

qt+1
. T i
min ¢, ¢y + 7y + i1Vt
TtyYt Ve i—1
i=

st x € Xi(weo1,&)

i1,V + Vi 2 Qorat1 (T, §ev15) Vi i =1, ¢
v >0

with dual variables 7, and v;.

As proven in [65], these value functions are piecewise linear and convex on X;_i,
and therefore can be represented by finitely many linear cuts. However, this approach
requires to use multi-cut SDDP, see Sect. 21.2.1, because otherwise bilinear terms occur.

With all these strategies, the forward pass remains basically the same as in standard
SDDP. The sampling can be done from the nominal distribution associated with P,,t =
2,...,T, or alternatively the current worst-case distribution associated with P} [65]. If
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independent sampling is conducted, convergence follows as for standard SDDP. However,
challenges to determine valid upper bounds are prevalent for distributionally robust
SDDP similarly to the risk-averse case.

Computational results indicate that taking the dual reformulation approach, better
approximations are achieved for multi-cut SDDP than solving the inner maximization
in a side computation [65]. Furthermore, out-of-sample tests by Philpott et al. [162]
imply that distributionally robust SDDP yields policies which are better suited, e.g.,
induce lower costs, in periods with a substantial risk of high costs.

13.2 Partially Observable Distributions

A different approach to deal with distributional uncertainty is introduced by Dowson et
al. in [59], and is referred to as partially observable multistage stochastic programming.
The idea is to consider a finite number of potential distributions by combining problem
(MSLP) with a hidden Markov model. More precisely, in each stage ¢ € [T], different
nodes can be reached, with each node representing one Markov state. Let N denote the
set of all these nodes except for the root node. Each node reflects a different candidate
distribution, possibly with identical realizations §;,5 =1, ..., q, but different associated
probabilities.

As a key idea, consider a partition A of nodes in N into ambiguity sets A € A,
satisfying (J,c4 A = N. For example, this partition can be chosen such that there is
one ambiguity set A for each stage.

To model the distributional uncertainty, it is now assumed that at any point, only
the current ambiguity set is known, while the specific node within it cannot be observed.
However, for each node 4, a probability b; is available. In other words, each candidate
distribution is considered to be the most accurate representation of the true underlying
distribution with a certain probability. These probabilities are stored in a so called
belief state b. Each time an ambiguity set A is entered and a particular realization &
of the random data is observed, the belief state is updated componentwise by applying
Bayes’ theorem [59].

In contrast to (MSLP) with perfect distribution information (see Assumption 3),
the value functions Q:(-) have to incorporate this belief state. To this end, let p;; be
the probability of observing &, conditional on being in node i with £ = 1,...,q". Let
N describe all nodes including the root node, wj the transition probability from node
j to k and By(b, €) the update rule for the belief state being in (unobservable) node k.
Furthermore, let 2’ denote the current trial solution. Then, the expected value function
can be written as

qk‘,
Qp(2',b) := Z b; Z Wik Zpkz Qi (2, Br(b, &ke), Eke) - (88)

JEN  keN =1

This means that the value functions Q(-, ) depend on a node and an updated belief
state, and in (88) it is looped over all nodes, weighing the corresponding expected value
with the current belief and the transition probabilities between the nodes.

As proven in Theorem 1 in [59], the expected value functions Qg(-) are saddle
functions, as they are convex in z for fixed b, but concave in b for fixed x. Therefore,
to apply SDDP, the cut generation has to be adapted to this property. This can be
achieved by using an outer approximation for z and an inner approximation for b [59].
The main difference for the cut computation is that apart from taking expectations over
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the realizations of &, it is looped over all nodes in the current ambiguity set A and the
cut components are weighed with the current belief [59].

In the forward pass, for each stage t = 2,...,T, first, a new node is sampled con-
ditionally on the (unobserved) current node. Then, a realization of £ is sampled con-
ditionally on the obtained node and the associated candidate distribution. For a more
detailed description, see [59].

A different method of combining SDDP with a hidden Markov model is given in [66].
One general drawback of such hidden Markov approaches is that transition probabilities
between the nodes have to be properly defined a priori.

14 Stagewise Dependent Uncertainty [relaxing Assump-
tion 2]

As explained in Sect. 2 and 3, stagewise independence (Assumption 2) is a standard
assumption in dynamic programming, and thus also for SDDP. It is also crucial for the
computational tractability of SDDP compared to NBD because it ensures that there
exists only one expected value function Qq(-) per stage and that cuts can be shared
between scenarios, see Sect. 5.2. However, in many applications, the uncertain data in
(MSLP) (e.g., demand, fuel prices, electricity prices, inflows) shows correlations over
time and assuming stagewise independence is not appropriate.

If the uncertainty in problem (MSLP) is stagewise dependent, the expected value
functions Qy(-) for t = 2,...,T do not only depend on x;_1, but implicitly also depend
on the history £;_y) of the process (ft)te[T]' In order to apply SDDP, this dependence
has to be taken into account, for instance by reformulating the model or adapting the
algorithmic steps in SDDP. In this section, we consider different cases of stagewise
dependent uncertainty and ways of how SDDP can be applied in these cases.

14.1 Expanding the State Space

As a first case of stagewise dependent uncertainty, let us assume that the data process
(&t)eqmy is a simple linear autoregressive (AR) process with lag one, defined by appro-
priately chosen coefficient vectors ~;, matrices ®; and stagewise independent and i.i.d.
error terms 7;:

& =7+ P&+ (89)

Remark 14.1. If we still assume finite randomness (Assumption 5), now for n, then
& can be modeled by a classical scenario tree, see Sect. 5.2.

The most natural approach to deal with this case, is to reformulate (MSLP) in such
a way that it exhibits stagewise independent uncertainty [154]. This can be achieved
by including &_; as an additional state variable. Then, as shown in [129],

]Egt‘ft—l [Qt(xt_hgt” = ]E"'It‘ft—l [Qt(xt—lv'ﬂ + Q& 1+ 'rlt)]
=By, [Qi(zi—1, v + &1 + 1)),

where the second equality holds because 7; and &1 are statistically independent.
By introducing equation (89) as a constraint and defining a new value function

@t(ﬂft—hft—h M) = Qe(Te—1, e + Pe&e—1 + ), (90)
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and the corresponding expected value function

@z(ﬂfthftfl) =Eny, [Q\t(xt—bgt—lant)} (91)
forallt =2,...,T, it follows

Eg ey [Qu(z1-1,&1)] = O(1-1,E1)-

The state variables then consist of the resource state x;—; and the information state
&1, while the stagewise independent uncertainty is modeled by n;. Importantly, & is
regarded as a decision variable in the reformulated problem, augmenting the dimension
of the decision space.

Remark 14.2. [t is worth emphasizing that this approach is presented in various dif-
ferent ways in the literature. In some cases, as outlined, equation (89) is explicitly
incorporated into the DPE as an additional constraint [174, 204]. In some cases, each
occurrence of & in the subproblems is simply replaced by the RHS of (89). And in other
cases, the dependence on &_1 is only expressed by writing Qt( y+ ) and Qt( -) as func-
tions of &_1, whereas the explicit relation (89) is only considered in the cut generation
process [84, 129, 179]. We revisit this observation in the next subsection.

By the presented procedure, stagewise independence (Assumption 2) is recovered
for (MSLP). However, in order to apply SDDP, it also has to be ensured that valid
linear cuts for @t(-, -) can be derived as functions in both types of state variables. This
requires that Q(-,-) is convex in both z;_; and &-_1. Similarly to Theorem 2.8, it can
be shown that under certain assumptions, this property is satisfied.

Theorem 14.3 ([179]). Let & be described by (89) and let &1 be contained in_some
convez set. Then, under Assumptions 1 and 3 to 9, the expected value function Qq(-,-)
is piecewise linear and

a) conver in xi—1 on Xy for fized &1,

b) convex in &1 = (Ty—2, he—1) for fized x1—1, Wi_1,ct-1,

¢) concave in &1 = ¢i—1 for fivzed k1, Wi_1, T2, hi—1,

d) convex jointly in x,—1 and in &1 = hy—1 for fivzed Wi_1, T2, ¢—1.

Theorem 14.3 shows that convexity in both types of state variables is only guaranteed
if the stagewise dependent part of the uncertainty only enters the RHS h;(&;) of problem
(MSLP). Note that this still allows for additional stagewise independent uncertainty in
ct, Wi and Ty—1. The result also requires linearity of (MSLP) (Assumption 6) and of the
AR process (89) defining the random variable &;.

Under certain assumptions, Theorem 14.3 can be generalized to convex problems
(MSLP) and stagewise dependence in the RHS defined by a convex function [84]. More-
over, the result is not limited to lag-one processes, but can be enhanced to AR processes
with higher lag order [84]. This is important for practical applications, as often several
lags are required to explain a time series appropriately. In contrast, for general nonlin-
ear stochastic processes or for uncertainty in Wy, ¢; or T;_1, such a generalization seems
not possible. In order to cover such cases, different approaches are required. We discuss
those in later parts of this section.
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For simplicity, assume that X; = {x; € R™ : z, > 0} for all ¢t € [T] and recall the
definition of the approximate subproblem (10):

min (Ct(ft))Txt + 011

zg,041
Q,(wi—1,&) =4 st Wil&)aze = he(&) — Ti-1(8) 2 (92)
o Tt Z 0

- (5Z+1)T$t + 041 > apyq, Vrelig,

where T’y is the index set of previously generated cuts. Then, the result in Theo-
rem 14.3 can be illustrated by means of the feasible region of the LP dual to (92), which
can be written as

max (ht(ft) - Tt—l(ft)xt—1>—r7rt + atTHpt

TPt
T
s.t. (Wt(ft)) T — B;_lpt S Ct(gt) (93)
elp=1
pr > 0.

Here, we collect all cut gradients 87, in a matrix Byy; and all cut intercepts i, in
a vector a; for compact representation. m; denotes the dual variable to the original
constraints, and p; denotes the dual variable to the previously generated cuts.

In the case of linear AR processes in the RHS h;(&;), the dual feasible region is not
affected by the new state variable ;1 (and also remains polyhedral). This means that
the extreme solutions obtained for one state &_; remain valid, although not necessarily
optimal, for all other states &_1 as well. In contrast, in other cases of stagewise depen-
dence, the dual feasible region and its extreme solutions may change for different states,
affecting the properties of Qy(-,-) [179].

In sum, for affine and convex AR processes occurring in the RHS, expanding the
state recovers stagewise independence (Assumption 2), but at the same time convexity
of Q,(-,-) in all state variables is preserved. Therefore, SDDP can be used as introduced
in Sect. 3. In this case, the obtained cuts are functions of both state variables and can
be formulated with a cut gradient for each of them (compare to (17)), i.e.,

Ge(re—1,6-1) = o + (ﬁf)TCthl + (ﬁf)Tﬁtq-

Unfortunately, depending on the dimension ;1 of &_1, the state space dimension
can increase significantly. This effect is amplified for higher lag orders. As the com-
putational complexity of SDDP grows exponentially in this dimension, see Sect. 4.2,
augmenting the state space is detrimental and should be avoided if possible.

14.2 Scenario-Adaptable Cut Formulas

The previously described adverse effect can be alleviated to some degree by a special
cut generation approach that was first proposed by Infanger and Morton [109] and later
enhanced by de Queiroz and Morton [174] and Guigues [84]. In all these cases, the
process model, such as (89), is not explicitly incorporated into the subproblems, see
Remark 14.2. Instead, it is merely considered within the cut generation process. The
main idea is to derive scenario-adaptable closed-form cut formulas, given AR processes
with a specific structure, which allow one to adapt the cut generated for one specific
history E[t_l] to different histories {;_y) of the stochastic process, and thus to different
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scenarios. This way, the cuts can be shared between scenarios (see Sect. 5.2) without the
need to incorporate (89) into (MSLP) as a constraint. Importantly, these cut formulas
lead to the exact same cuts as the previously described approach.

To illustrate this idea, consider a cut derived using dual problem (93) without paying
any particular attention to the stagewise dependence. For convenience, but without loss
of generality, we assume T;_; to be deterministic and the RHS uncertainty to be defined
by

hi(&) = Pehy—1(&—1) + e (94)

with stagewise independent error terms 7, similarly to (89). We obtain

@t(iﬂt—l,ft—l) > Egt\gt,l [—ﬂ'tTTt—ﬂEt—l + WtTht(ﬁt) + P;at+1}

(95)
= Ee,le, s [f"'tTthl] Tio1 + Egyle,y [W:ht(ft) + p:at+1]

We can make the following observations:

(i) Since the probabilities in Eg,¢, , [-] are assumed to not depend on & (recall that
7 is stagewise independent) and since all scenarios share the same dual feasible
region, the cut gradient

Br = E€t|§t71 [_ﬂ-:Tt*J (96)
derived for one specific scenario &_1, is valid for all other scenarios as well.

(ii) According to (94), the RHS h;(&;) depends on &_;. Therefore, to evaluate the cut
for a specific scenario, this term has to be adapted to this scenario. Otherwise,
the cut may become invalid. By (94), this term can be split up into a scenario-
dependent part depending on &;_;1 and a scenario-independent part depending on
1. only.

(iii) The last term a;+1 in (95) is the cut intercept of the following stage. As we face
stagewise dependence, this intercept is not scenario-independent anymore, but
should denote a;1(&). Moreover, it is defined recursively: The stage-t intercept
includes the stage-(t 4 1) intercept, which includes the stage-(t + 2) intercept and
so on. This implies that to evaluate asy1(&) for a specific scenario, it is basically
required to recursively traverse the whole scenario tree starting form stage ¢. This
is computationally intractable.

To address these observations, the main idea by Infanger and Morton [109] is to
express the cut intercept a;(&_1) as the sum of a stagewise independent term o™ and
a stagewise dependent term ofP(&,_;):

(1) = o™ + ofP(&1). (97)

Let T = Ey,[m] and p, = Eq,[p:] denote the expected value of the dual variables
obtained for realizations of 7;. As explained, these dual values are valid for any history
of the stochastic process due to the structure of the dual feasible set. Let &2, define the
(|T¢| x m;)-matrix containing the values of 7, and %; the (|T'| x |T';_|)-matrix containing
the values of p; for the previously determined cuts. Furthermore, let the matrix D; be
defined recursively by

Dt - [@t+1 + @t-‘rlDt-ﬁ-l] q)ta DT = 0 (98)
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Then, as shown in [109], the stagewise dependent cut intercept is given by
afP(&-1) = [7o + p1Dy] By (&1-1).- (99)

This means that a cut can be constructed by using formula (96) for the gradient and
formulas (97), (98) and (99) for the intercept. The stagewise independent term can be
either determined by an additional formula or by subtracting (99) from ay(&—1) [109].
In order for a cut to be shared with a different scenario at stage ¢t — 1, it is only required
to adapt the stagewise dependent intercept (99) to this specific scenario. In other words,
a given cut can be corrected to be valid for a different history of the stochastic process.
In particular, it is not required to add (94) as a constraint to the stage-t subproblem or
to traverse the whole scenario tree (see Remark 14.1). Instead, only the cut gradient,
the stagewise independent part of the intercept and the cumulative expected dual vector
[P141 + 141 Dy41 ] ®4 have to be stored [109].

Whereas we limited our explanations to a very simple AR process so far, similar
cut formulas can be derived for more complex processes [84, 109, 174, 179]. We give
an overview on different cases covered in the literature in Table 6. Some of the process
formulas in Table 6 are presented in a simplified form for reasons of clarity, e.g., by
omitting standardization and the incorporation of seasonal or periodical effects. For
example, this is true for the SPAR processes considered in [127] (also see Sect. 9),
where spatial dependencies between locations ¢ and 4’ are taken into account.

Importantly, all processes for which scenario-adaptable closed-form cut formulas can
be derived require a specific structure, such as linearity, convexity or separability. As
shown by Guigues [84], a generalization to convex AR processes and more complex
structures in the RHS is possible. For instance, the RHS h; does not have to be directly
described by the stochastic process (constant h; = &), but may also be defined as
some function hy(-) of &. Moreover, for the affine case, alternative formulas to the ones
provided by Infanger and Morton are presented by Guigues [84]. The main difference is
that only a minimal subset of coefficients is used, due to defining the process (&):cin)
componentwise and not in vectorial form compared to (89) or (94). On the other hand,
no recursive formula as in (98) is provided to compute the cut coefficients. Finally,
Guigues shows that also for feasibility cuts (Sect. 17) scenario-adaptable cut formulas
can be derived.

It is important to emphasize that the presented approach only partially mitigates
the drawbacks of augmenting the state space. First of all, the history of the stochastic
process has to be stored to compute &, even if such computation is possible outside
of the subproblems. Guigues provides a detailed discussion on how state vectors of
minimal size can be defined in order to keep the stored information as small as possible
[84]. Additionally, due to their dependence on &1, or {;_yj in general, the expected
value functions @t(-, -) live in a higher-dimensional space. Therefore, more iterations
and cuts may be required to achieve convergence compared to the stagewise independent
case, as discussed in Sect. 4.2.

14.3 Sensitivity of SDDP with AR Processes

Let the uncertainty in (MSLP) be modeled by an AR process. Consider the approach
of expanding the state, leading to two types of state variables: x; and £). Both contain
information on future resource availability (e.g., hydro storage volume and hydro inflow
history affecting future inflows), but they differ in several aspects [208]. First, whereas
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Autoregressive model for &
RHS h:(&) | Model Type Lag Formula Source

const. AR L 1 =08 1+ [109]

L AR L 1 & =P85 1+ [174]
const. PAR L 1 &= @i(§—1 — pru—1) + pe + opmy [211]
const. AR L >1 &= (9L + Uhm) + e [109]
L/C* AR L >1 ft = @tf[t_l] + [84]
L/C* AR L >1 & = Dy + Uy + O, [84]
const. | SPAR L >1 &=, b+ [127]
const. AR NL 1 Et = q)t(ft(vtfl) + ftfl) + M [109]
const. AR NL  >1 & =15 (®4e + filor)) +me [109)]

C AR C >1 & = fi(&—1),me) (84]

L = affine/linear function, C = convex function, NL = general nonlinear function
* only in case of inequality constraints

Table 6: RHS and uncertainty models considered in the literature on SDDP with stage-
wise dependence to derive scenario-adaptable closed-form cut formulas.

the information provided by the state z;_; is certain, the information provided by
&[i—1) enters an AR model predicting future realizations, which still involves uncertainty.
Second, the parameters of this AR model are estimated from data, and thus can be
subject to estimation errors. Third, in practice it can often be observed that the values
in (& )err) show higher variability over short time than the values of (z);cir). This
uncertainty and variability raises the question on how much the solutions obtained in
SDDP react to changes in £;_y). This can be examined in a sensitivity analysis.

A general approach for sensitivity analysis in SDDP is presented in [97] and applied
to an inventory problem with AR demand. Also the sensitivity with respect to AR
model parameters ®; or ; is discussed.

For a hydrothermal problem, in [208], it is shown that the solutions obtained in
SDDP are more sensitive to changes in the initial information state £ than to changes
in the initial resource state xy. Based on the previous observations this leads to the
unfavorable side effect of expanding the state space that solutions of SDDP exhibit
larger variability. This may have severe consequences in economic applications, such as
increasing risk, unpredictability of prices or distorted investment signals.

To address this issue, Soares et al. present different mitigation heuristics [208], such
as regularizing changes in x; over time, or using the accurate AR model in the forward
pass of SDDP, but predefined unconditional samples in the backward pass in order to
avoid the dependence of cuts on §[,_;;. While they report positive computational results,
the authors provide no theoretical results on reasonable parameter choice, cut validity
and convergence for their heuristics.

14.4 Markov Chain SDDP

Assume that the data process (&;):c[r) is Markovian, i.e., as in (89), & only depends on
&1 forall t =2,...,T instead of the whole history §j_;). Then, instead of expanding
the state space also an alternative approach can be used to apply SDDP.

In this case, the data process can be represented, or at least approximated (if the
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random variables &; are continuous), by a discrete Markov chain. This approximation
can be obtained by lattice quantization techniques [29, 129]. As it contains only finitely
many states per stage t = 2,..., T, this Markov chain can be illustrated as a recombin-
ing scenario tree or scenario lattice [129], just as in the case of stagewise independence
Assumption 2, see Sect. 2. The difference is that in the Markov chain case the probabili-
ties of transitions to stage-t nodes may differ between different stage-(¢ — 1) nodes. This
also includes the possibility that some stage-t nodes may not be reached from certain
stage-(t — 1) nodes.

Due to this difference, the (expected) value functions Qy(-) depend on the states
¢, = 1,...,L, of the Markov chain. In other words, for each such state (i.e., each
node in the recombining tree), a different expected value function and a different set
of value functions exist. In SDDP, then cuts are derived for each of these functions
separately. This idea is called Markov chain SDDP (MC-SDDP) [129] or approzimate
dual dynamic programming (ADDP) [130, 131], whereas for distinction the approach of
expanding the state space is referred to as time series SDDP (TS-SDDP).

For problems with moderate state space dimension, expanding the state may be
computationally favorable as only one expected value function has to be approximated
per stage. On the other hand, a computational advantage of MC-SDDP is that the
computational effort grows linearly with the number of Markov states only [201]. In
contrast, expanding the state leads to a state space dimension increase in which the
complexity of SDDP grows exponentially. Moreover, MC-SDDP requires no linearity
and is not limited to stagewise dependent uncertainty only appearing in the RHS of
(MSLP). As long as the Markov property is satisfied, it allows for stagewise dependent
uncertainty in all data ¢, Ty—1, Wi and h; of (MSLP). B

The main drawback of MC-SDDP lies in the relation to the true problem (P) in case
of a continuous data process (&;):c[r], see also Sect. 11. For SDDP with AR processes
and expanding the state space, many results exist that allow for inference of the SAA
solution with respect to the true problem, see Sect. 11. One key property in this regard
is that &_1 is treated as a possibly continuous state variable in SDDP, such that the
derived cuts are also valid at states which are not reached by the scenarios £* € S that
are considered in SDDP. Similar results are not available for MC-SDDP. In particular,
the obtained policy and lower bounds are not necessarily valid for the true problem
[129].

In spite of this theoretical downside, Lohndorf and Shapiro report tighter lower
bounds and better policies even for the true process based on computational experi-
ments [129]. They conjecture that this is due to a differing exploration of the state
space. Expanding the state space introduces additional state variables, which are not
under control of the optimal policy (their trajectory is not chosen based on solving the
approximate subproblems in the forward pass, but selected randomly in the forward
pass). This may lead to selection of states, which do not provide the highest informa-
tion gain. With MC-SDDP this is partially mitigated by choosing sufficiently different
states in advance when constructing the Markov chain.

14.5 SDDP with Integrated Markov Chain

By Theorem 14.3, a natural extension of SDDP to stagewise dependent uncertainty
using expanding the state space is only possible for linear (or at least convex) AR
processes appearing in the RHS of problem (MSLP). In all other cases, expanding the
state space destroys the convexity of the expected value functions @t(', -). Therefore,
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in such cases, different approaches are required. One such approach is to integrate a
discrete Markov chain into the uncertainty modeling. This approach is quite established
in the literature on and in practical application of SDDP. Importantly, this approach
does not necessarily coincide with the previous case where the process (&;)e(r) itself is
assumed to be Markovian and approximated by a Markov chain. Instead, the process
is not assumed Markovian, but its realizations & are assumed to depend on the state
of an underlying Markov chain.

Modeling. Consider a Markov chain with finitely many possible states (s, ¢ =
1,..., L, with L € N. At each stage t € [T], we denote the current state of the Markov
chain as ; (again, we assume that 1, is deterministic). The transition probabilities
between state 1;_1 = (; at stage t —1 and ¢, = (p at stage t are then denoted by wy for
¢,0 € {1,...,L}. For simplicity, we assume the Markov chain to be time-homogeneous,
such that wyy does not depend on t, even though this is not required.

We now assume that the distribution of random variable &, at stage ¢ € [T] may
depend on the state 1; of the Markov chain. In other words, for each possible state
¢, € =1,..., L, the distribution of & may differ. We emphasize this by writing & .

The value functions @Q(-,-) for (MSLP) then do not only depend on x;_; and the
realization & of &;, but also on the current Markov state ;. As this state can only take
finitely many values, we denote this by Q(z:—1, &), where index £ indicates conditioning
on ¢y = ;. Based on this definition, the expected value functions can be expressed as

L
Qu(wi-1) =Y w0 {Qw (w1, - (100)

=1

The index £ of the expected value function refers to the previous Markov state ;1 = (.
Compared to standard SDDP, the expectation is not only taken over the realizations
of Ef’, but also the state transitions from ¢,_1 to 1; are taken into account. Using this
definition, the DPE for stages t = 2,...,T can be written as

H;in C;l“t + Qt+1,z(9€t)
t

st x € X(€). (10D

Qte(xt—hff) = {

Note that the dependence on ¢, in (100) resembles the expanding-the-state approach
from Sect. 14.1. However, there are important differences. ;1 does not enter the sub-
problems and it can only take a finite number of different values, whereas §|;,_y), even
if discrete, is treated like a continuous state variable when expanding the state. Fur-
thermore, as the transition probabilities wyr may differ for each (, the cut components
are weighted differently and cuts cannot be shared between different Markov states.
Consequently, it is required to store separate expected value functions Qu(-) for each
¢ =1,...,L. In return, the non-convexity of these functions is circumvented, since
each Qu(-) remains convex and is approximated on its own, see also the discussion in
Sect. 14.4.

As an example, consider a problem with L = 2 Markov states and ¢° = 2 realizations
for &/ for each of them, which is borrowed from [160]. The corresponding scenario tree
with underlying Markov chain is illustrated in Figure 13. For the transition probabilities
let wi; = q,wia = 1—q, w9 = 1—pand wye = p. Forall ¢t and £ € {1,2}, the distribution
of & is given by py; = 3 for j € {1,2}.

As an alternative to the scenario tree in Figure 13, the stochastic process with
underlying Markov chain can be represented by a Markovian policy graph with finitely
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Figure 13: Scenario tree with underlying Markov chain (state 1 printed in black, state
2 printed in white). Replication from [160].

many nodes per stage [56]. This approach is also included in the software package
SDDP. j1, see Sect. 10.

SDDP. Let us now address how SDDP works in this case. In the forward pass,
different approaches are used in the literature. The most natural one is for each stage
t and each sample path k € K, to sample first from the Markov states and then condi-
tionally from &/ [161]. Sometimes it is also proposed to use historical values here, e.g.,
true inflow spot-price combinations [79]. In such a case, it is possible that a spot price
is drawn which is not a valid state of the Markov chain. Then, a strategy is to use the
in some sense closest state from the Markov chain [79]. Another one is to use a linear
interpolation between the hyperplanes of neighbouring states [81, 229].

For stages t = 2,...,T, states £ = 1,..., L and samples k € K, based on (101), the
approximate subproblems solved in the forward pass of SDDP have the form

ik ety {H};n (Ct(ﬁf))TItJrQin(It)

gt : (102)
L iS5 s.t. xteXt(xililvgt[)'

Importantly, each function Qu(-),¢ = 1,..., L, is approximated by an individual cut
approximation Qy(-).

In the backward pass of some iteration i, the stages are traversed in backward direc-
tion as usual to improve the cut approximations. At each stage ¢, the subproblems (102)
updated with //'(-) are solved for each trial state zi¥ |, k € K, each stage-t Markov
state ¥y = (p,£ =1,..., L, and all realizations Efﬁj =1,...,¢.

Then, for each 2% | and ¢y = (p, 0 =1,..., L, a valid cut can be derived for Qy(-).
Let fBiy,; denote a subgradlent for Q’ (-,+) at zi¥,. In accordance with (16), but also
taking into account the Markov cham transition probabilities, we can then define cut
coefficients

qte

Bték = Zwll’ Zptz] (QHl It 156t )* (ﬁtiékj)—rxi’il) )

=1

L qte
— i
Qg = E Wee E P Bror | »

=1 j=1

where g and py; denote the number of realizations and probabilities of 39
A cut (17) for Qu(-) is then given by function

Br(we1) = iy + (Big) " w11
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and can be used to update QY,(-). Philpott et al. derive similar formulas for the multi-
cut and risk-averse case [161].

Use Cases. There exist different use cases for modeling the uncertainty in (MSLP)
with an integrated Markov chain.

e The data process (ft)te[T] can be modeled as a nonlinear AR process or a nonlinear
transformation of a linear AR process (see Sect. 9), which, if handled by expanding
the state space, destroys the convexity of @t(~, -). Sometimes such a nonlinear
process can be approximated by assuming that the realizations & depend on an
underlying system state which follows a Markov process [161], thus not capturing
the nonlinearity explicitly in a formula. As the value functions are also not convex
in this, possibly continuous, Markov state, the Markov process is approximated
using a discrete Markov chain.

e Instead of a single AR process, sometimes the data process (&;):cr) may be best
modeled by a finite set of different AR processes, which are valid representations,
and thus active, under different circumstances (e.g., macroeconomic, political or
ecological situations). A discrete Markov chain can then be used to model these
overall system states, and AR models can be used to describe realizations of the
uncertain data conditioned on these states. Such regime-switching models are very
common in wind forecasting [233].

e Hybrid SDP/SDDP. Different parts of the data in (MSLP) exhibit stagewise de-
pendent uncertainty. While some of them, namely uncertainty in the RHS h;, can
be treated by expanding the state space, for others, e.g., stagewise dependent un-
certainty in the objective coefficients ¢;, it would destroy the convexity of @t(-, 2.
Therefore, this part of the uncertainty may be modeled by a discrete Markov chain
instead. Since one part of the uncertainty is treated as in standard SDDP (allows
for cut-sharing between scenarios), while another one is treated by enumerating

separate expected value functions for each £ = 1,..., L (cuts cannot be shared
between Markov states), this is often referred to as a hybrid SDP/SDDP method
[79].

For instance, this setting often occurs in medium-term hydrothermal scheduling
problems (see Sect. 9) when inflow uncertainty in the RHS as well as spot-price
uncertainty in the objective function are taken into account. The idea to address
this by using a Markov chain goes back to Gjelsvik et al. who modeled this kind of
scheduling problem for the Norwegian power system [79, 81, 82]. Since then, this
approach has been employed in several applications, for example, hydrothermal
scheduling including balancing market bids [100, 101], risk management [108, 116,
142] and fuel contracts [37]. It is also applied to model fuel price uncertainty [151].

In contrast to the presented general approach, in this case it is usually assumed
that the uncertainty in the RHS and in the objective are independent of each
other. Therefore, for each state (4, £ = 1,..., L, the distribution of &; is the same,
and marginal distributions can be used in the expectation in (100). Moreover,
note that in this specific case the Markov chain states are not underlying the
distribution of &;, but instead entering the subproblems explicitly, e.g., as objective
coefficients. Still SDDP can be applied using the same ideas as above.

The described approach allows for the incorporation of even nonlinear stagewise de-
pendent uncertainty into SDDP, but also gives rise to some challenges. Among those is
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the assumption of the Markov property, which may not always be appropriate. More-
over, it is required to define useful values (;,¢ = 1,..., L, and transition probabilities
wye for the Markov states [81, 143]. Most importantly, cuts cannot be shared between,
but only within Markov states, so that separate expected value functions have to be
considered for each ¢ = 1,..., L. Therefore, the number of Markov states should be
rather small to preserve computational tractability.

14.6 Hybrid NBD/SDDP

In the previous section, we presented a hybrid SDP/SDDP method as a tool to model
different stagewise dependent uncertain data in (MSLP) by different approaches. In-
stead of modeling the “complicating” part of the uncertainty by a discrete Markov
chain, also a scenario tree can be used. Instead of a hybrid SDP/SDDP method, this
yields a hybrid NBD/SDDP method [179], see also Sect. 5.2.

Assume that the random vector & modeling the uncertainty in c;, Wy, T;—1 and hy
can be separated into two separate and independent parts, & and &7. The first vector
&7 can either be stagewise independent or exhibit some linear dependency if it occurs
in the RHS. In the latter case, it can be handled by expanding the state space. Within
SDDP, in each iteration samples of & are considered. The second vector &/, on the
other hand, may lead to non-convexities in the value functions if it is approached by
expanding the state space. Therefore, it is modeled by a scenario tree, which is treated
exactly in SDDP. This means that for this particular part of the uncertainty, no samples
are drawn, but all scenarios are considered in each iteration of SDDP, as in NBD, see
Sect. 5.2. This approach is similar to hybrid SDP/SDDP in the sense that the expected
value functions Q;(-) depend on the scenarios from £ and that cuts can only be shared
within, but not between such scenarios.

By only treating the crucial part €7 of £ as a scenario tree and the remainder £°
still by sampling, complex uncertainty processes can be considered, while at the same
time the increase of computational complexity is kept as small as possible [179]. To
take advantage of this, the scenario tree associated with €% should not be too large.

Compared to hybrid SDP/SDDP, in specific applications the one or the other ap-
proach may be favorable. For instance, the Markov chain approaches allow for de-
pendencies between different uncertainty processes. Moreover, in the case that each
realization of &; is assigned to one specific Markov state (p,¢ = 1,..., L, the number
of LPs to be solved per iteration can be kept equal to standard SDDP. The scenario
tree approach, by contrast, requires independence of £° and £7. By design, it considers
all combinations of scenarios of €7 and £°, so no assignment of realizations of &€° to
scenarios of &7 is required. However, the number of LPs to be solved grow exponentially
in the number of stages [179]. On the other hand, a scenario tree may be more appro-
priate to model very complex processes, e.g., referring to macroeconomical, political or
structural decisions [179], for which the Markov property is not appropriate.

14.7 Saddle Cuts

We consider the special case of stagewise dependent objective coefficients ¢:(&) in
(MSLP), as they appear for uncertain prices models by AR processes. So far, we
introduced SDDP with integrated Markov chain as a suitable solution approach in this
case. Now, we discuss as second one.

As discussed in Sect. 14.1, by expanding the state space, stagewise independence
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(Assumption 2) can be recovered, but in return the expected value functions Oy(-, -) are
no longer convex. In Theorem 14.3 it is shown that @t(-, -) is in fact convex in x;_1, but
concave in ¢;_1, which yields a saddle shape. Therefore, linear cuts are not sufficient to
approximate them. As a resort, exploiting the saddle shape, special saddle cuts can be
used.

To derive this formally, in the vein of [55], we assume the objective coefficients
to be described by (yt(ft))TC’t instead of ¢:(&). While the matrix C; is considered
deterministic, y;(&) is defined by the following AR process

Ye(&) = Bi(&)ye—1(&—1) + be(&e) (103)

for all stages t = 2,...,T. Here, the matrix B; and the vector b; are uncertain and
depend on the realization of &. Thus, the sequence (yt(§t))tT:1 is scenario-dependent.
Inserting relation (103) into the objective function and considering y;—1 as an addi-

tional state variable, for t = 2,...,T, we obtain the subproblems

-~

Qt(xt—la Yt—1, St)

- HEH (Bt(ft)yt—1 + bt(gt)fctxt + é”'l (xt’ Bu(&)yi-1 + bi(&))
s.t. x¢ € Xt(xt—hét)

where
@t+1(331>yt) = Egtﬂ [@tﬂ(l‘uyt,&tﬂ))}

and @TH(JUT, yr) = 0. For the first stage, we obtain

. min b;Cix1 + @2(581, Y1)
v = g
s.t. 1 € Ay

The additional state y;—1 is referred to as an objective state. This state is not allowed to
appear in the constraints [55]. As stated before, Q.(,-) is piecewise linear and convex
in xy_1, but piecewise linear concave in 3,1 and as such, a piecewise bilinear saddle
function.

The concept of approximating saddle functions with saddle cuts goes back to Baucke
et al., who propose a deterministic algorithm to solve stochastic minimax dynamic
programs [11]. A related approach is used in robust dual dynamic programming (RDDP),
which uses an SDDP-like framework to solve multistage robust programs [76]. The main
idea is to compute lower and upper bounding saddle functions, which combine the ideas
of an outer approximation by cutting-planes and an inner approximation by convex
combinations of function values, the latter of which we discuss thoroughly in Sect. 8.
For stagewise dependent objective coefficients, it is sufficient to only use the lower
bounding saddle functions, so-called saddle cuts, from [11] to approximate the expected
value functions in SDDP.

Let (16) define 3, and a as in standard SDDP. Then, the r-th saddle cut for Q41 (-, -)
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is defined as the solution to the optimization problem

: T
min  y, e+ 0
sty Opp1

s.t. (W9) e+ O > g + (Bry) T (104)
telloo < v

where 37 = yi* denotes the current objective state in iteration i and for scenario k € K.
Importantly, this problem has x; and ¥, as parameters. Hence, a saddle cut gives a valid
lower approximation for Qtﬂ(', -) for all z; and y; and can be shared between scenarios.
Moreover, the saddle cuts are tight at the trial state given by zi* and yi*, at which they
are created.

A crucial part of applying this approach is to bound the decision variable y; in (104)
by an appropriate constant v. To this end, the expected value functions @t(~, -) are
required to be Lipschitz continuous with respect to y:—1. As shown in [11], to ensure
validity of the saddle cuts, the parameter v has to be chosen at least as large as the
Lipschitz constant of O,(-,-) with respect to 1_; under the dual norm ||-||; of |||jc. If
it is chosen smaller, this may result in invalid cuts and suboptimal solutions. If it is
chosen too large, the cuts may become very weak [55].

Incorporating the saddle cuts, for each stage t = 2,...,T, iteration ¢ and scenario
k € K, the SDDP subproblems can be formulated as

Al i
Qt(xtlil» ytlila i)
min  (y") " Coae + (") + 0141

Tyt ,041 _
={st vy € Xy(w)f 1, &)
(y0) Tpae + i1 — (Bry) "o >y, 7 €Ty
[pelloo < v,

where y* = Bi(&f)yi* + bi(&F).
It can be shown that only finitely many different saddle cuts can be constructed.
As a consequence, the convergence results are the same as for standard SDDP [55].

14.8 Applying Dual SDDP

A third alternative that is tailored to stagewise dependent objective coefficients ¢;(&:) in
(MSLP) is to apply dual SDDP [97], as presented in Sect. 8. Recall the value functions
derived from the dual problem of (MSLP):

qt
. -
max Zptj ( = hymej + Dt+1(7th))
j=1

Dy(m_y) = (105)

qt
T T
s.t. Zptj (7—;5717]‘7715]') + W, ym1 < ¢
j=1

These value functions are concave in m;_1. Crucially, here the objective coefficients
cs—1 appear in the RHS. If (¢;);c[r) is described as a linear AR process, we can expand
the state space as for the primal subproblems in Sect. 14.1, and the new state variable
Clt—z) appears in the RHS. Therefore, the obtained value functions are also concave in
c[i—2) and can be approximated from above by linear cuts. This can be done by applying
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dual SDDP [97], see Sect. 8.

14.9 Conditional Cuts

The previously discussed approaches all have in common that they require to expand
the state space or to set up a scenario tree or a discrete Markov chain from the true
(continuous) data process (or from existing historical data). van Ackooij and Warin
propose an alternative approach that works without these requirements [227]. The
approach is based on established methods in mathematical finance and optimal stopping
theory. A crucial assumption is that the data process (§):cjr) is Markovian.

Assume that a finite set S of scenarios £°, s € S, is given, e.g., historical observations
of the data. This set is chosen in advance and not changed within SDDP. The first key
ingredient of the proposed variant of SDDP is to partition the set of possible values of
&, for each stage t € [T] into a finite number |L;| of hypercubes Dy, £ = 1,...,|L;], also
called meshes. This partitioning is done in such a way that approximately a uniform
distribution of the samples is achieved [227].

As we explain below, the main idea now is to compute cuts conditioned on specific
meshes, i.e., for each mesh a different set of cuts is considered.

In the forward pass of SDDP, a subset L; C S; of scenarios are sampled for each
stage. This is done with the aim to obtain a trial solution x¢ for each mesh in expectation
for all t = 2,...,T. Each of these trial solutions is then used in the backward pass to
derive cuts.

In the backward pass, for any sequence (}*)ieqr of trial solutions, let (d(t)), €[]

denote the sequence of corresponding meshes, i.e., 2 has been determined in the for-
ward pass for & € Dy gqpyie. At each stage t =T, ..., 2, the SDDP subproblems are now
solved for all scenarios & for which & 4 € D, 44_1yie. This means that for each trial
solution, all scenarios are considered which share the same mesh with the scenario used
to obtain the trial solution.

After solving these subproblems, the obtained solutions are used to construct cuts.
In contrast to standard SDDP, however, the cut coefficients are determined as estimates
of the corresponding conditional expectations [227]:

o) =B [(mi™) Thi(&) + Y pirar]
re€lia

and
Bie(&-1) = —EF, | {(ﬂ'ﬁ“)TTt_l}_

These estimates are computed by linearly regressing the terms for each considered sce-
nario & on a finite number of local base functions, e.g., monomials in RP*, with support
on the considered mesh. Importantly, they are zero outside of this mesh. The idea is
that this way a cut of form

Quwi-1,6-1) > dg(i-1,&-1) = (5&(&—1))T$t—1 + aje(&1), (106)

can be constructed, which provides a local update of the cut approximation in the
current mesh D;_; 4;—1) and is zero otherwise. Hence, the cut is associated with this
specific mesh and stored in a corresponding index set. In following iterations of SDDP,
for each subproblem then only the set of cuts is taken into account which is associated
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with the currently explored mesh [227]. Therefore, these cuts are called conditional
cuts.

The main drawback of this approach is that the described cuts are not guaranteed
to be valid underestimators, so the inequality in (106) is not guaranteed to be satisfied,
because their formula relies on estimators that may deviate from the true conditional
expectations.

Still, for problems with a low-dimensional vector & and Markovian dependency,
the policies obtained using conditional cuts are reported to be competitive with those
obtained by expanding the state space, but without an increase of the state dimension
and without the need to set up a scenario tree [227].

15 Extension to Convex Programs [relaxing Assump-
tion 6]

A natural extension of SDDP can be achieved by relaxing the assumption of linearity,
i.e., Assumption 6, but assuming a multistage stochastic convex problem (MSCP). In
the same vein as problem (3), this problem can be formulated in the general form

min E Z ft(ﬂi‘t(f[t])aft)

L1,22,--, LT
te[T)

v = { st g1(z1) <0 (107)
ge(®e-1(§-1))s (&), &) <0 Ve VE=2,...,T

Ty € Xt Vit € [T]

x:(-) F-measurable Vi € [T,

with f;(-) and g;(-, ) some .%;-measurable functions with respect to .
We take the following assumptions [78, 85].

Assumption 10. For fized §; € Ey, let fi(-, &) and gi(-, -, &) (componentwise) be proper,
convez, lower semicontinuous and differentiable functions and X; nonempty convex com-
pact sets for all t € [T).

Under stagewise independence (Assumption 2), finite randomness (Assumption 5)
and Assumption 10, (MSCP) in (107) can be expressed using its DPE in the following
form. For t = 2,...,T they read

n}ﬁitn fe(@e, &) + Qrrr,0(ze)

Qt,c(l’t—hft) =08t gi(wio1,m, &) <0 (108)
Ty € Xt,

with expected value functions defined as usual by

Qt+1,c($t) = E£t+1 [Qt+1,6($tvft+1)] (109)

and Qri1,c(zr) = 0. For the first stage, this yields

H;i1n fi(z1) + Qoc(z1)
vE =< st gi(z1) =0 (110)
xr1 € Xl.
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Applying SDDP to (MSCP) with convergence guarantees requires a more strict
recourse assumption compared to Assumption 9.

Assumption 11. (Extended relatively complete recourse [78]) Let aff(X;) be the affine
hull of the reachable set X, and By(6;) = {y € aff(X;) : |y|| < &} for some § > 0 and
some norm ||-|.

Foralltet=2,...,T, all zy—1 € Xy_1+ B(0) and all &;j,j = 1,...,q, the feasible
set of subproblems (108) is non-empty.

Intuitively, Assumption 11 demands that feasibility of the subproblems is also en-
sured for z;_; slightly outside of X;. This is required in order to guarantee Lipschitz
continuity of all value functions Q;c(-,-) and expected value functions Q;c(-) [78].
Additionally, all value functions are convex, and thus can be approximated by linear
cuts. Such cuts can be generated using Lagrangian duality. More precisely, for all
t=2,...,T, z; 1 € X;_1 and some multipliers m; € R™ (with m, the dimension of
g:(+,-)), we introduce the Lagrangian function

Lic(mizi-1,26,&) = (@, &) + 7 (e, 24, &), (111)

the corresponding dual function

Lico(myai—1,&) = min Ly(mg; 21, 2, &) (112)

T €Xy

and the corresponding Lagrangian dual problem

maXﬁt(ﬂ't;IFhQ) (113)
7 >0

Further, we make the following assumption which ensures no duality gap between
the primal subproblems (108) and their dual problems (113) [85]. Here, ri(S) denotes
the relative interior of some set S.

Assumption 12. (Slater condition [85]) For all x—1 € X1 and all &;,5 = 1,..., ¢,
there exists xy € ri(Xy) such that gi(xi—1, %, &) < 0.

Then, exploiting differentiability, a subgradient of Q, (-) at Z;_; is given by

qt

Br = 0Q4(T1-1) = Zptjvzt_lLt,C(ﬁ'tj; Ty_1, Ttj, &),

=1

where Z;; is an optimal solution to the primal problem (108) and 7; is an optimal
solution to the dual problem (113) given &;. Moreover, V,h(-) denotes the gradient of
some function h(-) with respect to z. Using this subgradient, a cut for Q;(+) is given by
[85]

Qi(-1) > Qu(T1) + B (w1 — Ty_1).

Under Assumption 11, the norm of the obtained subgradients can be shown to be
bounded [85].

This cut derivation can be generalized to DPE including 9;(-) instead of Q;(-). The
results can also be generalized to cost functions fi(x:—1,+,&) depending on the state
x—1, see [85] for details.
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Contrary to the linear case, however, the expected value functions Q;¢(-) are no
longer polyhedral. As a consequence, they cannot be represented exactly by a finite
number of cuts. However, it can be shown that given the above assumptions and As-
sumptions 1 to 8 almost sure asymptotic convergence of SDDP is ensured. In [78] this
is proven for the case that z;_; only enters the subproblems (108) in linear constraints,
that is, g+(-) being a linear function. In [85] the convergence proof is extended to the
more general setting presented above. For both convergence proofs also the differen-
tiability requirement can be dropped. As shown in [71], almost sure finite convergence
can be achieved for e-optimal policies, for some predefined ¢ > 0.

n [92], Guigues and Monteiro propose a slightly different algorithmic approach,
called StoDCuP (Stochastic Dynamic Cutting Plane), in which not only Q:(-),t =
2,...,T, but also some or all nonlinear functions f(-) and g¢:(-) are iteratively approxi-
mated by affine functions at the trial points visited in the forward pass.

Another variant of SDDP is DASC (decomposition algorithm for multistage stochas-
tic programs with strongly convex cost functions), which is introduced in [86]. It can be
applied when the (expected) value functions in (MSCP) are strongly convex. For this
type of problems, it is proposed to approximate them using functions £;(-) which are
defined as the pointwise maximum of quadratic cuts instead of affine cuts. In contrast
to standard SDDP, this means that the subproblems to be solved in SDDP become non-
linear, but in return good approximations of the expected value functions are obtained
much quicker, and thus less iterations are expected [86]

While most research on SDDP deals with problems (MSLP), some of the extensions
presented previously and in the following sections have also been enhanced to the con-
vex case, e.g., risk-aversion [85], inexact cuts [88], regularization [90] or exact upper
bounding procedures [10, 119]. [85] contains an extension of the convergence proof from
[78] to the risk-averse case. Furthermore, the idea to use inexact cuts is generalized to
convex non-differentiable problems [91], see Sect. 21.

16 Extensions to Mixed-integer and Non-convex Prob-
lems [relaxing Assumption 6]

In many practical applications, multistage stochastic problems do involve integer de-
cision variables or nonlinear, but non-convex terms in the objective function or con-
straints, see Sect. 9. In general, such programs can be formulated in the same way as in
the convex case, but with the functions f;(-) and g:(-) possibly being non-convex. More-
over, in this case, X; is the intersection of a convex compact set, e.g., representing box
constraints, with possible integer constraints, i.e., X; C R} x ZTQ with ny = ng + nyo.
We denote the optimal value by vy

Under stagewise independence (Assumption 2), the DPE can be written as (108)-
(110), but for distinction we denote the value functions by Q¢ nc(xi—1,&) and the
expected value functions by Q; no(zi—1) for all t = 2,...,T. Both, integer variables
and non-convex functions make this a non-convex multistage stochastic programming
problem (MSNCP). Importantly, Q; nc(-,-) and Q¢ nc(-) are no longer ensured to be
convex, but become non-convex functions in x;_;. They are also not guaranteed to be
(Lipschitz) continuous. This poses significant challenges on approximation algorithms
such as SDDP, as linear cuts are not sufficient to approximate Q; nc(+).

To approach (MSNCP) by SDDP, different strategies can be used. As nonlinear or
mixed-integer stochastic programming are large research areas on their own, we give a
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brief overview here and for methodological details refer to the cited literature.

16.1 Convexification

A standard approach in practice is to solve a static convex relaxation (Pyc) of (MSNCP),
which is associated with convex expected value functions @t() for all ¢ € [T]. Such re-
laxation can be achieved by relaxing the integrality constraints and replacing non-convex
functions with convex relaxations, such as McCormick envelopes [140]. In this case, the
Benders cuts determined by SDDP can be very loose, though. Therefore, only some
rough under-approximation Uy of the optimal value vy, may be determined. How-
ever, sometimes this is considered sufficient to obtain reasonable policies for practical
implementation. Also note that even if convex relaxations are considered when running
SDDP to compute a policy, the simulation of this policy afterwards can be executed
including integrality constraints and non-convex functions.

A second strategy is to keep the subproblems in SDDP non-convex, but to convexify
the expected value functions Q; yc(-) in some sense. Often, in this case, the nonlin-
earities in (MSNCP) are first relaxed by piecewise linear approximations, such that all
subproblems are MILPs [36, 219]. In the backward pass, given some incumbent z ,
forallt =T,...,2 and all &;,5 = 1,...,q, instead of solving an LP relaxation of the
subproblems (10) (or its LP dual), a Lagrangian relaxation is solved where the coupling
constraints g;(z;—1, ¢, &;) < 0 are relaxed. For any trial point #i* | and any multiplier
m € R™ this relaxation can be written as

L (my ik |, &) = H;Itn Fi(@e, &) + Qe () + ) o2}, 20, &)
st. x; € A

In the Lagrangian dual, this dual function is maximized over all multipliers m:

ot &) = max L (msa L &), (114)

It is known from the theory on Lagrangian relaxation that the optimal value vsz (zk |, &)
coincides with the lower convex envelope of Q:J;\}c(’ &;) at ok [75]. Therefore, cuts
obtained based on (114) are associated with a convexification of the value function. In
order to derive utilizable cut formulas from (114) some specific conditions have to be
satisfied by the constraints. Suppose the constraints g;(z;_1, 24, &) < 0 can be rewritten
as

Ge(we—1) — Ge(xe, &) <0, Ge(ze, &) <0,

i.e., the nonlinear function being separable with respect to z; 1, and let ﬂikj denote
optimal multipliers in (114). Then, in line with Sect. 3.3, Lagrangian cuts can be
derived as [213]

Qi ne(xi—1) > afy, + (i) " Ge(e-1),
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with

qt
| o o
ol =Y p (Lt ) — (79 TRt ),
=1

qt
i ikj
By, = E :ptﬂrt .
j=1

For linear functions g;(-) and g(-,-), a similar result is derived in [36].

The obtained Lagrangian cuts provably dominate standard Benders cuts, which
can be obtained by solving LP relaxations [213]. However, convergence of SDDP is
not guaranteed, since there may still be some duality gap between vﬁlD(scik_ 1,&;) and
Qg]\}c(xﬁhftj)-

Moreover, generating Lagrangian cuts can be computationally costly. Various meth-
ods have been proposed to solve the Lagrangian dual (114), such as cutting-plane meth-
ods [111], subgradient methods [69, 167] or bundle methods [122], but all of them may
take considerable time compared to solving an LP relaxation. Advantageously, even
suboptimal Lagrangian multipliers m; yield valid cuts for Q; o (-).

Instead of a static convexification approach [36], Steeger and Rebennack [211, 213],
also apply the above principle in a dynamic fashion by considering DPE for the La-
grangian relaxations in the backward pass.

16.2 Exact Methods

Recently, there has been more research on directly applying the SDDP idea to problems
(MSNCP) to avoid the requirement of convexification and to close the optimality gap.

Step Functions. Given that the value functions Q; nc(-) are monotonically in-
creasing or decreasing, they can be approximated by special step functions instead of
affine functions. This idea is incorporated into the SDDP framework in the so-called
mized-integer dynamic approzimation scheme (MIDAS) [163]. To determine the step
functions, mixed-integer linear subproblems have to be solved exactly at each stage and
in each iteration. In contrast to the previous approaches, convergence of MIDAS to an
approximately optimal policy for (MSNCP) is guaranteed.

SDDiP. For the mixed-integer linear case, the stochastic dual dynamic integer pro-
gramming (SDDiP) approach by Zou, Ahmed and Sun [234] allows for the computation
of optimal policies for (MSNCP) as long as all state variables x; are binary (or bounded
integer).

Consider the subproblems (10), but with binary state variables x; € {0,1}™. Sim-
ilarly to the approaches in [36, 213, 219], Lagrangian dual problems are solved in the
backward pass to derive valid cuts. However, in SDDiP a new class of Lagrangian cuts
is proposed. The crucial idea is to introduce local copies z; of the state variables z; 1
and to relax the corresponding copy constraints in the Lagrangian relaxation:

Ly (ms ), &) = min (ct(&)) e+ Qupalae) + 7/ (2 — 2)

s.t. x € Xz, &)
2z € [0, 1]4em,
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In the Lagrangian dual, this dual function is maximized over all multipliers 7;:
Oy 1 (@ 1, g) = max L7 (m; 2, &),
Then, Lagrangian cuts can be determined as

Qune(zi-1) > aly + (Bh) T w1, (115)

with

qt
i ikj ik ikiNT ik
ap = Y p (L1 &) — (m) Tk ),
j=1

qt
i ikj
5tk—§ DTy ”.
Jj=1

These cuts can be proven to be valid and, in particular, tight, as defined in Lemma 3.3.
The key aspect behind this tightness property is that for z;—; € {0,1}™ the value
functions Q; nc(+) coincide with their lower convex envelopes at all z;_q. Therefore,
Lagrangian cuts recovering the latter are also tight for the former.

Moreover, if only dual basic solutions are considered, the cuts (115) are also finite
in the sense of Lemma 3.3. Therefore, almost sure finite convergence of SDDiP to an
optimal policy of (MSNCP) is guaranteed [234].

If the state variables x; are bounded and general integer or even continuous, they
can be componentwise approximated by a (weighted) sum of binary variables in order
to apply SDDiP [234]:

Kij
Ty R Z 2" B Ak
k=1
with discretization precision S (for integer x;, §; = 1), binary variables A\y;, k =
1,..., Ky, and Ky; € Nforall j =1,...,n,. Under some recourse assumptions, it can

be proven that for a sufficiently fine binary expansion, an approximately optimal policy
for (MSNCP) is computed. However, it may be challenging to choose an appropriate
precision in advance in practice.

SDDIP is applied in the case studies [103], [175] and [234]. In the latter, additional
non-convex functions occur in (MSNCP), which are linearized using a Big-M reformu-
lation.

Non-convex Lipschitz cuts. As long as the value functions are assured to be
Lipschitz continuous (e.g. because the complete continuous recourse [234] property is
satisfied), the requirement of binary state variables can be dropped. This is exploited
in the stochastic Lipschitz dynamic programming (SLDP) method proposed by Ahmed
et al. in [1], which enhances SDDiP to general MILPs. In contrast to the Lagrangian
cuts (115), here, two types of non-convex, but Lipschitz continuous cuts are derived
to approximate Q; no(+): Reverse-norm cuts, which are constructed by using Lipschitz
constants, and augmented Lagrangian cuts, which are based on (115), but contain an
additional penalization term —pul|z;—1 — z{_;||, where p denotes some user-controlled
parameter and ||-|| some arbitrary norm.

This idea is further refined by Zhang and Sun in [231] who propose a new framework
to solve multistage non-convex stochastic MINLPs as part of their complexity analysis
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of SDDP-like algorithms, see Sect. 4. The first key ingredient of their framework is to
consider Lipschitz regularizations of the value functions, see Sect. 17.2. This ensures
that the considered value functions are Lipschitz continuous without the requirement
of restricting recourse assumptions for (MSNCP). The second idea is to construct non-
linear generalized conjugacy cuts by solving conjugate dual problems, similar to the
approach in SLDP. Whereas of theoretical interest, this method has not been applied
in computational experiments yet. In particular, it is not clear how to solve the conju-
gate dual problems efficiently in general. Moreover, the framework requires the costly
solution of MINLP subproblems in each iteration.

Based on concepts from SDDiP and [231], Fiillner and Rebennack present a new
framework to solve multistage (stochastic) non-convex MINLPs [73]. Here, the original
MINLP is outer approximated by MILPs using piecewise linear relaxations, which are
iteratively improved in an outer loop. In an inner loop, those MILPs are solved by an
SDDP- and NBD-like decomposition scheme, which combines the Lipschitz regulariza-
tion approach from [231] with binary approximation to generate non-convex cuts. In
contrast to SDDiP, the binary approximation is applied only temporarily to derive linear
cuts in the lifted binary space, which are then projected back to the original state space.
The pointwise maximum of this projection yields a Lipschitz continuous non-convex cut
for the value functions. The projection is computationally important, as it allows to
construct cuts which are guaranteed to be valid also for the outer loop MINLPs. The
binary approximation is dynamically refined within the algorithm, instead of a static
choice in advance. Another key difference compared to the approach from [231] is that
it is not required to solve MINLPs in each iteration to derive cuts. The cut projection
closure for a non-convex and discontinuous value function is illustrated in Figure 14.

Similar to SLDP [1], however, it is required to introduce a potentially large number of
auxiliary variables and constraints to express the non-convex approximations by mixed-
integer linear constraints. While the framework in [73] is presented for deterministic
problems, the inner loop decomposition method can be enhanced to the stochastic case.
Therefore, by appropriate modifications of the refinement and stopping criteria, also
the larger framework may be enhanced to stochastic problems.

2 *
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Figure 14: Non-convex and discontinuous value function with tight non-convex cut.
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17 Infeasible Subproblems [relaxing Assumption 9]

Under relatively complete recourse (see Assumption 9), it is guaranteed that any sub-
problem occurring in the DPE (4)-(6) and their approximations (10) has a feasible
solution. As we also assume boundedness, for each of these subproblems there exists
some optimal point with finite optimal value. Moreover, all value functions are finite-
valued.

In some practical applications, Assumption 9 may not be satisfied. For instance,
variable bounds may prevent equality constraints from being satisfied for all x;_; and
all realizations of &, as is illustrated by a toy example in [84]. In such a case, the
primal subproblems become infeasible and the corresponding dual problems become
unbounded. Different measures can be taken to cope with infeasibilities.

17.1 Feasibility Cuts

One approach is to approximate the effective domains dom(Q;) of Q:(-) by cutting away
states zi¥ | € X; leading to infeasible subproblems on stage t. This can be achieved by
generatlng so called feasibility cuts in addition to the optimality cuts derived in Sect. 3.
These cuts have the form (8/) Tz, < of, with cut gradient 3/, cut intercept o and
the superscript f signifying the cut as a feasibility cut. They can be derived as follows
[84].

Consider some stage-t subproblem

. T i
min (ce(&6)) @e + Qpya ()
i (,.ik k .
Qzii1,&) = stz € Xt(xik_l,gf) (116)
(ﬂtﬂ) Ty < atfllv Te Ft+1
in the forward pass of SDDP. This problem may already contain some feasibility cuts,

which are indexed by r € F{ 4+1- To assess feasiblity of problem (116) and construct a
feasibility cut if required, we consider the auxiliary feasibility problem

of (af,, €F) =
min ety ety +elz
xtayjsy;vzt . i s ik
st Wi(&)me + Ty — Tyy = h(&) — Ta ()7, (00)
(@fll)—rwt + 1z < a{-:p e th+1 (wt)
Tt Z 0
+ J—
Yr Y 2t > 0.

Here, slack variables y;,y; and z; are introduced to (116) to ensure feasibility. The
symbol I denotes the identity matrix and e denotes a vector of ones. If we have
of (2 |, €F) = 0, the subproblem (116) is feasible, otherwise, it is infeasible.

By strong duality of linear programs, v,f (x|, €F) can be expressed as

of (1, €8) = (hel€f) = T ()2 ) "o+ Y (affy)Tw) (117)

eRt-H

with optimal dual vectors oi* and wik", r € R{ +1- Then, in case of infeasibility it follows
that the term in (117) is larger than 0.
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To avoid the observed infeasibility on stage ¢ in future iterations, the stage-(t — 1)
trial point %* ; should removed from the feasible set on stage t — 1. This can be achieved
by adding the feasibility cut

—(0) T (D) mimr + (o) The(€F) + D (W) e[, <0 (118)

reR[,

to stage ¢ — 1. By defining

at L= (J Tht ft Z (wzkr Ta{ll

’!‘ER{+1

and

By = —(0) T (&),

the cut (118) can be expressed in the previously stated form.

An important question when using feasibility cuts in SDDP is how to proceed, once
an infeasible subproblem has been detected and a new feasibility cut (118) has been
generated. For example, it is possible to stop the forward pass and traverse the stages
in backward direction until the root node of the scenario tree is reached. Alternatively,
the current subproblem can be resolved to obtain a new trial point zi* ; and the forward
pass can be continued. For SDDP, no assessment and comparison of these strategies
has been conducted so far.

Another drawback is that feasibility cuts do not necessarily prevent infeasibilities
when the obtained policy is simulated outside of SDDP [84]. For this reason, most
commonly, the construction of feasibility cuts is circumvented in SDDP.

17.2 Penalization

Another common approach is to artificially enforce relatively complete recourse for a
problem at hand, even if it is not satisfied initially. This can be achieved by using soft-
constraints, that is, introducing slack variables to relax certain constraints and then
penalizing their violation in the objective function. In some applications, this may even
be practically justifiable, e.g., in load balance equations in power optimization slack
variables can be used to model load shedding or curtailment. However, a reasonable
choice of the penalty parameters is not trivial and may distort the expected value
functions [84].

Lipschitz Regularization. A specific penalization approach is to consider Lips-
chitz reqularizations, also called Pasch-Hausdorff envelopes of the value functions. More
precisely, let ||-]| denote some norm, o; > 0 some constant and z; a local stage-t copy
of z;_1. Then, by allowing z; to deviate from the incumbent zi*; and penalizing such
deviations in the objective, for all t = 2,..., T and the approximate value functions (10)
we obtain the approximate Lipschitz-regularized value functions

QE (ait 1, &5 I11) += min { Q1 (21, &) + ol — i | }.

2zt >0

These functions are proven to be Lipschitz continuous on R%(m) with Lipschitz con-
stant oy. Moreover, for sufficiently large o; for all ¢ € [T], it can be shown that by
considering the regularized problems still the original (MSLP) is solved to optimality
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[68, 231]. However, choosing o; in a sufficient way is an open challenge in practice. If
oy is chosen too small, it may even happen that the Lipschitz-regularized value function
will be constant —oo, given that the subproblem associated with Qi“(-,ft) for some
fixed &; is unbounded for any z;.

18 No Block-diagonal Structure [relaxing Assumption 7]

A key element of dynamic programming methods is that in the multistage decision
process only subsequent stages are linked in the constraints, as it allows one to express
(MSLP) using the DPE (4)-(6). In the single-problem formulation (3) of (MSLP), this
coincides with a block-diagonal structure, see Assumption 7.

In some cases, it may be relevant to include constraints spanning multiple stages
instead. One example is the incorporation of emission quotas that are not allowed to
be exceeded for a given time horizon in energy optimization problems [14, 178, 180].

In order to apply SDDP, the considered (MSLP) has to be reformulated to a problem
satisfying Assumption 7. This can be achieved by aggregating stages [54], even though
this changes the structure, solution and interpretability of (MSLP). An alternative
approach is augmenting the state space. For emission quotas, for instance, instead of
summing emissions over several stages and comparing them with the upper bound, at a
given stage the remaining emission allowances can be considered as an additional state
variable [178], see Sect. 9.

19 Infinite Horizon [relaxing Assumption 1]

So far, we considered problems (MSLP) with a finite time horizon 7' < co (Assump-
tion 1). In some practical applications, however, repeated decisions have to be modeled
without a clear bound on the horizon. Considering such infinite-horizon problems is for
instance common for Markov decision processes [19]. In such a case, to ensure that v*
is finite, a geometric discount factor § < 1 is introduced for the cost at each stage.

Since SDDP performs a forward and a backward pass through all stages in each
iteration, it is not directly applicable to such problems, as no iteration would ever be
completed. Therefore, often different solution methods are utilized in such a setting,
see for example [9]. Still, recently there has been some focus on enhancing the SDDP
idea to problems with infinite time horizon.

One approach, called Benders squared or B2, is based on limiting each iteration of
SDDP to a finite horizon of 7 stages, but to dynamically increase T per iteration, e.g.,
by 1, until convergence is reached [145]. By presuming that the uncertainty occurs in
the RHS and is not only stagewise independent, but also i.i.d. for all stages t € [T,
almost sure convergence to an approximately optimal policy is assured. The reason is
that under this special assumption, Q:(-) are the same for all stages, so cuts computed
at stage ¢t cannot only be incorporated at stage t — 1, but at all stages [145].

A different option to adopt SDDP to infinite horizon problems exists if such problems
possess some kind of periodical behavior. This idea is put forward by Shapiro and Ding
[203]. Assume that for some period m € N, the distributions of & as well as the data
¢y, Wy, hy and T;_1 are the same for t = 7 and t = 7 +m for all 7 = 2,... Then, under
Assumption 9, the functions Q;(-) and Q;1.,(+) are equivalent as well. This means that
it is sufficient to derive cuts for Qi () at stages t = 2,...,m + 1 in order to obtain
valid cuts for all stages.
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In the forward pass of SDDP, it is proposed to only consider a finite number of T’
stages starting from stage 1, with T' > m + 1 in order to determine at least one trial
point for each of the differing expected value functions. In the case of T > m + 1,
multiple candidate trial points exist, at which cuts can be constructed in the backward
pass. Before starting the backward pass, the used trial points can be chosen from such
a candidate set randomly or by some heuristic.

For both approaches, B? and periodic SDDP, for discount factors § close to 1, the
influence of late stages on v* may be substantial, and thus policy evaluation and upper
bound determination may become very challenging and computationally costly. Still,
Shapiro and Ding [203] propose some proxies based on some finite, but sufficiently large
T. However, they do not provide a convergence proof.

A big advantage of SDDP for periodical problems is that it can also be applied to
increase the performance for problems with a finite, but very large number of stages,
given that they satisfy some notion of periodicity. The authors present an example where
for a 60-month horizon, exploiting the periodical structure of the problem, instead of a
60-stage problem only a 13-stage problem has to be solved [203]. This can make even
large problems amenable to SDDP and computationally tractable. It is also considered
to mitigate the so-called end-of-horizon effect, which we discuss in Sect. 9.

On a different note, the policy graph approach introduced by Dowson [56] to model
(MSLP) provides a natural extension to infinite-horizon problems, as it allows for cyclic
graphs. Solving such problems, similarly to [145], relies on a discount factor and a
truncation after a finite number of nodes in the graph. Then, approximate convergence
can be proven.

20 Random Horizon [relaxing Assumption 1]

Another way to relax Assumption 1 is to assume that the horizon T is random. For
simplicity, we discuss this aspect for the linear case only, even though it is presented in
[89] for the convex case.

Consider (MSLP) from Sect. 2.3, satisfying Assumptions 2 to 8, but with 7' not
being fixed. Instead, we take the following assumption:

Assuthion 13. Theiz'me horizon T s a discrete random variable taking values in
{27 .. ‘,T} with known T € N.

Then, the horizon 7" induces the Bernoulli process (Dt)te[T] with realizations
D, = {0, if the optimization period ended at ¢ or before
1, otherwise,
and therefore T' can be written as
T=min{te€[1,7] : D,=0}.

Under stagewise independence (Assumption 2), the decisions x(-) are functions of
&, D, and D;_4. In other words, x; is .#;-measurable with .%#; the sigma-algebra

As shown in [89], for (MSLP) with this type of random horizon, the following DPE
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equations can be derived. Importantly, the state space is augmented by D;_1:

. T
Qu(wi—1, Dy, Dy-1,&) = min Dy (Ct(ft)) ry + Qip1(we, Dy),
Tt €X¢(w—1,6t)

where

Qir1(we, D) = Ee,., Dy D,y [Qer1(2t, §r41)]

and Q7 (77, D7) = 0. For the first stage, we obtain

v = min C;r.Tl + QQ(CL’l, Dl)
21 €X1(20,61)

These DPE are the same as those that would be obtained for a problem with a fixed
number of stages T € N, but an objective function including the stagewise dependent
stochastic process (Dy);cq7y. As (Dy),eqr can be modeled by an inhomogeneous Markov
chain with two states, SDDP for processes with Markov chains can be applied [89], see
Sect. 14.5.

21 Performance Improvements

Apart from extensions to different problem classes, a lot of research on SDDP has
focused on improving its computational performance, because standard SDDP may
suffer from various performance issues.

As shown in Sect. 4.2, its worst-case iteration complexity is exponential in the num-
ber of stages T' and the dimension n; of the state space, the latter being a well-known
drawback of cutting-plane methods in general. Whereas SDDP is successfully applied
to various large-scale problems in practice, see Sect. 9, with the optimality gap closed in
reasonable time, especially for problems with a large state space it may empirically fail
to converge. For instance, Avila et al. [6] report instances for which the lower bounds
v! already start to stall at a gap of about 22%.

In addition to the high number of iterations required, also the computational effort
in each iteration can become substantial, even if the number of subproblems solved per
iteration has linear complexity, see Sect. 4.2. The reason is that with each iteration
of SDDP, the subproblems (10) become larger, as additional cuts are included. This
can increase the computational effort per iteration significantly, especially for problems
(MSLP) which require many iterations to converge, and thus many cuts to be generated.

In this section, we give an overview on modifications of SDDP to address these issues
and improve its performance.

21.1 Speeding up SDDP Iterations

We start with techniques attempting to speed up the SDDP iterations by reducing the
computational effort.

21.1.1 Cut Elimination and Selection

As mentioned before, with each added cut, the subproblems (10) become larger, and
thus potentially harder to solve. However, computational results indicate that SDDP
tends to generate a large number of similar or redundant cutting planes, which do not
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contribute much to the approximation quality in later iterations [6, 205]. Therefore, the
computational burden of SDDP may be reduced if only a subset of all cuts is taken into
account. However, this requires careful elimination of cuts which are dominated and do
not contribute to the solution process, or careful selection of decisive cuts, as otherwise
the performance of SDDP may even become worse.

Cut Elimination. One way to reduce the number of cuts is to eliminate some
cuts permanently. This can be done by repeatedly solving an auxiliary problem after a
specified number of iterations, checking feasibility of the system

01 < afﬂ + (5§+1)Tmt
01 > oy + (Blyy) T2y, 7 €Dy \ {7}
Ty € Xt

for each 7 € T'y41, where X, is assumed to be a compact set [205].

If this system is infeasible, then the cut 6,11 > of, | + (B]1) "z is redundant and
can be eliminated. The drawback of this method is that the auxiliary problem has to
be solved for all cuts in the system.

A different approach is to permanently store all cuts for each stage ¢, but only select
a subset of those cuts to be considered in each iteration i. Selection techniques based
on this approach are introduced in [8, 49].

Selecting Last Cuts. In this naive strategy, only the I' € N most recently added
cuts are selected. Although on average, late cuts may provide a better approximation
of Q;(+) than early ones, this strategy does not guarantee that all important cuts are
considered.

Level of Dominance. This strategy is a heuristic in order to consider only non-
dominated cuts, but avoid the computational effort of the above cut elimination ap-
proach. Using the most basic approach, only cuts are selected, which yield the highest
function value at one of the trial solutions considered so far within the algorithm. This
is called Level I Dominance [49]. A similar approach is proposed in [156], but there
cuts are permanently removed if they are dominated.

Let z{ be the trial solution corresponding to the ¢-th cut, £ € I'y;1, and ¢"(xf) the
corresponding function value of cut r. Then, the values v(f) := max;er,,, {¢"(z{)} and
r(f) == argmax,cp,, | {¢"(x{)} can be saved in a list and be updated every time a new
cut is constructed. Similarly, a Level H Dominance strategy can be used, selecting the
H € N highest cuts for all trial solutions. Using this strategy, only previous trial points
are taken into consideration, though. Therefore, cuts may be excluded which provide a
significant benefit at not yet visited feasible states.

Another challenge is that this strategy draws a lot of resources to store all the
required cut information — especially, since the number of visited trial points increases
significantly in the course of SDDP. Memory requirements can even be relevant for Level
1, especially if the maximum function value at the trial solutions is attained by several
cuts. As a resort, in [87], the Limited Memory Level 1 strategy is introduced, selecting
only the oldest of such cuts. In [8] a more general cut selection strategy is applied to
SDDP and almost sure convergence is proven.

Dynamic Cut Selection. A dynamic, but also computationally more expensive
strategy is to select cuts dynamically within the SDDP framework. In [49] it is proposed
to remove all cuts at the beginning of each iteration. Then, for each stage ¢, each scenario
k, and each function ¢"(-),r € I'ty1, the forward pass subproblem (10) is solved. If the
current cut yields the highest value at the obtained trial solution, it is added to the
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subproblem, and the next cut is considered. This way, only those cuts are selected that
contribute to the optimal solution in the current iteration. On the other hand, the
additional loop may slow down the convergence speed. The computational effort can
be reduced by some additional heuristics [49)].

A similar approach is considered in [31]. Here, cuts are iteratively added as long as
they induce a substantial change in the current optimal value and up to a predefined
maximum number of cuts. Instead of iterating over all cuts, in each step, the cut with
the highest value at the current trial point is chosen as a candidate for selection.

Numerical results for sampling about 5,000 scenarios and computing 10,000 cuts in
SDDP indicate that all cut selection techniques can significantly speed-up the classical
SDDP method [49]. For example, the Level 1 strategy is reported to be ten times faster
than SDDP without cut selection. For dynamic cut selection, the reported speed-up is
much smaller. It is also shown that the cut selection strategies do not have a significant
impact on the quality of the determined policies and bounds. In [8], Limited Memory
Level 1 is identified as more efficient than pure Level 1.

21.1.2 Sampling Schemes

SDDP allows to use a variety of different sampling schemes which affect its computa-
tional performance.

Number of Forward Samples per Iteration. In standard SDDP, see Sect. 3, |K]|
scenarios are sampled in each iteration, with || < |S| and £ C S. Philpott and Guan
even propose a method with only |[K| = 1 for all iterations [164]. This strategy may
be particularly efficient in earlier iterations in order to obtain a rough approximation
of Q;(-) fast without wasting too much effort in regions which are likely to be far from
optimal. On the other hand, if the current policy is already reasonably good, it should
be beneficial to generate more than one new cut per stage and iteration [49]. Moreover,
if K| = 1, then it is not possible to apply a statistical stopping criterion, see Sect. 7.

Therefore, instead of fixing |K|, a scenario incrementation strategy in which |K] is
gradually increased is a promising approach [204]. It is tested in [49].

Subsampling Trial Points. In the reduced sampling method (ReSa) [102] the
forward pass follows the same principle as in SDDP by sampling scenarios &, k € K,
for £ € S. In the backward pass, however, to reduce the number of subproblems
to be solved, only a subsample K C K is considered and only |I€| curs are generated.
Considering more samples in the forward pass without additional effort in the backward
pass is helpful to compute accurate statistical upper bounds in an efficient way.

A similar approach is applied in the abridged nested decomposition (AND) method
[53]. It is claimed that SDDP is not well-designed for bushier scenario trees with large
values g; because solving |K|q; subproblems per stage may quickly become computation-
ally costly, especially for large |K|. On the other hand, a large |K| may be required to
get reliable statistical upper bounds and to incorporate information on sufficiently many
scenarios in the trajectories (z%%)ycx. As a remedy, an alternative sampling scheme is
proposed. In the forward pass, on each stage t € [T] a set K; of realizations is sampled
and trial points zi¥ are computed. On stage t + 1, however, only a few branching values
are used as parameters (in the forward and backward pass), which can either be sampled
from or be a convex combination of all xi"", k € K;. The latter idea allows to compute
trial points which contain information on a large set of scenarios, while keeping the
computational effort in the backward pass at a minimum. The main drawback of AND
is that the special structure of the forward pass allows no direct estimate of an upper
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bound [102].

Sampling in the Cut Generation Process. The computational effort in the
backward pass can be reduced if the subproblems (10) are not solved for all noise terms
&4, J =1,...,q, in each iteration, but only for a subset. The remaining elements that
are required to compute a valid cut can then be used from previous iterations where
the corresponding noise §;; was sampled.

Even more, if the uncertainty is restricted to the RHS h; of (MSLP), then the dual
feasible set does not depend on it. Therefore, optimal dual multipliers which correspond
to dual extreme points can be re-used between different realizations j = 1,...,¢;. This
allows for the following procedure: Assume that in each iteration 7, for each stage t € [T
only one noise term ! is sampled and used to compute optimal dual multipliers #! and
(scenario-specific) cut intercepts &: as in (21.2.1). For each stage t = 2,..., T, all dual
multipliers and intercepts obtained up to iteration i are then stored in a set D; defined
by D} = D U { (71,44, &) |-

For any &;,j = 1,...,q:, and a given incumbent z_;, the dual multipliers used to
compute a new cut can then be determined as

(7}?7@?7 Aij) = argmax {&t =t Timawi_y + 7 (&) — ht(ét))}-
(7rt,Gt,6¢) €D}

Hence, not necessarily optimal dual multipliers for &; are used, but the ones in D'ti
providing the best approximation for realization &; at zj_;.

Let mi; = @ and o}; = a7 + (77)" (he(&y;) — he(&])) for all j = 1,...,q;. Then,
a cut can be defined by using subgradient formula (19) and taking expectations as in
formula (16). Note that our description slightly differs from the presentation in the
literature, as we adapted it to our cut formulas in Sect. 3.3.

This idea for the cut generation process is used in two algorithms related, which
mainly differ by when cuts are constructed. The CUPPS (convergent cutting-plane and
partial-sampling) method [38] only contains a forward pass, in which both trial points
are computed and cuts are generated using some sample §f,‘ It has the drawback that
the obtained cuts are not necessarily tight. First, the dual multipliers obtained from
formula (21.1.2) are not necessarily optimal for all j = 1,...,¢;. Second, no backward
pass is used, and thus new information in form of cuts for stage ¢t + 1 are not taken into
account when deriving a new cut for stage t.

The dynamic outer approzimation sampling algorithm (DOASA) [164] contains a
forward pass and a backward pass. In the former, a trajectory of trial points (vi*)xex
is computed as in SDDP (note that in [164] |[K| = 1 is chosen, but this is not manda-
tory). In the backward pass, cuts are constructed using a backward sample Ef/ and
formula (21.1.2). It is proven that this generalization of SDDP also exhibits almost
sure finite convergence [164].

21.1.3 Inexact SDDP

Recall Lemma 3.3 (b), stating that the cuts generated in the backward pass of SDDP
are tight for Q/*!(-) at the incumbent zi* . This result is premised on using optimal
dual multipliers in the cut formula, i.e., solving the LP subproblem or its dual to global
optimality (ezact solution). Whereas such an exact solution is the standard assumption
in the literature on SDDP, computationally it may be more efficient to solve subproblems
only approximately, especially early in the solution process when the cut approximations
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are suboptimal anyway [88].
We first introduce the notion of inexact cuts.

Definition 21.1 (e-inexact cut). For anyt=2,...,T, e > 0 and a trial point x* |, let
¢ : R%m) — R be an affine function satisfying

Q(w—1) = Qiﬂ(mtfl) > ¢p(we-1)  (validity)
for all x;_1 € X1 and
Qi“(mi’il) —¢i(zi* ) <e (e-tightness).
Then, ¢+(-) defines an e-inexact cut at zi*, [88].

Importantly, inexact cuts still yield valid lower approximations of Qq(-) for all ¢ =
2,...,T. We now address how inexact cuts can be determined.

Linear Problems. For any iteration ¢ in SDDP, any t = 2,...,T and any trial
point xi’i 1, consider the linear subproblem (10). For simplicity, we assume that X; =
{z: e R™ : z; > 0}.

For some € > 0, let szk, be an e-optimal feasible solution for the dual problem of (10)
given &; and let 6}, be the corresponding dual objective value for j =1,...,¢;. Then,
analogously to Sect. 3.3, an e-inexact cut can be defined by [88]

Qi(w1-1) = Gy (m—1) == oy + (Blx) "1,

with intercept and subgradient defined by
qt
i i i \T ..k
vy, = Zptj (Qtjk - (ﬁzkj) xtﬂ)a
j=1

qt
5Zk; = - Zptj(ﬂzkj)TTt—l,j-

=1

Nonlinear Differentiable Problems. Consider a multistage stochastic convex
program (MSCP) as introduced in Sect. 15, that is, satisfying Assumptions 10 to 12.
Moreover, recall the definitions of the Lagrangian function (111), the dual function (112)
and the Lagrangian dual problem (113).

Then, an e-inexact cut can be derived using a pair of approximate primal-dual solu-
tions as follows [88]. Let Z¢; be an e-optimal feasible primal solution for problem (108)
given some noise realization &;,j = 1,...,q;, and some trial point Z;_, and let 7;; be
an e-optimal feasible solution for the corresponding Lagrangian dual (113).

We define

1(e) := UTMejs Te-1, Tij€ej) += MAX Vi, Ly.o(Tajs Te-1, Tj, &) " (T1; — ). (119)
t t

Assume that fi(x,&;) takes finite values for all z; € X; and that the term in (119) is
finite. Then, an e-inexact cut can be defined by

Qi(w1-1) > Gy (mi—1) == oy + (Bly) "1,
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with intercept and subgradient defined by

qt
oy, = Zptj (Lt,C(ﬁ'tj?-ftflvjtpftj) —n(e) - (Bij)Txfflil)a
j=1
) qt
B = Zptjvzt_l Lt o(Ttj; Be1, Ty, &tj)-

J=1

We refer to [88] for a convergence analysis of SDDP using inexact cuts, both for
the linear and the nonlinear convex case. In particular, it is shown that the obtained
dual solutions are almost surely bounded and that the error terms n(e!) vanish as i
approaches +oo.

Non-differentiable Problems. Using SDDP with inexact cuts is generalized to
non-differentiable problems in [91]. In this paper, inexact cuts are derived using two dif-
ferent approaches. In the first approach, it is assumed that the objective and constraint
functions have saddle-point representations. The second approach is more general, but
requires the introduction of additional variables and constraints.

More precisely, consider a multistage stochastic convex program (MSCP) as intro-
duced in Sect. 15 and assume that it is satisfying Assumptions 10 and 11 except for
the differentiability properties. Using a local copy z; of the state variable x;_1, the
approximate value functions can be reformulated as

min  fi(z, &) + Qer1,0(xe)

Tt,2t
Que(ziy,&) =50 it(ém;tv&) <0 (120)
t ¢
X1 = Zt.

Assume that this modified subproblem satisfies a slater condition analogous to Assump-
tion 12. Additionally, consider the Lagrangian dual problem

rrﬁxﬁt(m;xt,l,&). (121)

with dual function

min  fi(x, &) + Qrr,o(e) + W;(xt—l — z)

€X't

Lio(mia-1,&) = (st gz, 20, &) <0
Ty € Xt,

which is obtained by relaxing the copy constraint.

Given a trial point Z;—; and a noise realization &;,j = 1,..., ¢, let Z;; denote an ep-
optimal feasible solution of problem (120) and let 7;; be an € p-optimal feasible solution
of problem (121). Then, an (ep + €p)-inexact cut is defined by function

qt
Gip(Ti1) =D i (ft(ftj’ &) — (ep +ep) + T (wm1 — iz‘tfl))-
j=1

For more details and a convergence analysis we refer to [91].
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21.2 Reducing the Number of SDDP Iterations

We now consider techniques with the attempt to reduce the required number of itera-
tions of SDDP until convergence is reached.

21.2.1 Multi-cut SDDP

In the backward pass of SDDP, for any t € [T] and any zi* |, k € K, subproblems (10)
are solved for all noise realizations &;, 7 = 1,...,q. By taking expected values, a
cut (17) is derived. Such cuts are then incorporated into the stage-(t — 1) subproblem
using a single variable 6; € R by

Oip(wi—1) = (Biy) "wim1 + oy < 6y,

see Sect. 3.3. This is referred to as a single-cut approach.
A different approach, called multi-cut, that is well-studied for (nested) Benders de-
composition [27, 74, 144], is to not aggregate the dual information, but to generate a

separate cut for each noise realization &;,j = 1,...,¢;. This requires to introduce vari-
ables 6; , and cut approximations D;ﬂ () forall £ =1,..., ¢ in the stage-t subproblem.

In this case, we obtain cuts
¢;‘kj(xtfl) = (BZ]gj)thfl + ai]@j < Qt(xtfla ftj)7 .7 = 17 <o gty

where, analogously to the derivation in Sect. 3.3, B;kj denotes a subgradient of Qi“ (-, &)
at 2, for k€ K,5=1,...,q, and aikj is defined by

aikj = Q:H(:Ci]ihgt) - (52/«;)—%;51

The expectation is then taken in the objective function instead of the cut formula:

qt+1
. . . T .
QN (k&) = peaiin (ce(&)) @+ D prar el (@)
- =1

This way, more specific information about the value functions is incorporated into
the subproblems, hopefully leading to fewer iterations. Moreover, it can be shown that
multi-cut SDDP has the same convergence properties as SDDP [8]. On the downside,
the number of decision variables and cuts grows significantly compared to the single-
cut approach, especially if ¢; is large, which increases the computational effort for each
iteration. Therefore, so far multi-cut SDDP has rarely been considered in the litera-
ture. It should be most promising when ¢; is only of moderate size. For the two-stage
case, a rule of thumb is that a single-cut approach should be preferred if the number of
realizations is considerably larger than the number of first-stage constraints [26]. Note
that in principle also a trade-off between single-cut and multi-cut is possible by par-
tially aggregating cuts [23, 28]. Another approach to reduce the computational burden
of multi-cut SDDP is to combine it with cut selection strategies, see Sect. 21.1.1, as
proposed in [8].

We return to Example 3.4 to illustrate the multi-cut approach.

Example 21.2. (Continuation of Frample 3.4) Using multi-cut SDDP, at stage 3,
instead of Qs(-), the functions Qs(-,&3) are separately approximated by cuts for & €
{1,2,4}. These value functions are displayed in Figure 15. Each of them consists of
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only two linear pieces, so two cuts are required to represent them exactly. In contrast,
Qs3(+) consists of four linear segments. Therefore, multi-cut SDDP should need less
iterations than single-cut SDDP to achieve convergence.

6 *

Q3(x2,&3)

v}
4

Figure 15: Stage-3 value functions for Example 3.4.

21.2.2 Batch Learning and Experience Replay

While SDDP is used in stochastic programming, dynamic programming or optimal
control, its methodology also shares some characteristics with @Q-learning algorithms,
which are studied in reinforcement learning, see Remark 3.1. This can be exploited by
translating established performance enhancing techniques from reinforcement learning
to SDDP.

As one such technique, Avila et al. [6] propose to use a batch learning technique
called experience replay in SDDP. The motivation of this is the following: In SDDP, the
cut approximations £;(+) of the expected value functions Q;(-) are generated recursively
in a backward pass through the stages ¢t = T',...,2. This means that approximation
errors at later stages are propagated to earlier stages by means of the cut approximations
(), which then leads to loose cuts at these earlier stages and so on. However, this
implies that errors are accumulated at early stages. The authors identify this as a driver
for the slow convergence of SDDP, as it favors over-exploring of suboptimal regions and
the generation of redundant cuts throughout the iterations.

Experience replay addresses this issue by revisiting previous trial points x¢ and
updating the cut approximations £,(-) at these points. This seems counterintuitive at
first glance because cuts are generated at already visited points instead of improving
the approximation of Q(-) at regions of X; that have not been visited yet. However,
by taking into account all the information currently available to update Q;(-) at ¢, it
avoids that on earlier stages 7 < ¢ unnecessarily poor approximations of Q,(-) at x; are
used for several more iterations.

More precisely, the proposed SDDP method works as follows. A predefined number
of iterations of standard SDDP are executed and the corresponding trial points z% are
stored in a replay memory M; for all ¢ € [T — 1]. When the sizes of the replay memories
reach a predefined cardinality Z, then the experience replay step is initiated. This step
performs a backward pass through the stages t =T — 1,...,2. For each stage ¢, first,
a batch B; C M, of trial points is selected from the replay memory (also a full batch
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By = M; is possible). For each trial point &/ from this batch, with £ = 1,...,|By|,
the previously generated cut is removed from Q;ﬁ -) and a new cut is constructed by
solving the associated subproblems (10) (including the experience replay updates from
following stages) for #{. With these cuts, Qi,(-) is updated and then, the previous
stage is explored.

It is shown that experience replay manages to improve the convergence behavior of
SDDP, and also the out-of-sample performance of the obtained policies [6]. However,
experience replay comes at an increased computational effort, as every Z iterations an
additional backward pass solving ¢;|B;| subproblems for each stage t = T, ..., 2 has to be
performed. For full batches, this adds up to ¢:|K|Z LPs per stage. For this reason, the
authors suggest to parallelize both standard SDDP iterations as well as the experience
replay. They report computational results which indicate that batch learning is better
exploiting parallelism than standard SDDP.

21.2.3 Regularization

As Kelley’s cutting-plane method [111, 146], SDDP exhibits an iteration complexity
which is exponential in the dimension n; of the state variables, see Sect. 4.2. An
unfavorable characteristic of cutting-plane methods, and also of SDDP, in this regard is
2ig-zagging behavior. This means that trial points z¢ and i computed in subsequent
iterations can be located far away from each other in different regions of the state space,
and that with each new cut the minimum of the subproblems (10) is again attained in
the respective other region. In particular, this implies that these regions of X; experience
very tight, but almost redundant approximations () of Q:(+), while other regions are
not properly explored and thus the approximation quality at the true optimum improves
very slowly.

In convex and nonsmooth optimization, regularization techniques called bundle
methods are shown to entail faster convergence than classical cutting-plane methods
[122], as they mitigate zig-zagging by stabilizing subsequent trial points around a sta-
bility center (also called incumbent). Hence, it looks promising to translate these regu-
larization techniques to SDDP.

A common regularization approach, which is predominantly used in two-stage stochas-
tic programming [191, 194], is convex quadratic regularization. Here, some quadratic
deviation of x; from a stability center T, is penalized in the objective function for sta-
bilization. An application of quadratic regularization to SDDP is not straightforward
because using a separate stability center for each scenario s € S is computationally
infeasible due to the exponential growth of |S| in T' [5].

Therefore, Asamov and Powell [5] propose a regularization technique for linear prob-
lems, in which stability centers are considered part of the state variable, and thus are
the same for all realizations of §;;,j = 1,...,¢;. Then, in the forward pass the objective
function is modified to

7

e @+ Q@) + 4 (o= 3 Hylw — 37, (122)

with a positive semidefinite matrix H; and some sequence (v);cy satisfying 4% > 0 for
all 4 and lim;_,o 7' = 0. The stability centers iﬁ’l are chosen as the previous forward
pass solution, i.e., the solution is stabilized around a “known” region of the domain of
Q:(+). This idea is generalized to nonlinear problems and improved in [90] by considering
weighted averages of several previous forward pass solutions.
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Using objective (122), a convex, continuous and linearly constrained quadratic pro-
gramming problem has to be solved in each forward pass step of SDDP, hopefully, re-
ducing the required number of iterations. Importantly, only the forward pass of SDDP
is changed, while the backward pass remains the same. In particular, only LPs have
to be solved in the backward pass. As the cuts are still finite (see Lemma 3.3), almost
sure finite convergence is assured. In computational tests, it is shown that this method
exhibits faster convergence than SDDP, in particular for a high state dimension n; [5].
This speed-up is especially important for regularized DDP, see the numerical experi-
ments in [90]. DDP (Dual Dynamic Programming) is the corresponding deterministic
counterpart of SDDP (when ¢&; is deterministic for all ¢ € [T7).

Whereas the above approach stabilizes the solution around a “known” region of the
domain of Q;(-), in a sampling setting, it is not clear whether this is always beneficial.
For the current sample £ a region may be identified and used for stabilization, which
is no appropriate indicator for all &;,57 = 1,...,¢. Additionally, as pointed out in
[226], the condition lim; ., ' = 0 may evoke that the regularization is diminished and
the proposed method in [5] reduces to standard SDDP before convergence is obtained,
although regularization may be particularly important close to the optimal solution.
Therefore, this is claimed to be detrimental to convergence speed [226].

Van Ackooij et al. [226] also address that convergence of proximal bundle methods
usually requires the stability centers to be feasible, which is not guaranteed for SDDP
subproblems where the feasible set changes with xi ;. Therefore, they propose to
combine SDDP with a level bundle method, which does not face this requirement.

For stage ¢ and scenario £F, trial solutions zi¥ are obtained by solving

{H;in V()

_ (123)
stz € X2 5 0)

with ¢, (z;) : R™ — R a given convex function, e.g., ¥;(z;) =z z;, and

4 argmin  max {¢] z; + Q) (24), 4}
Xy(zi" 1 4) = =0 ; (124)
s.t. Wtiﬂt = h,t — n_1$i]il.

If the maximum in (124) is attained by the first term, then x* obtained by solv-
ing (123) is an ordinary SDDP trial point, referred to as a normal iterate. Otherwise,
problem (123) reduces to a typical level bundle method subproblem, yielding a regular-
ized level iterate zi*.

The determination of a good level ¢; and of an efficient regularization for SDDP are
still open questions, and heuristics are proposed in [226] to choose ;.

An alternative stabilization approach is proposed in [15] based on the concept of
Chebyshev centers of polyhedrons. Here, in the forward pass of SDDP, the subprob-
lems (10) are modified such that the computed trial states are defined as Chebyshev
centers of the polyhedrons given by previously constructed cuts and an appropriate
upper bound. It can be shown that this approach is equivalent to modifying the cut
formula to

_(5;+1)T95t + 01 > oy +0oul[(Lce + B, 7€ T (125)

The authors use the Euclidean norm ||-||2 in (125), however, different choices are possible
as well.
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Geometrically, the additional term in (125) changes the cut intercept, thus lifting
the cut. For &, = 0, the usual SDDP trial point x¢ is determined, whereas for 5; > 0
an offset in the objective compared to the standard SDDP subproblem is considered,
yielding a different iterate. To actually improve the performance of SDDP, choosing &;
appropriately is crucial, yet not trivial. Adversely, if &; is chosen too large, basically any
feasible point can become the new trial solution. Moreover, to ensure convergence, it has
to be ensured that &, converges to zero in the course of the algorithm. In [15] heuristics
are used to determine &, but it is not clear whether they guarantee performance gains
for SDDP.

21.3 Parallelization

The performance of SDDP cannot only be improved by modifications of the algorithm
itself, but also by its implementation and computational execution. Since several com-
putational steps in SDDP are independent of each other, a performance improvement
can be achieved by parallelization.

Different parallelization strategies have been proposed for SDDP. They can be clas-
sified with respect to how the workload is distributed among different processors and
how the processors are synchronized. Based on this observation, Avila et al. [6] present
a taxonomy of parallelization strategies, which we follow in this section.

Parallelization by Scenario. This is the predominant parallelization strategy for
SDDP in the literature. Mostly, a synchronized version is proposed. In the forward
pass, for all ¢ € [T], the subproblems (10) are solved for |K| different scenarios, which
are sampled independently. The uncertain data & and the trial solutions ¥ ; in each
of those problems do only depend on scenario k. Therefore, the different scenarios
& k € K, can be assigned to different processors. Assuming P different processors,
each processor is assigned % scenarios and solves all corresponding subproblems. A
master process is then used to aggregate the objective values and compute the upper
bound estimate (21). This means that there is a synchronization point for all processors
at the end of the forward pass.

In the backward pass, a similar approach is followed. The subproblems are again
distributed among the processors by scenarios, in such way that for a specific stage t =
T,...,2 and a scenario-based trial point xfﬁl, the subproblems for all noise realizations
&j.7 = 1,...,q, are solved by the same processor. Evenly distributing the problems
between processors, this way each processor solves %qt subproblems. However, it is also
possible to let the master process assign new scenarios to processes once they become
idle instead of using a fixed assignment scheme [166].

After solving all associated subproblems, each processor then generates a cut for
Q:(+) and sends it to the master process. When cut generation is finished for all k& € IC,
the processors are synchronized so that all of them can proceed with the same set of
cuts on stage t — 1. As stated in [99], this synchronization can be partially relaxed to
avoid waiting for single slow processors. Instead, the master process can assign stage-
(t — 1) subproblems to available processors even if not all cuts have been generated
for stage t yet. Numerical results show that such partial relaxation can improve the
computational performance of SDDP. However, the number of cuts to wait for to achieve
an optimal trade-off between faster iterations and better approximation of Qu(-) is
problem-dependent.

Even more, an asynchronous approach can be used where processors immediately
get back to stage t — 1 after generating their cuts at stage t, using all cuts currently
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available without waiting for other processes to finish [57].

A major shortcoming of parallelization by scenario is that using more processors
becomes more beneficial the more scenarios || are sampled in the forward pass. How-
ever, as discussed in Sect. 21.1.2, it is often favorable to only consider one or a few
scenarios per iteration, especially in earlier iterations. Choosing large |K| may lead to
the accumulation of similar trial points and the generation of redundant cuts [6]. There-
fore, exploiting the potential performance gains of additional processors may wrongly
incentivize to sample more scenarios than reasonable, thus not accelerating but slowing
down the solution process. Additionally, Avila et al. [6] report computational results
indicating that (synchronized) parallelization by scenario scales poorly when increas-
ing the number of samples |K| due to the combination of long waiting times between
processors and low quality cuts.

Parallelization by Node. Using parallelization by node, the strategy is to draw
only one or a few samples in the forward pass, as this is often computationally preferable.
Then, the forward pass is not necessarily parallelized. In the backward pass, the work
is distributed among the processors by nodes of the recombining tree (cf. Sect. 2.1).
That means that even for the same k € K and the associated trial point =¥ ;, the
subproblems (10) for different realizations &;,j = 1,..., ¢, may be solved by different
processors. The processors are synchronized at each stage to generate aggregated cuts
(given that a single-cut approach is used).

In [6], the authors report clear computational benefits using parallelization by node
compared to parallelization by scenario, and also better scaling properties. However,
these results require that the processors can access a shared memory, otherwise the
computational overhead is too large. Another drawback is that distributing subproblems
for different &, but the same :ri’i , among different scenarios prevents the exploitation
of warm starting techniques.

Parallelization by node can also be used in an asynchronous way, as proposed by
Machado et al. [136] in their asynchronous SDDP method. In this method, the sub-

problems of all stages ¢ = 1,...,T are solved simultaneously. More precisely, in each
step, for all stagest = 1,...,T and scenarios k € K, the subproblems for all realizations
&7 = 1,...,q, are solved. Once a processor is finished, it constructs a new cut for

Q,(+) using all available information. If a required processor has not finished yet, multi-
pliers my,; from previous steps are re-used. The generated cut can then be incorporated
in stage t — 1 in the next step. Additionally, each processor generates a new trial point
which can be used at stage t in the next step. In contrast to SDDP iterations, this
approach requires several steps to propagate information through all stages. Therefore,
an ordinary forward pass can only be observed implicitly over several stages. This has
to be considered in the computation of upper bounds.

Independent of the applied strategy, parallelizing SDDP in practice comes with con-
siderable challenges, such as communication overhead, problem-dependent performance
and lack of reproducibility of results. Therefore, its potential to speed up SDDP in
general is naturally limited [6].

21.4 Aggregation Techniques

Aggregating information in (MSLP) is another tool with potential to speed up the
SDDP solution process.

One approach is to aggregate the variables and constraints of several time periods
in a single stage, thus solving a problem with a smaller horizon 7T'. This is straight-
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forward for NBD [54], where each node of the aggregated problem is a subtree of the
original scenario tree, even though only few time periods can be aggregated to keep the
subproblems tractable. However, it cannot be directly generalized to the sampling and
stagewise independent setting in SDDP. The main issue is that it is difficult to model
the uncertainty appropriately, without violating non-anticipativity [54].

An alternative approach is to aggregate realizations of & on each stage (or a sub-
set of stages) [207]. To this end, for some stage ¢, the support =; is partitioned into
clusters Cf,¢ =1,..., L;, with L; € N. Instead of solving subproblems associated with
Q;‘H(z,’ﬁ 1,&;) forall j =1,...,¢ in the backward pass of SDDP, subproblems associ-
ated with Qi+ (x}",,&f) are solved for clusters £ = 1,..., L;, with & := > ject %jftj,

and P! the probability of cluster Cf. This should be beneficial in early iterations where
policies are still far away from optimal and a fine information structure unnecessarily
slows down the solution process.

Using subgradients and intercepts associated with clusters Cf,¢ = 1,..., L;, coarse
cuts can be generated for Q;(+). Given that W; and ¢; are deterministic, these cuts are
valid underestimators for Q;(-) by Jensen’s inequality [207]. They are not guaranteed
to be tight, though.

The authors in [207] discuss several different refinement strategies, such as refine-
ments within the SDDP backward pass (the partition at stage ¢ is refined as soon as
a coarse cut does not improve the approximation of Q;(-) at the trial point x%*,) or
refinements outside of SDDP. In the latter case, SDDP is performed on a coarse recom-
bining tree, which is iteratively refined once the algorithm has stopped. Computational
results show that this latter approach performs significantly better than the first one
due to less computational overhead. However, identifying when SDDP should be best
stopped to perform a refinement remains a challenging task.

22 Outlook

In this tutorial-type review, we give an overview on the motivation, theory, strengths
and weaknesses, extensions and applications of SDDP.

While many proposals have been made in the last 30 years on how to extend SDDP
and on how to improve its performance, there still remain open research questions,
leaving room for future improvement. Among the most crucial topics are the following.

1. Stopping. To this date, in many applications SDDP is stopped heuristically, e.g.,
based on a fixed number of iterations or stabilization of lower bounds, which
leaves the task to define a reasonable stopping criterion to the user. Recently,
there has been some pioneering work on developing deterministic upper bounding
techniques and stopping criterions, but these are still limited, as they require
significant computational effort.

2. Upper bounds in risk-averse SDDP. Developing efficient upper bounding tech-
niques is especially relevant to risk-averse variants of SDDP, where the commonly
used nested risk measures do not allow for employment of their pendants from
risk-neutral SDDP. Lately, different risk measures have been proposed, which
avoid this issue. However, such risk measures usually hamper interpretability.
Therefore, it can still be regarded an open question how risk should be optimally
measured in SDDP in order to obtain a computationally tractable problem and
at the same time to properly reflect the true risk preferences of a decision-maker.
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. Distributionally robust SDDP. Recently, the consideration of distributional uncer-

tainty in SDDP has gained more interest. However, while distributionally robust
optimization is a flourishing research area, incorporating it into SDDP is still in
its early stages, with potential for further improvements.

. Non-convex extensions. In many applications, nonlinear functions or integer vari-

ables are required to appropriately model the problem at hand. As the (expected)
value functions become non-convex in this case, traditional cutting-plane tech-
niques fail to approximate them correctly. Starting with SDDiP, recently, there has
been a trend to extend the NBD and SDDP frameworks to non-convex problems.
Lagrangian-type cuts, which are possibly non-convex, show theoretical potential
in approximating non-convex functions. However, their construction is compu-
tationally costly and subject to rather strong technical assumptions, such that
especially large-scale non-convex problems remain computationally intractable.
Consequently, in the future, the trade-off between computationally efficient cut
generation techniques and best possible approximations of the value functions
needs to be further explored.

. Regularization. As a descendant of Kelley’s cutting-plane method, SDDP has

a computational complexity which grows exponentially in the dimension of the
state variables. Therefore, it can become computationally intractable for problems
with high-dimensional state space. This is aggravated by common reformulations,
e.g., in case of stagewise dependent uncertainty, that artificially augment the
state space. For Kelley’s method, regularization methods have proven helpful in
accelerating the solution process. Whereas some first attempts have been made
to regularize SDDP, an efficient regularization remains an open challenge.

. Reinforcement learning techniques. As the case of batch learning shows, SDDP

can benefit from acceleration techniques that are well-known and established in
reinforcement learning, but have not been translated to SDDP setting yet. By
exploiting its affinity to QQ-learning, there should be a lot of potential to improve
the computational performance of SDDP in practice.

. Decision-dependent uncertainty. The only standard assumption for SDDP that

has not been relaxed in the literature yet, is to allow for stagewise-dependent
stochastic processes modeling the uncertainty in (MSLP). This topic has still to
be studied.
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Abstract

We propose a new decomposition method to solve multistage non-convex mixed-
integer (stochastic) nonlinear programming problems (MINLPs). We call this algo-
rithm non-convex nested Benders decomposition (NC-NBD). NC-NBD is based
on solving dynamically improved mixed-integer linear outer approximations of the
MINLP, obtained by piecewise linear relaxations of nonlinear functions. Those MILPs
are solved to global optimality using an enhancement of nested Benders decomposi-
tion, in which regularization, dynamically refined binary approximations of the state
variables and Lagrangian cut techniques are combined to generate Lipschitz continu-
ous non-convex approximations of the value functions. Those approximations are then
used to decide whether the approximating MILP has to be dynamically refined and in
order to compute feasible solutions for the original MINLP. We prove that NC-NBD
converges to an g-optimal solution in a finite number of steps. We provide promising
computational results for some unit commitment problems of moderate size.

Keywords Nested Benders decomposition - Mixed-integer nonlinear programming
(MINLP) - Global optimization - Non-convexities - Non-convex value functions

Mathematics Subject Classification 90C26 - 90C11 - 49M27

1 Introduction

We propose a new decomposition method to solve multistage non-convex mixed-
integer (stochastic) nonlinear programming problems (MINLPs), i.e., optimization
problems modeling a sequential decision making process. Continuous and integer
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decision variables and possibly non-convex objective functions and constraints are
allowed for any of the T stages.

If multistage (stochastic) problems are too large to be solved by off-the-shelf
solvers, then tailored solution techniques are required. One example are decomposition
algorithms making use of the specific sequential and block-diagonal structure of the
constraints. The problems are decomposed into a large number of smaller but coupled
subproblems which are solved iteratively. One of the most common decomposition
methods is Benders decomposition, introduced by Benders [6] for linear programs.
Since then, it has been enhanced to several more general cases, such as convex prob-
lems (generalized Benders decomposition (GBD) [19]), two-stage stochastic linear
problems (L-shaped method [49]) and multistage (stochastic) linear problems (nested
Benders decomposition (NBD) [8]). To mitigate the curse-of-dimensionality related
to NBD in the stochastic case, Pereira and Pinto introduced its sampling-based variant
stochastic dual dynamic programming (SDDP) [35], which was followed by various
extensions [23,37].

The basic principle of NBD is to use the dynamic programming formulation of a
given multistage problem. For each stage ¢ € {1, ..., T}, a parametric subproblem
is considered. This subproblem contains only those constraints, variables and parts
of the objective function related to this specific stage, plus a value function deter-
mining the optimal value of all following stages for a given stage ¢ solution. Since
the value functions are not known in advance, they are iteratively approximated with
linear cutting-planes. However, this approach requires the value functions to be con-
vex. Therefore, most decomposition methods for multistage problems cover linear
programs, as their value functions are guaranteed to be piecewise linear and convex.

However, in many applications, also integer variables or non-linearities occur nat-
urally. In such case, the value functions are no longer convex and may also no longer
be continuous. Therefore, the classical Benders approach fails, as it is impossible to
construct a tight convex polyhedral approximation [47].

Thus, more sophisticated approaches have been developed to use Benders-type
decomposition methods for non-convex MINLPs, mostly for the two-stage case. Li
et al. propose an extension of GBD to the non-convex case for two-stage stochastic
MINLPs with functions separable in integer and continuous variables [29,30]. In [28],
a branch-and-cut framework is presented, where in each node Lagrangian and gen-
eralized Benders cuts are constructed. Related methods are proposed in [26,33]. All
these methods have not been generalized to the multistage case yet.

To handle non-convexities in multistage problems, a common idea is to use convex
relaxations of the value function, e.g., by relaxing the integrality constraints for MILPs
or by convexifying nonlinear terms in a static manner. Dynamically convexifying
the non-convex value functions using Lagrangian relaxation techniques allows for a
polyhedral approximation by Lagrangian cuts [10,45,46]. None of these discussed
approaches can guarantee to compute an optimal solution for non-convex multistage
problems, though.

Only recently, some substantial progress has been made in generalizing the Benders
decomposition idea to multistage problems with non-convex value functions directly.
In [36], step functions are used, instead of cutting-planes, to approximate the value
functions, presuming their monotonicity.
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For the mixed-integer linear case, the stochastic dual dynamic integer programming
(SDDiP) approach is proposed [55]. SDDiP is an enhancement of NBD and SDDP
which allows the solution of multistage (stochastic) MILPs in case of binary state
variables. The method is based on generating special Lagrangian cuts, which reproduce
the lower convex envelope of the value function. As the latter is piecewise linear and
exact at binary state variables, strong duality is ensured and the problem is solved to
global optimality in a finite number of iterations. SDDIP is applied to multistage unit
commitment in [54]. It is also applied to a problem containing non-convex functions
in context of hydro power scheduling by using a static binary expansion of the state
variables and a Big-M reformulation [22].

As long as the value functions are assured to be Lipschitz continuous and some
recourse property is satisfied, the requirement of binary state variables can be dropped,
as is shown by the Stochastic Lipschitz Dynamic programming (SLDP) method in [1].
Here, two types of non-convex Lipschitz continuous cuts are introduced: reverse-norm
cuts and augmented Lagrangian cuts.

In [52], Zhang and Sun present a new framework to solve multistage non-convex
stochastic MINLPs, generalizing both SDDiP and SLDP. Similarly to [1], nonlinear
generalized conjugacy cuts are constructed by solving augmented dual problems.
Moreover, as Lipschitz continuity is not assured for the value functions, a Lipschitz
continuous regularized value function is considered within the decomposition method.

In this article, we propose a new method to solve multistage non-convex MINLPs to
proven global optimality, which we refer to as non-convex nested Benders decompo-
sition (NC-NBD). The method combines piecewise linear relaxations, regularization,
binary approximation and the SDDiP Lagrangian cuts in a unique and dynamic fashion.
Its basic idea is to solve a MINLP by iteratively improved MILP outer approximations,
which in turn are solved using a NBD-based decomposition scheme similar to that in
[52]. The binary and piecewise linear approximations are dynamically refined.

In particular, the original MINLP is outer approximated by MILPs, which are
iteratively improved in an outer loop. Those MILPs are obtained by piecewise linear
approximations of all occuring nonlinear functions, which is an established method in
global optimization [50]. In general, using MILP relaxations is a common approach
to global optimization solvers [27,32,53].

In an inner loop, the multistage MILPs are solved to approximate optimality in
finitely many steps. This is achieved using a NBD-based decomposition method. In a
forward pass through the stages, trial solutions for the dynamic programming equations
are determined. As Lipschitz continuity of the value functions is not guaranteed, this is
done solving aregularized forward pass problem, as proposed in [52]. For a sufficiently
large, but finite parameter, the regularization is exact [14,52], so that still the desired
MILP is solved.

In a backward pass through the stages, nonlinear non-convex cuts are constructed
to approximate the non-convex value functions of the MILP. To this end, we make
use of a binary approximation of the state variables in the subproblems. As proven
in [55], for MILPs with binary state variables we obtain (sufficiently) tight cuts by
solving Lagrangian dual problems. The constructed linear cuts are then projected back
to the original state space, yielding a nonlinear, non-convex, but Lipschitz continuous
approximation of the value functions. The binary approximation is refined dynamically
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within the inner loop if required. By careful construction, all existing cuts remain valid
even with such refinements.

Once the MILP approximation is solved to approximate optimality, the cut approx-
imation of the value functions is used in the outer loop to determine bounds for the
optimal value of the original MINLP. If the bounds are sufficiently close, the algorithm
terminates with an e-optimal solution. Otherwise, the piecewise linear approximations
are refined, and thus the approximating MILP is tightened. Again, by careful construc-
tion it is ensured that all previously generated cuts remain valid.

To our best knowledge, the above concepts have not been combined in this dynamic
way to solve multistage non-convex MINLPs yet. In that regard, our work also differs
significantly from the aforementioned solution techniques.

Our proposed decomposition scheme uses the same regularization technique and
similar convergence ideas as in [52]. However, a fundamental difference is that we only
apply this technique to solve MILP outer approximations of the original MINLP. This
has the advantage that in our framework MINLPs have to be solved only occasionally.
In contrast, in [52], MINLPs are assumed to be solved by some oracle in each iteration
and cuts are generated directly for the MINLP, which is computationally challenging.
Moreover, contrary to our approach, the method in [52] does not require recourse
assumptions, but in return it only allows for state variables in the objective function.

In contrast to SDDiP [55] and SLDP [1], we solve MINLPs, and thus consider a
larger solution framework with an inner and an outer loop. However, even the inner
loop, in which MILPs are solved, differs from both approaches.

To solve MILPs with non-binary state variables using SDDIP, it is proposed to
apply a static binary approximation [22,55]. This way, the original MILP is replaced
by an approximating problem with only binary state variables. It can be shown that
for a sufficiently small approximation precision, i.e., an sufficiently large number
of binary variables, an e-optimal solution of an MILP can be determined with this
approach under some recourse assumption [55]. However, for a given problem at
hand, it is not necessarily clear in advance how this precision has to be chosen, as
knowledge on a problem-specific Lipschitz constant is required. This becomes even
more challenging in our framework, where an MINLP is iteratively approximated by
MILPs, for which the required precision may change. On the contrary, within NC-NBD
the binary approximation is refined dynamically if required.

More crucially, in NC-NBD the binary approximation is applied temporarily only
to derive cuts in the backward pass. These cuts are then projected back to the original
state space. This construction has a few key advantages: Firstly, it is ensured that cuts
remain valid even if the binary precision is refined later on. Secondly, the original
state variables remain continuous and are not limited to values which can be exactly
represented by the binary approximation. This, in turn, ensures that the true MILPs
are solved in the inner loop. Consequently, the generated cuts are valid for the value
functions of these MILPs and, due to their relaxation property, also the original MINLP.
Analogously, the obtained lower bounds are valid for the corresponding optimal values.
Importantly, this is not true for SDDiP with static binary approximation, where the
state space is permanently modified and only approximations of the true MILPs are
solved in the inner loop. In our approach to solve MINLPs, it is crucial to determine
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guaranteed valid cuts for the value functions in both loops. Therefore, SDDiP cannot

be used effectively in this setting.

Our cut generation approach also differs from that in SLDP [1] (and also [52]),
where augmented Lagrangian problems are solved to determine nonlinear cuts. While
our method comes at the cost of introducing additional (binary) variables and con-
straints compared to those approaches, e.g., for the cut projection, we avoid solving
dual problems containing nonlinear penalization in the objective. Such penalization
may be disadvantageous as it prevents decomposition of the primal problems which
are solved in the solution process of the dual problem. Additionally, in contrast to
SLDP [1], we do not assume continuously complete recourse, but only the weaker
complete recourse, as we circumvent the requirement of Lipschitz continuity of the
true value functions by regularization.

The main contributions of this paper are as follows:

(1) We present the non-convex nested Benders decomposition (NC-NBD) method
to globally solve general multistage non-convex MINLPs. The method com-
bines piecewise linear relaxations, regularization, binary approximation and
cutting-planes techniques in a unique way. In contrast to existing approaches,
all approximations are improved dynamically where and when it is reasonable.
To our knowledge, this is the first decomposition method for general multistage
non-convex MINLPs.

(2) A crucial requirement using dynamic refinements is to ensure that all previously
determined cuts remain valid within the refinement process and have not to be
generated from scratch. We ensure this by a special cut projection and careful
choice of the MILP relaxations.

(3) We prove that the proposed NC-NBD method converges to an g-optimal solution
of P in a finite number of steps under some mild assumptions.

(4) We provide first computational results of applying NC-NBD to moderate-sized
instances of a unit commitment problem to illustrate its efficacy.

To enhance readability, we focus our discussions solely on deterministic MINLPs.
However, the presented NC-NBD idea can also be applied to stochastic programs with
stagewise independent and finite random variables.

The remainder of the paper is organized as follows. We present the considered prob-
lem formulation and assumptions in Sect. 2. Then, we introduce the NC-NBD with its
different steps in Sect. 3, before presenting convergence results in Sect. 4. Afterwards,
we provide computational results for instances of a simple unit commitment problem
in Sect. 5. We conclude with Sect. 6.

2 Problem formulation

We consider the following multistage non-convex MINLP problems

X1sees XT3 V150005

T
(P) wi= min Y fiCu,y)
t=1
st (xp,y) € Mi(x—y) Ve=1,...,T.
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Here r = 1, ..., T denotes the different stages with the final stage T € N. For each
stage ¢, the decision variables can be separated into mixed-integer state variables x; €

! 2 . 3 4
R:’_’ X Zj_’ and local variables y, € R™ x Z"i, with xo = 0. We define n; := n} + n?
as the number of state variables. The sets M, (x,_) appearing in the constraints for
each stage ¢ are defined by

Mi(xi—1) ={Cxr,y) € Xy x Y 0 g (i1, %, 3) <0, hy(xi—1, X7, y) =0}

X, and Y; denote box constraints; X := {0}. As such, X; and Y; are compact sets for
all stage-t variables. All functions f; : X; x ¥y > R, g : X;—1 X Xy X ¥} — R
and b, : X, x X; x Y, —> R™? are well-defined on their domains.

To exploit its multistage structure, we solve (P) by some extension of NBD. NBD
makes use of the dynamic programming formulation of (P), where each stage-t sub-
problem, r =1, ..., T, can be denoted by

(Pr(x=1)) Oi(xi—1) := xrmyi,nz, JiGr ye) + Qg1 (xp)

s.t. (z¢, Xr, Y1) € My

i = Xt—1,

with the value function Q,(-) of stage t and Q741(-) = 0. Note that x; links different
stages, i.e., x; is a decision variable for (P¢(x;—1)) and a parameter for (Pr4+1(x;)).
For the first stage, we obtain that Q1(xg) = v with xo = 0. Importantly, subproblem
(P¢(x¢—1)) is enhanced by introducing local copies z; of the state variables x;_1 and
the copy constraints z; = x;_1. Those copy constraints will prove crucial for the cut
generation later on. Taking into account the local copies, we define

M; = {2, X1, y1) 12 € X1, (X1, 31) € Mi(20)} .

As the subproblems (P¢(x;—1)) are non-convex MINLPs, the value functions Q,(-)
may be non-continuous and non-convex, two detrimental properties for Benders
decomposition approaches. To ensure that the value functions Q;(-) are at least lower
semicontinuous (l.sc.), we make the following technical assumptions:

(Al). Forallt =1,...,T,

(a) the functions f; are Lipschitz continuous on X; x Y;,
(b) the functions g; and h; are continuous on X;_; X X; X Y;.

(A2) (Complete recourse). For any stage ¢ and any x;—; € X;_1, there exists some
(z¢, X, y1) € Xi—1 X X; X Yy which is feasible for (Ps(x¢—1)).

As all variables are box-constrained, the feasible set M, (x;_1) of (Ps(x;—-1)) is
bounded. With assumption (A1) and the recourse assumption (A2), all subproblems
(Pt (x¢—1)) are feasible and bounded. Analogously, (P) is feasible with finite optimal
value v. Note that under assumption (A2) we can restrict to generating optimality cuts
in NC-NBD without the need to introduce Benders feasibility cuts.

‘We obtain our required 1.sc. property of the value functions Q;(-).
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Lemma 2.1 Under assumptions (A1) and (A2) the value functions Q:(-) are Lsc. for
allt=1,...,T.

Proof Fixing all integer variables, the 1.sc. follows from Exercise 1.19 in [41]. As X;
and Y; are bounded, only finitely many different values can be attained by the integer
variables. The minimum of finitely many l.sc. functions is l.sc. O

In the next section, we introduce the NC-NBD method, which combines regular-
ization, piecewise linear approximations, binary expansion and special cutting-plane
techniques in a unique way to solve (P).

3 Non-convex nested Benders decomposition
3.1 The NC-NBD principle

The basic idea of the NC-NBD algorithm is to employ that MILP problems can be
solved exactly by enhancements of NBD under certain assumptions and that MINLPs
can be outer approximated by MILPs iteratively. Thus, the method consists of two
main components. The first component is an inner loop which is used to determine an
approximately optimal solution of some MILP outer approximation (iﬂ) of problem
(P). This approximation is determined by piecewise linear relaxations of nonlinear
functions in (P). The second component is an outer loop which refines this outer
approximation iteratively (indexed by £) to improve the approximation of the optimal
value v of (P). The NC-NBD is summarized in Algorithm 1 and illustrated in Fig. 1.

The inner loop follows the general principle of NBD to solve (ﬁl). It consists of
a forward and a backward pass through the stages ¢t = 1, ..., T in each iteration i.
In the forward pass, the stage-t subproblem (I”\f (x¢—1)) is approximated in two dif-
ferent ways: The value function Q\,H(o) of the following stage is replaced by some
outer approximation inl(). Moreover, a regularization is added to ensure Lips-
chitz continuity of the corresponding value functions. Thus, regularized subproblems
(I/’\tR’h (x¢—1)) are solved, as proposed in [52], yielding trial solutions fc\f"

!, and an
upper bound 3 for (i’\l).

In the backward pass, the approximations Dfﬂr 1 () of @H (-) are improved itera-
tively by constructing additional cuts. As the value functions are possibly non-convex,
those cuts are nonlinear. Importantly, cuts for Q,H (+) are also valid for Q;+1(-), as
the first is an outer approximation of the latter.

In the literature, different ways are proposed to obtain nonlinear optimality cuts
and to ensure that the inner loop converges to the optimal value ¢ of (P*). One
method is to generate reverse-norm cuts [1]. However, this only works if the value
functions themselves are Lipschitz continuous which is not guaranteed in our setting.
Another, more general method is to solve some augmented Lagrangian dual problem,
as proposed in [1,52].

‘We propose a third and new method, based on the SDDiP technique [55]. We utilize
that we can generate sufficiently tight cuts by solving a Lagrangian dual in a lifted
space, where all state variables are binary. Thus, we (temporarily) approximate the
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Algorithm 1 NC-NBD

Input: Problem (P) satisfying (A1), (A2), tolerances ¢ > & > 0, scalar K, for all ¢, initial bin. approx.
precision §; € (0, 1Ke-1, upperboundsﬁo = 400, lowerboundﬁo, initial Q? (+) for all # and triangulations
’T;)forally el , ¢ «0.

o

1: while 3¢ — 3¢ > ¢ do
2 Setf < €410 < 1.5t Q8 () « 971(), 580 « 51,30 T

> PIECEWISE LINEAR RELAXATION REFINEMENT
3:  Refine the piecewise linear approx. of all y € I' to obtain Tf by longest-edge
bisection of the simplex corresponding to (Zf. %, 37)),_,
4:  Determine an outer approximation (ﬁ‘) of (P) by using a MILP model and
appropriate shifts for the piecewise linear approximations.
> INNER LOOP
Solve subproblem (ERJ[
while 3" — 3 > 2 do

> FORWARD PASS

(xéi y Qg"))‘ Store the optimal point (Z¢, ffi, 'y*f’).

7. for stagest =2, ..., T do
8: Solve subproblem (I”;R’u (fﬁl , in_l)) satisfying (A3). Store the optimal
point (ifi, }\fi,}\fi).
=L, . [=ti—1 ~ i —~ti i i

0: o = min {37 T (AGE 3 + alFE, — 7)) -
10: end for

> BINARY APPROXIMATION REFINEMENT
11: if Forward Pass solution in i equals that in i — 1 then

~1
K;

12: Set K;j < K;; + 1 forall £ and j. Set f;; = U; (Zk=’1 2k-1> .
13: end if

> BACKWARD PASS
14: for stagest =T, ...,2do ) ) )
15: Determine the best binary approx. 56\]’3[71 = B;_1X,_, of the state 3?[(’_1.
16: Solve subproblem (D]gt (A;'_l , Qf_’;f'l)). Store the optimal multiplier n,“ and

the corresponding optimal value cf’ of the Lagrangian dual function.
17: Construct the cut ¢]§"t (Ai—1) = cfi + (nfi)T)L,,l in the binary state space.
18: Model the optimal value function ¢fi of projecting ¢]§"’ to the original space
by MILP constraints using the KKT conditions.

19: Set Q7 (x) = max{QY (x,). of (x,)}.
20: end for

> FIRST STAGE UPDATE
21: Solve subproblem (I’;IR’li (xﬁ", Dg’iﬂ)). Store the optimal point (G 551“, 5716").
22: Update 7% to the optimal value Qf’ (0, Dgiﬂ ).
23: i «—i+1.

24:  end while i i .
25 SetT' « 14,7 <7, QL) « Qi) forallr =2, ..., T.
[> OUTER LOOP PROBLEMS

26: for stagest =1,...,T do
27: Solve subproblem (Pf (xf_l, Qf +1)). Store the optimal solution (zf, xf, yf).
28:  end for

29:  7° =min {5"], DR 1E T yf)} .
30: end while
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e-optimal
solution of (P)

Outer Loop
Problem
Solved?

Problem (P) satisfying Pi(ig(?;\‘is‘(‘. ,me‘ar
(A1) and (A2) elaxations

Refinement Outer Loop
(solving (P) iteratively Solve Outer
using cuts from inner loop, Loop Problems

refining MILP (P))

Inner Loop
Problem
no Solved?

Inner Loop
(solving (P) iteratively, Backward Pass
generating cuts for @)

Forward Pass

Binary
Expansion
Decision

Binary Approx.
Refinement

Fig.1 Conceptual overview of NC-NBD

state variables with binary ones, construct cuts in the binary space and then project
those cuts back to the original space. As we show, these projections can be modeled by
mixed-integer linear constraints in the original space. By careful construction, these
cuts remain valid even if the binary approximation is refined in later iterations.

In this way, we circumvent solving an augmented Lagrangian dual, which may be
even more expensive than solving the classical Lagrangian dual, as with the additional
nonlinear term in the objective, the primal problems lose their decomposability. In
return, we require more (binary) variables and constraints in the Lagrangian duals and
for an MILP representation of our cuts than the approach in [1].

In principle, the MILPs as they occur in the inner loop could also be solved by using
SDDiP with a static binary approximation of the state variables [55]. As discussed in
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Sect. 1, this approach has some properties which prevent an efficient integration into
our algorithmic framework, though.

As we show in the next section, for a sufficiently fine binary approximation, the
obtained cuts in the NC-NBD provide a sufficiently good approximation at the trial
solutions ff’_ 1- Additionally, the cut approximations Df(~) are generated in such a
way that they are Lipschitz continuous. This is sufficient to ensure convergence to a
globally optimal solution of (iﬁ).

o

At the end of the backward pass, a lower bound is determined. If ’ﬁgi and
~i

v"" are sufficiently close to each other, an approximate globally minimal point

((’Zf, Xt Sff))t:l _pof (PY) has been identified and the inner loop is left. Other-
wise, further cuts have to be constructed or the binary approximation has to be refined.
We discuss this decision in more detail in Sect. 3.3.6.

Once the inner loop is left, subproblems (P (xs—1, Qf +1)) are solved to determine
trial points xf_l and an upper bound 7* to v for the original problem (P). If this upper
bound is sufficiently close to v, the solution ((zf, xf, yf)) (—1__r is approximately

optimal for problem (P). If not, the MILP relaxation (ﬁ“‘l) is created by refining
(P*) in the neighborhood of ((Z¢, %Y, 3)),_;....7 and anew inner loop is started.

As for the inner loop, it is crucial that with these refinements in the outer loop
all previously generated cuts remain valid. Otherwise, the cut approximation Qf 1)
would have to be built from scratch, counteracting the idea of a dynamic solution
framework. In the following subsections, we show how such persistent validity can
be achieved by careful design. Note that, even though we make use of the same
regularization idea, our framework with nested loops and dynamic refinements also
differs from the method presented in [52].

We explain the different steps of NC-NBD in more detail in the following subsec-
tions, before we discuss convergence results in Sect. 4. As long as the index £ is not
needed for the discussions of the inner loop, we omit it for notational convenience.
Moreover, we note that several of the considered subproblems require the introduc-
tion of additional decision variables, e.g., for piecewise linear approximation or cut
projection. For reasons of clarity and comprehensibility, by the terms optimal point or
optimal solution we refer to the projection of their actual optimal points to the space
X;_1 x X; x Y;, which we are interested in.

3.2 Piecewise linear relaxations

In the outer loop of NC-NBD, all nonlinear functions y € I' in problem (P) are
approximated by some piecewise linear functions. This is achieved by determining
a triangulation of their domain, which in our box-constrained setting is always pos-
sible. Then, the piecewise linear functions can be defined on the simplices of this
triangulation using the function values of y at their vertices. For a thorough discus-
sion and state-of-the-art approaches to construct piecewise linear approximations and
triangulations, see [18,39,40].

The piecewise linear approximations can then be reformulated as mixed-integer
linear constraints using auxiliary continuous and binary variables. In the literature,
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several modeling techniques have been proposed, such as the convex combination
model, the incremental model and some logarithmic variants [4,18,38,51]. Later on,
we draw on refinement and convergence ideas from [9], which work for several of
these models, such as the generalized incremental model [9] or the disaggregated
logarithmic convex combination model [51].

By shifting the approximations appropriately, it can be ensured that the obtained
MILP (PJ) is indeed a relaxation of the original problem (P) [18]. Alternatively, one
can construct piecewise linear underestimators and overestimators, yielding tubes for
nonlinear equations [25].

Applying the piecewise linear approximations to problem (P), we obtain the MILP
outer approximation with copy constraints

i)\ A::
( ) v xl,.,.z,)l(r;n)r} ’’’’ Zfl(-xtayt)
S.t. (Zz,x,,yt)eMt Vi=1,...,T
Tt = Xt—1 Vtzl,,T

For reasons of clarity, we denote the piecewise linear relaxations of f;(-), g:(-) and
h:(-) by ﬁ(-), 2:() and iz\,(~), although they are modeled using auxiliary constraints
and variables. The set A//il is defined by replacing the functions g;(-) and A;(-) in M;
or M;(x;_1), respectively, with g;(-) and iz\, ).

The dynamic programming equations for t = 1, ..., T are given by

(Pr(xm1)) Qs i= min  fi(x, y0) + Oren ()
s.t. (2, X1, 31) € Mt
It = Xi—1-
For the MILP subproblems (I/’\t(o)), we obtain the following properties.

Lemma 3.1 Under gssumption (A2), subproblem (E(')) has complete recourse and
the value function Q;(-) is L.sc. forallt =1, ..., T.

The complete recourse follows from the complete recourse of (P (-)) by construction.
The 1.sc. then follows from Theorem 3.1 in [31].

3.3 Theinner loop

In the inner loop of NC-NBD, the MILP subproblems (E(xt_l)) are considered. As
stated before, we omit the index ¢ for its discussion.

The copy constraints are crucial for all problems solved in the inner loop. In the
forward pass, to ensure Lipschitz continuity, we consider regularized subproblems.
The regularization is based on relaxing and penalizing the copy constraints. In the
backward pass, to generate cuts, a special Lagrangian dual subproblem is solved
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based on dualizing the copy constraints. This is effective, since combined with a binary
expansion of the state variables, the copy constraints yield a local convexification [55].

3.3.1 Regularization

Lipschitz continuity of the value functions is difficult to ensure in the general non-
convex case. However, as shown recently in [52], for 1.sc. value functions, it is possible
to determine some underestimating Lipschitz continuous function by enhancing the
original subproblem with an appropriate penalty function ;. In contrast to the more
general regularization approach in [52], we require only so-called sharp penalty func-
tions ¥ (x;—1) = ||x;—1] to regularize the subproblems (ﬁ(xt_l)), for some norm

Definition 3.2 (Regularized subproblem and value function) Let o, > 0 for t =
2,...T,0; =0 and define

(PR 1) Of () = min i,y +oullvit =zl + O ()

syt

S.t. (Z[,X[,y[) € Mt-

(I”;R ) is called regularized subproblem and QtR (+) regularized value function.

By recursion, this approach yields the regularized optimal value 5% := QR (xo) for
the first stage. Lemma 3.1 implies that ung\er assumption (A2), the function Q;(-) is
Lsc. Then, the regularized value function QtR (+) has the following properties.

Lemma 3.3 (Proposition 2 in [52]) Forallt =1, ..., T we have:

(@) ézR(xt—l) = ét(xz—l)fo”all X1 € Xi—1, .
(b) Under assumptions (A1) and (A2), the regularized value function Q,R(~) is
Lipschitz continuous on X;_1.

As also stated in [52], using sharp penalty functions as in Definition 3.2, the penal-
ization is exact for sufficiently large (but finite) o; > 0. For such o, the problems (P)
and (ﬁR) have the same optimal points and 9 = ©. This result goes back to [14],
in which augmented Lagrangian problems are analyzed for MILPs. It is shown that
using sharp penalty functions and a sufficiently large augmenting parameter, strong
duality holds. As this result holds for any value of the dual multipliers, it is also valid
for the regularized subproblems.

Lemma 3.4 (Proposition 8 in [14]) Using sharp Eenalty Sfunctions \;, there exist some
oy > 0 such that the penalty reformulation in (PtR (x¢—1)) is exact for all oy > 0.

Lemma 3.4 indicates that using the regularized subproblems within our decompo-
sition method NC-NBD, we obtain convergence to v in the inner loop. To exploit this,
we take the following assumption:

(A3). All ; > 0 are chosen sufficiently large such that Lemma 3.4 is satisfied.

If (A3) is not satisfied, o, has to be increased gradually in the course of the NC-NBD
method to ensure convergence.
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3.3.2 Forward pass

In the forward pass of the inner loop we solve approximations of the regularized
subproblems (PtR (x¢-1)).
For iteration i, the stage-t forward pass problem is defined as follows

SR .
(P Fo1 Qi)

~R. ; o~ ; ;
9, G194 = Zn}clny fiGeo, yo) ol _y — zell + Q1 (x0)
1

st

s.t. (zs, X1, Y1) € My,

for the trial state variable X' With xo = 0. Function £’ t+1 ("), in some sense, approx-

— 1’
imates the value functions Q ( Qz 4p) and Qt 1( Q[ +2)- This approximation is
constructed in the backward pass see Sect. 3.3.4. As those value functions are non-
convex, the cut approximation Qi 41(+) is required to be nonlinear and non-convex.
However, as we show later, it can be expressed with mixed-integer linear constraints
by lifting the problems to a higher dimension. Therefore, in addition to x;, y; and
zt, the forward pass problem contains further decision variables, which are hidden in
Dr 10 and the piecewise linear relaxations f,, g: and ht

Note that expressing Qt 4+1() by mixed-integer linear constraints with
bounded integer variables, the same reasoning as in Lemma 3.1 can be applied to
show that Q (xt 1 £+1) is l.sc. and therefore, Q[R’l(ff_l, Qﬁﬂ) is Lipschitz con-
tinuous.

Even with a mixed-integer linear representation of Qﬁ +1(), subproblem
(I/’\tR" (f;_l, Qi+1)) is a MINLP due to the regularization. For ||-||1 or ||-]|c0, it can be
modeled by MILP constraints using standard reformulation techniques for absolute
values, though. .

The optimal point (Z/, X!, ! ) of each subproblem (I”:R’l (fr\t"_l)) is stored and X!
is passed to the following stage. Since ((Z}, %/, 3})),_; _ satisfies all constraints of

(ﬁ R) after all stages have been considered, an upper bound v on the optimal value

R of the regularized problem can be determined by

T
7 = min iff D (FGELIH+ ol —’z*,n)} .
=1
With assumption (A3) and Lemma 3.4, this is also an upper bound to v.

3.3.3 Backward pass-Part 1: binary approximation
The aim of the backward pass of an inner loop iteration i is twofold: Firstly, a lower

bound ¥ on ¥ is determined. Secondly, cuts for Q(-) are derived to improve and
update the current approximation Q(-).
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As mentioned before, we use a dynamically refined binary approximation of the
state variables and then apply cutting-plane techniques from the SDDiP algorithm
[55]. This approximation is based on static binary expansion [21].

Binary expansion can be applied component-wise to some vector x;. Some integer
component x;; € {0, Uj} can be exactly and uniquely expressed as

K;j
k—1
Xtj = 22 )\,[k/
k=1

with variables A;; € {0, 1} and K;; = [log, U;| + 1. Some continuous component
x;j € [0, Uj] can be expressed by discretizing the interval with precision 8;; € (0, 1).
We then have

K;j
k—1
Xij = Zz Brjrikj + 11
k=1

with K;; = [log, (ﬂUTj)J + 1 and some error r;; € [—%, ﬂ%]

For vector x;, this yields K; = Z'}’: | Kij number of binary variables. Defining
an (n; x K;)-matrix B, containing all the coefficients of the binary expansion and
collecting all binary variables in one large vector A; € BX, the binary expansion then
can be written compactly as x; = B;A; + ;.

Based on this definition, to generate cuts, for each stage ¢ and iteration i, a binary
approximation of ft"_l is used, i.e., it is replaced by B,_lki_l. Note that the approx-
imation is not necessarily exact for continuous components of 35;'_1. Therefore, the
cuts are not necessarily constructed at the trial point 35;.7] but at the deviating anchor
point ?ﬁ,t—l = Bt_]A.i_l.

In the backward pass, we start from the following subproblem, where due to the
binary approximation of the state variables, we also adapt the copy constraint to )‘:.71 =
3: with variables 3, € [0, 1151,

(P (o D) Q5 (A QD = min fi G, o) + Q75 ()
352t

s.t. (z¢, Xt, V1) € M,

2 = Bi—15:

3 € [0, 1%

=11
Remark 3.5 Sub.problem (ﬁlét (Xﬁ_l, Qiﬂ)) is- equivhalent to subproblem
(P} R ,_y» Q1) because z; = Bi_13i = Bioihl_| =X, .

Asymptotically, i.e., for an infinitely fine binary approximation, the anchor point
converges to the actual trial point.
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Lemma 3.6 We have limg,_, 0Xp,_; =X,_;.

With Lemma 3.6, asymptotically, the cuts are constructed at Fc\f_l. While this is
not directly useful in practice, since it requires an infinite number of binary variables,
it also implies that for componentwise sufficiently small §;,_1 € (0, 1), the cuts are
constructed very close to 5c\f_ 1- As NC-NBD constructs Lipschitz continuous cuts, this

guarantees a sufficiently good approximation of the value function atx]_,, as we show
in Sect. 4.

Importantly, in our framework the binary approximation is only applied temporarily
to derive cuts, while the state variables x;_; in the forward pass remain continuous.
In other words, the anchor points determine where cuts can be constructed, but do not
limit where they can be evaluated. This is a crucial difference to applying a szatic binary
expansion, as suggested in the original SDDiP work to solve MILPs with continuous
state variables [55].

Moreover, let us emphasize again that applying such static approximation is not
appropriate in our inner loop, as the obtained lower bounds are not guaranteed to be
valid for D or v. Similarly, the obtained cuts are not guaranteed to be valid for @ () or
0, (+), and therefore cannot be re-used within the outer loop. Our proposed inner loop
method does not share these issues. We follow a dynamic approach where the binary
precision is dynamically refined if required and, as we show later, all cuts remain valid

with later refinements.

3.3.4 Backward pass—Part 2: cut generation

As proposed in [55], the copy constraint is dualized to generate cuts. Applied to our
context, the following Lagrangian dual subproblem has to be solved

(DﬁBt()‘i—l’QiI})) max Ly, (r, QD 471 A,

Nl 1<t

where qﬁt (+) denotes the Lagrangian function for ; defined by

] i i+1y . : = i+1 T
E]’B,(ﬂ,’, Q;_H) ‘= min Sr (G, o) + Q;_H(xt) — Ty 3t
Xt V153153t
S.t. (Z[, Xt, yt) € M[
Zt = Bi—13:

3 € [0, 175

and |||l denotes the dual norm to the norm used in the regularized forward pass
problems (PtR’l (y_1> Qi)
A linear (optimality) cut in binary space {0, 1}%:-1 is then given by

P (A1) i= Lo, (!, QD)+ T a1, (1)
N— —
=:c§
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where n,i is an optimal solution of the Lagrangain dual subproblem (D (lt 1 Qiii)).

Those Lagrangian cuts are introduced in [55] and identified to be ﬁmte valid and tight
in the SDDIiP setting. In our setting, we obtain the following validity result.

Lemma3.7 Let ’Q\B,(') denote the MILP value function of stage t with additional
binary approximations. Then,

(a) forall x;,—1 € [0, I]Kt—l
/Q\Bt()\tfl) > ¢Br(Ai—1),
(b) forall x;—

01 (x1-1) = ¢B: (i—1)
for any d;—1 € [0, 115-1 ) such that x,—1 = Bi—1hi—1.

Lemma 3.7 a) follows directly from the validity proof for the SDDiP cuts, which
does also hold for A;_; € [0, 11%-1 instead of A,_; € {0, 1}X~1 (see Theorem 3 in
[55]). Part b) then follows using similar arguments as in Remark 3.5. Hence, ¢p; is, in
fact, a valid cut in [0, 1]%/-1. This enables us to obtain valid under-approximations also
for those points, which are not exactly approximated by the current binary expansion.
As it refers to an outer approximation, 0, (-) underestimates the original MINLP value
function Q(-). Thus, the obtained cuts are valid for Q,(-) as well.

Contrary to [55], but following [52], we bound the dual variable 7; in the Lagrangian

dual subproblem. Therefore, tightness for Q]lﬁt(-, Q;ﬂ

. . AR, i
the cuts are at least guaranteed to overestimate the value function Q]Bt' G, Q;i }) at\!l 1
i+1

This value function is obtained by regularizing /Q\]lét( 0,7 ) in the binary space using

the same norm as in the forward pass problem. By careful choice of the regularization

l+l
RORe A

overestimated at xB ,_1- This result is formalized in the following lemma.

) is not guaranteed. However,

factor, then, also the regularized value function Q ) in the original space is

Lemma 3.8 Assume that we use ||-||1 for regularization and its dual norm |||« for
bounding the dual multipliers. Then, as long asl; > oy|| B;—1 ||, where the latter denotes
the induced matrix norm of B;_1, we have

gp(hi_p > Op (U_, QI = 08 (e, QI
Proof See Appendix A. O
Remark 3.9 The induced matrix norm || B;_1|| depends on the chosen precision of the
binary approximation. It can be bounded from above independent of the precision,

e.g., |Bi—1ll1 < Usi—1,max With U;_1 max the largest component of the upper bounds
in Xt—l .
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3.3.5 Backward pass-Part 3: cut projection

Solving the forward pass problems (ER" (ft‘._l, Qi +1)) and the backward pass dual
problems (D (kt 1 Qﬁii)) requires expressing the cut approximation Q; 1) in
the original state variables x;. Recall that the computed cut ¢ ;41 (-) is a function of
[0, 11%r.

According to Lemma 3.7 a), the obtained cuts ¢p ;+1(-) are not only valid for all
binary points, but for all values in [0, 11X/, Allowing for A, € [0, 11X in the binary
approximation, there exist infinitely many combinations of A; to exactly describe some
point x; € X,, though. Therefore, following from Lemma 3.7 b), one cut in binary
space entails infinitely many underestimators of Q;41(-) at x; in the original space
X;. Including infinitely many inequalities in £,41(-) is computationally infeasible.
Instead, we consider the pointwise maximum of the projection of the cuts to X;.
That way, only the best underestimation for each point x; is taken into account. In
doing so, we obtain a nonlinear, i.e., piecewise linear, cut in the original state space.
For simplicity, in the following, by cut projection we always mean the pointwise
maximum of the actual projection.

The projection of some cut ¢p ;+1(-) to X; can be described as the value function

Gr11(x;) == m)\ax [Cz+1 + (7Tt+1)T)Lt B =X, 0 S, A > 0] 2)

of a linear program where ¢ denotes a vector of ones of dimension K;. The dual
problem to (2) yields

¢£r1(xt) = 717111/? {Ct+1 + X,TTIt +elu B,Tnz + T = Trg1, oy > 0} NE))
st

Note that the dual feasible region does not depend on x; and has a finite number of
extreme points. Therefore, the cut projection is piecewise linear and concave.

As problem (2) is feasible and bounded for any x; € X;, this also holds for the dual
problem (3). Therefore, in a dual optimal solution, 1; and u, are bounded. Note that
this bound may change with the binary approximation precision f;, though, and that,

if we would generate tight cuts for Qt +1( , Qiié), those cuts may become infinitely
steep close to discontinuities. However, as we can bound m; in the Lagrangian dual

subproblem independent of §;, see Remark 3.9, and thus construct cuts which at least
overestimate the regularized value function Q
such cases should be ruled out.

We formalize this by assuming the existence of a global bound for n;.

i
t+1( Q,H) at the anchor point xIB% -

(A4). There exists some p; > 0, such that forallt = 1, ..., T, any binary precision
B and any x;, the optimal dual variable 7, in problem (3) can be bounded, i.e.,
Inell < .

For example, if we obtain cuts which are, in fact, tight for Q ( D;ié) at x]B .

and consider only basic solutions in the Lagrangian dual, the gradlent of the cuts
is bounded by o;41. With Assumption (A4) it follows that the linear cuts ¢ ;+1(-)
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derived in the binary space yield a nonlinear, but Lipschitz continuous projection
¢:+1(-) in the original space.

To express this projection by mixed-integer linear constraints, we use the KKT
conditions to problems (2) and (3). To emphasize that these conditions are considered
for the projection of one specific cut r (the index denoting the r-th cut constructed),
we index all occurring variables and coefficients by r.

—lpy = v+ up + (B i) =0 )
B'A —x, =0 (3)

AT >0 6)

M —e<0 (7)

vy, ur >0 ®)

o)A =0 9)

() O —e) =0. (10)

The complementary slackness constraints (9) and (10) are nonlinear, but compo-
nentwise can be expressed linearly using a Big-M formulation (alternatively, SOS-1
constraints may be used):

Ay < Mgy, vy < Mor(1 —oyp), oy, € {0, 1} (1)
e — 1= Magug,, up < Mag(I—uy), uy €{0,1} (12)
For all components k, we can choose M, = 1 and M3; = —1 due to A € [0, 1].

Moreover, using (A4), we are able to obtain explicit choices for My, and My as
well.

Lemma 3.10 Under (A4), there exist explicit, finite bounds for vj, and uy,.
Proof See Appendix B. O

The cut approximation Q;ﬂ (+) is then defined as the maximum of all cuts ¢ , | =

Cryq ) H)TA{ where the variable A] satisfies the linearized KKT conditions (4)—(8)
and (11)—(12) for the r-th cut. With Assumption (A4), it is Lipschitz continuous.

Lemma 3.11 The cut approximation Q41 (-) is Lipschitz continuous in X, with Lips-
chitz constant p;.

The cut projection requires to introduce the variables A}, v/, uy, w}, uf, n; and
constraints (4)—(8) and (11)—(12) for each cut r. In particular, each cut is associated
with a variable A} € [0, 1]%7 where K] corresponds to the number of binary variables
at the time of the cut’s generation. This increases the problem size considerably, as the
number of variables and constraints to be added per cut is in O(n, log (f%)) In return,
it ensures that cuts do not have to be generated from scratch after each refinement.
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3.3.6 Stopping and refining
At the end of the backward pass, a lower bound 7' is determined by solving the first-
stage subproblem (P (0, Q;'H)). Here, no Lagrangian dual is solved, since no cuts
have to be derived. The lower bound is non-decreasing because the cut approximation
is only improved.
If the updated bounds are sufficiently close to each other, i.e., if
=i
v

<%

=),

for some predefined tolerance & > 0, an approximately optimal point of problem (ﬁ )
has been determined. We show in the following section that this is the case after finitely
many iterations i.

If the gap between the bounds does not meet the stopping criteria yet, two cases
are possible: In the first case, the algorithm has not determined the best possible
approximation for the given binary approximation precision, yet. New cuts have been
determined in iteration i such that the lower bound ’Q’ has been updated, and the
forward solution will change in iteration i + 1 as the previous one is cut away.

In the second case, despite not meeting the stopping criterion, the forward solution
does not change at the beginning of iteration i + 1. This case is related to the binary
approximation. It can occur if the binary approximation is too coarse and therefore, for
all#, the determined cuts at%l do notimprove the approximation at X} . Moreover, it can
occur if in subsequent iterations the same cuts are constructed, since 3?’;3’ 1= 35’;[1_1.
Finally, it can also occur if all possible cuts have been generated: For a fixed binary
approximation, there exist only finitely many points X, . If we restrict the Lagrangian
dual subproblem to basic solutions, then only finitely many different cuts can be
determined [55].

In the second case, at the beginning of the backward pass of iteration i, the binary
approximation is refined. The refinement is computed by increasing K;; by +1 for all
components j and all stages ¢ with

For simplicity, we refine in Algorithm 1 all stages and components equally by +1. Note
that each refinement requires the introduction of an additional vector A;, as described
in the previous subsection.

As all previously generated cuts have been projected to the original space X;, they
remain valid and have not to be recomputed when refining the binary approximation.
This is computationally important.
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3.4 The outer loop

3.4.1 The outer loop problem

Once the inner loop is left, we set 0 := 1%, =% and Qf(~) = in(-) for all

=( . .
t =2,...,T.Note that v is not guaranteed to be a valid upper bound for v because

0* < v. Moreover, we set ((Z7, %/, 3))),_, 7 = (G 3" 7)),

..... T
To approximate the optimal value v of (P), we solve subproblems
oL L Lol 14 . : 14
(P15 Q1) O, (51, Q) = min S, yo) + Q4 ()
1A )Vt
S.t. (Z[, Xt, yl) S M[
14
U =X
in a forward manner fort =1, ..., T with x(’; = (0and xf := X;, where x; is an optimal

solution of (Pte (xf_1 R ,Qf - 1)) for ¢. Here, we exploit that the cut approximation Qf ),
constructed in the inner loop, is valid for Q;(-) by design as well. By solving these

subproblems, we obtain a feasible solution ((zf, xf, yf)) el T for (P) and we can

determine a valid upper bound for v as 7* = min {6671, Zthl fi (xf, yf)}.

The subproblems (Pf (xf_1 s Qf +1)) are non-convex MINLP problems. This means
that in order to solve the original non-convex problem (P), easier, but still non-convex
subproblems have to be solved to optimality for each stage ¢ in each outer loop iteration
£. This might be a hard challenge by itself. We make the following assumption for the
remainder of this article:

(AS). An oracle exists that is able to solve subproblems (Pf (xf_1 , Qf +1)) to global
optimality.

In case that no such global optimization algorithm is available, one can solve appro-
priate inner approximations of (Pte (xf_l, Qf +1))> Which are improved in the course
of the algorithm.

If v* — 9 < &, then NC-NBD terminates and ((z{, x, yf))t=1
solution for (P). Otherwise, the cut approximations Qf 41 () are not sufficiently good
underestimators for the true value functions, even though they give a good approxima-
tion of Qf (+). This implies that the piecewise linear relaxations have to be improved.
Instead of refining them everywhere, they are refined dynamically where it is promis-
ing, i.e., in a neighborhood of the approximate optimal solution ((’z\;Z Fc”f, ?f)) =1

is an g-optimal

of (Im). In refining the piecewise linear relaxations in its neighborhood, the current
solution can be excluded in the next inner loop and the lower bound v* improves.

Remark 3.12 Instead of 3%, an even better lower bound for v is given by the optimal
value of the first stage subproblem (Pl‘Z (xf;, Qg)).
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3.4.2 Refining the piecewise linear relaxations

The refinement consists of two steps: (1) the piecewise linear approximations are
refined and (2) the corresponding MILP (Pe) is updated — in such a way that the new
MILP (P“'l) again yields a relaxation of (P).

Different strategies are possible to achieve this. For a thorough overview, we refer
to [18]. In the following, we make use of a specific adaptive refinement scheme for
triangulations from [9] for any nonlinear function y; € I;. The given piecewise lin-
ear approximation at iteration £ is defined by a triangulation 7 of X, x X; x V;
(or a subspace) and the corresponding function values of y;. Instead of refining this
triangulation everywhere now, the main idea is to only refine it in a neighborhood of
((z\f, ff, v )) 1. - Therefore, first, the simplex in 7 containing this point is iden-
tified. It is then d1V1ded by a longest-edge bisection, yielding a refined triangulation,
for which a new MILP model can be set up. As proven in [9], this refinement strategy
has some favorable properties with respect to convergence, see Sect. 4.2.

It is important that the obtained relaxation (ﬁ“‘l) is tighter than (iﬂ) so that
the corresponding value functions improve monotonically. This is required to ensure
that previously generated cuts remain valid in later iterations. For concave functions,
this is always satisfied using the presented refinement strategy. For other functions,
e.g., convex ones, a more careful determination of the relaxation is required or the
MILP models for earlier relaxations have to be kept instead of being replaced. For our
theoretical results, it is sufficient that such monotonically improving relaxations can
always be determined.

After refining the piecewise linear relaxations, a new iteration £ + 1 is started,
beginning with the inner loop.

4 Convergence results

In this section, we prove the convergence of the NC-NBD algorithm. We start proving
the convergence of the inner loop to an optimal solution of (P*¢) based on some results
on the binary refinements. Afterwards, we prove that the outer loop converges to an
optimal solution of the original problem (P).

4.1 Convergence of the inner loop

As explamed in Sect. 3.3.3, within NC-NBD the cuts are not generated at the trial
points X' +_1» but instead at anchor points xB 1 = B 1A . This means that the
generated cuts, and with that also the cut approximations D;( ), implicitly depend on
the binary approximation precision S;.

However, Lemma 3.6 implies that fc\t"_ 1 and Fc\fé’t_l should become equal asymp-
totically in the refinements of the binary approximations Therefore, asymptotically,
the cuts are guaranteed to overestimate Q ( X 1 D; T 1) and, due to their Lipschitz
continuity, for some sufficiently small prec151on they are at least ep;-close. This, in
turn, leads to convergence of the inner loop, as we formalize and prove below.
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Prior to this, let us introduce two useful ideas. Firstly, using the Lipschitz continuity
results from Lemma 3.3, page 12 and Lemma 3.11, we can bound the cut approximation
error in x;_, as follows:

Lemma 4.1 With Assumption (A4), for any iteration i and stage t it follows

QP E_) - QM E L QD = (W + e lR L — X, -
Proof See Appendix C. O

Secondly, for any stage ¢ and any fixed binary approximation, if we restrict to
basic solutions in the Lagrangian duals, only finitely many different realizations of cut
approximations £, (-) can be generated. Thus, after a finite number of iterations, the
binary approximation is refined. Assuming that the inner loop does not terminate for
¢ = 0, we can then observe infinitely many such refinements. Hence, with j — oo,
we alsoget B; — Oforallr=1,...,T.

Now, we address convergence of the inner loop of NC-NBD to an optimal solution
of (ﬁ). First, we provide a preliminary result, which can be proven by backward
induction using Lemmas 3.11 and 4.1.

Lemma 4.2 Suppose that the inner loop does not terminate fore = 0. Then, the infinite
sequence of forward pass trial solutions (X');cn possesses some cluster point X* with
a corresponding convergent subsequence (X'7) jen. This subsequence satisfies

Jim QG = OF G, (13)

Proof See Appendix D. O
Using this result, convergence can be proven.

Theorem 4.3 Suppose that the inner loop does not terminate for © = 0. Then, the
sequence (0');en of lower bounds determined by the algorithm converges to v and
every cluster point of the sequence of feasible forward pass solutions generated by the
inner loop is an optimal solution of (ﬁ).

Note that with a similar argument it can be shown that the inner loop terminates as
soon as Qi (X _|) > Q\f(ic\ti_l) forallt =2,..,T.

Considering that the inner loop is integrated into an outer loop improving the MILP
approximations of (P), infinite convergence is not directly useful. Moreover, infinitely
many binary refinements are not computationally feasible. However, we can deduce
that an approximately optimal solution of (ﬁ) is determined in a finite number of
iterations.

Corollary 4.4 For any stopping tolerance € > 0, the inner loop stops in a finite number
of iterations with an €-optimal solution of (P).
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4.2 Convergence of the outer loop

We start our convergence analysis of the outer loop with a feasibility result for the
solutions determined in the inner loop, which follows from the convergence results in
[9]. The main idea is that, as the domain is bounded for all functions y € I', using a
longest-edge bisection, after a finite number of steps, all considered simplices become
sufficiently small (since in the worst case all simplices have been refined sufficiently
often).

Lemma4.5 ([9]) Using longest-edge bisection for the piecewise linear relaxation
refinements within N