
On approximating non-convex value functions in
stochastic dual dynamic programming and related

decomposition methods

Zur Erlangung des akademischen Grades eines

Doktors der Wirtschaftswissenschaften
(Dr. rer. pol.)

von der KIT-Fakultät für Wirtschaftswissenschaften
des Karlsruher Instituts für Technologie (KIT)

genehmigte

DISSERTATION

von

Christian Füllner, M.Sc.
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Abstract

Today, stochastic dual dynamic programming (SDDP) is one of the state-of-the-

art algorithms to solve multistage stochastic optimization problems. One of its

key ideas, borrowed from Benders decomposition, is to decompose a multistage

problem into several subproblems which are coupled by so-called value functions.

As these functions are not known explicitly, they are iteratively approximated using

cutting-planes (linear cuts). However, in order for this to work, several crucial

assumptions have to be satisfied, among them linearity (or at least convexity) of

all occurring functions as well as stagewise independence of the uncertain data. In

many applications, this is not guaranteed. For this reason, various enhancements

of SDDP have been proposed which allow to relax some of these assumptions.

The research in this thesis addresses an open challenge in this regard, which

is to extend SDDP to problem classes for which non-convexities arise in the value

functions, and thus linear cuts are not sufficient to guarantee (almost sure) con-

vergence to an optimal solution. The focus is on three specific types of problems:

a) including integrality constraints, b) including non-convex functions, c) with the

uncertain data modeled by a non-convex autoregressive process. It is shown that

in all three cases a tight approximation of the value functions can be achieved

using special non-convex cuts. By careful design, based on these results solution

methods with proven convergence are developed, the one for case c) being the first

of its kind. This extends the toolbox of SDDP-like algorithms substantially.

In addition, a novel framework is presented to generate linear cuts with favor-

able properties, which may help to improve the computational performance of the

existing SDDP-derivative stochastic dual dynamic integer programming (SDDiP).

Finally, as many of the proposed linear and non-convex cuts rely on special La-

grangian relaxations, a detailed theoretical study of these relaxations and their

properties with respect to the value functions is conducted.

All algorithmic contributions are tested in case studies on real-world applica-

tions, such as unit commitment, hydrothermal scheduling or lot-sizing, confirming

their effectiveness and their potential. However, the studies also reveal that due

to a considerable computational overhead in generating and incorporating the

proposed (non-convex) cuts, efficiency and computational tractability still remain

major challenges for SDDP-like algorithms given non-convex problems.
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Part I

Research summary





Chapter 1

Introduction

1.1 Motivation and research outline

In many decision-making situations in practice, multiple subsequent decisions have

to be taken that are coupled by their effects on a common system state. Often

at least some of the decision-relevant data are subject to uncertainty. In order

to hedge against the risk of bad outcomes, this uncertainty should be taken into

account in the decision-making. To compute an optimal policy of decisions, this

situation can be mathematically modeled as a multistage stochastic optimization

problem and can then be solved by a suitable solution method.

In order to keep this kind of problem tractable, it is usually assumed that the

uncertainty is modeled by discrete and finite random variables, and thus can be

represented by a finite scenario tree. However, even with this assumption, solving

a multistage stochastic optimization problem as a standalone problem is usually

computationally intractable. Therefore, a common idea, borrowed from Benders

decomposition (Benders, 1962), is to decompose it into several subproblems which

are coupled by so-called value functions. As these value functions are not known

explicitly, they are iteratively approximated using cutting-planes (also called linear

cuts or Benders cuts). If all subproblems are linear (or at least convex) without

integer constraints, then the value functions are convex, and therefore these ap-

proximations are sufficient to guarantee finite convergence to an optimal solution.

This constitutes the algorithm nested Benders decomposition (NBD) (Birge, 1980).

3



4 1 Introduction

In general, the size of finite scenario trees grows exponentially in the number of

stages of the multistage problem. Therefore, despite being preferrable to solving a

single problem, applying NBD becomes too expensive for all but moderately sized

scenario trees. As long as the uncertainty in the problem data is stagewise inde-

pendent, however, the scenario tree collapses to a recombining tree. This means

that the number of subproblems to be solved grows only linearly in the number of

stages, even if the total number of considered scenarios is still exponential in the

number of stages. This gap in the number of subproblems and scenarios can be

exploited by considering only a sample of scenarios in each iteration, while still ap-

proximating all value functions. In this case, still (almost sure) finite convergence

can be proven. This is the key principle of stochastic dual dynamic programming

(SDDP) (Pereira and Pinto, 1991). To this date, it is one of the state-of-the-art

algorithms to solve multistage stochastic linear (or convex) programs.

This thesis makes several contributions to the research on SDDP and related

decomposition algorithms. It is composed of five scientific papers collectively.

Since its invention, SDDP has been applied in numerous case studies, most

prominently, but not exclusively in power system optimization. Also various at-

tempts have been made to modify the algorithm, either to improve its computa-

tional performance or to relax some of its crucial assumptions and to extend it

to more general problem classes. Therefore, SDDP has developed into a broad

research field. This motivates the first major contribution of this thesis.

(1) We provide a comprehensive tutorial-type review of SDDP as a research field.

[Füllner and Rebennack (2023), see Paper A]

One of the open challenges that is identified is to develop effective and efficient

extensions to cases in which the subproblems and the associated value functions

become non-convex. In such cases, linear cuts are not sufficient to guarantee (al-

most sure) convergence of NBD or SDDP to an optimal solution because in general,

either validity or tightness of these cuts is compromised. The main research ob-

jective of this thesis is to contribute to closing this research gap. The focus is on

three specific types of problems:

a) problems including integrality constraints,

b) problems including non-convex functions,
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c) problems for which the uncertain data is modeled by a non-convex autore-

gressive (AR) process.

All these cases are relevant in practice, for instance they may occur in unit com-

mitment (Zou et al., 2019a; Hjelmeland et al., 2019) or hydrothermal scheduling

(Löhndorf and Shapiro, 2019) problems.

For case a), a first pivotal approach exists in stochastic dual dynamic inte-

ger programming (SDDiP), an SDDP-variant where instead of classical Benders

cuts linear cuts are generated based on Lagrangian duality (Zou et al., 2019b).

If all state variables coupling the stages are binary, it can be shown that these

Lagrangian cuts are tight, and thus sufficient to ensure (almost sure) finite conver-

gence of NBD or SDDP. However, to exploit this approach in the case of general

mixed-integer state variables, the state variables have to be approximated using

binary variables, which is computationally costly. Moreover, this requires a de-

cision on the number of binary variables in advance, usually without knowledge

which choice will be sufficient to guarantee a certain approximation quality.

Additionally, for cases a) and b) the generation of non-convex cuts in extensions

of SDDP based on augmented Lagrangian duality has been proposed during our

work on this thesis (Ahmed et al., 2022; Zhang and Sun, 2022). We still proceeded

with our work, but with taking these new research findings into account.

Overall, in this thesis, we show that for all three cases, a), b) and c) a tight

approximation of the non-convex value functions can be achieved by using care-

fully designed non-convex cuts. These cuts can be incorporated into NBD-like or

SDDP-like algorithms to develop solution methods with proven convergence. More

precisely, we make the following contributions.

(2) With respect to case a), we investigate how SDDiP can be “dynamized”

in the sense that the binary approximation of the state variables is refined

throughout the solution process if necessary instead of being static. This

can be done without compromising the validity of previously generated cuts.

Interestingly, as we show, following this approach leads to a lift-and-project

cut generation process, which results in tight non-convex cuts approximating

the non-convex value functions in the original state space. We call the re-

sulting algorithm Dynamic SDDiP and prove its convergence. We also show

in detail how our non-convex cuts and their generation process differ from
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the proposals in Ahmed et al. (2022); Zhang and Sun (2022), and explain

the strengths and weaknesses of each approach.

[Füllner and Rebennack (2022); Füllner et al. (2024b), see Papers B and C]

(3) With respect to case b), we propose a new solution framework that can be

seen as an extension of NBD to general non-convex multistage stochastic

problems, and may be generalized to include sampling in the future. Es-

sentially, this framework incorporates Dynamic SDDiP and dynamically re-

fined piecewise linear relaxations of nonlinear functions as key components.

This method is called non-convex nested Benders decomposition (NC-NBD).

Again, we provide a convergence proof. Apart from the method in Zhang

and Sun (2022) NC-NBD is the first exact solution method for this general

problem class. In contrast to the former, nonlinear problems only have to be

solved occasionally instead of each iteration.

[Füllner and Rebennack (2022), see Paper B]

(4) With respect to case c), we propose an extension of SDDP that can handle

non-convex log-linear AR processes describing the uncertainty in the right-

hand side of a multistage stochastic linear problem. A major component of

this extension is the generation of cuts that are non-convex in the history

of the AR process, but still linear in the original state variables. As we

show, this allows for incorporation of these cuts into SDDP. For this type of

problem, our work is the first one that does not require an approximation

of the AR process. Therefore, it allows for more flexibility and accuracy in

modeling uncertain data in SDDP.

[Füllner and Rebennack (2024), see Paper E]

In addition to studying non-convex approximations, we also make contributions

to the generation of linear cuts, which are for instance used in SDDiP or heuristic

approaches to solve non-convex problems.

(5) Based on recent advances for Benders decomposition (Fischetti et al., 2010;

Brandenberg and Stursberg, 2021; Hosseini and Turner, 2021) and two-stage

stochastic programming (Chen and Luedtke, 2022) we present a novel frame-

work to generate Lagrangian cuts with favorable properties, such as maxi-

mum cut depth, facet-defining behavior or Pareto-optimality. These cuts
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may prove helpful in improving the computational performance of SDDiP.

[Füllner et al. (2024a), see Paper D]

Finally, as many of our proposed solution methods and (linear or non-convex)

cuts rely on the concepts of Lipschitz regularization and Lagrangian duality, we

shed light on both concepts from a theoretical perspective.

(6) We provide a thorough theoretical study on Lipschitz regularization, La-

grangian duality and their relations to the value functions as well as each

other. In particular, we analyze in detail the effects that so-called copy

constraints and Lipschitz regularization have on Lagrangian duals, the gen-

eration of Lagrangian cuts and the properties of those cuts. By doing that,

we are able to generalize the tightness result from SDDiP (Zou et al., 2019b)

to the Lipschitz regularized case.

[Füllner et al. (2024b), see Paper C]

In order to evaluate the performance of our theoretical and algorithmic contri-

butions, we also study them computationally.

(7) We conduct several computational experiments and case studies on real-

world applications, such as unit commitment, hydrothermal scheduling or

lot-sizing problems, to test the proposed solution methods. The results con-

firm their effectiveness and their potential. However, the studies also re-

veal a considerable computational overhead in generating and incorporating

the proposed (non-convex) cuts in many cases. This shows that efficiency

and computational tractability still remain major challenges when applying

NBD-like and SDDP-like algorithms to non-convex problems.

1.2 Structure of the thesis

This thesis is organized in two parts. Part I provides a general overview on the

research conducted in this thesis and puts the individual scientific papers into con-

text. In Chapter 2, some theoretical background is introduced. In Chapter 3, then

the research objectives of this work are motivated. The conducted studies and

their main contributions are summarized in Chapter 4. Finally, Chapter 5 con-

cludes with a summary, discusses limitations of the presented results and provides



8 1 Introduction

an outlook on potential future research directions. Part II of this thesis contains

the full manuscripts of all five scientific papers.



Chapter 2

Theoretical background

In this section, we introduce some notation and give a basic overview on the

theoretical background that is required to understand the motivation for as well

as the main contributions of the research presented in this thesis. For details, we

refer to the papers in Part II.

2.1 Mathematical definitions

First, we present some important mathematical concepts that are used throughout

this thesis. We define R := R ∪ {±∞}.

Definition 2.1.1 (Convex set). A set M ⊆ Rn is called convex if for all λ ∈ (0, 1)

and all x, y ∈M also λx+ (1− λ)y ∈M .

Definition 2.1.2 (Epigraph). Let f : Rn → R be a function. Then the set

epi(f) :=
{
(x, α) : x ∈ Rn, α ∈ R, α ≥ f(x)

}

is called the epigraph of f .

Definition 2.1.3 (Convex function). A function f : Rn → R is convex if its

epigraph epi(f) is a convex subset of Rn+1.

The last definition is taken from Rockafellar (1970). Note that it deviates

from the most common definition of convex functions, but is more convenient in

our context, as it allows f(·) to take infinite values. Moreover, any function f(·)

9
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satisfying the standard definition can be extended to one satisfying the definition

presented above.

Definition 2.1.4 (Lipschitz continuous function). Let M ⊆ Rn and let ∥·∥ be

some norm. A function f : M → R is Lipschitz continuous on M (with respect to

∥·∥) if there exists some constant L > 0 such that for all x, y ∈M

|f(x)− f(y)| ≤ L∥x− y∥.

2.2 Multistage decision processes

One of the main premises in multistage stochastic programming is that in some

given system, several subsequent decisions have to be taken over a known and

finite time horizon [T ] := {1, . . . , T}, with T ∈ N. More precisely, on each stage

t ∈ T decisions xt ∈ Rdt have to be taken, where dt ∈ N denotes the dimension.

The challenge is that these subsequent decisions are not independent of each

other, but coupled. This means that taking a specific decision at one point of

time may restrict the feasible decisions that can be taken at later points. We

should note that in multistage stochastic programming xt takes both the role of a

decision variable (or action) that is actively taken by the decision-maker and an

underlying system state variable that these decisions rely on. Sometimes, purely

local decisions are modeled by additional vectors yt ∈ Rd̄t , d̄t ∈ N, but we abstain

from this in this introduction. In dynamic programming, on the contrary, actions

and states are clearly distinguished in notation.

The second main premise is that some of the data in the decision-making

problem are uncertain and only revealed over time. Usually, the first stage data

are assumed deterministic, but we include it in our formal description.

For each stage t ∈ [T ], let (Ωt,Ft,Pt) denote a probability space, and let

the sigma algebras define a filtration F1 ⊆ F2 · · · ⊆ FT . Then, for each t,

we can define an Ft-measurable random vector ξt : Ωt → Rκt , κt ∈ N, on this

probability space to model the uncertain data of this stage. To distinguish the

random vectors ξt from their realizations ξt, we use bold font. In general, bold

font is used to signify random vectors. The support of ξt is denoted by Ξt, with Ξ1

a singleton. We can combine all random vectors to a stochastic process (ξt)t∈[T ]
with realizations ξ := (ξ1, . . . , ξT ).
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Reconsidering the decision process given this uncertainty, the paradigm is that

at the first stage, decisions x1 are taken which hedge against the uncertainty over

the whole time horizon [T ] (so-called here-and-now decisions). On all following

stages t = 2, . . . , T , in contrast, decisions xt can be taken after the uncertain

data for that specific stage has realized, that is, new information can be taken

into account (so-called wait-and-see decisions). In other words, the decision xt

can be taken dependent on how the uncertain data up to stage t unfolds. This

makes xt(·) a function of ξt, and by coupling a function of the whole history

ξ[t−1] := (ξ1, . . . , ξt−1). Importantly, xt(·) is also Ft-measurable, and thus non-

anticipative, meaning that it does only depend on historic realizations, but does

not anticipate future events.

The multistage decision process with uncertainty is visualized in Figure 2.1.

· · ·

t = 1 t = 2 t = 3 t = T

ξ2 ξ3 ξT

x0 x1 x2 x3 xT−1 xT

Figure 2.1: Multistage decision process with uncertainty (ξ1 is deterministic).

A common example to illustrate this is a hydrothermal power system in which

a thermal generator and a hydro power plant are available to meet the electricity

demand over time at minimum cost. Whereas thermal generation is cost-intensive

due to the necessity to purchase fuel, draining water from a hydro reservoir through

a turbine to generate electricity has almost no operational cost. Therefore, given

an electricity demand at some stage t, the naive strategy is to use as much hydro

power as possible to satisfy the demand. However, this kind of strategy completely

neglects the future consequences of this decision. Using too much water at stage

t may lead to a shortage of water later on, especially in dry periods without

considerable inflows. This may directly translate to higher costs or a shortage of

power at later stages. Moreover, future inflows are uncertain. For this reason,

the potential value of storing water for later stages should already be taken into

account in the decision-making at stage t. In other words, the ability to store

water in reservoirs leads to a temporal coupling of the decisions over the stages.
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The considered decisions xt may have to satisfy certain constraints. For in-

stance, in our previous power system example, the thermal generation and hydro

generation together have to meet the demand at each stage t. Mathematically,

the constraints can be modeled using some Ft-measurable set-valued mapping

X t(xt−1, ξt), which is defined by several equations and inequalities. Moreover, we

may enforce that xt (or some of its components) are only allowed to take inte-

ger values. In addition to constraint satisfication, an objective function ft(·, ξt) is
used to evaluate the quality of different decisions xt given a realization ξt. In our

previous example, the objective function measures the costs.

The aim in the decision-making process is then to come up with a sequence of

decision functions
(
xt(ξ[t])

)
t∈[T ], also called policy, which provides feasible decisions

for each stage t ∈ [T ] and almost every realization of the uncertain data, while

minimizing (or maximizing) the objective function on average. Therefore, we

consider (conditional) expected values in the objective function. This decision-

making problem can be modeled as an optimization problem. We formalize this

in Sect. 2.3 and refer to it as a multistage stochastic program (MSP).

If ξt are continuous random vectors, then for all but very special cases, this op-

timization problem becomes computationally intractable (Rebennack, 2016). For

this reason, in practice usually the true distributions are approximated by discrete

ones, for example using a sample average approximation (SAA) (Shapiro et al.,

2014). For the remainder of this thesis, we simply assume that ξt is a discrete

and finite random variable for all t ∈ [T ] with a known conditional distribution

F|ξ[t−1]
given a history ξ[t−1]. This implies that over the whole time horizon, the

data process (ξt)t∈[T ] can only take finitely many different realizations ξs, called

scenarios, which we index by s ∈ S, where S is a discrete index set.

In this setting, the uncertainty in the problem can be represented by a finite

scenario tree, as illustrated in Figure 2.2.

2.3 A single-problem formulation

Using the previously described ingredients, we can now formalize MSP. There are

different approaches to do this. We start with formulating it as a single optimiza-

tion problem.
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t = 4t = 3t = 2t = 1

ξ11

Figure 2.2: Finite scenario tree for an example with T = 4. It models 18 scenarios
ξs, with ξ11 highlighted.

Scenario representation. Given our assumption of discrete and finite ran-

dom vectors, we can formulate MSP as a finite-dimensional optimization prob-

lem by replacing each decision function xt(ξ[t]) with a finite number of variables

xts, s ∈ S. As becomes clear from Figure 2.2, to ensure non-anticipativiy, we have

to make sure that xts = xts′ for all t ∈ [T ] and all s′ ∈ Sst, where the latter is the

set of scenarios that share the same node of the tree with scenario s at stage t.

This yields the problem

v∗ =





min
x1,x2s,...,xTs

f1(x1) +
∑

s∈S
ps

( ∑

t=2,...,T

ft(xts, ξ
s
t )

)

s.t. x1 ∈ X1

xts ∈ Xt(xt−1,s, ξ
s
t ) ∀s ∈ S ∀t = 2, . . . , T

xts = xts′ ∀s ∈ S, s′ ∈ Sst, ∀t = 2, . . . , T.

(2.1)

This deterministic problem is often referred to as the extensive form of MSP. In

the case that ft(·) and all functions describing Xt(·, ξst ) are linear, it is a large-scale

linear program (LP).
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Nodal representation. A second way to formulate the extensive form of MSP

avoids using stage indices t and scenario indices s, but represents the scenario tree

using a set of nodes N . The root node is denoted by r. We define N := N \ {r}
to address the set of nodes without the root node, Ñ to address the set of nodes

without leaf nodes and denote by N (t) the nodes at stage t. For each node n ∈ N ,

the unique ancestor node is denoted by a(n), and for each n ∈ N , and the set of

child nodes is denoted by C(n). The probability for some node n is pn > 0. The

transition probabilities between adjacent nodes n,m ∈ N can then be determined

as pnm := pm
pn
. Using these definitions, problem (2.1) can be expressed as

v∗ =





min
xn,n∈N

fr(xr) +
∑

n∈N

pnfn(xn, ξn)

s.t. xr ∈ Xr
xn ∈ Xn(xa(n), ξn) ∀n ∈ N .

(2.2)

In particular, this formulation does not require explicit non-anticipativity con-

straints, as they are implicitly considered by the nodal connections. Therefore,

when we consider the full scenario tree, we mostly revert to this notation for the

remainder of this chapter. However occasionally, we introduce deviating notation

as well if this proves beneficial for later chapters.

The main issue with formulation (2.2) is that due to introducing a separate

variable xn for each node n ∈ N , and the number of nodes growing exponentially

in the number of stages T (see Figure 2.2), the problem size grows exponentially

in T as well. Therefore, for large scenario trees, the problem becomes too large

to be solved by monolith solution methods. For this reason, a lot of research in

multistage stochastic programming is devoted to solution methods that decompose

problems of type (2.1). In the next section, we introduce one natural way to achieve

such a decomposition.

For the remainder of Part I, we take the following two assumptions with re-

spect to problems (2.2) (and (2.1) analogously). First, we assume that the sets

Xn(xa(n), ξn) are compact sets for all xa(n) and ξn. Second, we assume that X1 is

non-empty and that we have relatively complete recourse. This means that for any

node n and any feasible xa(n) there also exists some xn ∈ Xn(xa(n), ξn). Finally,

we assume that the functions fn(·) are at least lower semicontinuous (l.sc.) for all
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n ∈ N . These assumptions combined guarantee that problem (2.2) is feasible and

takes a finite optimal value v∗. This allows us to focus on the main contributions

of our research without having to consider cases of infeasibility or unboundedness.

Note, however, that in some of the research papers in Part II of this thesis, slightly

different assumptions are taken, depending on the specific context.

2.4 Dynamic programming equations

As discussed before, solving MSP in its extensive form is often computationally

prohibitive. Therefore, usually decomposition methods are applied in the solution

process. An intuitive way to decompose the problem is readily available from the

scenario tree depicted in Figure 2.2: The problem can be decomposed by stages

and scenarios, or in other words, by nodes of the scenario tree. In order to still solve

the original problem, the nodal subproblems have to be coupled. This yields the

so-called dynamic programming equations (DPE), which exploit the well-known

optimality principle by Richard E. Bellman (Bellman, 1957).

For any node n ∈ N the DPE are given by

Qn(xa(n)) :=

{
min
xn

fn(xn) +QC(n)(xn)

s.t. xn ∈ Xn(xa(n)),
(2.3)

where
QC(n)(xn) :=

∑

m∈C(n)
pnmQm(xn)

For leaf nodes n ∈ N , we set QC(n)(xn) ≡ 0. For the root node, we obtain

v∗ =

{
min
xr

fr(xr) +QC(1)(x1)

s.t. xr ∈ X1.

The functions Qn(·) are called value functions and the functions QC(n)(·) are

called expected value functions (or cost-to-go functions). These functions are the

focal point of the research presented in this thesis.
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Note that we define all (expected) value functions as functions mapping from

Rdn , dn ∈ N, to R, meaning that they take the value +∞ for values of xa(n) for

which the subproblems are infeasible.

2.5 Approximating value functions

Whereas the DPE provide a way to decompose MSP into smaller subproblems,

applying them in a solution method is challenging. The main challenge is that

the (expected) value functions are not known explicitly. More precisely, they can

be evaluated for any sequence (xn)n∈N , but they are not known in a functional

form. For this reason, a common approach is to iteratively approximate them,

an idea that traces back to Benders decomposition (Benders, 1962) and Kelley’s

cutting-plane method (Kelley, 1960).

We denote the approximations of the expected value functions QC(n)(·) by

QC(n)(·) and refer to them as cut approximations. By replacing QC(n)(·) in prob-

lem formulation (2.3) with QC(n)(·), we obtain the approximate value function and

subproblems

Qi

n
(xia(n)) :=

{
min
xn

fn(xn) +Qi
C(n)(xn)

s.t. xn ∈ Xn(xa(n)).
(2.4)

The iteration index i highlights that the approximations are iteratively updated

within the solution method.

This approximation approach is often referred to as single-cut because the ex-

pected value functions QC(n)(·) are each approximated by a single batch of cuts.

Alternatively, each value function Qm(·),m ∈ C(n), can be approximated sepa-

rately (multi-cut approach). For MSPs usually a single-cut approach is preferred

for computational reasons, as much less cuts are added.

In any case, the cut approximations should satisfy some important properties,

which we present in their form for a single-cut approach:

� Validity. They should be valid underestimators, i.e., for any i, any n ∈ Ñ
and any xn they should satisfy

QC(n)(xn) ≥ Qi
C(n)(xn).
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This is important to consistently obtain lower bounds for v∗.

� Tightness. They should be tight approximators in the sense that for any i

and any n ∈ Ñ , whenever the cut approximation is updated from Qi
C(n)(·)

to Qi+1
C(n)(·) at some point xin, it should satisfy

Qi+1
C(n)(x

i
n) = Qi+1

C(n)(x
i
n) :=

∑

m∈C(n)
pnmQ

i+1

m
(xin).

This is important in order to achieve exact approximations and to solve the

original MSP eventually.

� Lipschitz continuity. If the state variables xn (or at least some of their

components) are continuous, the cut approximations should be Lipschitz

continuous. This is required to ensure (finite) convergence of the solution

method to the true solution of MSP, as it ensures that the tightness property

also leads to a sufficient improvement of the approximation quality in a

neighborhood of xin. It also prevents the cut approximations from becoming

arbitrarily steep, which is important to prevent numerical issues.

How the approximations QC(n)(·) can be determined for a specific instance of

MSP is highly dependent on the properties of QC(n)(·), which in turn depend on

the specific properties of the objective functions fn(·) and the constraint sets Xn(·).

2.6 Multistage stochastic linear programs

A special class of MSP that is well-explored in the literature is the class of mul-

tistage stochastic linear program (MSLP). Here, the objective function fn(·) is a

linear function fn(xn) = c⊤nxn for all n ∈ N with some coefficient vector cn ∈ Rdn .

Moreover, for any n ∈ N and xa(n), the set Xn(xa(n)) is defined by finitely many

affine functions, thus a convex polyhedron. In particular, all variables in xn are

continuous, so no integer requirements exist. More specifically, the constraint sets

can be defined as

Xn(xa(n)) :=
{
xn ∈ Xn ⊂ Rdn : Tnxa(n) +Wnxn = hn

}
(2.5)
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with a non-empty polyhedron Xn, e.g., modeling non-negativity constraints, and

coefficient matrices Tn,Wn and vectors hn of appropriate dimension. It is the

coefficients in Tn,Wn, hn and cn that may be subject to uncertainty.

As indicated before, for MSLPs, the (expected) value functions Qn(·) and

QC(n)(·) have some favorable properties (see Birge and Louveaux (2011), Chap-

ter 3 for an idea of the proof).

Lemma 2.6.1. For any node n ∈ N , the functions Qn(·) defined in (2.3), and for

any node n ∈ Ñ , the functions QC(n)(·) defined in (2.4) are piecewise linear and

convex functions in xa(n) on Rda(n) and xn on Rdn, respectively.

The convexity implies that these functions can be approximated from below

by linear cuts (cutting-planes), while the piecewise linearity implies that in fact

finitely many such functions suffice to achieve an exact representation of the true

function. The main reason is that the elements Tn, hn and xa(n) only appear in the

right-hand side (RHS) of the LP (2.3). Therefore, the feasible set of its LP dual

is independent of those elements. As it possesses finitely many extreme points,

and by strong duality for LPs, the value function Qn(·) can be expressed as the

pointwise maximum of finitely many affine functions, which is piecewise linear and

convex. From its definition, the same follows for QC(n)(·).
By approximating QC(n)(·) with linear cuts and taking the pointwise maximum

of these cuts, the cut approximations QC(n)(·) are piecewise linear and convex

as well. This also allows to still express the subproblems as LPs. Moreover,

by backward recursion from stage T , the above properties do also hold for the

approximate value functions.

Lemma 2.6.2. For any stage n ∈ N , the function Q
n
(·) defined in (2.4) and its

expectation QC(n)(·) are piecewise linear and convex functions in xa(n) on Rda(n).

2.7 Nested Benders decomposition

We present nested Benders decomposition (NBD) as a first solution method for

MSLPs. It was first introduced in (Birge, 1980) and basically extends Benders

decomposition (Benders, 1962) and the L-shaped method (van Slyke and Wets,

1969) to MSLPs.
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The main idea of NBD is to traverse the scenario tree in forward and backward

direction in each iteration to improve the cut approximations QC(n)(·) of QC(n)(·)
until convergence is achieved and an optimal solution for MSLP, i.e., an optimal

policy and the optimal value v∗, are computed.

We explain this in more detail now. In each iteration i, first a forward pass

through the tree is conducted. Starting with stage 1, the approximate subprob-

lem (2.4) is solved for each node, and the obtained solution xin is handed forward

to all successor nodes where it enters the subproblems as a parameter. We call

xin a trial solution because it is the current candidate for an optimal solution to

the true subproblem. Following this approach, trial solutions are computed for all

nodes n ∈ N , defining a trial policy.

Evaluating this feasible trial policy in the original objective function, we obtain

an upper bound to v∗:

vi := f1(x
i
1) +

∑

n∈N

pnc
⊤
nx

i
n.

The forward pass is illustrated in Figure 2.3.

xi1

xi1

xi2

xi2

xi3

xi3

Figure 2.3: Forward pass illustration for NBD.
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In the following backward pass through the scenario tree, starting with nodes

n ∈ NT−1, the approximate subproblems (2.4) are updated by improving the cut

approximations Qi
C(n)(·). To this end, the LP duals of the (already updated)

approximate subproblems (2.4) of each successor node m ∈ C(n) are solved. Then,
the optimal dual multipliers πim to the coupling constraints Tmxn +Wmxm = hm

and the optimal value Qi+1

m
(xin) are handed back to node n. There, a new linear

cut can be generated using formula

QC(n)(xn) ≥
∑

m∈C(n)
pnmQ

i+1

m
(xin) +

∑

m∈C(n)
(βim)

⊤(xn − xin),

where βim := −(πim)⊤Tm. This type of cut is often called Benders cut because it

is constructed in the same way as in Benders decomposition (Benders, 1962). By

defining

βiC(n) :=
∑

m∈C(n)
(βim)

and

αiC(n) :=
∑

m∈C(n)
pnmQ

i+1

m
(xin)−

(
βiC(n)

)⊤
xin

it can also be expressed as

QC(n)(xn) ≥ αiC(n) +
(
βiC(n)

)⊤
xn.

Quantity αiC(n) is called the cut intercept and βiC(n) is called the cut gradient.

With this cut, the cut approximation Qi
C(n)(·) is updated to Qi+1

C(n)(·):

Qi+1
C(n)(xn) := max

{
Qi

C(n)(xn), αiC(n) +
(
βiC(n)

)⊤
xn

}
. (2.6)

At the end of the backward pass, by solving the first-stage approximate sub-

problem (2.4) a lower bound vi for the optimal value v∗ of MSLP is obtained. If

vi − vi < ε for some predefined tolerance ε ≥ 0, then NBD terminates with an

(approximately) optimal solution to MSLP. Otherwise, a new iteration is started.

The backward pass is illustrated in Figure 2.4.

An exemplary piecewise linear and convex expected value function QC(n)(·) and
some related cuts are depicted in Figure 2.5.
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Figure 2.4: Backward pass illustration for NBD.

Recall that the dual feasible set for each node does not change during the algo-

rithm and only possesses finitely many extreme points. Therefore, by restricting

to dual extreme points in the cut generation process, only finitely many differ-

ent Benders cuts can be generated. As these cuts are also valid and tight, finite

convergence of NBD can be established (Birge, 1980).

Despite these merits, NBD comes with a significant computational bottleneck.

Compared to solving the extensive form of MSLP, there is no need to solve a single

problem that grows exponentially in size in T . Nevertheless, solving the DPE may

still be computationally intractable for large scenario trees because the number

of subproblems to be solved in each iteration grows exponentially in T . For this

reason, NBD is only a reasonable solution method for problems with a moderate

number of stages. In the next sections, we present SDDP, which can be interpreted

as a derivative of NBD that avoids this computational hurdle to a certain degree.
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Figure 2.5: Piecewise linear and convex expected value functionQC(n)(·) with three
exemplary cuts.

Still, many of our research papers in Part II of this thesis make contributions

related to NBD. The reason is that deriving results in a form that suffices NBD is

more general, as these results automatically translate to SDDP as well, and thus

can be used for both solution methods.

2.8 Stagewise independent uncertainty

We now focus on stochastic dual dynamic programming (SDDP) as an alternative

solution method for MSLPs. In many practical applications it is the state-of-the-

art approach for these kind of problems. A crucial difference between NBD, as

presented in the last section, and SDDP is that the latter, at least in its standard

form, requires the data process (ξt)t∈[T ] to be stagewise independent. This means

that for all t ∈ [T ], the random vector ξt has to be independent of the history

ξ[t−1] of the process. In particular, if modeled using a scenario tree, each node has

an equivalent set of successor nodes. This is illustrated in Figure 2.6, where the

same color indicates equivalent nodes.

A more condensed and adequate representation of a stagewise independent

data process (ξt)t∈[T ] with discrete and finite random vectors ξt for all t ∈ [T ]

can be achieved using a recombining tree or scenario lattice. This is illustrated in

Figure 2.7 for the same case as before.
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t = 4t = 3t = 2t = 1

Figure 2.6: Finite scenario tree under stagewise independence. Same colors indi-
cate same realizations and probabilities.

t = 3t = 2t = 1 t = 4

Figure 2.7: Recombining tree under stagewise independence. Same colors indicate
same realizations and probabilities.

In the following, when we assume stagewise independence, we denote the real-

izations of ξt by ξtj, j = 1, . . . , qt, with qt ∈ N, and the associated probabilities by

ptj. Importantly, Figures 2.6 and 2.7 show different representations of the same

data process, so both trees encode the same number |S| =∏t∈[T ] qt of scenarios.

Under stagewise independence, the DPE that we presented in Sect. 2.4 simplify

significantly. In particular, there exist only qt value functions and only one single

expected value function for each stage t = 2, . . . , T .
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As there exists no nodal dependence, to present the DPE we may revert to

using the stage index t again. For any stage t = 2, . . . , T and any realization

ξtj, j = 1, . . . , qt, the DPE read

Qt(xt−1, ξtj) :=

{
min
xt

ft(xt, ξtj) +Qt+1(xt)

s.t. xt ∈ Xt(xt−1, ξtj),
(2.7)

where

Qt+1(xt) :=

qt+1∑

j=1

pt+1,jQt+1(xt, ξt+1,j).

In contrast to before, here the expectation is unconditional. For the first stage,

we obtain

v∗ =

{
min
x1

f1(x1) +Q2(x1)

s.t. x1 ∈ X1.

Analogously, also the approximate subproblems simplify. For instance, for

t = 2, . . . , T and any realization ξtj, j = 1, . . . , qt, they become

Qi

t
(xit−1, ξtj) :=

{
min
xt

ft(xt, ξtj) +Qi
t(xt)

s.t. xt ∈ Xt(xit−1, ξtj).
(2.8)

2.9 Stochastic dual dynamic programming

In this section, we present SDDP in its standard form, as proposed by Pereira

and Pinto (1991). In general, the functional principle of SDDP is very similar to

NBD. As for NBD, each iteration consists of a forward pass and a backward pass

through the scenario tree, which due to stagewise independence can be modeled

as a recombining tree, though.

The main difference is that in contrast to considering all scenarios s ∈ S in each

iteration, only a subset K ⊆ S is sampled. With respect to Figures 2.3 and 2.4 this

means that only a subset of paths through the tree is considered in each iteration.

Usually |K| is chosen much smaller than |S|, in many implementations even |K| =
1 is standard. This sampling does not only reduce the computational effort in

the forward pass, but especially in the backward pass where only 1 + |K|∑T
t=2 qt

subproblems have to be solved. This number is linear in T , whereas the total
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number of scenarios |S| grows exponentially in T (Rebennack, 2016). Note that

based on this sampling step, the forward pass is often referred to as a forward

simulation.

Without stagewise independence, sampling reduces the computational effort

per iteration, but may as well lead to a higher number of required iterations until

convergence because not all nodes of the scenario tree are visited in each iteration.

In contrast, under stagewise independence, the uncertainty can be modeled by a

recombining tree and there exists only one set of value functions and one expected

value function per stage. This means that even if only a sample of scenarios is

visited per iteration, still all nodes are visited and all cut approximations are

updated in each iteration. This is crucial for the performance of SDDP.

The property that cuts derived for a specific sampled scenario k ∈ K are

also valid for all other scenarios s ∈ S is often referred to as cut-sharing in the

literature (Infanger and Morton, 1996). This makes sense from the perspective of

a classical scenario tree, see Figure 2.6, where cut coefficients are derived for nodes

in a specific sample path, but are also valid for all equivalent nodes in other parts

of the tree. From the perspective of a recombining tree, cuts are shared among

scenarios because these scenarios share the same nodes in the recombining tree,

and thus the same value functions.

We present a pseudo-code of SDDP in Algorithm 1.

We should address two more important topics with respect to SDDP. First,

due to the sampling, in contrast to NBD no valid upper bound for v∗ is computed

in each iteration. By evaluating the trial points obtained for the sampled scenarios

in the objective function, i.e., computing

viK :=
1

|K|
∑

k∈K

T∑

t=1

ct(ξ
k
t )

⊤xikt , (2.9)

we only obtain an unbiased estimator of the true upper bound vi. This is also

referred to as a statistical upper bound. In particular, viK is not guaranteed to

exceed v∗, it may even fall below vi.

A direct consequence of this aspect is that the stopping criterion of NBD cannot

be carried over to SDDP. Instead, different stopping criteria have been proposed

for SDDP. Pereira and Pinto (1991) initially suggested to stop SDDP as soon as
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Algorithm 1 Standard SDDP

1: Initialize cut approximations Q1
t (·) for all t = 2, . . . , T .

2: Initialize lower bound with v0 = −∞.
3: Set iteration counter to i← 0.
4: while Stopping criterion not satisfied do
5: Set i← i+ 1.
6: Sample a subset K ⊆ S of scenarios. ▷ Forward pass
7: for stages t ∈ [T ] do
8: for samples k ∈ K do
9: Solve the stage-t subproblem (2.8) associated with Qi

t
(xikt−1, ξ

k
t ) to

obtain trial point xikt .
10: end for
11: end for
12: If required, compute an upper bound estimate viK according to (2.9).
13: for stages t = T, . . . , 2 do ▷ Backward pass
14: for samples k ∈ K do
15: for realizations j = 1, . . . , qt do
16: Solve the stage-t subproblem (2.8) associated withQi+1

t
(xikt−1, ξ

k
t ).

Store the optimal value and dual vector πikjt .
17: end for
18: Use relation (2.7) to create a new cut for Qt(·).
19: Update the cut approximation Qi

t(·) to Qi+1
t (·) using relation (2.6).

20: end for
21: end for
22: Solve the first-stage subproblem to obtain a lower bound vi.
23: end while

the lower bound vi is contained in the confidence interval that can be derived for

viK. However, this approach has several flaws, such as incentivizing premature

stopping (Shapiro, 2011). Therefore, in practice, usually more pragmatic criteria

are used, e.g., stopping after a finite number of iterations or cuts, or when the

lower bounds vi show no significant improvement over several iterations.

Second, for small |K|, the upper bound estimate (2.9) has almost no explana-

tory power with respect to the true upper bound vi, and thus the quality of the

identified policy. To evaluate the policy obtained in SDDP, in practice therefore

often an additional forward simulation is conducted after SDDP has terminated.

For this simulation a much higher number of sample paths through the scenario

tree is used, e.g. |K| ∈ {1000, 10000}, leading to a reasonable estimator vK.
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In the presented form, and given that an independent random sampling pro-

cedure is used in line 6 of Algorithm 1, SDDP can be shown to converge with

probability 1 to an optimal policy of MSLP in a finite number of iterations (al-

most sure finite convergence) (Philpott and Guan, 2008).

Despite its computational advantages compared to NBD and performing well

for several MSLPs in practice, SDDP is still computationally expensive in the

worst-case, though. Its worst-case complexity is only polynomial in qt, but expo-

nential in T and the state dimension dt (Lan, 2022; Zhang and Sun, 2022).

2.10 Expanding the state space

As pointed out before, a crucial requirement for the functioning of standard SDDP

is stagewise independence of the uncertainty in the data. In many practical ap-

plications, this assumption is not satisfied. For this reason, for cases of stagewise

dependent uncertainty, various modifications of SDDP are proposed in the litera-

ture. One approach is to extend SDDP to Markov chain uncertainty, which can also

be represented by a scenario lattice. The idea is then to approximate the occurring

stagewise dependent uncertainty by a Markov chain, and thus make it applicable

to SDDP (Löhndorf and Shapiro, 2019). Other approaches are combining SDDP

with an underlying Markov chain (Philpott et al., 2013), using conditional cuts

(van Ackooij and Warin, 2020), using saddle cuts (Downward et al., 2020) or dual

variants of SDDP (Guigues et al., 2023). The last two approaches are specifically

suited for stagewise dependent uncertainty occurring in the objective function.

Often, the uncertainty can also be modeled by an AR process. A prominent

example is the modeling of hydro inflows into reservoirs in power system applica-

tions (de Matos and Finardi, 2012). As long as the AR process is linear, SDDP

can be applied in a straightforward way by increasing the dimension of the state

variables. This is why this approach is mostly known as expanding the state space.

We illustrate this using a simple process of form

ξt = ϕtξt−1 + ηt. (2.10)

Here, ϕt is a vector of autoregressive coefficients and ηt are realizations of a stage-

wise independent random variable ηt representing the error term.
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The key idea now is to consider (xt−1, ξt−1) as the system state i.e., interpreting

ξt−1 as an additional state variable (Shapiro et al., 2013). By doing this and adding

equation (2.10) to the problem formulation (2.7), for any t ∈ [T ] and any realization

j = 1, . . . , qt of ηt, we obtain value functions

Qt(xt−1, ξt−1, ηtj) =





min
xt,ηt

ft(xt, ξtj) +Qt+1(xt, ξt)

s.t. xt ∈ Xt(xt−1, ξt)

ξt = ϕtξt−1 + ηtj.

This approach manages to reformulate the problem in such a way that the

remaining uncertain data exhibits stagewise independence, and thus cuts can be

naturally derived as functions in xt−1 and ξt−1, and shared between scenarios. In

return, the state and decision space dimensions increase. It is important to note,

however, that it is not necessarily required to add the AR process formula (2.10)

to the constraints explicitly. It may also be evaluated outside of the subproblems

to obtain ξt and taken into account in the cut generation process to derive tailor-

made cut intercept formulas, which allow cuts to be adapted to a specific history

ξt−1 (Infanger and Morton, 1996; Rebennack, 2016).

2.11 Stochastic dual dynamic integer programming

One of the key ingredients of NBD and SDDP as solution methods for MSLPs

is the approximation of (expected) value functions with tight linear cuts that are

constructed using LP duality. As we have seen, after finitely many steps, an exact

representation of the value functions is possible. When some or all components of

the state variable xt have to satisfy integer requirements, i.e., the problem at hand

is a multistage stochastic mixed-integer linear program (MS-MILP), the previously

presented cut generation approach is not sufficient to ensure convergence to an

optimal solution.

First, the subproblems in the DPE (2.7) occurring in SDDP are mixed-integer

linear programs (MILPs) instead of LPs. Therefore, the approach of using LP

duals is not applicable. It is possible to derive Benders cuts using the duals of

the LP relaxation of subproblems (2.7), but these cuts are not guaranteed to be

tight for Qt(·). Second, even if Lagrangian duality is used as an alternative that
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applies to MILPs, the strong duality property that is required for tightness is not

guaranteed to hold. Third, and related to second, in contrast to the continuous

linear case, the value functions Qt(·) and expected value functions Qt(·) are not

guaranteed to be piecewise linear and convex. Therefore, approximating them by

linear cuts that are both tight and valid may not be possible. We discuss this in

more detail in Chapter 3.

Still, some extensions of SDDP to MS-MILPs have been put forward that

come with convergence guarantees. The most prominent one is SDDiP (Zou et al.,

2019b).

Here, to generate cuts, first a copy variable zt for the current state xit−1 is

introduced together with some constraint set Zt. It allows to replace xit−1 by a

decision variable in the original constraints. The subproblems become

Qi

t
(xit−1, ξtj) =





min
xt,zt

ft(xt, ξtj) +Qi
t(xt)

s.t. xt ∈ Xt(zt, ξtj)
zt = xit−1

zt ∈ Zt.

Then, a Lagrangian relaxation is considered where the copy constraint is re-

laxed. This yields the inner problem

Li+1
t (πt) :=





min
xt,zt

ft(xt, ξtj) +Qi
t(xt)− π⊤

t zt

s.t. xt ∈ Xt(zt, ξtj)
zt ∈ Zt

for some dual multipliers πt ∈ Rdt−1 , and the outer (Lagrangian dual) problem

max
πt
Li+1
t (πt) + π⊤

t x
i
t−1. (2.11)

By solving the outer problem (2.11), and using the optimal dual multipliers πit
and the value Li+1

t (πit), a valid cut for Qt(·) can be derived as

Qt(xt−1) ≥ Li+1
t (πit) + (πit)

⊤xt−1.
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As shown in Zou et al. (2019b), when the state variables are pure binary, i.e.,

xt ∈ {0, 1}dt , and the set Zt is chosen as Zt = {0, 1}dt−1 or Zt = [0, 1]dt−1 , these

cuts are also tight in the sense defined before. Therefore, the same convergence

properties hold as for SDDP.

In cases where the state variables are not binary, but satisfy some bound con-

straints xtj ∈ [0, Uj], with Uj ∈ R, for all components j = 1, . . . , dt, it is pro-

posed to replace them with a finite number of binary state variables and to solve

the obtained approximation of the original MS-MILP (Zou et al., 2019b). More

precisely, let βtj ∈ (0, 1] be some grid precision. Then, using additional binary

variables λtkj, k = 1, . . . , Ktj, for Ktj = ⌊log2(Uj)⌋+ 1 Ktj, xtj can be replaced by

the quantity
∑Ktj

k=1 2
k−1βtjλtkj.

If xtj ∈ Z for some component j, this representation can be made exact for

βtj = 1, if xtj ∈ R, then only an approximation is possible, with the quality

controlled by the precision βtj.
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Research objectives

In this chapter, we motivate the research objectives and topics that are studied in

this thesis.

3.1 The state of research on SDDP

In its standard form SDDP is a rather simple algorithm, only consisting of a

forward simulation and a backward pass through a recombining scenario tree,

iteratively generating cuts for the expected value functions; see Sect. 2.9. However,

since its invention it has gained enormous interest in research from a theoretical

perspective, with respect to computational improvements, and in practice where

it is applied to numerous case studies and to this date is one of the state-of-the-

art algorithms to tackle large-scale MSLPs. Therefore, it has developed into a

wide-ranging research area.

From a theoretical perspective, standard SDDP comes with a variety of nec-

essary assumptions, among them linearity of all involved functions, no integer

constraints, relatively complete recourse, discrete and finite random variables ξt,

and crucially, stagewise independence of the data process (ξt)t∈[T ]. Many of these

assumptions may not be satisfied in practice. For instance, many applications

require integer constraints, e.g., to model investment decisions in generation ex-

pansion problems or start-up or shut-down constraints in unit commitment prob-

lems. As another example, hydro inflows into reservoirs usually show a temporal

correlation, and thus may not be modeled appropriately assuming stagewise inde-
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pendence. For these reasons, there has been a legitimate interest in relaxing some

of the standard assumptions and making SDDP applicable to a broader class of

problems.

Finally, SDDP has been observed to show slow convergence, with lower bounds

stalling prematurely for some practical problems (Ávila et al., 2024). As a conse-

quence, various acceleration techniques have been proposed.

Due to the sheer amount and the variety of proposed extensions, it becomes

increasingly difficult to keep track of the state of research on SDDP. Therefore, the

first research objective of this thesis is to shed light on SDDP as a research field,

exploring existing extensions, their strengths and weaknesses as well as giving an

outlook on future research on SDDP.

Research objective 1. Provide a comprehensive survey and review of

SDDP as a research field.

3.2 Non-convex value functions

In Papers B to E, we focus on one specific class of challenges with respect to SDDP.

Previously, we have pointed out that a crucial property for the functioning of

NBD and SDDP is that the (expected) value functions are piecewise linear and

convex functions in the state variables. This prerequisite allows a valid, tight and

finite approximation of these functions using Benders cuts, meaning that after

finitely many of these linear cuts the original functions can be reproduced. This is

important to establish the known convergence results for both solution methods.

NBD and SDDP can be enhanced to nonlinear convex problems, for which

the (expected) value functions remain convex, but are no longer guaranteed to be

piecewise linear, without changing the cut generation mechanism (Girardeau et al.,

2015; Guigues, 2016). However, for many practical applications this generalization

is not sufficient. Instead, many multistage decision-making problems in practice

can only be modeled appropriately by MSPs which, if reformulated as DPE (2.7),

lead to non-convex (expected) value functions. These value functions cannot be

tightly approximated from below using linear cuts in general. Either valid linear

cuts can be derived that approximate them from below, but lack the tightness

property, or tight affine functions can be derived that may violate validity.
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The main research question of this thesis is how SDDP (and related decompo-

sition methods such as NBD) can be enhanced to these kind of problems.

Research objective 2. Develop approaches to deal with non-convex (ex-

pected) value functions and achieve tight approximations in SDDP and re-

lated decomposition methods.

We specifically deal with three different and prominent cases in which non-

convex value functions may occur.

� Case 1: Integer variables. If the subproblems contain mixed-integer vari-

ables, then even if all occurring functions are linear, the (expected) value

functions are not guaranteed to be convex. In fact, they are not even guar-

anteed to be continuous. This is illustrated in Figure 3.1a.

� Case 2: Non-convex functional description. If the subproblems con-

tain non-convex functions in the objective or nonlinear functions in the con-

straints, such that the feasible set Xt(xt−1, ξt) is non-convex, then even if no

integer variables are present, the (expected) value functions become nonlin-

ear non-convex. This is illustrated in Figure 3.1b.

� Case 3: Non-convex stagewise dependent uncertainty. Recall the

linear AR process (2.10) to model the uncertain data in MSLP. Now assume

that this AR process is more generally defined by ξt = bt(ξ[t−1], ηt) for some

non-convex function bt(·). By using the expanding-the-state-space approach

and adding this AR model equation to the subproblem constraints, the fea-

sible set becomes non-convex in the new state variable ξ[t−1]. Thus, we are

back to Case 2. Even if the model equation is only considered implicitly

when evaluating ξt and when generating cuts, the (expected) value functions

can be shown to be non-convex in ξ[t−1] in general.

Clearly, also combinations of these three cases are possible. This is illustrated

in a venn diagram in Figure 3.2. It is also highlighted which case or combination

of cases is studied in which research paper in Part II of this thesis.

We discuss the motivation for studying these specific cases in more detail below

and also put forward more specific research objectives for each of them.
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Figure 3.1: Examples of non-convex value functions.

Before we do this, we take a general perspective on dealing with non-convex

value functions in MSP. In principle, three different approaches can be taken.

� Approach I: Using non-convex cuts. The idea is to approximate the

non-convex (expected) value functions with non-convex functions, which we

also refer to as cuts for convenience. In contrast to linear cuts, if chosen

appropriately, these cuts can be tight without compromising validity.

� Approach II: Using linear cuts under tightness-ensuring conditions.

Here, linear cuts are generated irrespective of the non-convexity of the value

functions. However, to achieve tightness and convergence guarantees, certain

conditions have to be met, e.g. binary state variables xt−1 in SDDiP. Apply-

ing this approach may also involve a reformulation of the original problem.

� Approach III: Using linear cuts without tightness. Similarly to Ap-

proach II valid linear cuts are generated, but without tightness-ensuring

conditions. This leads to a heuristic version of SDDP or related decompo-

sition methods without convergence guarantees. However, it may still yield

satisfactory policies in practical applications, where decomposition methods

are often terminated before convergence is achieved anyway.

We should mention that in two-stage stochastic programming a fourth approach

is common where convergence can be guaranteed by branching on the first-stage
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Figure 3.2: Venn diagram of properties of MSP which lead to non-convex (ex-
pected) value functions. Circles with letters indicate which case is studied in
which research paper in Part II of this thesis.

Table 3.1: Classification of research papers in this thesis.

Studied approximation approach

Studied case Approach I Approach II Approach III

Case 1 B and C C and D C and D
Case 2 B
Case 3 E

variables, even if non-tight cuts are used. For a multistage setting this approach

is not applicable, though, as it requires branching in all nodes but the leaf nodes,

which is computationally too expensive.

In this thesis, we are interested in solution methods with convergence guaran-

tees, so we mainly focus on Approaches I and II. However, all the results presented

for Approach II may also be applied heuristically when pursuing Approach III. Ta-

ble 3.1 classifies our research papers (see Part II of this thesis) with respect to the

cases of non-convexity and the chosen approach to address this uncertainty.
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3.2.1 Using non-convex cuts for MS-MILPs

As described in Sect. 2.11, if all state variables xt−1 in an MS-MILP are binary,

SDDiP is guaranteed to converge to an optimal policy in finitely many steps almost

surely. It only differs from SDDP in the aspect that special Lagrangian cuts

are generated instead of classical Benders cuts. If the state variables are not

binary, it is proposed to approximate them with binary variables. Whereas this

approximation can be made exact for bounded integer state variables, this is not

the case for generally continuous state variables. Nonetheless, Zou et al. (2019b)

show that given the feasibility assumption of complete continuous recourse, which

is considerably stronger than relatively complete recourse, but ensures Lipschitz

continuity of the value functions, the problem can be solved to arbitrary precision

by choosing a sufficiently large number of binary variables.

However, this approach comes with some drawbacks. The assumption of com-

plete continuous recourse is rather strong and not necessarily satisfied in applica-

tions. More crucially, identifying a sufficiently high number of binary variables is

difficult in practice, as it requires knowledge of problem-specific constants. There-

fore, a suitable binarization precision has to be estimated in advance. If it is chosen

too coarse, then the solved problem may strongly deviate from the original MS-

MILP. If it is chosen very finely, then the state space may become unnecessarily

large, negatively affecting the computational performance.

These observations create the demand for a dynamic version of SDDiP where

the binary approximation is refined dynamically if required throughout the solution

process. Importantly, previously generated cuts should remain valid in order to

avoid that the approximations of Qt(·) have to be started from scratch.

Research objective 2.1. Develop an extension of SDDiP where the state

binarization is dynamically refined if required without destroying the validity

of previously generated cuts.

A second objective that is naturally arising in the context of non-convex value

functions is to explore if some tight non-convex approximations of the value func-

tions could be derived.
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Research objective 2.2. Develop a method to generate tight non-convex

cuts for the value functions that are practically applicable.

Interestingly, as we shall see in Sect. 4.3, pursuing research objective 2.1 nat-

urally leads to non-convex cuts, thus also addresses research objective 2.2.

During the work on this project, some first solution methods that make use of

non-convex cuts in MS-MILPs have already been proposed (Ahmed et al., 2022;

Zhang and Sun, 2022). Basically, both methods generate cuts based on solving

augmented Lagrangian dual problems. Even with these methods already published,

working on the above research objectives was continued, but taking the new insight

into account. In Sect. 4.3 and 4.4, we explain in detail the relations and differences

between our research results and the two prior proposals.

3.2.2 Using non-convex cuts for general MS-MINLPs

With SDDiP a decomposition method exists that extends SDDP to the broader

problem class of MS-MILPs. A natural follow-up research question is how to fur-

ther extend it to a general non-convexmultistage stochastic mixed-integer nonlinear

program (MS-MINLP), which also contains non-convex functions in the objective

and constraints. Being able to handle this type of problem is practically relevant,

as some effects in applications can only be modeled appropriately by nonlinear

functions, e.g., the valve-point effect of thermal generators (Pedroso et al., 2014)

or the water head effect in hydro reservoirs (Cerisola et al., 2012).

However, these types of problems pose the additional challenge that all sub-

problems are nonlinear problems, and thus notoriously harder to solve than LPs

or MILPs. Therefore, previous attempts at generalizations of SDDP in this di-

rection either used convexifications and linear cuts (Cerisola et al., 2012; Steeger

and Rebennack, 2017) or required specific assumptions to be satisfied, for instance

monotonicity of the value functions (Philpott et al., 2020). We try to come up

with a more general method.

Research objective 2.3. Develop a method that extends SDDP or NBD

to non-convex mixed-integer nonlinear programs (MINLPs).
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Again, we have to mention the work by Zhang and Sun (2022), which was

published during this research project and qualifies for research objective 2.3. We

contrast it with our work and highlight our unique contributions in Sect. 4.4.

3.2.3 Using linear cuts for MS-MILPs

In addition to our work on tight non-convex approximations, we also try to con-

tribute to improving SDDiP and the generation of linear Lagrangian cuts. These

types of cuts are still relevant in solving MS-MILPs because the generation and

incorporation of non-convex cuts may require excessive computational resources.

A main computational challenge for SDDiP itself is that solving Lagrangian

dual problems in each iteration requires significant time, which is even aggravated if

a state binarization is applied. This is already pointed out in the original SDDiP

work (Zou et al., 2019b), and as a remedy Lagrangian cuts are combined with

cheaper cuts, such as (strengthened) Benders cuts.

Moreover, despite their favorable, convergence-ensuring tightness properties,

Lagrangian cuts may not always yield the best possible approximations of the

(expected) value functions in practice. Sometimes there may exist alternative

cuts, possibly not tight at xit−1, that may significantly speed-up the convergence

process due to improving the approximation outside of xit−1.

Finally, especially when a state binarization is applied and cuts are only gener-

ated at extreme points of the state space, the dual problems are often degenerate,

so that infinitely many different Lagrangian cuts may be generated, which may

drastically differ in their approximation quality outside of xit−1.

Given these challenges, our amibition is to improve the computational perfor-

mance of SDDiP, either by generating the standard Lagrangian cuts faster or by

generating different Lagrangian cuts with computationally preferable properties.

Research objective 2.4. Study possible modifications of the generation

process for Lagrangian cuts in MS-MILPs in order to improve the computa-

tional performance of SDDiP or related methods relying on these cuts.



3.2 Non-convex value functions 39

3.2.4 Dealing with non-convex stagewise dependent uncertainty

As mentioned before, if we allow the data process (ξt)t∈[T ] to be stagewise de-

pendent and to be described by a non-convex AR process, the (expected) value

functions occurring in SDDP are no longer guaranteed to be convex in the history

ξ[t−1], which serves as a new state variable.

Due to this challenge, so far extensions of SDDP to AR processes have been

mostly limited to different types of linear processes (Guigues, 2014; Infanger and

Morton, 1996; Lohmann et al., 2016; Queiroz and Morton, 2013). An exception

is the work by Guigues (2014) where convex AR processes are considered. In

this case the (expected) value functions remain convex, though, so linear cuts can

be derived to tightly approximate them. Another exception are special nonlinear

processes studied by Infanger and Morton (1996) which still satisfy some linearity

or additivity properties.

However, non-convex AR processes are appropriate models in many practical

applications. For instance, log-linear AR processes (also called geometric AR

processes) are prominently used to model hydro inflows in hydrothermal scheduling

problems (de Matos and Finardi, 2012; Lohmann et al., 2016; Shapiro et al., 2013),

where the requirement of non-negativity cannot be satisfied by linear AR processes.

This example shows that an extension of SDDP to more general AR processes

is practically relevant. Currently, these processes either have to be linearized, or

users have to revert to other modeling techniques, e.g. using Markov chain SDDP

(Löhndorf and Shapiro, 2019). Our research goal is to adapt SDDP to being able

to handle more general AR processes algorithmically. Importantly, the focus is on

deriving closed-form cut formulas given these type of processes, so that the cut

generation and evaluation remains computationally tractable.

Research objective 2.5. Extend SDDP to more general, especially non-

convex classes of AR processes, such that the cut generation and evaluation

remains computationally tractable.





Chapter 4

Research studies and contributions

The following sections summarize the main contributions of this thesis. For de-

tailed descriptions of the methodology and the results, the reader is referred to the

research papers in Part II.

4.1 A review on SDDP

In Paper A we provide a comprehensive tutorial-type review on SDDP as a re-

search field. The review comprises a detailed introduction to the main concepts

behind SDDP, an overview on the variety of existing algorithmic extensions and

modifications of SDDP, a discussion of its strengths and weaknesses as well as

an outlook on future research directions. The review is addressed to a broad au-

dience: researchers in the stochastic programming community working on SDDP

(or related methods) that try to get a clear picture of the current state of the re-

search; practicioners that want to apply SDDP to real-world problems; or novices

to SDDP, e.g., scientists from different research communities, that look for an

accessible introduction to the research area.

The review is divided into four parts. Part I explains the main mechanism

behind SDDP. First, some relevant preliminaries are introduced and then the

algorithm is presented in its basic form. In this part, special attention is directed

to 9 assumptions that we identified to be crucial for the functioning of SDDP.

In addition, its convergence properties and its complexity are discussed in detail.
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Also, we point out the differences between SDDP and related solution methods

such as NBD or stochastic dynamic programming.

Part II summarizes applications and implementations of SDDP.

Part III then discusses how the previously identified key assumptions can

be relaxed when working with SDDP. Among others, this includes dealing with

continuous random variables, distributional uncertainty, risk-aversion, stagewise-

dependent uncertainty or non-convexities.

Part IV presents a multitude of approaches to improve the computational per-

formance of SDDP. The motivation behind this is that it is observed to converge

very slowly for some types of problems in practice (Ávila et al., 2024).

Finally, we present an outlook on future research on SDDP. We identify 7

sub-areas of research on SDDP that should deserve special attention. Particularly

noteworthy is the potential of borrowing successful techniques from reinforcement

learning, which shares many similarities with multistage stochastic programming,

and incorporating them into SDDP.

4.2 The role of copy constraints and Lipschitz reg-

ularization

Dealing with SDDP-related decomposition methods in the context of integer vari-

ables often makes use of Lagrangian-type relaxations to generate cuts instead of

the weaker LP relaxations. This is the case for SDDiP (Zou et al., 2019b), but also

for the non-convex cuts in (Ahmed et al., 2022; Zhang and Sun, 2022), which are

generated using augmented Lagrangian dual problems. Also our own work heavily

relies on these ideas.

A second important concept from the literature that we rely on is Lipschitz

regularization, which we borrow from (Zhang and Sun, 2022). Lipschitz regular-

ization of subproblems is helpful in allowing to work with Lipschitz continuous

value functions even without strong recourse assumptions.

Applying Lagrangian relaxation and Lipschitz regularization in our own work,

and extending their usage beyond known results, requires a profound understand-

ing of both techniques. Therefore, in Sect. 3-4 of Paper C, we deeply analyze

them and provide new theoretical insight on their main properties and how they
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relate to each other. In particular, we investigate in detail the effects that copy

constraints and Lipschitz regularization have on the generation and the properties

of Lagrangian cuts.

With respect to the role of copy constraints zt = xit−1, we show that accom-

panying the new copy variables zt with additional constraints zt ∈ Zt leads to

Lagrangian cuts with different properties depending on the choice of Zt. In par-

ticular, we highlight that the tightness result from SDDiP (Zou et al., 2019b) is

actually based on the choice of appropriate sets Zt and not on the introduction of

copy constraints itself.

With respect to Lipschitz regularization, we generalize some existing results on

Lagrangian relaxation. It is well-known that solving the Lagrangian dual problem

to a subproblem is equivalent to solving a specific convexification of said subprob-

lem, and that the optimal value of both problems coincides with the value of the

closed convex envelope of the value function Qt(·) at xit−1. Furthermore, it is

well-known that Lipschitz regularizations in the primal space are directly linked

to norm bounds in the dual space. We manage to combine these results: We show

that given some fixed norm ∥·∥ and some parameter σt for the Lipschitz regulariza-

tion, solving a norm-bounded Lagrangian dual problem of the stage-t subproblem,

where the dual norm to ∥·∥ is used, is equivalent to solving a specific convexifica-

tion of the Lipschitz regularized subproblem, and that the optimal value of both

problems coincides with the value of the closed convex envelope of the regularized

value function QR
t (·;σt∥·∥) at xit−1.

We use this novel result to show that Lagrangian cuts obtained from norm-

bounded dual problems are tight for the closed convex envelope of the regularized

value functions QR
t (·;σt∥·∥). As long as all state variables are binary, similar to

SDDiP, tightness for the true regularized value functions can be achieved, given

that σt is sufficiently large or that ∥·∥ is chosen as the 1-norm. This generalizes

the tightness result from Zou et al. (2019b) to the Lipschitz regularized case.

4.3 Dynamic SDDiP

With respect to research objective 2.1, we propose a method called Dynamic SD-

DiP, which enhances SDDiP such that the binary approximation precision can
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be refined within the solution method, while not compromising the validity of

previously generated cuts.

Importantly, this contribution is not related to a single paper, but to Papers B

and C. In Paper B, a larger decomposition framework is introduced, see Sect. 4.4,

and its inner loop can be interpreted as a dynamic version of SDDiP, even though

it is only applied to a deterministic problem there. Based on some technical

assumptions, also a convergence proof is presented. In Sect. 5 of Paper C, these

algorithmic ideas are extended to the stochastic case. Moreover, a more rigorous

theoretical analysis is provided. In particular, it is shown how convergence can be

achieved when the technical assumptions from Paper B are dropped.

4.3.1 Theoretical results

We present Dynamic SDDiP in more detail now. The first main difference to

SDDiP is that no static binary approximation of the state space is applied. Instead,

the solution method operates in the original state space, which implies that the

original MS-MILP is solved, and that all cuts are expressed in the original state

variables xt−1.

In order to obtain tight cuts, the tightness result from SDDiP is exploited,

stating that Lagrangian cuts are tight if the state variables are binary. To this

end, a temporary lifting to the binary space is conducted (the associated precision

is refined if the solutions in the forward pass do not improve for a predefined

number of iterations). Then, tight Lagrangian cuts are computed in this binary

space. In order to use them in the original subproblems, these cuts are projected

back to the original state space. This procedure is crucial to ensure that the cuts

remain valid, even if the precision of the binarization is refined later on. This

lift-and-project idea is illustrated in Figure 4.1, which is taken from Paper C.

We now address the projection of cuts. In Paper C, we coin the pointwise

maximum of this projection the cut projection closure (CPC). Importantly, the

CPC is a non-convex function in the original state variables xt−1, thus a non-convex

cut for the non-convex expected value function Qt(·). This means that addressing

research objective 2.1 implicitly leads to addressing research objective 2.2 as well.

To make sure that the subproblems remain MILPs, the CPC can be expressed

through linear constraints by introduction of additional (binary) variables.
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Figure 4.1: The lift-and-project cut generation approach from Dynamic SDDiP.

For the convergence of Dynamic SDDiP, it is required that the CPCs pos-

sess certain properties: they should be valid, tight and Lipschitz continuous, cf.

Sect. 2.5. We call such CPCs sufficient.

Under certain assumptions, the CPC can be shown to be tight at the so-called

anchor point xiB;t−1. In some sense, this is the point closest to the trial point

xit−1 which can be described exactly using the current state binarization. The

distance between xiB;t−1 and xit−1 can be controlled using binary refinements. The

idea is that under Lipschitz continuity of the CPC, then also the error in the cut

approximation can be controlled, thus leading to some notion of tightness at xit−1

as well. However, in order for this to be true, it has to be ruled out that with a

binarization refinement also the Lipschitz constant of the CPC increases. In other

words, the CPC has to be Lipschitz continuous with a constant independent of

the binarization precision. Otherwise, the CPCs may become infinitely steep and

convergence is not guaranteed.

To ensure Lipschitz continuity of the CPCs, it is reasonable to consider Lips-

chitz continuous (expected) value functions within the algorithm. Therefore, we

borrow the idea from Zhang and Sun (2022) to apply a Lipschitz regularization

with parameter σt to the subproblem at stage t. If σt is chosen sufficiently large

for all t ∈ [T ], still the original MS-MILP is solved (Zhang and Sun, 2022).

In the forward pass of Dynamic SDDiP, Lipschitz regularized subproblems are

solved. For the cuts generated in the backward pass, the goals of cut tightness
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and Lipschitz continuity independent of the binarization precision have to be rec-

onciled. As we show in Paper C, this can be achieved by careful design, that is

choosing appropriate weighted norms to bound the Lagrangian dual problem in

the lifted binary space.

4.3.2 Comparison with existing approaches

Dynamic SDDiP differs from related methods in the literature. We provide a

detailed comparison in the supplementary material to Paper C.

Compared to standard SDDiP there is no need for a static and permanent

state binarization nor has the precision of this binarization to be fixed in advance.

Instead, the binarization is used only temporarily to ensure tightness of the ob-

tained CPCs, and refined dynamically within the algorithm. Importantly, with

these refinements, all previously generated cuts remain valid. This is not possible

in the standard SDDiP framework, where refinements shift the value functions of

the approximating problem downwards at the risk of existing cuts being violated.

Working in the original state space also comes with the advantage that the

original MS-MILP is solved, given that all σt, t ∈ [T ], are chosen sufficiently large.

In contrast, for standard SDDiP with state binarization only an approximation of

this problem is solved.

Dynamic SDDiP only requires relatively complete recourse combined with a

Lipschitz regularization of the value functions, instead of taking the stronger com-

plete continuous recourse assumption, which may not be satisfied in practice. This

approach also has the advantage that all required Lipschitz constants are known

at all times.

Compared to SLDP and its generalization in Zhang and Sun (2022), the differ-

ences are more subtle. For convergence purposes, all approaches require Lipschitz

continuity of the considered value functions to prevent the generated cuts from

becoming infinitely steep close to discontinuities. Again, SLDP assumes complete

continuous recourse to ensure Lipschitz continuity of the true value functions,

while Zhang and Sun (2022) suggest to consider Lipschitz regularizations of the

value function. We follow the latter approach in combination with relatively com-

plete recourse. In Zhang and Sun (2022) no recourse assumption is taken, but

in return the state variables xt−1 are only allowed to enter the objective function.
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This means that constraints depending on xt−1 have to be modeled using indicator

functions.

Whereas SLDP solves standard subproblems in the forward pass, in Zhang

and Sun (2022) and Dynamic SDDiP Lipschitz regularized subproblems are con-

sidered. In the backward pass, SLDP deals with an augmented Lagrangian dual

problem without bounds on the dual multipliers. Our proposed method deals with

a Lagrangian dual problem with norm bounds in a lifted space. The method from

Zhang and Sun (2022) is the most general one, as it includes both an augmenting

term in the objective and norm bounds on the dual multipliers.

The proposed Dynamic SDDiP method comes with some drawbacks compared

to the other approaches. First, the CPC requires more (binary) variables and

constraints to be reformulated using MILP constraints than the cuts from Ahmed

et al. (2022). Second, the dual problem has to be solved in a higher-dimensional

space due to the state binarization.

On the other hand, Lagrangian dual problems are in general less costly to

solve than the augmented dual problems in Ahmed et al. (2022); Zhang and Sun

(2022). Moreover, a computational comparison for a simple illustrative example,

see the supplementary material to Paper C, indicates that our proposed non-convex

cuts may yield better approximations of Qt(·) at regions different from the trial

point xit−1. In particular, the Lipschitz cuts from Ahmed et al. (2022) may be

unnecessarily steep, as their slope is pre-determined. Similar observations can be

made for augmented Lagrangian cuts, especially if the dual multipliers are not

bounded and if the Lipschitz constant estimates are too high. If the estimate is

too small, the non-convex cuts are not guaranteed to be valid, though.

Finally, we should note that the generalized conjugacy cuts from Zhang and

Sun (2022) have not been tested computationally yet, but were rather introduced

in the context of a complexity analysis.

4.3.3 Limitations and outlook

Whereas Dynamic SDDiP yields an interesting way to solve MS-MILPs in theory,

its practical value to solve these type of problems in real-world applications is yet

to be proven. So far, Dynamic SDDiP has only been applied to small illustrative

problems or to case studies as part of a larger solution framework, see Sect. 4.4,
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but not as a standalone method. Therefore, in an ongoing research project it is

currently applied to a unit commitment problem. An implementation in Julia is

available in the GitHub project DynamicSDDiP.jl (Füllner, 2024a).

The main limitation of Dynamic SDDiP in its current form is that it requires a

lot of computational effort. First, expressing the CPCs through MILP constraints

is complex and may increase the size of the subproblems quickly. Second, com-

puting the CPC is computationally costly, as Lagrangian dual problems have to

be solved for each node that is visited in the backward pass. It is yet to be de-

termined if the gain in tightness compared to linear cuts and the gain in dynamic

compared to standard SDDiP are worth the additional effort. A possible com-

promise is to combine the non-convex CPCs with standard linear cuts, so that

expensive non-convex cuts are only generated if required in the solution process.

Another research direction that could be worthwhile to explore is to find more

efficient ways to represent the CPC using MILP constraints. So far, we used a

Big-M approach to reformulate the KKT conditions of the projection problem.

However, different approaches are possible, e.g., using SOS-1 conditions or apply-

ing novel techniques from bilevel optimization.

4.4 Non-convex nested Benders decomposition

In Paper B, we address research objective 2.3, and propose a new framework to

solve multistage (stochastic) non-convex MINLPs. We refer to this method as

non-convex nested Benders decomposition (NC-NBD). Although the results in the

paper are presented for deterministic problems, by traversing the complete scenario

tree as in NBD they can be extended to stochastic problems in a straightforward

manner. Therefore, for convenience we still refer to the considered problems as

multistage stochastic problems in the following. If sampling should be included as

in SDDP, some careful modifications are required, as we discuss below.

4.4.1 Theoretical results

The NC-NBD framework assumes (relatively) complete recourse of the MS-MINLP

and continuity or Lipschitz continuity of all occurring functions. Other than that,
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no specific assumptions are taken. In particular, xt−1 is allowed to enter the

constraint set Xt at stage t.

It is shown that NC-NBD converges to an approximately optimal solution in

finitely many iterations. To our knowledge, apart from the decomposition method

in Zhang and Sun (2022), it is the only proven exact solution method for general

MS-MINLPs. For a comparison between both methods, see the following section.

The NC-NBD framework combines piecewise linear relaxations, Lipschitz reg-

ularization, binary approximation and cut generation in a novel, unique and dy-

namic fashion. By dynamic we mean that all approximations (piecewise linear ap-

proximation, state binarization, cut approximation) are refined dynamically where

and when it is reasonable during the solution process.

The basic concept is that the considered MS-MINLP is iteratively approxi-

mated by MS-MILPs, which are obtained by expressing piecewise linear relax-

ations of all occurring nonlinear functions as MILP models. These relaxations in

turn can be obtained by computing piecewise linear approximations and shifting

them down sufficiently (Burlacu et al., 2020; Geißler, 2011). Due to the relaxation

property, the MILPs are outer approximations, so their optimal values v̂∗ are lower

bounds for v∗.

In more detail, NC-NBD consists of two nested loops. In the outer loop, with

iteration index ℓ, DPE for the true MS-MINLP are considered. The occurring non-

convex value functions Qt(·) are replaced with cut approximations Qℓ
t(·) that are

composed of non-convex cuts. The generation of these cuts takes place in the inner

loop of the framework. Therefore, the outer loop only contains a forward pass.

If the whole scenario tree is traversed, a valid upper bound vℓ can be computed.

Moreover, the first-stage problem yields a lower bound vℓ. If both bounds are

sufficiently close, the outer loop, and by that NC-NBD terminates. Otherwise, for

each stage t ∈ [T ], the piecewise linear relaxations are improved in a neighborhood

around the current optimal solution xℓt. Importantly, as we show in the paper, this

can be done in such a way that the existing cut approximations remain valid, so

the approximation does not have to be started from scratch.

After each outer loop iteration, the current MS-MILP approximation is solved

in an inner loop. This is done using an NBD-based decomposition method that,

apart from not sampling in the forward pass, is equivalent to Dynamic SDDiP, see

Sect. 4.3. In particular, this implies that the (expected) value functions occurring
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in the outer loop are approximated by non-convex cuts, namely CPCs. Again, by

careful construction, all existing cuts remain valid with future refinements.

The main steps of the framework are illustrated in Figure 4.2.

ε-optimal
solution of (P )

Outer Loop
Problem
Solved?

Piecewise Linear
Relaxations
Refinement

Problem (P ) satisfying
(A1) and (A2)

Outer
Approximation (P̂ )

INNER LOOP

.
Solve (P̂ ) with
Dynamic SDDiP

Solve Outer
Loop Problems

OUTER LOOP

non-convex
cuts

yes

no

Figure 4.2: Illustration of the main steps of NC-NBD.

Importantly, to solve the MS-MILPs in the inner loop, the regularization pa-

rameters σt have to be chosen sufficiently large for each t ∈ [T ]. Given that the

sufficient level may change with the piecewise linear refinements in the outer loop,

it may be required to update σt iteratively as well. In our computational tests,

this was rarely the case, though.

Finally note that the convergence proof in Paper B requires a very technical

assumption for the non-convex cuts in the inner loop (Assumption (A4)). However,

as discussed in the previous chapter on Dynamic SDDiP, it is shown in Paper C

how this assumption can be avoided.

4.4.2 Comparison with existing approaches

For the inner loop and Dynamic SDDiP, most of the relevant differences to existing

solution methods have already been discussed in Sect. 4.3. However, we should

emphasize that specifically in the NC-NBD setting where an MS-MINLP is solved

in a larger framework, and MILPs are only solved in an inner loop, it is crucial

that (1) the state binarization precision can be refined dynamically (the required
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precision may differ for different MILPs constructed in the outer loop), (2) all

previously generated cuts remain valid and (3) the cuts generated in the inner

loop are expressed in the state variables xt−1 that are used in the outer loop

problems. Therefore, standard SDDiP cannot be used effectively in this setting.

With regard to the overall framework, as mentioned before, the method pro-

posed in Zhang and Sun (2022) is also an exact solution method for MS-MINLPs.

Some main differences to our approach have already been pointed out in Sect. 4.3

on Dynamic SDDiP. Additionally, NC-NBD differs in consisting of two nested

loops. This leads to a more complex framework, but it also means that MINLPs

only have to be solved occasionally during outer loop iterations, whereas the

method in Zhang and Sun (2022) proposes to solve MINLP subproblems in each

iteration. This is computationally challenging. Finally, the method in Zhang and

Sun (2022) was mostly developed as a means to conduct a complexity analysis. In

contrast to NC-NBD, it has not been applied to a case study yet.

4.4.3 Case study and computational results

We test NC-NBD in experiments for moderate-sized instances of a deterministic

unit commitment (UC) problem. To this end, it is implemented in Julia in the

NCNBD.jl project Füllner (2021) (this project is deprectated by now, and currently

only the related DynamicSDDiP.jl project is maintained).

We run experiments for two different variants of a UC with continuous and

binary state variables. In the base instances, the objective function is nonlinear

concave, as it includes emission costs which are modeled by a quadratic cost curve.

In the valve-point instances, the valve-point effect for thermal power plants is

considered (Pedroso et al., 2014), which leads to a non-convex objective function

including a sinusoidal term. The tested instances have between 2 and 36 stages

and contain 3 to 10 thermal generators, resulting in 6 to 20 state variables.

For small problems, it can be verified that NC-NBD converges to the exact

global solutions. This illustrates the efficacy of NC-NBD to solve MS-MINLPs.

However, the observed solution times are very long due to the large computational

overhead of solving Lagrangian dual problems in each iteration of the inner loop,

as well as due to quickly growing subproblems, caused by modeling the piecewise

linear relaxations and the non-convex cuts. Still, NC-NBD manages to outper-
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form some conventional global solvers for problems with 36 stages, but a moderate

number of state variables and nonlinearities. Moreover, in retrospect, the im-

plementation of NC-NBD could have been accelerated substantially, as became

apparent in later tests of Dynamic SDDiP. Therefore, it should be competitive

also for a smaller number of stages.

4.4.4 Limitations and outlook

The main limitation of NC-NBD is the huge computational cost of combining sev-

eral approximations, and especially solving Lagrangian dual problems in each inner

loop iteration and MINLP subproblems in each outer loop iteration. Therefore, in

its current form it is rather of theoretical interest.

However, we see some potential to improve NC-NBD in the future. First, the

Lagrangian dual problems could be solved more efficiently or with a less strict op-

timality tolerance. Second, the non-convex cuts could be combined with standard

linear cuts to accelerate the solution process. In our experiments, so far we focused

on using only the non-convex CPCs to approximate the value functions. Third,

as mentioned for Dynamic SDDiP already, more research could be conducted on

more efficiently representing the CPCs through MILP constraints. Finally, for a

problem at hand, tailor-made piecewise linear relaxations could be used instead of

using a general purpose implementation compared to our experiments.

In the future, NC-NBD could also be tested on stochastic instances of unit

commitment, however, realistically this requires working on the above performance

improvements first. If sampling shall be included, also the stopping criterion for

the inner loop has to be adapted accordingly, otherwise this loop may never be

left. Additionally, when it comes to proving convergence, it has to be taken into

account that sampling may be applied (independently) in both the inner loop and

the outer loop.

4.5 A new framework to generate Lagrangian cuts

In Paper D, we present a new framework to generate Lagrangian cuts in decompo-

sition methods for MS-MILPs such as SDDiP. In doing that, we address research

objective 2.4.
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4.5.1 Theoretical results

The new framework is based on a similar proposal that has been made for standard

Benders cuts in Fischetti et al. (2010) and has seen further development and deeper

analysis in Brandenberg and Stursberg (2021); Hosseini and Turner (2021).

A key difference to the tranditional generation approach from SDDiP (Zou

et al., 2019b) is that the considered Lagrangian relaxation is not derived imme-

diately from the stage-t subproblem. Instead, first a feasibility problem for the

epigraph of Qi+1

t
(·) is formulated. To be precise, given a trial point (xit−1, θ

i
t), with

θit the value Q
i
t(x

i
t−1) of the current cut approximation at stage t− 1, the problem

checks if this point is contained in the epigraph of Qi+1

t
(·). If this is the case, the

optimal value of this feasibility problem is zero, otherwise it is +∞. Now, for this

feasibility problem a Lagrangian relaxation can be derived by relaxing the copy

constraints zt = xit−1 plus the constraint containing θit.

This type of Lagrangian relaxation has already been presented in Chen and

Luedtke (2022) for two-stage stochastic MILPs. However, not only do we extend

it to multistage problems, the framework we develop based on this relaxation is also

more general and allows for the generation of various different types of Lagrangian

cuts, whereas in Chen and Luedtke (2022) only one specific case is considered.

An important observation is that the derived Lagrangian dual problems are un-

bounded whenever (xit−1, θ
i
t) is not contained in the epigraph of the closed convex

envelope of Qi+1

t
(·). To generate a reasonable Lagrangian cut, a bounded problem

should be solved, though, as this allows to select the dual optimal solution as the

cut coefficients. We present different normalization constraints that are sufficient

to achieve this. We show that depending on the chosen normalization, Lagrangian

cuts satisfying different quality criteria can be obtained, e.g., deep cuts, facet-

defining cuts or Pareto-optimal cuts. In doing that, we draw on similar results

that have been presented for Benders decomposition recently and extend them to

the stochastic and Lagrangian setting (Brandenberg and Stursberg, 2021; Hosseini

and Turner, 2021). In particular, we distinguish linear normalizations (yielding

LN cuts) and norm-based normalizations (yielding deep cuts). Moreover, we in-

vestigate in detail the geometrical ideas and relations behind these normalizations.

For LN cuts the coefficients of the normalization constraints have to be chosen

carefully to make sure that the normalized Lagrangian dual problem is in fact
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bounded. Geometrically, we show that this is related to the identification of core

points in the epigraphs of Qi+1

t
(·). For MS-MILPs, identifying such core points

can be quite challenging, especially in the presence of integer requirements. We

propose five heuristic approaches for the computation of core point candidates.

By incorporating the new cut generation framework we obtain alternative ver-

sions of NBD or SDDiP. We prove that under the assumption of binary state

variables, NBD still converges to an optimal solution in a finite number of iter-

ations. This proof can be extended to prove almost sure finite convergence for

SDDiP using the same arguments as in Zou et al. (2019b).

Our framework allows for a lot of flexibility in cut generation, and thus notably

extends the toolbox of SDDiP. The hope is that for a given MS-MILP this can be

exploited to identify a type or a combination of different types of Lagrangian cuts

that significantly accelerate(s) SDDiP.

4.5.2 Computational results

We perform extensive computational tests for SDDiP to assess the quality of La-

grangian cuts generated using the new framework. To this end, they are added

as a feature to the existing GitHub project DynamicSDDiP.jl (Füllner, 2024a).

For comparison, in our experiments we also generate Benders cuts, strengthened

Benders cuts and the standard Lagrangian cuts from SDDiP (Zou et al., 2019b).

All tests are performed on instances of a capacitated lot-sizing problem (CLSP)

from the literature. This problem has continuous state variables, so we use a binary

approximation of the state space with a discretization precision of 1.0.

We run different batches of tests. First, we test SDDiP using only one type of

cut per run. After that, we combine Lagrangian cuts with strengthened Benders

cuts to accelerate the solution process. In addition to standard SDDiP with state

binarization, we also test it without state binarization. Whereas this method has

no convergence guarantees, the dual problems are solved much faster.

Overall, our results show significant improvements of the obtained lower bounds

in SDDiP (compared over time, not over iterations) in all cases if using our pro-

posed cuts: with state binarization, without state binarization, combined with

strengthened Benders cuts or applying the cuts on their own. With state bina-
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rization, especially LN Lagrangian cuts yield strong improvements, without state

binarization also deep cuts perform reasonably well.

We also show that SDDiP can be further accelerated by restricting the dual

space in the Lagrangian dual problems, even though this again annuls the theo-

retical convergence guarantees. This approach had been previously suggested by

Chen and Luedtke (2022).

However, despite these favorable results, we also observe that better lower

bounds do not necessarily translate to better performances of the obtained policies

in an in-sample simulation after SDDiP has terminated. In this regard, often

policies obtained by using strengthened Benders cuts show the best performance.

Moreover, for problems with more than 4 stages none of our test instances manages

to close the optimality gap sufficiently, so even after hours of run time the observed

gaps are still considerable. This shows that even with carefully modifying the cut

generation process, solving large-scale MS-MILPs in reasonable time remains an

open challenge.

4.5.3 Limitations and outlook

The main limitation of the new cut generation framework is that, despite improving

the lower bounds in SDDiP it does not always lead to better-performing policies

because as standard SDDiP, it struggles to close the optimality gap for CLSP.

A major aspect in that regard is that the framework requires a multi-cut ap-

proach where all value functions are approximated separately, see Sect. 2.5. This

is computationally expensive because qt cuts are added at stage t per iteration.

We show in the supplementary material of Paper D how our framework can be

extended to a single-cut setting. However, first this variant has not been tested in

our experiments so far. Second, the dimension of the dual space is increased sig-

nificantly. Third, this approach only allows for a partial decomposition of the La-

grangian dual problems. Still, we reckon that trying to compute deep Lagrangian

cuts or LN Lagrangian cuts in a single-cut framework in a computationally efficient

way could be an interesting research direction.

In addition, the computational performance of our proposed cut generation

framework could be improved in several ways. The solution of independent La-

grangian duals could be parallelized. Moreover, the dual space restriction sug-
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gested by Chen and Luedtke (2022) looks promising to reduce the computational

effort while not compromising cut quality by too much. We think that future

research could focus more on priorly restricting the dual space to reduce the com-

putational effort for solving Lagrangian dual problems.

Other points of interest with respect to future research are addressing numerical

issues, which occasionally occur for LN cuts, identifying core points, or solving

Lagrangian dual problems more efficiently in general.

Moreover, although we do not explore and test this in Paper D, we expect that

the new cut generation framework may also be applied when Lagrangian duality is

used to derive non-convex cuts, e.g., Dynamic SDDiP or NC-NBD. However, these

methods do rely on Lipschitz regularizations and solving bounded Lagrangian dual

problems, so the framework would have to be adapted to this setting first.

Finally, so far, only tests for CLSP have been conducted and included in Pa-

per D. For the future, further tests are planned on a capacitated facility location

problem with pure binary state variables and local integer constraints.

4.6 Non-linear cut-sharing in SDDP

In Paper E we address research objective 2.5, and extend the toolbox of SDDP

to stagewise dependent uncertainty occurring in the RHS of MSLPs that is mod-

eled by nonlinear, possibly non-convex AR processes. Our results allow for more

flexibility, and therefore potentially more accuracy in modeling uncertainty in the

RHS when dealing with MSLPs.

4.6.1 Theoretical results

The theoretical results of the paper consist of two major parts.

First, we deal with general AR processes of type ξt = bt(ξ[t−1], ηt), where bt(·) is
a nonlinear, possibly non-convex function. As explained in Sect. 3.2.4, in this case

the common approach to interpret the history ξ[t−1] as an additional state vector

leads to non-convex (expected) value functions. Therefore, linear cuts are not suf-

ficient for valid and tight approximations, and thus cannot guarantee convergence

of SDDP. We show that instead, cuts can be derived that are linear in the origi-

nal state variables xt−1, but non-convex in the history ξ[t−1] of the considered AR
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process, therefore allowing for valid and tight approximations of the non-convex

expected value functions.

For these cuts, however, the computational tractability becomes a major chal-

lenge for SDDP-type algorithms. In the presented form, the cut formulas at stage t

require a recursion over the scenario tree from stages T to t+1, which is computa-

tionally infeasible in most cases. On the other hand, converting them into closed-

form cut formulas that can be evaluated without said recursion is not possible in

general. Therefore, applying them within SDDP is computationally intractable.

Second, we deal with a special class of nonlinear AR processes, which we refer

to as log-linear (periodic) AR processes. These processes are widely used to model

non-negative stochastic inflows within hydrothermal systems (Shapiro et al., 2013).

By exponentiation, it can be shown that these processes satisfy ξt = bt(ξ[t−1], ηt)

with bt(·) a function of type eηt
∏

k∈[t−1] ξ
ϕ
(t−k)
t

k with coefficients ϕ
(t−k)
t , k ∈ [t − 1].

The upper index is put in brackets to distinguish it from exponents.

For this class of AR processes, we are able to develop tractable closed-form cut

formulas. The associated cuts are valid and tight. Importantly, they are nonlinear,

possibly non-convex in ξ[t−1], but linear in xt−1. Therefore, it is possible to incor-

porate them into the SDDP subproblems without compromising their linearity (as

long as the model equation is not introduced as an explicit constraint). If solvers

do not allow for this, the derived formulas can be used to adapt the intercept of a

given cut to a scenario at hand, thus to share the cut with that particular scenario.

To our knowledge, Paper E is the first work proposing nonlinear cuts and showing

how they can be used within SDDP in this context.

Note that even under special conditions where both the (expected) value func-

tions and our proposed nonlinear cuts become convex, our cuts may yield superior

results compared to the linear cuts proposed in Guigues (2014). The reason is that

both types of cuts are tight, but the nonlinear cuts provide a better approximation

outside of the current trial point xit−1.

4.6.2 Computational results

To assess the performance of SDDP incorporating our proposed nonlinear cuts,

we perform computational tests for a long-term hydrothermal scheduling problem
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(LTHS) with stochastic inflows. Our version of SDDP is implemented in Julia and

available in the GitHub project LogLinearSDDP.jl (Füllner, 2024b).

We use data of the Brazilian power system with 4 energy-equivalent reservoirs,

95 generators and a planning horizon of 60 months (plus additional 60 months to

remove end-of-horizon effects) (Shapiro et al., 2013). We run tests using log-linear

AR processes with two different lag orders, which have been fitted on historical

data. For comparison, we also consider standard SDDP with different linearized

AR processes of lag order 1.

First of all, the results of our experiments show that our proposed version of

SDDP works as intended. Furthermore, in an out-of-sample simulation performed

after termination of SDDP, the policies obtained from our proposed version of

SDDP outperform those obtained using standard SDDP with linearized inflow

models. More precisely, assuming that the log-linear AR process provides an

accurate representation of the inflows, our tailor-made version of SDDP allows

for a 7-10% reduction of total costs on average compared to standard SDDP.

These performance gains have to be taken with some caution, though. The

main reason is that the average inflow level is consistently lower for the log-linear

models than for the linearized models (about 3-4% difference for the largest reser-

voir). This means that the policies obtained from standard SDDP are trained on

an inflow level that is not really comparable to that from the log-linear models,

which may explain the worse performance on out-of-sample data from the log-

linear models. On the other hand, it is important to clarify that the differences

in inflow levels are not deliberately chosen, but arise as a direct consequence of

fitting two different types of AR models on the historical data. A simulation anal-

ysis indicates that scenarios obtained from the log-linear models better match the

statistical properties of the historical data. Similar observations had been made in

Löhndorf and Shapiro (2019) before. Hence, based on the available data, the log-

linear models should provide a more accurate representation of the inflows. From

that perspective, the differences in inflow levels and out-of-performance costs high-

light the importance of incorporating nonlinear inflow models directly into SDDP

instead of linearizing them.
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4.6.3 Limitations and outlook

The main drawback of our approach is that we observe a considerable computa-

tional overhead using the proposed non-convex cut formulas in SDDP. For 1000

iterations, our version of SDDP takes about 5-6 hours instead of less than one hour

run time for standard SDDP. This overhead is mostly caused by the requirement

to iterate over all existing cuts when computing cut intercept factors or adapting

the cut intercepts to a given scenario.

A possible remedy is that our methodology can be naturally extended to a

hybrid version of SDDP where a log-linear AR process and non-convex cuts are

used in early stages, while a linearized process and linear cuts are used in later

stages of the MSLP. This extension is explained in the supplementary material to

Paper E, but has not been tested computationally yet. Additionally, the efficiency

of our implementation could be improved to reduce the computational overhead

of using our proposed non-convex cuts.

In the future, research experiments could be conducted for a case study with a

convex log-linear AR process. This would allow to get an unbiased comparison of

the performance of our proposed non-convex cuts and standard linear cuts, as the

same inflows can be used in both cases. In the previous tests, such a comparison

is not possible because the results are highly affected by the differences of the AR

models themselves.

Finally, with respect to our work on general non-convex AR processes, exploring

the usage of approximations for the cut intercepts could be worthwhile in order to

avoid the costly recursion over the scenario tree. We provide some first theoretical

results pointing in this direction in Paper E, but a more detailed study is left for

future research.





Chapter 5

Conclusion

5.1 Summary

This dissertation extends SDDP and related decomposition methods, such as NBD

or SDDiP, in several ways.

First, a dynamic version of SDDiP is presented in which the binary approxi-

mation of the state variables is dynamically refined and only applied temporarily

in order to generate tight non-convex cuts in a lift-and-project scheme.

Second, a generalization of NBD-like and SDDP-like algorithms to general non-

convex multistage stochastic MINLPs is proposed. It combines piecewise linear

approximations, regularization and the lift-and-project approach from Dynamic

SDDiP in a unique fashion.

Third, an extension of SDDP is presented that allows to handle stagewise

dependent uncertainty in the right-hand side that is modeled by log-linear autore-

gressive processes. This contribution allows for more flexibility and accuracy in

modeling uncertain data in SDDP, without the need to linearize the stochastic

processes.

Fourth, a novel framework is presented to generate Lagrangian cuts in multi-

stage stochastic programming. Depending on the choice of a normalization con-

straint, Lagrangian cuts satisfying different cut quality criteria can be generated.

As the backbone of the algorithmic ideas, new theoretical results on Lagrangian

duality, Lagrangian cuts and Lipschitz regularization are developed.
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62 5 Conclusion

The proposed solution methods can be applied in several real-world decision-

making problems, especially in the energy sector, e.g., unit commitment problems,

hydrothermal scheduling problems or generation expansion problems.

5.2 Critical reflection and outlook

In their current form, most of the extensions of SDDP presented in this thesis are

rather of theoretical interest, and may serve as a basis for future research, instead

of being immediately applicable to large-scale instances of multistage stochastic

problems in real-world applications.

As the common denominator among all methods relying on Lagrangian relax-

ation, i.e., Dynamic SDDiP, NC-NBD and generating Lagrangian cuts, we observe

a huge computational bottleneck in solving the Lagrangian dual problems. More-

over, some of these methods involve approximations, such as binary approximation,

piecewise linear approximation or non-convex cuts, which require the introduction

of several additional (binary) variables and constraints. This lets the considered

subproblems grow quickly, and slows down the solution process tremendously over

time. Although the proposed methods have convergence guarantees and are shown

to improve the approximation quality compared to existing solution methods, it

is therefore not clear in general, and probably problem-dependent, if this gain

in approximation quality is worth the additional effort. Even if, it has to be

considered that an improvement in that regard does not necessarily translate to

better-performing policies in in-sample or out-of-sample simulations.

An exception is the proposed SDDP version for log-linear AR processes, which

shows considerable computational overhead as well, but within reasonable limits.

Also, the increased accuracy of modeling the uncertain data seems to warrant the

additional effort, as the obtained policies differ significantly from those obtained

using conventional techniques.

For the above reasons, further research, especially on computational improve-

ments, is required for a widespread application of the proposed extensions of SDDP.

In this thesis we point out that there exists significant room for improvement in

different directions. However, it is important to keep in mind that the tackled

problems are multistage/dynamic, non-convex and stochastic, thus very complex

by nature and expected to be computationally challenging to solve.
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Füllner, C. and Rebennack, S. (2022). Non-convex nested Benders decomposition.

Mathematical Programming, 196:987–1024.
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Shapiro, A., Dentcheva, D., and Ruszczyński, A. (2014). Lectures on Stochastic

Programming: Modeling and Theory, 2nd Ed. Society for Industrial and Applied

Mathematics.

Shapiro, A., Tekaya, W., da Costa, J. P., and Soares, M. P. (2013). Risk neutral

and risk averse stochastic dual dynamic programming method. European Journal

of Operational Research, 224(2):375–391.

Steeger, G. and Rebennack, S. (2017). Dynamic convexification within nested Ben-

ders decomposition using Lagrangian relaxation: an application to the strategic

bidding problem. European Journal of Operational Research, 257(2):669–686.

van Ackooij, W. and Warin, X. (2020). On conditional cuts for stochastic dual dy-

namic programming. EURO Journal on Computational Optimization, 8(2):173–

199.

van Slyke, R. M. and Wets, R. (1969). L-shaped linear programs with applica-

tions to optimal control and stochastic programming. SIAM Journal on Applied

Mathematics, 17(4):638–663.

Zhang, S. and Sun, X. A. (2022). Stochastic dual dynamic programming for mul-

tistage stochastic mixed-integer nonlinear optimization. Mathematical Program-

ming, 196:935–985.

Zou, J., Ahmed, S., and Sun, X. A. (2019a). Multistage stochastic unit commit-

ment using stochastic dual dynamic integer programming. IEEE Transactions

on Power Systems, 34(3).

Zou, J., Ahmed, S., and Sun, X. A. (2019b). Stochastic dual dynamic integer

programming. Mathematical Programming, 175:461–502.





List of abbreviations

AR autoregressive

DPE dynamic programming equations

LP linear program

MILP mixed-integer linear program

MINLP mixed-integer nonlinear program

MSP multistage stochastic program

MSLP multistage stochastic linear program

MS-MILP multistage stochastic mixed-integer linear program

MS-MINLP multistage stochastic mixed-integer nonlinear program

NBD nested Benders decomposition

NC-NBD non-convex nested Benders decomposition

RHS right-hand side

SDDP stochastic dual dynamic programming

SDDiP stochastic dual dynamic integer programming

69





Part II

Research papers





Paper A

Stochastic dual dynamic

programming and its variants –

A review
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Abstract

We provide a tutorial-type review on stochastic dual dynamic programming (SDDP), as
one of the state-of-the-art solution methods for large-scale multistage stochastic programs.
Since introduced about 30 years ago for solving large-scale multistage stochastic linear
programming problems in energy planning, SDDP has been applied to practical problems
from several fields and is enriched by various improvements and enhancements to broader
problem classes. We begin with a detailed introduction to SDDP, with special focus on
its motivation, its complexity and required assumptions. Then, we present and discuss
in depth the existing enhancements as well as current research trends, allowing for an
alleviation of those assumptions.

1 Introduction

In many decision-making situations at least some of the data are uncertain. While this
uncertainty is often disregarded, the importance of taking it into account during the
decision process was already recognized in 1955 by George Dantzig [44]. In stochastic
programming, a common approach to achieve this is to split up this process into two
different stages: At the first stage, decisions have to be taken before any uncertain
data are revealed and to hedge against the existing uncertainty (so-called here-and-
now decisions). At the second stage, corrective actions, called recourse or wait-and-
see decisions, can be taken, once the realization of the uncertain data is known [26].
Typically, the aim is to determine an optimal decision rule in expectation or with respect
to some risk measure.

In many practical applications, not only two, but multiple subsequent decisions have
to be taken [7]. If these decisions cannot be taken independently, but are coupled by
their effects on a system state, e.g., hydroelectric generation affecting the water level
of a reservoir, or orders affecting the size of an inventory stock, this can be modeled
as a multistage stochastic problem with several subsequent recourse decisions (this is
also referred to as dynamic programming, and was recently coined sequential decision
problem in [170]). In such a problem, trade-offs have to be made between using an
existing resource immediately or saving it up for later stages, taking into account the
future uncertainty.

Stochastic dual dynamic programming (SDDP) is an algorithm to tackle such mul-
tistage stochastic problems in order to compute, or at least approximate, an optimal

1
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policy, that is, a strategy or decision rule providing the best here-and-now decision as
well as the best wait-and-see decisions for any stage and any given realization of the
uncertain data. It was first proposed by Pereira and Pinto in 1991 in [153].

Historically, SDDP has its roots in two separate research streams dealing with se-
quential decision problems. The first one is stochastic dynamic programming (SDP),
which is closely related to stochastic optimal control and Markov decision processes.
Here, a crucial assumption is that the uncertain data on different stages of the decision
process are independent of each other (or at least Markovian). In this case, multistage
stochastic problems can be expressed by dynamic programming equations (DPE), which
decompose the large-scale problem by stages into several smaller subproblems. These
DPE exploit the famous optimality principle by Bellman [13], which allows one to ex-
press the optimal objective value from some stage t onwards, given some state xt−1,
recursively by means of some stage-t objective function and a so-called expected value
function Qt(·), modeling the expected optimal objective value from stage t+1 onwards,
given the new state xt. We formally introduce these concepts in Sect. 2.4.

The DPE can be solved exactly by SDP solution methods, such as value iteration
[13]. Basically, this method is based on traversing the stages backwards and evaluat-
ing the expected value functions Qt(·) for all possible states xt−1 (concept of a lookup
table). Each such evaluation requires solving an optimization problem for all possible
realizations of the uncertain data, which, in turn, requires finding an optimal decision
over all possible actions. For this evaluation to be possible, it is assumed that the state
space, the action space and the scenario space are finite – otherwise they have to be
discretized. However, even in the discrete case, enumerating all possible combinations
is computationally intractable for all but low dimensions, as the number of evaluations
suffers from combinatorial explosion. This phenomenon is known as the curse of dimen-
sionality of SDP [169]. In order to circumvent this, approximate dynamic programming
(ADP) methods have been developed, where expected value functions are approximated
instead of being evaluated exactly (or where optimal policies are approximated using
different strategies) [169, 170]. SDDP can be regarded as one such method. Due to its
close relation with SDP it also heavily relies on the assumption of stagewise indepen-
dence.

A second perspective on SDDP is one from stochastic programming. Traditionally,
in this field, multistage uncertain data are often modeled by a scenario tree, which
branches at each stage and consists of finitely many possible scenarios. Scenario trees
do not require the stochastic data process to be stagewise independent. Using finite sce-
nario trees and assuming linearity, a multistage stochastic program can be reformulated
as a large-scale linear programming problem [179]. However, in this extensive form such
a problem usually is way too large to be solved by monolithic approaches, since the num-
ber of decision variables and constraints grows exponentially in the number of stages.
To cope with this challenge, special solution techniques are required which decompose
the problem. Based on the L-shaped method for solving two-stage stochastic programs
[228] (a special variant of Benders decomposition [17]), one such idea is the extension of
Benders-type solution methods to the multistage setting. The nested Benders decom-
position (NBD) method by Birge [24] is such an extension. It can be interpreted as a
nested sequence of solving two-stage stochastic programs while traversing the scenario
tree. In contrast to SDP, in NBD the functions Qt(·) are not evaluated at all possible
states, but iteratively approximated by linear functions called cutting-planes or cuts,
starting from a rough initial relaxation. Such approximation is possible, since Qt(·) can
be proven to be convex in xt−1 for LPs. It also allows to consider a continuous state
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space without discretization.
While NBD is a reasonable method to solve multistage stochastic linear programs

of moderate time horizons (maximum 4 or 5 time steps), for larger problems, it is still
computationally prohibitive, as the scenario tree grows exponentially in the number of
stages. As a relief, several methods have been proposed to combine the cutting-plane
approximations in NBD with sampling techniques from simulation [38, 53, 102]. The
most prominent among these methods is SDDP. From this perspective, SDDP can be
considered a sampling-based variant of NBD. In order to use the sampling step in a
beneficial way, compared to NBD, SDDP comes with the additional prerequisite that
the data process is stagewise independent.

Application-wise, the development of SDDP is closely related to hydrothermal op-
erational planning, which attempts to determine cost-optimal generation decisions for
thermal and hydroelectric power plants over several stages, while ensuring system bal-
ance and satisfaction of technical constraints. Since future water availability is affected
by uncertain inflows into hydro reservoirs, this optimization problem can be considered
multistage, stochastic, and thus very complex.

Prior to SDDP, various solution techniques had been proposed to tackle this type of
problem. Among those are simulation models, linear programming techniques (either
based on assuming inflows as deterministic or based on reformulating stochastic LPs into
a deterministic equivalent), special variants of dynamic programming and SDP [230].
However, all of these techniques either do not consider the uncertain nature of inflows,
suffer from the aforementioned curses of dimensionality or do not guarantee convergence.
For operating a large-scale power system dominated by hydro power these shortcomings
are severe, as they prohibit a cost-minimal and reliable, but at the same time computa-
tionally efficient operational planning. The development of SDDP by Pereira and Pinto
was directly driven by the endeavor to replace SDP with a more efficient optimization
technique in operating the Brazilian power system. While it avoids some of the com-
putational drawbacks of SDP or NBD (sometimes advertized as “breaking the curse of
dimensionality”), SDDP comes with its own shortcomings, as we thoroughly discuss in
this paper.

Since its invention in 1991 SDDP has gained enormous interest, both from a theoreti-
cal and an application perspective. To this date, it can be considered one of the state-of-
the-art solution methods for large-scale multistage stochastic problems. For this reason,
it is used in various practical applications to optimize decision processes, for instance
hydrothermal operational planning, portfolio optimization or inventory management,
see Sect. 9.

Several extensions and improvements of SDDP have been proposed by now, many of
them attempting to relax the originally required theoretical assumptions, making SDDP
applicable to broader problem classes. Others strive for improving the performance of
SDDP because, despite its merits, the algorithm may take too long to converge for large
problem instances.

Due to both, the sheer amount and the variety of proposed enhancements, SDDP
has developed into a wide-ranging research area with several sub-branches, becoming
increasingly difficult to keep track of. In this article, we give a comprehensive tutorial-
type review on SDDP-related research, covering its basic principle and assumptions,
strengths and weaknesses, existing extensions and current research trends.

3
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Table 1: Table of contents.

Part I: The Mechanism of SDDP
Sect. 2 Preliminaries p. 5
Sect. 3 Standard SDDP p. 13
Sect. 4 Convergence & Complexity p. 21
Sect. 5 Comparison with Related Methods p. 24
Sect. 6 Sampling p. 27
Sect. 7 Stopping Criteria p. 31
Sect. 8 Exact Upper Bounds and Dual SDDP p. 33

Part II: Applications of SDDP
Sect. 9 Applications p. 39
Sect. 10 Software p. 43

Part III: Extensions of SDDP
Sect. 11 Handling Continuous Uncertainty p. 44
Sect. 12 Handling Risk-Aversion p. 49
Sect. 13 Handling Distributional Uncertainty p. 66
Sect. 14 Handling Stagewise Dependent Uncertainty p. 71
Sect. 15 Handling Nonlinear Convex Problems p. 84
Sect. 16 Handling Mixed-integer and Non-convex Problems p. 86
Sect. 17 Handling Infeasibility p. 89
Sect. 18 Handling Non-block-diagonal Problems p. 92
Sect. 19 Handling Infinite Horizons p. 92
Sect. 20 Handling Random Horizons p. 93

Part IV: Accelerating SDDP
Sect. 21 Performance Improvements p. 94

Sect. 22 Outlook p. 106

1.1 Structure

The structure of this review is summarized in Table 1. The review can be divided into
four major parts. In the first part (Sect. 2 to 8), we discuss the basic mechanism of
SDDP. This includes formal preliminaries to formulate multistage stochastic decision
problems, but also the main algorithmic steps of SDDP and a complexity analysis. In
particular, we point out crucial assumptions for standard SDDP to work. In the second
part (Sect. 9 and 10), we discuss applications, which underline the practical relevance of
SDDP, but also the requirement to relax some of the standard assumptions. In the third
part (Sect. 11 to 20), we discuss various extensions of SDDP to cases where the standard
assumptions are relaxed. These extensions comprise modifications of SDDP itself as well
as modifications or reformulations of the considered decision problems. Finally, in the
fourth part (Sect. 21), we discuss approaches to improve the computational performance
of SDDP.

1.2 Terminology and Notation

As already mentioned, SDDP is linked to several different research fields and com-
munities, such as stochastic programming, dynamic programming, Markov decision
processes, optimal control or reinforcement learning, each using different terminology
and notation. This aggravates a presentation of SDDP in a form that is familiar and
accessible to all those interested.
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Table 2: Abbreviations that are used throughout the text.

(P)AR (Periodic) Autoregressive process
DPE Dynamic programming equations
LP Linear program
MI(N)LP Mixed-integer (non-)linear program
MSLP Multistage stochastic linear programming problem
NBD Nested Benders Decomposition
RHS Right-hand side
SDP Stochastic Dynamic Programming
SDDP Stochastic Dual Dynamic Programming

To our knowledge, the majority of active research on SDDP is conducted by re-
searchers from the stochastic programming community. For this reason, in many sec-
tions we resort to stochastic programming language and notation. On the other hand,
this review is also dedicated to offer an access to SDDP for practitioners and researchers
from fields in which different perspectives and notation are standard. Therefore, we ad-
dress these differences if required for the understanding of SDDP, and attempt to avoid
heavy mathematical programming notation whenever possible, especially in early sec-
tions introducing SDDP.

For a general, not SDDP-specific, attempt at unifying different disciplines related
to optimization under uncertainty and sequential decision processes into a common
framework, we refer to the excellent book [170].

In the following, we denote random variables by bold letters, e.g., ξ, and their
realizations by letters in normal font, e.g., ξ. To enhance readability, we summarize
some recurring abbreviations in Table 2.

2 Preliminaries for SDDP

In order to present SDDP in its standard form, we start by formally introducing the
considered decision problem. In particular, we point out assumptions which are crucial
for the presented SDDP method to work.

We consider a multistage decision process where decisions xt have to be taken over
some horizon [T ] := {1, . . . , T} consisting of T stages, with the aim to minimize some
objective function subject to constraints. For now, the horizon T is assumed to satisfy
the following condition:

Assumption 1 (Finite and deterministic horizon). The number T ∈ N of stages is
finite and deterministic.

We discuss later how SDDP may be applied to cases where this is not satisfied, see
Sect. 19 and 20.

2.1 Modeling the Uncertainty

The data in the considered decision process can be subject to uncertainty, which is
revealed over time. To this end, we consider a filtered probability space (Ω,F ,P) with
sample space Ω, σ-algebra F and probability measure P, which models the uncertainty
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over the horizon [T ]. Further let F1, . . . ,FT with FT := F be a sequence of σ-
algebras containing the events observable up to time t, thus defining a filtration with
F1 ⊆ F2 · · · ⊆ FT , and let Ωt be the sample space restricted to stage t ∈ [T ]. We then
define a stochastic process (ξt)t∈[T ] with random vectors ξt : Ωt → Rκt , κt ∈ N, over the
probability space. These random vectors are assumed to be Ft-measurable functions.
We denote their support by Ξt ⊆ Rκt for all t ∈ [T ]. For the first stage, the data are
assumed deterministic, i.e., Ξ1 is a singleton. For each random vector ξt, we denote a
specific realization by ξt.

As a crucial ingredient for SDDP to work, we assume that the uncertainty on dif-
ferent stages does not depend on each other.

Assumption 2 (Stagewise independence). For all t ∈ [T ], the random vector ξt is
independent of the history ξ[t−1] := (ξ1, . . . , ξt−1) of the data process.

Under Assumption 2, the random vectors ξt are often referred to as noises. This
assumption is common in dynamic programming, but not standard in stochastic pro-
gramming. In practical applications it may not be satisfied. We address how to apply
SDDP to problems with stagewise dependent uncertainty in Sect. 14.

Additionally, we take the following assumptions for the stochastic process.

Assumption 3 (Known distribution). The probability distribution Fξ of the data pro-
cess (ξt)t∈[T ] is known.

Assumption 4 (Exogeneity). The random variables ξt are exogeneous, i.e., the distri-
bution Fξ of the data process (ξt)t∈[T ] is independent of decisions (xt)t∈[T ].

Assumption 5 (Finite randomness). The support Ξt of ξt is finite for all t ∈ [T ]. The
number of noise realizations at stage t ∈ [T ] is given by qt ∈ N with q1 = 1.

We discuss how to apply SDDP if Assumption 3 is not satisfied in Sect. 13. If
Assumption 4 is not satisfied, the problem is said to have decision-dependent uncertainty
[115]. As this case is not covered in the literature on SDDP so far, we do not discuss
the relaxation of this assumption.

Assumption 5 is a key assumption for SDDP and standard in dynamic programming
and stochastic programming in order to obtain computationally tractable problems.
Whereas there exists no direct extension of SDDP to problems that do not satisfy As-
sumption 5, we discuss possible ways to treat such problems in Sect. 11. As ξt is a
discrete and finite random variable for all t ∈ [T ], its distribution Fξ is defined by
finitely many realizations ξtj , j = 1, . . . , qt, and assigned probabilities ptj .

The stagewise independent and finite data process (ξt)t∈[T ] can be illustrated by a
recombining scenario tree [179], also called scenario lattice [129]. On each stage t ∈ [T ],
its nodes represent the possible noise realizations ξtj , j = 1, . . . , qt. Due to stagewise
independence (Assumption 2) all nodes at the same stage have an identical set of child
nodes with the same noise realizations and associated probabilities. We call paths
ξ = (ξt)t∈[T ] through the complete tree (stage-T ) scenarios and index them by s ∈ S.
Note that for each scenario ξs, there exists some js ∈ {1, . . . , qt} such that ξst = ξtjs . The
total number of different scenarios modeled by the tree is |S| = ∏t∈[T ] qt. An example
of a recombining scenario tree is presented in Figure 1.
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t = 3t = 2t = 1

ξ6

Figure 1: Recombining tree with 3 realizations per stage and highlighted scenario ξ6.

2.2 The Decision Process

With the stochastic process in mind, we can now turn to the decision process. At
stage 1, the here-and-now decision x1 is taken to hedge against the uncertainty in the
following stages. At those stages, recourse decisions xt ∈ Rnt , nt ∈ N, can be taken
under knowledge of the realization of the data process at stage t. This decision process
is illustrated in Figure 2.

t = 1 t = 2 t = 3 · · · t = T

ξ2 ξ3 ξT

x1 x2 x3

Figure 2: Multistage decision process with uncertainty.

In other words, the paradigm is that decisions can be taken after the uncertainty
corresponding to stage t has unfolded (so-called wait-and-see decisions), making xt(ξt)
a function of ξt, and by that a random variable. We account for that using a bold
symbol. Importantly, xt(·) does only depend on realizations up to stage t, but does not
anticipate future events or decisions. Future events are only considered using distribu-
tional information. Therefore, xt(·) is Ft-measurable [201]. As we will see, xt(·) may
also depend on the choice for xt−1(·) and so on, so that despite stagewise independence
(Assumption 2), xt(·) is actually a function of the whole history ξ[t] of the data process.

A sequence of decision functions
(
xt(ξ[t])

)
t∈[T ] is called a policy and provides a deci-

sion rule for all stages t ∈ [T ] and any realization of the data process. By the previous
arguments, such a policy is non-anticipative, modeling a sequence of nested conditional
decisions. The aim of the decision process is to determine an optimal policy with respect
to a given objective function and a given set of constraints.

In this context, the following assumptions are standard for SDDP.

Assumption 6 (Linearity). All functions occurring in the objective and the constraints
are linear.

Assumption 7 (Consecutive coupling). Only decisions on consecutive stages can be
linked by constraints.

Assumption 8 (Risk-neutral policy). The aim is to determine an optimal risk-neutral
policy.

As not all of these assumptions are guaranteed to be satisfied for an arbitrary prob-
lem in practice, we discuss possible ways to relax them in Sect. 15 and 16 (for Assump-
tion 6), Sect. 18 (for Assumption 7) and Sect. 12 (for Assumption 8).
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Under Assumptions 6 and 8, the optimization objective can be expressed as

min
x1,x2,...,xT

E


∑

t∈[T ]

(
ct(ξt)

)⊤
xt(ξ[t])


 , (1)

with data vectors ct ∈ Rnt for all t ∈ [T ] and E[·] denoting the expected value.
Under Assumptions 6 and 7, for all t ∈ [T ], the constraints on the decisions can be

expressed using the Ft-measurable set-valued mappings Xt(·), which for any xt−1 and
any ξt ∈ Ξt are defined by

Xt(xt−1, ξt) :=
{
xt ∈ Xt ⊂ Rnt : Tt−1(ξt)xt−1 +Wt(ξt)xt = ht(ξt)

}
. (2)

Here, ht ∈ Rmt are real data vectors (for mt ∈ N), Tt andWt are real-valued (mt+1×nt)
and (mt × nt) data matrices and Xt is a non-empty polyhedron, e.g., modeling non-
negativity constraints.

As stated before, some (or all) of the problem data can be subject to uncertainty.
Hence, for all t ∈ [T ], we consider random variables ct(ξt),Tt−1(ξt),Wt(ξt) and ht(ξt)
depending on realizations of ξt. Xt is considered deterministic. Note again that the
first stage is assumed to be deterministic, and that T0 ≡ 0 and x0 ≡ 0. Hence, we define
X1 :≡ X1(x0, ξ1).

Remark 2.1. For notational simplicity, when we deal with finite random variables ξt in
this paper, we often index the vectors and matrices ct, Tt−1,Wt and ht with j = 1, . . . , qt
if we address specific realizations, e.g., ctj := ct(ξtj).

Remark 2.2 (Dynamic programming perspective). In dynamic programming, Markov
decision processes or optimal control, usually a slightly different perspective on sequential
decision processes is chosen (see [170] for a comprehensive overview). The main dif-
ference is that the occurring variables are differentiated into state variables and actual
decisions. State variables st ∈ St model the system state at some stage t. St is called the
state space. Importantly, state variables may not only comprise the resource state, but
also the information or belief state of a system. Local decision variables model decisions
on a stage t given a state st. In dynamic programming they are usually discrete and
called actions at ∈ At(st), in optimal control they are usually continuous and called con-
trols ut ∈ Ut(st). At(st) and Ut(st) are the action space or control space, respectively.
The actions or controls are what an agent actually decides on given the current state
st, whereas the new state st+1 is uniquely determined as st+1 = Tt(st, ut, ξt+1) using a
given transition function Tt(·) which captures the system dynamic. Therefore, from this
perspective, a policy is a sequence of mappings πt : St → Ut from the state space to
the control (or action) space. By proper modeling of the state variable, Assumption 7 is
naturally satisfied.

In our above setting, states and actions are intertwined. We can set st = (xt−1, ξt)
and ut = xt to switch perspectives [6]. The state space, control space and transition
function are then implicitly given by (2) and the definition of ξt.

Whereas our above definitions are prevalent in the literature on SDDP, sometimes
also an optimal control perspective is adopted, e.g., in the French community working
on SDDP (see for example [78]). However, in this case usually only the resource state
rt is explicitly considered as a state variable (while not including information on ξt).
Translating our above setting, this implies that rt = xt−1 with state space Rt = Xt,
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ut = xt and due to rt+1 = ut, both the control space Ut(rt, ξt) and the transition function
Tt(rt, ut, ξt) are given by the equations in (2).

It is worth mentioning that the distinction between state variables and controls (ac-
tions) is not only a matter of notation, though, but also relevant computationally because
the complexity of SDDP differs in the state and control dimension (see also Remark 2.6
and Sect. 4.2).

Given the constraint sets (2) for all t ∈ [T ], let X0 := {x0} and recursively define

Xt :=
⋃

xt−1∈Xt−1

⋃

ξt∈Ξt

Xt(xt−1, ξt)

for all t ∈ [T ] [71]. Using these definitions, we are able to state assumptions which we
require for the feasibility of our decision problem:

Assumption 9. (Feasibility and Compactness)

(a) For all t ∈ [T ], all xt−1 ∈ Xt−1 and almost all ξt ∈ Ξt, the set Xt(xt−1, ξt) is a
non-empty compact subset of Rnt (relatively complete recourse).

(b) The set Xt is bounded for all t ∈ [T ].

Remark 2.3. Note that the linearity assumption (see Assumption 6), immediately
implies that Assumption 9 (a) is not only satisfied for all xt−1 ∈ Xt−1, but for all
xt−1 ∈ conv(Xt−1), where conv(S) denotes the convex hull of a set S.

The set Xt ∈ Rnt is called reachable set in [71] and effective feasible region in [117].
It may as well be referred to as the state space sometimes, because in our setting xt
also takes the role of a state variable. However, in other cases the larger polyhedral set
Xt may be called state space.

The boundedness of Xt in (b) is required for some of the convergence results on
SDDP presented in Sect. 4. It follows naturally if Xt is bounded, since Xt ⊆ Xt.
Property (a) is convenient, but not necessarily required. We discuss possible ways to
relax it in Sect. 17.

With all the ingredients defined, we can now model the decision problem in a form
that can be tackled by SDDP. Based on its properties, in the following we refer to this
problem as a multistage stochastic linear programming problem (MSLP). If not specified
otherwise, throughout this paper, we assume that (MSLP) satisfies Assumptions 1 to 9.
We first discuss two different modeling approaches which are common in the literature.

2.3 Single-problem Formulation

One way to model the decision problem (MSLP) is to formulate it as a single opti-
mization problem. This modeling approach is common in the stochastic programming
community. The optimization problem can be obtained by combining (1) with the
constraints in (2) for all t ∈ [T ].

Then, under Assumptions 1 to 9, (MSLP) can be written as

v∗ :=





min
x1,x2,...,xT

E


∑

t∈[T ]

(
ct(ξt)

)⊤
xt(ξ[t])




s.t. x1 ∈ X1

xt(ξ[t]) ∈ Xt(xt−1(ξ[t−1]), ξt) ∀ξ[t] ∀t = 2, . . . , T
xt(·) Ft-measurable ∀t = 2, . . . , T.

(3)
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Importantly, the decision variables xt ∈ Rnt depend on ξt (and on xt−1), so in this
representation we optimize over policies. A policy (xt(ξ[t]))t∈[T ] is called feasible (or
admissible) if it satisfies the constraints in (MSLP) for almost every realization of the
random data [201].

Assumption 9 (a) implies that the feasible set of (MSLP) is compact and non-empty,
and by linearity of the objective (Assumption 6) it follows that v∗ is finite.

Due to optimizing over policies, without Assumption 5, (MSLP) is an infinite-
dimensional optimization problem. With Assumption 5, however, it can be reformulated
to a more accessible form. More precisely, it can be reformulated to a large-scale de-
terministic problem, the so-called deterministic equivalent of (MSLP) in extensive form
(see [201]). To this end, let S denote the set of all (stage-T ) scenarios. Then, for each
scenario s ∈ S a separate copy xst of variables xt can be introduced, so that the opti-
mization over implementable policies translates to an optimization over a finite number
of decision variables. However, the problem size grows exponentially in the number of
stages T . Therefore, even for a finite number of scenarios, this large-scale LP is too
large to be solved by off-the-shelf solvers for all but very small instances.

A preferable solution approach is therefore to use tailored solution techniques which
decompose (MSLP) into smaller subproblems. Note that from Assumption 7 and the
definition of Xt(·) in (2), it is evident that the constraints of (MSLP) are block-diagonal,
as only consecutive stages are coupled in the constraints. This is visualized in Figure 3.

W1

T1 W2

T2 W3

. . .

TT−1 WT

h1

h2

h3

...

hT

x1 x2 x3 xT−1 xT

Figure 3: Block-diagonal structure of constraints in (MSLP).

This sequential and block-diagonal structure can be exploited to achieve the required
decomposition. This is crucial for the derivation of SDDP. Interestingly, this decom-
position idea directly leads to the second common modeling approach for our decision
problem.

2.4 Dynamic Programming Equations

An alternative, but equivalent way to model (MSLP) is to exploit the well-known op-
timality principle by Bellman [13] and to formulate a recursion of so-called dynamic
programming equations (DPE), where a multistage decision process with stagewise in-
dependent (or Markovian) uncertainty is modeled as a coupled sequence of optimization
problems.

Whereas this modeling approach is often applied in stochastic programming as a way
to reformulate and decompose the single problem (3) into a computationally tractable
form, in dynamic programming it often serves as the starting point of modeling decision
problems. However, in contrast to many approaches in dynamic programming we do
not discretize xt, see also Sect. 5.1.
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Under Assumptions 1 to 9, for t = T, . . . , 2, the DPE are given by

Qt(xt−1, ξt) :=

{
min
xt

(
ct(ξt)

)⊤
xt +Qt+1(xt)

s.t. xt ∈ Xt(xt−1, ξt),
(4)

where

Qt+1(xt) := Eξt+1 [Qt+1(xt, ξt+1)] (5)

and QT+1(xT ) ≡ 0. Qt(·, ·) is called value function and Qt(·) is called expected value
function, (expected) cost-to-go function, future cost function or recourse function. For
the first stage, we obtain

v∗ =

{
min
x1

c⊤1 x1 +Q2(x1)

s.t. x1 ∈ X1.
(6)

For a formal proof of the equivalence of (3) and its DPE, we refer to [201] and Sect. 12.
Importantly, in subproblem (4) xt is a deterministic variable and not a function because
a fixed realization of ξt is considered.

We should emphasize that the equivalence of (3) and its DPE does not require As-
sumption 5. This implies that also the DPE (4)-(6) are computationally intractable in
case of general continuous random variables. While the subproblems are deterministic
and finite-dimensional, there exist infinitely many value functions Qt(·, ·) and the eval-
uation of Qt(·) requires the evaluation of (multidimensional) integrals. Therefore, also
from this perspective Assumption 5 is crucial.

Remark 2.4 (Dynamic programming control perspective). Recall Remark 2.2. Using
a distinction between state variables rt and controls ut, the DPE to (MSLP) can be
formulated as

Qt(rt, ξt) = min
ut∈Ut(rt,ξt)

ft(ut, ξt) +Qt+1(Tt(rt, ut, ξt)). (7)

Bellman Operator. In the French literature on SDDP, in addition to taking the
optimal control perspective discussed in Remarks 2.2 and 2.4, a more formal way to
define the DPE is prevalent, see [71, 119] for instance. To this end, a linear Bellman
operator B̂t is introduced, which applied to some lower semicontinuous function V :
Rnt → R ∪ {+∞} is defined as [71]

B̂t(V )(xt−1, ξt) := min
xt∈Xt(xt−1,ξt)

(
ct(ξt)

)⊤
xt + V (xt), (8)

i.e., it maps (xt−1, ξt) to the optimal value of an optimization problem containing func-
tion V (·). We can then further define the operator

Bt(V )(xt−1) := E
[
B̂t(V )(xt−1, ξt)

]
. (9)

Setting V to Qt(·) for t = 2, . . . , T , the (expected) value functions can then be
recursively defined in a very compact form. We summarize the different notations for a
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better overview:

B̂t(Qt+1)(xt−1, ξt) = Qt(xt−1, ξt)

Bt(Qt+1)(xt−1) = Qt(xt−1)

In the remainder of this work, we stick to notation (4), as it is most common in the
literature on SDDP which we reference in this paper.

We obtain the following properties for the DPE which are standard for SDDP:

Lemma 2.5. Under Assumptions 1 to 9, for the DPE defined by (4)-(6) the following
properties hold:

(a) We have relatively complete recourse, i.e., for any xt−1 ∈ Xt−1, the stage-t sub-
problem Equation (4) is feasible for all ξt ∈ Ξt.

(b) The value functions Qt(·, ·) and expected value functions Qt(·) are finite-valued on
conv(Xt−1) for all t = 2, . . . , T and all ξt ∈ Ξt.

(c) Problem Equation (6) is feasible and bounded.

Remark 2.6. In addition to Remark 2.2, we should highlight that (MSLP) (both, in
single-problem formulation (3) and DPE (4)-(6)) can be straightforwardly enhanced with
local decision variables yt ∈ Yt and local constraints, not appearing in different stages.
In principle, they can even be incorporated without changes to our models by extending
the dimension of the (state) variables xt and adapting the matrices Tt and Wt accord-
ingly. However, as we explain in Sect. 4, the complexity of SDDP grows exponentially
in the dimension of the state space, so this is computationally detrimental and should
be avoided. Instead, purely local variables and constraints should be handled separately
from the ones we introduced above. This approach is referred to as generalized dual
dynamic programming (GDDP) in [18].

While almost every practical application will require the introduction of these addi-
tional elements, in this work, for the most part we restrict to coupling variables and
constraints which are required to illustrate the mechanics of SDDP.

Remark 2.7. In general, the local objective functions may also include the states xt−1

instead of only depending on xt and ξt. For notational simplicity, we consider a less
general form of the objective function in this review.

2.5 Approximations of the Value Functions

The main challenge in exploiting the DPE to solve (MSLP) is that the (expected)
value functions are not known in analytical form in advance. The key idea in SDDP
is to iteratively approximate them from below using linear functions, which are called
cutting-planes, or short cuts. Together, these linear functions build polyhedral outer ap-
proximations Qt(·) of Qt(·) for all t = 2, . . . , T , which we refer to as cut approximations.
In that regard, SDDP can be considered as a special variant of Kelley’s cutting-plane
method [111] and closely related to Benders decomposition [17], see also Sect. 5.2. Note
that in contrast to SDP this avoids a state discretization, as Qt(·, ·) and Qt(·) do not
have to be evaluated at all possible states, but only at well-chosen trial points where
new cuts are constructed, cf. Sect. 5.1.

For this approximation by cuts, the following properties are crucial.
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Theorem 2.8 ([26]). Let xt−1 ∈ conv(Xt−1). Then, under Assumptions 1 to 9, for all
t = 2, . . . , T and a given noise realization ξt, the value function Qt(·, ξt)
(a) is piecewise linear and convex in (ht, Tt−1),

(b) is piecewise linear and concave in ct,

(c) is piecewise linear and convex in xt−1 on conv(Xt−1).

The main idea here is that given the definition of Xt−1(·) in (2), ht, Tt−1 and xt−1 do
only appear in the right-hand side (RHS) of problem (4). Therefore, the dual feasible
set is independent of those elements. It possesses finitely many extreme points. This
assures piecewise linearity of Qt(·, ·), as known from parametric optimization. The
convexity follows with the linearity (Assumption 6) and all vectors and matrices being
part of convex sets.

Theorem 2.8 directly implies the piecewise linearity and convexity of Qt(·).
Corollary 2.9 ([26]). Under Assumption 5 and the premises of Theorem 2.8, for all
t = 2, . . . , T , Qt(·) is piecewise linear and convex in xt−1 on conv(Xt−1).

Theorem 2.8 and Corollary 2.9 also directly imply the Lipschitz continuity of the
(expected) value functions.

Corollary 2.10. Under Assumptions 1 to 9, for all t = 2, . . . , T and all ξt ∈ Ξt, Qt(·, ξt)
and Qt(·) are Lipschitz continuous on conv(Xt−1).

Replacing the true expected value functions with cut approximations in (4), we can
define approximate value functions

Q
t
(xt−1, ξt) :=

{
min
xt

(
ct(ξt)

)⊤
xt +Qt+1(xt)

s.t. xt ∈ Xt(xt−1, ξt).
(10)

Trivially, for QT+1(·) ≡ 0, we have QT+1(·) ≡ 0.
Note that apart from xt−1 and ξt, Qt

(·, ·) is also a function of the cut approximation
Qt+1(·). This is especially relevant when these approximations are iteratively updated
in SDDP, leading to different approximate value functions. Using the Bellman operators
defined in (8)-(9) this can be expressed in a very concise way:

Q
t
(·, ·) = Bt(Qt+1)(·, ·).

Similarly, we could express this by adding an argument to Q
t
(·, ·), i.e., by writing

Q
t
(xt−1, ξt |Qt+1) or Q

t
(Qt+1)(xt−1, ξt). However, for notational simplicity, we do not

state this explicitly, but when dealing with SDDP use the iteration index i for distinc-
tion. This means that Qi

t
(·, ·) indicates that Q

t
(·, ·) is considered with cut approximation

Qi
t+1(·).
We summarize the different notations for a better overview:

B̂t(Qt+1)(xt−1, ξt) = Q
t
(xt−1, ξt)

Bt(Qt+1)(xt−1) = Qt(xt−1) := Eξt

[
Q
t
(xt−1, ξt)

] (11)

Finally, we can observe that given that the cut approximations Qt+1(·) are polyhe-
dral, the approximate value functions Q

t
(·, ·) inherit the previously stated properties

from Qt(·, ·). In particular:
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Lemma 2.11. Let Qt+1(·) be a polyhedral function. Then, under Assumptions 1 to 9,
for all t = 2, . . . , T and a given noise realization ξt, Qt

(·, ξt) is piecewise linear and
convex in xt−1 on conv(Xt−1).

On the other hand, as they are polyhedral, the cut approximations Qt(·) for t =
2, . . . , T are nonlinear functions. Importantly for computations, however, subprob-
lems (10) can be formulated as LPs by using a partial epigraph reformulation and the
fact that Qt(·) is defined as the maximum of finitely many affine functions (modeled by
some set K with |K| ∈ N):

Q
t
(xt−1, ξt) =





min
xt,θt+1

(
ct(ξt)

)⊤
xt + θt+1

s.t. xt ∈ Xt(xt−1, ξt)

− (βit+1,k)
⊤xt + θt+1 ≥ αit+1,k, ∀i ∀k ∈ K.

(12)

This LP contains an additional decision variable θt+1 and finitely many additional
linear constraints indexed by i and k. The structure and indexing of these constraints
become clear in the next section when we present the cut generation process for SDDP.

3 Standard SDDP

We are now able to introduce SDDP in its standard form.

3.1 Main Principle

SDDP consists of two main steps in each iteration i, a forward pass and a backward pass
through the stages t ∈ [T ].

In each forward pass, using the approximate value functions Qi
t
(·, ·) (recall that this

implies using cut approximation Qi
t+1(·) in (10)), a sequence of trial points (xt)t∈[T ] is

generated, at which then new cuts are constructed in the following backward pass to
improve the approximation. These trial points are also called incumbents or candidate
solutions, and their sequence is called a state trajectory (especially in optimal control).
The idea behind this approach is that the approximate value functions implicitly define
a feasible (suboptimal) policy for problem (MSLP). The trial points are generated by
evaluating this policy for one or several scenarios which are sampled from S, i.e., by
solving the respective subproblems. This has the advantage that cuts are constructed
at points which (at least for some scenario) are optimal given the current cut approx-
imation. This step can also be interpreted as a Monte Carlo simulation of the current
policy.

In the backward pass, dual information of the subproblems at the trial points is
used to construct cuts, passing them back to the previous stage and updating Qi

t(·) to
Qi+1
t (·) for all t = 2, . . . , T . This way, if not optimal, the current policy is amended (at

least if the right scenario is sampled). In this step, also a true lower bound v for v∗ is
determined.

Remark 3.1 (Statistical learning perspective). The basic principle of SDDP can also
be interpreted from a perspective of supervized learning as learning a policy (or expected
value functions Qt(·) for all t = 2, . . . , T ) or training a model of this policy (or cut
approximations Qt(·) for all t = 2, . . . , T ) using backpropagation. In the forward pass
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the inputs are propagated through the stages using the current model, and in the back-
ward pass cuts (representing the error of the current approximation) are propagated back
through the stages to update the model.

Algorithm 1 provides a pseudo-code for SDDP. We now provide a more detailed and
technical look at the algorithmic steps.

3.2 Forward Pass

At the start of each iteration i, at first a subset K ⊆ S of scenarios is sampled with
|K| ≪ |S| (note that we may equivalently sample stage by stage during the forward
pass). The number of samples |K| may vary by iteration, but we do not state this
possible dependence explicitly. Traditionally, and most commonly, in SDDP some ran-
dom sampling is used, but also a deterministic sampling is possible. We further discuss
sampling techniques in Sect. 6.

Then, at the first-stage, the approximate subproblem

min
x1∈X1(x0)

c⊤1 x1 +Qi
2(x1). (13)

is solved, which yields the trial point xi1 = xik1 for all k ∈ K. Afterwards, for each
stage t = 2, . . . , T and each sample k ∈ K, recursively the approximate value functions
Qi
t
(xikt−1, ξ

k
t ) are evaluated (this means that the subproblems (10) are solved for xikt−1,

ξkt and the current cut approximation Qi
t+1(·)). This way, for each sample k ∈ K, a

sequence of trial points (xikt )t∈[T ] is obtained.
The forward pass of SDDP is illustrated in Figure 4 for the recombining scenario

tree from Figure 1 and K = {1, 3, 9}, i.e., |K| = 3. The three sampled scenario paths
are highlighted in green. The figure shows that for sample paths ξ3 and ξ9 the same
node is reached at stage 3.

t = 3t = 2t = 1

Figure 4: Illustration of SDDP forward pass for |K| = 3.

Remark 3.2 (Initialization). Before the first backward pass, the cut approximations
Qt(·) are not initialized yet, so the forward pass subproblems (13) and (10) are not well-
defined. This can be addressed using different strategies. First, in iteration i = 1 the
forward pass can be skipped, and a feasible state trajectory (x1t )t∈[T ] for the backward pass
can be user-defined or taken randomly instead. Second, such a state trajectory can be
computed heuristically via a greedy approach where Q1

t (·) ≡ 0 is assumed in the forward
pass subproblems for all t ∈ [T ], so no coupling exists in the objective. Third, the cut
approximations Qt(·) may be initialized with a valid user-defined lower bound θt for all
t ∈ [T ]. This approach is taken in the description in Algorithm 1.
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Algorithm 1 SDDP

Input: Problem (MSLP) satisfying Assumptions 1 to 9. Bounds θt, t = 2, . . . , T . Stop-
ping criterion.

Initialization

1: Initialize cut approximations with θt ≥ θt for all t = 2, . . . , T .
2: Initialize lower bound with v0 = −∞.
3: Set iteration counter to i← 0.

SDDP Loop

4: while Stopping criterion not satisfied do
5: Set i← i+ 1.

Forward Pass

6: Sample a subset K ⊆ S of scenarios.
7: Solve the approximate first-stage problem (13) to obtain trial point xi1 = xik1 for

all k ∈ K.
8: for stages t = 2, . . . , T do
9: for samples k ∈ K do

10: Solve the approximate stage-t subproblem (10) associated with
Qi
t
(xikt−1, ξ

k
t ) to obtain trial point xikt .

11: end for
12: end for

Backward Pass

13: for stages t = T, . . . , 2 do
14: for samples k ∈ K do
15: for noise terms j = 1, . . . , qt do
16: Solve the updated approximate stage-t subproblem (10) associated

with Qi+1
t

(xikt−1, ξtj). Store the optimal value and dual vector πikjt .

17: end for
18: Use relations (16)-(17) and (19) to create an optimality cut for Qt(·).
19: Update the cut approximation Qi

t(·) to Qi+1
t (·) using relation (18).

20: end for
21: end for
22: Solve the approximate first-stage problem (20) to obtain a lower bound vi.
23: end while
Output: (Approximately) optimal feasible policy for (MSLP) defined by xi1 and cut

approximations Qi
t(·), t = 2, . . . , T . xi1 defines an (approximately) optimal solution

to problem (6) with viK ≈ v∗.

16

89



3.3 Backward Pass

Main Principle. The backward pass starts at stage T . Here, for all samples k ∈ K,
we consider subproblems (10) for the trial point xikT−1 computed in the forward pass, all
noise realizations ξTj , j = 1, . . . , qT , and Qi+1

T+1(·) ≡ 0. That is, we consider functions
Qi+1
T

(xikT−1, ξtj) for j = 1, . . . , qT .

As Qi+1
T

(·, ξTj) is convex in xT−1 by Lemma 2.11, it can be underestimated by a

linear function using some subgradient βiTkj ∈ ∂Qi+1
T

(·, ξTj) for any j = 1, . . . , qT and
any k ∈ K:

Qi+1
T

(xT−1, ξTj) ≥ Qi+1
T

(xikT−1, ξTj) + (βiTkj)
⊤(xT−1 − xikT−1).

Since Qi+1
T

(·, ξTj) is a lower approximation of the true value function QT (·, ξTj), this
directly implies

QT (xT−1, ξTj) ≥ Qi+1
T

(xikT−1, ξTj) + (βiTkj)
⊤(xT−1 − xikT−1).

Taking expectations with respect to ξT on both sides, we obtain

QT (xT−1)

≥ EξT

[
Qi+1
T

(xikT−1, ξT )
]
+ EξT

[
(βiT j)

⊤(xT−1 − xikT−1)
]

= EξT

[
Qi+1
T

(xikT−1, ξT )− (βiTk)
⊤xikT−1

]
+
(
EξT

[
βiTk

])⊤
xT−1

=

qT∑

j=1

pTj

(
Qi+1
T

(xikT−1, ξTj)− (βiTkj)
⊤xikT−1

)

︸ ︷︷ ︸
=:αi

Tk

+

( qT∑

j=1

pTjβ
i
Tkj

︸ ︷︷ ︸
=:βiTk

)⊤
xT−1,

(14)

where we exploit the finiteness of ξT (Assumption 5). αiTk is called cut intercept and
βiTk is called cut gradient. Defining

ϕiTk(xT−1) := αiTk + (βiTk)
⊤xT−1,

we can express (14) as

QT (xT−1) ≥ ϕiTk(xT−1). (15)

Inequality (15) defines a cut for the expected value function QT (·). Such a cut is
constructed for each k ∈ K. With these new cuts, the cut approximation Qi

T (·) is
updated to

Qi+1
T (xT−1) := max

{
Qi
T (xT−1), ϕ

i
T1(xT−1), . . . , ϕ

i
T |K|(xT−1)

}
.

Thus, assuming that |K| does not change over the iterations, Qi+1
T (·) consists of i|K|

affine functions ϕiTk(·), cf. formulation (12).
In the same way, for stages t = T − 1, . . . , 2, cuts for Qt(·) can be constructed by

solving subproblems (10) for the trial points xikt−1 computed in the forward pass and
all noise realizations ξtj , j = 1, . . . , qt. Importantly, by going backwards through the
stages, at stage t we can already factor in the cuts that have been constructed at the
following stage t+1, thus using a better approximation as the basis to construct a new
cut. This means that we consider Qi+1

t+1(·) and by that Qi+1
t

(·, ·) with index i+ 1 in the
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backward pass of iteration i.
As for stage T , we obtain

Qt(xt−1) ≥
qt∑

j=1

ptj

(
Qi+1
t

(xikt−1, ξt)− (βitkj)
⊤xikt−1

)

︸ ︷︷ ︸
=:αi

tk

+

( qt∑

j=1

ptjβ
i
tkj

︸ ︷︷ ︸
=:βitk

)⊤
xt−1,

(16)

where βitkj denotes a subgradient of Qi+1
t

(·, ξtj) at xikt−1 for k ∈ K, j = 1, . . . , qt. Again,
by defining

ϕitk(xt−1) := αitk + (βitk)
⊤xt−1,

we can obtain a cut

Qt(xt−1) ≥ ϕitk(xt−1) (17)

for each k ∈ K and can update the cut approximation to

Qi+1
t (xt−1) := max

{
Qi
t(xt−1), ϕ

i
t1(xt−1), . . . , ϕ

i
t|K|(xt−1)

}
. (18)

Computing Subgradients. So far, we have discussed the main idea of the cut
generation process in the backward pass of SDDP, which is based on evaluating approx-
imate value functions Qi+1

t
(·, ·) and using subgradients for them at trial points xikt−1.

For the interested reader, we now address in more detail how to compute those subgra-
dients. This step uses dual information, i.e., it is based on the duality theory of convex
programs. For simplicity, we assume Xt = {xt ∈ Rnt : xt ≥ 0} for all t ∈ [T ].

Consider stage T , some k ∈ K and some j ∈ {1, . . . , qT}. Then, the dual problem to
the linear stage-T subproblem (10) is

{
max
πT

(
hTj − TT−1,jx

ik
T−1

)⊤
πT

s.t. W⊤
TjπT ≤ cTj .

Let πikjT be an optimal dual basic solution. Such solution does always exist by
relatively complete recourse and boundedness (see Assumption 9 and Lemma 2.5). By
strong duality of linear programs, it follows

Qi+1
T

(xikT−1, ξTj) =
(
hTj − TT−1,jx

ik
T−1

)⊤
πikjT

= −(πikjT )⊤TT−1,jx
ik
T−1 + (πikjT )⊤hTj .

Importantly, the dual feasible set does not depend on xT−1, but remains unchanged
for all trial points. In particular, πikjT is always dual feasible, but not necessarily dual
optimal for all xT−1. Therefore, and because of minimization, it follows

Qi+1
T

(xT−1, ξTj) ≥ −(πikjT )⊤TT−1,jxT−1 + (πikjT )⊤hTj

= −(πikjT )⊤TT−1,j(xT−1 + xikT−1 − xikT−1) + (πikjT )⊤hTj

= Qi+1
T

(xikT−1, ξTj)− (πikjT )⊤TT−1,j(xT−1 − xikT−1).
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Hence,

βiTkj = −(πikjT )⊤TT−1,j

is a subgradient of Qi+1
T

(·, ξTj) at xikT−1.
The previous derivation provides some additional insight. Since the dual feasible set

is polyhedral and does not depend on xT−1, for each noise term ξTj , j = 1, . . . , qT , there
exist only finitely many dual extreme points (dual basic solutions) that can be attained.
Therefore, only finitely many different cut coefficients can be generated. This is crucial
for some convergence proofs of SDDP, as we discuss later.

For earlier stages t = T − 1, . . . , 2, the dual problem to subproblem (10) looks a bit
more sophisticated, as the cut approximations Qi+1

t+1(·) have to be taken into account,
which requires additional dual multipliers ρrt for all cuts r ∈ Γt+1, where Γt+1 denotes
the index set of cuts generated for the following stage. However, the derivation is
completely analogous and, again, we arrive at

Qi+1
t

(xt−1, ξtj) ≥ Qi+1
t

(xikt−1, ξtj)− (πikjt )⊤Tt−1,j(xt−1 − xikt−1),

so that

βitkj = −(πikjt )⊤Tt−1,j (19)

is a subgradient of Qi+1
t

(·, ξtj) at xikt−1. Interestingly, the optimal dual multipliers ρrikjt

are not explicitly required in this formula.

3.4 Bounds and Stopping

At the first stage, the subproblem

vi := min
x1∈X1(x0)

c⊤1 x1 +Qi+1
2 (x1). (20)

is solved. As Qi+1
2 (·) is a lower approximation of Q2(·), vi is a valid lower bound to

the optimal value v∗ of (MSLP). This bound can be initialized with v0 = −∞ or any a
priori known lower bound for v∗.

In contrast, we are not guaranteed to obtain a valid upper bound for v∗ during
iterations of standard SDDP, as we only consider a small subset K ⊆ S of all scenarios.
This means that in the forward pass, the feasible policy for (MSLP), which is implicitly
defined by the current cut approximations Qi

t(·), t = 2, . . . , T, is only evaluated for a
subset of all scenarios. By evaluating these scenarios in the objective of (MSLP) and
taking the sample average

viK :=
1

|K|
∑

k∈K

T∑

t=1

(
ct(ξ

k
t )
)⊤
xikt

︸ ︷︷ ︸
=:vi(ξk)

(21)

we only obtain an unbiased estimator of the true upper bound vi (a statistical upper
bound) associated with the current policy, see Sect. 7 for more details.

After each iteration of SDDP, one or several stopping criteria are checked, which
may or may not be based on viK. We discuss different stopping criteria in detail in
Sect. 7. If SDDP does not stop, a new iteration i+ 1 is started with a forward pass.
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It is worth mentioning that the first-stage subproblems (13) and (20) are the same
for consecutive backward and forward passes, and in principle only have to be solved
once. The same is true for consecutive forward and backward pass problems at the final
stage T .

3.5 Cut Properties

We discuss convergence of SDDP in Sect. 4. It relies on three key properties of the
derived cuts:

Lemma 3.3. For any stage t = 2, . . . , T and any k ∈ K, the functions ϕitk(·) are

(a) valid lower approximations of Qt(·),

(b) tight for Qi+1
t (·) (as defined in (11)) at xikt−1,

(c) finite, i.e., only finitely many different cuts can be generated, if we restrict to dual
basic solutions to generate cuts.

Proof. Property (a) follows immediately from (15) and (17). (b) holds because of strong
duality for LPs and taking expected values over the obtained optimal values. Alterna-
tively, we can rearrange the RHS of inequality (16) to obtain

ϕitk(xt−1) = Qi+1
t (xikt−1) +

qt∑

j=1

ptj(β
i
tkj)

⊤(xt−1 − xikt−1). (22)

Inserting xikt−1 yields ϕitk(x
ik
t−1) = Qi+1

t (xikt−1).
Property (c) follows by induction using the arguments on the dual feasible region

previously discussed for stage T .

Note that ϕitk(·) is not necessarily tight for the true expected value function Qt(·)
in early iterations for t ̸= T , but rather might provide a loose cut only. However,
by the finiteness and tightness properties it can be shown recursively, that eventually
the derived cuts become tight for Qt(·) as well. In fact, after finitely many steps, the
polyhedral function Qt(·) is represented exactly for all t = 2, . . . , T . This is a key
property for the convergence of SDDP.

3.6 Illustrative Example

To illustrate the key steps of SDDP, we present a simple example.

Example 3.4. Consider the 3-stage (MSLP)

min x1 + x2 + x31 + x32

s.t. x1 ≤ 6

x2 ≥ ξ2 − x1
x31 − x32 = ξ3 − x2
x1, x2, x31, x32 ≥ 0,

(23)

which is inspired by Example 2 in Chapter 5 of [26]. The uncertain data in the RHS is
stagewise independent and uniformly distributed with ξ2 ∈ {4, 5, 6} and ξ3 ∈ {1, 2, 4}.
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Problem (23) has not entirely the same structure as problem (MSLP), but can be
easily converted to it by introducing slack variables. However, for illustrative purposes,
we abstain from this. The problem can be expressed by means of the value functions

Q3(x2, ξ3) =





min
x3

x31 + x32

s.t. x31 − x32 = ξ3 − x2
x31, x32 ≥ 0

(24)

and

Q2(x1, ξ2) =





min
x2

x2 +Q3(x2)

s.t. x2 ≥ ξ2 − x1
x2 ≥ 0.

The first-stage problem then is

v∗ =

{
min
x1

x1 +Q2(x1)

s.t. x1 ∈ [0, 6].

The optimal solution is given by x∗1 = 3 with v∗ = 53
9 .

As shown in [26], the stage-3 value functions can be written in closed-form as
Q3(x2, ξ3) = |ξ3 − x2| for all scenarios. Taking expectations, a closed-form expression
for Q3(·) can be derived, and by recursion we obtain

Q2(x1) =





23

3
− 16

9
x1, x1 ∈ [0, 1]

67

9
− 10

9
x1, x1 ∈ [1, 2]

59

9
− 10

9
x1, x1 ∈ [2, 3]

47

9
− 2

3
x1, x1 ∈ [3, 4]

31

9
− 2

9
x1, x1 ∈ [4, 5]

7

3
, x1 ∈ [5, 6].

The optimal value is v∗ = 56
9 .

We apply SDDP for illustration. We assume loose initial bounds θ2, θ3 ≥ −10 for
simplicity. In the forward pass, we sample one scenario path per iteration, i.e., |K| = 1.
In iteration 1, let (ξ2, ξ3) = (5, 4) define this path. Solving the approximate subprob-
lems (10) for all stages t = 1, 2, 3 and (ξ2, ξ3) = (5, 4), we obtain viK = 6. In fact, this
is no valid upper bound for v∗.

In the backward pass, cuts for Qt(·), t = 2, 3, are derived at the trial points. For stage
3, the cut gradient is β3(5) = 1. Moreover, Q2

3(5) = 8
3 . With formulas (17) and (22)

this yields the cut Q3(x2) ≥ −7
3 +x2, which is incorporated into the stage-2 subproblems.

Solving these problems yields the cut Qt(x1) ≥ 23
3 − 2x1. At the first stage, the lower

bound computes to v1 = 5
3 .

The expected value functions and the obtained cuts for three iterations are depicted in
Figure 5. In the second and the third iteration, the same scenario path (ξ2, ξ3) = (6, 1)
is sampled in the forward pass.

21

94 Paper A – SDDP Review



Figure 6 displays the bounds vi and viK for ten iterations of SDDP. It shows that the
lower bounds stabilize quickly at v∗, whereas the values of viK oscillate around v∗.
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Figure 5: Expected value functions for Example 3.4 with cuts obtained in first three
iterations depicted in blue, green and red.
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Figure 6: Bounds for 10 iterations of SDDP applied to Example 3.4.

3.7 Policy Assessment

As mentioned before, in standard SDDP no valid upper bound v for v∗ is determined.
While in each iteration a statistical upper bound (21) can be computed, the number of
samples |K| may often be too small to appropriately assess the quality of the current
policy. In particular, |K| is often chosen to be 1 in practice, and thus viK is not a
meaningful estimate for v.

Therefore, to assess the obtained policy, usually an additional forward simulation
is conducted once SDDP has terminated. For this simulation a much higher number
of sample paths through the scenario tree is used, e.g. |K| ∈ {1000, 10000}, leading
to a reasonable estimator vK. In this step, the simulation can be either performed
in-sample (using sample paths through the recombining scenario tree) or out-of-sample
(using the true underlying distribution, e.g., if ξt is a continuous random variable that
is discretized to satisfy Assumption 5, see Sect. 11).

Remark 3.5. In the light of Remark 3.1 this policy assessment step can also be in-
terpreted from a statistical learning perspective. After the model has been trained, a
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model validation (using in-sample data) or a model test (using out-of-sample data) are
performed.

4 Convergence and Complexity

The convergence behavior of SDDP has been thoroughly analyzed over the years. We
discuss the main convergence results in this section. We first focus on finite conver-
gence of SDDP, and then discuss the actual convergence rate, i.e., the computational
complexity of SDDP. Our overview is loosely based on the review chapter in [71].

4.1 Finite Convergence

The first convergence analyses related to SDDP have been conducted in [38] and [125],
however implicitly assuming independence of sampled random variables and convergent
subsequences of algorithm iterates. A first complete convergence proof is given by
Philpott and Guan in [164] for the case where uncertainty only enters the RHS of
(MSLP) (in fact, they consider a more general algorithm than SDDP, including sampling
in the backward pass). The same reasoning is used by Shapiro [198] for the case where
also Wt, ct and Tt−1 are uncertain.

The convergence behavior of SDDP can be explained using two main arguments:
First, as stated in Lemma 3.3, only finitely many different cuts, and by that only finitely
many different cut approximations Qt(·) can be constructed for all t = 2, . . . , T . This
result requires linearity (Assumption 6) and finite random variables (Assumption 5).
Moreover, these finitely many cuts also satisfy some tightness property, which implies
that they are sufficient to exactly represent the polyhedral (expected) value functions
(see Theorem 2.8). For a deterministic algorithm, this would result in finite conver-
gence to the true optimal point and value (see the convergence properties of Benders
decomposition [17] and Kelley’s cutting-plane method [111]).

For SDDP, it has to be taken into account that scenarios are sampled in the forward
pass. This means that the cut approximations might not further improve for some
iterations if the wrong scenarios are sampled. Therefore, the second key argument for
many proofs of finite convergence of SDDP is that each scenario is visited infinitely
many times with probability 1 given that the algorithm does not terminate. Intuitively,
this means that after finitely many iterations the right scenarios will be sampled with
probability 1, leading to the construction of a new cut. This requirement is satisfied
under independent sampling, that is, if the sampling in the forward pass of Algorithm 1
is random and independent of previous iterations. It is also satisfied for an exhaustive
enumeration of all scenarios in the sampling process. We should emphasize that this
argument is purely theoretical in order to establish convergence results for SDDP. When
applying SDDP in practice, it is usually not even possible to sample each scenario once
in reasonable time.

Using these two arguments, the following main convergence result can be obtained

Theorem 4.1 (Almost sure finite convergence of SDDP). Under Assumptions 1 to 9 and
using an independent random sampling procedure in the forward pass, SDDP converges
with probability 1 to an optimal policy of (MSLP) in a finite number of iterations.

Importantly, almost sure finite convergence to an optimal policy of (MSLP) does
not imply that the trajectories (xikt )t∈[T ], k ∈ K, and the corresponding sample averages
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viK obtained in SDDP converge, as both are random and depend on the current sample
K. However, the lower bounds vi obtained in SDDP converge to v∗.

Deterministic Sampling. Recently, convergence analyses of SDDP and related
algorithms have often made use of deterministic sampling techniques instead of random
sampling [10, 11]. Here, the idea is that the approximation error in SDDP can be
controlled and guided to zero in a deterministic way if in each iteration scenarios are
sampled for which the current approximation gap is maximized. This requires, however,
that the approximation gap itself can be bounded rigorously. Therefore, in addition to
the lower cut approximation Qt(·) also an upper approximation Qt(·) is constructed and
iteratively refined [10, 231], so that deterministic lower bounds vi and upper bounds
vi are computed in each iteration. For more details on deterministic sampling and
deterministic upper bounds we refer to Sect. 6 and 8.

Generalizations. It has been shown that some of the basic assumptions (Assump-
tions 1 to 9) can be relaxed without compromising convergence of SDDP. Girardeau et
al. [78] analyze the case where SDDP is applied to multistage problems with nonlinear
convex subproblems, i.e., Assumption 6 is relaxed. In this case, the value functions
Qt(·) are no longer polyhedral, but still convex. The authors show that almost sure
convergence is still satisfied as long as some convexity and compactness assumptions
and some tightened recourse assumption are satisfied. We discuss this result in detail in
Sect. 15 when we formally introduce convex multistage stochastic nonlinear problems.
The main idea is that even without polyhedrality, Qt(·) can be guaranteed to be Lips-
chitz continuous, so that the approximations of Qt(·) get better in a whole neighborhood
of the trajectories (xikt )t∈[T ], k ∈ K.

Guigues generalizes this result to the risk-averse case where Assumption 8 is relaxed
[85]. Forcier and Leclère prove convergence for (MSLP) without finite randomness,
i.e., dropping Assumption 5. Further convergence proofs are provided for multi-cut
SDDP [8], SDDP with cut selection [8, 87], adaptive partition-based SDDP [207] (see
also Sect. 21), using SDDP with saddle cuts [55] (see also Sect. 14) and variants of
distributionally robust SDDP [65, 162] (see also Sect. 13), Another proof of almost sure
finite convergence for extensions to non-convex problems is provided in [231].

4.2 Complexity

Theorem 4.1 guarantees almost sure finite convergence of SDDP. While this result is of
theoretical interest, it may not be very relevant in practical applications, as it provides
no result on the rate of convergence. As pointed out in [71] and mentioned before,
especially the argument of scenarios being sampled repeatedly (infinitely many times)
is almost never applicable to SDDP in practice due to the sheer amount of scenarios in
S. Important for the rate of convergence are the computational cost per iteration and
the required number of iterations.

Cost per Iteration. For the computational cost per iteration, the number of LPs
to be solved in the backward pass is crucial. Per sample k ∈ K in the forward pass, qt
subproblems are solved for each stage except for t = 1 in the backward pass. Therefore,
the total number of LPs solved is 1+ |K|∑T

t=2 qt. Hence, the number of problems to be
solved grows linearly in the number of stages T , in the number of samples |K| and in
the number of noise terms qt [179].

Expected Number of Iterations. The computational bottleneck for SDDP is
the expected required number of iterations to achieve convergence. Recently, there
has been active research on computing theoretical bounds on this number, with Lan
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[117] as well as Zhang and Sun [231] publishing similar results using slightly different
approaches. In both cases, the authors start by considering some case of deterministic
sampling (in [117] the associated algorithm is referred to as explorative dual dynamic
programming (EDDP)) before enhancing their results to the random sampling variant
of SDDP. We discuss deterministic sampling in more detail in Sect. 6. The main idea
to derive iteration bounds is the following: By exploiting Lipschitz continuity of Qt(·)
and Qt(·), it is possible to control the approximation error also at points where no cuts
are constructed, as long as they lie in a neighborhood of some trial point xikt . If the
state space is bounded for all t ∈ [T ] (cf. Assumption 9), it can be completely covered
by finitely many such neighborhoods [231]. A similar reasoning is applied in [71].

More formally, Lan [117] introduces the notion of saturated points x̄t−1, in which
the approximation of Qt(·) is already ε-close for some predefined tolerance ε > 0, i.e.,

Qt(x̄t−1)−Qi
t(x̄t−1) ≤ ε,

and distinguishable points x̄t−1, which have at least a δ-distance to the set Xsat
t−1 of

already saturated points for some δ > 0, that is

∥x̄t−1 − xt−1∥ > δ, ∀xt−1 ∈ Xsat
t−1.

If some trial point xikt is saturated and distinguishable, the iteration i can be called
effective [71]. Using deterministic sampling, all iterations in SDDP can be shown to be
effective, and thus the number of iterations can be bounded in the aforementioned way.
For random sampling, this is not true, but the probability for an effective iteration is
at least 1

N with N := ΠT−1
t=2 nt.

In the light of Assumption 9 (b), for any t ∈ [T ], we call the bound Dt satisfying

∥xt − x′t∥ ≤ Dt, ∀xt, x′t ∈ Xt

the diameter of the state space. Additionally, let L denote a Lipschitz constant for the
objective function of (MSLP), which exists due to Corollary 2.10.

Then, the following complexity results are satisfied by SDDP.

Theorem 4.2 (Complexity of SDDP [117, 231]). Let Dt ≤ D for all t ∈ [T ]. For some
ε > 0, the (expected) number of required iterations of SDDP (Algorithm 1) to obtain

� an ε-optimal solution using deterministic sampling is

– polynomial in T, (1ε ), L and D,

– exponential in nt,

� an ε-optimal solution using deterministic sampling, given that Xt is finite with
cardinality |Xt| ≤ X, is

– linear in T and X

� a (Tε)-optimal solution using deterministic sampling is

– linear in T ,

– polynomial in T, (1ε ), L and D,

– exponential in nt,

� an ε-optimal solution using random sampling is

– polynomial in qt, (
1
ε ), L and D,
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– exponential in T and nt.

This means that for standard SDDP (using random sampling) the expected number
of iterations grows exponentially in the horizon T and the dimension nt of the state
space. This is computationally important. The exponential complexity with respect to
the state dimension is not that surprising, as it is well-known for cutting-plane methods
[146] and inherited by SDDP. Similarly, the exponential complexity with respect to the
number of stages directly follows from the exponential number of scenarios that may
have to be sampled in the worst-case. Interestingly, under deterministic sampling, the
complexity is independent of the number qt of noise terms per stage, as this number
only affects the computational cost per iteration.

We see that using some deterministic sampling scheme a polynomial or even linear
iteration complexity in T can be achieved, whereas the iteration complexity in the state
space cannot be alleviated [231].

The complexity results in [117, 231] have been further generalized by Forcier and
Leclère [71]. They provide results for a generalized framework of SDDP-related algo-
rithms, including SDDP with inexact cuts or regularization (see also Sect. 21), risk-
averse SDDP (see also Sect. 12) and extensions to convex nonlinear or non-convex
mixed-integer (nonlinear) problems (see also Sect. 15 and 16).

5 Comparison with Related Methods

We briefly compare SDDP to solution methods that it is (historically) related to, as
discussed in Sect. 1.

5.1 Relation to SDP

SDDP is closely related to stochastic dynamic programming (SDP). SDP usually is
applied in a setting where not only state variables, but additional local variables are
considered, see Remarks 2.2 and 2.4. Therefore, the DPE and value functions are
considered in the form of (7), which we repeat here for convenience:

Qt(xt−1, ξt) = min
ut∈Ut(xt−1,ξt)

ft(ut, ξt) +Qt+1(Tt(xt−1, ut, ξt)).

The main idea of SDP is to explicitly evaluate the (expected) value functions for
all possible cases during a forward or backward iteration through the stages t ∈ [T ].
This is only possible if the support Ξt of ξt and the state space Xt ⊂ Xt are finite for
all t ∈ [T ]. Otherwise, infinitely many evaluations would be required. Additionally, it
is required that also the action space Ut(xt−1, ξt) is finite for all xt−1 ∈ Xt−1, ξt ∈ Ξt,
so that the minimum in (7) can be computed by finitely many evaluations. For this
reason, all these sets may have to be discretized first [169].

The computational effort of SDP scales linearly in T and in the cardinalities |Xt|,
|Ut(xt−1, ξt)| and |Ξt|. The three sets might be multidimensional, and thus require to
be discretized in each dimension nt, ñt, and κt. Hence, their cardinality grows exponen-
tially in these dimensions, which is computationally prohibitive for high-dimensional
problems. This is known as the curse of dimensionality of SDP, see also Sect. 1.

SDDP avoids the requirements of state space and action space discretization by not
evaluating Qt(·), t ∈ [T ], exactly for all (finitely many) possible actions and states, but
approximating them by an iteratively refined polyhedral outer approximation Qt(·),
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constructed by linear cuts. It can thus be considered an approximate dynamic program-
ming (ADP) method.

5.2 Relation to NBD

In stochastic programming, it is common practice to consider problems (MSLP) with
finite randomness (Assumption 5), but without the requirement of stagewise indepen-
dence of ξt (Assumption 2). In that case the uncertainty can be modeled by a finite
scenario tree, which compared to the recombining tree from Sect. 2 exhibits some path
dependence and satisfies the usual tree property that each node n has a finite set of
child nodes C(n), but a unique parent node a(n). An example of a scenario tree with
T = 3 and |S| = 9 is illustrated in Figure 7. This scenario tree represents the same
number of scenarios |S| as the recombining one in Figure 1, but requires

∑T
t=2 q

t−1
t + 1

instead of
∑T

t=2 qt + 1 nodes.

t = 3t = 2t = 1

ξ6

Figure 7: Scenario tree with 9 scenarios and ξ6 highlighted.

To solve (MSLP) associated with a general scenario tree, in principle the same ap-
proximation approach as in SDDP can be used. However, due to the path dependence,
the value functions Qt(·, ·) and expected value function Qt(·, ·) depend on the history
ξ[t−1] of the data process (ξt)t∈[T ]. In other words, each node n has its own value function
Qn(·), and with each node (except for leaf nodes) is associated an expected value func-
tion QC(n)(·). Therefore, to update the approximations Qi

C(n)(·) of all QC(n)(·) in each
iteration, all nodal subproblems have to be solved in the backward pass, which in turn
requires to compute trial points xia(n) for all nodes, i.e., solving all nodal subproblems
in the forward pass as well.

Because of its close relation to the L-shaped method for solving two-stage stochastic
linear programs [228] and to Benders decomposition [17] this solution method is called
nested Benders decomposition (NBD) or just nested decomposition. It was first proposed
by Birge in 1985 [25] and can be interpreted as a decomposition method for the extensive
form of the deterministic equivalent of (MSLP). Contrary to SDDP, NBD guarantees
that valid lower bounds v and upper bounds v of v∗ are determined in each iteration
and by that allows for a deterministic stopping criterion in a straightforward way. The
upper bounds can be computed as

vi := E

[∑

n∈T
c⊤n x

i
n

]
,
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where T is the set of all nodes in the scenario tree.
On the other hand, due to the sheer amount of subproblems to be solved in each

iteration, which grows exponentially in T , it is only computationally tractable for prob-
lems of moderate size. By moderate we mean instances with some hundreds or a few
thousand scenarios, and 4 or 5 stages at maximum [227].

Furthermore, for general scenario trees also sampling scenarios from S in the forward
pass does not necessarily help to reduce the computational burden and to speed-up the
solution process, as it reduces the computational effort per iteration, but at the same
time implies that the cut approximations Qi

C(n)(·) are only improved for some QC(n)(·)
in each iteration.

Under stagewise independence (Assumption 2) this is different. The scenario tree
collapses to a recombining tree. This means that for any stage t, many differing scenarios
share the same nodes, and thus value functions. In particular, there exists only one
expected value function Qt(·) for each t = 2, . . . , T . Therefore, even if only a sample
K ⊂ S of scenarios is considered in each iteration i, still the cut approximations Qi

t(·)
for all Qt(·) are updated with new cuts.

From this perspective, SDDP can be interpreted as a sampling variant of NBD which
reduces the computational effort per iteration significantly [179], but heavily relies on
stagewise independence of (ξt)t∈[T ] in order to leverage the sampling with respect to
value function approximations.

Remark 5.1 (Cut-sharing). In the literature, the aforementioned property of SDDP is
often referred to as cut-sharing. This is best understood by representing the stagewise in-
dependent data process (ξt)t∈[T ] using a standard scenario tree. In this case, at any stage
t, all nodes have the same set of successor nodes. If now only a sample K of scenarios
is considered in iterations of SDDP, only a subset of nodes is visited. Nonetheless, the
cuts constructed for a specific node are valid for all equivalent nodes in the tree as well,
so they are shared with other nodes/scenarios.

As mentioned above, a recombining scenario tree provides a more precise picture.
For each stage, scenarios share nodes in the recombining tree and there exists only one
function Qt(·) to be approximated, so there is no need to actually share cuts. Therefore,
the phrase cut-sharing is sometimes considered misleading.

5.3 Complexity Comparison

We summarize the main complexity results for SDDP and the related methods in Ta-
ble 3.

In contrast to SDP, SDDP does not require a state space and action space discretiza-
tion. Especially, the latter is computationally important in practice, whereas the former
may yield some computational improvements, but at least does not translate into an
improvement of the worst-case complexity class. On the other hand, SDDP does not
have linear complexity in T .

Another difference is that SDDP (as NBD and most solvers for the deterministic
equivalent) approximates v∗ with improving lower (and upper) bounds. This means that
if the computation time is increased also the quality of the approximation improves. On
the contrary, standard solution methods for SDP, such as backward induction, either
manage to solve a problem in a given time limit or not, but do not use improving
approximations. In particular, stopping SDP prematurely does not provide valid bounds
for v∗.
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Table 3: Complexity of SDDP and related solution methods.

Det. Equiv. NBD SDDP SDP

Requirements
stagewise independence no no yes yes*
state discretization no no no yes
action discretization no no no yes

Complexity
in T exponential exponential exponential linear
in nt polynomial exponential exponential exponential
in qt polynomial polynomial polynomial linear

Progressivity
of bounds yes yes yes no

* Markovian uncertainty is possible as well.

Compared to NBD, SDDP mainly reduces the computational effort per iteration
significantly, but does not get rid of the exponential growth of the computational cost
with respect to T . In return, it heavily relies on stagewise independence (Assumption 2)
and has worse complexity with respect to the state dimension nt.

We can conclude that SDDP, while mitigating some of the weaknesses of SDP and
NBD (sometimes advertized as “breaking the curse of dimensionality”), does not man-
age to leave the respective worst-case complexity classes. On the contrary, it inherits
some of the complexity drawbacks of both methods. Still, in many applications (where
not worst-case complexity is decisive) it shows considerable performance improvements
compared to SDP and NBD, especially for problems with continuous action space, a
medium number of stages T and a moderate state dimension nt. While Theorem 4.2
indicates that convergence may take extremely long in large-scale applications, and too
long to be computationally tractable, SDDP has shown good performance for large-scale
instances of (MSLP) in many applications, as we discuss in Sect. 9. This is also due to
various improvements, which we address in the following sections.

6 Sampling

Sampling is a central element of SDDP, see Sect. 3. In the forward pass, a finite number
|K| of scenarios is sampled to simulate the current policy and compute a trajectory of
trial points (xikt )t∈[T ] for all k ∈ K. Often, this sampling is done from a finite set of
scenarios S (see Assumption 5), with |K| ≪ |S|. Alternatively, it is possible to directly
sample from a given (continuous) distribution.

In this section, we discuss different sampling techniques which can be used in SDDP.
As indicated in Sect. 3 and 4, we can distinguish between random sampling and deter-
ministic sampling methods. In standard SDDP, as originally proposed in [152], random
sampling is used. Here, the main requirement is that the samples should be independent
and identically distributed (i.i.d.). This is important for two reasons:

(1) This way, almost sure finite convergence of SDDP can be ensured, as any scenario
is sampled infinitely many times with probability 1, assuming that the algorithm
does not terminate, see Sect. 4.
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(2) In the originally proposed stopping criterion of SDDP a confidence interval is used,
which is built using the sample mean viK (21), see Sect. 7. However, by the Central
Limit Theorem, even an approximate confidence interval can only be obtained for
a sequence of i.i.d. random variables.

6.1 Monte Carlo Sampling

The simplest sampling method satisfying the above requirement is Monte Carlo (MC)
sampling. Here, samples are drawn randomly from the probability distribution of ξt in
each iteration, by first sampling from a uniform distribution and then using appropriate
transforms. Under stagewise independence (Assumption 2), this is done independently
for each stage t ∈ [T ].

As the quantities vi(ξk) are i.i.d., the value viK (21) that can be computed in the
SDDP forward pass is an unbiased estimator of vi and according to the Strong Law of
Large Numbers converges to vi for |K| approaching infinity. Still, the sampling error

can be significant. The variance of viK can be estimated by 1
|K|
(
σiv,K

)2
. This means

that the variance can be reduced either by increasing the number of samples |K| or by
reducing the sample variance

(
σiv,K

)2
. Increasing the sample size may look promising at

first glance, but may become computationally intractable in practice [150]. Recall that
for every sample k ∈ K a number of 1 +

∑T
t=2 qt subproblems has to be solved in the

backward pass of each iteration. Therefore, the more promising approach is combining
MC sampling with variance reduction techniques [150].

6.2 Variance Reduction Techniques

Incorporating variance reduction techniques into sampling in SDDP is studied exten-
sively in [105, 150]. For a review on sampling techniques in stochastic programming in
general, we refer to [104].

Randomized QMC Sampling. In [105], it is proposed to use Quasi-Monte Carlo
(QMC) sampling within SDDP. In this case, instead of randomly sampling from the
uniform distribution, a deterministic sequence of points u1, . . . , uN from (0, 1)κt is cho-
sen. This is done in such a way that the sampled points fill (0, 1)κt as homogeneously as
possible (so the empirical distribution is as close to a uniform distribution as possible).
Then, after an appropriate transformation, they provide a better representation of ξt
than randomly sampled points.

A drawback of QMC methods is that the sample points are not random, the obtained
estimator is biased and no confidence interval can be established. Randomized QMC
(RQMC) methods, where the choice of QMC points is combined with some kind of
randomness, avoid this drawback and allow for standard error estimation [105].

Compared to MC sampling, RQMC methods achieve better convergence rates of
O
(
|K|−1(log|K|)κt

)
, and thus are considered more efficient. However, the convergence

rate depends on the dimension κt of ξt [105].
Latin Hypercube Sampling. In Latin Hypercube Sampling (LHS) [141], the

space (0, 1)κt is divided into equidistant subintervals and then scenarios are sampled
from each subinterval in such a way that in each row and column of the grid only one
point is sampled. This is illustrated in Figure 8 (a).

In this way, again, a more homogeneous distribution of the sample points can be
obtained, and compared to MC sampling, the variance can be reduced. On the flipside,
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poor space-filling or correlation between the sample points has to be ruled out, see
Figure 8 (b), which requires significant additional effort.
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(a) Good space-filling.
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(b) Correlated sample points.

Figure 8: Latin Hypercube Sampling for two dimensions.

Incorporation into SDDP. It is important to notice that while reducing the
variance compared to the classical MC estimators, scenarios sampled by RQMC and
LHS are no longer i.i.d. Therefore, both sampling techniques cannot be incorporated
into SDDP without modification, if convergence properties should not be compromised.
Homem-de-Mello et al. [105] therefore suggest to build sampling blocks. This means
that the total number of samples |K| is divided into M blocks ℓ = 1, . . . ,M with
M ≥ 5 a divisor of |K|. Then, for each block ℓ, |K′| := |K|/M scenarios are obtained
using conditional sampling with RQMC or LHS, which are not independent. For each
k′ ∈ K′, values vi(ξk

′
) are determined and averaged to vi,ℓ.

This is repeated for each block ℓ. Then, the mean viK of all values vi,ℓ, ℓ = 1, . . . ,M,
and the sample variance are determined. As the scenarios of different blocks are inde-
pendent, this still yields a useful confidence interval to stop the algorithm.

Another challenge reported in [105] is that it is computationally expensive to gen-
erate samples using RQMC for high dimensions. To reduce the computational effort, it
may be reasonable to apply RQMC only to important components, e.g., to early stages
in [T ], and standard MC or LHS to the other ones. This strategy is called padding and
applied after 6 or 12 stages for numerical tests in [105].

Experiments in [105] imply that RQMC and LHS both lead to upper bounds vK
oscillating around the lower bound v more quickly compared to MC sampling.

6.3 Importance Sampling

In [150], Parpas et al. propose incorporating importance sampling into SDDP. In con-
trast to the previously described techniques, it can be used to obtain i.i.d. samples in
the forward pass.

The main idea of importance sampling in general is to attach different importance
to subregions of the sample space and to sample more often from subregions of higher
importance. In the context of SDDP, this means that it is sampled with priority from
scenarios that contribute more to the value of the expected value functions Qt(·).

This is achieved by sampling from a different distribution than the original one, the
so-called importance sampling distribution, but correcting the bias introduced by this
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difference. Then, an importance sampling estimate of v can be calculated as

vIS,iK :=
1

|K|
∑

k∈K
vi(ξk)Λ(ξk)

with Λ(ξ) := f(ξ)
g(ξ) , where f denotes the original distribution and g the importance

sampling distribution. The likelihood function Λ(·) is used to correct for sampling from
the wrong distribution. It can be shown that importance sampling can reduce the
variance of sampling estimators significantly. In the SDDP case, as shown in [150], the
variance is minimized for the choice

g∗t (ξt) :=
|Qt(x

ik
t−1, ξt)|

Ef |Qt(xikt−1, ξt)|
ft(ξt).

However, clearly, this zero-variance distribution is a theoretical construct and not known,
which is referred to as the curse of circularity. Therefore, it is proposed to first approx-
imate g∗ using a framework including Kernel density estimation [150].

In numerical experiments, SDDP with importance sampling is shown to outperform
MC and QMC sampling based methods, given that it is difficult to sample from the
original probability distribution and that the original problem has moderate or high
variance [150].

6.4 Deterministic Sampling

As already discussed in Sect. 4, in step 6 of SDDP (Algorithm 1) also some deterministic
sampling can be used. In this case, |K| = 1. In the literature, two different approaches
are considered.

Worst Approximation Sampling. The first one requires that in addition to
the (lower) cut approximation Qt(·) of Qt(·) also an upper approximation Qt(·) is con-
structed and iteratively refined in SDDP. Assume that in the forward pass on stage
t − 1 the trial point xit−1 has been computed. Then, for stage t the approximate sub-
problem (10) is solved for xit−1 and for all noise terms ξtj , j = 1, . . . , qt, yielding optimal
states xtj . For the next stage, the trial point xit = xtj′ is chosen such that

j′ ∈ argmax
j=1,...,qt

{
Q
i
t(xtj)−Qi

t(xtj)
}
,

i.e., that the gap between the current upper and lower approximations is maximized.
This corresponds to sampling noise term ξtj′ on stage t.

This form of deterministic sampling is used for SDDP in [231]. Its computational
drawback is that at each stage qt subproblems have to be solved instead of only |K| ≪ qt.
A similar approach was first proposed by Baucke et al. in [10, 11] and called problem-
child node selection. However, their setting differs a bit from original SDDP, as each
subproblem contains specific variables xtj , j = 1, . . . , qt, for all random outcomes, and
therefore in their case only one subproblem has to be solved in the sampling step.
Another related sampling scheme is used in robust dual dynamic programming (RDDP)
[76]. In that case, ξtj′ is determined by solving a special upper bounding problem

containing Q
i
t(·)

Explorative Sampling. Explorative deterministic sampling is proposed in [117]
as part of EDDP. It is based on the concepts of saturated and distinguishable points,
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which we introduced in Sect. 4.2. As for the previous sampling scheme, the idea is to
solve the forward pass subproblems for all ξtj , j = 1, . . . , qt. Instead of maximizing an
approximation gap, however, the trial point xit = xtj′ is chosen such that

j′ ∈ argmax
j=1,...,qt

min
xt∈Xsat

t

∥xtj − xt∥,

i.e., the minimum distance to already saturated points is maximized. In other words, a
maximum distinguishable point is chosen.

As shown in [71], worst approximation sampling and explorative sampling are equiv-
alent in the sense that both approaches are guaranteed to lead to effective iterations,
see Sect. 4.2.

7 Stopping Criteria

In each iteration i of SDDP, a valid lower bound vi for the optimal value v∗ is deter-
mined. Additionally, a statistical upper bound viK can be computed. Since the latter
is not necessarily valid, an important question is when to consider an obtained policy
(xt(ξ[t]))t∈[T ] as (approximately) optimal and to stop the SDDP method. If the stopping
criterion is too conservative, the algorithm may iterate much longer than required, if it
is too optimistic, then SDDP may stop prematurely.

Confidence Stopping Criteria. In their seminal work on SDDP, Pereira and
Pinto propose to use a confidence interval based stopping criterion [153]. An approxi-
mate confidence interval for a true valid upper bound vi is determined as follows using
the estimates vi(ξk) from (21).

Under random independent sampling, the values vi(ξk) are i.i.d. random variables
with expected value vi and variance (σi)2. Moreover, knowing the sample mean viK (21),
we can define a standardized random variable

ZiK :=
viK − vi

σi√
K

. (25)

According to the Central Limit Theorem, this random variable asymptotically, that
is, for |K| → ∞, follows a standard normal distribution N (0, 1). This implies that for
sufficiently large |K|, ZiK is approximately standard normal distributed.

Due to symmetry of the standard normal distribution, it follows

P(−z1−α/2 ≤ ZiK ≤ z1−α/2) ≈ 1− α,

where z1−α/2 denotes (1− α
2 )-quantiles of N (0, 1) for some level α ∈ (0, 1).

Inserting (25) and rearranging yields an approximate (1−α)-confidence interval for
the true upper bound vi:

[
viK − z1−α

2

σi√
|K|

, viK + z1−α
2

σi√
|K|

]
.

As σi is unknown, it can be replaced by the sample standard distribution σiv,K which
is defined by the sample variance

(σiv,K)
2 :=

1

|K| − 1

∑

k∈K
(vi(ξk)− viK)2.
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In that case, the standardized variable approximately follows a Student’s t-distribution
with degree of freedom |K|−1. In the literature on SDDP, even in this case, the (1−α)-
confidence interval for the true upper bound vi is usually approximated using a standard
Normal distribution [201], though, which yields:

[
viK − z1−α

2

σiv,K√
|K|

, viK + z1−α
2

σiv,K√
|K|

]
. (26)

Pereira and Pinto propose choosing α = 0.05, which implies z1−α/2 = 1.96, and stopping
SDDP if the lower bound vi is included in this confidence interval [153].

As pointed out by Shapiro [198], this stopping criterion has several flaws. For
instance, the higher the sample variance (σiv,K)

2, the earlier vi exceeds the lower end of

the confidence interval, which provides a misguided incentive to increase (σiv,K)
2. The

same is true for increasing the confidence 1−α, which contradicts the intuition behind α.
Additionally, faster stopping can be achieved by reducing the sample size |K|. Finally,
the above stopping criterion may favor premature stopping, as it is rather unlikely that
vi is located exactly at the lower bound of the confidence interval.

For these reasons, Shapiro proposes a more conservative stopping criterion where
SDDP terminates if the difference between the upper bound of the confidence inter-
val (26) and vi is sufficiently small.

Sometimes it is also suggested to include values vj(ξk) from previous iterations
j < i in (21), for instance if |K| is too small to obtain a reasonable bound. However,
this destroys the independence between the different samples. Thus, the Central Limit
Theorem can no longer be applied and the confidence-based stopping criteria are not
applicable. [49].

A Hypothesis Test Perspective. Considering that hypothesis tests and confi-
dence intervals are closely related, the above stopping criterion can also be interpreted
in terms of a hypothesis test with hypotheses [105]:

H0 : v
i = vi, against H1 : v

i ̸= vi.

The null hypothesis H0 is tested using the test statistic viK, which is assumed to be
approximately normal distributed. This can again be reasoned using the Central Limit
Theorem for sufficiently large |K|. Then, the region of acceptance for H0 in iteration
i is given by the interval (26): If the lower bound vi does not exceed the lower bound
of this region, then optimality is rejected. Otherwise, there is no compelling reason to
reject it, so it is retained. By choosing α, the type I error (rejecting optimality although
SDDP has converged) can be controlled. However, this comes at the cost of a possibly
high type II error (stopping the algorithm prematurely) [105].

Different Hypothesis Tests. To avoid stopping prematurely, Homem-de-Mello
et al. [105] propose a modified hypothesis test controlling type I and type II errors
simultaneously. The basic principle is very similar to above, even if it is presented for
a one-sided hypothesis test with H0 : v

i ≤ vi. The key difference is that if vi lies inside
of the region of acceptance, the hypothesis of optimality is not necessarily retained, but
still may be rejected. In particular, stopping SDDP should be prevented if the true
upper bound vi exceeds the lower bound vi considerably. As vi is not known, we cannot
observe when this event occurs, but we can predefine a bound γ > 0 on the probability
of stopping given that it happens. For fixed γ and α, and given sample estimates, we
can then compute a percentage difference δi between vi and vi, for which the probability
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of a type II error (premature stopping) is bounded by γ:

δi = (z1−α + z1−γ)
σiv,K

vi
√
|K|

.

If δi is below some predefined threshold δ, the sample estimates guarantee that for
deviations larger than δ, the type II error is under control. Therefore, SDDP stops.
Otherwise, the control of the type II error is not considered sufficient, and the algorithm
proceeds. In other words, SDDP only terminates when vi lies inside of the region of
acceptance and when the type II error is bounded by γ for a sufficiently small percentage
difference δi.

Computational experiments with δ = 0.1 and γ = 0.05 indicate that this stopping
criterion is effective in preventing SDDP from premature stopping [105]. Still, it is
a heuristic, and so far, no proposed statistical testing procedure guarantees that the
probability of stopping prematurely is bounded by some γ > 0 in general.

Predefined Criteria. The previous statistical stopping criteria are computation-
ally demanding and require |K| to be sufficiently large to yield reasonable approximate
confidence intervals. Furthermore, in practical applications (MSLP) is often too large to
achieve convergence in reasonable time. Finally, the statistical stopping criteria do not
necessarily generalize to extensions of SDDP, such as risk-averse variants, see Sect. 12.
Therefore, in practice often more convenient stopping criteria are used for SDDP. For
instance, it is common to stop SDDP after a fixed number of iterations I ∈ N, after a
fixed number of cuts |K|I, after a predefined time or if the lower bounds vi have stalled.
Neither guarantees that an optimal policy is determined, though.

Deterministic Stopping. Finally, SDDP can be stopped deterministically as long
as valid upper bounds vi for v∗ are computed in addition to lower bounds vi. In that case,
for some predefined optimality tolerance ε > 0, SDDP stops with an (approximately)
optimal policy if vi − vi ≤ ε.

This stopping criterion requires significant additional computational effort to de-
termine true upper bounds vi. Hence, there is a trade-off between achieving a more
reasonable stopping criterion and spending computational resources on computations
offside of the core elements of SDDP. We address how such exact upper bounds can be
computed in the next section.

Summarizing, despite various attempts at developing reasonable termination criteria
for SDDP, optimally stopping SDDP remains an open challenge.

8 Exact Upper Bounds and Upper Approximations

The idea of computing deterministic upper bounds v for v∗ and deterministic upper
approximations Qt(·) of Qt(·) has drawn a lot of interest in the research community
recently, both in analyzing the convergence behavior of SDDP, see Sect. 4, and in
developing deterministic stopping criteria, see Sect. 7.

An intuitive way to determine upper approximations Qt(·) of Qt(·) is based on the
observation that due to convexity of Qt(·) all its secants lie above or on its graph. There-
fore, an upper approximation is possible by a convex combination of points (xt−1,Qt(xt−1)).
To obtain an approximation on the whole state space, it can be extended using a reg-
ularization with a Lipschitz constant Lt of Qt(·). Such constant exists according to
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Corollary 2.10. In this light, Qt(·) can be constructed as [231]

Qt(xt−1) = co

(
min

m=1,...,Mt

{
Qt(xmt−1) + Lt∥xt−1 − xmt−1∥

})
, (27)

where co(f) denotes the convex envelope of function f . This is illustrated in Figure 9.
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Figure 9: Inner and outer approximation of Qt(·).

Alternatively, by interpreting this idea from a set perspective, the convex epigraph
epi(Qt) of Qt(·) can be approximated by the convex hull conv(w1

t−1, . . . , w
Mt
t−1) of finitely

many points wt−1 := (xt−1,Qt(xt−1)) in epi(Qt).
In principle, there are two different approaches to realize this idea. One uses the

above perspectives, which we refer to as primal, and one is related to some dual per-
spective on SDDP and its value functions [97, 119].

8.1 Primal Inner Approximation

Similar to subproblems (10), based on upper approximations Qt(·) of Qt(·), approxi-
mating subproblems can be defined by replacing Qt(·) with Qt(·) in the DPE for all
t ∈ [T ]. This idea is first introduced by Philpott et al. [161]. As they consider only the
RHS of (MSLP) to be uncertain, we adopt this assumption, although it is not required.

For stages t = T −1, . . . , 2, each element m in a given set of points x1t , . . . , x
Mt−1
t and

each ξtj , j = 1, . . . , qt, the following subproblem can be solved by backward recursion:

Qt(x
m
t−1, ξtj) :=

{
min
xt

c⊤t xt +Qt+1(xt)

s.t. xt ∈ Xt(xmt−1, ξtj).
(28)

Here, as indicated in (27), the upper approximation Qt+1(·) is defined as a convex
combination of points

(
xmt ,Qt+1(x

m
t )
)
,m = 1, . . . ,Mt. The key difference is that instead
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of Qt+1(x
m
t ) here Qt+1(x

m
t ) := E

[
Qt+1(x

m
t , ξt+1)

]
is used, as Qt+1(·) is not known:

Qt+1(xt) :=





min
w

Mt∑

m=1

wmQt+1(x
m
t )

s.t.

Mt∑

m=1

wmx
m
t = xt

Mt∑

m=1

wm = 1

wm ≥ 0, m = 1, . . . ,Mt.

(29)

Furthermore, compared to (27) no regularization is used.
By recursion, it can be shown that

Qt(x
m
t−1, ξtj) ≥ Qt(x

m
t−1, ξtj)

for all m = 1, . . . ,Mt−1 and j = 1, . . . , qt. This implies

Qt(xmt−1) ≥ Qt(xmt−1).

The first-stage problem then yields

vIA :=

{
min
xt

c⊤1 x1 +Q2(x1)

s.t. x1 ∈ X1,

with vIA an exact valid upper bound to v∗.
The main challenge with this approach is to appropriately choose the set of points

xmt−1,m = 1, . . . ,Mt−1. On the one hand, they should be chosen such that as much of
Xt−1 is spanned as possible. On the other hand, choosing (at least some of) those points
as extreme points leads to Mt ≥ 2nt points, i.e., the number of required points grows
exponentially in the dimension of the state space.

An alternative is to use the trial points from the SDDP forward pass [161]. Even
using these points, the computational effort may become excessive, though. Similarly to
the SDDP backward pass, subproblems (28) have to be solved for each stage t ∈ [T ], each
point xmt−1,m = 1, . . . ,Mt−1, and each noise term ξtj , j = 1, . . . , qt. However, the number
Mt−1 of points to be considered grows with each iteration, as it contains all previous
trial solutions. It is therefore suggested to only use the upper bound computation every
few hundred iterations, and not to permanently incorporate it into the backward pass
[161]. This hinders using the upper bounds vIA in the stopping criterion of SDDP in
each iteration, though.

Moreover, the obtained bounds vIA may be very loose, especially in problems (MSLP)
with a high number of stages. Computational tests are required to assess whether the
information gain justifies the additional computational effort and, possibly, higher num-
ber of iterations.

Baucke et al. provide a different perspective on the previous inner approximation
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idea [10]. Instead of (29), they use its dual representation

Qt+1(xt) =




max
µ,λ

x⊤t λ+ µ

s.t. (xmt )
⊤λ+ µ ≤ Qt+1(x

m
t ), m = 1, ...,Mt.

(30)

This shows that Qt+1(·) can be equivalently described by maximizing over the coef-
ficients of all supporting hyperplanes for points

(
xmt ,Qt+1(x

m
t )
)
,m = 1, . . . ,Mt.

In [10], the dual problem is additionally regularized, i.e., enhanced by constraint
∥λ∥ ≤ Lt, with Lt denoting a Lipschitz constant of Qt(·, ·). This is equivalent to
regularizing the primal problem (29) with the dual norm to ∥·∥, cf. (27). This way, a
reasonable approximation is also achieved for points outside of the convex hull of the
set defined by the points xmt ,m = 1, . . . ,Mt.

Using this expression for the inner approximation functions, Baucke et al. propose
a deterministic algorithm for multistage stochastic convex programs. In their case,

subproblems (28) are solved in each backward pass iteration, and Q
i
t+1(·) is updated

by adding constraint (xm̃t )
⊤λ+ µ ≤ Qit+1(x

m̃
t ) for the current iterate xm̃t . The proposed

algorithm differs in further regards from standard SDDP, for instance it requires a multi-
cut approach, see Sect. 21. Moreover, choosing a reasonable and valid value for Lt can
be very challenging, but is crucial for the proposed method to work as intended.

8.2 Dual SDDP

To compute deterministic upper bounds v for v∗ recently a dual perspective on SDDP
and the DPE (4) has gained attention.

Using Convex Conjugates of Value Functions. The first proposal in this
context, by Leclère et al. [119], exploits convex conjugates and the related duality
concepts to derive dual value functions for (MSLP) where uncertainty only appears in
the RHS ht(ξt).

Let f : Rn → R ∪ {−∞,∞}. Then its convex conjugate f⋆(·) is defined as [186]

f⋆(λ) := sup
x∈Rn

λ⊤x− f(x).

For (MSLP), the convex conjugates Dt(·) := Q⋆
t (·) of the value functions Qt(·) can be

considered as dual value functions for t = 2, . . . , T . It can be shown that these functions
also satisfy some DPE with linear subproblems on each stage. Whereas Leclère et al.
consider a more general setting including control variables ut (see Remark 2.2), for
(MSLP) as defined in Sect. 2 (and especially under Assumption 5), for t = 2, . . . , T ,
these subproblems can be expressed by

Dt(λt−1) :=





min
λt,µt,γt

qt∑

j=1

ptj

(
− h⊤tjµtj +Dt+1(λtj)

)

s.t. T⊤
t−1

(
qt∑

j=1

ptjµtj

)
−

qt∑

j=1

ptjγtj + λt−1 = 0

W⊤
t µtj = λtj + ct, j = 1, . . . , qt

γtj ≤ 0, j = 1, . . . , qt.

(31)
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For the first stage, we obtain a deterministic problem, which by T0 ≡ 0 simplifies to

D1(λ0) = min
µ1

h⊤1 µ1 +Dt

(
W⊤

1 µ1 − c1
)

for some arbitrary initial λ0 ≤ 0 (note that more general formulations of (MSLP) may
lead to a dependence on λ0).

Using this dynamic recursion, it is possible to apply an SDDP-type algorithm, called
dual SDDP, to Dt(·), using iteratively improving outer approximations Di

t(·) for Dt(·).
Analogously to SDDP, this iterative method yields a converging deterministic lower
bound for the first-stage optimal value, i.e., Di

1(λ0) ≤ D1(λ0). Applying conjugacy
theory again, we obtain

vi =
(
Di

1

)⋆
(x0) ≥ D⋆

1(x0) = Q⋆⋆
1 (x0) = Q1(x0) = v∗.

Hence, deterministic upper bounds for v∗ can be obtained as conjugates of the first-
stage approximations Di

t(·) evaluated at x0 = 0, and (vi)i defines a sequence converging
to v∗ [119].

Using the Dual of (MSLP). Guigues et al. propose an alternative way to define
dual value functions and DPE that can be exploited in a dual SDDP algorithm [97].
Instead of working with conjugates of the primal value functions Qt(·), they first derive
the dual to (MSLP) formulated as a single problem (3), and then show that this dual
problem can be decomposed using DPE and dual value functions

D̃t(πt−1) :=





max
πt

qt∑

j=1

ptj

(
− h⊤tjπtj + D̃t+1(πtj)

)

s.t.

qt∑

j=1

ptj

(
T⊤
t−1,jπtj

)
+W⊤

t−1πt−1 ≤ ct−1.

(32)

It can be argued that these dual DPE are simpler and more intuitive, as they do not
require conjugacy theory. Moreover, we immediately obtain that the first-stage optimal
value D̃1(π0) equals v∗ by strong duality for linear programs. Therefore, using outer
approximations D̃i

t(·) of these value functions in dual SDDP, again a sequence (vi)i of
deterministic and valid upper bounds can be computed which converges to v∗ [97]. On
the other hand, the dual value functions D̃t(·) cannot be directly related to the original
value functions Qt(·).
Remark 8.1. Even if the dual DPE (31) and (32) are derived using different tools and
perspectives, they are still closely related. Note that subproblem (31) can be reformulated
as

Dt(λt−1) =





min
λt,µt

qt∑

j=1

ptj

(
− h⊤tjµtj +Dt+1(λtj)

)

s.t. T⊤
t−1

(
qt∑

j=1

ptjµtj

)
+ λt−1 ≤ 0

W⊤
t µtj = λtj + ct, j = 1, . . . , qt.

Using the last constraint, the state λt−1 can be expressed through the dual variables
µt−1 from the previous stage: λt−1 = W⊤

t−1µt−1 − ct−1. Exploiting this, the subprob-
lems only contain dual variables µt, which have to be considered as state variables. By
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adapting the optimization sense in the objective, we get exactly the structure of (32).

We can make the following additional observations with respect to the dual DPE (31)
and (32). First, in both cases, the subproblems are not necessarily bounded. Therefore,
in both cases, artificial bounds are introduced. In [97] they are chosen as πt ∈ [πt, πt],
whereas in [119] Lipschitz continuity of Qt(·) is exploited to impose the bounds ∥λt∥∞ ≤
Lt for Lipschitz constants Lt, t = 2, . . . , T . It is assumed that these bounds are chosen
sufficiently large to not affect the optimal solutions.

Second, even if the primal DPE (4) are assumed to have relatively complete recourse
(see Assumption 9 and Lemma 2.5), this does not necessarily translate to the dual
subproblems. To ensure feasibility, Guigues et al. propose to either use feasibility cuts
(also see Sect. 17) or a penalization approach [97].

Third, in contrast to the primal perspective, the subproblems do not decompose by
realizations of ξt, but contain separate dual variables πtj (or λtj , µtj , γtj , respectively)
for all j = 1, . . . , qt. In the forward pass of dual SDDP the trial point πit (or λ

i
t) that is

used as a parameter in the following stage is sampled from these variables.
Finally, if Wt and ct become uncertain as well, then the value functions and sub-

problems additional depend on ξt. In fact, in formulation (32) the state space has to be
extended to include the history ξt−1 of the stochastic process, as the problem contains
Wt−1 and ct−1 [97].

Again, an SDDP-type algorithm, also referred to as dual SDDP in [97], can be
applied to the DPE (32). This algorithm is presented in Algorithm 2. The two variants
of dual SDDP have been extended to the risk-averse case [40] (see also Sect. 12) and to
problems with infinite horizon (see also Sect. 19) [200].

Dual Inner Approximation. First and foremost, dual SDDP is an alternative
to (primal) SDDP to approximate v∗ by converging deterministic upper bounds vi.
However, as shown in [119], if the dual DPE (31) are used, then the obtained approx-

imations Di
t(·) may be translated to inner approximations Q

i
t(·) of the primal value

functions Qt(·). This way, policies (xt(ξ[t]))t∈[T ] for (MSLP) can be computed. The
inner approximations can be computed as Lipschitz regularizations (see Sect. 17) of the
convex conjugate of the outer approximations Di

t(·), which is shown to be equivalent to
solving problem (30) with regularization ∥λ∥∞ ≤ Lt. The key difference to the approach
in [10] is the way the primal supporting points xmt are determined, that is, by the slopes
of the dual outer approximation [119].

Incorporation into SDDP.While dual SDDP can be applied on its own to approx-
imate v∗, and even compute policies (xt(ξ[t]))t∈[T ], it seems reasonable to incorporate
it into (primal) SDDP in order to compute deterministic upper and lower bounds for
v∗. Guigues et al. suggest to use both variants of SDDP in parallel [97]. In contrast,
Leclère et al. propose a framework where primal and dual SDDP are intertwined [119]:

1. Run a forward pass of (primal) SDDP, yielding trial solutions (xit)t∈[T ] for the
sampled scenario path (the authors choose |K| = 1).

2. Run a backward pass of (primal) SDDP using the trial solutions xit−1, obtaining
new slopes πit from the cuts.

3. Run a backward pass of dual SDDP using the slopes λit = πit, obtaining new cuts
for the dual problem.

4. Run a forward pass of dual SDDP, to obtain a new dual trajectory (λ̃it)t∈[T ] and
update the cuts along this trajectory.
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Algorithm 2 Dual SDDP from [97]

Input: Dual to problem (MSLP) satisfying Assumptions 1 to 9. Appropriate multiplier
bounds. Stopping criterion.

Initialization

1: Initialize cut approximations with bounded D̃0
t (·) for all t = 2, . . . , T .

2: Initialize upper bound with v0 = +∞.
3: Set iteration counter to i← 0.

Dual SDDP Loop

4: while Stopping criterion not satisfied do
5: Set i← i+ 1.

Forward Pass

6: Solve the first-stage problem (defined by replacing D̃2(·) with D̃i
2(·) and adding

multiplier bounds in (32)). Store the trial point πi1.

7: for stages t = 2, . . . , T do
8: Solve the stage-t subproblem (defined by replacing D̃t+1(·) with D̃i

t+1(·) and
adding multiplier bounds in (32)) for πit−1 to obtain πitj , j = 1, . . . , qt.

9: Sample j̃ from j = 1, . . . , qt and set πit = πt̃j .
10: end for

Backward Pass

11: for stages t = T, . . . , 2 do
12: Solve the updated stage-t subproblem (10) (defined by replacing D̃t+1(·) with

D̃i+1
t+1(·) and adding multiplier bounds in (32)) for πit−1. Store the optimal

value Dt(π
i
t−1) and the optimal dual vector xit−1.

13: Compute

αD,it := Dt(π
i
t−1)−

(
βD,it

)⊤
πit−1

and

βD,it := −Wt−1x
i
t−1.

14: Update the cut approximation of D̃t(·) to

D̃i+1
t (xt−1) := min

{
D̃i
t(xt−1), α

D,i
t +

(
βD,it

)⊤
πt−1

}
.

15: end for
16: Solve the first-stage problem (defined by replacing D̃2(·) with D̃i+1

2 (·) and adding
multiplier bounds in (20)) to obtain an upper bound vi.

17: end while
Output: Upper bound vi for v∗.

41

114 Paper A – SDDP Review



One computational drawback of this framework, and of dual SDDP in general, is that
each iteration of dual SDDP is much more computational expensive than for standard
(primal) SDDP. This hampers the application of a solely deterministic stopping criterion
for very large problems [97, 119].

9 Applications

In this section, we present different application areas of SDDP. We also point out appli-
cations in which some of the Assumptions 1 to 9 are not satisfied, and therefore either
modifications of (MSLP) or algorithmic extensions are required in order to apply SDDP.
These use cases can be regarded as a motivation for the enhancements of SDDP that
we cover in the following sections.

9.1 Power System Optimization

By far the dominating application field of SDDP is power system optimization, in
particular, the operational planning of energy systems including hydro storages by a
central planner. This is due to its adequacy for such problems, but also due to its
origins in optimizing the operational planning of the Brazilian hydrothermal system
[152, 153].

In general, solving power system optimization problems is a very complex task, as
it allows for incorporation of various technical and economical details and uncertainties
[110, 149, 182, 183, 184, 209, 210, 232]. Including all these details in one single problem
is computationally intractable. Therefore, usually a hierarchy of problems is considered,
dealing with different time-scales and perspectives [47], such as short-term dispatch (a
few days or weeks), mid-term operational planning (1-2 years) and long-term operational
planning (3-5 years) [72, 81]. Results from a long-term model can then be incorporated
into one with a shorter horizon, but more detail in other modeling aspects.

9.1.1 Long-term Operational Planning

SDDP is most prominently used for long-term operational planning (LTOP) of hy-
drothermal power systems, also called long-term hydrothermal scheduling (LTHS). In
the research literature, SDDP has been applied to LTOP of various hydrothermal sys-
tems, with the most prominent ones being the hydro power dominated systems in Brazil
[15, 30, 31, 32, 42, 47, 48, 49, 52, 84, 97, 105, 126, 127, 129, 133, 136, 161, 166, 203,
204, 205, 208, 216, 226], other Central or South American countries [6, 70, 179, 213],
Norway [80, 187] and New Zealand [160, 162, 229]. Additionally, to this day, SDDP is
applied by the Brazilian system operator ONS in practice [134, 135].

The aim in LTOP is to determine an optimal policy for the amount of power to
be generated by thermal and hydroelectrical utilities over some planning horizon of
several years (usually with monthly resolution) such that demand is satisfied, technical
constraints are fulfilled and the expected cost is minimized [160]. The main focus is on
managing hydro reservoirs, and thus the water resource efficiently. This is not trivial.
While there is an incentive to use all the water in a reservoir immediately, as no fuel
costs occur, also the potential value of storing water for later stages has to be considered,
with taking into account the uncertainty of future inflows. For this reason, it can be
beneficial to retain water in wet periods for following dryer periods. The ability to store
water in reservoirs leads to a temporal coupling of the stages. The number of inflow
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realizations qt per stage is typically chosen in a range between 20 and 100. For T = 60,
this yields a scenario tree with about 1.15 · 1078 or 10120 scenarios. Per forward pass,
either a single scenario [48] or 100 to 200 scenarios are sampled.

LTOP can be used to illustrate some of the challenges and limits of standard SDDP,
and thus motivate the necessity of extensions.

Autoregressive Uncertainty. In LTOP, the main source of uncertainty are future
(usually monthly) inflows into the reservoirs. These inflows often show seasonality and
a temporal or spatial coupling which has to be considered in modeling. Therefore,
usually autoregressive (AR) processes are used to model and forecast them, in particular
periodic autoregressive (PAR) [133, 134] and related models [139]. This means that for
each reservoir and each month a different AR model is fitted, or in other words, that
the parameters in the AR model are allowed to differ between months.

Additionally, often hydro reservoirs are organized in cascade systems. Then, the
generation of one turbine may affect the inflow of downstream reservoirs, such that
they cannot be managed separately. For this reason, inflows often do not only show
temporal correlation and seasonality, but also spatial correlation. To address this,
instead of PAR, spatial periodic autoregressive (SPAR) models can be used [127]. These
models are still linear, but instead of only autoregressive components, i.e., lags of ξit for
some reservoir i, also lags of the inflows of neighboring reservoirs i′ are used to explain
ξit. Apart from inflow lags, also different exogenous variables, such as climate indices,
precipitation or sea temperature can be used to explain inflows [124, 165].

Whenever an AR process is used for the uncertain data, the assumption of stagewise
independence (Assumption 2) is not satisfied. This motivates an extension of SDDP
able to handle stagewise dependent uncertainty. We discuss this in Sect. 14.

Nonlinear Uncertainty. When modeling hydro inflows, the error terms in the
AR process are usually assumed to be i.i.d. with normal or log-normal distribution
[47, 127]. In the latter case, the model is also referred to as a geometric PAR (GPAR)
model [129]:

ln(ξt) = γt +Φt ln(ξt−1) + ηt. (33)

GPAR models are usually more accurate in modeling inflows, as these often tend to
positive skewness and are thus not normally distributed. Moreover, they have the
advantage that the requirement of non-negative inflows is naturally satisfied.

On the other hand, solving (33) for ξt yields an AR process with multiplicative in-
stead of additive error terms [204], which is a nonlinear model. Incorporating this into
the DPE destroys the convexity of Qt(·), making a direct application of SDDP impossi-
ble. Instead, the nonlinear model has to be approximated linearly [204]. Another idea is
to normalize the inflows first using a Box-cox transformation. As such a transformation
is nonlinear, still a linear approximation is required afterwards, though [168]. Further
strategies to avoid non-negative inflows and nonlinearities are discussed in [47, 177].
In [45] it is suggested to apply bootstrapping to resample directly from the historical
residuals instead of applying a nonlinear transformation.

Continuous Uncertainty and Distributional Uncertainty. As stated before,
usually a normal or log-normal distribution is assumed for the error terms in the in-
flow models, both being continuous distributions (an exception is [171] where inflows
are modeled as a continuous process with discrete random errors). For this reason, the
assumption of finite discrete random variables (Assumption 5) is not satisfied. Addition-
ally, the chosen distribution for the model may not coincide with the true distribution of
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the uncertain data. This raises the questions of how to handle continuous uncertainty
and distributional uncertainty in SDDP. We address these questions in Sect. 11 and
Sect. 13.

Computational Performance. Despite the amenities of SDDP, its performance
may suffer for problems with a large number of state variables, due to its exponential
complexity in the state dimension nt, see Sect. 4.2. For instance, SDDP is computa-
tionally prohibitive for a complete model of the Brazilian energy system consisting of
about 150 thermal plants and more than 150 hydro storages [48]. This is aggravated if
the state dimension is artificially increased, e.g., in order to deal with stagewise depen-
dent uncertainty, see Sect. 14. As a relief, it is common practice to aggregate reservoirs
based on their region and hydrological properties in so-called energy equivalent reser-
voirs (EER) [4], thus reducing the state dimension [135]. However, this comes with an
increased abstraction, and may lead to suboptimal policies. Moreover, as outlined in
[47], the EER modeling may introduce some nonlinearities into the system, which have
to be mitigated by linearization.

The computational complexity with respect to the state space also makes general
performance improvements for SDDP indispensable, which we discuss in Sect. 21.

End-of-horizon Effect. Another challenge when applying SDDP to LTOP in
practice is the so-called end-of-horizon effect. It relates to the effect that obtained
policies do not guarantee a continuous and reliable energy supply after the planning
period, because in an optimal policy, all energy remaining in the reservoirs will be used
at the end of the planning period. A typical planning horizon for LTOP are 5 years
with a monthly resolution, leading to 60 stages. A common practice to mitigate the
end-of-horizon effect is to add 60 more stages to the problem, i.e., to consider a problem
with 120 stages [204], even if only decisions of the first half are about to be implemented.
Alternatively, it seems natural to analyze how SDDP can be applied for problems with
an infinite horizon or with a random horizon, where Assumption 1 is not satisfied. We
address this in Sect. 19 and 20.

Risk-aversion. Due to the high importance of system reliability and stability to
prevent outages and electricity shortages, system planners may favor more risk-averse
policies compared to the risk-neutral ones obtained by standard SDDP. Therefore, there
has been an increased interest recently to take risk aversion into account when applying
SDDP to LTOP [108, 208]. However, as Assumption 8 is no longer satisfied, this requires
to extend standard SDDP to a risk-averse variant. We discuss different approaches to
achieve this in Sect. 12.

9.1.2 Medium-term Operational Planning

Structurally, medium-term operational planning problems (MTOP) do not differ much
from LTOP. The main difference is that a shorter, one- or two-year time horizon is
considered [47, 160, 161, 179].

Price Uncertainty in the Objective. Especially on a medium-term time horizon,
SDDP has also been adopted from the traditional setting with a single system operator
to more market-driven systems, in which several electricity suppliers are active. In such
systems, besides inflows also spot prices can be considered uncertain. This imposes
an additional challenge to SDDP, as it leads to stagewise dependent uncertainty in the
objective. We discuss this in detail in Sect. 14. To deal with this challenge, for instance,
for the operational planning of the Norwegian hydro-storage system, usually a combined
SDP/SDDP approach is used [79, 80, 81, 100, 101].
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Water Head Effect. In LTOP the so-called water head effect of hydro storages is
often disregarded, but it may become decision-relevant in (MTOP). This effect describes
that the production of a hydro plant increases with the net head of the reservoir. As this
production function is multiplied with the water discharge, it introduces non-convexities
to the problem. Therefore, if this nonlinear effect is explicitly considered, suitable
extensions of SDDP to non-convex problem are required [36, 103, 163]. We cover such
extensions in Sect. 16.

9.1.3 More Energy Applications

We briefly summarize further applications of SDDP in power system optimization.
Short-term Dispatch. SDDP is particularly suited for long-term planning, but

it can also be applied to short-term economic dispatch problems [37, 51, 118, 148].
For shorter time horizons, it may be reasonable to include additional system aspects,
for instance power flow and security constraints, reserve energy or different ancillary
services [132, 216]. If security constraints are considered, usually linear DC power flow
models are used, but recently also AC power flow has gained interest [112].

Another research stream considers CO2 emissions, which can be covered by impos-
ing an emission quota system [14, 180, 178] or by introducing emission trading [181].
The first approach leads to an (MSLP) which has no block-diagonal structure (Assump-
tion 7). We discuss how SDDP can be applied in this case in Sect. 18.

Using a reasonable extension to mixed-integer programs, see Sect. 16, also unit
commitment problems are accessible by the SDDP idea [234].

Different Storage Systems. As different types of storage systems can be modeled
similar to hydro storages, SDDP is also applicable to such systems, for instance, to
optimize gas storage facilities [227] or energy storages in microgrids [22].

Optimal Bidding. Instead of minimizing expected system cost from the perspec-
tive of a central system operator, in strategic bidding problems power plant operators
attempt to determine an optimal bidding policy in order to maximize their expected
revenue, while taking into account information uncertainty, for example with respect to
inflows or the market-clearing price; see [212, 214] for an overview.

Since the future revenue functions of the price-maker have a sawtooth shape, the
resulting problem is non-convex [213]. Therefore, to apply the SDDP idea, tailor-made
extensions are required, e.g., convexifications, approximations by saddle cuts [55] or by
step functions [163, 229]. For methodological details, we refer to Sect. 16.

Recently, also applying SDDP to optimize trading in continuous intraday markets
has gained attention [206].

Investment Planning. An important long-term optimization problem in power
systems is to make optimal (risk-averse) investment decisions, either with respect to the
expansion of renewables [33, 123, 215] or to conventional projects.

For conventional power systems, common investment problems address the ques-
tions of generation expansion or transmission expansion. The main challenge with such
problems is that they naturally impose the introduction of integer decision variables.
Therefore, in such a case relaxations [147] or appropriate extensions of SDDP, e.g., SD-
DiP [234], have to be used (see Sect. 16). Alternatively, SDDP can be incorporated into
a larger Benders decomposition framework, where at the first stage binary investment
decisions are taken and at the second stage a multistage stochastic linear program is
solved by SDDP [178]. Similar applications are considered in [52] and [41] with a special
focus on risk and reliability constraints.
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Coping with Renewable Uncertainty. An increasing share of renewable energy
sources introduces more variability to an energy system, which has to be taken into
account and balanced by appropriate mechanisms. The usage of distributed grid-level
storage, such as batteries or electric vehicles, for smoothing out the variable generation
of renewables is examined using SDDP in [66, 235].

9.2 Water Resource Management

In many energy applications of SDDP, managing water resources plays a key role, as it
couples subsequent stages. Apart from energy optimization, SDDP is also applied to
more general water resource management problems, where not only energy production,
but also water usage for irrigation in agriculture [155, 221], flow requirements for nav-
igation [221], groundwater [137] or ecological constraints [220] are taken into account
in the operational planning of reservoirs. Also related is the problem of river basin
management [188].

Additionally, SDDP is used for assessing various quantities in hydrological systems,
e.g., the value of water [224], risk for dam projects [2, 223], resource vulnerabilities [189]
or benefits and costs of cooperation or non-cooperation [138, 222].

9.3 Portfolio Management

The optimal management of a portfolio of investments, also referred to as asset alloca-
tion, can be modeled as an (MSLP) [43]. The aim is to distribute a fixed investment
sum among a finite number of assets with uncertain returns, in such a way that the
expected return at the end of the considered horizon is maximized. By selling or buying
certain amounts of assets, the investor can restructure his portfolio in each time period.
Usually, both operations are associated with transactions costs, which leads to a very
complex problem [225].

In the literature on SDDP, asset allocation problems are quite popular to test pro-
posed improvements and enhancements of SDDP, such as regularization [90], cut-sharing
[84] or inexact cuts [8]. Since most investors are risk-averse, asset allocation problems
are a popular application [60, 63, 64, 106, 113, 114], but also one of the main drivers
for the development of risk-averse SDDP, which we introduce in Sect. 12.

For applications of practical interest, asset allocation becomes very challenging, as
pointed out in [225]. First, risk aversion parameters such as λt or αt, see Sect. 12, are
not intuitive to choose in such a way that the true preferences of an investor are appro-
priately represented. For this reason, the authors propose to solve a risk-constrained
model with one-period conditional AVaR constraints instead of a usual risk-averse SDDP
approach. Second, assuming stagewise independence of asset returns may prove unre-
alistic, requiring a more sophisticated approach such as incorporating a Markov chain,
see Sect. 14. Moreover, the large supply of potential assets leads to a high-dimensional
state space.

9.4 Further Applications

Although the focus is on the previous applications, occasionally also other types of ap-
plications are investigated using SDDP. Among those applications are dairy farming
[61, 83], newsvendor problems [5, 150], inventory management [8, 59, 87, 97], lot-sizing
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[218] and routing problems [60]. In [50] and [234] airline revenue management is ex-
plored, which is an established problem in dynamic programming, but requires integer
variables.

10 Software

Until recently, SDDP implementations have been solely restricted to closed research
projects or commercial products. For commercial products, most established is the
SDDP implementation by PSR, a Brazilian energy consultancy [172]. A newer stochastic
programming software, which also includes SDDP ideas, is provided by Quantego and
can be accessed using MATLAB, Python and Java [173]. For research projects, various
different implementations exist, covering programming languages like AMPL, C++,
Fortran, GAMS, Java or MATLAB, see [57].

In the last few years, open-source implementations have gained more and more
interest, with the aim to increase research transparency, enhance research exchange and
benchmarking, and facilitate access to SDDP in industry and science [57]. The most
prominent programming language in this regard is Julia [21], which provides its own
algebraic modeling language JUMP [62] and is increasingly used in operations research
and especially stochastic progamming. By now, with StochDynamicProgram.jl [120],
StructDualDynProg.jl [121] and SDDP.jl [57] there exist three SDDP implementations
in Julia. Similarly, SDDP packages are available in MATLAB (FAST [34]), C++ (StOpt
[77]) and Python (msppy [50]).

Currently, SDDP.jl, which is based on the concept of policy graphs [56], can be
considered the most comprehensive package. It provides many of the features described
in this paper, such as cut selection, parallelism, Markov chain SDDP, objective states,
belief states, SDDiP, as well as different stopping criteria and sampling approaches.
Moreover, it includes some of the approaches discussed for distributionally robust and
risk-averse SDDP. However, as most other packages, it requires the underlying stochastic
process to be finite. Thus, if Assumption 5 is not satisfied, some discretization has to
be applied a priori. Then, the results obtained by SDDP are valid for the discretized
problem, but not put into perspective with respect to the true problem. msppy, on the
other hand, integrates both, the discretization by SAA and the solution by SDDP in
one package, and thus can also be applied to problems with continuous uncertainty [50].

A more detailed comparison of currently available libraries is presented in [57].

11 SDDP for Continuous Uncertainty [relaxing Assump-
tion 5]

So far, we assumed the uncertainty in (MSLP) to be modeled by some discrete and
finite random process, see Assumption 5, in order for SDDP to be applicable. Until the
recent work by Forcier and Leclère [71], also all convergence proofs for SDDP leveraged
Assumption 5. However, in many practical applications, this assumption is not justified.
For example, if the stochastic process governing the uncertain data is modeled by a
time series model, the random error terms are usually assumed to follow a continuous
distribution [198], see Sect. 9. In the remainder of this section, we denote a problem
with such a continuous data process by (P̃ ).

As pointed out in Sect. 2.3, for problems with sizes of practical interest, problem (P̃ )
is computationally intractable. Therefore, if the true distribution Fξ of the stochastic
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process (ξt)t∈[T ] is continuous, usually an approximation with finitely many scenarios is
used. In the literature on multistage stochastic programming, a variety of techniques are
proposed to generate (and reduce) scenario tree approximations of continuous stochastic
processes. For an overview we refer to [128].

11.1 Sample Average Approximation (SAA)

The most common approximation approach is to use random sampling. That means
that the distribution Fξ is approximated using an empirical distribution F̃N with a
finite number N of scenarios, which is obtained by sampling from Fξ [198]. This yields

an approximating problem (P̃N ), which then can be handled by SDDP. Often, this
technique is referred to as sample average approximation (SAA), especially, if classical
Monte Carlo sampling is used. We discuss SAA and the application of SDDP to solve an
SAA problem in more detail now. For a general analysis of SAA, we refer the interested
reader to [201].

SAA and SDDP. Under stagewise independence of (ξt)t∈[T ] (Assumption 2), it
is desirable to preserve this property in the SAA problem, especially if the latter should
be solved by SDDP. To achieve this, random sampling can be applied to each stage
t = 2, . . . , T independently with sample size q̃t [198]. The obtained SAA has a total
number of N =

∏T
t=2 q̃t scenarios, i.e., the number of scenarios is exponentially growing

in the number of stages [198].
For the SAA problem (P̃N ), for each stage t = 2, . . . , T and each sample j = 1, ..., q̃t,

the DPE can be written as

Q̃t

(
xt−1, ξ̃tj

)
:=

{
min
xt

(
ct
(
ξ̃tj
))⊤

xt + Q̃t+1(xt)

s.t. xt ∈ Xt(xt−1, ξ̃tj)
(34)

where

Q̃t+1(xt) :=
1

Nt+1

q̃t+1∑

j=1

Q̃t+1(xt, ξ̃t+1,j) (35)

and Q̃T+1 ≡ 0. For the first stage, we obtain

ṽN :=

{
min
x1

c⊤1 x1 + Q̃2(x1)

s.t. x1 ∈ X1.
(36)

The DPE (34)-(36) can be approached by SDDP as described in Sect. 3. However,
in contrast to the problems considered there, the SAA problems are random, as they
depend on a sample from the true data process (ξt)t∈[T ].

SAA Properties. Since the aim is to solve the original problem (P̃ ), the central
question is how the solution and the bounds obtained by applying SDDP to the SAA
problem (P̃N ) relate to the solution of (P̃ ). We denote the optimal value of (P̃ ) by

ṽ∗ and the bounds obtained by SDDP in iteration i with ṽi and ṽ
i

K. We summarize
important properties of SAA.

(P.11.1) Consistency. It can be shown that the optimal value ṽN provides a consistent
estimator of the true optimal value ṽ∗, i.e., limq̃2,...,q̃T→∞ ṽN = ṽ∗ with probability
1 [198, 201]. The intuition behind this is that asymptotically, the structure of
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the true process (ξt)t∈[T ] is recovered. In practical applications, increasing q̃t to
infinity is computationally intractable, though.

(P.11.2) Bias. ṽN is a biased estimator of ṽ∗, more precisely, E[ṽN ] ≤ ṽ∗ for all N [201],
since only a subset of all scenarios is considered and the decisions are optimized
with respect to these scenarios [48]. This means that solving the SAA problem
provides a (converging) estimator of a lower bound for ṽ∗ [195].

(P.11.3) Lower Bounds. In each iteration i of SDDP, we have ṽi ≤ ṽN . Therefore, E[ṽi] ≤
ṽ∗ [198], and the SDDP lower bound is a statistical lower bound for ṽ∗. Note,
however, that both, ṽN and ṽi, are lower bounds in expectation only, whereas this
is not clear for one specific SAA problem (P̃N ).

(P.11.4) Upper Bounds. Applying SDDP to the DPE (34)-(36) yields a policy. Under
relatively complete recourse (see Assumption 9) with respect to the true data pro-
cess (ξt)t∈[T ], this policy also yields feasible decisions if applied to any realization
(ξt)t∈[T ] of this true process. By computing

E

[
T∑

t=1

(
ct(ξt)

)⊤
xit
(
ξ[t]
)
]

(37)

with the expectation taken with respect to the true process, a valid upper bound
for ṽ∗ can be obtained [198].

(P.11.5) The sample mean ṽ
i

K determined in iteration i in SDDP is an unbiased and con-

sistent estimator of (37). Hence, E
[
ṽ
i

K
]
≥ ṽ∗.

Even with these theoretical properties, solving (P̃ ) using SAA may be computa-
tionally intractable. Shapiro shows that even under relatively complete recourse (see
Assumption 9) and stagewise independence (Assumption 2) of the true data process
(ξt)t∈[T ], the total number of scenarios required in SAA problem (P̃N ) to solve (P̃ )
with a reasonable accuracy ε > 0 grows exponentially in the number of stages [196].
Therefore, he proposes to use smaller sample sizes q̃t for later stages, although then the
accuracy of the solution cannot be guaranteed anymore [197].

Clearly, there exists a trade-off between the quality of the obtained bounds for ṽ∗ and
the computational tractability of the SAA problem. Approximating Fξ with FN using
very large sample sizes q̃t for all t = 2, . . . , T , a much better representation of the original
process (ξt)t∈[T ] is obtained, leading to a better approximation of ṽ∗. However, in this
case, it may be even impossible to solve the SAA problem to optimality in reasonable
time, as it may take too long until all scenarios are eventually sampled [198]. On the
other hand, a very rough approximation yields a problem (P̃N ), which can be solved
efficiently by SDDP, but does not provide reasonable information about the solution to
the true problem (P̃ ) [114].

11.2 Assessing Policy Quality

As it is computationally intractable to solve an SAA problem of (P̃ ) with a sample size
that guarantees a predetermined accuracy, in practice, usually moderate sample sizes
are used. For example, in [48], sample sizes with branching numbers q̃t between 5 and
200 are tested.
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The bounds ṽi and ṽ
i

K in SDDP are determined using one specific sample of (ξt)t∈[T ].
Therefore, they only measure the in-sample performance of the determined feasible
policy

(
xt(ξ[t])

)
t∈[T ]. To assess its quality for the original problem (P̃ ), i.e., its out-of-

sample performance, it is required to evaluate it with respect to the original process
(ξt)t∈[T ]. Such an evaluation also allows one to compare policies obtained for different
SAA problems, which can be helpful in designing appropriate sampling techniques and
sample sizes [48].

Various techniques have been proposed in stochastic programming to measure the
performance of feasible policies, such as analyzing optimality conditions, assessing so-
lution stability or estimating the optimality gap [48]. Specifically for SDDP, Morton et
al. have made substantial contributions [39, 48, 114], which are based on estimating the
optimality gap ([114] analyzes a risk-averse variant of SDDP, see Sect. 12). We discuss
their ideas for the risk-neutral case thoroughly in the remainder of this subsection. In
accordance with [48], we only consider uncertainty in the RHS of (P̃ ).

Estimating the Optimality Gap. For some feasible policy
(
xt(ξ[t])

)
t∈[T ], let

ṽ(ξ) =
∑T

t=1 ctxt
(
ξ[t]
)
denote the random cost for some arbitrary scenario path ξ =

(ξ1, . . . , ξT ). From (P.11.4) we have E[ṽ(ξ)] ≥ ṽ∗. Therefore, the optimality gap induced
by policy

(
xt(ξ[t])

)
t∈[T ] can be expressed as

∆ := E[ṽ(ξ)]− ṽ∗ ≥ 0.

This gap cannot be directly evaluated because the optimal value ṽ∗ is not known.
Using some lower bound for ṽ∗, ∆ can be overestimated though. Such lower bound is
given by E[ṽ], see (P.11.3). This yields

E[ṽ(ξ)]− E[ṽ] ≥ ∆ ≥ 0. (38)

Still, the left-hand side of (38) is computationally infeasible to evaluate. It requires
excessive computational effort to evaluate policy

(
xt(ξ[t])

)
t∈[T ] for all possible scenar-

ios to obtain E[ṽ(ξ)]. Furthermore, from SDDP only one specific realization of ṽ is
known. Therefore, in [48] it is proposed to use estimators for both terms to derive an
approximate one-sided confidence interval bounding ∆ from above.

Upper Bound Estimation. The SDDP policy
(
xt(ξ[t])

)
t∈[T ] is feasible for the

original problem (P̃ ), see (P.11.4). Hence, it can be evaluated for any realization of
(ξt)t∈[T ] to assess its out-of-sample performance. Let us sample Mu i.i.d. scenario
paths from (ξt)t∈[T ]. For each of those sampled scenarios ξℓ, ℓ = 1, . . . ,Mu, the SDDP
subproblems (10) are solved in forward direction, yielding xt(ξ

ℓ
[t]) and ṽ(ξℓ) [48]. An

upper bound estimator is then defined by the sample mean

UMu :=
1

Mu

Mu∑

ℓ=1

ṽ(ξℓ). (39)

Similarly to the in-sample estimator, this estimator is an unbiased and consistent
estimator of E[ṽ(ξ)]. Its sample variance is given by [48]

σ2
U :=

1

Mu − 1

Mu∑

ℓ=1

(ṽ(ξℓ)− UMu)
2. (40)

Alternatively, an upper bound estimator can be obtained by sampling a finite num-
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ber of different SAA problems, and applying the SDDP policy
(
xt(ξ[t])

)
t∈[T ] to each of

them [39]. This comes at the cost of increased computational effort.
Lower Bound Estimation with Several SAA Problems. From SDDP, only

one single realization of ṽ is known. Hence, it is not directly possible to determine a
sampling error for this point estimate and to derive a confidence interval for E[ṽ].

One approach to derive a lower bound estimator is to solve a finite number of
different SAA problems with SDDP and to determine the mean of the lower bounds
ṽ. To be precise, Ml different SAA problems are constructed, each by sampling q̂t
realizations per stage from (ξt)t∈[T ]. Then SDDP is run, yielding the lower bounds

ṽℓ, ℓ = 1, . . . ,Ml [48]. The sample mean

LMl
:=

1

Ml

Ml∑

ℓ=1

ṽℓ (41)

then defines an estimator for E[ṽ] with sample variance

σ2
l :=

1

Ml − 1

Ml∑

ℓ=1

(ṽℓ − LMl
)2.

Note that instead of lower bounds ṽℓ, also the optimal values ṽℓN could be used in
estimator (41) [48]. We already discussed in Sect. 11.1 that it may be computationally
intractable to solve one single SAA problem to optimality, though. Thus, using ṽℓ may
be computationally preferable.

In principle, applying SDDP to not only one, but several SAA problems and building
the mean of the obtained bounds seems very reasonable from a statistical perspective,
as the outcome of one SAA problem is random. This also has another possible benefit:
If SDDP is run for Ml different SAA problems (P̃ l

N ), each of these problems yields a
different feasible policy. By calculating the upper bound estimator UMu (39) for each
of them, directly Ml different policies could be compared.

However, for problems with multiple stages and for sufficiently high N̂t, this becomes
computationally intractable, even without solving (P̃ l

N ) exactly. Therefore, de Matos
et al. [48] follow the strategy to run SDDP once for some SAA problem with larger
branch size q̃t to determine a high quality policy and then, afterwards, to run SDDP for
Ml SAA problems with smaller branch size q̂t only to produce the lower bound estimate
LMl

and assess the quality of that policy. In their numerical tests, they choose values
between 5 and 200 for q̃t and 5 for q̂t. In general, it is not clear though, how to choose q̂t
to reach a reasonable trade-off between computational tractability and an appropriate
quality of the lower bound estimator.

Lower Bound Estimation with One SAA Problem. An alternative and less
costly lower bound estimator is derived by only using the existing SAA problem, which
has been applied to determine the policy that is to be assessed [48].

The idea is then to use the SDDP outcome ṽ as the point estimate LMl
for the

lower bound. To estimate the unknown sampling error of ṽ, the sampling error of the
in-sample upper bound estimator is used. This means that Ml scenarios are sampled
from FN (the SAA problem distribution), and formulas (39) and (40) with Ml in the
role of Mu are used to compute an upper bound estimate ṽMl

and sample error σ2
l . The

idea behind applying this sampling error is that ṽ and E[ṽMl
] are equal if SDDP has

been run to optimality. However, this also implies that if SDDP has not converged (or
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if q̃t is not sufficiently large) the sampling error may be underestimated, and thus the
confidence intervals drawn from this become overly optimistic [48].

Confidence Intervals. Using the bound estimators and their sample variances,
asymptotically valid confidence intervals can be derived [48].

(
−∞, UMu + tMu−1,α

σU√
Mu

]

is an asymptotically valid, and for finite Mu approximate, (1− α)% confidence interval
for E[ṽ(ξ)]. Here, tMu−1,α denotes the (1−α)-level quantile of a student’s t distribution
with Mu − 1 degrees of freedom. Similarly,

[
LMl
− tMl−1,α

σl√
Ml

,∞
)

is an asymptotically valid, and for finite Ml approximate, (1− α)% confidence interval
for ṽ∗. Using only one SAA problem, this confidence interval is only valid if SDDP has
converged and if q̃t is sufficiently large. Combining both intervals yields

[
0, [UMu − LMl

]+ + tMl−1,α
σl√
Ml

+ tMu−1,α
σU√
Mu

]

as a one-sided approximate confidence interval for the optimality gap ∆ [48]. Here,
[x]+ := max {x, 0}.

11.3 Variance Reduction Techniques

Instead of MC sampling, also importance sampling [150] and variance reduction tech-
niques (see Sect. 6.2) can be applied to obtain SAA estimators with reduced bias and
variance.

In [105], numerical tests comparing MC, LHS and RQMC indicate that RQMC yields
the most promising results when it comes to determining representative SAA problems.
In [48] also MC, LHS and RMC are compared for different branch sizes and policy
evaluation strategies. The results indicate that with both LHS and RQMC, a reduction
of bias and sampling error, a higher policy quality and tighter confidence intervals can
be achieved in comparison with MC sampling, especially for smaller branch sizes q̃t.
For smaller branch sizes LHS appears to be superior, while RQMC yields better results
for larger branch sizes. While showing higher variability for MC sampling, if combined
with RQMC and LHS sampling, the computationally preferable lower bound estimator
using only in-sample scenarios from the existing SAA yields comparable results to the
approach solving several SAA problems [48].

12 Risk-averse SDDP [relaxing Assumption 8]

In SDDP, as described in Sect. 3, a risk-neutral optimal policy is determined for (MSLP)
(see Assumption 8). More precisely, (MSLP) minimizes the expectation of the total
objective value over all stages t ∈ [T ] over feasible policies (xt(ξ[t]))t∈[T ], which satisfy
non-anticipativity and all constraints. Hence, it can be formulated as the single problem
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Equation (3) with objective

min
x1,x2,...,xT

E


∑

t∈[T ]

(
ct(ξt)

)⊤
xt(ξ[t])


 . (42)

As discussed in Sect. 2.4, this problem can be expressed equivalently using the DPE (4)-
(6). This equivalence is based on two important properties of expected values, first the
so-called tower property

Eξt [Zt(ξt)] = Eξ[t−1]

[
Eξt|ξ[t−1]

[Zt(ξt)]
]

(43)

for some random variable Zt, and second its strict monotonicity (see property (R2’)
below for a formal definition) [199].

Recall that the objective value
∑

t∈[T ]
(
ct(ξt)

)⊤
xt(ξ[t]) is random, and its realizations

depend on realizations of (ξt)t∈[T ]. For some specific realization, the SDDP policy may
produce an objective value which widely deviates from the expectation in (42). In
practice, decision makers are often anxious not only to find a policy causing low costs
on average, but also to avoid the risk of extremely high cost situations. This motivates
to consider risk-averse approaches in stochastic programming.

For multistage stochastic programming, incorporating risk-aversion has been a pop-
ular research topic in the last decade. This includes theoretical fundamentals on dy-
namic risk measures [192] as well as algorithmic developments, such as rolling horizon
approaches with chance constraints or AVaR constraints, which take risk aversion into
account in the constraints of (MSLP) [95, 96]. For SDDP, most focus has been on re-
placing expectations in the objective (42) with some multi-period risk measure R[·] (see
below for a formal definition). This yields the multistage risk-averse problem (PR):

min
x1,x2,...,xT

R
[(
c1(ξ1)

)⊤
x1(ξ[1]), . . . ,

(
cT (ξT )

)⊤
xT (ξ[T ])

]

s.t. x1 ∈ X1

xt ∈ Xt(xt−1(ξ[t−1]), ξt) ∀ξt ∈ Ξt ∀t = 2, . . . , T

xt(·) Ft-measurable ∀t = 2, . . . , T.

(44)

We cover risk-averse SDDP in detail in the remainder of this section, but start with
some theoretical concepts.

12.1 Risk Measures

In this section, we introduce some required foundations of risk measures, especially
for multistage problems. As our focus is on algorithmic aspects of SDDP, we refer
to the comprehensive coverage of this topic in [199, 201] for technical definitions and
derivations.

12.1.1 Static Risk Measures

A static (or one-period) risk measure is a function ρ : Z → R̄ from the space Z of
random variables Z to R̄ := R ∪ {−∞,+∞}. Often, Z is assumed to be L1(Ω,F ,P),
i.e., the space of all F -measurable functions with finite first moments, as this ensures
well-definedness and finiteness of many common risk measures. Importantly, since ran-
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dom variables are functions themselves, risk measures are actually functionals. This is
sometimes emphasized by calling them risk functionals or risk mappings.

We summarize some well-known static risk measures:

� The expected value E[·] is the most common risk measure. It is completely risk-
neutral.

� The value-at-risk VaRα[·] to level α ∈ (0, 1) is defined as the left-side (1 − α)-
quantile of the cumulative distribution of some random variable Z:

VaRα[Z] := inf {u ∈ R : P(Z ≤ u) ≥ 1− α} . (45)

Note that this definition is not used consistently in the literature, and that the
RHS of (45) may also be defined as VaR1−α[Z].

� The average value-at-risk AVaRα[·] to level α ∈ (0, 1) for some random variable
Z is defined by [185]

AVaRα[Z] := inf

{
u ∈ R : u+

1

α
E [[Z − u]+]

}
, (46)

where [x]+ is defined as max {x, 0}. Note that the infimum is always attained in
our SDDP setting of finite randomness (Assumption 5) and finite value functions
Qt(·) (see Lemma 2.5).

Remark 12.1. AVaRα[·] is also called conditional value-at-risk, expected short-
fall or expected tail loss. In the literature on risk-averse stochastic programming,
the first alternative is most frequently used with notation CVaRα[·], but to avoid
confusion when we introduce conditional risk measures later, we stick to average
value-at-risk.

Remark 12.2. For finite random variables Z (under Assumption 5 for SDDP),
AVaRα[·] may as well be defined as

AVaRα[Z] = E
[
Z|Z ≥ VaRα[Z]

]
.

It can be shown that an equivalent formulation of AVaRα[Z] is given by [198]

AVaRα[Z] = VaRα[Z] +
1

α
E
[[
Z −VaRα[Z]

]
+

]
, (47)

i.e., u∗ = VaRα[Z] minimizes the RHS in (46).

AVaRα[·] has some beneficial properties compared to VaRα[·]. It does not only
consider the probability mass beyond VaRα[·], but also its distribution, e.g., if
it has fat or long tails. Moreover, it allows to retain convexity of optimization
problems, as we discuss later on. VaRα[·] and AVaRα[·] are illustrated in Figure 10.

� In stochastic programming, often a convex combination of E[·] and AVaR[·] is
considered, that is

ρ̂α,λ[Z] := (1− λ)E[Z] + λAVaRα[Z] (48)

for some λ ∈ [0, 1]. The parameters λ and α control the risk-aversion. Choosing
λ = 0 yields the standard risk-neutral model.
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E[Z] VaRα[Z]

AVaRα[Z]

α

Z

fZ

Figure 10: VaRα[Z] and AVaRα[Z] for a gamma distributed random variable Z.

� For some γ > 0, the entropic risk measure is defined by

ENTγ [Z] :=
1

γ
log
(
E[eγZ ]

)
. (49)

It generalizes E[·] (for γ → 0) and ess sup[·] (for γ →∞), where ess sup[Z] denotes
the essential supremum of a random variable Z.

It is often required that risk measures satisfy some special properties, especially in
an optimization context. First, we assume that all considered risk measures are proper.
Another desired property is coherence, a concept introduced by Artzner et al. [3]. We
employ a slightly different definition from [201] and state it for the general case of
continuous random variables:

Definition 12.3. A risk measure ρ : Z → R̄ is called coherent, if it satisfies

(R1) Convexity: for any Z1,Z2 ∈ Z and all λ ∈ [0, 1] it holds

ρ(λZ1 + (1− λ)Z2) ≤ λρ(Z1) + (1− λ)ρ(Z2),

(R2) Monotonicity: If Z1 ≤ Z2 almost surely, then ρ(Z1) ≤ ρ(Z2),

(R3) Translation Equivariance: If a ∈ R and Z ∈ Z, then ρ(Z + a) = ρ(Z) + a,

(R4) Positive Homogeneity: If λ > 0 and Z ∈ Z, then ρ(λZ) = λρ(Z).

A risk measure satisfying only properties (R1), (R2) and (R3) is called convex. In
fact, a key feature of coherent risk measures is that they are convex, and thus convex
objective functions as they appear in (PR) and its DPE remain convex if ρ[·] is applied
to them. VaRα[·] is not a coherent risk measure, but AVaRα[·] is [157]. Therefore, in
optimization AVaRα[·] is usually preferred over VaRα[·].

As we exploit later, for every coherent risk measure there exists a dual representation
as the worst-case expectation over some class of probability distributions over (Ω,F )
[3]. More precisely, let P be a convex set of probability measures, then a coherent risk
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Table 4: Properties of common risk measures.

(R1) (R2) (R3) (R4) (R2’) (R5)

E[·] ✓ ✓ ✓ ✓ ✓ ✓
VaRα[·] - ✓ ✓ ✓ - ✓
AVaRα[·] ✓ ✓ ✓ ✓ - ✓
ρ̂α,λ[·] ✓ ✓ ✓ ✓ ✓* ✓
ENTγ [·] ✓ ✓ ✓ - ✓ ✓
* only for λ ∈ [0, 1).

measure ρ[·] can be expressed as

ρ[Z] = sup
P∈P

EP[Z]. (50)

We introduce some additional relevant properties.

Definition 12.4. Let ρ : Z → R̄ be some risk measure. Then, the following properties
can be defined.

(R2’) If the inequalities in (R2) in Definition 12.3 are strict, we call this property strict
monotonicity.

(R5) Law Invariance: ρ[·] is called law invariant with respect to P, if for all Z,Z ′ ∈ Z
with the same distribution also ρ(Z) = ρ(Z ′) holds.

Property (R5) implies that the risk measure ρ only depends on the distribution of
the considered random variable Z.

We summarize properties of the previously introduced risk measures in Table 4.

Remark 12.5. A classical approach in economics is to take risk aversion into account
by means of non-decreasing and convex disutility (or concave utility) functions g : R→ R̄
that are applied to some random variable Z before taking expectations. However, the
obtained risk measure ρ[Z] = E[g(Z)] does not satisfy property (R3) which is required
to equivalently express (PR) using DPE.

12.1.2 Multi-period Risk Measures

In a multistage setting, static, i.e., one-period, risk measures have to be extended to
several periods, more precisely, to a sequence of random variables Z := Z1, . . . ,ZT ,
which in our case model the stagewise objectives of (MSLP). We define such multi-
period risk measures as functionals R : Z → R̄ with Z = Z1 ×Z2 × . . .×ZT .

Choosing multi-period risk measures in a reasonable way is a challenging task. First,
it is not clear how risk should be measured in a multistage setting [106]. Several different
options exist [60, 106, 201], such as

R[Z] = ρ[Z1 + · · ·+ZT ] (end-of-horizon risk) (51)

R[Z] = ρ1

[
Z1 + ρ2|Z1

[
Z2 + . . .+ ρT |ZT−1

[ZT ] · · ·
]]

(nested risk) (52)

R[Z] = ρ[Z1] + . . .+ ρ[ZT ] (stage-wise risk). (53)
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Here, ρ[·] is some static risk measure, and ρt|Zt−1
[·], t = 2, . . . , T, is a family of conditional

risk measures, each mapping from Zt to Zt−1 and defined as the static risk measure ρt[·]
conditioned on Ft−1 (or ξ[t−1], respectively). If ρt[·] is law-invariant (property (R5)
in Definition 12.4), then ρt|Zt−1

[·] can be obtained by replacing the given distribution
with the corresponding conditional distribution [201]. Usually the same static risk
measure ρ[·] is chosen for all ρt[·], t = 2, . . . , T . Note that coherence of conditional risk
measures can be defined completely analogously to unconditional ones. The idea of
nested conditional risk measures goes back to Ruszczyński and Shapiro [193].

Remark 12.6. Under stagewise independence (Assumption 2), as we assume it for
SDDP, the conditional risk measures ρt|Zt−1

[·] in (52) no longer depend on Zt−1, and
thus coincide with ρt[·] [201].

Second, in an optimization context, multi-period risk measures have to be carefully
chosen, in such a way that the resulting problem (PR) possesses desirable properties.
In addition to convexity, especially time-consistency is a crucial property.

12.1.3 Time Consistency

In the literature, various different definitions of time consistency exist, see among others
[35, 106, 46, 158, 199] and references within. The term is ambiguous in the sense that
it is used for risk measures, policies and optimization problems. We only state some
of these concepts that are relevant for SDDP, and for technical definitions and detailed
discussions refer to [64, 106, 199, 201].

A common definition is that an optimal policy
(
x̄t(ξ[t])

)
t∈[T ] for (PR) (see (44)) is

called time consistent if for any τ ∈ [T ], the policy
(
x̄t(ξ[t])

)
t=τ,...,T

is optimal for (PR)

restricted to horizon t = τ, . . . , T conditional on Fτ−1 and x̄τ−1 [201]. This means that
the optimal policy remains optimal after some of the uncertain data has been revealed.
The problem (PR) is then called weakly time consistent, if at least one of its optimal
policies is time consistent, or time consistent, if every optimal policy is time consistent
[201] (note that there exist deviating definitions in the literature).

Policies obtained using DPE (such as (4)-(6)) naturally satisfy time consistency.
Therefore, the concept of time consistency is closely related to equivalently reformulating
(PR) (see (44)) into DPE [201]. For nested risk measures R[·], see (52), this equivalence
holds under strict monotonicity (property (R2’) in Definition 12.4) of ρt (or ρt|ξ[t−1]

,
respectively) for all t = 2, . . . , T . More precisely, under (R2’), by interchanging risk
measures and minimization operators, (PR) with nested risk can be expressed in the
nested fashion [201]

min
x1∈X1

c⊤1 x1 + ρ2

[
min

x2∈X2(x1)
(c2(ξ2))

⊤x2 + ρ3|ξ[2]

[
. . .

. . .+ ρT |ξ[T−1]

[
min

xT∈XT (xT−1)
(cT (ξT ))

⊤xT
]
. . .

]]
,

(54)

which naturally allows for a reformulation to DPE. Note that for stage 2 no conditional
expectation is used as the first-stage data is deterministic. If ρt (or ρt|ξ[t]) only satisfy
(R2) instead of (R2’), then only weak consistency of (PR) is guaranteed, as any optimal
policy for the DPE is also optimal for problem (PR) with nested risk, but not necessarily
vice versa.
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As indicated by Table 4, AVaRα[·] is not strictly monotone. Therefore, even if
applied in a nested conditional way, time consistency is not assured. In contrast, it
can be ensured using risk measure ρ̂α,λ[·] defined in (48), given that λ ∈ [0, 1). A
drawback of nested risk is that it is less amenable to suitable interpretations, although
some economic interpretations are possible [190].

For one-period risk measures ρ[·] that are applied as an end-of-horizon risk mea-
sure (51), it is well known that time consistency is often not satisfied. For instance,
some simple examples in [64, 106] show that using a one-period risk measure ρ[·], such
as VaRα[·] or AVaRα[·], in this setting leads to time-inconsistent decisions. Moreover, in
[190], an illustrative example is presented in which even under stagewise independence
(Assumption 2), the risk measure ρ̂α,λ[·] does not yield time-consistent policies from
an end-of-horizon perspective. To achieve time consistency, it is required that problem
(PR) (see (44)) with end-of-horizon risk measure ρ[·] can be converted to an equivalent
problem with nested risk using the corresponding conditional risk measures ρ|ξ[t]. For
this reason, Dowson et al. [60] define time consistency (in their case referred to as
conditional consistency) of a one-period risk measure ρ[·] as an equivalence between the
associated end-of-horizon risk and nested risk.

In fact, the only law-invariant coherent one-period risk measures ρ[·] allowing for
such an equivalent reformulation between an end-of-horizon risk and a nested risk per-
spective are E[·] and ess sup[·] [201]. Therefore, the coherent and law-invariant risk
measure AVaRα[·] does not even guarantee weak time consistency for (PR) if it is ap-
plied as an end-of-horizon risk measure. It can be shown, though, that the non-coherent,
but convex risk measure ENTγ [·] from (49) is conditionally consistent, and thus is suffi-
cient to ensure time consistency of (PR). The equivalence of different formulations for
problem (PR) is illustrated in Figure 11.

End-of-horizon
formulation

Nested
formulation I

Nested
formulation II

Recursive
formulation

(PR) (12.3),
with R[·] as in (12.9)

(PR) (12.3),
with R[·] as in (12.10)

(12.12) DPE to (12.12)

Decompos-

ability
(R2’)

(R2)

Figure 11: Different forms of (PR) and conditions for their equivalence.

Remark 12.7. In view of conditional consistency, note that nested risk measures R[·]
from (52) can always be expressed equivalently using an associated end-of-horizon risk
measure (51), the so-called composite risk measure. However, as the previous discussion
shows, this composite risk measure only equals ρ[·] if the latter allows for a decomposition
using its conditional analogues; similar to (43) [199, 201].

Additionally, some notion of time consistency can be satisfied using expected con-
ditional risk measures R[·], which measure the risk stage by stage (see (53)), as long
as the included (conditional) risk measures are coherent [106]. Applying such a risk
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measure in (PR) (problem (44)), we obtain the problem

min
x1,x2,...,xT

c⊤1 x1 + ρ2
[(
c2(ξ2)

)⊤
x2(ξ[2])

]
+ Eξ[2]

[
ρ3|ξ[2]

[(
c3(ξ3)

)⊤
x3(ξ[3])

]]

+ · · ·+ Eξ[T−1]

[
ρT |ξ[T−1]

[(
cT (ξT )

)⊤
xT (ξ[T ])

]]

s.t. x1 ∈ X1

xt ∈ Xt(xt−1(ξ[t−1]), ξt) ∀ξt ∈ Ξt ∀t = 2, . . . , T

xt(·) Ft-measurable ∀t = 2, . . . , T.

(55)

12.1.4 Polyhedral Risk Measures

Multiperiod polyhedral risk measures R[·] are a special type of risk measure, which for
a time horizon of T ∈ N can be formulated as the optimal value of certain T -stage
stochastic linear programs [67]. The arguments of the risk measure, e.g., in our case
the objective function of (MSLP), enter these linear programs on the RHS.

In [93], multiperiod extended polyhedral risk measures are introduced, for which the
corresponding linear program has a slightly more general form. This class comprises
polyhedral risk measures, spectral risk measures and also AVaRα[·]. These risk measures
can be shown to be convex and coherent under certain assumptions [93].

The main strength of (extended) polyhedral risk measures is that they can naturally
be used in a multistage stochastic programming setting. The LP representation of R[·]
and the original LP formulation of (MSLP) can be conflated to a single large-scale risk-
neutral linear programming problem (PR), which allows for a reformulation by means
of DPE [93].

12.2 Towards Considering Risk in SDDP

In the remainder of this section, we discuss the incorporation of risk-aversion into SDDP
from an algorithmic perspective.

The first two methodological studies of risk-averse SDDP are [93] for problems with
end-of-horizon risk (51), in particular using polyhedral risk measures, and [198] for
problems with nested conditional risk mappings (52). Since then several extensions of
SDDP have been proposed based on various risk measures. While some articles on this
topic also cover SAA [114, 198, 204], see Sect. 11, we restrict to finite random variables
here.

Remark 12.8 (SDDP with Polyhedral Risk Measures). As stated in Sect. 12.1.4, poly-
hedral risk measures have the advantage that DPE can be derived in a straightforward
way. These DPE can then be approached by standard risk-neutral SDDP. Guigues and
Römisch derive the associated cut formulas and give a convergence proof for some spe-
cial cases of extended polyhedral risk measures [93] and the special case of spectral risk
measures [94]. This approach to SDDP has been successfully applied for AVaRα[·] in
[84].

Despite this straightforward approach, polyhedral risk measures also pose a signifi-
cant challenge to SDDP. The stage-t subproblems have to be enhanced with additional
state variables zt−1 and y1, . . . , yt−1, which are required to store the history of previous
decisions. In general, this is unfavorable, as it may lead to prohibitive computational
cost [161], compare Sect. 4.2. The specific computational cost depends on the chosen
extended polyhedral risk measure.
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12.3 SDDP with Nested Risk Measures

As mentioned in Sect. 12.1.3, to obtain a risk-averse problem (PR) with time-consistent
solutions, it is often proposed to use (conditional) coherent one-period risk measures
ρ[·] (or ρt|ξ[t] [·]) for all t ∈ [T ] in a nested fashion. This yields the nested problem (54).
We denote its optimal value by v∗R. As indicated before, we can derive an equivalent
formulation using DPE [201]. Using Remark 12.6 they become

QR,t(xt−1, ξt) :=

{
min
xt

(
ct(ξt)

)⊤
xt +QR,t+1(xt)

s.t. xt ∈ Xt(xt−1, ξt)
(56)

with some risk-adjusted value function

QR,t+1(xt) := ρt+1 [QR,t+1(xt, ξt+1)] (57)

and QR,T+1(·) ≡ 0. The corresponding first-stage problem is

v∗R =

{
min
x1

c⊤1 x1 +QR,2(x1)

s.t. x1 ∈ X1.
(58)

Fortunately, for coherent risk measures ρt[·], t ∈ [T ], also the nested risk measure
R[·] preserves convexity of QR,t+1(·). Therefore, a cutting-plane approximation as in
SDDP can be applied.

Nested conditional risk measures are by far the most frequently chosen approach for
risk-averse extensions of SDDP [64, 106, 114, 160, 161, 198, 204]. Most typically, the
risk measure ρ̂α,λ[·] (see Equation (48)) is used, which is coherent according to Table 4.
For the remainder of Sect. 12.3, we therefore set pt[·] = ρ̂αt,λt [·] for all t ∈ [T ], if not
specified otherwise.

12.3.1 Reformulating the DPE

The general DPE for (PR) with nested risk measures are formulated in (56)-(58). To
determine Qt(·), t ∈ [T ], for ρ̂α,λ[·] specifically, the AVaR of Qt(·, ·) has to be evalu-
ated. Using its definition as the optimal value of an optimization problem with decision
variable u ∈ R [185], see (46), we are able to further reformulate the DPE.

Additional State Variable Approach. Using (46), the risk-adjusted value func-
tion (57) can be expressed as

QR,t+1(xt) = min
ut∈R

Eξt+1

[
(1− λt+1)QR,t+1(xt, ξt+1)

+ λt+1

(
ut +

1

αt+1

[
QR,t+1(xt, ξt+1)− ut

]
+

)]
.

(59)

Recall that λt and αt, t = 2, . . . , T, are user-controlled parameters.
The minimization over ut can be incorporated into the stage-t subproblems [198],

which yields

Q̃R,t(xt−1, ξt) =

{
min
xt,ut

(
ct(ξt)

)⊤
xt + λt+1ut + Q̃R,t+1(xt, ut)

s.t. xt ∈ Xt(xt−1, ξt)
(60)
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with some modified risk-adjusted value function

Q̃R,t+1(xt, ut) = Eξt+1

[
(1− λt+1)Q̃R,t+1(xt, ξt+1)

+
λt+1

αt+1

[
Q̃R,t+1(xt, ξt+1)− ut

]
+

]
,

(61)

Q̃R,T+1(·, ·) ≡ 0 and λT+1 ≡ 0 [198]. The first stage changes to

v∗R =

{
min
x1,u1

c⊤1 x1 + λ2u1 + Q̃R,2(x1, u1)

s.t. x1 ∈ X1.
(62)

The risk-adjusted value functions Q̃R,t+1(·, ·) differ from the ones defined in (59),
but can be proven to be convex as well.

With equations (60)-(62), the risk measures ραt,λt [·] are incorporated into the sub-
problems, such that only expectations have to be evaluated in the DPE. However, as
pointed out in [114], in comparison with the DPE (4)-(6) of the risk-neutral case, we
still observe some fundamental differences: First, an additional, albeit one-dimensional,
state variable ut ∈ R is introduced at each stage to estimate the VaR-level, augmenting
the state space by one. Second, the risk-adjusted value functions QR,t+1(·, ·) do not only
depend on xt, but also on ut and parameters λt, αt. Third, they contain the nonlinear,
i.e., piecewise linear, function [·]+.

Philpott and de Matos provide an alternative reformulation of the DPE, eliminating
the nonlinear expression via an epigraph reformulation [160]. To this end, the random
term in the brackets in (61) is fully incorporated into the value functions. For t =
2, . . . , T − 1, this yields

Q̂R,t(xt−1, ut−1, ξt)

=





min
xt,ut,wt

(1− λt)
((
ct(ξt)

)⊤
xt + λt+1ut + Q̂R,t+1(xt, ut)

)
+
λt
αt
wt

s.t. xt ∈ Xt(xt−1, ξt)

wt −
(
ct(ξt)

)⊤
xt − λt+1ut − Q̂R,t+1(xt, ut) ≥ −ut−1.

(63)

Using this formulation, the risk value function is defined more naturally as

Q̂R,t+1(xt, ut) = Eξt+1

[
Q̂R,t+1(xt, ut, ξt+1)

]
. (64)

Again, Q̂R,T+1(·, ·) ≡ 0 and λT+1 ≡ 0.
The first-stage problem reads then

v∗R =

{
min

x1,u1,w1

c⊤1 x1 + λ2u1 + Q̂R,2(x1, u1)

s.t. x1 ∈ X1.
(65)

In comparison to the formulation (60)-(62) by Shapiro [198], additional variables
and constraints have to be introduced. Both formulations allow application of SDDP,
but share the drawback of augmenting the state space. Since the computational effort of
SDDP grows exponentially in the state space dimension, see Theorem 4.2, such increase
should be avoided.

Modifying the Probability Measure. An alternative idea is to exploit that
u∗ = VaRα[Z] in the definition of AVaRα[Z] (see (46)) and that VaRα[Z] is the (1−α)-
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quantile of a random variable Z. As we assume finite randomness (Assumption 5)
and solve the subproblems for all realizations ξtj , j = 1, . . . , qt, in the backward pass of
SDDP, this quantile can be manually determined for the value functions [204].

Without loss of generality, assume that for all t = 2, . . . , T and any fixed trial solution
x̄t−1 the values of QR,t(x̄t−1, ξtj) are ordered for all j = 1, . . . , qt. That means, we have
QR,t(x̄t−1, ξt1) ≤ · · · ≤ QR,t(x̄t−1, ξt,qt). Then, in (59) the variable ut can be replaced by

the (1−α)-quantile QR,t+1(x̄t, ξt+1,j∗) with j
∗ chosen such that

∑j∗
j=1 pt+1,j ≥ 1−αt+1:

QR,t+1(xt) = Eξt+1

[
(1− λt+1)QR,t+1(xt, ξt+1) + λt+1

(
QR,t+1(x̄t, ξt+1,j∗)

+
1

αt

[
QR,t+1(xt, ξt+1)−QR,t+1(x̄t, ξt+1,j∗)

]
+

)]
.

(66)

In SDDP, relation (66) cannot directly be applied, since QR,t+1(·, ξt+1,j) is not known
and also not evaluated for all j = 1, . . . , qt+1. However, the same principle can also be
applied to the approximate value functions QR,t+1

(·, ξt+1,j).

In [161], this idea is considered from a dual perspective and used to reformulate the
risk measure (48) even before formulating the DPE. The key idea is to use the dual
representation of AVaRα[·], see (50), which is given by

AVaRα[Z] =





sup
ζ

q∑

j=1

pjζjZ(ξj)

s.t.

q∑

j=1

pjζj = 1

ζj ≥ 0, j = 1, . . . , q

ζj ≤
1

α
, j = 1, . . . , q.

(67)

It shows that AVaRα[·] can be interpreted as some worst-case probability measure P̃
with p̃j := pjζj for all j = 1, . . . , q.

As shown in [161], using this definition and explicitly computing the supremum, risk
measure (48) can be written as

ρ̂αt,λt [Zt] =

qt∑

j=1

ptjζtjZt(ξtj) (68)

with

ζtj =





(1− λt), j < j∗,

(1− λt) +
1

ptj∗

(
λt −

λt
αt

qt∑

n=j∗+1

ptn

)
, j = j∗,

(1− λt) +
λ

αt
, j > j∗.

(69)

Again, note that the true value functions Qt(·) are not known explicitly in advance,
and therefore the worst-case probability measure P̃ stemming from (67) is not known
either. However, it can be approximated in SDDP. In particular, the DPE (56)-(58) and
their approximations can be used with expectations as in standard SDDP, but with a
modified probability measure that is iteratively updated. More precisely, as ζtj changes
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with x̄t−1, the modified probabilities have to be recomputed for each stage t, iteration i
and sample k in SDDP. This principle is also extended to general coherent risk measures
in [161].

Recently, this kind of change of the probability measure has also been discussed
in [126]. Instead of determining the ordering and j∗ based on Qi+1

t+1
(·) for one specific

iteration i, also all previous iterations are taken into account there. More precisely,
the number of iterations in which an index j exceeds VaRα[QR,t+1

(x̄t, ξt)] are counted.

This is considered as a good proxy for the ordering of the actual value functions. The
ordering, and thus the probability measure P̃, can either be updated dynamically within
SDDP or be determined by running risk-averse SDDP once in advance to identify the
outcomes contributing to AVaRα[·]. The latter approach has the advantage that the
changed probability measure P̃ can be fixed for the following run, which yields a risk-
neutral problem and allows for application of standard SDDP.

Additionally, as pointed out in [126], the approximation of P̃ may also be used in
the forward pass to sample scenarios with “bad” outcomes with higher probability.
This biased sampling can be considered similar to the importance sampling techniques
presented in Sect. 6.

For the third-stage of Example 3.4, the expected risk value function QR,3(·) obtained
by applying (68) and (69) to (57) is illustrated in Figure 12 for α = 0.05 and different
values of λ. It can be seen that with choosing larger values for λ, representing a higher
risk-aversion, the stage-3 cost increases compared to the risk-neutral case (λ = 0).

λ = 0.3

λ = 0.2

λ = 0.1

λ = 0

0 1 2 3 4 5 6
0

1

2

3

4

5

x2

Q
R
,3
(x

2
)

Figure 12: QR,3(·) from Example 3.4 for α = 0.05 and different values of λ.

As an overview, the different forms of DPE for (PR) using a nested (conditional)
risk measure based on ρ̂α,λ[·] are summarized in Table 5.

12.3.2 Forward and Backward Pass

All approaches in Table 5 to formulate the DPE allow for a solution of a risk-averse
problem (PR) using SDDP. Some approaches are more efficient, since the state space, the
decision space or the number of constraints are not augmented. Others are advantageous
in the sense that QR,t(·) is expressed by a neat formula, and thus cut formulas can
be derived more easily. With some epigraph reformulation, for all the approaches all
subproblems can be formulated as LPs.

The forward pass of SDDP basically remains the same as for risk-neutral SDDP
from Sect. 3. That is, k ∈ K scenarios are sampled and considered, with K ⊂ S and
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Description Source DPE

- general (56)-(58)
- augmented state,
sophisticated formula for QR,t(·) [198] (60)-(62)

- augmented state,
additional constraints and variables [160] (63)-(65)

- VaRαt [Qt(·)] explicitly determined,
sophisticated formula for QR,t(·) [204] (60), (62), (66)

- modified probability measure [161] (56)-(58), (68)-(69)
- modified probability measure [126] (60), (62), (66)

Table 5: DPE formulations for (PR) using a nested (conditional) risk measure based on
ρ̂α,λ[·].

|K| ≪ |S|. However, the subproblems and the associated approximate value functions
Qi

R,t(x
ik
t−1, ξ

k
t ) differ from the risk-neutral case. Instead of subproblems (10), one of the

DPE from Table 5 are chosen and the occurring risk-adjusted value functions QR,t+1(·)
are replaced by cut approximations Qi

R,t+1(·).
In the backward pass, as in risk-neutral SDDP, at each stage t = T, . . . , 2, those

subproblems are solved for each trial solution xikt−1, k ∈ K, and possible stage-t realiza-
tion ξktj ≡ ξtj , j = 1, . . . , qt, using an updated cut approximation Qi+1

R,t+1(·). On stage t,
a new cut for QR,t(·) is derived and handed back to stage t − 1. The main difference
to risk-neutral SDDP is again the definition of QR,t(·). Therefore, the cut formulas
have to be adapted to the individual approach chosen. For the technical derivation of
subgradients in such cases, we refer to the references in Table 5.

12.3.3 Upper Bound Determination and Stopping

A challenge in applying SDDP to risk-averse problems is to determine upper bounds
for v∗R, and allowing for a reasonable stopping criterion. The reason is that most upper
bound construction methods from the risk-neutral case, see Sect. 7 and 8, cannot be
efficiently extended to the risk-averse case.

Recall that in the risk-neutral case, a feasible policy (xt(ξ[t]))t∈[T ] is determined in
the backward pass and evaluated in the forward pass for different scenarios k ∈ K,
yielding a sequence of trial points (xikt )t∈[T ]. Then, a statistical upper bound vK for v∗

is determined as the sample average of the objective values of all these sample paths ξk,
see (21). Analogously, a true upper bound v can be obtained by taking the expectation
of such objective value for all scenarios ξs, s ∈ S.

However, this is possible only due to the tower property (43) of expected values,
which is required for the equivalence of the end-of-horizon formulation (42) and the
nested formulation (54), see the discussion in Sect. 12.1.3. For most coherent risk
measures this property does not hold, and thus a direct analogue to the (statistical)
upper bound (21) from risk-neutral SDDP cannot be constructed.

As determining reasonable upper bounds is an important ingredient of SDDP, de-
veloping appropriate upper bound estimators has been an active research field in the
last decade. In the following, we discuss different approaches that have been proposed.
In reviewing them, we mostly follow the presentation of Kozmı́k and Morton [114], who
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provide a comprehensive study within their own work on upper bound estimators.
A Sample Average Estimator. In Sect. 12.3.1, we managed to formulate each

ρt[·] only by means of expectations in (61). Still, this does not assure the tower property,
since the risk-adjusted value functions QR,t(·) contain a nested nonlinearity due to the
[·]+-function. However, we can derive an estimator similar to (21) [114]. To this end,
we remove the expectation in (61) to obtain

v̂t(ξ
k
t ) := (1− λt)

((
ct(ξ

k
t )
)⊤
xkt + v̂t+1(ξ

k
t )
)

+ λtu
k
t−1 +

λt
αt

[(
ct(ξ

k
t )
)⊤
xkt + v̂t+1(ξ

k
t )− ukt−1

]
+
,

(70)

where we replace the value functions QR,t+1(·) by the estimator of the following stage.
For stage T it follows v̂T+1(ξ

k
T ) ≡ 0 and for the first stage

v̂(ξk) := c⊤1 x1 + v̂2(ξ
k
1 ). (71)

Equation (71) provides a recursive estimator for the cost associated with sample
path ξk. This estimator has to be evaluated by backward recursion starting with stage
T . Importantly, formula (70) is only used for upper bound estimation, whereas the
forward and backward problems in SDDP are still based on the original DPE (60)-(62).
Determining estimator (71) for all scenarios ξk, k ∈ K, sampled in the forward pass of
SDDP, we can form an upper bound estimator

Un :=
1

|K|
∑

k∈K
v̂(ξk), (72)

which resembles the sample average estimator (21) from risk-neutral SDDP.
It can be shown that Eξ[v̂(ξ)] ≥ v∗R and that Un is an unbiased and consistent

estimator of Eξ[v̂(ξ)], so it is a statistical upper bound [114]. However, Un is also
observed to have a large variance. Kozmı́k and Morton [114] identify as the main
reason that only a small portion of the sampled scenarios contributes to estimating
AVaRα[·], while most scenarios solely contribute to the expectation. Therefore, a very
large number of scenarios would be required for an appropriate estimate.

More crucially, because expectations are not taken conditionally on each stage as
in (61), and due to to division by αt ∈ (0, 1), small or large values are very likely to
propagate from late to earlier stages in the recursion to determine v̂(ξk) [114]. Therefore,
the upper bound Eξ[v̂(ξ)] can significantly deviate from vR, i.e., the upper bound
induced by the current policy in SDDP. In computational experiments, an upward bias
is observed that makes Un practically useless for large T [202].

Remark 12.9. We should note that recently a very similar recursive upper bound esti-
mator to v̂(ξk) and Un has been proposed in [98], but for a general class of risk measures
instead of only ρ̂α,λ[·]. The main difference is that there SDDP is applied to a risk-averse
stochastic optimal control model which deviates from our setting introduced in Sect. 2.
In particular, states and controls are explicitly distinguished, and the decision on the
controls is taken before ξt is realized. In this setting, the negative multiplicative effects
observed in [114, 202] can be circumvented, and a computationally efficient statistical
upper bound is obtained.

Conditional Sampling Estimator. For the above reasons, estimator Un in (72)
is rarely considered in the literature on risk-averse SDDP. Instead, Shapiro discusses a
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conditional sampling estimator [198]. Here, the idea is to estimate the expectations (61)
in the nested structure conditionally by sampling on each stage. Since in principle, the
upper bound estimator can be determined independently of the scenarios sampled in
the forward pass, we denote the set of samples by M instead of K. Mt denotes the
corresponding scenario set for stage t.

For each stage, t = 2, . . . , T , this yields [114]

v̂ct (ξ
k
t ) :=

1

|Mt|
∑

mt∈Mt

[
(1− λt)

((
ct(ξ

mt
t )
)⊤
xmt
t + v̂ct+1(ξ

mt
t )
)

+ λtu
mt
t−1 +

λt
αt

[(
ct(ξ

mt
t )
)⊤
xmt
t + v̂ct+1(ξ

mt
t )− umt

t−1

]
+

]
,

and for the first stage the estimator

U c := c⊤1 x1 + v̂c2(ξ1).

As Shapiro himself points out, this estimator has two significant drawbacks. It
requires

∏T
t=2 |Mt|+1 subproblems to be solved, which is exponentially growing in the

number of stages. Moreover, the obtained upper bounds are typically not very tight.
Therefore, estimator U c should not be useful for large-scale problems [114].

Importance Sampling Estimators. Some of the drawbacks of estimator Un may
also be addressed by importance sampling [113, 114], see Sect. 6 for an introduction.
By sampling scenarios associated with AVaRα[·] with higher importance, it is possible
to better represent it, and thus reduce the variance of the estimator. Based on this idea,
Kozmı́k and Morton put forward different importance sampling upper bound estimators
[114], which are further enhanced in [113].

Using importance sampling with respect to AVaRα[·] creates a considerable chal-
lenge, though. In order to determine the importance sampling distribution for some
stage t, it has to be identified which scenarios are associated with AVaRα[·] on that
stage, i.e., which of them provide a value QR,t(xkt−1, ξ

k
tj) beyond the (1−α)-quantile. If

we estimate this by solving subproblems for several ξktj and determining QR,t(xkt−1, ξ
k
tj),

we face a similar computational burden as for conditional sampling.
Kozmı́k and Morton propose the following approach: They use an approximation

function dt(xt−1, ξt), which estimates the recourse value of the decisions xt−1 after ξt
has been observed [114]. Instead of solving the subproblems for several ξktj , they simply

evaluate dt(x
k
t−1, ξ

k
tj) and sort these values. Based on the obtained order, it can be de-

cided then which scenarios are used to estimate AVaRα[·], i.e., ut := VaRαt [dt(xt−1, ξt)]
is determined.

This allows defining an importance sampling distribution depending on xt−1 [114].
For simplicity, we assume that all scenarios are equally likely in the original distribution,
that is, ft(ξtj) =

1
qt

for all j = 1, . . . , qt. Then, it follows:

gt(ξt|xt−1) :=





1

2⌊αtqt⌋
, dt(xt−1, ξt) ≥ ut,

1

2(qt − ⌊αtqt⌋)
, dt(xt−1, ξt) < ut.

This distribution ensures that it is equally likely to draw sample observations above
and below ut. Note that the formula presented in [114] looks a bit different, since it is
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presented in the context of SAA.
Defining weights

Λt(ξt|xt−1) :=
ft(ξt)

gt(ξt|xt−1)

and multiplying them along the sample paths

Λ(ξk) :=
T∏

t=2

Λt(ξ
k
t |xt−1)

we can derive the estimator

U i :=
1∑

k∈K Λ(ξk)

∑

k∈K
Λ(ξk)v̂(ξk). (73)

This estimator is similar to (72), as the same recursive term v̂(ξk) is used, but combined
with importance instead of standard MC sampling.

With the assumptions of relatively complete recourse (based on Assumption 9) and
stagewise independence (Assumption 2), estimator (73) is asymptotically valid, i.e.,
for |K| → ∞, U i converges to Ef [v̂(ξ)] with probability 1 (recall that Ef [v̂(ξ)] ≥ v∗R).
Moreover, for sufficiently good choice of dt(·), it can be expected that the variance is
lower than for Un [114].

Based on this idea, even better estimators are developed in [113, 114], for example
by not only sampling scenarios associated with AVaRα[·] with higher priority, but also
using only scenarios which contribute to the [·]+-term to estimate AVaR [114]:

v̂dt (ξ
k
t ) := (1− λt)

((
ct(ξ

k
t )
)⊤
xkt + v̂dt+1(ξ

k
t )
)

+ λtu
k
t−1 + I[dt(xt−1, ξt) ≥ ud]

λt
αt−1

[(
ct(ξ

k
t )
)⊤
xkt + v̂dt+1(ξ

k
t )− ukt−1

]
+
.

Here I[·] denotes an indicator function. For the first stage it follows

v̂d(ξk) := c⊤1 x1 + v̂d2(ξ
k
1 ).

Combining this with (39), we obtain

Ud :=
1∑

k∈K Λ(ξk)

∑

k∈K
Λ(ξk)v̂d(ξk).

The practical applicability of this estimator relies heavily on satisfaction of the
following goodness assumption with respect to dt(·):

QR,t(xt−1, ξt) ≥ VaRαt [QR,t(xt−1, ξt)] ⇔ dt(xt−1, ξt) ≥ VaRαt [dt(xt−1, ξt)],

which means that dt(·) correctly classifies whether a realization is in the upper α-tail of
the recourse value distribution.

It is proven that this estimator is asymptotically valid as well, but also provides
tighter upper bounds than U i in expectation, as long as the above goodness assumption
is satisfied. Moreover, a smaller variance should be expected [114]. Numerical results
in [114] illustrate that even for a medium number of stages, estimator Ud provides
significantly better upper bounds than Un, U c and U i and that also the variance of the
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estimators is reduced significantly. However, despite reducing the variance, even U i

and Ud may still show a considerable upward bias with respect to the upper bound vR
induced by the current policy [202].

Apart from the above sampling estimators, some completely different strategies may
be used to obtain upper bounds for v∗R or to define some stopping criteria for SDDP in
the risk-averse case.

Using Deterministic Upper Bounds. As already discussed in Sect. 8, we may
circumvent the determination of sampling-based upper bound estimators completely if
we resort to deterministic upper bounding procedures.

To this end, Philpott et al. [161] extend their inner approximation based upper
bounding procedure from Sect. 8 to the risk-averse case with nested (conditional) co-
herent risk measures. The main downside of this procedure, to require prohibitively
large computational effort for a large number of state variables and an increasing num-
ber of cuts, also holds in this case, though.

The alternative deterministic upper bounding procedure based on dual SDDP [97,
119] has been extended to a risk-averse setting as well [40].

Determining Bad Outcomes in Advance. As discussed in Sect. 12.3.1, following
the approach of a change of probability measure, see (56)-(58) and (68), it is also possible
to run (risk-averse) SDDP once in advance to approximate the probability measure P̃,
and then a second time, this time fixing the probability measure to the approximation
of P̃. This is referred to as solving the change-of-measure risk-neutral problem in [126].
Whereas this approach has a lot of computational overhead, the advantage is that a
risk-neutral problem can be solved by SDDP and therefore, also the standard stopping,
upper bounding and policy assessment techniques can be applied. Clearly, solving the
change-of-measure risk-neutral problem is not guaranteed to yield optimal policies for
(PR), however Liu and Shapiro report that the quality of the policies is similar to those
obtained by risk-averse SDDP [126].

Fixing the Number of Iterations. This approach is proposed by Philpott and
de Matos [160]. They run a risk-neutral variant of SDDP first and then fix the number
of iterations required until termination. The same number of iterations is then used in
the risk-averse case, avoiding the challenge of upper bound evaluation.

In some practical applications, in which it is computationally intractable to deter-
mine a sophisticated upper bound estimator, this approach may be useful. Promising
results are reported in [160]. However, there is no theoretical guarantee to find a suffi-
ciently good solution for a risk-averse version of (PR) in the same number of iterations
as for a risk-neutral version. Additionally, for large problems it may already take con-
siderably long to run SDDP one time. Running it a second time for risk-averse problem
(PR) may partially annihilate the computational advantage of avoiding upper bound
estimation.

Lower Bound Stabilization. As for risk-neutral SDDP, instead of using upper
bounds at all, the algorithm can be terminated, once the lower bounds viR stabilize.
This provides no convergence guarantee but may be worthwhile in large-scale practical
applications where other approaches become computationally prohibitive.

Using Benefit Factors. Instead of the lower bounds viR, it is also possible
to condition termination of SDDP on the improvements of the cut approximations
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Qi
R,t(·), t = 2, . . . , T . For that purpose, Brandi et al. define a benefit factor

Bit,k = min

{
1,
δ(xikt−1)

δit,max

}
,

which determines how much a new cut improves the current cut approximation Qi
R,t(·)

at xikt−1 [30]. δ(xikt−1) is the absolute increase, while δit,max is a proxy for the maximum
improvement possible. For each sample path k ∈ K, a total benefit factor can be
determined by

Bik = max
{
Bi2,k,Bi3,k, . . . ,BiT,k

}
.

The risk-averse SDDP method is then stopped if the values Bik for all k ∈ K are below
a predefined tolerance, either for one iteration or, alternatively and more robustly, for
a predefined larger number of iterations.

12.4 SDDP with Entropic Risk Measure

As discussed before, nested risk measures come with some drawbacks. Computation-
wise, upper bound determination is very challenging. Additionally, applying a standard
one-period risk measure ρ[·], e.g., AVaRα[·], as an end-of-horizon risk measure (51)
and (possibly conditionally) in a nested risk measure (52) does not yield equivalent
policies [60] (this is only the case if we take the composite risk measure associated with
the nested risk measure as end-of-horizon risk; however, this risk measure is usually
not known explicitly, see Remark 12.7). This makes nested risk measures difficult to
interpret from an end-of-horizon perspective.

For this reason, Dowson et al. [60] propose to apply one-period conditionally consis-
tent risk measures in the context of SDDP [60], see also [11, 158]. It can be proven that
under some technical assumptions, the class of entropic risk measures ENTγ [·] (see (49))
is the only class of risk measures that is conditionally consistent.

As ENTγ [·] can be applied in a nested fashion, the DPE (56)-(58) are valid in
this case. Moreover, since ENTγ [·] is a convex risk measure, the (risk-adjusted) value
functions are convex. Therefore, SDDP can be applied to derive polyhedral outer ap-
proximations.

As for standard SDDP, first, for each scenario k ∈ K and all possible stage-t real-
izations ξktj ≡ ξtj , j = 1, . . . , qt, approximate versions of subproblems (56) are solved to

obtain Qi
R,t(x

k
t−1, ξtj). Then, based on the dual form of ENTγ [·], the following auxiliary

problem can be solved to evaluate the risk-adjusted value function:

ENTγ
[
Qi

R,t(x
k
t−1, ξt)

]

=





max
p̃t

qt∑

j=1

p̃tjQ
i
R,t(x

k
t−1, ξtj)−

1

γt

qt∑

j=1

p̃tj · log
(
p̃tj
ptj

)

s.t.

qt∑

j=1

p̃tj = 1

p̃tj ≥ 0, j = 1, . . . , qt.

(74)

Here, parameter ptj denotes the nominal probabilities of realizations ξtj , which usu-
ally equal 1

qt
, and the decision variable p̃tj denotes an alternative probability based
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on the entropic risk measure. In this way, problem (74) can be regarded as building
the expectation based on some modified probability measure and with some additional
penalty term. Problem (74) can be solved algorithmically, but as stated in [60], also a
closed form for p̃∗tj can be derived. Using p̃∗tj and ENTγ

[
Qi

R,t(x
k
t−1, ξt)

]
, cuts can then

be constructed and handed back to the previous stage.
The entropic risk measure does not only ensure conditional consistency of the ob-

tained policies, but it also allows for upper bound computation as in standard SDDP,
because the tower property can be employed for ENT[·]. However, these advantages
come at the cost of an aggravated interpretation of the risk measure compared to AVaR-
based ones. In this context, it is particularly difficult to make a reasonable choice for
the parameter γt > 0 [60].

12.5 SDDP with Expected Conditional AVaR

Another class of multi-period risk measures that can be used as an alternative to nested
risk measures are expected conditional risk measures, which we briefly introduced in
Sect. 12.1.3 [64, 106]. Here, conditional expectations are used to avoid the risk measure
nesting, which proves beneficial in determining upper bounds in SDDP, as it avoids the
aforementioned computational difficulties, while still time consistency is ensured.

Recall the risk-averse problem (PR) using expected conditional risk measures stated
in (55). Using ρt[·] = AVaRαt [·] yields the so called E-AVaR or multi-period average
value-at-risk [106], which goes back to Pflug and Ruszczyński [159].

As stated in [106], by some lengthy reformulations, the objective function of prob-
lem (55) can be expressed in a nested way. Therefore, equivalent DPE can be derived
and time consistency is assured. Moreover, the [·]+-function can be reformulated by an
epigraph approach. Then, for t = 2, . . . , T , the DPE read

Q̌R,t(xt−1, ut, ξt) =





min
xt,ut+1,wt

1

αt
wt + ut+1 + Q̌R,t+1(xt, ut+1)

s.t. xt ∈ Xt(xt−1, ξt)

wt −
(
ct(ξt)

)⊤
xt ≥ −ut

wt ≥ 0

(75)

with

Q̌R,t+1(xt, ut+1) = Eξt+1

[
Q̌R,t(xt−1, ut, ξt)

]
, (76)

Q̌R,T+1(·, ·) ≡ 0 and first stage

v∗R =

{
min
x1,u2

c⊤1 x1 + u2 + Q̌R,2(x1, u2, ξt)

s.t. x1 ∈ X1.
(77)

In contrast to using nested conditional risk measures, the DPE here only depend
on nested sums of (conditional) expectations, i.e., have the same structure as in the
risk-neutral case. Hence, standard SDDP can be applied. This has the advantage to
allow one to use upper bounding techniques developed for risk-neutral SDDP.
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12.6 Bi-objective SDDP

An alternative to risk-averse formulations that allows one to achieve a trade-off between
obtaining the best policy in expectation (e.g., the policy with the lowest expected costs)
and avoiding bad extreme outcomes (e.g., power outages or load shedding in an electric-
ity network) is to formulate a multistage problem (MSLP) with multiple competing ob-
jectives that are optimized simultaneously. Recently, a variant of SDDP for bi-objective
problems has been put forward by Dowson et al. [58].

Let c̃t(ξt) and ĉt(ξt) denote the objective coefficients for stage t ∈ [T ] and the two
competing objectives. For all but trivial cases, there exists no policy which yields the
best objective value with respect to both objectives

ṽ∗ := min
x1,x2,...,xT

E

[ ∑

t∈[T ]

(
c̃t(ξt)

)⊤
xt(ξ[t])

]

︸ ︷︷ ︸
=:ṽ(x)

and

v̂∗ := min
x1,x2,...,xT

E

[ ∑

t∈[T ]

(
ĉt(ξt)

)⊤
xt(ξ[t])

]

︸ ︷︷ ︸
=:v̂(x)

,

meaning that the two objectives are truly conflicting.
For this reason, if there is no clear preference for one of the objectives, usually the

aim is to compute Pareto-optimal policies. A policy
(
x̄t(ξ[t])

)
t∈[T ] is Pareto-optimal if

it cannot be improved in one objective without getting worse in the other one, i.e., if
there exists no other policy

(
xt(ξ[t])

)
t∈[T ] such that ṽ(x) ≥ ṽ(x̄) and v̂(x) > v̂(x̄) (or

the other way around). Pareto-optimal solutions are also called non-dominated, and the
set of non-dominated objective vectors is called the Pareto front [58].

A standard approach to compute Pareto-optimal solutions in optimization is to use
some scalarization approach in which both conflicting objectives are combined to a
weighted sum, which is then optimized in a deterministic single-objective problem. In
our case, the DPE (4)-(6) can be adapted to

Qt(xt−1, ξt, λ) :=

{
min
xt

(
λc̃t(ξt) + (1− λ)ĉt(ξt)

)⊤
xt +Qt+1(xt)

s.t. xt ∈ Xt(xt−1, ξt)
(78)

where

Qt+1(xt, λ) := Eξt+1 [Qt+1(xt, ξt+1, λ)] (79)

and QT+1(xT ) ≡ 0. For the first stage, we obtain

v∗(λ) =

{
min
x1

(
λc̃1 + (1− λ)ĉ1

)⊤
x1 +Q2(x1)

s.t. x1 ∈ X1.
(80)

SDDP can then be applied to these DPE. In the proposed variant, λ is adapted
dynamically. To this end, in each iteration i, after the backward pass, one stage t ∈ [T ]
is randomly and independently sampled and the corresponding subproblem is solved
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again for xkt−1, ξ
k
t and λi. Then, λi is updated to λi+1, where the latter is determined

as the closest λ to λi such that the optimal basis of the constraint equation system
changes.

It is proven that this variant of SDDP converges almost surely to the Pareto front
of bi-objective (MSLP) in finitely many iterations. Note that technically speaking
not all Pareto-optimal policies are guaranteed to be identified by SDDP because for
some λ multiple optimal policies may exist. However, all Pareto-optimal policies for
which (v̂(x), ṽ(x)) cannot be represented as a strict convex combination of other non-
dominated objective vectors are identified under weak assumptions [58].

13 SDDP with Unknown Distribution [relaxing Assump-
tion 3]

In Sect. 3 we introduced SDDP assuming that the probability distribution Fξ of the
data process (ξt)t∈[T ] governing the uncertainty in problem (MSLP) is known, see As-
sumption 3. This allowed us to sample from this specific distribution in the forward
pass of SDDP or, in case of continuous random vectors, to obtain a finite sample average
approximation, as described in Sect. 11.

In practical applications, usually, the true distribution Fξ is not known, though.
Often, only historical data is available, i.e., some realization of an unknown true dis-
tribution. This data is then used to determine a reasonable estimate for the true
distribution, from which the required samples are taken. However, using such an esti-
mation imposes the risk of overfitting the SDDP policies to this specific distribution,
and thus the available data. Philpott et al. [162] identify this problem as particularly
noteworthy if the number of possible outcomes qt per stage is small. For this reason,
it may be reasonable to take a more robust approach and factor in the distributional
uncertainty. Considering this type of uncertainty in SDDP is a young research area.

13.1 Distributionally Robust SDDP

One way to consider distributional uncertainty in SDDP is by integrating ideas from
robust optimization [16, 20] into (multistage) stochastic programming. More precisely,
a set of potential distributions is considered, which is called distributional uncertainty
set or ambiguity set and denoted by P. The expected cost is then minimized over the
worst-case probability distribution from this set. This is called Distributionally Robust
Optimization (DRO).

Usually, the outcomes of the random variables ξt are fixed to a finite number of
realizations observed in the historical data. The ambiguity set Pt then models a variety
of potential probability measures Pt ∈ Pt supported on this finite set Ξt.

In the following, we restrict to DRO specifically in the SDDP context. For a general
introduction to DRO, we refer to the review [176] and the tutorial [199]. We assume
all assumptions from Sect. 3 to hold, except for Assumption 3. Furthermore, we only
consider uncertainty in the RHS.
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Then, the distributionally robust version of (MSLP) can be written as

min
x1,x2,...,xT

max
P∈P

E


∑

t∈[T ]

(
ct(ξt)

)⊤
xt(ξ[t])




s.t. x1 ∈ X1

xt ∈ Xt(xt−1(ξ[t−1]), ξt) ∀ξt ∈ Ξt ∀t = 2, . . . , T.

(81)

Remark 13.1. Distributionally robust stochastic programming is closely related to risk-
averse stochastic programming. In particular, the operator maxP∈P E[·] can be inter-
preted as a multi-period risk measure R[·]. This risk measure is coherent [199].

For SDDP it is required to reformulate problem (81) by means of DPE. This requires
that each distribution P in the ambiguity set P can be expressed as the cross product
of the respective marginal distributions of random vectors ξt [199]. Formally,

P :=
{
P = P1 × . . .× PT : Pt ∈ Pt, t ∈ [T ]

}
.

The ambiguity sets Pt are assumed to be independent of each other. This property is
called rectangularity of P and is reminiscent of the stagewise independence assumption
for vectors ξt. Note that P1 is a singleton containing one distribution with one possible
realization.

With the ambiguity sets Pt, then the DPE can be written as

QDR,t(xt−1, ξt) :=

{
min
xt

c⊤t xt +QDR,t+1(xt)

s.t. xt ∈ Xt(xt−1, ξt)
(82)

with

QDR,t+1(xt) := max
Pt+1∈Pt+1

EPt+1 [QDR,t+1(xt, ξt+1)] , (83)

and QDR,T+1(xT ) ≡ 0. Compared to Sect. 3, here, an inner maximization problem is
introduced when defining QDR,t+1(·) to obtain the expected cost over the worst-case
probability measure in Pt+1. The first-stage problem reads

v∗DR =

{
min
x1

c⊤1 x1 +QDR,2(x1)
s.t. x1 ∈ X1.

(84)

How v∗DR and a corresponding optimal policy can be computed algorithmically,
heavily depends on the specific choice of the ambiguity sets Pt, t = 2, . . . , T . Various
ambiguity sets are proposed in the literature. Usually, these sets are defined in such a
way that they contain all distributions, which are in some sense within a given range of
some nominal distribution. This nominal distribution, denoted by P̄t, in turn, is defined
by probabilities p̄tj =

1
qt

for all j = 1, . . . , qt, where qt denotes the number of historical
data samples. Based on the measure employed to evaluate the distance between two
distributions or probability measures, respectively, different classes of ambiguity sets
can be defined.

For SDDP, the following three distance measures have been used so far. In [107],
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the ℓ∞ metric with parameter r > 0 is used to define the ambiguity set

Pt =
{
Pt :

qt∑

i=1

pti = 1, pti ≥ 0, ∥pt − p̄t∥∞ ≤ r
}
. (85)

A similar metric, but with the ℓ2-norm, is used in [162] to define the ambiguity set

Pt =
{
Pt :

qt∑

i=1

pti = 1, pti ≥ 0, ∥pt − p̄t∥2 ≤ r
}
. (86)

This is a special case of the class of ϕ-divergence distances, see [12]. Both these dis-
tance measures are only applicable to discrete distributions supported on the observed
historical data points.

On the contrary, the Wasserstein distance allows to compare general distributions
(see for instance [217]). In our case with finite distributions Pt and P̄t, the Wasserstein
distance can be defined by the minimization problem

dW (P̄t,Pt) :=min
z

qt∑

i=1

qt∑

j=1

∥ξit − ξjt ∥zij

s.t.

qt∑

j=1

zij = p̄ti ∀i = 1, . . . , qt

qt∑

i=1

zij = ptj ∀j = 1, . . . , qt

zij ≥ 0 ∀i, j = 1, . . . , qt,

where for the norm different choices are possible. It can be interpreted as the amount
of probability mass that has to be moved between the distributions. This distance is
used in [65] to define the Wasserstein ambiguity set

Pt =
{
Pt :

q∑

i=1

pti = 1, pti ≥ 0, dW (P̄t,Pt) ≤ r
}
. (87)

In all three cases, very different strategies are chosen to apply SDDP to the nested
min-max structure defined by the DPE (82)-(84).

13.1.1 Reformulation as a Risk-averse Problem

As shown in [107], using the ℓ∞-ambiguity set (85), the DPE (82)-(84) can be refor-
mulated to those of a risk-averse multistage problem with nested conditional AVaRα[·],
that is equations (60)-(62) with

λt+1 = 1− pℓt+1, αt+1 =
λt+1

put+1 − pℓt+1

,

where pℓt+1 and put+1 denote the probabilities associated with the probability measures
at the lower and upper bound of ambiguity set (85). Therefore, SDDP can be applied
as in this risk-averse setting.
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13.1.2 Solving the Inner Maximization Problem Separately

Using the ℓ2-ambiguity set (86) in the DPE (82)-(84) yields value functions, which can
be proven to remain convex, and thus can be approximated by affine cuts [162].

To derive such cuts, Philpott et al. propose to solve the inner maximization problem
identifying the worst-case distribution separately. In the backward pass, for some stage
t, first the subproblems are solved for all j = 1, . . . , qt as usual. Then, using the obtained
values of Qi

t
(xikt−1, ξtj), the inner maximization problem is solved. This can be done

algorithmically and in some cases even analytically, as shown in [162]. The obtained
worst-case probability measure P∗ can then be used to compute subgradients and cut
coefficients. Even though these coefficients are determined based on cut approximation
Qi+1
t (·) and on P∗, which does not necessarily coincide with the worst-case probability

measure in the true DPE, valid cuts are constructed and convergence is ensured [162].

13.1.3 Using a Dual Representation

If we use the Wasserstein ambiguity set (87) in SDDP, we obtain the inner maximization
problem

max
zt,pt+1

qt∑

j=1

pt+1,jQt+1(xt, ξt+1,j)

s.t.

qt∑

i=1

qt∑

j=1

dt+1,ijztij ≤ 1

qt∑

j=1

ztij = p̄ti ∀i = 1, . . . , qt

qt∑

i=1

ztij = ptj ∀j = 1, . . . , qt

ztij ≥ 0 ∀i, j = 1, . . . , qt

with dt+1,ij = ∥ξit+1 − ξjt+1∥. Duque and Morton [65] suggest to replace this problem
using its dual problem. This way, the value functions can be evaluated by solving the
single-level minimization problem

QDR,t(xt−1, ξt) :=



min
xt,γt,νt

c⊤t xt + rγt +

qt+1∑

i=1

qit+1ν
i
t

s.t. xt ∈ Xt(xt−1, ξt)
dt+1,ijγt + νti ≥ QDR,t+1(xt, ξt+1,j) ∀i, j = 1, . . . , qt+1

γt ≥ 0

with dual variables γt and νt.
As proven in [65], these value functions are piecewise linear and convex on Xt−1,

and therefore can be represented by finitely many linear cuts. However, this approach
requires to use multi-cut SDDP, see Sect. 21.2.1, because otherwise bilinear terms occur.

With all these strategies, the forward pass remains basically the same as in standard
SDDP. The sampling can be done from the nominal distribution associated with P̄t, t =
2, . . . , T , or alternatively the current worst-case distribution associated with P∗

t [65]. If
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independent sampling is conducted, convergence follows as for standard SDDP. However,
challenges to determine valid upper bounds are prevalent for distributionally robust
SDDP similarly to the risk-averse case.

Computational results indicate that taking the dual reformulation approach, better
approximations are achieved for multi-cut SDDP than solving the inner maximization
in a side computation [65]. Furthermore, out-of-sample tests by Philpott et al. [162]
imply that distributionally robust SDDP yields policies which are better suited, e.g.,
induce lower costs, in periods with a substantial risk of high costs.

13.2 Partially Observable Distributions

A different approach to deal with distributional uncertainty is introduced by Dowson et
al. in [59], and is referred to as partially observable multistage stochastic programming.
The idea is to consider a finite number of potential distributions by combining problem
(MSLP) with a hidden Markov model. More precisely, in each stage t ∈ [T ], different
nodes can be reached, with each node representing one Markov state. Let N denote the
set of all these nodes except for the root node. Each node reflects a different candidate
distribution, possibly with identical realizations ξj , j = 1, . . . , q, but different associated
probabilities.

As a key idea, consider a partition A of nodes in N into ambiguity sets A ∈ A,
satisfying

⋃
A∈AA = N . For example, this partition can be chosen such that there is

one ambiguity set A for each stage.
To model the distributional uncertainty, it is now assumed that at any point, only

the current ambiguity set is known, while the specific node within it cannot be observed.
However, for each node i, a probability bi is available. In other words, each candidate
distribution is considered to be the most accurate representation of the true underlying
distribution with a certain probability. These probabilities are stored in a so called
belief state b. Each time an ambiguity set A is entered and a particular realization ξ̃
of the random data is observed, the belief state is updated componentwise by applying
Bayes’ theorem [59].

In contrast to (MSLP) with perfect distribution information (see Assumption 3),
the value functions Qt(·) have to incorporate this belief state. To this end, let piℓ be
the probability of observing ξiℓ conditional on being in node i with ℓ = 1, . . . , qi. Let
N̄ describe all nodes including the root node, ωjk the transition probability from node
j to k and Bk(b, ξ) the update rule for the belief state being in (unobservable) node k.
Furthermore, let x′ denote the current trial solution. Then, the expected value function
can be written as

QB(x′, b) :=
∑

j∈N̄
bj
∑

k∈N
ωjk

qk∑

ℓ=1

pkℓ Qk

(
x′, Bk(b, ξkℓ), ξkℓ

)
. (88)

This means that the value functions Qk(·, ·) depend on a node and an updated belief
state, and in (88) it is looped over all nodes, weighing the corresponding expected value
with the current belief and the transition probabilities between the nodes.

As proven in Theorem 1 in [59], the expected value functions QB(·) are saddle
functions, as they are convex in x for fixed b, but concave in b for fixed x. Therefore,
to apply SDDP, the cut generation has to be adapted to this property. This can be
achieved by using an outer approximation for x and an inner approximation for b [59].
The main difference for the cut computation is that apart from taking expectations over
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the realizations of ξ, it is looped over all nodes in the current ambiguity set A and the
cut components are weighed with the current belief [59].

In the forward pass, for each stage t = 2, . . . , T , first, a new node is sampled con-
ditionally on the (unobserved) current node. Then, a realization of ξ is sampled con-
ditionally on the obtained node and the associated candidate distribution. For a more
detailed description, see [59].

A different method of combining SDDP with a hidden Markov model is given in [66].
One general drawback of such hidden Markov approaches is that transition probabilities
between the nodes have to be properly defined a priori.

14 Stagewise Dependent Uncertainty [relaxing Assump-
tion 2]

As explained in Sect. 2 and 3, stagewise independence (Assumption 2) is a standard
assumption in dynamic programming, and thus also for SDDP. It is also crucial for the
computational tractability of SDDP compared to NBD because it ensures that there
exists only one expected value function Qt(·) per stage and that cuts can be shared
between scenarios, see Sect. 5.2. However, in many applications, the uncertain data in
(MSLP) (e.g., demand, fuel prices, electricity prices, inflows) shows correlations over
time and assuming stagewise independence is not appropriate.

If the uncertainty in problem (MSLP) is stagewise dependent, the expected value
functions Qt(·) for t = 2, . . . , T do not only depend on xt−1, but implicitly also depend
on the history ξ[t−1] of the process (ξt)t∈[T ]. In order to apply SDDP, this dependence
has to be taken into account, for instance by reformulating the model or adapting the
algorithmic steps in SDDP. In this section, we consider different cases of stagewise
dependent uncertainty and ways of how SDDP can be applied in these cases.

14.1 Expanding the State Space

As a first case of stagewise dependent uncertainty, let us assume that the data process
(ξt)t∈[T ] is a simple linear autoregressive (AR) process with lag one, defined by appro-
priately chosen coefficient vectors γt, matrices Φt and stagewise independent and i.i.d.
error terms ηt:

ξt = γt +Φtξt−1 + ηt. (89)

Remark 14.1. If we still assume finite randomness (Assumption 5), now for ηt, then
ξt can be modeled by a classical scenario tree, see Sect. 5.2.

The most natural approach to deal with this case, is to reformulate (MSLP) in such
a way that it exhibits stagewise independent uncertainty [154]. This can be achieved
by including ξt−1 as an additional state variable. Then, as shown in [129],

Eξt|ξt−1
[Qt(xt−1, ξt)] = Eηt|ξt−1

[Qt(xt−1, γt +Φtξt−1 + ηt)]

= Eηt [Qt(xt−1, γt +Φtξt−1 + ηt)] ,

where the second equality holds because ηt and ξt−1 are statistically independent.
By introducing equation (89) as a constraint and defining a new value function

Q̂t(xt−1, ξt−1, ηt) := Qt(xt−1, γt +Φtξt−1 + ηt), (90)
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and the corresponding expected value function

Q̂t(xt−1, ξt−1) := Eηt

[
Q̂t(xt−1, ξt−1,ηt)

]
(91)

for all t = 2, . . . , T , it follows

Eξt|ξt−1
[Qt(xt−1, ξt)] = Q̂t(xt−1, ξt−1).

The state variables then consist of the resource state xt−1 and the information state
ξt−1, while the stagewise independent uncertainty is modeled by ηt. Importantly, ξt is
regarded as a decision variable in the reformulated problem, augmenting the dimension
of the decision space.

Remark 14.2. It is worth emphasizing that this approach is presented in various dif-
ferent ways in the literature. In some cases, as outlined, equation (89) is explicitly
incorporated into the DPE as an additional constraint [174, 204]. In some cases, each
occurrence of ξt in the subproblems is simply replaced by the RHS of (89). And in other
cases, the dependence on ξt−1 is only expressed by writing Q̂t(·, ·, ·) and Q̂t(·, ·) as func-
tions of ξt−1, whereas the explicit relation (89) is only considered in the cut generation
process [84, 129, 179]. We revisit this observation in the next subsection.

By the presented procedure, stagewise independence (Assumption 2) is recovered
for (MSLP). However, in order to apply SDDP, it also has to be ensured that valid
linear cuts for Q̂t(·, ·) can be derived as functions in both types of state variables. This
requires that Q̂t(·, ·) is convex in both xt−1 and ξt−1. Similarly to Theorem 2.8, it can
be shown that under certain assumptions, this property is satisfied.

Theorem 14.3 ([179]). Let ξt be described by (89) and let ξt−1 be contained in some
convex set. Then, under Assumptions 1 and 3 to 9, the expected value function Q̂t(·, ·)
is piecewise linear and

a) convex in xt−1 on Xt−1 for fixed ξt−1,

b) convex in ξt−1 = (Tt−2, ht−1) for fixed xt−1,Wt−1, ct−1,

c) concave in ξt−1 = ct−1 for fixed xt−1,Wt−1, Tt−2, ht−1,

d) convex jointly in xt−1 and in ξt−1 = ht−1 for fixed Wt−1, Tt−2, ct−1.

Theorem 14.3 shows that convexity in both types of state variables is only guaranteed
if the stagewise dependent part of the uncertainty only enters the RHS ht(ξt) of problem
(MSLP). Note that this still allows for additional stagewise independent uncertainty in
ct,Wt and Tt−1. The result also requires linearity of (MSLP) (Assumption 6) and of the
AR process (89) defining the random variable ξt.

Under certain assumptions, Theorem 14.3 can be generalized to convex problems
(MSLP) and stagewise dependence in the RHS defined by a convex function [84]. More-
over, the result is not limited to lag-one processes, but can be enhanced to AR processes
with higher lag order [84]. This is important for practical applications, as often several
lags are required to explain a time series appropriately. In contrast, for general nonlin-
ear stochastic processes or for uncertainty in Wt, ct or Tt−1, such a generalization seems
not possible. In order to cover such cases, different approaches are required. We discuss
those in later parts of this section.
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For simplicity, assume that Xt = {xt ∈ Rnt : xt ≥ 0} for all t ∈ [T ] and recall the
definition of the approximate subproblem (10):

Q
t
(xt−1, ξt) =





min
xt,θt+1

(
ct(ξt)

)⊤
xt + θt+1

s.t. Wt(ξt)xt = ht(ξt)− Tt−1(ξt)xt−1

xt ≥ 0

− (βrt+1)
⊤xt + θt+1 ≥ αrt+1, ∀r ∈ Γt+1,

(92)

where Γt+1 is the index set of previously generated cuts. Then, the result in Theo-
rem 14.3 can be illustrated by means of the feasible region of the LP dual to (92), which
can be written as

max
πt,ρt

(
ht(ξt)− Tt−1(ξt)xt−1

)⊤
πt + a⊤t+1ρt

s.t.
(
Wt(ξt)

)⊤
πt −B⊤

t+1ρt ≤ ct(ξt)
e⊤ρt = 1

ρt ≥ 0.

(93)

Here, we collect all cut gradients βrt+1 in a matrix Bt+1 and all cut intercepts αrt+1 in
a vector at for compact representation. πt denotes the dual variable to the original
constraints, and ρt denotes the dual variable to the previously generated cuts.

In the case of linear AR processes in the RHS ht(ξt), the dual feasible region is not
affected by the new state variable ξt−1 (and also remains polyhedral). This means that
the extreme solutions obtained for one state ξ̄t−1 remain valid, although not necessarily
optimal, for all other states ξt−1 as well. In contrast, in other cases of stagewise depen-
dence, the dual feasible region and its extreme solutions may change for different states,
affecting the properties of Q̂t(·, ·) [179].

In sum, for affine and convex AR processes occurring in the RHS, expanding the
state recovers stagewise independence (Assumption 2), but at the same time convexity
of Q̂t(·, ·) in all state variables is preserved. Therefore, SDDP can be used as introduced
in Sect. 3. In this case, the obtained cuts are functions of both state variables and can
be formulated with a cut gradient for each of them (compare to (17)), i.e.,

ϕt(xt−1, ξt−1) = αt +
(
βxt
)⊤
xt−1 +

(
βξt
)⊤
ξt−1.

Unfortunately, depending on the dimension κt−1 of ξt−1, the state space dimension
can increase significantly. This effect is amplified for higher lag orders. As the com-
putational complexity of SDDP grows exponentially in this dimension, see Sect. 4.2,
augmenting the state space is detrimental and should be avoided if possible.

14.2 Scenario-Adaptable Cut Formulas

The previously described adverse effect can be alleviated to some degree by a special
cut generation approach that was first proposed by Infanger and Morton [109] and later
enhanced by de Queiroz and Morton [174] and Guigues [84]. In all these cases, the
process model, such as (89), is not explicitly incorporated into the subproblems, see
Remark 14.2. Instead, it is merely considered within the cut generation process. The
main idea is to derive scenario-adaptable closed-form cut formulas, given AR processes
with a specific structure, which allow one to adapt the cut generated for one specific
history ξ̄[t−1] to different histories ξ[t−1] of the stochastic process, and thus to different
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scenarios. This way, the cuts can be shared between scenarios (see Sect. 5.2) without the
need to incorporate (89) into (MSLP) as a constraint. Importantly, these cut formulas
lead to the exact same cuts as the previously described approach.

To illustrate this idea, consider a cut derived using dual problem (93) without paying
any particular attention to the stagewise dependence. For convenience, but without loss
of generality, we assume Tt−1 to be deterministic and the RHS uncertainty to be defined
by

ht(ξt) = Φtht−1(ξt−1) + ηt (94)

with stagewise independent error terms ηt, similarly to (89). We obtain

Q̂t(xt−1, ξt−1) ≥ Eξt|ξt−1

[
−π⊤

t Tt−1xt−1 + π⊤
t ht(ξt) + ρ⊤

t at+1

]

= Eξt|ξt−1

[
−π⊤

t Tt−1

]
xt−1 + Eξt|ξt−1

[
π⊤
t ht(ξt) + ρ⊤

t at+1

] (95)

We can make the following observations:

(i) Since the probabilities in Eξt|ξt−1
[·] are assumed to not depend on ξt−1 (recall that

ηt is stagewise independent) and since all scenarios share the same dual feasible
region, the cut gradient

βt = Eξt|ξt−1

[
−π⊤

t Tt−1

]
(96)

derived for one specific scenario ξ̄t−1, is valid for all other scenarios as well.

(ii) According to (94), the RHS ht(ξt) depends on ξt−1. Therefore, to evaluate the cut
for a specific scenario, this term has to be adapted to this scenario. Otherwise,
the cut may become invalid. By (94), this term can be split up into a scenario-
dependent part depending on ξt−1 and a scenario-independent part depending on
ηt only.

(iii) The last term at+1 in (95) is the cut intercept of the following stage. As we face
stagewise dependence, this intercept is not scenario-independent anymore, but
should denote at+1(ξt). Moreover, it is defined recursively: The stage-t intercept
includes the stage-(t+1) intercept, which includes the stage-(t+2) intercept and
so on. This implies that to evaluate at+1(ξt) for a specific scenario, it is basically
required to recursively traverse the whole scenario tree starting form stage t. This
is computationally intractable.

To address these observations, the main idea by Infanger and Morton [109] is to
express the cut intercept αt(ξt−1) as the sum of a stagewise independent term αind

t and
a stagewise dependent term αdep

t (ξt−1):

αt(ξt−1) = αind
t + αdep

t (ξt−1). (97)

Let π̄t = Eηt [πt] and ρ̄tt = Eηt [ρt] denote the expected value of the dual variables
obtained for realizations of ηt. As explained, these dual values are valid for any history
of the stochastic process due to the structure of the dual feasible set. Let P̄t define the
(|Γt|×mt)-matrix containing the values of π̄t and R̄t the (|Γt|×|Γt−1|)-matrix containing
the values of ρ̄t for the previously determined cuts. Furthermore, let the matrix Dt be
defined recursively by

Dt =
[
P̄t+1 + R̄t+1Dt+1

]
Φt, DT = 0. (98)
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Then, as shown in [109], the stagewise dependent cut intercept is given by

αdep
t (ξt−1) = [π̄t + ρ̄tDt] Φtht−1(ξt−1). (99)

This means that a cut can be constructed by using formula (96) for the gradient and
formulas (97), (98) and (99) for the intercept. The stagewise independent term can be
either determined by an additional formula or by subtracting (99) from αt(ξt−1) [109].
In order for a cut to be shared with a different scenario at stage t−1, it is only required
to adapt the stagewise dependent intercept (99) to this specific scenario. In other words,
a given cut can be corrected to be valid for a different history of the stochastic process.
In particular, it is not required to add (94) as a constraint to the stage-t subproblem or
to traverse the whole scenario tree (see Remark 14.1). Instead, only the cut gradient,
the stagewise independent part of the intercept and the cumulative expected dual vector[
P̄t+1 + R̄t+1Dt+1

]
Φt have to be stored [109].

Whereas we limited our explanations to a very simple AR process so far, similar
cut formulas can be derived for more complex processes [84, 109, 174, 179]. We give
an overview on different cases covered in the literature in Table 6. Some of the process
formulas in Table 6 are presented in a simplified form for reasons of clarity, e.g., by
omitting standardization and the incorporation of seasonal or periodical effects. For
example, this is true for the SPAR processes considered in [127] (also see Sect. 9),
where spatial dependencies between locations i and i′ are taken into account.

Importantly, all processes for which scenario-adaptable closed-form cut formulas can
be derived require a specific structure, such as linearity, convexity or separability. As
shown by Guigues [84], a generalization to convex AR processes and more complex
structures in the RHS is possible. For instance, the RHS ht does not have to be directly
described by the stochastic process (constant ht ≡ ξt), but may also be defined as
some function ht(·) of ξt. Moreover, for the affine case, alternative formulas to the ones
provided by Infanger and Morton are presented by Guigues [84]. The main difference is
that only a minimal subset of coefficients is used, due to defining the process (ξt)t∈[T ]
componentwise and not in vectorial form compared to (89) or (94). On the other hand,
no recursive formula as in (98) is provided to compute the cut coefficients. Finally,
Guigues shows that also for feasibility cuts (Sect. 17) scenario-adaptable cut formulas
can be derived.

It is important to emphasize that the presented approach only partially mitigates
the drawbacks of augmenting the state space. First of all, the history of the stochastic
process has to be stored to compute ξt, even if such computation is possible outside
of the subproblems. Guigues provides a detailed discussion on how state vectors of
minimal size can be defined in order to keep the stored information as small as possible
[84]. Additionally, due to their dependence on ξt−1, or ξ[t−1] in general, the expected

value functions Q̂t(·, ·) live in a higher-dimensional space. Therefore, more iterations
and cuts may be required to achieve convergence compared to the stagewise independent
case, as discussed in Sect. 4.2.

14.3 Sensitivity of SDDP with AR Processes

Let the uncertainty in (MSLP) be modeled by an AR process. Consider the approach
of expanding the state, leading to two types of state variables: xt and ξ[t]. Both contain
information on future resource availability (e.g., hydro storage volume and hydro inflow
history affecting future inflows), but they differ in several aspects [208]. First, whereas
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Autoregressive model for ξt
RHS ht(ξt) Model Type Lag Formula Source

const. AR L 1 ξt = Φtξt−1 + ηt [109]
L AR L 1 ξt = Φtξt−1 + ηt [174]

const. PAR L 1 ξt = φt(ξt−1 − µt−1) + µt + σtηt [211]

const. AR L ≥ 1 ξt =
∑t−1

k=1(Φ
t
kξk +Ψt

kηk) + ηt [109]
L/C* AR L ≥ 1 ξt = Φtξ[t−1] + ηt [84]
L/C* AR L ≥ 1 ξt = Φtξ[t−1] +Ψtηt +Θt [84]

const. SPAR L ≥ 1 ξti =
∑

i′
∑t−1

k=1Φ
t
ii′kξti′ + ηti [127]

const. AR NL 1 ξt = Φt(ft(vt−1) + ξt−1) + ηt [109]

const. AR NL ≥ 1 ξt =
∑t−1

k=1(Φ
t
kξk + f tk(vk)) + ηt [109]

C AR C ≥ 1 ξt = ft(ξ[t−1], ηt) [84]

L = affine/linear function, C = convex function, NL = general nonlinear function
* only in case of inequality constraints

Table 6: RHS and uncertainty models considered in the literature on SDDP with stage-
wise dependence to derive scenario-adaptable closed-form cut formulas.

the information provided by the state xt−1 is certain, the information provided by
ξ[t−1] enters an AR model predicting future realizations, which still involves uncertainty.
Second, the parameters of this AR model are estimated from data, and thus can be
subject to estimation errors. Third, in practice it can often be observed that the values
in (ξt)t∈[T ] show higher variability over short time than the values of (xt)t∈[T ]. This
uncertainty and variability raises the question on how much the solutions obtained in
SDDP react to changes in ξ[t−1]. This can be examined in a sensitivity analysis.

A general approach for sensitivity analysis in SDDP is presented in [97] and applied
to an inventory problem with AR demand. Also the sensitivity with respect to AR
model parameters Φt or γt is discussed.

For a hydrothermal problem, in [208], it is shown that the solutions obtained in
SDDP are more sensitive to changes in the initial information state ξ1 than to changes
in the initial resource state x0. Based on the previous observations this leads to the
unfavorable side effect of expanding the state space that solutions of SDDP exhibit
larger variability. This may have severe consequences in economic applications, such as
increasing risk, unpredictability of prices or distorted investment signals.

To address this issue, Soares et al. present different mitigation heuristics [208], such
as regularizing changes in xt over time, or using the accurate AR model in the forward
pass of SDDP, but predefined unconditional samples in the backward pass in order to
avoid the dependence of cuts on ξ[t−1]. While they report positive computational results,
the authors provide no theoretical results on reasonable parameter choice, cut validity
and convergence for their heuristics.

14.4 Markov Chain SDDP

Assume that the data process (ξt)t∈[T ] is Markovian, i.e., as in (89), ξt only depends on
ξt−1 for all t = 2, . . . , T instead of the whole history ξ[t−1]. Then, instead of expanding
the state space also an alternative approach can be used to apply SDDP.

In this case, the data process can be represented, or at least approximated (if the
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random variables ξt are continuous), by a discrete Markov chain. This approximation
can be obtained by lattice quantization techniques [29, 129]. As it contains only finitely
many states per stage t = 2, . . . , T , this Markov chain can be illustrated as a recombin-
ing scenario tree or scenario lattice [129], just as in the case of stagewise independence
Assumption 2, see Sect. 2. The difference is that in the Markov chain case the probabili-
ties of transitions to stage-t nodes may differ between different stage-(t−1) nodes. This
also includes the possibility that some stage-t nodes may not be reached from certain
stage-(t− 1) nodes.

Due to this difference, the (expected) value functions Qtℓ(·) depend on the states
ζℓ, ℓ = 1, . . . , L, of the Markov chain. In other words, for each such state (i.e., each
node in the recombining tree), a different expected value function and a different set
of value functions exist. In SDDP, then cuts are derived for each of these functions
separately. This idea is called Markov chain SDDP (MC-SDDP) [129] or approximate
dual dynamic programming (ADDP) [130, 131], whereas for distinction the approach of
expanding the state space is referred to as time series SDDP (TS-SDDP).

For problems with moderate state space dimension, expanding the state may be
computationally favorable as only one expected value function has to be approximated
per stage. On the other hand, a computational advantage of MC-SDDP is that the
computational effort grows linearly with the number of Markov states only [201]. In
contrast, expanding the state leads to a state space dimension increase in which the
complexity of SDDP grows exponentially. Moreover, MC-SDDP requires no linearity
and is not limited to stagewise dependent uncertainty only appearing in the RHS of
(MSLP). As long as the Markov property is satisfied, it allows for stagewise dependent
uncertainty in all data ct, Tt−1,Wt and ht of (MSLP).

The main drawback of MC-SDDP lies in the relation to the true problem (P̃ ) in case
of a continuous data process (ξt)t∈[T ], see also Sect. 11. For SDDP with AR processes
and expanding the state space, many results exist that allow for inference of the SAA
solution with respect to the true problem, see Sect. 11. One key property in this regard
is that ξt−1 is treated as a possibly continuous state variable in SDDP, such that the
derived cuts are also valid at states which are not reached by the scenarios ξs ∈ S that
are considered in SDDP. Similar results are not available for MC-SDDP. In particular,
the obtained policy and lower bounds are not necessarily valid for the true problem
[129].

In spite of this theoretical downside, Löhndorf and Shapiro report tighter lower
bounds and better policies even for the true process based on computational experi-
ments [129]. They conjecture that this is due to a differing exploration of the state
space. Expanding the state space introduces additional state variables, which are not
under control of the optimal policy (their trajectory is not chosen based on solving the
approximate subproblems in the forward pass, but selected randomly in the forward
pass). This may lead to selection of states, which do not provide the highest informa-
tion gain. With MC-SDDP this is partially mitigated by choosing sufficiently different
states in advance when constructing the Markov chain.

14.5 SDDP with Integrated Markov Chain

By Theorem 14.3, a natural extension of SDDP to stagewise dependent uncertainty
using expanding the state space is only possible for linear (or at least convex) AR
processes appearing in the RHS of problem (MSLP). In all other cases, expanding the
state space destroys the convexity of the expected value functions Q̂t(·, ·). Therefore,
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in such cases, different approaches are required. One such approach is to integrate a
discrete Markov chain into the uncertainty modeling. This approach is quite established
in the literature on and in practical application of SDDP. Importantly, this approach
does not necessarily coincide with the previous case where the process (ξt)t∈[T ] itself is
assumed to be Markovian and approximated by a Markov chain. Instead, the process
is not assumed Markovian, but its realizations ξt are assumed to depend on the state
of an underlying Markov chain.

Modeling. Consider a Markov chain with finitely many possible states ζℓ, ℓ =
1, . . . , L, with L ∈ N. At each stage t ∈ [T ], we denote the current state of the Markov
chain as ψt (again, we assume that ψ1 is deterministic). The transition probabilities
between state ψt−1 = ζℓ at stage t−1 and ψt = ζℓ′ at stage t are then denoted by ωℓℓ′ for
ℓ, ℓ′ ∈ {1, . . . , L}. For simplicity, we assume the Markov chain to be time-homogeneous,
such that ωℓℓ′ does not depend on t, even though this is not required.

We now assume that the distribution of random variable ξt at stage t ∈ [T ] may
depend on the state ψt of the Markov chain. In other words, for each possible state
ζℓ, ℓ = 1, . . . , L, the distribution of ξt may differ. We emphasize this by writing ξℓt .

The value functions Qt(·, ·) for (MSLP) then do not only depend on xt−1 and the
realization ξt of ξt, but also on the current Markov state ψt. As this state can only take
finitely many values, we denote this byQtℓ(xt−1, ξt), where index ℓ indicates conditioning
on ψt = ζℓ. Based on this definition, the expected value functions can be expressed as

Qtℓ(xt−1) :=
L∑

ℓ′=1

ωℓℓ′Eξt|ℓ′
[
Qtℓ′(xt−1, ξ

ℓ′
t )
]
. (100)

The index ℓ of the expected value function refers to the previous Markov state ψt−1 = ζℓ.
Compared to standard SDDP, the expectation is not only taken over the realizations
of ξℓ

′
t , but also the state transitions from ψt−1 to ψt are taken into account. Using this

definition, the DPE for stages t = 2, . . . , T can be written as

Qtℓ(xt−1, ξ
ℓ
t ) :=

{
min
xt

ζ⊤ℓ xt +Qt+1,ℓ(xt)

s.t. xt ∈ Xt(ξℓt ).
(101)

Note that the dependence on ζℓ in (100) resembles the expanding-the-state approach
from Sect. 14.1. However, there are important differences. ψt−1 does not enter the sub-
problems and it can only take a finite number of different values, whereas ξ[t−1], even
if discrete, is treated like a continuous state variable when expanding the state. Fur-
thermore, as the transition probabilities ωℓℓ′ may differ for each ζℓ, the cut components
are weighted differently and cuts cannot be shared between different Markov states.
Consequently, it is required to store separate expected value functions Qtℓ(·) for each
ℓ = 1, . . . , L. In return, the non-convexity of these functions is circumvented, since
each Qtℓ(·) remains convex and is approximated on its own, see also the discussion in
Sect. 14.4.

As an example, consider a problem with L = 2 Markov states and qℓ = 2 realizations
for ξℓt for each of them, which is borrowed from [160]. The corresponding scenario tree
with underlying Markov chain is illustrated in Figure 13. For the transition probabilities
let ω11 = q, ω12 = 1−q, ω21 = 1−p and ω22 = p. For all t and ℓ ∈ {1, 2}, the distribution
of ξℓt is given by ptj =

1
2 for j ∈ {1, 2}.

As an alternative to the scenario tree in Figure 13, the stochastic process with
underlying Markov chain can be represented by a Markovian policy graph with finitely
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Figure 13: Scenario tree with underlying Markov chain (state 1 printed in black, state
2 printed in white). Replication from [160].

many nodes per stage [56]. This approach is also included in the software package
SDDP.jl, see Sect. 10.

SDDP. Let us now address how SDDP works in this case. In the forward pass,
different approaches are used in the literature. The most natural one is for each stage
t and each sample path k ∈ K, to sample first from the Markov states and then condi-
tionally from ξℓt [161]. Sometimes it is also proposed to use historical values here, e.g.,
true inflow spot-price combinations [79]. In such a case, it is possible that a spot price
is drawn which is not a valid state of the Markov chain. Then, a strategy is to use the
in some sense closest state from the Markov chain [79]. Another one is to use a linear
interpolation between the hyperplanes of neighbouring states [81, 229].

For stages t = 2, . . . , T , states ℓ = 1, . . . , L and samples k ∈ K, based on (101), the
approximate subproblems solved in the forward pass of SDDP have the form

Qi
tℓ
(xikt−1, ξ

ℓk
t ) :=

{
min
xt

(
ct(ξ

ℓ
t )
)⊤
xt +Qi

t+1ℓ(xt)

s.t. xt ∈ Xt(xikt−1, ξ
ℓ
t ).

(102)

Importantly, each function Qtℓ(·), ℓ = 1, . . . , L, is approximated by an individual cut
approximation Qtℓ(·).

In the backward pass of some iteration i, the stages are traversed in backward direc-
tion as usual to improve the cut approximations. At each stage t, the subproblems (102)
updated with Qi+1

tℓ (·) are solved for each trial state xikt−1, k ∈ K, each stage-t Markov
state ψt = ζℓ, ℓ = 1, . . . , L, and all realizations ξℓtj , j = 1, . . . , qℓt .

Then, for each xikt−1 and ψt−1 = ζℓ, ℓ = 1, . . . , L, a valid cut can be derived for Qtℓ(·).
Let βitℓkj denote a subgradient for Qi

tℓ
(·, ·) at xikt−1. In accordance with (16), but also

taking into account the Markov chain transition probabilities, we can then define cut
coefficients

βitℓk :=
L∑

ℓ′=1

ωℓℓ′




qtℓ∑

j=1

ptℓj

(
Qi+1
tℓ

(xikt−1, ξ
ℓk
t )− (βitℓkj)

⊤xikt−1

)

 ,

αtℓ :=
L∑

ℓ′=1

ωℓℓ′




qtℓ∑

j=1

ptℓjβ
i
tℓkj


 ,

where qtℓ and ptℓj denote the number of realizations and probabilities of ξℓt .
A cut (17) for Qtℓ(·) is then given by function

ϕitℓk(xt−1) := αitℓk + (βitℓk)
⊤xt−1
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and can be used to update Qi
tℓ(·). Philpott et al. derive similar formulas for the multi-

cut and risk-averse case [161].
Use Cases. There exist different use cases for modeling the uncertainty in (MSLP)

with an integrated Markov chain.

� The data process (ξt)t∈[T ] can be modeled as a nonlinear AR process or a nonlinear
transformation of a linear AR process (see Sect. 9), which, if handled by expanding
the state space, destroys the convexity of Q̂t(·, ·). Sometimes such a nonlinear
process can be approximated by assuming that the realizations ξt depend on an
underlying system state which follows a Markov process [161], thus not capturing
the nonlinearity explicitly in a formula. As the value functions are also not convex
in this, possibly continuous, Markov state, the Markov process is approximated
using a discrete Markov chain.

� Instead of a single AR process, sometimes the data process (ξt)t∈[T ] may be best
modeled by a finite set of different AR processes, which are valid representations,
and thus active, under different circumstances (e.g., macroeconomic, political or
ecological situations). A discrete Markov chain can then be used to model these
overall system states, and AR models can be used to describe realizations of the
uncertain data conditioned on these states. Such regime-switching models are very
common in wind forecasting [233].

� Hybrid SDP/SDDP. Different parts of the data in (MSLP) exhibit stagewise de-
pendent uncertainty. While some of them, namely uncertainty in the RHS ht, can
be treated by expanding the state space, for others, e.g., stagewise dependent un-
certainty in the objective coefficients ct, it would destroy the convexity of Q̂t(·, ·).
Therefore, this part of the uncertainty may be modeled by a discrete Markov chain
instead. Since one part of the uncertainty is treated as in standard SDDP (allows
for cut-sharing between scenarios), while another one is treated by enumerating
separate expected value functions for each ℓ = 1, . . . , L (cuts cannot be shared
between Markov states), this is often referred to as a hybrid SDP/SDDP method
[79].

For instance, this setting often occurs in medium-term hydrothermal scheduling
problems (see Sect. 9) when inflow uncertainty in the RHS as well as spot-price
uncertainty in the objective function are taken into account. The idea to address
this by using a Markov chain goes back to Gjelsvik et al. who modeled this kind of
scheduling problem for the Norwegian power system [79, 81, 82]. Since then, this
approach has been employed in several applications, for example, hydrothermal
scheduling including balancing market bids [100, 101], risk management [108, 116,
142] and fuel contracts [37]. It is also applied to model fuel price uncertainty [151].

In contrast to the presented general approach, in this case it is usually assumed
that the uncertainty in the RHS and in the objective are independent of each
other. Therefore, for each state ζℓ, ℓ = 1, . . . , L, the distribution of ξt is the same,
and marginal distributions can be used in the expectation in (100). Moreover,
note that in this specific case the Markov chain states are not underlying the
distribution of ξt, but instead entering the subproblems explicitly, e.g., as objective
coefficients. Still SDDP can be applied using the same ideas as above.

The described approach allows for the incorporation of even nonlinear stagewise de-
pendent uncertainty into SDDP, but also gives rise to some challenges. Among those is
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the assumption of the Markov property, which may not always be appropriate. More-
over, it is required to define useful values ζℓ, ℓ = 1, . . . , L, and transition probabilities
ωℓℓ′ for the Markov states [81, 143]. Most importantly, cuts cannot be shared between,
but only within Markov states, so that separate expected value functions have to be
considered for each ℓ = 1, . . . , L. Therefore, the number of Markov states should be
rather small to preserve computational tractability.

14.6 Hybrid NBD/SDDP

In the previous section, we presented a hybrid SDP/SDDP method as a tool to model
different stagewise dependent uncertain data in (MSLP) by different approaches. In-
stead of modeling the “complicating” part of the uncertainty by a discrete Markov
chain, also a scenario tree can be used. Instead of a hybrid SDP/SDDP method, this
yields a hybrid NBD/SDDP method [179], see also Sect. 5.2.

Assume that the random vector ξt modeling the uncertainty in ct,Wt, Tt−1 and ht
can be separated into two separate and independent parts, ξSt and ξTt . The first vector
ξSt can either be stagewise independent or exhibit some linear dependency if it occurs
in the RHS. In the latter case, it can be handled by expanding the state space. Within
SDDP, in each iteration samples of ξSt are considered. The second vector ξTt , on the
other hand, may lead to non-convexities in the value functions if it is approached by
expanding the state space. Therefore, it is modeled by a scenario tree, which is treated
exactly in SDDP. This means that for this particular part of the uncertainty, no samples
are drawn, but all scenarios are considered in each iteration of SDDP, as in NBD, see
Sect. 5.2. This approach is similar to hybrid SDP/SDDP in the sense that the expected
value functions Qt(·) depend on the scenarios from ξSt and that cuts can only be shared
within, but not between such scenarios.

By only treating the crucial part ξT of ξ as a scenario tree and the remainder ξS

still by sampling, complex uncertainty processes can be considered, while at the same
time the increase of computational complexity is kept as small as possible [179]. To
take advantage of this, the scenario tree associated with ξS should not be too large.

Compared to hybrid SDP/SDDP, in specific applications the one or the other ap-
proach may be favorable. For instance, the Markov chain approaches allow for de-
pendencies between different uncertainty processes. Moreover, in the case that each
realization of ξt is assigned to one specific Markov state ζℓ, ℓ = 1, . . . , L, the number
of LPs to be solved per iteration can be kept equal to standard SDDP. The scenario
tree approach, by contrast, requires independence of ξS and ξT . By design, it considers
all combinations of scenarios of ξT and ξS , so no assignment of realizations of ξS to
scenarios of ξT is required. However, the number of LPs to be solved grow exponentially
in the number of stages [179]. On the other hand, a scenario tree may be more appro-
priate to model very complex processes, e.g., referring to macroeconomical, political or
structural decisions [179], for which the Markov property is not appropriate.

14.7 Saddle Cuts

We consider the special case of stagewise dependent objective coefficients ct(ξt) in
(MSLP), as they appear for uncertain prices models by AR processes. So far, we
introduced SDDP with integrated Markov chain as a suitable solution approach in this
case. Now, we discuss as second one.

As discussed in Sect. 14.1, by expanding the state space, stagewise independence
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(Assumption 2) can be recovered, but in return the expected value functions Q̂t(·, ·) are
no longer convex. In Theorem 14.3 it is shown that Q̂t(·, ·) is in fact convex in xt−1, but
concave in ct−1, which yields a saddle shape. Therefore, linear cuts are not sufficient to
approximate them. As a resort, exploiting the saddle shape, special saddle cuts can be
used.

To derive this formally, in the vein of [55], we assume the objective coefficients

to be described by
(
yt(ξt)

)⊤
Ct instead of ct(ξt). While the matrix Ct is considered

deterministic, yt(ξt) is defined by the following AR process

yt(ξt) = Bt(ξt)yt−1(ξt−1) + bt(ξt) (103)

for all stages t = 2, . . . , T . Here, the matrix Bt and the vector bt are uncertain and

depend on the realization of ξt. Thus, the sequence
(
yt(ξt)

)T
t=1

is scenario-dependent.
Inserting relation (103) into the objective function and considering yt−1 as an addi-

tional state variable, for t = 2, . . . , T , we obtain the subproblems

Q̂t(xt−1, yt−1, ξt)

=

{
min
xt

(
Bt(ξt)yt−1 + bt(ξt)

)⊤
Ctxt + Q̂t+1

(
xt, Bt(ξt)yt−1 + bt(ξt)

)

s.t. xt ∈ Xt(xt−1, ξt)

where

Q̂t+1(xt, yt) = Eξt+1

[
Q̂t+1(xt, yt, ξt+1))

]

and Q̂T+1(xT , yT ) ≡ 0. For the first stage, we obtain

v∗ =

{
min
x1

b1C1x1 + Q̂2(x1, y1)

s.t. x1 ∈ X1.

The additional state yt−1 is referred to as an objective state. This state is not allowed to
appear in the constraints [55]. As stated before, Q̂t(·, ·) is piecewise linear and convex
in xt−1, but piecewise linear concave in yt−1 and as such, a piecewise bilinear saddle
function.

The concept of approximating saddle functions with saddle cuts goes back to Baucke
et al., who propose a deterministic algorithm to solve stochastic minimax dynamic
programs [11]. A related approach is used in robust dual dynamic programming (RDDP),
which uses an SDDP-like framework to solve multistage robust programs [76]. The main
idea is to compute lower and upper bounding saddle functions, which combine the ideas
of an outer approximation by cutting-planes and an inner approximation by convex
combinations of function values, the latter of which we discuss thoroughly in Sect. 8.
For stagewise dependent objective coefficients, it is sufficient to only use the lower
bounding saddle functions, so-called saddle cuts, from [11] to approximate the expected
value functions in SDDP.

Let (16) define βt and αt as in standard SDDP. Then, the r-th saddle cut for Q̂t+1(·, ·)
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is defined as the solution to the optimization problem

min
µt, θt+1

y⊤t µt + θt+1

s.t. (yrt )
⊤µt + θt+1 ≥ αrt+1 + (βrt+1)

⊤xt
∥µt∥∞ ≤ ν

(104)

where yrt = yikt denotes the current objective state in iteration i and for scenario k ∈ K.
Importantly, this problem has xt and yt as parameters. Hence, a saddle cut gives a valid
lower approximation for Q̂t+1(·, ·) for all xt and yt and can be shared between scenarios.
Moreover, the saddle cuts are tight at the trial state given by xikt and yikt , at which they
are created.

A crucial part of applying this approach is to bound the decision variable µt in (104)
by an appropriate constant ν. To this end, the expected value functions Q̂t(·, ·) are
required to be Lipschitz continuous with respect to yt−1. As shown in [11], to ensure
validity of the saddle cuts, the parameter ν has to be chosen at least as large as the
Lipschitz constant of Q̂t(·, ·) with respect to yt−1 under the dual norm ∥·∥1 of ∥·∥∞. If
it is chosen smaller, this may result in invalid cuts and suboptimal solutions. If it is
chosen too large, the cuts may become very weak [55].

Incorporating the saddle cuts, for each stage t = 2, . . . , T , iteration i and scenario
k ∈ K, the SDDP subproblems can be formulated as

Q̂
i

t
(xikt−1, y

ik
t−1, ξtj)

=





min
xt,µt,θt+1

(yikt )
⊤Ctxt + (yikt )

⊤µt + θt+1

s.t. xt ∈ Xt(xikt−1, ξtj)

(yrt )
⊤µt + θt+1 − (βrt+1)

⊤xt ≥ αrt+1, r ∈ Γt+1

∥µt∥∞ ≤ ν,

where yikt = Bt(ξ
k
t )y

ik
t−1 + bt(ξ

k
t ).

It can be shown that only finitely many different saddle cuts can be constructed.
As a consequence, the convergence results are the same as for standard SDDP [55].

14.8 Applying Dual SDDP

A third alternative that is tailored to stagewise dependent objective coefficients ct(ξt) in
(MSLP) is to apply dual SDDP [97], as presented in Sect. 8. Recall the value functions
derived from the dual problem of (MSLP):

D̃t(πt−1) :=





max
πt

qt∑

j=1

ptj

(
− h⊤tjπtj + D̃t+1(πtj)

)

s.t.

qt∑

j=1

ptj

(
T⊤
t−1,jπtj

)
+W⊤

t−1πt−1 ≤ ct−1.

(105)

These value functions are concave in πt−1. Crucially, here the objective coefficients
ct−1 appear in the RHS. If (ct)t∈[T ] is described as a linear AR process, we can expand
the state space as for the primal subproblems in Sect. 14.1, and the new state variable
c[t−2] appears in the RHS. Therefore, the obtained value functions are also concave in
c[t−2] and can be approximated from above by linear cuts. This can be done by applying
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dual SDDP [97], see Sect. 8.

14.9 Conditional Cuts

The previously discussed approaches all have in common that they require to expand
the state space or to set up a scenario tree or a discrete Markov chain from the true
(continuous) data process (or from existing historical data). van Ackooij and Warin
propose an alternative approach that works without these requirements [227]. The
approach is based on established methods in mathematical finance and optimal stopping
theory. A crucial assumption is that the data process (ξt)t∈[T ] is Markovian.

Assume that a finite set S of scenarios ξs, s ∈ S, is given, e.g., historical observations
of the data. This set is chosen in advance and not changed within SDDP. The first key
ingredient of the proposed variant of SDDP is to partition the set of possible values of
ξt for each stage t ∈ [T ] into a finite number |Lt| of hypercubes Dtℓ, ℓ = 1, . . . , |Lt|, also
called meshes. This partitioning is done in such a way that approximately a uniform
distribution of the samples is achieved [227].

As we explain below, the main idea now is to compute cuts conditioned on specific
meshes, i.e., for each mesh a different set of cuts is considered.

In the forward pass of SDDP, a subset Lt ⊆ St of scenarios are sampled for each
stage. This is done with the aim to obtain a trial solution xℓt for each mesh in expectation
for all t = 2, . . . , T . Each of these trial solutions is then used in the backward pass to
derive cuts.

In the backward pass, for any sequence (xiℓt )t∈[T ] of trial solutions, let
(
d(t)iℓ

)
t∈[T ]

denote the sequence of corresponding meshes, i.e., xiℓt has been determined in the for-
ward pass for ξℓt ∈ Dt,d(t)iℓ . At each stage t = T, . . . , 2, the SDDP subproblems are now
solved for all scenarios ξst for which ξst−1 ∈ Dt−1,d(t−1)iℓ . This means that for each trial
solution, all scenarios are considered which share the same mesh with the scenario used
to obtain the trial solution.

After solving these subproblems, the obtained solutions are used to construct cuts.
In contrast to standard SDDP, however, the cut coefficients are determined as estimates
of the corresponding conditional expectations [227]:

αitℓ(ξt−1) = ÊS|ξt−1

[
(πiℓst )⊤ht(ξt) +

∑

r∈Γt+1

ρiℓsrt αrt+1

]

and

βitℓ(ξt−1) = −ÊS|ξt−1

[
(πiℓst )⊤Tt−1

]
.

These estimates are computed by linearly regressing the terms for each considered sce-
nario ξst on a finite number of local base functions, e.g., monomials in Rpt , with support
on the considered mesh. Importantly, they are zero outside of this mesh. The idea is
that this way a cut of form

Qt(xt−1, ξt−1) ≥ ϕitℓ(xt−1, ξt−1) =
(
βitℓ(ξt−1)

)⊤
xt−1 + αitℓ(ξt−1), (106)

can be constructed, which provides a local update of the cut approximation in the
current mesh Dt−1,d(t−1) and is zero otherwise. Hence, the cut is associated with this
specific mesh and stored in a corresponding index set. In following iterations of SDDP,
for each subproblem then only the set of cuts is taken into account which is associated
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with the currently explored mesh [227]. Therefore, these cuts are called conditional
cuts.

The main drawback of this approach is that the described cuts are not guaranteed
to be valid underestimators, so the inequality in (106) is not guaranteed to be satisfied,
because their formula relies on estimators that may deviate from the true conditional
expectations.

Still, for problems with a low-dimensional vector ξt and Markovian dependency,
the policies obtained using conditional cuts are reported to be competitive with those
obtained by expanding the state space, but without an increase of the state dimension
and without the need to set up a scenario tree [227].

15 Extension to Convex Programs [relaxing Assump-
tion 6]

A natural extension of SDDP can be achieved by relaxing the assumption of linearity,
i.e., Assumption 6, but assuming a multistage stochastic convex problem (MSCP). In
the same vein as problem (3), this problem can be formulated in the general form

v∗C :=





min
x1,x2,...,xT

E


∑

t∈[T ]
ft(xt(ξ[t]), ξt)




s.t. g1(x1) ≤ 0
gt(xt−1(ξ[t−1]),xt(ξ[t]), ξt) ≤ 0 ∀ξ[t] ∀t = 2, . . . , T
xt ∈ Xt ∀t ∈ [T ]
xt(·) Ft-measurable ∀t ∈ [T ],

(107)

with ft(·) and gt(·, ·) some Ft-measurable functions with respect to ξ.
We take the following assumptions [78, 85].

Assumption 10. For fixed ξt ∈ Ξt, let ft(·, ξt) and gt(·, ·, ξt) (componentwise) be proper,
convex, lower semicontinuous and differentiable functions and Xt nonempty convex com-
pact sets for all t ∈ [T ].

Under stagewise independence (Assumption 2), finite randomness (Assumption 5)
and Assumption 10, (MSCP) in (107) can be expressed using its DPE in the following
form. For t = 2, . . . , T they read

Qt,C(xt−1, ξt) :=





min
xt

ft(xt, ξt) +Qt+1,C(xt)

s.t. gt(xt−1, xt, ξt) ≤ 0
xt ∈ Xt,

(108)

with expected value functions defined as usual by

Qt+1,C(xt) := Eξt+1 [Qt+1,C(xt, ξt+1)] (109)

and QT+1,C(xT ) ≡ 0. For the first stage, this yields

v∗C =





min
x1

f1(x1) +Q2,C(x1)

s.t. g1(x1) = 0
x1 ∈ X1.

(110)
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Applying SDDP to (MSCP) with convergence guarantees requires a more strict
recourse assumption compared to Assumption 9.

Assumption 11. (Extended relatively complete recourse [78]) Let aff(Xt) be the affine
hull of the reachable set Xt and Bt(δt) = {y ∈ aff(Xt) : ∥y∥ < δt} for some δt > 0 and
some norm ∥·∥.

For all t ∈ t = 2, . . . , T , all xt−1 ∈ Xt−1+Bt(δt) and all ξtj , j = 1, . . . , qt, the feasible
set of subproblems (108) is non-empty.

Intuitively, Assumption 11 demands that feasibility of the subproblems is also en-
sured for xt−1 slightly outside of Xt. This is required in order to guarantee Lipschitz
continuity of all value functions Qt,C(·, ·) and expected value functions Qt,C(·) [78].
Additionally, all value functions are convex, and thus can be approximated by linear
cuts. Such cuts can be generated using Lagrangian duality. More precisely, for all
t = 2, . . . , T , xt−1 ∈ Xt−1 and some multipliers πt ∈ Rmt (with mt the dimension of
gt(·, ·)), we introduce the Lagrangian function

Lt,C(πt;xt−1, xt, ξt) = ft(xt, ξt) + π⊤
t gt(xt−1, xt, ξt), (111)

the corresponding dual function

Lt,C(πt;xt−1, ξt) = min
xt∈Xt

Lt(πt;xt−1, xt, ξt) (112)

and the corresponding Lagrangian dual problem

max
πt≥0
Lt(πt;xt−1, ξt). (113)

Further, we make the following assumption which ensures no duality gap between
the primal subproblems (108) and their dual problems (113) [85]. Here, ri(S) denotes
the relative interior of some set S.

Assumption 12. (Slater condition [85]) For all xt−1 ∈ Xt−1 and all ξtj , j = 1, . . . , qt,
there exists xt ∈ ri(Xt) such that gt(xt−1, xt, ξtj) < 0.

Then, exploiting differentiability, a subgradient of Qt,C(·) at x̄t−1 is given by

β̄t = ∂Qt(x̄t−1) =

qt∑

j=1

ptj∇xt−1Lt,C(π̄tj ; x̄t−1, x̄tj , ξtj),

where x̄tj is an optimal solution to the primal problem (108) and π̄tj is an optimal
solution to the dual problem (113) given ξtj . Moreover, ∇xh(·) denotes the gradient of
some function h(·) with respect to x. Using this subgradient, a cut for Qt(·) is given by
[85]

Qt(xt−1) ≥ Qt(x̄t−1) + β̄⊤
t (xt−1 − x̄t−1).

Under Assumption 11, the norm of the obtained subgradients can be shown to be
bounded [85].

This cut derivation can be generalized to DPE including Qt(·) instead of Qt(·). The
results can also be generalized to cost functions ft(xt−1, xt, ξt) depending on the state
xt−1, see [85] for details.
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Contrary to the linear case, however, the expected value functions Qt,C(·) are no
longer polyhedral. As a consequence, they cannot be represented exactly by a finite
number of cuts. However, it can be shown that given the above assumptions and As-
sumptions 1 to 8 almost sure asymptotic convergence of SDDP is ensured. In [78] this
is proven for the case that xt−1 only enters the subproblems (108) in linear constraints,
that is, gt(·) being a linear function. In [85] the convergence proof is extended to the
more general setting presented above. For both convergence proofs also the differen-
tiability requirement can be dropped. As shown in [71], almost sure finite convergence
can be achieved for ε-optimal policies, for some predefined ε > 0.

In [92], Guigues and Monteiro propose a slightly different algorithmic approach,
called StoDCuP (Stochastic Dynamic Cutting Plane), in which not only Qt(·), t =
2, . . . , T , but also some or all nonlinear functions ft(·) and gt(·) are iteratively approxi-
mated by affine functions at the trial points visited in the forward pass.

Another variant of SDDP is DASC (decomposition algorithm for multistage stochas-
tic programs with strongly convex cost functions), which is introduced in [86]. It can be
applied when the (expected) value functions in (MSCP) are strongly convex. For this
type of problems, it is proposed to approximate them using functions Qt(·) which are
defined as the pointwise maximum of quadratic cuts instead of affine cuts. In contrast
to standard SDDP, this means that the subproblems to be solved in SDDP become non-
linear, but in return good approximations of the expected value functions are obtained
much quicker, and thus less iterations are expected [86]

While most research on SDDP deals with problems (MSLP), some of the extensions
presented previously and in the following sections have also been enhanced to the con-
vex case, e.g., risk-aversion [85], inexact cuts [88], regularization [90] or exact upper
bounding procedures [10, 119]. [85] contains an extension of the convergence proof from
[78] to the risk-averse case. Furthermore, the idea to use inexact cuts is generalized to
convex non-differentiable problems [91], see Sect. 21.

16 Extensions to Mixed-integer and Non-convex Prob-
lems [relaxing Assumption 6]

In many practical applications, multistage stochastic problems do involve integer de-
cision variables or nonlinear, but non-convex terms in the objective function or con-
straints, see Sect. 9. In general, such programs can be formulated in the same way as in
the convex case, but with the functions ft(·) and gt(·) possibly being non-convex. More-
over, in this case, Xt is the intersection of a convex compact set, e.g., representing box
constraints, with possible integer constraints, i.e., Xt ⊂ Rnt1t ×Znt2+ with nt = nt1+nt2.
We denote the optimal value by v∗NC .

Under stagewise independence (Assumption 2), the DPE can be written as (108)-
(110), but for distinction we denote the value functions by Qt,NC(xt−1, ξt) and the
expected value functions by Qt,NC(xt−1) for all t = 2, . . . , T . Both, integer variables
and non-convex functions make this a non-convex multistage stochastic programming
problem (MSNCP). Importantly, Qt,NC(·, ·) and Qt,NC(·) are no longer ensured to be
convex, but become non-convex functions in xt−1. They are also not guaranteed to be
(Lipschitz) continuous. This poses significant challenges on approximation algorithms
such as SDDP, as linear cuts are not sufficient to approximate Qt,NC(·).

To approach (MSNCP) by SDDP, different strategies can be used. As nonlinear or
mixed-integer stochastic programming are large research areas on their own, we give a
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brief overview here and for methodological details refer to the cited literature.

16.1 Convexification

A standard approach in practice is to solve a static convex relaxation (P̂NC) of (MSNCP),
which is associated with convex expected value functions Q̂t(·) for all t ∈ [T ]. Such re-
laxation can be achieved by relaxing the integrality constraints and replacing non-convex
functions with convex relaxations, such as McCormick envelopes [140]. In this case, the
Benders cuts determined by SDDP can be very loose, though. Therefore, only some
rough under-approximation v̂∗NC of the optimal value v∗NC may be determined. How-
ever, sometimes this is considered sufficient to obtain reasonable policies for practical
implementation. Also note that even if convex relaxations are considered when running
SDDP to compute a policy, the simulation of this policy afterwards can be executed
including integrality constraints and non-convex functions.

A second strategy is to keep the subproblems in SDDP non-convex, but to convexify
the expected value functions Qt,NC(·) in some sense. Often, in this case, the nonlin-
earities in (MSNCP) are first relaxed by piecewise linear approximations, such that all
subproblems are MILPs [36, 219]. In the backward pass, given some incumbent xikt−1,
for all t = T, . . . , 2 and all ξtj , j = 1, . . . , qt, instead of solving an LP relaxation of the
subproblems (10) (or its LP dual), a Lagrangian relaxation is solved where the coupling
constraints gt(xt−1, xt, ξtj) ≤ 0 are relaxed. For any trial point xikt−1 and any multiplier
πt ∈ Rmt , this relaxation can be written as

Li+1
t (πt;x

ik
t−1, ξtj) := min

xt
ft(xt, ξtj) +Qt+1(xt) + π⊤

t gt(x
ik
t−1, xt, ξtj)

s.t. xt ∈ Xt.

In the Lagrangian dual, this dual function is maximized over all multipliers πt:

vi+1
t,LD(x

ik
t−1, ξtj) := max

πt≥0
Li+1
t (πt;x

ik
t−1, ξtj). (114)

It is known from the theory on Lagrangian relaxation that the optimal value vi+1
t,LD(x

ik
t−1, ξtj)

coincides with the lower convex envelope of Qi+1
t,NC

(·, ξtj) at xikt−1 [75]. Therefore, cuts

obtained based on (114) are associated with a convexification of the value function. In
order to derive utilizable cut formulas from (114) some specific conditions have to be
satisfied by the constraints. Suppose the constraints gt(xt−1, xt, ξt) ≤ 0 can be rewritten
as

ĝt(xt−1)− ḡt(xt, ξt) ≤ 0, g̃t(xt, ξt) ≤ 0,

i.e., the nonlinear function being separable with respect to xt−1, and let πikjt denote
optimal multipliers in (114). Then, in line with Sect. 3.3, Lagrangian cuts can be
derived as [213]

Qt,NC(xt−1) ≥ αitk + (βitk)
⊤ĝt(xt−1),
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with

αitk =

qt∑

j=1

ptj

(
Lt(π

ikj
t ;xikt−1, ξtj)− (πikjt )⊤ĝt(x

ik
t−1)

)
,

βitk =

qt∑

j=1

ptjπ
ikj
t .

For linear functions ĝt(·) and ḡt(·, ·), a similar result is derived in [36].
The obtained Lagrangian cuts provably dominate standard Benders cuts, which

can be obtained by solving LP relaxations [213]. However, convergence of SDDP is
not guaranteed, since there may still be some duality gap between vi+1

t,LD(x
ik
t−1, ξtj) and

Qi+1
t,NC

(xikt−1, ξtj).

Moreover, generating Lagrangian cuts can be computationally costly. Various meth-
ods have been proposed to solve the Lagrangian dual (114), such as cutting-plane meth-
ods [111], subgradient methods [69, 167] or bundle methods [122], but all of them may
take considerable time compared to solving an LP relaxation. Advantageously, even
suboptimal Lagrangian multipliers πt yield valid cuts for Qt,NC(·).

Instead of a static convexification approach [36], Steeger and Rebennack [211, 213],
also apply the above principle in a dynamic fashion by considering DPE for the La-
grangian relaxations in the backward pass.

16.2 Exact Methods

Recently, there has been more research on directly applying the SDDP idea to problems
(MSNCP) to avoid the requirement of convexification and to close the optimality gap.

Step Functions. Given that the value functions Qt,NC(·) are monotonically in-
creasing or decreasing, they can be approximated by special step functions instead of
affine functions. This idea is incorporated into the SDDP framework in the so-called
mixed-integer dynamic approximation scheme (MIDAS) [163]. To determine the step
functions, mixed-integer linear subproblems have to be solved exactly at each stage and
in each iteration. In contrast to the previous approaches, convergence of MIDAS to an
approximately optimal policy for (MSNCP) is guaranteed.

SDDiP. For the mixed-integer linear case, the stochastic dual dynamic integer pro-
gramming (SDDiP) approach by Zou, Ahmed and Sun [234] allows for the computation
of optimal policies for (MSNCP) as long as all state variables xt are binary (or bounded
integer).

Consider the subproblems (10), but with binary state variables xt ∈ {0, 1}nt . Sim-
ilarly to the approaches in [36, 213, 219], Lagrangian dual problems are solved in the
backward pass to derive valid cuts. However, in SDDiP a new class of Lagrangian cuts
is proposed. The crucial idea is to introduce local copies zt of the state variables xt−1

and to relax the corresponding copy constraints in the Lagrangian relaxation:

Li+1
t (πt;x

ik
t−1, ξtj) :=min

xt,zt

(
ct(ξtj)

)⊤
xt +Qt+1(xt) + π⊤

t (x
ik
t−1 − zt)

s.t. xt ∈ Xt(zt, ξt)
zt ∈ [0, 1]da(n) .
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In the Lagrangian dual, this dual function is maximized over all multipliers πt:

ṽi+1
t,LD(x

ik
t−1, ξtj) := max

πt
Li+1
t (πt;x

ik
t−1, ξtj).

Then, Lagrangian cuts can be determined as

Qt,NC(xt−1) ≥ αitk + (βitk)
⊤xt−1, (115)

with

αitk =

qt∑

j=1

ptj

(
Lt(πikjt ;xikt−1, ξtj)− (πikjt )⊤xikt−1

)
,

βitk =

qt∑

j=1

ptjπ
ikj
t .

These cuts can be proven to be valid and, in particular, tight, as defined in Lemma 3.3.
The key aspect behind this tightness property is that for xt−1 ∈ {0, 1}nt the value
functions Qt,NC(·) coincide with their lower convex envelopes at all xt−1. Therefore,
Lagrangian cuts recovering the latter are also tight for the former.

Moreover, if only dual basic solutions are considered, the cuts (115) are also finite
in the sense of Lemma 3.3. Therefore, almost sure finite convergence of SDDiP to an
optimal policy of (MSNCP) is guaranteed [234].

If the state variables xt are bounded and general integer or even continuous, they
can be componentwise approximated by a (weighted) sum of binary variables in order
to apply SDDiP [234]:

xtj ≈
Ktj∑

k=1

2k−1βtjλtkj ,

with discretization precision βti (for integer xt, βt = 1), binary variables λtkj , k =
1, . . . ,Ktj , and Ktj ∈ N for all j = 1, . . . , nt. Under some recourse assumptions, it can
be proven that for a sufficiently fine binary expansion, an approximately optimal policy
for (MSNCP) is computed. However, it may be challenging to choose an appropriate
precision in advance in practice.

SDDiP is applied in the case studies [103], [175] and [234]. In the latter, additional
non-convex functions occur in (MSNCP), which are linearized using a Big-M reformu-
lation.

Non-convex Lipschitz cuts. As long as the value functions are assured to be
Lipschitz continuous (e.g. because the complete continuous recourse [234] property is
satisfied), the requirement of binary state variables can be dropped. This is exploited
in the stochastic Lipschitz dynamic programming (SLDP) method proposed by Ahmed
et al. in [1], which enhances SDDiP to general MILPs. In contrast to the Lagrangian
cuts (115), here, two types of non-convex, but Lipschitz continuous cuts are derived
to approximate Qt,NC(·): Reverse-norm cuts, which are constructed by using Lipschitz
constants, and augmented Lagrangian cuts, which are based on (115), but contain an
additional penalization term −µ∥xt−1 − xit−1∥, where µ denotes some user-controlled
parameter and ∥·∥ some arbitrary norm.

This idea is further refined by Zhang and Sun in [231] who propose a new framework
to solve multistage non-convex stochastic MINLPs as part of their complexity analysis
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of SDDP-like algorithms, see Sect. 4. The first key ingredient of their framework is to
consider Lipschitz regularizations of the value functions, see Sect. 17.2. This ensures
that the considered value functions are Lipschitz continuous without the requirement
of restricting recourse assumptions for (MSNCP). The second idea is to construct non-
linear generalized conjugacy cuts by solving conjugate dual problems, similar to the
approach in SLDP. Whereas of theoretical interest, this method has not been applied
in computational experiments yet. In particular, it is not clear how to solve the conju-
gate dual problems efficiently in general. Moreover, the framework requires the costly
solution of MINLP subproblems in each iteration.

Based on concepts from SDDiP and [231], Füllner and Rebennack present a new
framework to solve multistage (stochastic) non-convex MINLPs [73]. Here, the original
MINLP is outer approximated by MILPs using piecewise linear relaxations, which are
iteratively improved in an outer loop. In an inner loop, those MILPs are solved by an
SDDP- and NBD-like decomposition scheme, which combines the Lipschitz regulariza-
tion approach from [231] with binary approximation to generate non-convex cuts. In
contrast to SDDiP, the binary approximation is applied only temporarily to derive linear
cuts in the lifted binary space, which are then projected back to the original state space.
The pointwise maximum of this projection yields a Lipschitz continuous non-convex cut
for the value functions. The projection is computationally important, as it allows to
construct cuts which are guaranteed to be valid also for the outer loop MINLPs. The
binary approximation is dynamically refined within the algorithm, instead of a static
choice in advance. Another key difference compared to the approach from [231] is that
it is not required to solve MINLPs in each iteration to derive cuts. The cut projection
closure for a non-convex and discontinuous value function is illustrated in Figure 14.

Similar to SLDP [1], however, it is required to introduce a potentially large number of
auxiliary variables and constraints to express the non-convex approximations by mixed-
integer linear constraints. While the framework in [73] is presented for deterministic
problems, the inner loop decomposition method can be enhanced to the stochastic case.
Therefore, by appropriate modifications of the refinement and stopping criteria, also
the larger framework may be enhanced to stochastic problems.
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Figure 14: Non-convex and discontinuous value function with tight non-convex cut.
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17 Infeasible Subproblems [relaxing Assumption 9]

Under relatively complete recourse (see Assumption 9), it is guaranteed that any sub-
problem occurring in the DPE (4)-(6) and their approximations (10) has a feasible
solution. As we also assume boundedness, for each of these subproblems there exists
some optimal point with finite optimal value. Moreover, all value functions are finite-
valued.

In some practical applications, Assumption 9 may not be satisfied. For instance,
variable bounds may prevent equality constraints from being satisfied for all xt−1 and
all realizations of ξt, as is illustrated by a toy example in [84]. In such a case, the
primal subproblems become infeasible and the corresponding dual problems become
unbounded. Different measures can be taken to cope with infeasibilities.

17.1 Feasibility Cuts

One approach is to approximate the effective domains dom(Qt) of Qt(·) by cutting away
states xikt−1 ∈ Xt leading to infeasible subproblems on stage t. This can be achieved by
generating so called feasibility cuts in addition to the optimality cuts derived in Sect. 3.
These cuts have the form (βft )

⊤xt−1 ≤ αft , with cut gradient βft , cut intercept αft and
the superscript f signifying the cut as a feasibility cut. They can be derived as follows
[84].

Consider some stage-t subproblem

Qi
t

(
xikt−1, ξ

k
t

)
=





min
xt

(
ct(ξ

k
t )
)⊤
xt +Qi

t+1(xt)

s.t. xt ∈ Xt(xikt−1, ξ
k
t )

(βfrt+1)
⊤xt ≤ αfrt+1, r ∈ Γft+1

(116)

in the forward pass of SDDP. This problem may already contain some feasibility cuts,
which are indexed by r ∈ Γft+1. To assess feasiblity of problem (116) and construct a
feasibility cut if required, we consider the auxiliary feasibility problem

vft (x
ik
t−1, ξ

k
t ) :=




min
xt,y

+
t ,y

−
t ,zt

e⊤y+t + e⊤y−t + e⊤zt

s.t. Wt(ξ
k
t )xt + Iy+t − Iy−t = ht(ξ

k
t )− Tt−1(ξ

k
t )x

ik
t−1 (σt)

(βfrt+1)
⊤xt + Izt ≤ αfrt+1, r ∈ Γft+1 (ωrt )

xt ≥ 0
y+t , y

−
t , zt ≥ 0.

Here, slack variables y+t , y
−
t and zt are introduced to (116) to ensure feasibility. The

symbol I denotes the identity matrix and e denotes a vector of ones. If we have
vft (x

ik
t−1, ξ

k
t ) = 0, the subproblem (116) is feasible, otherwise, it is infeasible.

By strong duality of linear programs, vft (x
ik
t−1, ξ

k
t ) can be expressed as

vft (x
ik
t−1, ξ

k
t ) =

(
ht(ξ

k
t )− Tt−1(ξ

k
t )x

ik
t−1

)⊤
σt +

∑

r∈Rf
t+1

(αfrt+1)
⊤ωrt (117)

with optimal dual vectors σikt and ωikrt , r ∈ Rft+1. Then, in case of infeasibility it follows
that the term in (117) is larger than 0.
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To avoid the observed infeasibility on stage t in future iterations, the stage-(t − 1)
trial point xikt−1 should removed from the feasible set on stage t−1. This can be achieved
by adding the feasibility cut

−(σikt )⊤Tt−1(ξ
k
t )xt−1 + (σikt )

⊤ht(ξ
k
t ) +

∑

r∈Rf
t+1

(ωikrt )⊤αfrt+1 ≤ 0 (118)

to stage t− 1. By defining

αft−1 := −(σikt )⊤ht(ξkt )−
∑

r∈Rf
t+1

(ωikrt )⊤αfrt+1

and

βft−1 := −(σikt )⊤Tt−1(ξ
k
t ),

the cut (118) can be expressed in the previously stated form.
An important question when using feasibility cuts in SDDP is how to proceed, once

an infeasible subproblem has been detected and a new feasibility cut (118) has been
generated. For example, it is possible to stop the forward pass and traverse the stages
in backward direction until the root node of the scenario tree is reached. Alternatively,
the current subproblem can be resolved to obtain a new trial point xikt−1 and the forward
pass can be continued. For SDDP, no assessment and comparison of these strategies
has been conducted so far.

Another drawback is that feasibility cuts do not necessarily prevent infeasibilities
when the obtained policy is simulated outside of SDDP [84]. For this reason, most
commonly, the construction of feasibility cuts is circumvented in SDDP.

17.2 Penalization

Another common approach is to artificially enforce relatively complete recourse for a
problem at hand, even if it is not satisfied initially. This can be achieved by using soft-
constraints, that is, introducing slack variables to relax certain constraints and then
penalizing their violation in the objective function. In some applications, this may even
be practically justifiable, e.g., in load balance equations in power optimization slack
variables can be used to model load shedding or curtailment. However, a reasonable
choice of the penalty parameters is not trivial and may distort the expected value
functions [84].

Lipschitz Regularization. A specific penalization approach is to consider Lips-
chitz regularizations, also called Pasch-Hausdorff envelopes of the value functions. More
precisely, let ∥·∥ denote some norm, σt > 0 some constant and zt a local stage-t copy
of xt−1. Then, by allowing zt to deviate from the incumbent xikt−1 and penalizing such
deviations in the objective, for all t = 2, . . . , T and the approximate value functions (10)
we obtain the approximate Lipschitz-regularized value functions

QR;i+1
t

(xikt−1, ξt; ∥·∥) := min
zt≥0

{
Qi+1
t

(zt, ξt) + σt∥zt − xikt−1∥
}
.

These functions are proven to be Lipschitz continuous on Rda(n) with Lipschitz con-
stant σt. Moreover, for sufficiently large σt for all t ∈ [T ], it can be shown that by
considering the regularized problems still the original (MSLP) is solved to optimality
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[68, 231]. However, choosing σt in a sufficient way is an open challenge in practice. If
σt is chosen too small, it may even happen that the Lipschitz-regularized value function
will be constant −∞, given that the subproblem associated with Qi+1

t
(·, ξt) for some

fixed ξt is unbounded for any zt.

18 No Block-diagonal Structure [relaxing Assumption 7]

A key element of dynamic programming methods is that in the multistage decision
process only subsequent stages are linked in the constraints, as it allows one to express
(MSLP) using the DPE (4)-(6). In the single-problem formulation (3) of (MSLP), this
coincides with a block-diagonal structure, see Assumption 7.

In some cases, it may be relevant to include constraints spanning multiple stages
instead. One example is the incorporation of emission quotas that are not allowed to
be exceeded for a given time horizon in energy optimization problems [14, 178, 180].

In order to apply SDDP, the considered (MSLP) has to be reformulated to a problem
satisfying Assumption 7. This can be achieved by aggregating stages [54], even though
this changes the structure, solution and interpretability of (MSLP). An alternative
approach is augmenting the state space. For emission quotas, for instance, instead of
summing emissions over several stages and comparing them with the upper bound, at a
given stage the remaining emission allowances can be considered as an additional state
variable [178], see Sect. 9.

19 Infinite Horizon [relaxing Assumption 1]

So far, we considered problems (MSLP) with a finite time horizon T < ∞ (Assump-
tion 1). In some practical applications, however, repeated decisions have to be modeled
without a clear bound on the horizon. Considering such infinite-horizon problems is for
instance common for Markov decision processes [19]. In such a case, to ensure that v∗

is finite, a geometric discount factor δ < 1 is introduced for the cost at each stage.
Since SDDP performs a forward and a backward pass through all stages in each

iteration, it is not directly applicable to such problems, as no iteration would ever be
completed. Therefore, often different solution methods are utilized in such a setting,
see for example [9]. Still, recently there has been some focus on enhancing the SDDP
idea to problems with infinite time horizon.

One approach, called Benders squared or B2, is based on limiting each iteration of
SDDP to a finite horizon of τ stages, but to dynamically increase τ per iteration, e.g.,
by 1, until convergence is reached [145]. By presuming that the uncertainty occurs in
the RHS and is not only stagewise independent, but also i.i.d. for all stages t ∈ [T ],
almost sure convergence to an approximately optimal policy is assured. The reason is
that under this special assumption, Qt(·) are the same for all stages, so cuts computed
at stage t cannot only be incorporated at stage t− 1, but at all stages [145].

A different option to adopt SDDP to infinite horizon problems exists if such problems
possess some kind of periodical behavior. This idea is put forward by Shapiro and Ding
[203]. Assume that for some period m ∈ N, the distributions of ξt as well as the data
ct,Wt, ht and Tt−1 are the same for t = τ and t = τ +m for all τ = 2, . . . Then, under
Assumption 9, the functions Qt(·) and Qt+m(·) are equivalent as well. This means that
it is sufficient to derive cuts for Qt+m(·) at stages t = 2, . . . ,m + 1 in order to obtain
valid cuts for all stages.
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In the forward pass of SDDP, it is proposed to only consider a finite number of T
stages starting from stage 1, with T ≥ m + 1 in order to determine at least one trial
point for each of the differing expected value functions. In the case of T > m + 1,
multiple candidate trial points exist, at which cuts can be constructed in the backward
pass. Before starting the backward pass, the used trial points can be chosen from such
a candidate set randomly or by some heuristic.

For both approaches, B2 and periodic SDDP, for discount factors δ close to 1, the
influence of late stages on v∗ may be substantial, and thus policy evaluation and upper
bound determination may become very challenging and computationally costly. Still,
Shapiro and Ding [203] propose some proxies based on some finite, but sufficiently large
T . However, they do not provide a convergence proof.

A big advantage of SDDP for periodical problems is that it can also be applied to
increase the performance for problems with a finite, but very large number of stages,
given that they satisfy some notion of periodicity. The authors present an example where
for a 60-month horizon, exploiting the periodical structure of the problem, instead of a
60-stage problem only a 13-stage problem has to be solved [203]. This can make even
large problems amenable to SDDP and computationally tractable. It is also considered
to mitigate the so-called end-of-horizon effect, which we discuss in Sect. 9.

On a different note, the policy graph approach introduced by Dowson [56] to model
(MSLP) provides a natural extension to infinite-horizon problems, as it allows for cyclic
graphs. Solving such problems, similarly to [145], relies on a discount factor and a
truncation after a finite number of nodes in the graph. Then, approximate convergence
can be proven.

20 Random Horizon [relaxing Assumption 1]

Another way to relax Assumption 1 is to assume that the horizon T is random. For
simplicity, we discuss this aspect for the linear case only, even though it is presented in
[89] for the convex case.

Consider (MSLP) from Sect. 2.3, satisfying Assumptions 2 to 8, but with T not
being fixed. Instead, we take the following assumption:

Assumption 13. The time horizon T is a discrete random variable taking values in{
2, . . . , T

}
with known T ∈ N.

Then, the horizon T induces the Bernoulli process (Dt)t∈[T ] with realizations

Dt =

{
0, if the optimization period ended at t or before

1, otherwise,

and therefore T can be written as

T = min
{
t ∈ [1, T ] : Dt = 0

}
.

Under stagewise independence (Assumption 2), the decisions xt(·) are functions of
ξt, Dt and Dt−1. In other words, xt is F t-measurable with F t the sigma-algebra
σ(ξt,Dj , j ≤ t) [89].

As shown in [89], for (MSLP) with this type of random horizon, the following DPE
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equations can be derived. Importantly, the state space is augmented by Dt−1:

Qt(xt−1, Dt, Dt−1, ξt) = min
xt∈Xt(xt−1,ξt)

Dt−1

(
ct(ξt)

)⊤
xt +Qt+1(xt, Dt),

where

Qt+1(xt, Dt) = Eξt+1,Dt|Dt−1
[Qt+1(xt, ξt+1)]

and QT+1(xT , DT ) ≡ 0. For the first stage, we obtain

v∗ = min
x1∈X1(x0,ξ1)

c⊤1 x1 +Q2(x1, D1).

These DPE are the same as those that would be obtained for a problem with a fixed
number of stages T ∈ N, but an objective function including the stagewise dependent
stochastic process (Dt)t∈[T ]. As (Dt)t∈[T ] can be modeled by an inhomogeneous Markov
chain with two states, SDDP for processes with Markov chains can be applied [89], see
Sect. 14.5.

21 Performance Improvements

Apart from extensions to different problem classes, a lot of research on SDDP has
focused on improving its computational performance, because standard SDDP may
suffer from various performance issues.

As shown in Sect. 4.2, its worst-case iteration complexity is exponential in the num-
ber of stages T and the dimension nt of the state space, the latter being a well-known
drawback of cutting-plane methods in general. Whereas SDDP is successfully applied
to various large-scale problems in practice, see Sect. 9, with the optimality gap closed in
reasonable time, especially for problems with a large state space it may empirically fail
to converge. For instance, Ávila et al. [6] report instances for which the lower bounds
vi already start to stall at a gap of about 22%.

In addition to the high number of iterations required, also the computational effort
in each iteration can become substantial, even if the number of subproblems solved per
iteration has linear complexity, see Sect. 4.2. The reason is that with each iteration
of SDDP, the subproblems (10) become larger, as additional cuts are included. This
can increase the computational effort per iteration significantly, especially for problems
(MSLP) which require many iterations to converge, and thus many cuts to be generated.

In this section, we give an overview on modifications of SDDP to address these issues
and improve its performance.

21.1 Speeding up SDDP Iterations

We start with techniques attempting to speed up the SDDP iterations by reducing the
computational effort.

21.1.1 Cut Elimination and Selection

As mentioned before, with each added cut, the subproblems (10) become larger, and
thus potentially harder to solve. However, computational results indicate that SDDP
tends to generate a large number of similar or redundant cutting planes, which do not
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contribute much to the approximation quality in later iterations [6, 205]. Therefore, the
computational burden of SDDP may be reduced if only a subset of all cuts is taken into
account. However, this requires careful elimination of cuts which are dominated and do
not contribute to the solution process, or careful selection of decisive cuts, as otherwise
the performance of SDDP may even become worse.

Cut Elimination. One way to reduce the number of cuts is to eliminate some
cuts permanently. This can be done by repeatedly solving an auxiliary problem after a
specified number of iterations, checking feasibility of the system





θt+1 ≤ αr̃t+1 + (β r̃t+1)
⊤xt

θt+1 ≥ αrt+1 + (βrt+1)
⊤xt, r ∈ Γt+1 \ {r̃}

xt ∈ Xt

for each r̃ ∈ Γt+1, where Xt is assumed to be a compact set [205].
If this system is infeasible, then the cut θt+1 ≥ αr̃t+1 + (β r̃t+1)

⊤xt is redundant and
can be eliminated. The drawback of this method is that the auxiliary problem has to
be solved for all cuts in the system.

A different approach is to permanently store all cuts for each stage t, but only select
a subset of those cuts to be considered in each iteration i. Selection techniques based
on this approach are introduced in [8, 49].

Selecting Last Cuts. In this naive strategy, only the Γ ∈ N most recently added
cuts are selected. Although on average, late cuts may provide a better approximation
of Qt(·) than early ones, this strategy does not guarantee that all important cuts are
considered.

Level of Dominance. This strategy is a heuristic in order to consider only non-
dominated cuts, but avoid the computational effort of the above cut elimination ap-
proach. Using the most basic approach, only cuts are selected, which yield the highest
function value at one of the trial solutions considered so far within the algorithm. This
is called Level 1 Dominance [49]. A similar approach is proposed in [156], but there
cuts are permanently removed if they are dominated.

Let xℓt be the trial solution corresponding to the ℓ-th cut, ℓ ∈ Γt+1, and ϕ
r(xℓt) the

corresponding function value of cut r. Then, the values v(ℓ) := maxr∈Γt+1

{
ϕr(xℓt)

}
and

r(ℓ) := argmaxr∈Γt+1

{
ϕr(xℓt)

}
can be saved in a list and be updated every time a new

cut is constructed. Similarly, a Level H Dominance strategy can be used, selecting the
H ∈ N highest cuts for all trial solutions. Using this strategy, only previous trial points
are taken into consideration, though. Therefore, cuts may be excluded which provide a
significant benefit at not yet visited feasible states.

Another challenge is that this strategy draws a lot of resources to store all the
required cut information – especially, since the number of visited trial points increases
significantly in the course of SDDP. Memory requirements can even be relevant for Level
1, especially if the maximum function value at the trial solutions is attained by several
cuts. As a resort, in [87], the Limited Memory Level 1 strategy is introduced, selecting
only the oldest of such cuts. In [8] a more general cut selection strategy is applied to
SDDP and almost sure convergence is proven.

Dynamic Cut Selection. A dynamic, but also computationally more expensive
strategy is to select cuts dynamically within the SDDP framework. In [49] it is proposed
to remove all cuts at the beginning of each iteration. Then, for each stage t, each scenario
k, and each function ϕr(·), r ∈ Γt+1, the forward pass subproblem (10) is solved. If the
current cut yields the highest value at the obtained trial solution, it is added to the
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subproblem, and the next cut is considered. This way, only those cuts are selected that
contribute to the optimal solution in the current iteration. On the other hand, the
additional loop may slow down the convergence speed. The computational effort can
be reduced by some additional heuristics [49].

A similar approach is considered in [31]. Here, cuts are iteratively added as long as
they induce a substantial change in the current optimal value and up to a predefined
maximum number of cuts. Instead of iterating over all cuts, in each step, the cut with
the highest value at the current trial point is chosen as a candidate for selection.

Numerical results for sampling about 5,000 scenarios and computing 10,000 cuts in
SDDP indicate that all cut selection techniques can significantly speed-up the classical
SDDP method [49]. For example, the Level 1 strategy is reported to be ten times faster
than SDDP without cut selection. For dynamic cut selection, the reported speed-up is
much smaller. It is also shown that the cut selection strategies do not have a significant
impact on the quality of the determined policies and bounds. In [8], Limited Memory
Level 1 is identified as more efficient than pure Level 1.

21.1.2 Sampling Schemes

SDDP allows to use a variety of different sampling schemes which affect its computa-
tional performance.

Number of Forward Samples per Iteration. In standard SDDP, see Sect. 3, |K|
scenarios are sampled in each iteration, with |K| ≪ |S| and K ⊂ S. Philpott and Guan
even propose a method with only |K| = 1 for all iterations [164]. This strategy may
be particularly efficient in earlier iterations in order to obtain a rough approximation
of Qt(·) fast without wasting too much effort in regions which are likely to be far from
optimal. On the other hand, if the current policy is already reasonably good, it should
be beneficial to generate more than one new cut per stage and iteration [49]. Moreover,
if |K| = 1, then it is not possible to apply a statistical stopping criterion, see Sect. 7.

Therefore, instead of fixing |K|, a scenario incrementation strategy in which |K| is
gradually increased is a promising approach [204]. It is tested in [49].

Subsampling Trial Points. In the reduced sampling method (ReSa) [102] the
forward pass follows the same principle as in SDDP by sampling scenarios ξkt , k ∈ K,
for K ⊂ S. In the backward pass, however, to reduce the number of subproblems
to be solved, only a subsample K̃ ⊂ K is considered and only |K̃| curs are generated.
Considering more samples in the forward pass without additional effort in the backward
pass is helpful to compute accurate statistical upper bounds in an efficient way.

A similar approach is applied in the abridged nested decomposition (AND) method
[53]. It is claimed that SDDP is not well-designed for bushier scenario trees with large
values qt because solving |K|qt subproblems per stage may quickly become computation-
ally costly, especially for large |K|. On the other hand, a large |K| may be required to
get reliable statistical upper bounds and to incorporate information on sufficiently many
scenarios in the trajectories (xikt )k∈K. As a remedy, an alternative sampling scheme is
proposed. In the forward pass, on each stage t ∈ [T ] a set Kt of realizations is sampled
and trial points xikt are computed. On stage t+1, however, only a few branching values
are used as parameters (in the forward and backward pass), which can either be sampled
from or be a convex combination of all xikt , k ∈ Kt. The latter idea allows to compute
trial points which contain information on a large set of scenarios, while keeping the
computational effort in the backward pass at a minimum. The main drawback of AND
is that the special structure of the forward pass allows no direct estimate of an upper
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bound [102].
Sampling in the Cut Generation Process. The computational effort in the

backward pass can be reduced if the subproblems (10) are not solved for all noise terms
ξtj , j = 1, . . . , qt, in each iteration, but only for a subset. The remaining elements that
are required to compute a valid cut can then be used from previous iterations where
the corresponding noise ξtj was sampled.

Even more, if the uncertainty is restricted to the RHS ht of (MSLP), then the dual
feasible set does not depend on it. Therefore, optimal dual multipliers which correspond
to dual extreme points can be re-used between different realizations j = 1, . . . , qt. This
allows for the following procedure: Assume that in each iteration i, for each stage t ∈ [T ]
only one noise term ξ̂it is sampled and used to compute optimal dual multipliers π̂it and
(scenario-specific) cut intercepts α̂it as in (21.2.1). For each stage t = 2, . . . , T , all dual
multipliers and intercepts obtained up to iteration i are then stored in a set Dit defined
by Dit = Di−1

t ∪
{(
π̂it, α̂

i
t, ξ̂

i
t

)}
.

For any ξtj , j = 1, . . . , qt, and a given incumbent xit−1, the dual multipliers used to
compute a new cut can then be determined as

(
π̂ijt , α̂

ij
t , ξ̂

ij
t

)
= argmax

(π̂t,α̂t,ξ̂t)∈Di
t

{
α̂t − π̂⊤

t Tt−1x
i
t−1 + π̂⊤

t

(
ht(ξtj)− ht(ξ̂t)

)}
.

Hence, not necessarily optimal dual multipliers for ξtj are used, but the ones in Dit
providing the best approximation for realization ξtj at x

i
t−1.

Let πitj = π̂ijt and αitj = α̂ijt + (π̂ijt )
⊤(ht(ξtj) − ht(ξ̂jt )

)
for all j = 1, . . . , qt. Then,

a cut can be defined by using subgradient formula (19) and taking expectations as in
formula (16). Note that our description slightly differs from the presentation in the
literature, as we adapted it to our cut formulas in Sect. 3.3.

This idea for the cut generation process is used in two algorithms related, which
mainly differ by when cuts are constructed. The CUPPS (convergent cutting-plane and
partial-sampling) method [38] only contains a forward pass, in which both trial points
are computed and cuts are generated using some sample ξk

′
t . It has the drawback that

the obtained cuts are not necessarily tight. First, the dual multipliers obtained from
formula (21.1.2) are not necessarily optimal for all j = 1, . . . , qt. Second, no backward
pass is used, and thus new information in form of cuts for stage t+1 are not taken into
account when deriving a new cut for stage t.

The dynamic outer approximation sampling algorithm (DOASA) [164] contains a
forward pass and a backward pass. In the former, a trajectory of trial points (xikt )k∈K
is computed as in SDDP (note that in [164] |K| = 1 is chosen, but this is not manda-
tory). In the backward pass, cuts are constructed using a backward sample ξk

′
t and

formula (21.1.2). It is proven that this generalization of SDDP also exhibits almost
sure finite convergence [164].

21.1.3 Inexact SDDP

Recall Lemma 3.3 (b), stating that the cuts generated in the backward pass of SDDP
are tight for Qi+1

t (·) at the incumbent xikt−1. This result is premised on using optimal
dual multipliers in the cut formula, i.e., solving the LP subproblem or its dual to global
optimality (exact solution). Whereas such an exact solution is the standard assumption
in the literature on SDDP, computationally it may be more efficient to solve subproblems
only approximately, especially early in the solution process when the cut approximations
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are suboptimal anyway [88].
We first introduce the notion of inexact cuts.

Definition 21.1 (ε-inexact cut). For any t = 2, . . . , T , ε > 0 and a trial point xikt−1, let
ϕt : Rda(n) → R be an affine function satisfying

Qt(xt−1) ≥ Qi+1
t (xt−1) ≥ ϕt(xt−1) (validity)

for all xt−1 ∈ Xt−1 and

Qi+1
t (xikt−1)− ϕt(xikt−1) ≤ ε (ε-tightness).

Then, ϕt(·) defines an ε-inexact cut at xikt−1 [88].

Importantly, inexact cuts still yield valid lower approximations of Qt(·) for all t =
2, . . . , T . We now address how inexact cuts can be determined.

Linear Problems. For any iteration i in SDDP, any t = 2, . . . , T and any trial
point xikt−1, consider the linear subproblem (10). For simplicity, we assume that Xt =
{xt ∈ Rnt : xt ≥ 0}.

For some ε > 0, let πitjk be an ε-optimal feasible solution for the dual problem of (10)

given ξtj and let θitjk be the corresponding dual objective value for j = 1, . . . , qt. Then,
analogously to Sect. 3.3, an ε-inexact cut can be defined by [88]

Qt(xt−1) ≥ ϕitk(xt−1) := αitk + (βitk)
⊤xt−1,

with intercept and subgradient defined by

αitk =

qt∑

j=1

ptj
(
θitjk − (βitkj)

⊤xikt−1

)
,

βitk = −
qt∑

j=1

ptj(π
i
tkj)

⊤Tt−1,j .

Nonlinear Differentiable Problems. Consider a multistage stochastic convex
program (MSCP) as introduced in Sect. 15, that is, satisfying Assumptions 10 to 12.
Moreover, recall the definitions of the Lagrangian function (111), the dual function (112)
and the Lagrangian dual problem (113).

Then, an ε-inexact cut can be derived using a pair of approximate primal-dual solu-
tions as follows [88]. Let x̄tj be an ε-optimal feasible primal solution for problem (108)
given some noise realization ξtj , j = 1, . . . , qt, and some trial point x̄t−1, and let π̄tj be
an ε-optimal feasible solution for the corresponding Lagrangian dual (113).

We define

η(ε) := ℓ(π̄tj ; x̄t−1, x̄tjξtj) := max
xt∈Xt

∇xtLt,C(π̄tj ; x̄t−1, x̄tj , ξtj)
⊤(x̄tj − xt). (119)

Assume that ft(xt, ξtj) takes finite values for all xt ∈ Xt and that the term in (119) is
finite. Then, an ε-inexact cut can be defined by

Qt(xt−1) ≥ ϕitk(xt−1) := αitk + (βitk)
⊤xt−1,
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with intercept and subgradient defined by

αitk =

qt∑

j=1

ptj
(
Lt,C(π̄tj ; x̄t−1, x̄tj , ξtj)− η(ε)− (βitkj)

⊤xikt−1

)
,

βitk =

qt∑

j=1

ptj∇xt−1Lt,C(π̄tj ; x̄t−1, x̄tj , ξtj).

We refer to [88] for a convergence analysis of SDDP using inexact cuts, both for
the linear and the nonlinear convex case. In particular, it is shown that the obtained
dual solutions are almost surely bounded and that the error terms η(εit) vanish as i
approaches +∞.

Non-differentiable Problems. Using SDDP with inexact cuts is generalized to
non-differentiable problems in [91]. In this paper, inexact cuts are derived using two dif-
ferent approaches. In the first approach, it is assumed that the objective and constraint
functions have saddle-point representations. The second approach is more general, but
requires the introduction of additional variables and constraints.

More precisely, consider a multistage stochastic convex program (MSCP) as intro-
duced in Sect. 15 and assume that it is satisfying Assumptions 10 and 11 except for
the differentiability properties. Using a local copy zt of the state variable xt−1, the
approximate value functions can be reformulated as

Qt,C(xt−1, ξt) :=





min
xt,zt

ft(xt, ξt) +Qt+1,C(xt)

s.t. gt(zt, xt, ξt) ≤ 0
xt ∈ Xt

xt−1 = zt.

(120)

Assume that this modified subproblem satisfies a slater condition analogous to Assump-
tion 12. Additionally, consider the Lagrangian dual problem

max
πt
Lt(πt;xt−1, ξt). (121)

with dual function

Lt,C(πt;xt−1, ξt) =





min
xt∈Xt

ft(xt, ξt) +Qt+1,C(xt) + π⊤
t (xt−1 − zt)

s.t. gt(zt, xt, ξt) ≤ 0
xt ∈ Xt,

which is obtained by relaxing the copy constraint.
Given a trial point x̄t−1 and a noise realization ξtj , j = 1, . . . , qt, let x̄tj denote an εP -

optimal feasible solution of problem (120) and let π̄tj be an εD-optimal feasible solution
of problem (121). Then, an (εP + εD)-inexact cut is defined by function

ϕitk(xt−1) :=

qt∑

j=1

ptj

(
ft(x̄tj , ξtj)− (εP + εD) + π̄⊤

tj(xt−1 − x̄t−1)
)
.

For more details and a convergence analysis we refer to [91].
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21.2 Reducing the Number of SDDP Iterations

We now consider techniques with the attempt to reduce the required number of itera-
tions of SDDP until convergence is reached.

21.2.1 Multi-cut SDDP

In the backward pass of SDDP, for any t ∈ [T ] and any xikt−1, k ∈ K, subproblems (10)
are solved for all noise realizations ξtj , j = 1, . . . , qt. By taking expected values, a
cut (17) is derived. Such cuts are then incorporated into the stage-(t− 1) subproblem
using a single variable θt ∈ R by

ϕitk(xt−1) = (βitk)
⊤xt−1 + αitk ≤ θt,

see Sect. 3.3. This is referred to as a single-cut approach.
A different approach, called multi-cut, that is well-studied for (nested) Benders de-

composition [27, 74, 144], is to not aggregate the dual information, but to generate a
separate cut for each noise realization ξtj , j = 1, . . . , qt. This requires to introduce vari-
ables θt,ℓ and cut approximations Qi+1

t+1,ℓ(·) for all ℓ = 1, . . . , qt in the stage-t subproblem.
In this case, we obtain cuts

ϕitkj(xt−1) := (βitkj)
⊤xt−1 + αitkj ≤ Qt(xt−1, ξtj), j = 1, . . . , qt,

where, analogously to the derivation in Sect. 3.3, βitkj denotes a subgradient ofQ
i+1
t

(·, ξtj)
at xikt−1 for k ∈ K, j = 1, . . . , qt, and α

i
tkj is defined by

αitkj := Qi+1
t

(xikt−1, ξt)− (βitkj)
⊤xikt−1.

The expectation is then taken in the objective function instead of the cut formula:

Qi+1
t

(xikt−1, ξtj) = min
xt∈Xt(xt−1,ξt)

(
ct(ξtj)

)⊤
xt +

qt+1∑

ℓ=1

pt+1,ℓQ
i+1
t+1,ℓ(xt).

This way, more specific information about the value functions is incorporated into
the subproblems, hopefully leading to fewer iterations. Moreover, it can be shown that
multi-cut SDDP has the same convergence properties as SDDP [8]. On the downside,
the number of decision variables and cuts grows significantly compared to the single-
cut approach, especially if qt is large, which increases the computational effort for each
iteration. Therefore, so far multi-cut SDDP has rarely been considered in the litera-
ture. It should be most promising when qt is only of moderate size. For the two-stage
case, a rule of thumb is that a single-cut approach should be preferred if the number of
realizations is considerably larger than the number of first-stage constraints [26]. Note
that in principle also a trade-off between single-cut and multi-cut is possible by par-
tially aggregating cuts [23, 28]. Another approach to reduce the computational burden
of multi-cut SDDP is to combine it with cut selection strategies, see Sect. 21.1.1, as
proposed in [8].

We return to Example 3.4 to illustrate the multi-cut approach.

Example 21.2. (Continuation of Example 3.4) Using multi-cut SDDP, at stage 3,
instead of Q3(·), the functions Q3(·, ξ3) are separately approximated by cuts for ξ3 ∈
{1, 2, 4}. These value functions are displayed in Figure 15. Each of them consists of
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only two linear pieces, so two cuts are required to represent them exactly. In contrast,
Q3(·) consists of four linear segments. Therefore, multi-cut SDDP should need less
iterations than single-cut SDDP to achieve convergence.

ξ3 = 1

ξ3 = 2ξ3 = 4

0 1 2 3 4 5 6
0

2

4

6

x2

Q
3
(x

2
,ξ

3
)

Figure 15: Stage-3 value functions for Example 3.4.

21.2.2 Batch Learning and Experience Replay

While SDDP is used in stochastic programming, dynamic programming or optimal
control, its methodology also shares some characteristics with Q-learning algorithms,
which are studied in reinforcement learning, see Remark 3.1. This can be exploited by
translating established performance enhancing techniques from reinforcement learning
to SDDP.

As one such technique, Ávila et al. [6] propose to use a batch learning technique
called experience replay in SDDP. The motivation of this is the following: In SDDP, the
cut approximations Qt(·) of the expected value functions Qt(·) are generated recursively
in a backward pass through the stages t = T, . . . , 2. This means that approximation
errors at later stages are propagated to earlier stages by means of the cut approximations
Qt(·), which then leads to loose cuts at these earlier stages and so on. However, this
implies that errors are accumulated at early stages. The authors identify this as a driver
for the slow convergence of SDDP, as it favors over-exploring of suboptimal regions and
the generation of redundant cuts throughout the iterations.

Experience replay addresses this issue by revisiting previous trial points xit and
updating the cut approximations Qt(·) at these points. This seems counterintuitive at
first glance because cuts are generated at already visited points instead of improving
the approximation of Qt(·) at regions of Xt that have not been visited yet. However,
by taking into account all the information currently available to update Qt(·) at xit, it
avoids that on earlier stages τ < t unnecessarily poor approximations of Qt(·) at xit are
used for several more iterations.

More precisely, the proposed SDDP method works as follows. A predefined number
of iterations of standard SDDP are executed and the corresponding trial points xit are
stored in a replay memory Mt for all t ∈ [T −1]. When the sizes of the replay memories
reach a predefined cardinality Z, then the experience replay step is initiated. This step
performs a backward pass through the stages t = T − 1, . . . , 2. For each stage t, first,
a batch Bt ⊆ Mt of trial points is selected from the replay memory (also a full batch
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Bt = Mt is possible). For each trial point x̃ℓt from this batch, with ℓ = 1, . . . , |Bt|,
the previously generated cut is removed from Qi+1

t+1(·) and a new cut is constructed by
solving the associated subproblems (10) (including the experience replay updates from
following stages) for x̃ℓt. With these cuts, Qi

t+1(·) is updated and then, the previous
stage is explored.

It is shown that experience replay manages to improve the convergence behavior of
SDDP, and also the out-of-sample performance of the obtained policies [6]. However,
experience replay comes at an increased computational effort, as every Z iterations an
additional backward pass solving qt|Bt| subproblems for each stage t = T, . . . , 2 has to be
performed. For full batches, this adds up to qt|K|Z LPs per stage. For this reason, the
authors suggest to parallelize both standard SDDP iterations as well as the experience
replay. They report computational results which indicate that batch learning is better
exploiting parallelism than standard SDDP.

21.2.3 Regularization

As Kelley’s cutting-plane method [111, 146], SDDP exhibits an iteration complexity
which is exponential in the dimension nt of the state variables, see Sect. 4.2. An
unfavorable characteristic of cutting-plane methods, and also of SDDP, in this regard is
zig-zagging behavior. This means that trial points xit and x

i+1
t computed in subsequent

iterations can be located far away from each other in different regions of the state space,
and that with each new cut the minimum of the subproblems (10) is again attained in
the respective other region. In particular, this implies that these regions of Xt experience
very tight, but almost redundant approximations Qt(·) of Qt(·), while other regions are
not properly explored and thus the approximation quality at the true optimum improves
very slowly.

In convex and nonsmooth optimization, regularization techniques called bundle
methods are shown to entail faster convergence than classical cutting-plane methods
[122], as they mitigate zig-zagging by stabilizing subsequent trial points around a sta-
bility center (also called incumbent). Hence, it looks promising to translate these regu-
larization techniques to SDDP.

A common regularization approach, which is predominantly used in two-stage stochas-
tic programming [191, 194], is convex quadratic regularization. Here, some quadratic
deviation of xt from a stability center x̂t is penalized in the objective function for sta-
bilization. An application of quadratic regularization to SDDP is not straightforward
because using a separate stability center for each scenario s ∈ S is computationally
infeasible due to the exponential growth of |S| in T [5].

Therefore, Asamov and Powell [5] propose a regularization technique for linear prob-
lems, in which stability centers are considered part of the state variable, and thus are
the same for all realizations of ξtj , j = 1, . . . , qt. Then, in the forward pass the objective
function is modified to

c⊤t xt +Qi
t+1(xt) +

γi

2
(xt − x̂i−1

t )⊤Ht(xt − x̂i−1
t ), (122)

with a positive semidefinite matrix Ht and some sequence (γi)i∈N satisfying γi ≥ 0 for
all i and limi→∞ γi = 0. The stability centers x̂i−1

t are chosen as the previous forward
pass solution, i.e., the solution is stabilized around a “known” region of the domain of
Qt(·). This idea is generalized to nonlinear problems and improved in [90] by considering
weighted averages of several previous forward pass solutions.

110

183



Using objective (122), a convex, continuous and linearly constrained quadratic pro-
gramming problem has to be solved in each forward pass step of SDDP, hopefully, re-
ducing the required number of iterations. Importantly, only the forward pass of SDDP
is changed, while the backward pass remains the same. In particular, only LPs have
to be solved in the backward pass. As the cuts are still finite (see Lemma 3.3), almost
sure finite convergence is assured. In computational tests, it is shown that this method
exhibits faster convergence than SDDP, in particular for a high state dimension nt [5].
This speed-up is especially important for regularized DDP, see the numerical experi-
ments in [90]. DDP (Dual Dynamic Programming) is the corresponding deterministic
counterpart of SDDP (when ξt is deterministic for all t ∈ [T ]).

Whereas the above approach stabilizes the solution around a “known” region of the
domain of Qt(·), in a sampling setting, it is not clear whether this is always beneficial.
For the current sample ξkt a region may be identified and used for stabilization, which
is no appropriate indicator for all ξtj , j = 1, . . . , qt. Additionally, as pointed out in
[226], the condition limi→∞ γi = 0 may evoke that the regularization is diminished and
the proposed method in [5] reduces to standard SDDP before convergence is obtained,
although regularization may be particularly important close to the optimal solution.
Therefore, this is claimed to be detrimental to convergence speed [226].

Van Ackooij et al. [226] also address that convergence of proximal bundle methods
usually requires the stability centers to be feasible, which is not guaranteed for SDDP
subproblems where the feasible set changes with xit−1. Therefore, they propose to
combine SDDP with a level bundle method, which does not face this requirement.

For stage t and scenario ξkt , trial solutions x
ik
t are obtained by solving

{
min
xt

ψt(xt)

s.t. xt ∈ Xt(xikt−1; ℓt)
(123)

with ψt(xt) : Rnt → R a given convex function, e.g., ψt(xt) := x⊤t xt, and

Xt(xikt−1; ℓt) :=




argmin
xt≥0

max
{
c⊤t xt +Qi

t+1(xt), ℓt
}

s.t. Wtxt = ht − Tt−1x
ik
t−1.

(124)

If the maximum in (124) is attained by the first term, then xikt obtained by solv-
ing (123) is an ordinary SDDP trial point, referred to as a normal iterate. Otherwise,
problem (123) reduces to a typical level bundle method subproblem, yielding a regular-
ized level iterate xikt .

The determination of a good level ℓt and of an efficient regularization for SDDP are
still open questions, and heuristics are proposed in [226] to choose ℓt.

An alternative stabilization approach is proposed in [15] based on the concept of
Chebyshev centers of polyhedrons. Here, in the forward pass of SDDP, the subprob-
lems (10) are modified such that the computed trial states are defined as Chebyshev
centers of the polyhedrons given by previously constructed cuts and an appropriate
upper bound. It can be shown that this approach is equivalent to modifying the cut
formula to

−(βrt+1)
⊤xt + θt+1 ≥ αrt+1 + σ̄t∥(1, ct + βrt+1)∥, r ∈ Γt+1. (125)

The authors use the Euclidean norm ∥·∥2 in (125), however, different choices are possible
as well.
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Geometrically, the additional term in (125) changes the cut intercept, thus lifting
the cut. For σ̄t = 0, the usual SDDP trial point xit is determined, whereas for σ̄t > 0
an offset in the objective compared to the standard SDDP subproblem is considered,
yielding a different iterate. To actually improve the performance of SDDP, choosing σ̄t
appropriately is crucial, yet not trivial. Adversely, if σ̄t is chosen too large, basically any
feasible point can become the new trial solution. Moreover, to ensure convergence, it has
to be ensured that σ̄t converges to zero in the course of the algorithm. In [15] heuristics
are used to determine σ̄t, but it is not clear whether they guarantee performance gains
for SDDP.

21.3 Parallelization

The performance of SDDP cannot only be improved by modifications of the algorithm
itself, but also by its implementation and computational execution. Since several com-
putational steps in SDDP are independent of each other, a performance improvement
can be achieved by parallelization.

Different parallelization strategies have been proposed for SDDP. They can be clas-
sified with respect to how the workload is distributed among different processors and
how the processors are synchronized. Based on this observation, Ávila et al. [6] present
a taxonomy of parallelization strategies, which we follow in this section.

Parallelization by Scenario. This is the predominant parallelization strategy for
SDDP in the literature. Mostly, a synchronized version is proposed. In the forward
pass, for all t ∈ [T ], the subproblems (10) are solved for |K| different scenarios, which
are sampled independently. The uncertain data ξkt and the trial solutions xkt−1 in each
of those problems do only depend on scenario k. Therefore, the different scenarios
ξk, k ∈ K, can be assigned to different processors. Assuming P different processors,
each processor is assigned P

|K| scenarios and solves all corresponding subproblems. A
master process is then used to aggregate the objective values and compute the upper
bound estimate (21). This means that there is a synchronization point for all processors
at the end of the forward pass.

In the backward pass, a similar approach is followed. The subproblems are again
distributed among the processors by scenarios, in such way that for a specific stage t =
T, . . . , 2 and a scenario-based trial point xkt−1, the subproblems for all noise realizations
ξtj , j = 1, . . . , qt, are solved by the same processor. Evenly distributing the problems
between processors, this way each processor solves P

|K|qt subproblems. However, it is also
possible to let the master process assign new scenarios to processes once they become
idle instead of using a fixed assignment scheme [166].

After solving all associated subproblems, each processor then generates a cut for
Qt(·) and sends it to the master process. When cut generation is finished for all k ∈ K,
the processors are synchronized so that all of them can proceed with the same set of
cuts on stage t − 1. As stated in [99], this synchronization can be partially relaxed to
avoid waiting for single slow processors. Instead, the master process can assign stage-
(t − 1) subproblems to available processors even if not all cuts have been generated
for stage t yet. Numerical results show that such partial relaxation can improve the
computational performance of SDDP. However, the number of cuts to wait for to achieve
an optimal trade-off between faster iterations and better approximation of Qt(·) is
problem-dependent.

Even more, an asynchronous approach can be used where processors immediately
get back to stage t − 1 after generating their cuts at stage t, using all cuts currently
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available without waiting for other processes to finish [57].
A major shortcoming of parallelization by scenario is that using more processors

becomes more beneficial the more scenarios |K| are sampled in the forward pass. How-
ever, as discussed in Sect. 21.1.2, it is often favorable to only consider one or a few
scenarios per iteration, especially in earlier iterations. Choosing large |K| may lead to
the accumulation of similar trial points and the generation of redundant cuts [6]. There-
fore, exploiting the potential performance gains of additional processors may wrongly
incentivize to sample more scenarios than reasonable, thus not accelerating but slowing
down the solution process. Additionally, Ávila et al. [6] report computational results
indicating that (synchronized) parallelization by scenario scales poorly when increas-
ing the number of samples |K| due to the combination of long waiting times between
processors and low quality cuts.

Parallelization by Node. Using parallelization by node, the strategy is to draw
only one or a few samples in the forward pass, as this is often computationally preferable.
Then, the forward pass is not necessarily parallelized. In the backward pass, the work
is distributed among the processors by nodes of the recombining tree (cf. Sect. 2.1).
That means that even for the same k ∈ K and the associated trial point xkt−1, the
subproblems (10) for different realizations ξtj , j = 1, . . . , qt, may be solved by different
processors. The processors are synchronized at each stage to generate aggregated cuts
(given that a single-cut approach is used).

In [6], the authors report clear computational benefits using parallelization by node
compared to parallelization by scenario, and also better scaling properties. However,
these results require that the processors can access a shared memory, otherwise the
computational overhead is too large. Another drawback is that distributing subproblems
for different ξtj , but the same xikt−1 among different scenarios prevents the exploitation
of warm starting techniques.

Parallelization by node can also be used in an asynchronous way, as proposed by
Machado et al. [136] in their asynchronous SDDP method. In this method, the sub-
problems of all stages t = 1, . . . , T are solved simultaneously. More precisely, in each
step, for all stages t = 1, . . . , T and scenarios k ∈ K, the subproblems for all realizations
ξtj , j = 1, . . . , qt, are solved. Once a processor is finished, it constructs a new cut for
Qt(·) using all available information. If a required processor has not finished yet, multi-
pliers πtkj from previous steps are re-used. The generated cut can then be incorporated
in stage t− 1 in the next step. Additionally, each processor generates a new trial point
which can be used at stage t in the next step. In contrast to SDDP iterations, this
approach requires several steps to propagate information through all stages. Therefore,
an ordinary forward pass can only be observed implicitly over several stages. This has
to be considered in the computation of upper bounds.

Independent of the applied strategy, parallelizing SDDP in practice comes with con-
siderable challenges, such as communication overhead, problem-dependent performance
and lack of reproducibility of results. Therefore, its potential to speed up SDDP in
general is naturally limited [6].

21.4 Aggregation Techniques

Aggregating information in (MSLP) is another tool with potential to speed up the
SDDP solution process.

One approach is to aggregate the variables and constraints of several time periods
in a single stage, thus solving a problem with a smaller horizon T . This is straight-
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forward for NBD [54], where each node of the aggregated problem is a subtree of the
original scenario tree, even though only few time periods can be aggregated to keep the
subproblems tractable. However, it cannot be directly generalized to the sampling and
stagewise independent setting in SDDP. The main issue is that it is difficult to model
the uncertainty appropriately, without violating non-anticipativity [54].

An alternative approach is to aggregate realizations of ξt on each stage (or a sub-
set of stages) [207]. To this end, for some stage t, the support Ξt is partitioned into
clusters Cℓ

t , ℓ = 1, . . . , Lt, with Lt ∈ N. Instead of solving subproblems associated with
Qi+1
t

(xikt−1, ξtj) for all j = 1, . . . , qt in the backward pass of SDDP, subproblems associ-

ated with Qi+1
t

(xikt−1, ξ̄
ℓ
t ) are solved for clusters ℓ = 1, . . . , Lt, with ξ̄ℓt :=

∑
j∈Cℓ

t

ptj
p̄ℓt
ξtj ,

and p̄ℓt the probability of cluster Cℓ
t . This should be beneficial in early iterations where

policies are still far away from optimal and a fine information structure unnecessarily
slows down the solution process.

Using subgradients and intercepts associated with clusters Cℓ
t , ℓ = 1, . . . , Lt, coarse

cuts can be generated for Qt(·). Given that Wt and ct are deterministic, these cuts are
valid underestimators for Qt(·) by Jensen’s inequality [207]. They are not guaranteed
to be tight, though.

The authors in [207] discuss several different refinement strategies, such as refine-
ments within the SDDP backward pass (the partition at stage t is refined as soon as
a coarse cut does not improve the approximation of Qt(·) at the trial point xikt−1) or
refinements outside of SDDP. In the latter case, SDDP is performed on a coarse recom-
bining tree, which is iteratively refined once the algorithm has stopped. Computational
results show that this latter approach performs significantly better than the first one
due to less computational overhead. However, identifying when SDDP should be best
stopped to perform a refinement remains a challenging task.

22 Outlook

In this tutorial-type review, we give an overview on the motivation, theory, strengths
and weaknesses, extensions and applications of SDDP.

While many proposals have been made in the last 30 years on how to extend SDDP
and on how to improve its performance, there still remain open research questions,
leaving room for future improvement. Among the most crucial topics are the following.

1. Stopping. To this date, in many applications SDDP is stopped heuristically, e.g.,
based on a fixed number of iterations or stabilization of lower bounds, which
leaves the task to define a reasonable stopping criterion to the user. Recently,
there has been some pioneering work on developing deterministic upper bounding
techniques and stopping criterions, but these are still limited, as they require
significant computational effort.

2. Upper bounds in risk-averse SDDP. Developing efficient upper bounding tech-
niques is especially relevant to risk-averse variants of SDDP, where the commonly
used nested risk measures do not allow for employment of their pendants from
risk-neutral SDDP. Lately, different risk measures have been proposed, which
avoid this issue. However, such risk measures usually hamper interpretability.
Therefore, it can still be regarded an open question how risk should be optimally
measured in SDDP in order to obtain a computationally tractable problem and
at the same time to properly reflect the true risk preferences of a decision-maker.
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3. Distributionally robust SDDP. Recently, the consideration of distributional uncer-
tainty in SDDP has gained more interest. However, while distributionally robust
optimization is a flourishing research area, incorporating it into SDDP is still in
its early stages, with potential for further improvements.

4. Non-convex extensions. In many applications, nonlinear functions or integer vari-
ables are required to appropriately model the problem at hand. As the (expected)
value functions become non-convex in this case, traditional cutting-plane tech-
niques fail to approximate them correctly. Starting with SDDiP, recently, there has
been a trend to extend the NBD and SDDP frameworks to non-convex problems.
Lagrangian-type cuts, which are possibly non-convex, show theoretical potential
in approximating non-convex functions. However, their construction is compu-
tationally costly and subject to rather strong technical assumptions, such that
especially large-scale non-convex problems remain computationally intractable.
Consequently, in the future, the trade-off between computationally efficient cut
generation techniques and best possible approximations of the value functions
needs to be further explored.

5. Regularization. As a descendant of Kelley’s cutting-plane method, SDDP has
a computational complexity which grows exponentially in the dimension of the
state variables. Therefore, it can become computationally intractable for problems
with high-dimensional state space. This is aggravated by common reformulations,
e.g., in case of stagewise dependent uncertainty, that artificially augment the
state space. For Kelley’s method, regularization methods have proven helpful in
accelerating the solution process. Whereas some first attempts have been made
to regularize SDDP, an efficient regularization remains an open challenge.

6. Reinforcement learning techniques. As the case of batch learning shows, SDDP
can benefit from acceleration techniques that are well-known and established in
reinforcement learning, but have not been translated to SDDP setting yet. By
exploiting its affinity to Q-learning, there should be a lot of potential to improve
the computational performance of SDDP in practice.

7. Decision-dependent uncertainty. The only standard assumption for SDDP that
has not been relaxed in the literature yet, is to allow for stagewise-dependent
stochastic processes modeling the uncertainty in (MSLP). This topic has still to
be studied.
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[63] J. Dupačová and V. Kozmı́k. SDDP for multistage stochastic programs: preprocessing via scenario
reduction. Computational Management Science, 14(1):67–80, 2017.

[64] J. Dupačová and V. Kozmı́k. Structure of risk-averse multistage stochastic programs. OR Spec-
trum, 37:559–582, 2015.

[65] D. Duque and D. P. Morton. Distributionally robust stochastic dual dynamic programming. SIAM
Journal on Optimization, 30(4):2841–2865, 2020.

[66] J. L. Durante, J. Nascimento, and W. B. Powell. Risk directed importance sampling in stochastic
dual dynamic programming with hidden Markov models for grid level energy storage. Preprint,
available online at https://arxiv.org/pdf/2001.06026.pdf, 2020.

[67] A. Eichhorn and W. Römisch. Polyhedral risk measures in stochastic programming. SIAM Journal
on Optimization, 16(1):69–95, 2005.

118

191



[68] M.J. Feizollahi, S. Ahmed, and X. A. Sun. Exact augmented Lagrangian duality for mixed integer
linear programming. Mathematical Programming, 161(1-2):365–387, 2017.

[69] M. L. Fisher. An applications oriented guide to Lagrangian relaxation. Interfaces, 15(2):10–21,
1985.

[70] B. C. Flach, L. A. Barroso, and M. V. F. Pereira. Long-term optimal allocation of hydro generation
for a price-maker company in a competitive market: latest developments and a stochastic dual
dynamic programming approach. IET Generation, Transmission & Distribution, 4(2):299–314,
2010.

[71] M. Forcier and V. Leclère. Trajectory following dynamic programming algorithms without finite
support assumptions. Journal of Convex Analysis, 30(3):951–999, 2023.

[72] S.M. Frank and S. Rebennack. An introduction to optimal power flow: theory, formulation, and
examples. IIE Transactions, 48(12):1172–1197, 2016.
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lizando PDDE. PhD thesis, COPPE-UFRJ, 2013.

[220] A. Tilmant, L. Beevers, and B. Muyunda. Restoring a flow regime through the coordinated
operation of a multireservoir system: The case of the Zambezi River basin. Water Resources
Research, 46(7):1–11, 2010.

[221] A. Tilmant and R. Kelman. A stochastic approach to analyze trade-offs and risks associated with
large-scale water resources systems. Water Resources Research, 43(6), 2007.

[222] A. Tilmant and W. Kinzelbach. The cost of noncooperation in international river basins. Water
Resources Research, 48(1):1–12, 2012.

[223] A. Tilmant, J. Lettany, and R. Kelman. Hydrological risk assessment in the Euphrates-Tigris river
basin: A stochastic dual dynamic programming approach. Water International, 32(2):294–309,
2009.

[224] A. Tilmant, D. Pinte, and Q. Goor. Assessing marginal water values in multipurpose multireservoir
systems via stochastic programming. Water Resources Research, 44(12):1–17, 2008.

[225] D. M. Valladão, T. Silva, and M. Poggi. Time-consistent risk-constrained dynamic portfolio
optimization with transactional costs and time-dependent returns. Annals of Operations Research,
282:379–405, 2019.

125

198 Paper A – SDDP Review



[226] W. van Ackooij, W. de Oliveira, and Y. Song. On level regularization with normal solutions in
decomposition methods for multistage stochastic programming problems. Computational Opti-
mization and Applications, 74:1–42, 2019.

[227] W. van Ackooij and X. Warin. On conditional cuts for stochastic dual dynamic programming.
EURO Journal on Computational Optimization, 8(2):173–199, 2020.

[228] R. M. van Slyke and R. Wets. L-shaped linear programs with applications to optimal control and
stochastic programming. SIAM Journal on Applied Mathematics, 17(4):638–663, 1969.

[229] F. Wahid. River optimisation: short-term hydro-bidding under uncertainty. Optimization and
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Christian Füllner a, Steffen Rebennack a

a Karlsruhe Institute of Technology (KIT), Institute for Operations Research, Stochastic Op-

timization, Karlsruhe, Germany

Published in Mathematical Programming, suggested citation:
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Abstract
We propose a new decomposition method to solve multistage non-convex mixed-
integer (stochastic) nonlinear programming problems (MINLPs). We call this algo-
rithm non-convex nested Benders decomposition (NC-NBD). NC-NBD is based
on solving dynamically improved mixed-integer linear outer approximations of the
MINLP, obtained by piecewise linear relaxations of nonlinear functions. ThoseMILPs
are solved to global optimality using an enhancement of nested Benders decomposi-
tion, in which regularization, dynamically refined binary approximations of the state
variables and Lagrangian cut techniques are combined to generate Lipschitz continu-
ous non-convex approximations of the value functions. Those approximations are then
used to decide whether the approximating MILP has to be dynamically refined and in
order to compute feasible solutions for the original MINLP. We prove that NC-NBD
converges to an ε-optimal solution in a finite number of steps. We provide promising
computational results for some unit commitment problems of moderate size.

Keywords Nested Benders decomposition · Mixed-integer nonlinear programming
(MINLP) · Global optimization · Non-convexities · Non-convex value functions

Mathematics Subject Classification 90C26 · 90C11 · 49M27

1 Introduction

We propose a new decomposition method to solve multistage non-convex mixed-
integer (stochastic) nonlinear programming problems (MINLPs), i.e., optimization
problems modeling a sequential decision making process. Continuous and integer
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decision variables and possibly non-convex objective functions and constraints are
allowed for any of the T stages.

If multistage (stochastic) problems are too large to be solved by off-the-shelf
solvers, then tailored solution techniques are required.One example are decomposition
algorithms making use of the specific sequential and block-diagonal structure of the
constraints. The problems are decomposed into a large number of smaller but coupled
subproblems which are solved iteratively. One of the most common decomposition
methods is Benders decomposition, introduced by Benders [6] for linear programs.
Since then, it has been enhanced to several more general cases, such as convex prob-
lems (generalized Benders decomposition (GBD) [19]), two-stage stochastic linear
problems (L-shaped method [49]) and multistage (stochastic) linear problems (nested
Benders decomposition (NBD) [8]). To mitigate the curse-of-dimensionality related
to NBD in the stochastic case, Pereira and Pinto introduced its sampling-based variant
stochastic dual dynamic programming (SDDP) [35], which was followed by various
extensions [23,37].

The basic principle of NBD is to use the dynamic programming formulation of a
given multistage problem. For each stage t ∈ {1, . . . , T }, a parametric subproblem
is considered. This subproblem contains only those constraints, variables and parts
of the objective function related to this specific stage, plus a value function deter-
mining the optimal value of all following stages for a given stage t solution. Since
the value functions are not known in advance, they are iteratively approximated with
linear cutting-planes. However, this approach requires the value functions to be con-
vex. Therefore, most decomposition methods for multistage problems cover linear
programs, as their value functions are guaranteed to be piecewise linear and convex.

However, in many applications, also integer variables or non-linearities occur nat-
urally. In such case, the value functions are no longer convex and may also no longer
be continuous. Therefore, the classical Benders approach fails, as it is impossible to
construct a tight convex polyhedral approximation [47].

Thus, more sophisticated approaches have been developed to use Benders-type
decomposition methods for non-convex MINLPs, mostly for the two-stage case. Li
et al. propose an extension of GBD to the non-convex case for two-stage stochastic
MINLPs with functions separable in integer and continuous variables [29,30]. In [28],
a branch-and-cut framework is presented, where in each node Lagrangian and gen-
eralized Benders cuts are constructed. Related methods are proposed in [26,33]. All
these methods have not been generalized to the multistage case yet.

To handle non-convexities in multistage problems, a common idea is to use convex
relaxations of the value function, e.g., by relaxing the integrality constraints forMILPs
or by convexifying nonlinear terms in a static manner. Dynamically convexifying
the non-convex value functions using Lagrangian relaxation techniques allows for a
polyhedral approximation by Lagrangian cuts [10,45,46]. None of these discussed
approaches can guarantee to compute an optimal solution for non-convex multistage
problems, though.

Only recently, some substantial progress has beenmade in generalizing the Benders
decomposition idea to multistage problems with non-convex value functions directly.
In [36], step functions are used, instead of cutting-planes, to approximate the value
functions, presuming their monotonicity.
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For themixed-integer linear case, the stochastic dual dynamic integer programming
(SDDiP) approach is proposed [55]. SDDiP is an enhancement of NBD and SDDP
which allows the solution of multistage (stochastic) MILPs in case of binary state
variables. Themethod is based on generating special Lagrangian cuts,which reproduce
the lower convex envelope of the value function. As the latter is piecewise linear and
exact at binary state variables, strong duality is ensured and the problem is solved to
global optimality in a finite number of iterations. SDDiP is applied to multistage unit
commitment in [54]. It is also applied to a problem containing non-convex functions
in context of hydro power scheduling by using a static binary expansion of the state
variables and a Big-M reformulation [22].

As long as the value functions are assured to be Lipschitz continuous and some
recourse property is satisfied, the requirement of binary state variables can be dropped,
as is shown by the Stochastic Lipschitz Dynamic programming (SLDP) method in [1].
Here, two types of non-convex Lipschitz continuous cuts are introduced: reverse-norm
cuts and augmented Lagrangian cuts.

In [52], Zhang and Sun present a new framework to solve multistage non-convex
stochastic MINLPs, generalizing both SDDiP and SLDP. Similarly to [1], nonlinear
generalized conjugacy cuts are constructed by solving augmented dual problems.
Moreover, as Lipschitz continuity is not assured for the value functions, a Lipschitz
continuous regularized value function is considered within the decompositionmethod.

In this article, we propose a newmethod to solvemultistage non-convexMINLPs to
proven global optimality, which we refer to as non-convex nested Benders decompo-
sition (NC-NBD). The method combines piecewise linear relaxations, regularization,
binary approximation and theSDDiPLagrangian cuts in a unique and dynamic fashion.
Its basic idea is to solve aMINLP by iteratively improvedMILP outer approximations,
which in turn are solved using a NBD-based decomposition scheme similar to that in
[52]. The binary and piecewise linear approximations are dynamically refined.

In particular, the original MINLP is outer approximated by MILPs, which are
iteratively improved in an outer loop. Those MILPs are obtained by piecewise linear
approximations of all occuring nonlinear functions, which is an established method in
global optimization [50]. In general, using MILP relaxations is a common approach
to global optimization solvers [27,32,53].

In an inner loop, the multistage MILPs are solved to approximate optimality in
finitely many steps. This is achieved using a NBD-based decomposition method. In a
forward pass through the stages, trial solutions for the dynamic programming equations
are determined. As Lipschitz continuity of the value functions is not guaranteed, this is
done solving a regularized forward pass problem, as proposed in [52]. For a sufficiently
large, but finite parameter, the regularization is exact [14,52], so that still the desired
MILP is solved.

In a backward pass through the stages, nonlinear non-convex cuts are constructed
to approximate the non-convex value functions of the MILP. To this end, we make
use of a binary approximation of the state variables in the subproblems. As proven
in [55], for MILPs with binary state variables we obtain (sufficiently) tight cuts by
solving Lagrangian dual problems. The constructed linear cuts are then projected back
to the original state space, yielding a nonlinear, non-convex, but Lipschitz continuous
approximation of the value functions. The binary approximation is refined dynamically
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within the inner loop if required. By careful construction, all existing cuts remain valid
even with such refinements.

Once the MILP approximation is solved to approximate optimality, the cut approx-
imation of the value functions is used in the outer loop to determine bounds for the
optimal value of the originalMINLP. If the bounds are sufficiently close, the algorithm
terminates with an ε-optimal solution. Otherwise, the piecewise linear approximations
are refined, and thus the approximatingMILP is tightened. Again, by careful construc-
tion it is ensured that all previously generated cuts remain valid.

To our best knowledge, the above concepts have not been combined in this dynamic
way to solve multistage non-convex MINLPs yet. In that regard, our work also differs
significantly from the aforementioned solution techniques.

Our proposed decomposition scheme uses the same regularization technique and
similar convergence ideas as in [52]. However, a fundamental difference is that we only
apply this technique to solve MILP outer approximations of the original MINLP. This
has the advantage that in our framework MINLPs have to be solved only occasionally.
In contrast, in [52], MINLPs are assumed to be solved by some oracle in each iteration
and cuts are generated directly for the MINLP, which is computationally challenging.
Moreover, contrary to our approach, the method in [52] does not require recourse
assumptions, but in return it only allows for state variables in the objective function.

In contrast to SDDiP [55] and SLDP [1], we solve MINLPs, and thus consider a
larger solution framework with an inner and an outer loop. However, even the inner
loop, in which MILPs are solved, differs from both approaches.

To solve MILPs with non-binary state variables using SDDiP, it is proposed to
apply a static binary approximation [22,55]. This way, the original MILP is replaced
by an approximating problem with only binary state variables. It can be shown that
for a sufficiently small approximation precision, i.e., an sufficiently large number
of binary variables, an ε-optimal solution of an MILP can be determined with this
approach under some recourse assumption [55]. However, for a given problem at
hand, it is not necessarily clear in advance how this precision has to be chosen, as
knowledge on a problem-specific Lipschitz constant is required. This becomes even
more challenging in our framework, where an MINLP is iteratively approximated by
MILPs, forwhich the required precisionmay change.On the contrary,withinNC-NBD
the binary approximation is refined dynamically if required.

More crucially, in NC-NBD the binary approximation is applied temporarily only
to derive cuts in the backward pass. These cuts are then projected back to the original
state space. This construction has a few key advantages: Firstly, it is ensured that cuts
remain valid even if the binary precision is refined later on. Secondly, the original
state variables remain continuous and are not limited to values which can be exactly
represented by the binary approximation. This, in turn, ensures that the true MILPs
are solved in the inner loop. Consequently, the generated cuts are valid for the value
functions of theseMILPs and, due to their relaxation property, also the originalMINLP.
Analogously, the obtained lower bounds are valid for the corresponding optimal values.
Importantly, this is not true for SDDiP with static binary approximation, where the
state space is permanently modified and only approximations of the true MILPs are
solved in the inner loop. In our approach to solve MINLPs, it is crucial to determine
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guaranteed valid cuts for the value functions in both loops. Therefore, SDDiP cannot
be used effectively in this setting.

Our cut generation approach also differs from that in SLDP [1] (and also [52]),
where augmented Lagrangian problems are solved to determine nonlinear cuts. While
our method comes at the cost of introducing additional (binary) variables and con-
straints compared to those approaches, e.g., for the cut projection, we avoid solving
dual problems containing nonlinear penalization in the objective. Such penalization
may be disadvantageous as it prevents decomposition of the primal problems which
are solved in the solution process of the dual problem. Additionally, in contrast to
SLDP [1], we do not assume continuously complete recourse, but only the weaker
complete recourse, as we circumvent the requirement of Lipschitz continuity of the
true value functions by regularization.

The main contributions of this paper are as follows:
(1) We present the non-convex nested Benders decomposition (NC-NBD) method

to globally solve general multistage non-convex MINLPs. The method com-
bines piecewise linear relaxations, regularization, binary approximation and
cutting-planes techniques in a unique way. In contrast to existing approaches,
all approximations are improved dynamically where and when it is reasonable.
To our knowledge, this is the first decomposition method for general multistage
non-convex MINLPs.

(2) A crucial requirement using dynamic refinements is to ensure that all previously
determined cuts remain valid within the refinement process and have not to be
generated from scratch. We ensure this by a special cut projection and careful
choice of the MILP relaxations.

(3) We prove that the proposed NC-NBD method converges to an ε-optimal solution
of P in a finite number of steps under some mild assumptions.

(4) We provide first computational results of applying NC-NBD to moderate-sized
instances of a unit commitment problem to illustrate its efficacy.

To enhance readability, we focus our discussions solely on deterministic MINLPs.
However, the presented NC-NBD idea can also be applied to stochastic programs with
stagewise independent and finite random variables.

The remainder of the paper is organized as follows.We present the considered prob-
lem formulation and assumptions in Sect. 2. Then, we introduce the NC-NBD with its
different steps in Sect. 3, before presenting convergence results in Sect. 4. Afterwards,
we provide computational results for instances of a simple unit commitment problem
in Sect. 5. We conclude with Sect. 6.

2 Problem formulation

We consider the following multistage non-convex MINLP problems

(P) v := min
x1,...,xT ,y1,...,yT

T∑

t=1

ft (xt , yt )

s.t. (xt , yt ) ∈ Mt (xt−1) ∀t = 1, . . . , T .
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Here t = 1, . . . , T denotes the different stages with the final stage T ∈ N. For each
stage t , the decision variables can be separated into mixed-integer state variables xt ∈
Rn1t+ × Zn2t+ and local variables yt ∈ Rn3t × Zn4t , with x0 = 0. We define nt := n1t + n2t
as the number of state variables. The sets Mt (xt−1) appearing in the constraints for
each stage t are defined by

Mt (xt−1) := {(xt , yt ) ∈ Xt × Yt : gt (xt−1, xt , yt ) ≤ 0, ht (xt−1, xt , yt ) = 0} .

Xt and Yt denote box constraints; X0 := {0}. As such, Xt and Yt are compact sets for
all stage-t variables. All functions ft : Xt × Yt → R, gt : Xt−1 × Xt × Yt → Rm1

t

and ht : Xt−1 × Xt × Yt → Rm2
t are well-defined on their domains.

To exploit its multistage structure, we solve (P) by some extension of NBD. NBD
makes use of the dynamic programming formulation of (P), where each stage-t sub-
problem, t = 1, . . . , T , can be denoted by

(Pt(xt−1)) Qt (xt−1) := min
xt ,yt ,zt

ft (xt , yt ) + Qt+1(xt )

s.t. (zt , xt , yt ) ∈ Mt

zt = xt−1,

with the value function Qt (·) of stage t and QT+1(·) ≡ 0. Note that xt links different
stages, i.e., xt is a decision variable for (Pt(xt−1)) and a parameter for (Pt+1(xt)).
For the first stage, we obtain that Q1(x0) = v with x0 ≡ 0. Importantly, subproblem
(Pt(xt−1)) is enhanced by introducing local copies zt of the state variables xt−1 and
the copy constraints zt = xt−1. Those copy constraints will prove crucial for the cut
generation later on. Taking into account the local copies, we define

Mt := {(zt , xt , yt ) : zt ∈ Xt−1, (xt , yt ) ∈ Mt (zt )} .

As the subproblems (Pt(xt−1)) are non-convexMINLPs, the value functions Qt (·)
may be non-continuous and non-convex, two detrimental properties for Benders
decomposition approaches. To ensure that the value functions Qt (·) are at least lower
semicontinuous (l.sc.), we make the following technical assumptions:

(A1). For all t = 1, . . . , T ,

(a) the functions ft are Lipschitz continuous on Xt × Yt ,
(b) the functions gt and ht are continuous on Xt−1 × Xt × Yt .

(A2) (Complete recourse). For any stage t and any x̄t−1 ∈ Xt−1, there exists some
(zt , xt , yt ) ∈ Xt−1 × Xt × Yt which is feasible for (Pt(x̄t−1)).

As all variables are box-constrained, the feasible set Mt (xt−1) of (Pt(xt−1)) is
bounded. With assumption (A1) and the recourse assumption (A2), all subproblems
(Pt(xt−1)) are feasible and bounded. Analogously, (P) is feasible with finite optimal
value v. Note that under assumption (A2)we can restrict to generating optimality cuts
in NC-NBD without the need to introduce Benders feasibility cuts.

We obtain our required l.sc. property of the value functions Qt (·).
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Lemma 2.1 Under assumptions (A1) and (A2) the value functions Qt (·) are l.sc. for
all t = 1, . . . , T .

Proof Fixing all integer variables, the l.sc. follows from Exercise 1.19 in [41]. As Xt

and Yt are bounded, only finitely many different values can be attained by the integer
variables. The minimum of finitely many l.sc. functions is l.sc. ��

In the next section, we introduce the NC-NBD method, which combines regular-
ization, piecewise linear approximations, binary expansion and special cutting-plane
techniques in a unique way to solve (P).

3 Non-convex nested Benders decomposition

3.1 The NC-NBD principle

The basic idea of the NC-NBD algorithm is to employ that MILP problems can be
solved exactly by enhancements of NBD under certain assumptions and that MINLPs
can be outer approximated by MILPs iteratively. Thus, the method consists of two
main components. The first component is an inner loop which is used to determine an
approximately optimal solution of some MILP outer approximation (̂P�) of problem
(P). This approximation is determined by piecewise linear relaxations of nonlinear
functions in (P). The second component is an outer loop which refines this outer
approximation iteratively (indexed by �) to improve the approximation of the optimal
value v of (P). The NC-NBD is summarized in Algorithm 1 and illustrated in Fig. 1.

The inner loop follows the general principle of NBD to solve (̂P�). It consists of
a forward and a backward pass through the stages t = 1, . . . , T in each iteration i .
In the forward pass, the stage-t subproblem (̂P�

t (xt−1)) is approximated in two dif-
ferent ways: The value function Q̂t+1(·) of the following stage is replaced by some
outer approximation Q�i

t+1(·). Moreover, a regularization is added to ensure Lips-
chitz continuity of the corresponding value functions. Thus, regularized subproblems
(̂PR,�i

t (xt−1)) are solved, as proposed in [52], yielding trial solutions x̂�i
t−1 and an

upper bound v̂
�i
for (̂P�).

In the backward pass, the approximations Q�i
t+1(·) of Q̂t+1(·) are improved itera-

tively by constructing additional cuts. As the value functions are possibly non-convex,
those cuts are nonlinear. Importantly, cuts for Q̂t+1(·) are also valid for Qt+1(·), as
the first is an outer approximation of the latter.

In the literature, different ways are proposed to obtain nonlinear optimality cuts
and to ensure that the inner loop converges to the optimal value v̂� of (̂P�). One
method is to generate reverse-norm cuts [1]. However, this only works if the value
functions themselves are Lipschitz continuous which is not guaranteed in our setting.
Another, more general method is to solve some augmented Lagrangian dual problem,
as proposed in [1,52].

We propose a third and newmethod, based on the SDDiP technique [55].We utilize
that we can generate sufficiently tight cuts by solving a Lagrangian dual in a lifted
space, where all state variables are binary. Thus, we (temporarily) approximate the
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Algorithm 1 NC-NBD
Input: Problem (P) satisfying (A1), (A2), tolerances ε > ε̂ > 0, scalar Kt for all t , initial bin. approx.

precisionβt ∈ (0, 1)Kt−1 , upper bounds v0 = +∞, lower bound v̂0, initialQ0
t (·) for all t and triangulations

T 0
γ for all γ ∈ Γ , � ← 0.

1: while v� − v̂� > ε do

2: Set � ← � + 1, i ← 1. Set Q�,1
t (·) ← Q�−1

t (·), v̂�,0 ← v̂�−1, v̂
�,0 ← v̂

�−1
.

� PIECEWISE LINEAR RELAXATION REFINEMENT

3: Refine the piecewise linear approx. of all γ ∈ Γ to obtain T �
γ by longest-edge

bisection of the simplex corresponding to
(
(̂z�t , x̂

�
t , ŷ

�
t )

)
t=1,...,T .

4: Determine an outer approximation (̂P�) of (P) by using a MILP model and
appropriate shifts for the piecewise linear approximations.

� INNER LOOP

5: Solve subproblem (̂PR,�i
1 (x�i

0 , Q�i
2 )). Store the optimal point (̂z�i1 , x̂�i

1 , ŷ�i
1 ).

6: while v̂
�i − v̂�i > ε̂ do

� FORWARD PASS

7: for stages t = 2, ..., T do
8: Solve subproblem (̂PR,�i

t (x̂�i
t−1, Q�i

t+1)) satisfying (A3). Store the optimal

point (̂z�it , x̂�i
t , ŷ�i

t ).

9: v̂
�,i = min

{
v̂

�,i−1
,
∑T

t=1

(
f̂t (̂x�i

t , ŷ�i
t ) + σt‖x̂�i

t−1 − ẑ�it ‖
)}

.

10: end for

� BINARY APPROXIMATION REFINEMENT

11: if Forward Pass solution in i equals that in i − 1 then

12: Set Kt j ← Kt j + 1 for all t and j . Set βt j = Uj

(∑Kt j
k=1 2

k−1
)−1

.

13: end if

� BACKWARD PASS

14: for stages t = T , ..., 2 do
15: Determine the best binary approx. x̂ iB,t−1 = Bt−1λ

i
t−1 of the state x̂

�i
t−1.

16: Solve subproblem (D�i
Bt (λ

i
t−1, Q

�,i+1
t+1 )). Store the optimal multiplier π�i

t and

the corresponding optimal value c�i
t of the Lagrangian dual function.

17: Construct the cut φ�i
Bt (λt−1) = c�i

t + (π�i
t )�λt−1 in the binary state space.

18: Model the optimal value function φ�i
t of projecting φ�i

Bt to the original space
by MILP constraints using the KKT conditions.

19: Set Q�,i+1
t (xt ) = max{Q�i

t (xt ), φ�i
t (xt )}.

20: end for

� FIRST STAGE UPDATE

21: Solve subproblem (̂PR,�i
1 (x�i

0 , Q
�,i+1
2 )). Store the optimal point (̂z�i1 , x̂�i

1 , ŷ�i
1 ).

22: Update v̂�,i to the optimal value Q̂
�i
1

(0, Q�,i+1
2 ).

23: i ← i + 1.
24: end while
25: Set v̂� ← v̂�i , v̂

� ← v̂
�i
, Q�

t (·) ← Q�i
t (·) for all t = 2, ..., T .

� OUTER LOOP PROBLEMS

26: for stages t = 1, . . . , T do
27: Solve subproblem (P�

t (x�
t−1, Q�

t+1)). Store the optimal solution (z�t , x
�
t , y

�
t ).

28: end for
29: v� = min

{
v�−1,

∑T
t=1 ft (x�

t , y
�
t )

}
.

30: end while
Output: ε-optimal solution

(
(z�t , x

�
t , y

�
t )

)
t=1,...,T of (P).
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Inner Loop

(solving (P̂ ) iteratively,
generating cuts for Qt)

Outer Loop
(solving (P ) iteratively

using cuts from inner loop,

refining MILP (P̂ ))

ε-optimal
solution of (P )

Outer Loop
Problem
Solved?

Piecewise Linear
Relaxations
Refinement

Problem (P ) satisfying
(A1) and (A2)

Outer
Approximation (P̂ )

Forward Pass

Binary
Expansion
Decision

Binary Approx.
Refinement

Backward Pass

Inner Loop
Problem
Solved?

Solve Outer
Loop Problems

yes

no

no

yes

yes

no

Fig. 1 Conceptual overview of NC-NBD

state variables with binary ones, construct cuts in the binary space and then project
those cuts back to the original space. As we show, these projections can be modeled by
mixed-integer linear constraints in the original space. By careful construction, these
cuts remain valid even if the binary approximation is refined in later iterations.

In this way, we circumvent solving an augmented Lagrangian dual, which may be
even more expensive than solving the classical Lagrangian dual, as with the additional
nonlinear term in the objective, the primal problems lose their decomposability. In
return, we require more (binary) variables and constraints in the Lagrangian duals and
for an MILP representation of our cuts than the approach in [1].

In principle, theMILPs as they occur in the inner loop could also be solved by using
SDDiP with a static binary approximation of the state variables [55]. As discussed in
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Sect. 1, this approach has some properties which prevent an efficient integration into
our algorithmic framework, though.

As we show in the next section, for a sufficiently fine binary approximation, the
obtained cuts in the NC-NBD provide a sufficiently good approximation at the trial
solutions x̂�i

t−1. Additionally, the cut approximations Q�
t (·) are generated in such a

way that they are Lipschitz continuous. This is sufficient to ensure convergence to a
globally optimal solution of (̂P�).

At the end of the backward pass, a lower bound v̂�i is determined. If v̂
�i

and
v̂�i are sufficiently close to each other, an approximate globally minimal point(
(̂z�t , x̂

�
t , ŷ

�
t )

)
t=1,...,T of (̂P�) has been identified and the inner loop is left. Other-

wise, further cuts have to be constructed or the binary approximation has to be refined.
We discuss this decision in more detail in Sect. 3.3.6.

Once the inner loop is left, subproblems (Pt(xt−1,Q�
t+1)) are solved to determine

trial points x�
t−1 and an upper bound v� to v for the original problem (P). If this upper

bound is sufficiently close to v̂�, the solution
(
(z�t , x

�
t , y

�
t )

)
t=1,...,T is approximately

optimal for problem (P). If not, the MILP relaxation (̂P�+1) is created by refining
(̂P�) in the neighborhood of

(
(̂z�t , x̂

�
t , ŷ

�
t )

)
t=1,...,T and a new inner loop is started.

As for the inner loop, it is crucial that with these refinements in the outer loop
all previously generated cuts remain valid. Otherwise, the cut approximation Q�

t+1(·)
would have to be built from scratch, counteracting the idea of a dynamic solution
framework. In the following subsections, we show how such persistent validity can
be achieved by careful design. Note that, even though we make use of the same
regularization idea, our framework with nested loops and dynamic refinements also
differs from the method presented in [52].

We explain the different steps of NC-NBD in more detail in the following subsec-
tions, before we discuss convergence results in Sect. 4. As long as the index � is not
needed for the discussions of the inner loop, we omit it for notational convenience.
Moreover, we note that several of the considered subproblems require the introduc-
tion of additional decision variables, e.g., for piecewise linear approximation or cut
projection. For reasons of clarity and comprehensibility, by the terms optimal point or
optimal solution we refer to the projection of their actual optimal points to the space
Xt−1 × Xt × Yt , which we are interested in.

3.2 Piecewise linear relaxations

In the outer loop of NC-NBD, all nonlinear functions γ ∈ Γ in problem (P) are
approximated by some piecewise linear functions. This is achieved by determining
a triangulation of their domain, which in our box-constrained setting is always pos-
sible. Then, the piecewise linear functions can be defined on the simplices of this
triangulation using the function values of γ at their vertices. For a thorough discus-
sion and state-of-the-art approaches to construct piecewise linear approximations and
triangulations, see [18,39,40].

The piecewise linear approximations can then be reformulated as mixed-integer
linear constraints using auxiliary continuous and binary variables. In the literature,
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several modeling techniques have been proposed, such as the convex combination
model, the incremental model and some logarithmic variants [4,18,38,51]. Later on,
we draw on refinement and convergence ideas from [9], which work for several of
these models, such as the generalized incremental model [9] or the disaggregated
logarithmic convex combination model [51].

By shifting the approximations appropriately, it can be ensured that the obtained
MILP (̂P j ) is indeed a relaxation of the original problem (P) [18]. Alternatively, one
can construct piecewise linear underestimators and overestimators, yielding tubes for
nonlinear equations [25].

Applying the piecewise linear approximations to problem (P), we obtain theMILP
outer approximation with copy constraints

(̂P) v̂ := min
x1,...,xT ,y1,...,yT

z1,...,zT

T∑

t=1

f̂t (xt , yt )

s.t. (zt , xt , yt ) ∈ M̂t ∀t = 1, . . . , T

zt = xt−1 ∀t = 1, . . . , T .

For reasons of clarity, we denote the piecewise linear relaxations of ft (·), gt (·) and
ht (·) by f̂t (·), ĝt (·) and ĥt (·), although they are modeled using auxiliary constraints
and variables. The set M̂t is defined by replacing the functions gt (·) and ht (·) in Mt

or Mt (xt−1), respectively, with ĝt (·) and ĥt (·).
The dynamic programming equations for t = 1, . . . , T are given by

(̂Pt(xt−1)) Q̂t (xt−1) := min
zt ,xt ,yt

f̂t (xt , yt ) + Q̂t+1(xt )

s.t. (zt , xt , yt ) ∈ M̂t

zt = xt−1.

For the MILP subproblems (̂Pt(·)), we obtain the following properties.

Lemma 3.1 Under assumption (A2), subproblem (̂Pt(·)) has complete recourse and
the value function Q̂t (·) is l.sc. for all t = 1, . . . , T .

The complete recourse follows from the complete recourse of (Pt(·)) by construction.
The l.sc. then follows from Theorem 3.1 in [31].

3.3 The inner loop

In the inner loop of NC-NBD, the MILP subproblems (̂Pt(xt−1)) are considered. As
stated before, we omit the index � for its discussion.

The copy constraints are crucial for all problems solved in the inner loop. In the
forward pass, to ensure Lipschitz continuity, we consider regularized subproblems.
The regularization is based on relaxing and penalizing the copy constraints. In the
backward pass, to generate cuts, a special Lagrangian dual subproblem is solved
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based on dualizing the copy constraints. This is effective, since combinedwith a binary
expansion of the state variables, the copy constraints yield a local convexification [55].

3.3.1 Regularization

Lipschitz continuity of the value functions is difficult to ensure in the general non-
convex case. However, as shown recently in [52], for l.sc. value functions, it is possible
to determine some underestimating Lipschitz continuous function by enhancing the
original subproblem with an appropriate penalty function ψt . In contrast to the more
general regularization approach in [52], we require only so-called sharp penalty func-
tions ψt (xt−1) = ‖xt−1‖ to regularize the subproblems (̂Pt(xt−1)), for some norm
‖·‖.
Definition 3.2 (Regularized subproblem and value function) Let σt > 0 for t =
2, . . . T , σ1 = 0 and define

(̂PR
t (xt−1)) Q̂R

t (xt−1) := min
zt ,xt ,yt

f̂t (xt , yt ) + σt‖xt−1 − zt‖ + Q̂R
t+1(xt )

s.t. (zt , xt , yt ) ∈ M̂t .

(̂PR
t ) is called regularized subproblem and Q̂R

t (·) regularized value function.
By recursion, this approach yields the regularized optimal value v̂R := Q̂R

1 (x0) for
the first stage. Lemma 3.1 implies that under assumption (A2), the function Q̂t (·) is
l.sc. Then, the regularized value function Q̂R

t (·) has the following properties.

Lemma 3.3 (Proposition 2 in [52]) For all t = 1, . . . , T we have:

(a) Q̂R
t (xt−1) ≤ Q̂t (xt−1) for all xt−1 ∈ Xt−1,

(b) Under assumptions (A1) and (A2), the regularized value function Q̂R
t (·) is

Lipschitz continuous on Xt−1.

As also stated in [52], using sharp penalty functions as in Definition 3.2, the penal-
ization is exact for sufficiently large (but finite) σt > 0. For such σt , the problems (̂P)

and (̂PR) have the same optimal points and v̂R = v̂. This result goes back to [14],
in which augmented Lagrangian problems are analyzed for MILPs. It is shown that
using sharp penalty functions and a sufficiently large augmenting parameter, strong
duality holds. As this result holds for any value of the dual multipliers, it is also valid
for the regularized subproblems.

Lemma 3.4 (Proposition 8 in [14])Using sharp penalty functionsψt , there exist some
σ̄t > 0 such that the penalty reformulation in (̂PR

t (xt−1)) is exact for all σt > σ̄t .

Lemma 3.4 indicates that using the regularized subproblems within our decompo-
sition method NC-NBD, we obtain convergence to v̂ in the inner loop. To exploit this,
we take the following assumption:

(A3). All σt > 0 are chosen sufficiently large such that Lemma 3.4 is satisfied.

If (A3) is not satisfied, σt has to be increased gradually in the course of the NC-NBD
method to ensure convergence.
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3.3.2 Forward pass

In the forward pass of the inner loop we solve approximations of the regularized
subproblems (̂PR

t (xt−1)).
For iteration i , the stage-t forward pass problem is defined as follows

(̂PR,i
t (x̂ it−1,Qi

t+1))

Q̂
R,i
t

(̂xit−1,Q
i
t+1) := min

zt ,xt ,yt
f̂t (xt , yt ) + σt‖x̂ it−1 − zt‖ + Qi

t+1(xt )

s.t. (zt , xt , yt ) ∈ M̂t ,

for the trial state variable x̂ it−1, with x̂
i
0 ≡ 0. FunctionQi

t+1(·), in some sense, approx-

imates the value functions Q̂
R,i
t+1

(·,Qi
t+2) and Q̂

i
t+1

(·,Qi
t+2). This approximation is

constructed in the backward pass, see Sect. 3.3.4. As those value functions are non-
convex, the cut approximation Qi

t+1(·) is required to be nonlinear and non-convex.
However, as we show later, it can be expressed with mixed-integer linear constraints
by lifting the problems to a higher dimension. Therefore, in addition to xt , yt and
zt , the forward pass problem contains further decision variables, which are hidden in
Qi

t+1(·) and the piecewise linear relaxations f̂t , ĝt and ĥt .
Note that expressing Qi

t+1(·) by mixed-integer linear constraints with
bounded integer variables, the same reasoning as in Lemma 3.1 can be applied to

show that Q̂
i
t
(̂xit−1,Q

i
t+1) is l.sc. and therefore, Q̂

R,i
t

(̂xit−1,Q
i
t+1) is Lipschitz con-

tinuous.
Even with a mixed-integer linear representation of Qi

t+1(·), subproblem

(̂PR,i
t (x̂ it−1,Qi

t+1)) is a MINLP due to the regularization. For ‖·‖1 or ‖·‖∞, it can be
modeled by MILP constraints using standard reformulation techniques for absolute
values, though.

The optimal point (̂zit , x̂
i
t , ŷ

i
t ) of each subproblem (̂PR,i

t (x̂ it−1)) is stored and x̂ it
is passed to the following stage. Since

(
(̂zit , x̂

i
t , ŷ

i
t )

)
t=1,...,T satisfies all constraints of

(̂PR), after all stages have been considered, an upper bound v̂ on the optimal value
v̂R of the regularized problem can be determined by

v̂
i = min

{
v̂
i−1

,

T∑

t=1

(
f̂t (̂x

i
t , ŷ

i
t ) + σt‖x̂ it−1 − ẑit‖

)}
.

With assumption (A3) and Lemma 3.4, this is also an upper bound to v̂.

3.3.3 Backward pass–Part 1: binary approximation

The aim of the backward pass of an inner loop iteration i is twofold: Firstly, a lower
bound v̂i on v̂ is determined. Secondly, cuts for Qt (·) are derived to improve and
update the current approximation Qi

t (·).
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As mentioned before, we use a dynamically refined binary approximation of the
state variables and then apply cutting-plane techniques from the SDDiP algorithm
[55]. This approximation is based on static binary expansion [21].

Binary expansion can be applied component-wise to some vector xt . Some integer
component xt j ∈ {

0, ...,Uj
}
can be exactly and uniquely expressed as

xt j =
Kt j∑

k=1

2k−1λtk j

with variables λtk j ∈ {0, 1} and Kt j = log2Uj� + 1. Some continuous component
xt j ∈ [0,Uj ] can be expressed by discretizing the interval with precision βt j ∈ (0, 1).
We then have

xt j =
Kt j∑

k=1

2k−1βt jλtk j + rt j

with Kt j = log2
(
Uj
βt j

)
� + 1 and some error rt j ∈

[
−βt j

2 ,
βt j
2

]
.

For vector xt , this yields Kt = ∑nt
j=1 Kt j number of binary variables. Defining

an (nt × Kt )-matrix Bt containing all the coefficients of the binary expansion and
collecting all binary variables in one large vector λt ∈ BKt , the binary expansion then
can be written compactly as xt = Btλt + rt .

Based on this definition, to generate cuts, for each stage t and iteration i , a binary
approximation of x̂ it−1 is used, i.e., it is replaced by Bt−1λ

i
t−1. Note that the approx-

imation is not necessarily exact for continuous components of x̂ it−1. Therefore, the
cuts are not necessarily constructed at the trial point x̂ it−1 but at the deviating anchor
point x̂ iB,t−1 := Bt−1λ

i
t−1.

In the backward pass, we start from the following subproblem, where due to the
binary approximation of the state variables,we also adapt the copy constraint toλit−1 =
zt with variables zt ∈ [0, 1]Kt−1 .

(̂Pi
Bt(λ

i
t−1,Qi+1

t+1)) Q̂
i
Bt (λ

i
t−1,Q

i+1
t+1) := min

xt ,yt ,
zt ,zt

f̂t (xt , yt ) + Qi+1
t+1(xt )

s.t. (zt , xt , yt ) ∈ M̂t

zt = Bt−1zt

zt ∈ [0, 1]Kt−1

zt = λit−1.

Remark 3.5 Subproblem (̂Pi
Bt(λ

i
t−1,Qi+1

t+1)) is equivalent to subproblem

(̂Pi
t (x̂

i
B,t−1,Qi+1

t+1)) because zt = Bt−1zt = Bt−1λ
i
t−1 = x̂ iB,t−1.

Asymptotically, i.e., for an infinitely fine binary approximation, the anchor point
converges to the actual trial point.
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Lemma 3.6 We have limβt−1→0 x̂ iBt−1 = x̂ it−1.

With Lemma 3.6, asymptotically, the cuts are constructed at x̂ it−1. While this is
not directly useful in practice, since it requires an infinite number of binary variables,
it also implies that for componentwise sufficiently small βt−1 ∈ (0, 1), the cuts are
constructed very close to x̂ it−1. As NC-NBD constructs Lipschitz continuous cuts, this
guarantees a sufficiently good approximation of the value function at x̂ it−1, as we show
in Sect. 4.

Importantly, in our framework the binary approximation is only applied temporarily
to derive cuts, while the state variables xt−1 in the forward pass remain continuous.
In other words, the anchor points determine where cuts can be constructed, but do not
limitwhere they can be evaluated. This is a crucial difference to applying a static binary
expansion, as suggested in the original SDDiP work to solve MILPs with continuous
state variables [55].

Moreover, let us emphasize again that applying such static approximation is not
appropriate in our inner loop, as the obtained lower bounds are not guaranteed to be
valid for v̂ or v. Similarly, the obtained cuts are not guaranteed to be valid for Q̂t (·) or
Qt (·), and therefore cannot be re-used within the outer loop. Our proposed inner loop
method does not share these issues. We follow a dynamic approach where the binary
precision is dynamically refined if required and, as we show later, all cuts remain valid
with later refinements.

3.3.4 Backward pass–Part 2: cut generation

As proposed in [55], the copy constraint is dualized to generate cuts. Applied to our
context, the following Lagrangian dual subproblem has to be solved

(Di
Bt(λ

i
t−1,Qi+1

t+1)) max‖πt‖∗≤lt
Li

Bt (πt ,Q
i+1
t+1) + π�

t λit−1,

where Li
Bt (·) denotes the Lagrangian function for πt defined by

Li
Bt (π

i
t ,Q

i+1
t+1) := min

xt ,yt ,zt ,zt
f̂t (xt , yt ) + Qi+1

t+1(xt ) − π�
t zt

s.t. (zt , xt , yt ) ∈ M̂t

zt = Bt−1zt

zt ∈ [0, 1]Kt−1

and ‖·‖∗ denotes the dual norm to the norm used in the regularized forward pass
problems (̂PR,i

t (x̂ it−1,Qi
t+1)).

A linear (optimality) cut in binary space {0, 1}Kt−1 is then given by

φBt (λt−1) := Li
Bt (π

i
t ,Q

i+1
t+1)︸ ︷︷ ︸

=:cit

+(π i
t )

�λt−1, (1)
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whereπ i
t is anoptimal solutionof theLagrangaindual subproblem (Di

Bt (λ
i
t−1,Qi+1

t+1)).
Those Lagrangian cuts are introduced in [55] and identified to be finite, valid and tight
in the SDDiP setting. In our setting, we obtain the following validity result.

Lemma 3.7 Let Q̂Bt (·) denote the MILP value function of stage t with additional
binary approximations. Then,

(a) for all λt−1 ∈ [0, 1]Kt−1

Q̂Bt (λt−1) ≥ φBt (λt−1),

(b) for all xt−1

Q̂t (xt−1) ≥ φBt (λt−1)

for any λt−1 ∈ [0, 1]Kt−1 , such that xt−1 = Bt−1λt−1.

Lemma 3.7 a) follows directly from the validity proof for the SDDiP cuts, which
does also hold for λt−1 ∈ [0, 1]Kt−1 instead of λt−1 ∈ {0, 1}Kt−1 (see Theorem 3 in
[55]). Part b) then follows using similar arguments as in Remark 3.5. Hence, φBt is, in
fact, a valid cut in [0, 1]Kt−1 . This enables us to obtain valid under-approximations also
for those points, which are not exactly approximated by the current binary expansion.
As it refers to an outer approximation, Q̂t (·) underestimates the original MINLP value
function Qt (·). Thus, the obtained cuts are valid for Qt (·) as well.

Contrary to [55], but following [52],we bound the dual variableπt in theLagrangian

dual subproblem. Therefore, tightness for Q̂
i
Bt (·,Qi+1

t+1) is not guaranteed. However,

the cuts are at least guaranteed to overestimate the value function Q̂
R,i
Bt (·,Qi+1

t+1) atλ
i
t−1.

This value function is obtained by regularizing Q̂
i
Bt (·,Qi+1

t+1) in the binary space using
the same norm as in the forward pass problem. By careful choice of the regularization

factor, then, also the regularized value function Q̂
R,i
t

(·,Qi+1
t+1) in the original space is

overestimated at xiB,t−1. This result is formalized in the following lemma.

Lemma 3.8 Assume that we use ‖·‖1 for regularization and its dual norm ‖·‖∞ for
bounding the dualmultipliers. Then, as long as lt ≥ σt‖Bt−1‖, where the latter denotes
the induced matrix norm of Bt−1, we have

φBt (λit−1) ≥ Q̂
R,i
Bt (λit−1,Q

i+1
t+1) ≥ Q̂

R,i
t

(xiB,t−1,Q
i+1
t+1).

Proof See Appendix A. ��
Remark 3.9 The induced matrix norm ‖Bt−1‖ depends on the chosen precision of the
binary approximation. It can be bounded from above independent of the precision,
e.g., ‖Bt−1‖1 ≤ Ut−1,max with Ut−1,max the largest component of the upper bounds
in Xt−1.
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3.3.5 Backward pass–Part 3: cut projection

Solving the forward pass problems (̂PR,i
t (x̂ it−1,Qi

t+1)) and the backward pass dual

problems (Di
Bt(λ

i
t−1,Qi+1

t+1)) requires expressing the cut approximation Qi
t+1(·) in

the original state variables xt . Recall that the computed cut φB,t+1(·) is a function of
[0, 1]Kt .

According to Lemma 3.7 a), the obtained cuts φB,t+1(·) are not only valid for all
binary points, but for all values in [0, 1]Kt . Allowing for λt ∈ [0, 1]Kt in the binary
approximation, there exist infinitelymany combinations of λt to exactly describe some
point xt ∈ Xt , though. Therefore, following from Lemma 3.7 b), one cut in binary
space entails infinitely many underestimators of Qt+1(·) at xt in the original space
Xt . Including infinitely many inequalities in Qt+1(·) is computationally infeasible.
Instead, we consider the pointwise maximum of the projection of the cuts to Xt .
That way, only the best underestimation for each point xt is taken into account. In
doing so, we obtain a nonlinear, i.e., piecewise linear, cut in the original state space.
For simplicity, in the following, by cut projection we always mean the pointwise
maximum of the actual projection.

The projection of some cut φB,t+1(·) to Xt can be described as the value function

φt+1(xt ) := max
λt

{
ct+1 + (πt+1)

�λt : Btλt = xt , λt ≤ e, λt ≥ 0
}

(2)

of a linear program where e denotes a vector of ones of dimension Kt . The dual
problem to (2) yields

φD
t+1(xt ) := min

ηt ,μt

{
ct+1 + x�

t ηt + e�μt : B�
t ηt + Iμt ≥ πt+1, μt ≥ 0

}
. (3)

Note that the dual feasible region does not depend on xt and has a finite number of
extreme points. Therefore, the cut projection is piecewise linear and concave.

As problem (2) is feasible and bounded for any xt ∈ Xt , this also holds for the dual
problem (3). Therefore, in a dual optimal solution, ηt and μt are bounded. Note that
this bound may change with the binary approximation precision βt , though, and that,

if we would generate tight cuts for Q̂
i
t+1

(·,Qi+1
t+2), those cuts may become infinitely

steep close to discontinuities. However, as we can bound πt in the Lagrangian dual
subproblem independent of βt , see Remark 3.9, and thus construct cuts which at least

overestimate the regularized value function Q̂
R,i
t+1

(·,Qi+1
t+2) at the anchor point xiB,t ,

such cases should be ruled out.
We formalize this by assuming the existence of a global bound for ηt .

(A4). There exists some ρt > 0, such that for all t = 1, . . . , T , any binary precision
βt and any xt , the optimal dual variable ηt in problem (3) can be bounded, i.e.,
‖ηt‖ ≤ ρt .

For example, if we obtain cuts which are, in fact, tight for Q̂
R,i
t+1

(·,Qi+1
t+2) at x

i
B,t

and consider only basic solutions in the Lagrangian dual, the gradient of the cuts
is bounded by σt+1. With Assumption (A4) it follows that the linear cuts φB,t+1(·)
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derived in the binary space yield a nonlinear, but Lipschitz continuous projection
φt+1(·) in the original space.

To express this projection by mixed-integer linear constraints, we use the KKT
conditions to problems (2) and (3). To emphasize that these conditions are considered
for the projection of one specific cut r (the index denoting the r -th cut constructed),
we index all occurring variables and coefficients by r .

−πr
t+1 − νrt + μr

t + (Br
t )

�ηrt = 0 (4)

Br
t λ

r
t − xt = 0 (5)

λrt ≥ 0 (6)

λrt − e ≤ 0 (7)

νrt , μ
r
t ≥ 0 (8)

−(νrt )
�λrt = 0 (9)

(μr
t )

�(λrt − e) = 0. (10)

The complementary slackness constraints (9) and (10) are nonlinear, but compo-
nentwise can be expressed linearly using a Big-M formulation (alternatively, SOS-1
constraints may be used):

λrtk ≤ M1kω
r
tk, νrtk ≤ M2k(1 − ωr

tk), ωr
tk ∈ {0, 1} (11)

λrtk − 1 ≥ M3ku
r
tk, μr

tk ≤ M4k(1 − urtk), urtk ∈ {0, 1} (12)

For all components k, we can chooseM1k = 1 andM3k = −1 due to λtk ∈ [0, 1].
Moreover, using (A4), we are able to obtain explicit choices for M2k and M4k as
well.

Lemma 3.10 Under (A4), there exist explicit, finite bounds for νrtk and μr
tk .

Proof See Appendix B. ��

The cut approximationQi+1
t+1(·) is then defined as the maximum of all cuts φr

B,t+1 =
crt+1+(πr

t+1)
�λrt where the variable λrt satisfies the linearizedKKT conditions (4)–(8)

and (11)–(12) for the r -th cut. With Assumption (A4), it is Lipschitz continuous.

Lemma 3.11 The cut approximation Qt+1(·) is Lipschitz continuous in Xt with Lips-
chitz constant ρt .

The cut projection requires to introduce the variables λrt , ν
r
t , μ

r
t , w

r
t , u

r
t , η

r
t and

constraints (4)–(8) and (11)–(12) for each cut r . In particular, each cut is associated
with a variable λrt ∈ [0, 1]Kr

t where Kr
t corresponds to the number of binary variables

at the time of the cut’s generation. This increases the problem size considerably, as the
number of variables and constraints to be added per cut is in O

(
nt log

( 1
βt

))
. In return,

it ensures that cuts do not have to be generated from scratch after each refinement.
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3.3.6 Stopping and refining

At the end of the backward pass, a lower bound v̂i is determined by solving the first-
stage subproblem (̂Pi

1 (0,Qi+1
2 )). Here, no Lagrangian dual is solved, since no cuts

have to be derived. The lower bound is non-decreasing because the cut approximation
is only improved.

If the updated bounds are sufficiently close to each other, i.e., if

v̂
i − v̂i ≤ ε̂

for some predefined tolerance ε̂ > 0, an approximately optimal point of problem (̂P)

has been determined.We show in the following section that this is the case after finitely
many iterations i .

If the gap between the bounds does not meet the stopping criteria yet, two cases
are possible: In the first case, the algorithm has not determined the best possible
approximation for the given binary approximation precision, yet. New cuts have been
determined in iteration i such that the lower bound v̂i has been updated, and the
forward solution will change in iteration i + 1 as the previous one is cut away.

In the second case, despite not meeting the stopping criterion, the forward solution
does not change at the beginning of iteration i + 1. This case is related to the binary
approximation. It can occur if the binary approximation is too coarse and therefore, for
all t , the determined cuts at x̂ iBt donot improve the approximation at x̂ it .Moreover, it can
occur if in subsequent iterations the same cuts are constructed, since x̂ iB,t−1 = x̂ i+1

B,t−1.
Finally, it can also occur if all possible cuts have been generated: For a fixed binary
approximation, there exist only finitely many points x̂Bt . If we restrict the Lagrangian
dual subproblem to basic solutions, then only finitely many different cuts can be
determined [55].

In the second case, at the beginning of the backward pass of iteration i , the binary
approximation is refined. The refinement is computed by increasing Kt j by +1 for all
components j and all stages t with

βt j = Uj
∑Kt j

k=1 2
k−1

.

For simplicity, we refine in Algorithm 1 all stages and components equally by +1. Note
that each refinement requires the introduction of an additional vector λt , as described
in the previous subsection.

As all previously generated cuts have been projected to the original space Xt , they
remain valid and have not to be recomputed when refining the binary approximation.
This is computationally important.
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3.4 The outer loop

3.4.1 The outer loop problem

Once the inner loop is left, we set v̂� := v̂�i , v̂
� := v̂

�i
and Q�

t (·) := Q�i
t (·) for all

t = 2, ..., T . Note that v̂
�
is not guaranteed to be a valid upper bound for v because

v̂� ≤ v. Moreover, we set
(
(̂z�t , x̂

�
t , ŷ

�
t )

)
t=1,...,T := (

(̂z�it , x̂�i
t , ŷ�i

t )
)
t=1,...,T .

To approximate the optimal value v of (P), we solve subproblems

(P�
t (x�

t−1,Q�
t+1)) Q�

t
(x�

t−1,Q
�
t+1) := min

zt ,xt ,yt
ft (xt , yt ) + Q�

t+1(xt )

s.t. (zt , xt , yt ) ∈ Mt

zt = x�
t−1

in a forwardmanner for t = 1, . . . , T with x�
0 ≡ 0 and x�

t := xt , where xt is an optimal
solution of (P�

t (x�
t−1,Q�

t+1)) for t . Here, we exploit that the cut approximationQ�
t (·),

constructed in the inner loop, is valid for Qt (·) by design as well. By solving these
subproblems, we obtain a feasible solution

(
(z�t , x

�
t , y

�
t )

)
t=1,...,T for (P) and we can

determine a valid upper bound for v as v� = min
{
v�−1,

∑T
t=1 ft (x�

t , y
�
t )

}
.

The subproblems (P�
t (x�

t−1,Q�
t+1)) are non-convexMINLP problems. Thismeans

that in order to solve the original non-convex problem (P), easier, but still non-convex
subproblems have to be solved to optimality for each stage t in each outer loop iteration
�. This might be a hard challenge by itself. We make the following assumption for the
remainder of this article:

(A5). An oracle exists that is able to solve subproblems (P�
t (x�

t−1,Q�
t+1)) to global

optimality.

In case that no such global optimization algorithm is available, one can solve appro-
priate inner approximations of (P�

t (x�
t−1,Q�

t+1)), which are improved in the course
of the algorithm.

If v� − v̂� ≤ ε, then NC-NBD terminates and
(
(z�t , x

�
t , y

�
t )

)
t=1,...,T is an ε-optimal

solution for (P). Otherwise, the cut approximations Q�
t+1(·) are not sufficiently good

underestimators for the true value functions, even though they give a good approxima-
tion of Q̂�

t (·). This implies that the piecewise linear relaxations have to be improved.
Instead of refining them everywhere, they are refined dynamically where it is promis-
ing, i.e., in a neighborhood of the approximate optimal solution

(
(̂z�t , x̂

�
t , ŷ

�
t )

)
t=1,...,T

of (̂P�). In refining the piecewise linear relaxations in its neighborhood, the current
solution can be excluded in the next inner loop and the lower bound v̂� improves.

Remark 3.12 Instead of v̂�, an even better lower bound for v is given by the optimal
value of the first stage subproblem (P�

1 (x�
0,Q�

2)).
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3.4.2 Refining the piecewise linear relaxations

The refinement consists of two steps: (1) the piecewise linear approximations are
refined and (2) the corresponding MILP (̂P�) is updated – in such a way that the new
MILP (̂P�+1) again yields a relaxation of (P).

Different strategies are possible to achieve this. For a thorough overview, we refer
to [18]. In the following, we make use of a specific adaptive refinement scheme for
triangulations from [9] for any nonlinear function γt ∈ Γt . The given piecewise lin-
ear approximation at iteration � is defined by a triangulation T of Xt−1 × Xt × Yt
(or a subspace) and the corresponding function values of γt . Instead of refining this
triangulation everywhere now, the main idea is to only refine it in a neighborhood of(
(̂z�t , x̂

�
t , ŷ

�
t )

)
t=1,...,T . Therefore, first, the simplex in T containing this point is iden-

tified. It is then divided by a longest-edge bisection, yielding a refined triangulation,
for which a new MILP model can be set up. As proven in [9], this refinement strategy
has some favorable properties with respect to convergence, see Sect. 4.2.

It is important that the obtained relaxation (̂P�+1) is tighter than (̂P�) so that
the corresponding value functions improve monotonically. This is required to ensure
that previously generated cuts remain valid in later iterations. For concave functions,
this is always satisfied using the presented refinement strategy. For other functions,
e.g., convex ones, a more careful determination of the relaxation is required or the
MILP models for earlier relaxations have to be kept instead of being replaced. For our
theoretical results, it is sufficient that such monotonically improving relaxations can
always be determined.

After refining the piecewise linear relaxations, a new iteration � + 1 is started,
beginning with the inner loop.

4 Convergence results

In this section, we prove the convergence of the NC-NBD algorithm. We start proving
the convergence of the inner loop to an optimal solution of (̂P�) based on some results
on the binary refinements. Afterwards, we prove that the outer loop converges to an
optimal solution of the original problem (P).

4.1 Convergence of the inner loop

As explained in Sect. 3.3.3, within NC-NBD the cuts are not generated at the trial
points x̂ it−1, but instead at anchor points x̂ iB,t−1 := Bt−1λ

i
t−1. This means that the

generated cuts, and with that also the cut approximations Qt (·), implicitly depend on
the binary approximation precision βt .

However, Lemma 3.6 implies that x̂ it−1 and x̂ iB,t−1 should become equal asymp-
totically in the refinements of the binary approximations. Therefore, asymptotically,

the cuts are guaranteed to overestimate Q̂
R,i
t

(̂xit−1,Q
i+1
t+1) and, due to their Lipschitz

continuity, for some sufficiently small precision, they are at least εBt -close. This, in
turn, leads to convergence of the inner loop, as we formalize and prove below.
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Prior to this, let us introduce two useful ideas. Firstly, using the Lipschitz continuity
results fromLemma3.3, page 12 andLemma3.11,we canbound the cut approximation
error in x̂ it−1 as follows:

Lemma 4.1 With Assumption (A4), for any iteration i and stage t it follows

Qi+1
t (̂xit−1) − QR,i

t
(̂xit−1,Q

i+1
t+1) ≥ −(LR

t + ρt )‖x̂ it−1 − x̂ iB,t−1‖.

Proof See Appendix C. ��

Secondly, for any stage t and any fixed binary approximation, if we restrict to
basic solutions in the Lagrangian duals, only finitely many different realizations of cut
approximations Qt (·) can be generated. Thus, after a finite number of iterations, the
binary approximation is refined. Assuming that the inner loop does not terminate for
ε̂ = 0, we can then observe infinitely many such refinements. Hence, with j → ∞,
we also get βt → 0 for all t = 1, . . . , T .

Now, we address convergence of the inner loop of NC-NBD to an optimal solution
of (̂P). First, we provide a preliminary result, which can be proven by backward
induction using Lemmas 3.11 and 4.1.

Lemma 4.2 Suppose that the inner loop does not terminate for ε̂ = 0. Then, the infinite
sequence of forward pass trial solutions (̂xi )i∈N possesses some cluster point x̂∗ with
a corresponding convergent subsequence (̂xi j ) j∈N. This subsequence satisfies

lim
j→∞ Q

i j
t (̂x

i j
t−1) ≥ Q̂R

t (̂x∗
t−1). (13)

Proof See Appendix D. ��

Using this result, convergence can be proven.

Theorem 4.3 Suppose that the inner loop does not terminate for ε̂ = 0. Then, the
sequence (̂vi )i∈N of lower bounds determined by the algorithm converges to v̂ and
every cluster point of the sequence of feasible forward pass solutions generated by the
inner loop is an optimal solution of (̂P).

Note that with a similar argument it can be shown that the inner loop terminates as
soon as Qi

t (̂x
i
t−1) ≥ Q̂R

t (̂xit−1) for all t = 2, ..., T .
Considering that the inner loop is integrated into an outer loop improving theMILP

approximations of (P), infinite convergence is not directly useful.Moreover, infinitely
many binary refinements are not computationally feasible. However, we can deduce
that an approximately optimal solution of (̂P) is determined in a finite number of
iterations.

Corollary 4.4 For any stopping tolerance ε̂ > 0, the inner loop stops in a finite number
of iterations with an ε̂-optimal solution of (̂P).
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4.2 Convergence of the outer loop

We start our convergence analysis of the outer loop with a feasibility result for the
solutions determined in the inner loop, which follows from the convergence results in
[9]. The main idea is that, as the domain is bounded for all functions γ ∈ Γ , using a
longest-edge bisection, after a finite number of steps, all considered simplices become
sufficiently small (since in the worst case all simplices have been refined sufficiently
often).

Lemma 4.5 ([9]) Using longest-edge bisection for the piecewise linear relaxation
refinements within NC-NBD yields optimal solutions

(
(̂z�t , x̂

�
t , ŷ

�
t )

)
t=1,...,T for (̂P�) in

the inner loop, which

(a) are approximately feasible for (P) after a finite number of steps �,
(b) become feasible for (P) asymptotically in the number of refinements �.

Next we show that with decreasing the feasibility error also the deviation in the
optimal value between (̂P�) and (P) can be controlled.

As a preliminary result, we obtain that for sufficiently small feasibility toler-
ances ε̂γ for all γ ∈ Γ , there exists a neighborhood of the optimal solution
x̂� := (

(̂z�t , x̂
�
t , ŷ

�
t )

)
t=1,...,T of problem (̂P�) containing a feasible point x̃� :=(

(̃z�t , x̃
�
t , ỹ

�
t )

)
t=1,...,T of (P). This follows primarily from the continuity of all func-

tions in (P).

Lemma 4.6 For any δ > 0, there exists some �̂ ∈ N such that for all � ≥ �̂ there exists
some feasible point x̃� of (P) with

‖̃x� − x̂�‖2 ≤ δ.

Applying Lemma 4.6 yields the following result with respect to the deviation in the
optimal value between (̂P�) and (P).

Theorem 4.7 There exists some ˆ̂� ∈ N such that for all � ≥ ˆ̂� we have

0 ≤ v − v̂� ≤ ε.

Proof The proof makes use of the Lipschitz continuity of ft , Lemma 4.5 and
Lemma 4.6 to bound v − v̂� from above by L f δ + ∑T

t=1 ε̂ ft (with ε̂ ft deduced from
ε̂γ with γ = ft ). The assertion then follows with ε := L f δ +∑T

t=1 ε̂ ft . For a detailed
proof see Appendix F. ��

We obtain the central convergence result for NC-NBD:

Theorem 4.8 NC-NBD has the following convergence properties:

(a) Assume that for all � the MILP (̂P�) is solved to global optimality in a finite
number of steps. Then, if NC-NBD does not terminate with ε = 0, the sequence of
lower bounds (̂v�)�∈N converges to v and the outer loop solutions converge to an
optimal solution of (P).
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(b) Let ε = ε̂ > 0. Then, if NC-NBD does not terminate, it converges to an ε̂-optimal
solution of (P).

(c) For any ε > ε̂ > 0, NC-NBD terminates with an ε-optimal solution of (P) after
a finite number of steps.

Proof See Appendix G. ��

5 Computational results

We illustrate the adequacy of using the NC-NBD to solve multistage non-convex
MINLPs by applying it to moderate-sized instances of a unit commitment problem.
NC-NBD is implemented in Julia-1.5.3 [7] based on the SDDP.jl package [12],
which provides an existing implementation for SDDP. More implementation details
are presented in Appendix H.

The considered unit commitment problem is formally described in detail in
Appendix I. Importantly, the considered problem contains binary state variables, but
also continuous state variables, such that a binary approximation of the state vari-
ables is required in the backward pass of NC-NBD. Additionally, all instances contain
a nonlinear function in the objective. In the base instances, we consider a concave
quadratic emission cost curve in the objective. In the valve-point instances, addition-
ally, we consider a non-convex fuel cost curve with a sinusoidal term. In both cases,
we analyze instances with 2 to 36 stages and 3 to 10 generators, resulting in 6 to 20
state variables. More details on our parameter settings and the complete test results
for all instances are presented in Appendix I.

The results show that NC-NBD succeeds to solve multistage non-convex MINLPs
with a moderate number of stages and state variables to (approximate) global optimal-
ity. It converges to the globallyminimal point for each of the instances and, considering
our 1% tolerance, terminates with valid upper and lower bounds for v.

For the base instances, we observe long computation times of several minutes
compared to state-of-the-art solvers for MINLPs, which solve the problems in a few
seconds, though.We address some of the reasons and possible solutions for this behav-
ior at the end of this section. As the results for problems with a small number of state
variables, but many stages look most promising, for our valve-point instance tests we
focus on such instances.

For these instances, the sinusoidal terms in the objective exclude many existing
general purpose solvers from application. A sample of the obtained results is presented
inTable 1, for the complete ones, seeAppendix I. The results show thatNC-NBD is less
efficient than existing solvers for problems with few stages, but becomes competitive
with a larger number of stages. Especially for the instanceswith 36 stages, conventional
solvers have difficulties closing the optimality gap while NC-NBD manages to solve
the instances in reasonable time.

These results confirm that NC-NBD should be best suited for multistage problems
with a large number of stages, but a relatively small number of state variables, as the
obtained subproblems remain sufficiently small even for a larger number of iterations,
while general purpose solvers may start to struggle due to the combination of many
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Table 1 Solution times in sec. for valve-point instances with three different demand time series

T # of Gen. Demand LINDOGlobal Couenne NC-NBD

10 3 v1 201 29 1074

16 3 v1 135 273 760

24 3 v1 – 4427 1408

24 3 v2 1562 647 771

24 4 v1 – 349 1220

24 4 v2 2603 – 4191

36 4 v1 – – 6816

36 4 v2 2733 7501 3646

36 4 v3 – – 3497

stages and nonlinear terms. Therefore, NC-NBD may also be useful for stochastic
programs where the deterministic equivalent becomes computationally infeasible for
monolith approaches. To investigate this is left for future research.

While some of the test results look promising, we still see substantial potential for
improvement. This should also help to make NC-NBDmore efficient and competitive
for problems with a larger number of state variables. It is a known drawback of SDDiP
[55], which is inherited by NC-NBD, that existing methods to solve the Lagrangian
dual problemsmay take extremely long to converge.To someextent, this couldpossibly
be mitigated by additionally using different cut types such as strengthened Benders
cuts [55], thus, only constructing tight cuts every few iterations. Yet, developing more
efficient solution methods is an important open research question.

Additionally, with each projected cut, the considered subproblems become con-
siderably larger. While we implemented a simple cut selection scheme to reduce the
subproblem size, more sophisticated approaches may be required to keep the subprob-
lems tractable for applications with many state variables.

Finally, so far,we assume that the outer loopMINLPs are solved to global optimality
(A5) directly. In a more efficient implementation of NC-NBD, these subproblems
should be approximated as well.

6 Conclusion

Wepropose the non-convexnestedBenders decomposition (NC-NBD)method to solve
multistage non-convex MINLPs. The method is based on combining piecewise linear
relaxations, regularization, binary approximation and cutting-plane techniques in a
unique and dynamic way.We are able to prove that NC-NBD is guaranteed to compute
an ε-optimal solution for the originalMINLP in afinite number of steps.Computational
results for some moderate-sized instances of a unit commitment problem demonstrate
its applicability to multistage problems.

We require all constraints to be continuous and the objective function to be Lips-
chitz continuous, which are common assumptions in nonlinear optimization. We also
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assume complete recourse for the multistage problem. Moreover, the regularization
factors are assumed to be sufficiently large to ensure exact penalization in the regular-
ized subproblems. If this is not the case, the factors can be increased gradually within
NC-NBD.

In contrast to previous approaches to solve multistage non-convex problems, we do
not require the value functions to be monotonic in the state variables [36] and allow
the state variables to enter not only the objective function, but also the constraints.
The latter avoids the assumption of oracles to handle indicator functions [52].

In NC-NBD, we combine dynamic binary approximation of the state variables,
cutting-plane techniques tailor-made for binary state variables and a projection from
the binary to the original space. This way, we are able to obtain non-convex, piece-
wise linear cuts to approximate the non-convex value functions of multistage MILPs.
Using some additional regularization, this is even possible if those value functions are
not (Lipschitz) continuous. Together with piecewise linear relaxations, this yields
non-convex underestimators for the non-convex value functions of MINLPs. All
approximations are refined dynamically and, by careful design, it is ensured that all
cuts remain valid even with such refinements.

The proposed method can be enhanced to solve stochastic MINLPs as well. In
particular, a sampling-based approach like in SDDP could be used. In such case some
adaptions have to be made with respect to the refinement criteria (forward solutions
may remain unchanged for several iterations until the right scenarios are sampled) or
the convergence checks, though.

While the presented version of NC-NBD already uses approximations which are
dynamically refined, different strategies may be even more dynamic and efficient in
practice. For instance, the piecewise linear relaxations could be refined dynamically
in the inner loop as well.

The main drawback of NC-NBD is that the considered subproblems can become
severely large, since for binary approximation, for piecewise linear approximations
and for cut projection, a high number of additional variables and constraints may
have to be introduced. This can become problematic, especially, if a very high binary
expansion precision is required to approximate the value functions sufficiently good
in the forward solutions. Recent results show that the number of binary variables K
required grows linearly with the dimension nt of state variables and logarithmically
with the inverse of the binary precision βt [55].

Therefore, in its current form, NC-NBD is best applicable to multistage MINLPs
which are too large to solve in their extensive form, but for which each subproblem is
sufficiently small and contains only a few nonlinear functions.
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A Proof of Lemma 3.8

Proof We start proving the second inequality. We have

Q̂
R,i
t

(xiBt−1,Q
i+1
t+1) = min

zt∈Xt−1
Q̂

i
t
(zt ,Q

i+1
t+1) + σt‖xiBt−1 − zt‖

= min
zt∈[0,1]Kt−1

Q̂
i
t
(Bt−1zt ,Q

i+1
t+1) + σt‖Bt−1(λ

i
t−1 − zt )‖

≤ min
zt∈[0,1]Kt−1

Q̂
i
t
(Bt−1zt ,Q

i+1
t+1) + σt‖Bt−1‖‖λit−1 − zt‖

= min
zt∈[0,1]Kt−1

Q̂
i
Bt (zt ,Q

i+1
t+1) + σt‖Bt−1‖‖λit−1 − zt‖

= Q̂
R,i
Bt (λit−1,Q

i+1
t+1).

The inequality follows from ‖Bt−1‖ being the induced matrix norm to the used
vector norm. The last equality is obtained by choosing the same norm and αt :=
σt‖Bt−1‖ as regularization factor in (̂PR,i

Bt (λi
t−1,Qi+1

t+1)).
To show the first inequality, we construct a dual vector componentwise by

π̂t j :=
{
lt , if λit−1, j = 1

−lt , if λit−1, j = 0.

This vector is feasible, as it satisfies ‖π̂t‖∞ ≤ lt . By feasibility and by definition of
the Lagrangian dual (Di

Bt(λ
i
t−1,Qi+1

t+1)) it follows

φBt (λit−1) ≥ min
zt∈[0,1]Kt−1

Q̂
i
Bt (zt ,Q

i+1
t+1) + π̂�

t (λit−1 − zt ). (14)

Moreover, by construction we have π̂t j (λ
i
t−1, j − zt j ) = lt |λit−1, j − zt j | in each com-

ponent j . Inserting this into (14) and choosing lt ≥ αt , we obtain the first inequality.

B Proof of Lemma 3.10

Proof Consider line (4) in the KKT conditions. By rearranging and taking norms on
both sides, we obtain

‖νt − μt‖ = ‖πt+1 + B�
t ηt‖ ≤ ‖πt+1‖ + ‖B�

t ηt‖ ≤ ‖πt+1‖ + ‖B�
t ‖‖ηt‖. (15)
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The inequalities follow with the triangle inequality and with the compatibility of the
matrix norm.

We can bound all three norms in (15) individually. In the Lagrangian dual, we
have ‖πt+1‖ ≤ σt+1‖Bt‖. With Remark 3.9, we can bound ‖B�

t ‖ and with Assump-
tion (A4), we have ‖ηt‖ ≤ ρt .

For example, using the ∞-norm, we obtain

‖νt − μt‖ ≤ ‖πt+1‖∞ + ‖B�
t ‖∞‖ηt‖∞ ≤ σt+1‖Bt‖1 + ‖Bt‖1ρt ≤ Ut,max(σt+1 + ρt ).

By the equivalence of norms, we obtain similar bounds using other norms. This
means that every entry of νt −μt is bounded by this constant. Moreover, since in each
component only νt or μt can be non-zero, this also implies that the components of νt
and μt are bounded by this constant. ��

C Proof of Lemma 4.1

Proof From the Lipschitz continuity of QR,i
t

we have

QR,i
t

(̂xit−1,Q
i+1
t+1) − QR,i

t
(̂xiB,t−1,Q

i+1
t+1) ≤ LR

t ‖x̂ it−1 − x̂ iB,t−1‖. (16)

Analogously, using Assumption (A4) and Lemma 3.11, for the cut approximation we
obtain

Qi+1
t (̂xiB,t−1) − Qi+1

t (̂xit−1) ≤ ρt‖x̂ it−1 − x̂ iB,t−1‖. (17)

Starting with (17) it follows

Qi+1
t (̂xit−1) ≥ Qi+1

t (̂xiB,t−1) − ρt‖x̂ it−1 − x̂ iB,t−1‖
≥ φi+1

Bt (λit−1) − ρt‖x̂ it−1 − x̂ iB,t−1‖
≥ Q̂

R,i
t

(̂xiB,t−1,Q
i+1
t+1) − ρt‖x̂ it−1 − x̂ iB,t−1‖

≥ QR,i
t

(̂xit−1,Q
i+1
t+1) − (LR

t + ρt )‖x̂ it−1 − x̂ iB,t−1‖.

The second inequality follows from the definition of Qi+1
t (·). The third inequality

follows from Lemma 3.8 and the last one is obtained using (16). ��

D Proof of Lemma 4.2

Proof The structure of the proof is inspired by the proof for Lemma 4 in [1].
As the inner loop does not terminate and X is compact, there exists an infinite

sequence of forward pass trial solutions (̂xi )i∈N with cluster points. Let x̂∗ ∈ X be
such cluster point and (̂xi j ) j∈N a subsequence of (̂xi )i∈N with lim j→∞ x̂ i j = x̂∗.

We show that lim j Q
i j
t (̂x

i j
t−1) ≥ Q̂R

t (̂x∗
t−1) holds by backward induction.
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For t = T + 1, this relation is trivially true, since no stage follows after T . Now,
assume it already holds for stage t + 1, i.e.,

lim
j

Q
i j
t+1(̂x

i j
t ) ≥ Q̂R

t+1(̂x
∗
t ).

We consider two subsequent indices in the subsequence (̂xi j ) j∈N.

Q
i j+1
t (̂x

i j
t−1) ≥ Q

i j−1+1
t (̂x

i j
t−1) ≥ Q

i j−1+1
t (̂x

i j−1
t−1 ) − ρt‖x̂ i jt−1 − x̂

i j−1
t−1 ‖,

where the first inequality follows from the monotonicity of Qt (·) in i and the second
inequality uses Lemma 3.11.

By adding zero, we obtain

Q
i j+1
t (̂x

i j
t−1) ≥ Q̂

R,i j−1

t
(̂x

i j−1
t−1 ,Q

i j−1
t+1 ) + Q

i j−1+1
t (̂x

i j−1
t−1 )

− Q̂
R,i j−1

t
(̂x

i j−1
t−1 ,Q

i j−1
t+1 ) − ρt‖x̂ i jt−1 − x̂

i j−1
t−1 ‖.

We can now also use the monotonicity of Q̂
R
t
(·) in i and apply Lemma 4.1 to obtain

Q
i j+1
t (̂x

i j
t−1) ≥ Q̂

R,i j−1

t
(̂x

i j−1
t−1 ,Q

i j−1
t+1 ) + Q

i j−1+1
t (̂x

i j−1
t−1 )

− Q̂
R,i j−1

t
(̂x

i j−1
t−1 ,Q

i j−1+1
t+1 ) − ρt‖x̂ i jt−1 − x̂

i j−1
t−1 ‖

≥ Q̂
R,i j−1

t
(̂x

i j−1
t−1 ,Q

i j−1
t+1 )

− (LR
t + ρt )‖x̂ it−1 − x̂ iB,t−1‖ − ρt‖x̂ i jt−1 − x̂

i j−1
t−1 ‖

(18)

Moreover, we expand

Q̂
R,i j−1

t
(̂x

i j−1
t−1 ,Q

i j−1
t+1 ) = f̂t (̂x

i j−1
t , ŷ

i j−1
t ) + σt‖x̂ i j−1

t−1 − ẑ
i j−1
t ‖ + Q

i j−1
t+1 (̂x

i j−1
t ) (19)

and

Q̂R
t (̂x

i j−1
t−1 ) = f̂t (x̃t , ỹt ) + σt‖x̂ i j−1

t−1 − z̃t‖ + Q̂R
t+1(x̃t ) (20)

with corresponding optimal points (̂z
i j−1
t , x̂

i j−1
t , ŷ

i j−1
t ) and (z̃t , x̃t , ỹt ).

Then with (20) it follows

Q̂R
t (̂x

i j−1
t−1 ) ≤ f̂t (̂x

i j−1
t , ŷ

i j−1
t ) + σt‖x̂ i j−1

t−1 − ẑ
i j−1
t ‖ + Q̂R

t+1(̂x
i j−1
t )

as the solution from (19) is feasible. Thus,

Q̂R
t (̂x

i j−1
t−1 ) − Q̂

R,i j−1

t
(̂x

i j−1
t−1 ,Q

i j−1
t+1 ) ≤ Q̂R

t+1(̂x
i j−1
t ) − Q

i j−1
t+1 (̂x

i j−1
t ).
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Rearranging yields

Q̂
R,i j−1

t
(̂x

i j−1
t−1 ,Q

i j−1
t+1 ) ≥ Q̂R

t (̂x
i j−1
t−1 ) + Q

i j−1
t+1 (̂x

i j−1
t ) − Q̂R

t+1(̂x
i j−1
t ). (21)

With inserting (21) in (18), we obtain

Q
i j+1
t (̂x

i j
t−1) ≥ Q̂R

t (̂x
i j−1
t−1 )

︸ ︷︷ ︸
(∗)

+Q
i j−1
t+1 (̂x

i j−1
t ) − Q̂R

t+1(̂x
i j−1
t )

︸ ︷︷ ︸
(#)

− (LR
t + ρt )‖x̂ it−1 − x̂ iB,t−1‖︸ ︷︷ ︸

(+)

− ρt‖x̂ i jt−1 − x̂
i j−1
t−1 ‖

︸ ︷︷ ︸
(−)

We take limits on both sides. (∗) converges to Q̂R
t (̂x∗

t−1), since the function is
continuous. (#) becomes greater than or equal to zero by the induction hypothesis.
(+) tends to zero with Lemma 3.6 since with j to ∞, the binary precision βt goes to

0. (−) tends to zero as x̂
i j
t−1 and x̂

i j−1
t−1 both converge to x̂∗

t−1.
Thus, the induction is proven for t . As this result holds for any cluster point of

(̂xi )i∈N, the assertion follows. ��

E Proof of Theorem 4.3

Proof Consider the first stage optimal value v̂FP,i of the forward pass. By recursion
we obtain

v̂FP,i = v̂
i +

T∑

t=2

Qt (̂x
i
t−1) − Q̂

R,i
t

(̂xit−1,Q
i
t+1)

and hence

v̂FP,i ≥ v̂
i +

T∑

t=2

Qt (̂x
i
t−1) − Q̂R

t (̂xit−1) ≥ v̂R +
T∑

t=2

Qt (̂x
i
t−1) − Q̂R

t (̂xit−1). (22)

As in the proof of Lemma 4.2, let (̂xi j ) j∈N denote a convergent subsequence of
(̂xi )i∈N, with lim j x̂ i j = x̂∗. Applying (22) to this subsequence and taking limits on
both sides, yields

lim
j

v̂FP,i j ≥ v̂R + lim
j

(
T∑

t=2

Qt (̂x
i j
t−1) − Q̂R

t (̂x
i j
t−1)

)

≥ v̂R +
T∑

t=2

(
Q̂R

t (̂x∗
t−1) − Q̂R

t (̂x∗
t−1)

)

︸ ︷︷ ︸
=0

.
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The second inequality here stems from Equation (13). Using Lemma 3.4 and Assump-
tion (A3), yields lim j v̂

FP,i j ≥ v̂.
As v̂FP,i j is also a lower bound to v̂, we have lim j v̂

FP,i j ≤ v̂. Thus, lim j v̂
FP,i j =

v̂. Since this is true for any cluster point x̂∗ of (̂xi )i∈N, the inner loop converges to the
optimal value v̂. With a similar reasoning it follows that every such cluster point is an
optimal point of (P̂). ��

F Proof of Theorem 4.7

Proof Let x∗ := (
(z∗t , x∗

t , y
∗
t )

)
t=1,...,T be an optimal point of (P) and let

(
(̂z�t , x̂

�
t , ŷ

�
t )

)
t=1,...,T be an optimal point of its outer approximation (̂P�). Then, we

have

v − v̂� =
T∑

t=1

ft (x
∗
t , y

∗
t ) − f̂ �

t (̂x�
t , ŷ

�
t ) (23)

As (̂P�) is a relaxation of (P) this expression is clearly non-negative for all �. More-
over, analogously to the feasibility result in Lemma 4.5 for sufficiently large �, for all
t we have

0 ≤ ft (̂x
�
t , ŷ

�
t ) − f̂ �

t (̂x�
t , ŷ

�
t ) ≤ ε ft . (24)

We distinguish two cases: First, let
∑T

t=1 ft (x∗
t , y

∗
t ) ≤ ∑T

t=1 ft (̂x�
t , ŷ

�
t ), e.g.,

because (̂z�t , x̂
�
t , ŷ

�
t ) is feasible for (P). Then, inserting this into (23) and using (24)

it directly follows v − v̂� ≤ ∑T
t=1 ε ft .

Now let
∑T

t=1 ft (x∗
t , y

∗
t ) >

∑T
t=1 ft (̂x�

t , ŷ
�
t ). With Lemma 4.6, for any δ > 0,

there exists some �̂ ∈ N such that for all � ≥ �̂ there exists some feasible point
x̃� := (

(̃z�t , x̃
�
t , ỹ

�
t )

)
t=1,...,T of (P) with ‖̃x� − x̂�‖2 ≤ δ.

Clearly,
∑T

t=1 ft (x∗
t , y

∗
t ) ≤ ∑T

t=1 ft (̃x�
t , ỹ

�
t ). Therefore,

0 ≤
T∑

t=1

ft (x
∗
t , y

∗
t ) −

T∑

t=1

ft (̂x
�
t , ŷ

�
t ) ≤

T∑

t=1

(
ft (̃x

�
t , ỹ

�
t ) − ft (̂x

�
t , ŷ

�
t )

)
. (25)

With Assumption (A1) ft is Lipschitz continuous with some constant L ft > 0.
Thus,

∑T
t=1 ft is Lipschitz continuous with constant L f := ∑T

t=1 L ft and (25) can
be bounded from above by L f δ.

We can write the right-hand side of (23) as

T∑

t=1

(
ft (x

∗
t , y

∗
t ) − ft (̂x

�
t , ŷ

�
t )

)
+

T∑

t=1

(
ft (̂x

�
t , ŷ

�
t ) − f̂ �

t (̂x�
t , ŷ

�
t )

)
.

Then, with (24) and the previous result it follows that v − v̂� ≤ L f δ + ∑T
t=1 ε ft .
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Choosing ε := L f δ + ∑T
t=1 ε ft proves the assertion. ��

G Proof of Theorem 4.8

Proof (a) From Theorem 4.7 it follows that if NC-NBD does not terminate for ε = 0,
infinitely many piecewise linear relaxation refinements occur and v̂� converges to
v. Using the premise, we have v̂� = v̂�. Therefore, v̂� converges to v. This also
implies that the cut approximations Q�

t+1(·) become tight at x�
t asymptotically.

Thus, the solutions
(
(z�t , x

�
t , y

�
t )

)
t=1,...,T converge to an optimal solution for (P).

(b) For sufficiently large �, as in the proof of Theorem 4.7, we have

T∑

t=1

ft (̂x
�
t , ŷ

�
t ) ≤

T∑

t=1

f̂ �
t (̂x�

t , ŷ
�
t ) +

T∑

t=1

ε ft .

Using this, and the termination of the inner loop, it follows

T∑

t=1

ft (̂x
�
t , ŷ

�
t ) ≤ v̂

� +
T∑

t=1

ε ft ≤ v̂� + ε̂ +
T∑

t=1

ε ft ≤ v + ε̂ +
T∑

t=1

ε ft .

For � approaching infinity, x̂� becomes feasible. Thus,

v ≤ lim
�

v� ≤ lim
�

T∑

t=1

ft (̂x
�
t , ŷ

�
t ) ≤ lim

�
v + ε̂ +

T∑

t=1

ε ft = v + ε̂.

Since, v� is bounded from above and non-increasing, the limit exists. This proves
the assertion.

(c) This follows directly from b).
��

H Implementation details

The NC-NBD method is implemented in Julia-1.5.3 [7] using the JuMP.jl package
[13] for optimization. The implementation is mainly derived from package SDDP.jl
[12], which is enhanced by extensions specific to NC-NBD. To model piecewise
linear approximations of multidimensional functions, we draw on Delaunay.jl
[43] to determine triangulations. All MILP subproblems are solved with CPLEX and
all MINLP subproblems are solved with appropriate MINLP solvers, both accessed
using GAMS.jl [17]. The Lagrangian duals are solved using Kelley’s cutting-plane
method or a Level Bundle method as implemented in SDDiP.jl [24]. To reduce the
size of the considered subproblems, a very basic Level cut selection technique is used
based on SDDP.jl. In our case, however, not only the previously visited trial points,
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but also the anchor points are used to determine dominated cuts. Our code is available
on GitHub [15].

All computations are performed on a machine with Intel(R) Xeon(R) E5-1630 v4
CPUand 128GBRAM.All benchmark runs using state-of-the-art solvers are executed
in GAMS 32.1.0.

I Unit commitment problem formulation and results

Weconsider a unit commitment problemwith thermal generators based on [2] for some
first tests of NC-NBD. To formulate this problem, we define the following elements:
Sets:

– G: set of thermal generators

Data:

– p f
g : price of fuel for generator g [EUR/MWh]

– psg: price of start up for generator g [EUR]

– p
s
g: price of shut down for generator g [EUR]

– pd : price for not meeting demand or load shedding [EUR/MWh]
– pe: tax on emissions from generators [EUR/kg]
– dt : demand at hour t [MWh]
– cg: maximum hourly generation of generator g [MWh]
– cg: minimum hourly generation of generator g [MWh]
– r g: ramp-up rate of generator g [MWh/h]
– r g: ramp-up rate of generator g [MWh/h]
– ag, bg, cg: coefficients of the emission cost curve
– vag , v

b
g, v

c
g, v

d
g , v

e
g: coefficients of the fuel cost curve

Decision Variables:

– xgt : electricity production from generator g at time t [MWh]
– ygt : binary variable modeling commitment of generator g at time t
– ygt : binary variable modeling start-up of generator g at time t
– y

gt
: binary variable modeling shut-down of generator g at time t

– dt , dt : variables modeling demand slack at time t

The objective is to minimize the total costs of electricity generation, which consists
of different cost components. For all instances, the objective function is nonlinear due
to a concave quadratic function modeling emission costs with ag < 0 for all g ∈ G
[11].

Additionally, we consider two different types of fuel cost function. In the first case
(base instances), the fuel cost function is linear

c f
gt (xgt , ygt ) = p f

g xgt , (26)
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1020 C. Füllner, S. Rebennack

with a static fuel price p f
g . In the second case (valve-point instances), we consider the

more sophisticated cost function

c f
gt (xgt , ygt ) = vag x

2
gt + vbgxgt + vcg ygt + vdg

∣∣ sin(veg(cg − xgt ))
∣∣, (27)

including a convex quadratic term and a sinusoidal term, modeling the so-called valve
point effect of steam turbines [34].

Then, the unit commitment model reads

(PUC ) min
∑

g∈G

T∑

t=1

c f
gt (xgt , ygt ) +

∑

g∈G

T∑

t=1

psg ygt +
∑

g∈G

T∑

t=1

p
s
g ygt (28)

+
∑

g∈G

T∑

t=1

peg
(
agx

2
gt + bgxgt + cg ygt

)
+

T∑

t=1

pd(dt + dt ) (29)

s.t.
∑

g∈G
xgt + dt − dt = dt , ∀t = 1, . . . , T (30)

xgt ≤ cg ygt , ∀g ∈ G, t = 1, . . . , T (31)

xgt ≥ cg ygt , ∀g ∈ G, t = 1, . . . , T (32)

xgt − xg,t−1 ≤ r g yg,t−1 + cg(1 − yg,t−1), ∀g ∈ G, t = 1, . . . , T
(33)

xg,t−1 − xg,t ≤ r g ygt + cg(1 − ygt ), ∀g ∈ G, t = 1, . . . , T (34)

ygt ≥ ygt − yg,t−1, ∀g ∈ G, t = 1, . . . , T (35)

y
gt

≥ yg,t−1 − ygt , ∀g ∈ G, t = 1, . . . , T (36)

xgt ≥ 0, ∀g ∈ G, t = 1, . . . , T (37)

dt , dt ≥ 0, ∀t = 1, . . . , T (38)

ygt , ygt , ygt ∈ {0, 1} , ∀g ∈ G, t = 1, . . . , T . (39)

In this model, both, the continuous generation variables xgt and the commitment
variables ygt , for all g ∈ G, t = 1, . . . , T , act as state variables. For the states at time
t = 0, we use some fixed inputs. (30) denotes the balance between generation and
demand. It also contains slack variables for unmet or overfulfilled demand, which are
penalized in the objective. By this construction, Assumption (A2) is satisfied. (31)–
(32) denote limits to the generator output, while (33)–(34) define ramping constraints.
Those ramping constraints require xgt to be a state variable. (33)–(34) are required to
model start-up and shut-down costs.

For our input data, we draw on unit commitment instances created by Frangioni
and published in the OR-Library [3]. The data is enhanced by own assumptions, as
it does not cover all inputs in our problem formulation. We consider a number T of
stages between 2 and 36 and a number G of generators between 3 and 10.

We solve all instances using NC-NBDwith a relative optimality tolerance of 1% for
the outer loop. AllMILP subproblems are solved exactly while the outer loopMINLPs
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Table 2 Bounds obtained for
base instances in 100 EUR

BARON NC-NBD NC-NBD NC-NBD
T G v UB LB Time (s)

2 5 587.4 587.4 586.5 8

2 10 1266.1 1266.4 1262.3 93

3 5 849.8 849.8 849.3 17

3 10 1830.5 1830.5 1816.3 1502

4 5 1110.2 1110.2 1106.8 25

5 5 1374.7 1374.7 1372.6 202

10 3 2593.6 2598.3 2587.5 325

24 3 7037.5 7037.5 7037.5 674

are solved to an optimality tolerance of 10−3. We use the lower bound provided by
the MINLP solver to ensure that still a valid lower bound is obtained in the outer loop.
The Lagrangian duals are solved with an optimality tolerance of 10−4. In case that
σt is not chosen large enough for some stage t from the beginning, it is increased
iteratively within the solution procedure once identified. For the base instances, we
use BARON [42,48] to solve the outer loop subproblem, for the valve-point instances
we draw on LINDOGlobal [44], as BARON does not support sinusoidal functions.
For the same reason, ANTIGONE [32], SCIP [16] and Gurobi [20] cannot be applied
to the valve-point instances, so that we refer to LINDOGlobal and Couenne [5] as
benchmarks.

The obtained upper bounds (UB) and lower bounds (LB) for the base instances are
summarized in Table 2 and compared with the optimal point obtained by BARON.

All test instances can be solved by benchmark solvers in a few seconds, thus,
outperforming NC-NBD. Still, these results can be regarded as a proof of concept for
applying NC-NBD to multistage non-convex MINLPs, as in each case, the globally
minimal point is succesfully approximated.

For the valve-point instances, we consider a larger number of stages, but only 3 or
4 generators, i.e., 6 or 8 state variables, to focus on cases, in which NC-NBD looks
most promising. For cases with many stages, we test differently scaled demand time
series, as this seems to have a considerable effect on solution times. All instances are
solved with a maximum solution time of two hours. The results are summarized in
Table 3. If a solver does not terminate within the time limit, this is indicated by “-”.

For a small number of stages, NC-NBD takes significantly more time than conven-
tional solvers. With a larger number of stages, this difference vanishes, though. For
36 stages, NC-NBD manages to solve all considered instances within less than two
hours, while LINDOGlobal and Couenne show more variance in computation time.
For one instance, when terminated after two hours, they still show a 5% optimality
gap.
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Table 3 Results obtained for valve-point instances in 100 EUR

T G Demand LINDOGlobal Couenne NC-NBD

10 3 v1 UB 3187.8 3178.0 3185.8

LB 3166.7 3161.2 3158.6

Time (s) 201 29 1074

16 3 v1 UB 5602.4 5584.1 5584.1

LB 5553.0 5584.1 5548.3

Time (s) 135 273 760

24 3 v1 UB 8593.4 8554.8 8554.8

LB 8446.3 8545.0 8498.6

Time (s) – 4427 1408

24 3 v2 UB 9518.0 9508.8 9509.7

LB 9428.5 9414.9 9432.4

Time (s) 1562 647 771

24 4 v1 UB 9977.2 9965.1 9964.8

LB 9848.3 9865.5 9867.5

Time (s) – 349 1220

24 4 v2 UB 8557.9 8587.1 8572.3

LB 8473.1 8310.9 8492.2

Time (s) 2603 – 4191

36 4 v1 UB 12,654.3 12,662.4 12,638.8

LB 11,960.6 11,981.0 12,547.8

Time (s) – – 6816

36 4 v2 UB 10,742.7 10,737.5 10,737.5

LB 10,651.7 10,737.5 10,630.4

Time (s) 2733 7501 3646

36 4 v3 UB 14,013.3 13,981.5 13,978.7

LB 13,678.2 13,767.1 13,879.1

Time (s) – – 3497
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B.1 Errata for the published paper

� Page 994, Algorithm 1: Lines 9 and 10 have to be swapped, so that the

upper bound is computed outside of the for-loop.

� Page 1019, line 16 should be replaced with “peg: tax on emissions from gen-

erator g [EUR/kg]”.

� Page 1019, line 21: rg should be named the “ramp-down rate”.
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Abstract

We provide new theoretical insight on the generation of linear and non-convex cuts for
value functions of multistage stochastic mixed-integer programs based on Lagrangian du-
ality. First, we analyze in detail the impact that the introduction of copy constraints, and
especially, the choice of the accompanying constraint set for the copy variable have on the
properties of the Lagrangian dual and the obtained cuts. We show that the well-known
tightness result for Lagrangian cuts in stochastic dual dynamic programming (SDDiP)
crucially depends on this choice, and not on the introduction of copy constraints in itself.
Afterwards, we generalize our results to the case where a Lipschitz regularization is ap-
plied to the value functions. In particular, we show a deep relation between norm-bounded
Lagrangian dual problems and the closed convex envelope of the regularized value func-
tions. For linear Lagrangian cuts, using an appropriate regularization, this result can be
used to enhance the tightness result from SDDiP to the regularized case. For the genera-
tion of non-convex cuts, we pick up on the lift-and-project idea proposed by Füllner and
Rebennack in their non-convex nested Benders decomposition (NC-NBD) method. We
generalize this cut generation idea to the stochastic case. We then show that by careful
choice of the norm used for regularization in the lifted space, Lipschitz continuity of the
obtained non-convex cuts can be guaranteed. By that, we resolve an open theoretical
question from the original NC-NBD paper. We highlight all our results by simple illustra-
tive examples. Our work allows for a profound understanding of how and to which effect
copy constraints and regularization may be used in decomposition methods in stochastic
mixed-integer programming.

1 Introduction

1.1 Motivation and prior work

In many practical applications, sequential decisions have to be made over a finite num-
ber of stages, while some of the problem data of the following stages are subject to
uncertainty. Such decision-making processes can be modeled as multistage stochastic
programs. Often it is assumed that the number of scenarios describing the uncertain
data is finite. In this case, such stochastic problems can be reformulated as large-scale
deterministic problems. However, for a practically relevant number of scenarios, these

1

242 Paper C – On Lipschitz regularization and Lagrangian cuts



problems get too large to be solved by off-the-shelf solvers. Therefore, they are usually
approached by decomposition methods.

For multistage stochastic linear programs (MS-LP), these decomposition methods
have a long tradition and are well-studied. Among the most prominent ones are nested
Benders decomposition (NBD) [5] and stochastic dual dynamic programming (SDDP)
[20]. One of their key ideas is to decompose the original multistage problem by stage
and scenario into subproblems, which are linked by state variables and (expected) value
functions. These functions are piecewise-linear and convex, and thus can be iteratively
approximated by linear cutting-planes. Finitely many such cuts are sufficient to ensure
(almost sure) convergence.

However, in many applications, some of the decisions have to be integer or binary,
which yields a multistage stochastic mixed-integer linear program (MS-MILP). Prob-
lems of this class are very hard to solve, as they combine the challenges of dynamic and
stochastic programming with the non-convexity of mixed-integer programs. In partic-
ular, the value functions become non-convex and discontinuous, which aggravates their
approximation.

Various strategies have been proposed to solve MS-MILPs. A natural approach
is to relax the integer constraints to obtain an MS-LP that can be solved by exist-
ing methods. However, in that case not the original MS-MILP is solved, which may
hamper the practical benefit of this approach. The same issue occurs if the expected
value functions are statically or dynamically convexified [8, 25, 24]. Another approach
is to approximate the original value functions with linear Benders cuts [3, 28] or La-
grangian cuts [31] without convexifying the problem. In general, these cuts only yield
a non-exact convex approximation of the expected value functions. Therefore, in such
cases, convergence of decomposition methods is not guaranteed. As a relief, in two-
stage stochastic programming linear cuts are often incorporated into branch-and-bound
approaches, where convergence is guaranteed by additional branching [7, 9]. However,
for multistage problems this is computationally intractable.

Still, two strategies have been proposed recently on how linear cuts can be used
to solve stochastic MILPs to arbitrary precision. The first one is to use scaled cuts
which are guaranteed to recover the convex envelope of the expected value functions
[27]. This approach has only been applied to the two-stage case so far. The second
one is to use stochastic dual dynamic integer programming (SDDiP) in a lifted space
[31]. The SDDiP method uses special Lagrangian cuts to approximate the expected
value functions of MS-MILPs. These cuts are tight, and thus ensuring convergence if all
state variables are binary (or bounded integer). For general MS-MILPs it is therefore
proposed to approximate the state variables using a static binary expansion [31]. Then,
in the lifted binary state space, linear cuts can be used to approximate the expected
value functions. In this case, however, not the original MS-MILP, but an approximation
is solved. While it is possible to derive theoretical results on the approximation quality
[31], it is not immediately clear how the static binary expansion should be chosen in
practice.

The special Lagrangian cuts in SDDiP rely on the introduction of copy constraints,
adding local copies of the state variables, which are then dualized in the Lagrangian
relaxation. Even though this is barely discussed in [31], these copy constraints are
accompanied by additional constraints for the new variables. Importantly, different
choices of these constraints may lead to distinct cuts with different approximation qual-
ity. In this paper, we study this aspect in more theoretical detail and by that provide
a new, generalized perspective on the generation of Lagrangian cuts.
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Only recently, more focus has been put on deriving non-convex approximations (also
called non-convex cuts) for the non-convex and discontinuous value functions. In [21],
step functions are used instead of cutting-planes to approximate them, presuming their
monotonicity. In stochastic Lipschitz dynamic programming (SLDP) [1], Lipschitz cuts
are proposed under the assumption of Lipschitz continuity of the value functions, as
well as knowledge of a Lipschitz constant. Moreover, non-convex cuts can be generated
by solving augmented Lagrangian dual problems [1] instead of classical Lagrangian dual
problems. However, the approach in [1] requires a strong recourse assumption, namely
the complete continuous recourse.

In [29], the authors propose a new class of SDDP-type algorithms for solving mul-
tistage stochastic mixed-integer nonlinear programs with non-Lipschitzian value func-
tions. In particular, the paper proposes a new cut generation framework using gener-
alized conjugacy with regularization, which is guaranteed to obtain a global optimum
without the assumption of complete recourse. This significantly generalizes SDDP, SD-
DiP, and SLDP. A complete oracle complexity analysis is also achieved in the paper. In
[30], SDDP-type algorithms are extended to multistage distributionally robust convex
optimization and a new type of SDDP algorithm that adaptively chooses the forward or
backward direction at each node is proposed with complete oracle complexity analysis.

An alternative approach to obtain non-convex cuts is to use the binary approx-
imation idea from [31] in a dynamic and temporary fashion, paired with Lipschitz
regularization. This is one of the key ingredients of the non-convex nested Benders
decomposition (NC-NBD) method proposed in [13], where MILP relaxations are solved
iteratively in order to solve an MINLP. In the backward pass of this iteration, the
state variables are temporarily lifted to a binary space, where tight Lagrangian cuts are
generated as in SDDiP. These linear cuts are then projected back to the original state
space, which yields a tight non-convex approximation of the value functions. Under
some strong technical assumption, it is shown that these approximations are Lipschitz
continuous. In order to improve the approximation quality, the binary approximation
precision is iteratively refined if required. We generalize these results to the stochastic
case in this paper and explore the regularization in more detail, which allows us to drop
the technical assumption taken in [13].

Whereas regularization is particularly helpful for deriving non-convex, but Lipschitz
continuous approximations of non-Lipschitzian value functions, it may also be useful
when generating linear Lagrangian cuts. It naturally ensures feasibility of the subprob-
lems, so that there is no need for an additional recourse assumption. Also, as shown in
[12, 29], under mild conditions, regularization of an MS-MILP ensures exact solution of
the original MS-MILP. Despite these amenities, there exists no study yet focusing on
the effects and the theoretical backbone of using Lipschitz regularization in MS-MILPs
in order to derive linear Lagrangian cuts. We close this scientific gap in this work.

1.2 Contribution

In this paper, we investigate in detail the effects of copy constraints and Lipschitz
regularization on the generation and properties of linear and non-convex cuts for the
value functions of MS-MILPs, which are constructed based on Lagrangian duality. Our
results allow for a more profound understanding of how copy constraints and Lipschitz
regularization may be utilized in multistage stochastic programming.

As we provide new theoretical insight on Lagrangian cuts and duality, our work can
be considered as complementary to the work on Lagrangian cuts by Zou et al. [31], on
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conjugacy cuts and regularization by Zhang and Sun [30, 29], on augmented Lagrangian
duality by Feizollahi et al. [12] and on Lagrangian-based non-convex cuts by Füllner
and Rebennack [13].

With respect to linear Lagrangian cuts we make the following key contributions.

1. In Sect. 3, we thoroughly explore the role of copy constraints when deriving La-
grangian cuts. More precisely, we show that accompanying the new copy vari-
ables with different types of constraints leads to cuts with different approximation
characteristics. This way, we provide a new theoretical perspective on Lagrangian
relaxation and cuts in general. In particular, we show that the well-known tight-
ness result for Lagrangian cuts in SDDiP [31] actually relies on the accompanying
constraints more than on the introduction of copy constraints itself.

2. In Sect. 4, we consider the case of Lipschitz regularization and generalize our
previous results to this case. We prove a deep relation between norm-bounded
Lagrangian dual problems and primal convexifications of the regularized subprob-
lems in MS-MILPs, in the sense that they yield the same optimal value if dual
norms are used in both cases. While such relation is known for non-regularized
problems and unbounded Lagrangian duals, we are not aware of any literature
covering this result for the regularized case.

3. We use this result to show that the obtained Lagrangian cuts are tight for the
closed convex envelope of the regularized value functions. This also clarifies which
kind of cuts are constructed if (artificial) multiplier bounds are introduced in La-
grangian dual problems in practice. Furthermore, for the 1-norm penalty function,
tightness for the true regularized value functions can be achieved as long as all
state variables are binary. This generalizes the tightness result from SDDiP [31]
to the regularized case.

With respect to non-convex cuts we make the following key contributions.

4. We significantly extend the idea from the NC-NBD method by Füllner and Reben-
nack [13] to compute linear Lagrangian cuts in a lifted binary state space and to
project them back to the original state space to obtain non-convex approxima-
tions of the value functions. First, we generalize this cut generation idea from the
deterministic to the stochastic case. Additionally, we show that by using appro-
priate weighted norms in the Lipschitz regularization and in the Lagrangian dual,
Lipschitz continuity of the obtained non-convex cuts is ensured. This is crucial to
guarantee convergence of NC-NBD. In doing that, we show that the technical As-
sumption (A4) in [13] can be dropped, and thus close an open theoretical question
from [13].

We underline all our results by providing illustrative examples.

1.3 Structure

This paper is structured as follows. In Sect. 2 we start with formulating the MS-
MILP and stating some basic concepts and assumptions. In Sect. 3 we discuss classical
Lagrangian duality and cuts, but with special focus on the impact of the chosen copy
constraint approach. In Sect. 4 we first introduce Lipschitz regularization in a formal
way. Then, we present our main result on norm-bounded Lagrangian duality and the
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associated Lagrangian cuts. In Sect. 5 we recapitulate the NC-NBD approach by Füllner
and Rebennack [13] with special focus on the applied regularization. We enhance the
cut generation idea to the stochastic case and show how Lipschitz continuity of the
non-convex cuts can be ensured. We finish with a conclusion in Sect. 6. For reasons of
clarity some technical proofs are shifted to the appendix.

2 Problem formulation

We consider MS-MILPs with a finite number T ∈ N of stages, where some of the problem
data is uncertain and evolves according to a known stochastic process ξ := (ξ1, . . . , ξT )
with deterministic ξ1. We assume that the random data vectors ξt, t = 1, . . . , T, are
discrete and finite, and thus the uncertainty can be modeled by a finite scenario tree.

Let T = (N , E) denote a finite scenario tree with a set of nodes N and a set of
edges E . For each node n ∈ N , the unique ancestor node is denoted by a(n) and the
set of child nodes is denoted by C(n). The probability for some node n to realize is
pn > 0 and assumed to be known. The transition probabilities between adjacent nodes
n,m ∈ N (i.e., edges (n,m) ∈ E) can then be determined as pnm := pm

pn
. For the root

node r, we assume a(r) = ∅ and pr = 1. We define N := N \ {r} to address the set of

nodes without the root node and ‹N to address the set of nodes without the leaf nodes.

2.1 Dynamic programming equations

The MS-MILP can be expressed recursively by its dynamic programming equations (for
details see Zou et al. [31]). For the root node, we obtain

v∗ := min
xr ,yr

fr(xr, yr) +QC(r)(xr)

s.t. (xr, yr) ∈ Fr(xa(r))
(1)

with xa(r) = 0, and v∗ is the optimal value of the MS-MILP. Let R := R ∪ {+∞}. For

all n ∈ ‹N , the expected value function QC(n)(·) : Rda(n) → R is defined by

QC(n)(xn) :=
∑

m∈C(n)
pnmQm(xn), (2)

with the value function Qn(·) : Rda(n) → R defined by

Qn(xa(n)) := min
xn,yn

fn(xn, yn) +QC(n)(xn)

s.t. (xn, yn) ∈ Fn(xa(n))
(3)

for all n ∈ N . For the leaf nodes n ∈ N \ ‹N , we set QC(n)(xn) ≡ 0. Moreover, we set
Qn(xa(n)) = +∞ if Fn(xa(n)) = ∅, and denote by

dom(Qn) :=
{
xa(n) ∈ Rda(n) : Qn(xa(n)) < +∞

}

the effective domain of Qn(·). The same applies to QC(n)(·).
For each node n ∈ N , we distinguish the state variables xn ∈ Rdn , which enter the

child nodes’ subproblems, and the local variables yn ∈ Rd̃n . Moreover, xa(n) is the state
variable from the ancestor node of n and is a fixed parameter in (3) of node n. Further-

5
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more, fn(·) denotes the objective function and Fn(xa(n)) denotes the feasible set which
depends on the state xa(n). As we consider an MS-MILP, we assume that fn(xn, yn) is
a linear function in xn and yn, and that Fn(xa(n)) is a mixed-integer polyhedral set for
all xa(n). More precisely, we assume it to be defined by

Fn(xa(n)) :=
®
(xn, yn) ∈ Rdn × Rd̃n :

xn ∈ Xn, yn ∈ Yn,
Anxa(n) +Bnxn + Cnyn ≥ bn

´
. (4)

Here, An, Bn, Cn, bn denote appropriately defined data matrices and vectors. The sets
Xn and Yn comprise constraints only associated with xn or yn, e.g., box constraints or
non-negativity constraints. More precisely, we assume that both sets are intersections
of polyhedral sets X̄n, Ȳn and possible integrality constraints. In the following, we also
refer to Xn as the state space.

Remark 2.1. We make two comments on the definition of Qn(·) in (3). First, we
should emphasize that regarding Qn(·) as a function on Rda(n) is not necessarily standard
in stochastic programming. Often it is (implicitly) assumed to be defined only on the
domain Xa(n). However, from our view, allowing Qn(·) to be defined on Rda(n) with
extended real values proves beneficial when we discuss the impact of copy constraints
later on. Second, as the co-domain of Qn(·) is R, Qn(·) should be more rigorously
defined as the infimum of the objective values in problem (3). However, below we take
assumptions under which the minimization problem is bounded and finite infima are
always attained. Therefore, we stick to the min operator in (3) with the additional
definition of Qn(xa(n)) = +∞ given that Fn(xa(n)) = ∅. This approach is also chosen
for all other value functions throughout this paper.

For the remainder of this article, we make some basic assumptions.

Assumption 1. The following conditions are satisfied by (1)-(4):

(A1) For all n ∈ N , the sets Xn and Yn are compact.

(A2) For all n ∈ N , all coefficients in An, Bn, Cn, bn, fn, X̄n and Ȳn are rational.

(A3) The MS-MILP has a feasible solution for each scenario, i.e., there exists some
(xn, yn)n∈N such that (xn, yn) ∈ Fn(xa(n)) for all n ∈ N .

Note that the boundedness in (A1) immediately implies that Fn(xa(n)) is bounded

for all xa(n) ∈ Rda(n) and n ∈ N . By (A1) and [18, Theorem 2.1], it follows that the
subproblems (1) and (3) are either infeasible or attain a finite infimum.

Furthermore, we obtain the following well-known properties for the value functions.
For completeness, we provide a proof in Appendix A.

Lemma 2.2. Under Assumption 1, for all n ∈ N , the value functions Qn(·), and for
all n ∈ N , the expected value functions QC(n)(·) are proper, lsc (lower semicontinuous),
and piecewise polyhedral with finitely many pieces. Moreover, dom(Qn) is closed.

By applying the properness reasoning to the root node, we conclude that v∗ is finite.

2.2 Closed convex envelopes

The main challenge in decomposition methods for MS-MILPs is that the (expected)
value functions are not guaranteed to be continuous or convex. Therefore, approxi-
mations of the value functions based on linear cutting-planes may at best yield their
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closed convex envelopes. To deal with this concept, we denote by conv(S) the con-
vex hull of some set S ⊆ Rd. For a function f : S → R, its closed convex envelope
co(f) : conv(S)→ R (also called convex closure) is defined as the pointwise supremum
of all affine functions majorized by f on S [4].

In our setting, for all n ∈ N̄ the value functions Qn(·) are defined on Rda(n) . Hence,
co(Qn)(·) is the pointwise supremum of all affine functions defined on Rda(n) and ma-
jorized by Qn(·) on Rda(n) . With Qn(xa(n)) = +∞ for all xa(n) /∈ dom(Qn), the crucial
part is co(Qn)(xa(n)) ≤ Qn(xa(n)) for all xa(n) ∈ dom(Qn).

It is well-known that the closed convex envelope co(Qn)(·) is equivalent to the bicon-
jugate (Qn)

∗∗(·) of Qn(·) in this setting. For a formal definition of biconjugate functions
and a general introduction to the conjugacy theory we refer to [4].

Lemma 2.3. Under Assumption 1, for all n ∈ N̄ and all xa(n) ∈ Rda(n)

co(Qn)(xa(n)) = (Qn)
∗∗(xa(n)).

We provide a proof in Appendix B.

Remark 2.4. The pointwise supremum of all convex (not necessarily affine) functions
defined on Rda(n) and majorized by Qn(·) on Rda(n) is the convex envelope co(Qn)(·).
If dom(Qn) is compact, then from the lower semicontinuity of Qn(·) (Lemma 2.2) and
Lemma 2.3 it follows that

co(Qn)(xa(n)) = co(Qn)(xa(n))

for all xa(n) ∈ conv(dom(Qn)), see [11, Theorem 2.2].

3 Classical Lagrangian cuts and the role of copy con-
straints

We revisit some central results on Lagrangian duality and its usage in decomposition
methods to generate cuts. In doing that, we focus specifically on the role that copy
constraints and constraints accompanying them have on the obtained results. This
yields a generalization of some known results from the literature.

3.1 Introducing copy constraints

We follow the SDDiP approach [31] and introduce local copies zn together with copy
constraints xa(n) = zn to all subproblems (3). Crucially, in addition, we also impose
the accompanying constraints zn ∈ Za(n) on zn to restrict their potential values, with

Za(n) ⊆ Rda(n) . This yields the subproblems

Qn(xa(n)) = min
xn,yn,zn

fn(xn, yn) +QC(n)(xn)

s.t. (zn, xn, yn) ∈ Fn
zn = xa(n)

zn ∈ Za(n).

(5)

Here, Fn :=
¶
(xn, yn, zn) ∈ Rda(n) × Rdn × Rd̃n : (xn, yn) ∈ Fn(zn)

©
.

For any xa(n) ∈ Za(n), subproblem (5) is equivalent to subproblem (3) due to the
copy constraint. However, for any xa(n) /∈ Za(n), the copy constraint accompanied with
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za(n) ∈ Za(n) immediately induces infeasibility, and thus Qn(xa(n)) = +∞. This means
that the additional constraints on za(n) provide a natural way to restrict the effective
domain of Qn(·) such that dom(Qn) ⊆ Za(n). On the other hand, we should choose
Za(n) ⊇ Xa(n) in order to not exclude feasible points.

As long as Za(n) contains all feasible values of xa(n), the actual choice of Za(n) may
seem of minor importance at first glance. However, it turns out that it has an important
effect on the considered closed convex envelope co(Qn)(·) (recall that co(Qn)(·) under-
estimates Qn(·) on dom(Qn)), and by that on the quality of the obtained Lagrangian
cuts. As we shall see, choosing Za(n) appropriately is also the main secret behind the
tightness results for SDDiP [31].

We discuss different choices for Za(n):

� Za(n) = Xa(n). This is the most intuitive choice, as it yields dom(Qn) ⊆ Xa(n),
i.e., we restrict Qn(·) to the actual state space. This choice also yields the best
possible polyhedral underestimators of Qn(·) on Xa(n). It has been considered in
[9, 22, 31] for instance.

� Za(n) = conv(Xa(n)). This choice may yield worse approximations of Qn(·)
on Xa(n), as it leads to valid under-approximators on the larger set conv(Xa(n)).
However, this property may also be exploited on purpose, as it is done in the
NC-NBD method [13] that we discuss in detail in Sect. 5. This choice is also
considered in the original SDDiP work [31], but without further explanation.

� Za(n) = X̄a(n). In this case, Za(n) is the LP relaxation of Xa(n), which has
the advantage that no additional integer variables have to be considered in the
reformulated subproblem (5).

� Za(n) = Rda(n) . This choice leads to the same Lagrangian cuts as if no copy
constraints are introduced at all, but instead the original coupling constraints
Anxa(n) +Bnxn + Cnyn ≥ bn are dualized in the Lagrangian relaxation.

We take the following assumption on Za(n), which is satisfied in most practical
applications.

Assumption 2. The set Za(n) is closed and either satisfies Za(n) = Rda(n) or is rational
MILP-representable.

In the remainder of this paper, we use two recurring examples to illustrate our
results. We start with the first one to highlight the differences in the convex envelopes
for different choices of Za(n).

Example 3.1. Consider the value function

Q(x) = min
{
y1 + y2 : 2y1 + y2 ≥ 3x, 0 ≤ y1 ≤ 2, 0 ≤ y2 ≤ 3, y1 ∈ Z

}
(6)

with state space X = {0, 1} [31, Example 2]. We introduce the local variable z, the copy
constraint z = x, and constraint z ∈ Z. Depending on the choice of Z, the effective
domain of Q(·) defined in (5) changes. If we set Z = X, then dom(Q) = {0, 1}. If
we set Z = conv(X), then dom(Q) = [0, 1]. And if we set Z = R (or do not introduce
copy constraints at all), then dom(Q) = [0, 2]. Since co(Q)(·) underestimates Q(·)
on dom(Q), the approximation quality on the actual state space X may vary. This is
illustrated in Fig. 1, where the approximation at x = 1 is highlighted by dots. Clearly,
co(Q)(·) is tight for Q(·) at x = 1 in the first two cases, but not in the third one.

8

249



+∞

Q

co(Q)

0 0.5 1 1.5 2

1

2

3

4

5

x

(a) Z = {0, 1}.

+∞

Q

co(Q)

0 0.5 1 1.5 2

1

2

3

4

5

x

(b) Z = [0, 1].

Q

co(Q)

0 0.5 1 1.5 2

1

2

3

4

5

x

(c) Z = R.

Figure 1: Q(·) on [0, 2] and co(Q)(·) on dom(Q) for different choices of Z in Example 3.1.

Remark 3.2. As shown in Example 3.1, essentially, different choices of Za(n) yield
distinct functions Qn(·) and co(Qn)(·). For the remainder of this paper, this dependence
should be kept in mind, even if we do not state it explicitly for clarity of notation.

For the second example, the value function is not only non-convex, but also discon-
tinuous.

Example 3.3. Consider the value function

Q(x) = min
y,z

y1 −
3

4
y2 +

3

4
y3 +

9

4
y4

s.t.
5

4
y1 − y2 +

1

2
y3 +

1

3
y4 = z

y1, y2, y3, y4 ≥ 0

y1, y2 ∈ Z
z = x

z ∈ [0, 2]

(7)

with continuous state space X = [0, 2], where we already introduced copy constraints with
Z = X. The value function and its closed convex envelope are illustrated in Fig. 2.

9
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Figure 2: Q(·) and co(Q)(·) for Example 3.3.

3.2 The approximate subproblem

In Benders-like decomposition methods for multistage problems such as SDDP or SD-
DiP, the functions QC(n)(·) are iteratively approximated by cutting-planes. For this
reason, in the recursion (5) QC(n)(·) are replaced by polyhedral outer approximations
Qi

C(n)(·), which are then iteratively updated over the iterations i. Due to the non-convex

character of QC(n)(·), for MS-MILPs these approximations will not be tight in general.
In each iteration i, in a forward pass, the tree T is traversed in forward direction.

For each node n ∈ N (or some sampled subset) and some given set Za(n), the subprob-
lems (5) are solved with QC(n)(·) being replaced by Qi

C(n)(·). This yields incumbents

xia(n) ∈ Xa(n) for each considered node n, which are handed as parameters to the child

nodes C(n). These incumbents are also used in a backward pass, where the tree T is
traversed in backward direction, and where the approximations Qi

C(n)(·) are updated to

Qi+1
C(n)(·) by constructing additional cuts. For the remainder of this paper, we solely focus

on this cut generation step. For more details on the complete algorithmic procedure,
we refer to [14, 31].

Whereas Assumption 1 guarantees the existence of a feasible solution for MS-MILP,
for some xa(n), the subproblems may become infeasible. In such a case, in addition to the
previously mentioned optimality cuts also feasibility cuts are required, which iteratively
approximate dom(Qn). Usually, this requirement is avoided by taking an appropriate
recourse assumption, such as:

Assumption 3 (Relatively complete recourse). For all n ∈ N , for all xa(n) feasible at
node a(n), there exist (zn, xn, yn) satisfying the constraints in subproblem (5).

In the backward pass of iteration i, in each considered node n ∈ N , subproblems
for the incumbent xia(n) and the updated outer approximation Qi+1

C(n)(·) of QC(n)(·) are

solved. By a partial epigraph reformulation, we shift Qi+1
C(n)(·) to the constraints. Then,

the subproblems can be expressed as

Qi+1
n

(xia(n)) := min
xn,yn,zn,θC(n)

fn(xn, yn) + θC(n)

s.t. (xn, yn, zn, θC(n)) ∈Mi+1
n

zn = xia(n),

(8)
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where we define

Mi+1
n :=

{
(xn, yn, zn, θC(n)) : zn ∈ Za(n), (xn, yn, zn) ∈ Fn, θC(n) ≥ Qi+1

C(n)(xn)
}
. (9)

The polyhedral outer approximation Qi+1
C(n)(·) is defined as the pointwise maximum of

all linear cuts generated so far. To avoid unboundedness of subproblems (8), we ini-
tialize each Q0

C(n)(·) with a valid lower bound θC(n) > −∞. We refer to Qi+1
n

(·) as the
approximate value function.

In the same vein as Assumption 2, we impose another requirement.

Assumption 4. For all n ∈ N and all iterations i, all linear cuts defining the polyhedral
set Qi+1

C(n)(xn) are defined by rational coefficients.

Note that in practice where cut coefficients are computed numerically, this is always
satisfied.

Our assumptions on rationality of coefficients and MILP-representability yield the
following important result, which goes back to [18] and which we need later on.

Lemma 3.4 (Theorem 11.13 in [10]). Under Assumptions 1, 2, 4, the set conv(Mi+1
n ) is

a closed rational polyhedron, and the recession cones of conv(Mi+1
n ) and M̂i+1

n coincide,
where the latter set denotes the continuous relaxation ofMi+1

n .

Importantly, due to the cut constraints, however, neitherMi+1
n nor conv(Mi+1

n ) has
to be bounded.

Similarly to Lemma 2.2, we obtain the following properties for the functions Qi+1
n

(·)
by additionally exploiting Assumptions 2 and 4 and that θC(n) is bounded from below:

Lemma 3.5. Let n ∈ N . If Assumptions 1, 2, 4 are satisfied, then Qi+1
n

(·) is proper, lsc,
and piecewise polyhedral with finitely many pieces. Moreover, dom(Qi+1

n
) = dom(Qn),

and thus closed.

3.3 The Lagrangian dual

In order to derive linear Lagrangian cuts to approximate the non-convex value functions
Qn(·), we consider a Lagrangian relaxation in which the copy constraints in subprob-
lem (8) are relaxed. For a given vector of dual multipliers πn ∈ Rda(n) for the copy
constraints, this yields the problem

Li+1
n (πn) := min

xn,yn,zn,θCn
fn(xn, yn) + θC(n) − π⊤

n zn

s.t. (xn, yn, zn, θC(n)) ∈Mi+1
n ,

(10)

where we omit the constant π⊤
n x

i
a(n) in the objective. For varying πn, this relaxation

defines the dual function Li+1
n (·). The problem of optimizing the dual function over the

dual multipliers πn is the Lagrangian dual problem

QD,i+1
n

(xia(n)) := max
πn

Li+1
n (πn) + π⊤

n x
i
a(n). (11)

As (10) is a relaxation of the primal subproblem (8), it yields a lower bound for
Qi+1
n

(·) at xia(n). Solving the dual problem (11) can be interpreted as finding the tightest

Lagrangian relaxation for (8), and thus the tightest such lower bound.

11
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Remark 3.6. In the light of Remark 2.1, note that unless Za(n) is bounded, the dual
function Li+1

n (πn) may yield the trivial lower bound −∞ for some πn. However, based
on Assumption 1 and θC(n) being bounded from below, it is finite for πn = 0. Therefore,

QD,i+1
n

(·) is proper. Moreover, we shall see that QD,i+1
n

(xa(n)) is guaranteed to be finite-

valued for all xa(n) ∈ conv(dom(Qi+1
n

)).

A well-known result on Lagrangian relaxation for MILPs is that under some as-
sumptions the optimal value of the dual (11) is the same as that of the following con-
vexification of the primal subproblem (8)

QC,i+1
n

(xia(n)) := min
xn,yn,zn,θCn

fn(xn, yn) + θC(n)

s.t. (xn, yn, zn, θC(n)) ∈ conv(Mi+1
n )

zn = xia(n).

(12)

Here, the part of the constraints which is not relaxed in (10) is convexified, while the
copy constraints keep their original form. We first derive an auxiliary result.

Lemma 3.7. Under Assumptions 1, 2, 4, the function QC,i+1
n

(·) is proper, lsc and

convex with dom(QC,i+1
n

) = conv(dom(Qi+1
n

)). Moreover, on its effective domain it is
piecewise linear.

We provide a proof for this result in Appendix C.
Based on this lemma, the equivalence between the primal convexification (12) and

the dual (11) is given below.

Theorem 3.8 (Theorem 1 in [15]). Under Assumptions 1, 2, 4, the Lagrangian dual (11)
and the primal convexified problem (12) satisfy

QD,i+1
n

(xia(n)) = QC,i+1
n

(xia(n))

for all xia(n) ∈ conv(dom(Qi+1
n

)).

The main idea behind this result is that problems (11) and (12) are LP duals of each
other. Note that we even have QD,i+1

n
(xia(n)) = QC,i+1

n
(xia(n)) for all x

i
a(n) ∈ Rda(n) , since

both functions are bounded from below and may only take the value +∞ if non-finite.
This result motivates another interesting property of the Lagrangian dual, which

relates to the closed convex envelope of the approximate value function. This result is
widely known, but we give a self-contained proof in Appendix D.

Theorem 3.9. Under Assumption 1, the Lagrangian dual (11) satisfies

QD,i+1
n

(xia(n)) = co(Qi+1
n

)(xia(n))

for all xia(n) ∈ conv(dom(Qi+1
n

)).

3.4 Lagrangian cuts

We now focus on the generation of Lagrangian cuts at points xia(n) ∈ conv(dom(Qi+1
n

))

using problem (11), as introduced in [31]. We first define these cuts formally.
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Definition 3.10 (Lagrangian cut). For all n ∈ N , a Lagrangian cut is given by

θn ≥ Li+1
n (πin) + (πin)

⊤xa(n),

where πin denotes optimal dual multipliers in (11) for node n and some given xia(n) ∈
conv(dom(Qi+1

n
)).

Under relatively complete recourse, i.e., Assumption 3, within the decomposition
method it is ensured that for all iterations i and all nodes n ∈ N , the condition xia(n) ∈
dom(Qi+1

n
) ⊆ conv(dom(Qi+1

n
)) is satisfied, so there never occurs an xia(n) for which no

cut can be computed due to infeasibility.
In general, the Lagrangian cuts have the following important properties [see 31]:

Theorem 3.11. Under Assumptions 1, the Lagrangian cuts defined in 3.10 are

(a) valid lower approximations of Qn(·) for all xa(n) ∈ Za(n),

(b) tight for co(Qi+1
n

)(·) at xia(n),

(c) finite, i.e., only finitely many different cuts can be generated, if the dual multipliers
πin are dual basic solutions.

Proof. Properties (a) and (c) are proven in [31, Theorem 3]. Tightness of Lagrangian
cuts is directly proven for Qi+1

n
(·) in [31]. Property (b) is about co(Qi+1

n
)(·) instead.

But it directly follows from Theorem 3.9 and Definition 3.10.

Property (a) implies that for Za(n) = conv(Xa(n)) Lagrangian cuts underestimate
Qn(·) not only on Xa(n), but also on the larger set conv(Xa(n)) (see the related Re-
mark 3.2). Note that property (a) even holds if the Lagrangian dual (11) is not solved
to optimality, i.e., if suboptimal dual multipliers are used in Definition 3.10.

Since we want to approximate QC(n)(·) instead of approximating each Qm(·),m ∈
C(n), separately, we construct an aggregated cut from the cuts defined in 3.10. Using
these aggregated cuts, we express Qi+1

C(n)(·) by

Qi+1
C(n)(xn) := min

{
θC(n) ∈ R : θC(n) ≥

∑

m∈C(n)
pnm

(
Li+1
m (πrm)+(πrm)

⊤xn
)
∀r = 1, . . . , i+1

}
.

Using Theorem 3.11, the validity of Qi+1
C(n)(·) follows immediately.

Corollary 3.12. Under Assumption 1, Qi+1
C(n)(·) is a valid lower approximation of QC(n)(·)

for all xn ∈ Zn.

Importantly, we cannot directly generalize the tightness result from Theorem 3.11
to co(E[Qn]), since in general E[co(Qn)] ̸= co(E[Qn]) [27].

3.5 The case of tight Lagrangian cuts

In SDDiP [31], it is assumed that all state variables are binary, i.e., Xa(n) = {0, 1}da(n) ,

and thus conv(Xa(n)) = [0, 1]da(n) . This assumption has two key effects, which ensure
the almost sure finite convergence of SDDiP to an optimal policy of the considered
MS-MILP. First, Xa(n) is finite. Second, the Lagrangian cuts from Definition 3.10
are not only tight for co(Qi+1

n
)(·) at xia(n), but in fact for Qi+1

n
(·). This tightness is
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directly proven in [31, Theorem 3]. However, our previous analyses allow for a different
perspective on this result, which is briefly mentioned in [31], but not used in the proof:
It holds because co(Qi+1

n
)(·) and Qi+1

n
(·) coincide at xia(n). The main reason for this is

that Xa(n) is contained in the extreme points of Za(n). Therefore, this tightness result
crucially depends on the choice of Za(n). This perspective also allows to extend the
SDDiP tightness result to more general cases, as also touched upon in Remark 1 in [29].

Theorem 3.13. Under Assumptions 1, 2, 4, for any iteration i and any node n ∈ N ,
let Za(n) be bounded and let Xa(n) be contained in the set of extreme points of Za(n).
Then, for all xa(n) ∈ Xa(n) ∩ dom(Qi+1

n
), we have

co(Qi+1
n

)(xa(n)) = Qi+1
n

(xa(n)).

We present a proof in Appendix E.
Combined with the properties of the Lagrangian cuts from Theorem 3.11, Theo-

rem 3.13 directly implies a tightness result for the Lagrangian cuts.

Corollary 3.14 (Theorem 3 in [31]). Under Assumptions 1, 2, 4, for any iteration
i and any node n ∈ N , let Za(n) be bounded and let Xa(n) be contained in the set of
extreme points of Za(n). Then the Lagrangian cuts defined in Definition 3.10 are tight
for Qi+1

n
(·) at xia(n).

Remark 3.15. Assume that Xa(n) = {0, 1}da(n) and that Za(n) = Xa(n) or Za(n) =
conv(Xa(n)) as in SDDiP [31] and that we have relatively complete recourse (Assump-
tion 3). Then, the conditions of Theorem 3.13 are satisfied, and for all feasible xa(n) the
known tightness result of SDDiP follows.

We highlight this result using the illustrative problems (6) and (7).

Example 3.16. Consider the problem (6) with Z = X = {0, 1}. Solving the dual (11)
yields the cut θ ≥ 2x. This cut underestimates Q(·) on {0, 1} and is tight for co(Q)(·)
at x = 1, see Fig. 3a. We observe that it is even tight for Q(·) at this point.

If we choose Z = conv(X) = [0, 1] instead, we obtain the cut θ ≥ −1 + 3x by
solving (11). This cut underestimates Q(·) on [0, 1] and is tight for co(Q)(·) at x = 1,
see Fig. 3b. Again, we observe tightness for Q(·).

In contrast, as illustrated by Fig. 3c by the gap between the red square and the blue
dot, Theorem 3.13 is not guaranteed to hold if we choose Z = R or, equivalently, do not
introduce copy constraint in the subproblems.

Example 3.17. Consider the problem (7) and the incumbent x = 6
5 . Recall that X =

Z = [0, 2], so the extreme point condition in Corollary 3.14 is not satisfied. Solving
the Lagrangian dual (11) yields the cut θ ≥ 4

5x. As Fig. 4 shows, this cut is tight for
co(Q)(·) at x = 6

5 (blue dot), but not for Q(·) (red square).

4 Lipschitz regularization and Lagrangian duality

In this section, we address the generation of linear Lagrangian cuts for QC(n)(·) when a
Lipschitz regularization of the original MS-MILP is considered. We have shown in the
previous section that such cuts can be generated even when no regularization is applied.
In fact, regularization is particularly relevant for generating non-convex approximations
of QC(n)(·), which we consider in Sect. 5. However, it may still be applied in cases where
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(c) Z = R.

Figure 3: Lagrangian cuts for Q(·) and different choices of Z in Example 3.16.

linear cuts are generated, for instance, to ensure feasibility of the subproblems. More-
over, the results for this case prove relevant to derive our results in Sect. 5. Therefore,
we address the case of linear cuts first.

4.1 Applying a Lipschitz regularization

First, we formally introduce the considered Lipschitz regularization.

Definition 4.1 (Regularization). For any n ∈ N , let σn > 0 and fix some norm ∥·∥.
Then we call

QR
n (xa(n);σn∥·∥) := min

xn,yn,zn
fn(xn, yn) + σn∥xa(n) − zn∥+QRC(n)(xn;σC(n)∥·∥)

s.t. (zn, xn, yn) ∈ Fn
zn ∈ Za(n)

(13)

the regularized subproblem or the regularized value function for node n, respectively.
The regularized expected value function is defined by

QRC(n)(xn;σC(n)∥·∥) :=
∑

m∈C(n)
pnmQ

R
m(xn;σm∥·∥).

15

256 Paper C – On Lipschitz regularization and Lagrangian cuts



Q

co(Q)

0 0.5 1 1.5 2
0

0.5

1

1.5

2

x

Figure 4: Lagrangian cut for Q(·) in Example 3.17.

By writing σC(n), we indicate that QRC(n)(·;σC(n)∥·∥) depends on σm for all m ∈ C(n).
For the root node, where no regularization is required, we obtain

vR := min
xr ,yr

fr(xr, yr) +QRC(r)(xr;σr∥·∥)

s.t. (xr, yr) ∈ Fr(xa(r)).
(14)

Remark 4.2. The regularized problem defined by the recursion (13)-(14) can be inter-
preted as applying a special inf-convolution fn□(σn∥·∥), called Lipschitz regularization
or Pasch-Hausdorff envelope [2], to the objective function of the original MS-MILP, see
also [30, 29].

This regularization comes with two main advantages. First, it naturally ensures
feasibility of the considered subproblems, even if we take no recourse assumption for
the original subproblems.

Lemma 4.3. Under Assumption 1, problem (13) is feasible for all xa(n) ∈ Rda(n), i.e.,

dom(QR
n ;σn∥·∥) = Rda(n).

In particular, we do not require the recourse assumption (Assumption 3) from
Sect. 3.

Second, using a Lipschitz regularization ensures that the considered value functions
are σn-Lipschitz continuous instead of only lsc. While related results have been shown
before, see [29], our assumptions differ a bit, so we provide a self-contained proof in
Appendix F.

Lemma 4.4. Under Assumptions 1, 2, for all n ∈ N , the regularized value function
QR
n (·;σn∥·∥) underestimates Qn(·) and is proper and σn-Lipschitz continuous on Rda(n).

Considering regularized MS-MILPs comes at the price that we do not necessarily
solve the original MS-MILP any longer. In general, vR ≤ v∗ [29, Proposition 2]. How-
ever, equality can be imposed by using a sufficiently large σn for all nodes n ∈ N , as
shown in [12, Theorem 5]:

Lemma 4.5. There exist finite σ̄n > 0 for all n ∈ N such that given σn ≥ σ̄n, for all n ∈
N , the penalty reformulation in (13) is exact, i.e., any optimal solution (xn, yn, zn)n∈N
of the regularized MS-MILP (13)-(14) satisfies zn = xa(n) for all n ∈ N .
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Hence, for sufficiently large, but finite σn > 0, we have vR = v∗. This result also
implies that for any optimal solution (x∗n, y

∗
n)n∈N of the original MS-MILP (1)-(3) we

have QR
n (x

∗
a(n);σn∥·∥) = Qn(x

∗
a(n)) [29, Lemma 1].

Example 4.6 provides an illustration of regularized value functions and their prop-
erties.

Example 4.6. Consider the problem (7). We use the absolute value |·| as penalty
function in (13). The regularized value functions QR(·;σ|·|) are depicted in Fig. 5 for
different values of σ. It is visible that all of them underestimate Q(·) for all x ∈ [0, 2],
that all of them are Lipschitz continuous and that they are monotonically increasing
in σ > 0. Assume that the optimal first-stage solution is x∗ = 1. Then an exact
penalization is achieved for any σ ≥ 1.

Q

QR, σ = 5

QR, σ = 2

QR, σ = 1

QR, σ = 0.8

QR, σ = 0.5

0 0.5 1 1.5 2
0

0.5

1

1.5

2

x

Figure 5: Regularized value functions QR(·;σ|·|) in Example 4.6 for different σ.

Another effect is that using an arbitrary norm, the regularized subproblems (13)
are no longer MILPs, but MINLPs. This is unfavorable from a computational perspec-
tive. However, at least for the (weighted) ℓ1-norm or ℓ∞-norm, an equivalent MILP
reformulation can be achieved, so we do not leave the class of MILP subproblems [1].

Lemma 4.7. If the norm ∥·∥ used in (13) is the (weighted) ℓ1-norm or ℓ∞-norm, the
problem remains MILP-representable.

4.2 Special regularized value functions

We introduce different variations of regularized subproblems and value functions which
we require in the next few subsections. Moreover, we cover some of their basic properties.

� Similarly to (8) in the non-regularized case, we define approximate regularized
value functions for each n ∈ N as

QR;i+1
n

(xia(n);σn∥·∥) := min
xn,yn,zn,θC(n)

fn(xn, yn) + θC(n) + σn∥xia(n) − zn∥

s.t. (xn, yn, zn, θC(n)) ∈Mi+1
n .

(15)

We also define QR;i+1
C(n) (xn;σC(n)∥·∥) :=

∑
m∈C(n) pnmQ

R;i+1
m

(xn;σm∥·∥) as the ex-

pected approximate regularized value function for all xn ∈ Rdn .

17
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� Similarly to (12) in the non-regularized case, for each n ∈ N we consider the
convexified regularized value function

QCR;i+1
n

(xia(n);σn∥·∥) := min
xn,yn,zn,θC(n)

fn(xn, yn) + θC(n) + σn∥xia(n) − zn∥

s.t. (xn, yn, zn, θC(n)) ∈ conv(Mi+1
n ).

(16)

� We denote the closed convex envelope of the approximate regularized value function
by co(QR;i+1

n
;σn∥·∥)(·). This function underestimates QR;i+1

n
(·;σn∥·∥) on Rda(n) .

The following properties are relevant to prove our main results in the next subsec-
tions.

Lemma 4.8. Under Assumptions 1, 2, 4, given some arbitrary norm ∥·∥ and some
σn > 0, for all n ∈ N ,

(a) the function QR;i+1
n

(·;σn∥·∥) is finite-valued and σn-Lipschitz continuous on Rda(n),

(b) the function QCR;i+1
n

(·;σn∥·∥) is finite-valued, convex and σn-Lipschitz continuous

on Rda(n),

(c) the function co(QR;i+1
n

;σn∥·∥)(·) is finite-valued and convex on Rda(n),

(d) the function QCR;i+1
n

(·;σn∥·∥) is equivalent to (QCR;i+1
n

;σn∥·∥)∗∗(·) on Rda(n).

Moreover, we need the following auxiliary result.

Lemma 4.9. For all xa(n) ∈ Rda(n) we have

(QR;i+1
n

;σn∥·∥)∗∗(xa(n)) = (QCR;i+1
n

;σn∥·∥)∗∗(xa(n)).

Lemma 4.8 and Lemma 4.9 are proven in Appendix G and Appendix H, respectively.

4.3 A primal convexification result

In the remainder of Sect. 4, we focus on the generation of linear Lagrangian cuts in the
context of regularized subproblems and value functions (13).

Recall that in the non-regularized case (see Sect. 3.4), these cuts are generated
based on a relaxation of the copy constraints. This approach cannot be applied in
the regularized case, as the copy constraints are already relaxed and penalized in the
regularized subproblems (13). However, we show that still cuts with similar properties
can be obtained by considering specific bounded Lagrangian dual problems.

As a first key step, we introduce a primal convexification result for bounded La-
grangian dual problems. More precisely, we show that the convexified regularized prob-
lem (16) is closely related to the bounded Lagrangian dual problem

QDR;i+1
n

(xia(n);σn∥·∥) := max
πn

Li+1
n (πn) + π⊤

n x
i
a(n)

s.t. ∥πn∥∗ ≤ σn,
(17)

where ∥·∥∗ denotes the dual norm to the norm ∥·∥ used in the regularized subproblem.
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Theorem 4.10. Under Assumptions 1, 2, and 4, given some arbitrary norm ∥·∥ and
some σn > 0, the bounded Lagrangian dual (17) satisfies

QDR;i+1
n

(xia(n);σn∥·∥) = QCR;i+1
n

(xia(n);σn∥·∥).

Proof. In this proof, we use sup and inf operators to be rigorous with regard to suprema
and infima being attained. For notational simplicity, we set λn := (xn, yn, θC(n)) and
then define

c⊤nλn := fn(xn, yn) + θC(n) (18)

with an appropriate coefficient vector cn. Using this notation, the value function to the
Lagrangian dual becomes

QDR;i+1
n

(xia(n);σn∥·∥) = sup
∥πn∥∗≤σn

Li+1
n (πn) + π⊤

n x
i
a(n)

= sup
∥πn∥∗≤σn

inf
(zn,λn)∈Mi+1

n

{
c⊤nλn + π⊤

n (x
i
a(n) − zn)

}

= sup
∥πn∥∗≤σn

inf
(zn,λn)∈conv(Mi+1

n )

{
c⊤nλn + π⊤

n (x
i
a(n) − zn)

}
.

(19)

The last line follows since the objective of the inner problem is linear.
We now consider the dual problem where we swap the sup and inf operators. As we

discuss below, strong duality holds.

= inf
(zn,λn)∈conv(Mi+1

n )
sup

∥πn∥∗≤σn

{
c⊤nλn + π⊤

n (x
i
a(n) − zn)

}

= inf
(zn,λn)∈conv(Mi+1

n )

ß
c⊤nλn + σn sup

∥πn
σn

∥∗≤1

{(πn
σn

)⊤
(xia(n) − zn)

}™

= inf
(zn,λn)∈conv(Mi+1

n )

ß
c⊤nλn + σn∥xia(n) − zn∥

™
.

(20)

Here, we used the definition of dual norms. As is shown in Appendix G, in problem (16)
always a finite infimum is attained, so in the last line we may replace the infimum with a
minimum. Substituting cn and λn with their definitions, we obtain exactly the definition
of the function QCR;i+1

n
(xia(n);σn∥·∥).

It remains to be shown that we have strong duality between problems (19) and
(20). First, according to Lemma 3.4, the set conv(Mi+1

n ) is a closed polyhedron. By
its relaxation property and Assumption 1, it is also non-empty. Therefore, both sets
conv(Mi+1

n ) and
{
πn ∈ Rda(n) : ∥πn∥∗ ≤ σn

}
are closed convex and non-empty, with

the latter also bounded. Moreover, the objective is linear in πn for fixed (zn, λn) and
vice versa. Hence, we can apply the minimax theorem from [23, Corollary 37.3.2] to
infer strong duality.

Remark 4.11. While the duality between multiplier bounds and a Lipschitz regulariza-
tion (based on the duality of norms) is known in the literature on multistage stochastic
programming, see for instance [17, Proposition 4.2], [30, Proposition 5], [29, Lemma 2],
to our knowledge the result with respect to convexification in Theorem 4.10 has never
been discussed and explicitly proven before. Also in the literature on convex analysis,
e.g. [2, 4, 23], we are not aware of any mentioning of the above result, as the discussion
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is usually limited to results for unbounded Lagrangian dual problems, or exactness of
general augmented Lagrangian dual problems with respect to the original primal prob-
lem, not its Lipschitz regularization or convexification. A related result to Theorem 4.10
is presented in [29, Proposition 4] for the true regularized value function QR

n (·;σn∥·∥)
instead of its closed convex envelope, given that Za(n) = Xa(n) is compact and that Qn(·)
is convex. Similar results are proven in [30] in a distributionally robust setting. An-
other related, but different result is the primal characterization for general augmented
Lagrangian dual problems in [12, Theorem 1].

4.4 Convex envelopes from bounded Lagrangian duals

An important question is whether the primal convexification result from Theorem 4.10
can also be linked to the closed convex envelope co(QR;i+1

n
;σn∥·∥)(·), as it was the case

for the non-regularized case (cf. Theorems 3.8, 3.9). We prove this now.

Corollary 4.12. Consider the regularized subproblem (15) and the corresponding bounded
Lagrangian dual (17) given some arbitrary norm ∥·∥ and some σn > 0. Under Assump-
tions 1, 2, 4, for all xia(n) ∈ Rda(n) we have

QDR;i+1
n

(xia(n);σn∥·∥) = co(QR;i+1
n

;σn∥·∥)(xia(n)).

Proof. From Lemma 4.8 (d) and Lemma 4.9 we can conclude that for all xa(n) ∈ Rda(n)

we have

QCR;i+1
n

(xa(n);σn∥·∥) = (QCR;i+1
n

;σn∥·∥)∗∗(xa(n)) = (QR;i+1
n

;σn∥·∥)∗∗(xa(n)). (21)

Furthermore, from Lemma 4.8 (c) we know that co(QR;i+1
n

;σn∥·∥)(·) is proper. By

Proposition 1.6.1 (d) in [4] we then have co(QR;i+1
n

;σn∥·∥)(xa(n)) = (QR;i+1
n

;σn∥·∥)∗∗(xa(n))
for all xa(n) ∈ Rda(n) . Hence, with (21) it follows that

QCR;i+1
n

(xia(n);σn∥·∥) = co(QR;i+1
n

;σn∥·∥)(xia(n))

for all xia(n) ∈ Rda(n) . The primal convexification result in Theorem 4.10 yields

QDR;i+1
n

(xia(n);σn∥·∥) = co(QR;i+1
n

;σn∥·∥)(xia(n)).

Corollary 4.12 directly implies the following result for Lagrangian cuts that are
computed using the bounded Lagrangian dual problem.

Corollary 4.13. Consider Lagrangian cuts as defined in Definition 3.10, but with op-
timal multipliers πin for the bounded Lagrangian dual problem (17). Then, these cuts
are

(a) valid lower approximations of QR
n (·;σn∥·∥), and thus also for Qn(·) for all xa(n) ∈

Za(n),

(b) tight for co(QR;i+1
n

;σn∥·∥)(·) at xia(n).

We illustrate Corollary 4.13 with an example.
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Example 4.14. Consider the problem (7) with incumbent x = 6
5 . We use absolute value

|·| as the penalty function in (13) and to bound the dual multipliers in (17). Solving the
Lagrangian dual problem for σ ≥ 4

5 , we obtain the cut θ ≥ 4
5x. For σ < 4

5 , in contrast,
the resulting cut is θ ≥ σx. Fig. 6 displays these cuts (blue broken lines) for σ = 1 and
σ = 1

2 . As we can see, in both cases, the cut is tight for co(QR;σ|·|)(·) at x = 6
5 (blue

dots).
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(a) σ = 1.
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(b) σ = 1
2 .

Figure 6: (Regularized) value functions and Lagrangian cuts derived from (17) for
Example 4.14.

4.5 The case of Lipschitz continuous value functions

We consider the special case, where for all n ∈ N , the value functions Qn(·) are already
Lipschitz continuous, e.g., because a strong recourse assumption like complete contin-
uous recourse is satisfied [1, 31]. In that case, a regularization of the MS-MILP is not
required. However, we may still state a theoretical relation between the regularized and
the non-regularized problem.

Lemma 4.15. For all n ∈ N , let Qn(·) be Lipschitz continuous on dom(Qn) with respect
to some norm ∥·∥ with Lipschitz constant αn. Then for σn ≥ αn we have

QR
n (xa(n);σn∥·∥) = Qn(xa(n))

for all xa(n) ∈ dom(Qn). Analogously, for all xa(n) ∈ dom(Qi+1
n

)

QR;i+1
n

(xa(n);σn∥·∥) = Qi+1
n

(xa(n)).

For leaf nodes n ∈ N , this result follows immediately from [2, Corollary 12.18],
considering that the regularized value functions are the Pasch-Hausdorff envelopes of
the non-regularized ones. For other nodes in N it can then be shown inductively.

As already noticed in [30], this result shows that computationally regularization
may even prove beneficial if the original value functions are already guaranteed to be
Lipschitz continuous. First, the Lagrangian dual problem can be bounded. Second,
cuts with larger Lipschitz constant than the value function can be excluded from its
approximation.

Additionally, Lemma 4.15 has a helpful implication that we use in the next section
when discussing the SDDiP setting again. It can be used to show that for sufficiently
large σn, the lower convex envelopes of the regularized and non-regularized approximate
value functions do coincide.
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Lemma 4.16. Under Assumptions 1, 2, and 4, for all n ∈ N , there exists some σn > 0
such that for all xa(n) ∈ conv(dom(Qi+1

n
))

co(QR;i+1
n

;σn∥·∥)(xa(n)) = co(Qi+1
n

)(xa(n)).

We provide a proof in Appendix I.

Example 4.17. As an illustration for Lemma 4.16, see Example 4.6 and Fig. 5. We
can see that for σ ≥ 1, co(Q)(·) and co(QR;σ|·|)(·) do coincide.

4.6 The case of tight Lagrangian cuts

We consider cases where tightness for function QR;i+1
n

(·;σn∥·∥), and not only its closed

convex envelope co(Qi+1
n

)(·), can be obtained using Lagrangian cuts. This includes the
case of binary state variables from SDDiP [31].

Note that we already discussed similar cut generation results for the true value func-
tions in Sect. 3.5, without the requirement of Lipschitz continuity of Qn(·) or Qi+1

n
(·).

For this reason, considering a Lipschitz regularization in this case or similar cases may
seem superfluous. However, we still briefly discuss it in this section, as some of the
results prove beneficial later in Sect. 5 when we deal with non-convex approximations
of the value functions.

Importantly, compared to Sect. 3.5, the extreme point argument used in the proof
of Theorem 3.13 is no longer valid in the regularized setting. The two functions,
co(QR;i+1

n
;σn∥·∥)(·) and QR;i+1

n
(·;σn∥·∥) share the effective domain Rda(n) , and hence,

it is not clear whether they coincide for all xa(n) ∈ Xa(n). Nonetheless, under some
assumptions, the intended tightness result can be established.

Case 1: Using sufficiently large σn. For sufficiently large, but finite regulariza-
tion parameters σn > 0, we immediately obtain the tightness result using Lemma 4.16.

Lemma 4.18. Under Assumptions 1, 2, 4, for any iteration i and any node n ∈ N ,
let Za(n) be bounded and let Xa(n) be contained in its extreme points. Let ∥·∥ be some
arbitrary norm and σn > 0 sufficiently large for all n ∈ N . Then, for all xia(n) ∈
Xa(n) ∩ dom(Qi+1

n
) we have

QDR;i+1
n

(xia(n);σn∥·∥) = Qi+1
n

(xia(n)) = QR;i+1
n

(xia(n);σn∥·∥).

We provide a proof in Appendix J.
This result is not surprising considering the exact penalization result for Lipschitz

regularization from Lemma 4.5. Interestingly, in the SDDiP case of binary state vari-
ables xa(n), tightness for the regularized value function can even be obtained independent
of σn, as we show next.

Case 2: Regularization with the ℓ1-norm. Suppose we use the (weighted) ℓ1-
norm in the regularization. Then we can derive the following auxiliary result, which
has already been proven in [13, Lemma 3.8] in a slightly different form. The proof is
given in Appendix K.

Lemma 4.19. Let Xa(n) = {0, 1}da(n) for all n ∈ N and Za(n) = Xa(n) or Za(n) =

conv(Xa(n)). Then, for any iteration i, any node n ∈ N and any σn > 0, the regularized
subproblem (15) and the bounded Lagrangian dual (17) for the ℓ1-norm satisfy

QDR;i+1
n

(xia(n);σn∥·∥1) ≥ QR;i+1
n

(xia(n);σn∥·∥1). (22)
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Using this lemma, we obtain the intended tightness result.

Corollary 4.20. The inequality in Lemma 4.19 is satisfied with equality.

Proof. From Lemma 4.19 we have relation (22). On the other hand, from Corollary 4.12
and the definition of the closed convex envelope

QDR;i+1
n

(xia(n);σn∥·∥1) = co(QR;i+1
n

;σn∥·∥1)(xia(n)) ≤ QR;i+1
n

(·;σn∥·∥1).

We illustrate the previous results using problem (6) below.

Example 4.21. Consider the problem (6) with incumbent x = 1 and Z = conv(X) =
[0, 1]. We use the absolute value |·| as penalty function in (13) and set σ = 2. Fig. 7
shows that the regularized value function QR(·;σ|·|) is monotonically increasing outside
of Z, and thus coincides with its convex envelope outside of Z. For this reason, both
functions also coincide at extreme points of Z, such as x = 1. The obtained Lagrangian
cut θ ≥ −1

3 + 2x is tight for QR(·;σ|·|) at x = 1, in accordance with Corollary 4.20.

+∞

Q
QR

co(QR)

0 0.5 1

0

1

2

x

Figure 7: Lagrangian cut for the regularized value function with σ = 2 in problem (6).

We note that in the multidimensional case for norms different than ∥·∥1, this is not
necessarily true. We present an example for this in Example 5.14 (3) in the next section.

5 Lipschitz regularization and non-convex cuts

In the previous section we pointed out that Lagrangian cuts for regularized value func-
tions can be generated by solving bounded Lagrangian dual problems. These cuts are
tight for the closed convex envelopes of the regularized value functions, as long as the
dual problem is solved to optimality. Just as in the non-regularized case, in general,
these cuts are not guaranteed to be tight for the true value functions, though, and thus
cannot guarantee convergence of decomposition methods for MS-MILPs.

In this section, we deal with the alternative approach to generate non-convex approx-
imationsQi+1

C(n)(·) of the expected value functionsQC(n)(·) in order to ensure convergence,
again by exploiting Lipschitz regularization. We specifically focus on the alternative lift-
and-project approach from [13], which is part of the NC-NBD method presented in the
same paper. We first give a brief introduction into its main concepts and then present
its theoretical backbone in a rigorous way. In particular, we close an open question on
how to ensure Lipschitz continuity of the obtained non-convex approximations. This
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allows us to drop the technical Assumption 4 in [13]. While NC-NBD in [13] assumes a
deterministic problem, we enhance its ideas to the stochastic setting here.

5.1 The lift-and-project idea

As a basis to describe the lift-and-project cut generation idea, we consider the approx-
imate regularized value function from Sect. 4 for some node n ∈ N .

QR;i+1
n

(xia(n);σn∥·∥◦) = min
xn,yn,zn,θC(n)

fn(xn, yn) + θC(n) + σn∥xia(n) − zn∥◦

s.t. (xn, yn, zn, θC(n)) ∈Mi+1
n .

(23)

The incumbents xia(n) for all nodes n ∈ N are computed in a forward pass through the

scenario tree, which we do not describe in detail here. The objective function fn(·) and
all but the cut constraints in (23) are still linear. The only difference in (23) compared
to Sect. 4 is that we now assume that the approximation Qi+1

C(n)(·) of QC(n)(·), which
is contained in the set Mi+1

n , is non-convex. However, we assume that it can still be
approximated by mixed-integer linear constraints, see Sect. 5.7 and [13], so Mi+1

n has
the same properties as in Sect. 4. Notation-wise, the notation ∥·∥◦ is introduced to
distinguish the norm used for regularization in the original state space from a second,
possibly deviating norm ∥·∥• that is used in the lifted space where cuts are generated
later on.

Original state space Lifted state space

Incumbent

Regularized subproblem
(5.1)

Lifted regularized subproblem
(5.5)

Bounded Lagrangian dual
(5.7)

Tight linear Lagrangian cut
(5.8), (5.13)

Tight non-convex cut
(cut projection closure)

(5.14), (5.15)

Non-convex approximation
(5.16)

Lifting

Dual perspective

Cut generation

Projection

Update

Update

Figure 8: The lift-and-project approach used in [13].

The main concept of the cut generation approach from [13] is illustrated in Fig. 8. In
each iteration i, instead of directly generating Lagrangian cuts in the original state space,
the subproblems and value functions, e.g., problem (23), are first temporarily lifted to a
binary state space. According to Corollary 4.20, by solving a bounded Lagrangian dual
problem then tight linear Lagrangian cuts can be computed for the regularized value
functions. However, these cuts are expressed in the lifted state space. In order to use
them in the original state space, they are projected back to that space. The pointwise
maximum of this projection, which we refer to as the cut projection closure (CPC), can
be interpreted as a non-convex cut, and, as we show, it is tight for QR;i+1

n
(·;σn∥·∥◦).

Another key feature of this cut generation method is that we allow for the construc-
tion of cuts at points xiB,n differing from the current incumbents xin. These points are
called anchor points in [13]. This also means that the non-convex cuts, i.e., the CPC,
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is guaranteed to be tight for QR;i+1
n

(·;σn∥·∥◦) at xiB,n only. But as long as the distance

between xin and xiB,n can be controlled, we shall see that the approximation error of the

non-convex cuts at xin can be controlled as well.

5.2 Sufficient non-convex approximations.

In order to ensure convergence of decomposition methods employing this lift-and-project
cut generation approach, for instance the NC-NBD method in [13], the non-convex
approximations Qi+1

C(n)(·) have to satisfy three main properties. We call a non-convex
approximation satisfying these properties sufficient.

Definition 5.1. Let n ∈ N and consider some arbitrary iteration i ∈ N. Given some
anchor point xiB,n, some norm ∥·∥◦ and some σn > 0 used in the regularized subprob-

lem (23), a non-convex approximation Qi+1
C(n)(·) is called sufficient if it

(S1) is a valid under-approximation of QC(n)(·), i.e., for all xn ∈ Xn:

Qi+1
C(n)(xn) ≤ QC(n)(xn),

(S2) overestimates the expected approximate regularized value function at the anchor
point:

Qi+1
C(n)(x

i
B,n) ≥ QR;i+1

C(n) (xiB,n;σC(n)∥·∥◦),

(S3) is Lipschitz continuous with respect to the norm ∥·∥◦ used in subproblem (23) with
a finite Lipschitz constant.

The reasoning behind these properties is the following: Using similar arguments
as in Lemma 4.8, it can be shown that QR;i+1

C(n) (·;σC(n)∥·∥◦) is Lipschitz continuous.

As Qi+1
C(n)(·) is also Lipschitz continuous according to (S3), using property (S2), the

approximation error at the incumbent xin can be bounded by the Lipschitz constants
and the distance between xin and xiB,n [see 13, Lemma 4.1]. In our case, the anchor

points xiB,n are determined using a binary approximation of xin which goes along with

the lifting to the binary state space, see Sect. 5.3. Thus, the distance between xin
and xiB,n can be controlled by refining the approximation precision βn if required. As a

result, also the cut approximation error at xin can be controlled, and reduced sufficiently
[see 13, Lemma 4.2]. Together with the validity (S1), this ensures exactness and finite
convergence of the decomposition method [see 13, Theorem 4.3]. For more details on
NC-NBD and its convergence proof, we refer to [13].

In the remainder of this section, we focus on showing how sufficient non-convex
approximations can be obtained in the lift-and-project framework. In [13], it is already
shown how properties (S1) and (S2) can be achieved for the deterministic case, but we
extend these results to the scenario tree setting. Ensuring property (S3), on the other
hand, is more sophisticated. Whereas it can be easily shown that it holds for a fixed
precision βn of the binary approximation [13], we have to make sure that the Lipschitz
constant does not diverge for βn → 0. Otherwise, the reduction in distance between xin
and xiB,n may be redeemed by an increasing Lipschitz constant. In other words, we have
to bound the Lipschitz constant in (S3) independently of βn (and by that i). Instead of
showing how this can be achieved, in [13] a technical assumption is taken (Assumption
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(A4) in [13]). We close this theoretical gap in this section. The key idea is to use a
tailor-made norm ∥·∥• for the regularization in the lifted space.

5.3 Lifting to the binary space

We lift the subproblems and value functions to a different space by temporarily apply-
ing a binary approximation of the state xa(n) [16]. For simplicity, we assume that all
components of xa(n) satisfy bounded box constraints with a zero lower bound. Then,
any component xa(n),j ∈ [0, Uj ], j = 1, . . . , da(n), can be approximated by

xa(n),j = βa(n),j

Ka(n),j∑

κ=1

2κ−1λa(n),κj + ra(n),j , (24)

with a discretization precision βa(n),j ∈ (0, 1) if xa(n),j is continuous and βa(n),j = 1

if it is integer. ra(n),j ∈
[
−βa(n),j

2 ,
βa(n),j

2

]
denotes the approximation error. For some

vector xa(n), this requires Ka(n) =
∑da(n)

j=1 Ka(n),j binary variables λa(n),κj , with Ka(n),j =

⌊log2
(

Uj

βa(n),j

)
⌋+ 1.

We define a (da(n) ×Ka(n))-matrix Ba(n) containing all the coefficients of the binary

approximation and collect all binary variables in one large vector λa(n) ∈ {0, 1}Ka(n) .
Then, the binary expansion can be written compactly as

xa(n) = Ba(n)λa(n) + ra(n). (25)

For some index k ∈ Ka(n), let j(k) denote the component in the original space associated

with k. Then we define κ(k) := k −∑j(k)
ℓ=1 Ka(n),ℓ to access the correct κ in (24).

By applying (25) to a trial point xia(n) and omitting the error term, we define the
anchor point as the approximation

xiB,a(n) := Ba(n)λia(n). (26)

Example 5.2. Again, we consider problem (7) with incumbent x = 6
5 . For different

values of β or K, respectively, we obtain the anchor points

K = 2, β =
2

3
: xB =

2

3
(20 · 0 + 21 · 1) = 4

3
,

K = 3, β =
2

7
: xB =

2

7
(20 · 0 + 21 · 0 + 22 · 1) = 8

7
,

K = 4, β =
2

15
: xB =

2

15
(20 · 1 + 21 · 0 + 22 · 0 + 23 · 1) = 6

5
.

That is, for K = 4 and β = 2
15 , the approximation of the incumbent is exact.

Instead of problem (23) we now consider QR;i+1
n

(xiB,a(n);σn∥·∥◦), i.e., we do not

consider the approximate regularized value function at the incumbent xia(n), but at the

anchor point xiB,a(n).

Using relation (26) we can interpret λia(n),j , j = 1, . . . ,Ka(n), as the state variables

in a lifted binary state space. We can thus express the function QR;i+1
n

(xiB,a(n);σn∥·∥◦)
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in terms of these binary state variables. To this end, we also set

zn = Ba(n)zn (27)

with additional variables zn ∈ [0, 1]Ka(n) . In view of (26), this can be interpreted as
first introducing and then relaxing copy constraints for each λia(n),j , j = 1, . . . ,Ka(n),

separately. Additionally, we define the norm ∥λn∥B := ∥Ba(n)λn∥. This yields the
reformulation of the regularized subproblem (23):

QR;i+1
B;n (λia(n);σn∥·∥◦B) := min

xn,yn,zn,θC(n),zn
fn(xn, yn) + θC(n) + σn∥(λia(n) − zn)∥◦B

s.t. (xn, yn, zn, θC(n)) ∈Mi+1
n

zn = Ba(n)zn
zn ∈ [0, 1]Ka(n) .

(28)

This reformulation is exact in the sense that

QR;i+1
B;n (λia(n);σn∥·∥◦B) = QR;i+1

n
(xiB,a(n);σn∥·∥◦). (29)

In the same vein, we may define QB;n(·) as the true value function Qn(·) expressed
as a function in the lifted state space.

Remark 5.3. Recall our discussion on different choices of Za(n) and their impact in
Sect. 3.1. While the choice of Za(n) in the original state space is not particularly relevant
in our lift-and-project setting now, the choice of bounding zn in the lifted space using the
convex hull [0, 1]Ka(n) instead of {0, 1}Ka(n) as the accompanying set is crucial if some
components of xa(n) are continuous. First, in contrast to (26) the reformulation (27) of
zn is exact given this choice, even for continuous variables. Second, it ensures that linear
cuts generated in the lifted binary state space are valid for the non-convex expected value
functions on the whole set [0, 1]Ka(n). This is inevitable in order to obtain non-convex
cuts in the original state space which are valid underestimators of QC(n)(·) even for
points in Xa(n) that cannot be exactly represented by the current binary approximation.

5.4 Generating Lagrangian cuts in the lifted space

To generate Lagrangian cuts in the lifted binary state space, we follow Sect. 4 and
consider a bounded Lagrangian dual problem

QDR;i+1
B;n (λia(n);σn∥·∥•) := max

∥πn∥•∗≤σn
Li+1
B;n(πn) + π⊤

n λ
i
a(n). (30)

The dual function Li+1
B;n(·) is defined by

Li+1
B;n(πn) := min

xn,yn,zn,θC(n),zn
fn(xn, yn) + θC(n) − π⊤

n zn

s.t. (xn, yn, zn, θC(n)) ∈Mi+1
n

zn = Ba(n)zn
zn ∈ [0, 1]Ka(n) .

Solving the dual problem (30) we obtain optimal multipliers πin. We can then build
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the function

ϕB;n(λa(n)) := Li+1
B;n(π

i
n) + (πin)

⊤λa(n), (31)

which defines a linear Lagrangian cut in the binary space {0, 1}Ka(n) .
The crucial part, and a new contribution compared to [13], is how we choose the

norm ∥·∥•∗ in problem (30) to bound the dual multipliers. Let ∥·∥ be an arbitrary norm

and ∥·∥∗ its dual norm. Furthermore, let W and Ŵ be some diagonal weight matrices
whose diagonal entries at row k and column k satisfy the relation ŵkk = w−1

kk (for

simplicity, we omit indices for W and Ŵ ). Then, ∥x∥w := ∥Wx∥ defines the weighted

norm and ∥x∥w∗ := ∥Ŵx∥∗ defines the dual weighted norm for some vector x.
For each component k = 1, . . . ,Ka(n) in the binary state space, we now define weights

wkk = 2κ(k)−1βa(n),j(k),

and choose ∥·∥• = ∥·∥w given some norm ∥·∥. The motivation behind this choice is to
bound the dual multipliers in such a way that the effects of the binary approximation
are compensated by the weights. Note that these bounds are tighter than the ones
originally proposed in [13] where no weighted norms are used.

With this construction, we observe that the matrix W and the matrix Ba(n) are
closely related. Both matrices contain the same non-negative entries, butW is a (Ka(n)×
Ka(n))-diagonal matrix, whereas Ba(n) is a (da(n) × Ka(n))-matrix where non-negative
entries corresponding to the same component j of the original state space occur in the
same row. Hence, we can define a matrix G such that Ba(n) = GW . This matrix
contains only ones and zeros, with several ones in each row, but only a single one in
each column.

For some matrix A, let ∥A∥ be the matrix norm induced by ∥·∥. Then, the consis-
tency of matrix norms and the inducing vector norm yields the relation

∥Ba(n)(λia(n) − zn)∥ = ∥GW (λia(n) − zn)∥ ≤ ∥G∥ ∥W (λia(n) − zn)∥
= ∥G∥ ∥λia(n) − zn∥w.

(32)

5.5 Properties of Lagrangian cuts in the lifted space

Recall Remark 5.3. As shown in [13], by choosing zn ∈ [0, 1]Ka(n) , the function ϕB;n(·)
defined in (31) provides a valid underestimator for the true value function in the binary
state space, but also everywhere in the original state space. This is crucial to prove
property (S1) in the next section.

Lemma 5.4 (Lemma 3.7 in [13]). The function ϕB;n(·) satisfies

QB;n(λa(n)) ≥ ϕB;n(λa(n)),

for all λa(n) ∈ [0, 1]Ka(n), and

Qn(xa(n)) ≥ ϕB;n(λa(n))

for all xa(n) ∈ Rda(n) and any λa(n) ∈ [0, 1]Ka(n), such that xa(n) = Ba(n)λa(n).

Next, we use the results from Sect. 4.6 to obtain some overestimation results with
respect to property (S2). Recall that one way to achieve tightness presented in Sect. 4.6
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is to choose some sufficiently large but finite σn > 0. While this is sufficient to derive
cuts that satisfy properties (S2) and (S3) for some fixed binary precision βa(n),j , this
is not the case if we consider binary refinements. In that case, after each refinement
we may require a larger σn, such that the sequence of these values diverges. This is
detrimental in ensuring property (S3). Therefore, we directly focus on the second case
in Sect. 4.6 and choose the ℓ1-norm. Importantly, Lemma 4.19 and Corollary 4.20 still
hold if we use a weighted ℓ1-norm.

Corollary 5.5. Choosing ∥·∥• = ∥·∥1,w in (30) it follows

ϕB;n(λ
i
a(n)) = QR;i+1

B;n (λia(n);σn∥·∥•). (33)

Equation (33) is sufficient to achieve the overestimation property (S2) in Defini-
tion 30 if ∥·∥◦ is any ℓp-norm, as we show now.

Lemma 5.6. Let ∥·∥• = ∥·∥1,w in problem (30) and let ∥·∥◦ in problem (23) be any
ℓp-norm. Then,

ϕB;n(λ
i
a(n)) ≥ QR;i+1

n
(xiB,a(n);σn∥·∥◦).

Proof. For the maximum absolute column sum norm we have ∥G∥1 = 1, sinceG contains
at most a single one in each column. Hence, from (32) it follows

∥Ba(n)(λia(n) − zn)∥1 ≤ ∥G∥1 ∥λia(n) − zn∥1,w = ∥λia(n) − zn∥1,w. (34)

Moreover, we have

∥Ba(n)(λia(n) − zn)∥1 ≥ ∥Ba(n)(λia(n) − zn)∥p (35)

for any ℓp-norm. Combining some of our previous results and exploiting that ∥·∥◦ is an
ℓp-norm, we obtain

ϕB;n(λ
i
a(n))

(33)
= QR;i+1

B;n (λia(n);σn∥·∥1,w)
(34)

≥ QR;i+1
B;n (λia(n);σn∥·∥1,B)

(35)

≥ QR;i+1
B;n (λia(n);σn∥·∥◦B)

(29)
= QR;i+1

n
(xiB,a(n);σn∥·∥◦).

To derive a Lagrangian cut for QC(n)(·), we aggregate the functions ϕB;m(·) for all
m ∈ C(n):

ϕB;C(n)(λn) :=
∑

m∈C(n)
pnm

(
Li+1
B;m(π

i
m) + (πim)

⊤λn
)

=
∑

m∈C(n)
pnmLi+1

B;m(π
i
m)

︸ ︷︷ ︸
=:γiC(n)

+
( ∑

m∈C(n)
pnmπ

i
m

︸ ︷︷ ︸
=:πiC(n)

)⊤
λn (36)

The previous validity and overestimation results naturally extend to this aggregated
function.

Corollary 5.7. The function ϕB;C(n)(·) satisfies

QC(n)(xn) ≥ ϕB;C(n)(λn)
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for all xn ∈ Rdn and any λn ∈ [0, 1]Kn, such that xn = Bnλn.

Corollary 5.8. Let ∥·∥• = ∥·∥1,w in (30) and let ∥·∥◦ in problem (23) be any ℓp-norm.
Then,

ϕB;C(n)(λ
i
n) ≥ QR;i+1

C(n) (xiB,n;σn∥·∥◦).

We now address the projection of these linear cuts back to the original state space.

5.6 The cut projection closure

As explained in Sect. 5.1, the lifting to the binary state space is carried out only tem-
porarily to generate tight linear Lagrangian cuts. Importantly, according to Corol-
lary 5.7, these cuts also allow us to obtain valid underapproximations of QC(n)(·) for
all points xn ∈ Xn, even those which cannot be exactly represented by the current
binary approximation. More precisely, for some given xn ∈ Xn, each λn ∈ [0, 1]Kn

such that xn = Bnλn provides a valid underestimator for QC(n)(xn) . For some given
xn ∈ Xn there may exist infinitely many such configurations for λn, and thus infinitely
many underestimators. We are interested in the pointwise supremum of all these un-
derestimators, that is, the tightest underestimating function that can be gained from
projecting the cut to xn. We refer to this supremum as the cut projection closure.

Definition 5.9 (Cut projection closure). Let ϕB;C(n) : [0, 1]Kn → R be a cut-defining
linear function given in (36). Then, the cut projection closure (CPC) ϕC(n) : Rdn → R
is defined as

ϕC(n)(xn) := max
λn

{
γC(n) + π⊤

C(n)λn : Bnλn = xn, λn ≤ e, λn ≥ 0
}
. (37)

Here, e is a unit vector of dimension Kn.

By strong duality of linear programs, the CPC can be equivalently expressed as

ϕC(n)(xn) = min
ηn,µn

{
γC(n) + x⊤n ηn + e⊤µn : B⊤n ηn + µn ≥ πC(n), µn ≥ 0

}
. (38)

Importantly, the dual feasible region in (38) does not depend on xn and has a finite
number of extreme points for a given binary precision. Therefore, we can conclude:

Lemma 5.10. The CPC ϕC(n)(·) is a piecewise linear and concave function in Rda(n).

The CPC is a piecewise linear function, and the slope of each piece is determined
by the value of ηn in an extreme point of (38). Therefore, we analyze these extreme
points in more detail. Based on our findings from the previous section, we choose ∥·∥•
as the weighted ℓ1-norm again. Additionally, we define σmax

n := maxm∈C(n) σm. Then,
as proven in Appendix L, we obtain:

Lemma 5.11. Let ∥·∥• = ∥·∥1,w in problem (30). Then, for any binary precision
βn,j ∈ (0, 1), j = 1, . . . , dn, any extreme point of problem (38) satisfies ∥ηn∥∞ ≤ σmax

n .

The crucial idea here is that by a careful choice of the weighted norm to bound
the Lagrangian dual (30), effects of the binary expansion are compensated, such that
each component of ηn can be bounded independently of the current binary precision
βn,j ∈ (0, 1), j = 1, . . . , dn, and the number Kn of binary variables. Therefore, this
bound remains valid for any refinement of the binary precision in NC-NBD [13], and
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even with these refinements the CPC is prevented from becoming infinitely steep. This
is stated in the following lemma, which is proven in Appendix M.

Lemma 5.12. Let ∥·∥• = ∥·∥1,w in problem (30). Then, for any norm ∥·∥◦, the CPC is
a σ̃C(n)-Lipschitz continuous function with σ̃C(n) > 0 independent of the binary precision
βn,j ∈ (0, 1), j = 1, . . . , dn.

5.7 Main result

For any node n ∈ N , using the CPC, we can now determine the non-convex outer
approximation of QC(n)(·) as

Qi+1
C(n)(xn) = min

{
θC(n) ∈ R : θC(n) ≥ ϕrC(n)(xn) ∀r = 1, . . . , i+ 1

}
. (39)

Based on our previous findings we can now state conditions under which this non-
convex approximation is sufficient in the sense of Definition 5.1, which is the main result
of this section. We provide a proof in Appendix N.

Theorem 5.13. Let ∥·∥• = ∥·∥1,w in problem (30), let ∥·∥◦ in problem (23) be any
ℓp-norm and let σn > 0. Then, Qi+1

C(n)(·) as defined in (39) is a sufficient non-convex

approximation of QC(n)(·).

As pointed out in Sect. 5.2, a sufficient non-convex approximation of QC(n)(·) (with
appropriately chosen set Za(n) ⊇ Xa(n)) is sufficient to guarantee convergence of the
NC-NBD inner loop, and by that of NC-NBD in total, without the requirement of the
technical assumption (A4) in [13]. The condition of setting ∥·∥• = ∥·∥1,w in problem (30)
in the lifted space to achieve such approximation is not really strict, since it still allows
to choose any ℓp-norm for the regularization in problem (23) in the original state space.

Finally, let us emphasize that the CPC is a non-convex function outer approximating
QC(n)(·), and defined by the linear programs (37) and (38). Therefore, directly incorpo-
rating it into Qi+1

C(n)(·) in subproblem (8) leads to a non-convex bilevel problem. In order

to resolve this issue, in [13] it is proposed to first express the CPC by its KKT con-
straints. Using SOS-1 constraints or a Big-M formulation, this can be achieved without
leaving the class of mixed-integer linear programs.

5.8 Illustrative example

We highlight the key take-aways from this section with an illustrative example.

Example 5.14. Consider the problem (7) again.

(1) CPC for fixed σ. Let the incumbent be x = 6
5 . For the regularization, let

∥·∥◦ = |·| and σ = 2. For the cut generation, we choose K = 3 (β = 2
7) and

∥·∥• = ∥·∥1,w as proposed. According to Example 5.2, the anchor point becomes
xB = 8

7 . By solving the Lagrangian dual problem (30) at that point, we obtain the
CPC

ϕ(x) := max
λ

ß
− 1

2
− 4

7
λ1 −

8

7
λ2 +

12

7
λ3 :

2

7
(λ1 + 2λ2 + 4λ3) = x, λ ∈ [0, 1]3

™
.

We can apply the same procedure for K = 2 and K = 4. For all three cases,
the CPC is visualized in Fig. 9. Its value at xB is highlighted by a blue dot, the
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value at x = 6
5 by a violet triangle and the true value Q(65) by a red square. We

see that in all three cases, the CPC is valid and the regularized value function
QR(·;σ|·|) is overestimated at xB. In fact, the overestimation is exact for the
given example. Moreover, the anchor point xB gets closer to x = 6

5 with increasing
the binary precision. For K = 4 both points coincide. This does not guarantee to
monotonically improve the approximation at x = 6

5 , though, as Fig. 9b and Fig. 9c
show.

Q
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(a) K = 2.
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(b) K = 3.
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(c) K = 4.

Figure 9: CPC at x = 6
5 for σ = 2, ∥·∥• = ∥·∥1,w and different K in Example 5.14.

(2) CPC for increasing σ. Let the incumbent be x = 6
5 again. As for case (1), we

choose ∥·∥◦ = |·| and ∥·∥• = ∥·∥1,w. We fix the binary precision to K = 4 (β = 2
15)

and consider different values for σ. The obtained CPCs are visualized in Fig. 10.
We observe that in each case, the CPC is valid and the corresponding regularized
value function is (exactly) overestimated at x = 6

5 . Additionally, the slope of the
CPC is bounded by σ. For increasing values of σ, the approximation of the true
value function at x = 6

5 is improved.

(3) Using ∥·∥• = ∥·∥∞,w. Consider the same setting as for case (1), but with ∥·∥• =
∥·∥∞,w instead of the weighted 1-norm. In this case, we obtain the CPC

ϕ(x) := max
λ

ß
− 2

7
λ1 −

4

7
λ2 + 1.10714λ3 :

2

7
(λ1 + 2λ2 + 4λ3) = x, λ ∈ [0, 1]3

™
.
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(a) σ = 4
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Figure 10: CPC at x = 6
5 for K = 4, ∥·∥• = ∥·∥1,w and different values of σ in

Example 5.14.

As Fig. 11a shows, in this case, the overestimation property is not satisfied.

Setting σ = 1, we even observe a case in which QR
B (·;σ∥·∥∞,w) and its closed

convex envelope co(QR
B ;σ∥·∥∞,w)(·) do not coincide at λ = (0, 0, 1), which is the

binary representation of the anchor point xB.

(4) Using z ∈ {0, 1}K. Consider the same setting as for case (1), but with choosing
z ∈ {0, 1}K instead of z ∈ [0, 1]K . The CPC can be computed as

ϕ(x) := max
λ

ß
0.914286λ3 :

2

7
(λ1 + 2λ2 + 4λ3) = x, λ ∈ [0, 1]3

™
.

As Fig. 11b shows, this is not a valid cut for the value function Q(·). The CPC is
only guaranteed to be valid for points which can be exactly represented in the lifted
state space.

(5) Bounding the slope of the CPC. Let x = 1.249 now, i.e., very close to a point
of discontinuity of Q(·). Let ∥·∥◦ = |·|, σ = 5, K = 8 for a sufficiently close
approximation, and ∥·∥• = ∥·∥1,w as proposed. As Fig. 12a illustrates, in this case,
we obtain a CPC that overestimates QR(·;σ|·|), but is bounded in slope by σ = 5
(blue dotted line).
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(a) σ = 2 and ∥·∥• = ∥·∥∞,w.
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(b) σ = 1, ∥·∥• = ∥·∥1,w, z ∈ {0, 1}K .

Figure 11: Non-sufficient CPCs for K = 3 at x = 6
5 in Example 5.14.
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(a) Using ∥·∥• = ∥·∥1,w.
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(b) Using ∥·∥• = ∥·∥1.

Figure 12: CPC at x = 1.249 for σ = 5 and K = 8 in Example 5.14.

In contrast, consider the case where we do not use the weighted norm ∥·∥• = ∥·∥1,w,
but the unweighted one ∥·∥• = ∥·∥1 instead. As proven in [13] we can then bound
the dual multipliers in (30) by σmaxj Uj to achieve the intended overestimation.
However, the CPC becomes extremely steep for K = 8 and is not bounded by σ = 5,
see Fig. 12b. In general, its Lipschitz constant may diverge for β → 0.

For completeness, we should mention that Lagrangian dual problems are often de-
generate with infinitely many optimal solutions. Therefore, given a trial point xia(n),

there may exist an infinite number of tight linear Lagrangian cuts (satisfying Corol-
lary 3.14) or tight CPCs (satisfying Theorem 5.13) with varying approximation quality
at xa(n) ̸= xia(n). For illustration, see the blue dashed, cyan dotted, and magenta dash-

dotted CPCs for problem (7) shown in Fig. 12a.

6 Conclusion

We provide new theoretical insight on the generation of linear and non-convex cuts for
value functions of MS-MILPs based on Lagrangian duality, and the effects that copy
constraints and a Lipschitz regularization of the subproblems have in this context. In
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particular, we point out the relation between bounded Lagrangian dual problems and
the convex envelope of the regularized value functions. We further show that by a careful
choice of the regularization, this relation can be exploited to generate non-convex cuts
with favorable properties.

As future work directions, a computational comparison of generating linear La-
grangian cuts using non-regularized and regularized problems could be of interest. While
the approximation quality is better in the first case, bounding the Lagrangian duals in
the latter might accelerate the cut generation process. For non-convex approximations,
the CPC from our lift-and-project approach could be compared in detail with the aug-
mented Lagrangian cuts proposed in [1]. Another challenge is to efficiently incorporate
the non-convex CPC into the subproblems within SDDP-like methods.
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A Proof of Lemma 2.2

Proof. Consider a leaf node n of N . Since fn(·) is linear and Fn(xa(n)) is bounded for all
xa(n) by Assumption 1 (A1), we conclude that Qn(·) is bounded from below. Moreover,
by feasibility assumption (A3), we have dom(Qn) ̸= ∅. Hence, Qn(·) is proper. For all
other nodes in N , a similar reasoning can be applied inductively.

The lsc of Qn(·) and the closedness of dom(Qn) follow from [19, Theorem 3.1] under
Assumption 1 (A2), based on the observation that, apart from the integrality require-
ments, Xn and Yn are representable by polyhedral constraints. The piecewise poly-
hedrality follows from the mixed-integer linear character of the subproblems, see also
[19].

By taking expectations the assertion also holds for QC(n)(·).

B Proof of Lemma 2.3

Proof. Since Qn(·) is bounded from below (see Appendix A), also co(Qn)(·) is bounded
from below (there exists a constant convex function underestimating Qn(·)). By As-
sumption 1 (A3), dom(Qn) ̸= ∅. As co(Qn)(·) underestimates Qn(·) on dom(Qn),
this implies that co(Qn)(·) is proper. Then the assertion follows from [4, Proposi-
tion 1.6.1].

C Proof of Lemma 3.7

Proof. Recall from Lemma 3.5 that the objective function of subproblem (8) is bounded
from below on Mi+1

n . The objective function is the same for (12), and by Lemma 3.4
also the recession cones ofMi+1

n and conv(Mi+1
n ) do coincide. Therefore, the objective

function is also bounded from below on conv(Mi+1
n ).

The result dom(QC,i+1
n

) = conv(dom(Qi+1
n

)) follows by standard convexity argu-

ments considering the constraint set conv(Mi+1
n ) instead ofMi+1

n . By Assumption 1 (A3),
we have dom(Qi+1

n
) ̸= ∅, and thus dom(QC,i+1

n
) ̸= ∅. Together with the boundedness

from below, the properness follows.
Due to Lemma 3.4, problem (12) can be rewritten as a linear program, and therefore

the finite minimum is attained on conv(dom(Qi+1
n

)). Moreover, for linear programs, the

lower semicontinuity and convexity on Rda(n) (with QC,i+1
n

(xa(n)) = +∞ for all xa(n) /∈
conv(dom(Qi+1

n
))) and the piecewise linearity on dom(QC,i+1

n
) follow from standard

results in stochastic programming, see [6, 19] for instance.

D Proof of Theorem 3.9

Proof. Applying the arguments from Lemma 2.3 toQi+1
n

(·), it follows that (Qi+1
n

)∗∗(xa(n)) =

co(Qi+1
n

)(xa(n)) for all xa(n) ∈ Rda(n) , so it is sufficient for us to consider the biconjugate.

For any πn ∈ Rda(n) , the conjugate of Qi+1
n

(·) is defined as

(Qi+1
n

)∗(πn) = max
un

{
π⊤
n un −Qi+1

n
(un)

}
= −min

un

{
− π⊤

n un +Qi+1
n

(un)
}
,

with un, πn ∈ Rda(n) [4]. Then, the corresponding biconjugate is equal to QD,i+1
n

(xia(n)),
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since

(Qi+1
n

)∗∗(xia(n)) = max
πn

{
π⊤
n x

i
a(n)−(Qi+1

n
)∗(πn)

}
= max

πn
min
un

{
π⊤
n (x

i
a(n)−un)+Qi+1

n
(un)

}
.

Inserting the definition of Qi+1
n

(·) and utilizing the copy constraint to replace un with
zn, we obtain the Lagrangian dual (11). In particular, this holds true for the case where
finite values are obtained, proving the assertion.

E Proof of Theorem 3.13

Proof. First, we notice that dom(Qi+1
n

) ⊆ Za(n) and bounded by assumption. By
Lemma 3.5 it is also closed, thus compact. Under this condition, according to Re-
mark 2.4, co(Qi+1

n
)(·) and co(Qi+1

n
)(·) do coincide on dom(Qi+1

n
). Therefore, it remains

to be shown that

co(Qi+1
n

)(xa(n)) = Qi+1
n

(xa(n))

for all xa(n) ∈ Xa(n) ∩ dom(Qi+1
n

).
Now choose xa(n) arbitrarily from this set. Since xa(n) ∈ Xa(n), by assumption xa(n)

is an extreme point of Za(n), meaning it cannot be expressed as a convex combination
of points in Za(n) different from itself [26]. However, we also have xa(n) ∈ dom(Qi+1

n
) ⊆

Za(n), so it cannot be expressed as a convex combination of points in dom(Qi+1
n

) different

from itself either. Therefore, xa(n) is an extreme point of dom(Qi+1
n

). According to [26,

Proposition 2.1], this implies that co(Qi+1
n

)(xa(n)) = Qi+1
n

(xa(n)) for all xa(n) ∈ Xa(n).

F Proof of Lemma 4.4

Proof. We prove all results for leaf nodes n ∈ N . For other nodes, the same reasoning
can be applied inductively, using that QRC(n)(·;σC(n)∥·∥) is Lipschitz and underestimating

QC(n)(·).
First, we show that the minimum in subproblem (13) is well-defined. The feasible

set is

MR;i+1
n :=

{
(xn, yn, zn) : zn ∈ Za(n), xn ∈ Xn, yn ∈ Yn, Anzn +Bnxn + Cnyn ≥ bn

}
.

Under Assumptions 1 and 2, this set is closed as the intersection of closed sets.
By definition, QRC(n)(·;σC(n)∥·∥) ≡ 0 is Lipschitz continuous. Therefore, the objective

function gn(xn, yn, zn) := fn(xn, yn)+σn∥xa(n)−zn∥+QRC(n)(xn;σC(n)∥·∥) is lsc. Together
with the closedness ofMR;i+1

n , it follows that for any α ∈ R, the level set

levα(gn) =
{
(xn, yn, zn) ∈MR;i+1

n : gn(xn, yn, zn) ≤ α
}

is closed. Moreover, by Assumption 1, xn and yn are bounded, and by that fn(xn, yn)+
QRC(n)(xn;σC(n)∥·∥) is bounded from below by some finite constant α̃. The remaining

term σn∥xa(n) − zn∥ is bounded from below by 0 and bounded from above by α −
α̃. Therefore, within levα(gn), zn is bounded as well. In total, levα(gn) is compact.
For α sufficiently large, it is also non-empty. Then, by extensions of the Theorem of
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Weierstraß, a finite minimum is attained in subproblem (13). This immediately implies
properness of QR

n (·;σn∥·∥).
Second, assuming that it exists, let (x∗n, y

∗
n, z

∗
n) be an optimal solution to the original

subproblem (5). Clearly, this point is feasible, but not necessarily optimal for subprob-
lem (13). Due to the copy constraint in subproblem (5), the term σn∥xa(n) − z∗n∥
vanishes in the objective, and the underestimation property follows. In contrast, if sub-
problem (5) has no feasible solution given xa(n), then we have Qn(xa(n)) = +∞ and the
assertion is trivial.

Finally, we notice that QR
n (·;σn∥·∥) can be interpreted as the Pasch-Hausdorff en-

velope (or Lipschitz regularization) of Qn(·) and σn∥·∥:

QR
n (xa(n);σn∥·∥) = Qn□(σn∥·∥)(xa(n)) = min

zn∈Za(n)

Qn(zn) + σn∥xa(n) − zn∥.

By a similar reasoning as above, a finite minimum is attained. Since Qn(·) is proper
and lsc according to Lemma 2.2 and since QR

n (·;σn∥·∥) is proper as well, it follows that
QR
n (·;σn∥·∥) is σn-Lipschitz by a general property of the Pasch-Hausdorff envelope, see

[2, Proposition 12.17].

G Proof of Lemma 4.8

Proof. (a) Problem (15) is a relaxation of problem (13). Hence, by Lemma 4.3, it is
feasible for all xa(n) ∈ Rda(n) . Additionally, xn, yn are bounded, whereas θC(n) and ∥·∥
are at least bounded from below. Therefore, QR;i+1

n
(·;σn∥·∥) is finite-valued, and by

that also proper. Using the same reasoning as in Appendix F, we can also show that
finite infima are attained.

The Lipschitz continuity can be shown by exploiting that QR;i+1
n

(·;σn∥·∥) is the

Pasch-Hausdorff envelope (or Lipschitz regularization) of Qi+1
n

(·) and σn∥·∥ for all n ∈
N . Since Qi+1

n
(·) is proper and lsc according to Lemma 3.5 and since QR;i+1

n
(·;σn∥·∥)

is proper as well, it follows that QR;i+1
n

(·;σn∥·∥) is σn-Lipschitz continuous by a general
property of the Pasch-Hausdorff envelope, see [2, Proposition 12.17].

(b) The convexity can be shown in a straightforward way given that the feasible set
and the objective are convex. As problem (16) is a relaxation of problem (15), feasibility
and boundedness of QCR;i+1

n
(·;σn∥·∥) from above follow from (a). Recall that xn, yn are

bounded and θC(n) is bounded from below in the setMi+1
n . By convexity properties, it

can be shown that these properties also must hold for elements in conv(Mi+1
n ). There-

fore, the objective function is bounded from below. It follows that QCR;i+1
n

(·;σn∥·∥) is
finite-valued, and by that also proper.

Using the same arguments as in (a) for QCR;i+1
n

(·;σn∥·∥) and QC,i+1
n

(·) together with
Lemma 3.7 we can conclude that QCR;i+1

n
(·;σn∥·∥) is σn-Lipschitz continuous on Rda(n) ,

and thus also closed.
(c) The function co(QR;i+1

n
;σn∥·∥)(·) is convex by definition. As it underestimates

QR;i+1
n

(·;σn∥·∥), which is finite-valued, it is finite-valued as well.

(d) As shown in part (b), QCR;i+1
n

(·;σn∥·∥) is closed proper convex. Therefore,

by [4, Proposition 1.6.1 (c)] it coincides with its biconjugate (QCR;i+1
n

;σn∥·∥)∗∗(·) on

Rda(n) .
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H Proof of Lemma 4.9

Proof. We define cn and λn as in (18). First, we consider problem (15), but introduce
an additional variable and copy constraint to obtain

QR;i+1
n

(xia(n);σn∥·∥) = min
λn,zn,un

¶
c⊤nλn + σn∥un∥ : (λn, zn) ∈Mi+1

n , un = xia(n) − zn
©
.

We relax the equality constraint, which yields the dual function

Φ(πn) := min
λn,zn,un,wn

{
c⊤nλn + σn∥un∥+ π⊤

n (un − (xia(n) − zn)) : (λn, zn) ∈Mi+1
n

}

= min
(λn,zn)∈Mi+1

n

c⊤nλn − π⊤
n (x

i
a(n) − zn) + min

un
σn∥un∥+ π⊤

n un

= min
(λn,zn)∈conv(Mi+1

n )
c⊤nλn − π⊤

n (x
i
a(n) − zn) + min

un
σn∥un∥+ π⊤

n un.

The first equation follows from separability, while the second one follows from the
linearity of the objective in the first minimization problem.

Using the same steps for the convexified problem (16), we obtain the dual function
ΦC(πn), which satisfies Φ(πn) = ΦC(πn) for all πn ∈ Rda(n) . As they are defined by
taking the supremum of Φ(πn) or Φ

C(πn) over all πn respectively, also the biconjugates
(QR;i+1

n
;σn∥·∥)∗∗(·) and (QCR;i+1

n
;σn∥·∥)∗∗(·) are equivalent.

I Proof of Lemma 4.16

Proof. We consider some arbitrary node n ∈ N . By Theorem 4.10 and Corollary 4.12
we have

QCR;i+1
n

(xa(n);σn∥·∥) = co(QR;i+1
n

;σn∥·∥)(xa(n)) (40)

for all xa(n) ∈ Rda(n) . Analogously, by Theorem 3.8 and Theorem 3.9 for all xa(n) ∈
conv(dom(Qi+1

n
)) we have

QC,i+1
n

(xa(n)) = co(Qi+1
n

)(xa(n)). (41)

We now show that QCR;i+1
n

(xa(n);σn∥·∥) = QC,i+1
n

(xa(n)) is satisfied for all xa(n) ∈
conv(dom(Qi+1

n
)) to prove the assertion. For that, consider the definition of QC,i+1

n
(·)

in (12). According to Lemma 3.7, QC,i+1
n

(·) is a piecewise linear convex function, which

implies that it is Lipschitz continuous on conv(dom(Qi+1
n

)).

Finally, we notice that QCR;i+1
n

(·;σn∥·∥) is exactly the regularized function that we

obtain if we Lipschitz-regularize QC,i+1
n

(·) using parameter σn. Therefore, we may apply
the reasoning from Lemma 4.15 to these two functions. We conclude that if σn is chosen
sufficiently large, then

QC,i+1
n

(xa(n)) = QCR;i+1
n

(xa(n);σn∥·∥) (42)

for all xa(n) ∈ conv(dom(Qi+1
n

)). Combining this with (40) and (41) proves the assertion.
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J Proof of Lemma 4.18

Proof. For sufficiently large σn > 0, combining Corollary 4.12, Lemma 4.16 and the
definition of the closed convex envelope yields

QDR;i+1
n

(xia(n);σn∥·∥) = co(QR;i+1
n

;σn∥·∥)(xia(n)) = co(Qi+1
n

)(xia(n)) ≤ QR;i+1
n

(xia(n);σn∥·∥)

for all xa(n) ∈ conv(dom(Qi+1
n

)). Additionally, given the taken assumptions, by The-

orem 3.13, we have co(Qi+1
n

)(xia(n)) = Qi+1
n

(xia(n)) for all xa(n) ∈ Xa(n) ∩ dom(Qi+1
n

).

Hence, the first equality in the assertion follows for xia(n) ∈ Xa(n) ∩ dom(Qi+1
n

). This
directly implies

Qi+1
n

(xia(n)) ≤ QR;i+1
n

(xia(n);σn∥·∥).

However, since we also have the opposite result for all xa(n) ∈ Rda(n) by definition (cf.
Lemma 4.4), the second equality in the assertion follows.

K Proof of Lemma 4.19

Proof. We construct a special feasible solution for the dual problem (17) to prove the
assertion. Suppose π̂n ∈ Rda(n) is a vector, for which each component j is defined by

π̂nj :=

{
σn if xia(n),j = 1

−σn if xia(n),j = 0.
(43)

Such construction is always possible, since xia(n) ∈ {0, 1}
da(n) . The vector π̂n is feasible

for (17) with ℓ∞-norm. Therefore, we obtain

QDR;i+1
n

(xia(n);σn∥·∥1) = max
∥πn∥∗≤σn

min
zn∈Za(n)

Qi+1
n

(zn) + π⊤
n (x

i
a(n) − zn)

≥ min
zn∈Za(n)

Qi+1
n

(zn) + π̂⊤
n (x

i
a(n) − zn)

= min
zn∈Za(n)

Qi+1
n

(zn) +

da(n)∑

j=1

π̂tj(x
i
a(n),j − znj).

(44)

Now we exploit the binary nature of xa(n). Note that if xia(n),j = 1, from (43) it
follows

π̂tj(x
i
a(n),j − znj) = σn(x

i
a(n),j − znj) = σn|xia(n),j − znj |.

The last equality holds, since for xia(n),j = 1 and znj ∈ [0, 1] (or znj ∈ {0, 1}), the term

xia(n),j − znj is always non-negative. Analogously, for xia(n),j = 0, from (43) it follows

π̂tj(x
i
a(n),j − znj) = −σn(xia(n),j − znj) = σn|xia(n),j − znj |.
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Inserting this result in (44) yields

QDR;i+1
n

(xia(n);σn∥·∥1) ≥ min
zn∈Za(n)

Qi+1
n

(zn) +

da(n)∑

j=1

σn|xia(n),j − znj |

= QR;i+1
n

(xia(n);σn∥·∥1).
(45)

L Proof of Lemma 5.11

Proof. First we notice that the dual CPC problem (38) is separable in the dimensions
j = 1, . . . , dn of the original state space. Hence, we may analyze each case separately,
which yields

min
ηnj ,µnj

{
xnjηnj + e⊤µnj : ηnjbnj + µnj ≥ πC(n),j , µnj ≥ 0

}
.

bnj ∈ RKnj is a vector which contains the non-zero entries from the j-th column of B⊤n .
The variable ηnj is one-dimensional, and πC(n),j ∈ RKnj contains all entries from πC(n)
referring to component j.

We introduce slack variables and split up ηnj to reformulate the constraints as:

η+njbnj − η−njbnj + µnj − νnj = πC(n),j

η+nj , η
−
nj , µnj , νnj ≥ 0.

(46)

The set defined by (46) has 2+2Knj variables. In a basic solution, 2+Knj variables
have to be zero and the Knj columns associated with the remaining variables have to
be linearly independent. We observe that for each row k = 1, . . . ,Knj , the variables
µnjk and νnjk cannot be in the basis together, because otherwise the basic columns are
not linearly independent. With the same reasoning, η+nj and η

−
nj cannot be in the basis

together. Moreover, for Knj > 1, it is not sufficient to have only η+nj or η
−
nj in the basis.

We now consider different cases of basic solutions.
Case 1. η+nj and η−nj both in the basis. Then η+nj = η−nj = 0, so obviously

ηnj = η+nj − η−nj = 0 ≤ σmax
n .

Case 2. η+nj in the basis. This implies η−nj = 0. The equation

η+nj =
πC(n),jk − µnjk + νnjk

2k−1βnj

has to be satisfied for all k = 1, . . . ,Knj simultaneously. However, since η+nj is in the

basis, for some k̄, both µnjk̄ and νnjk̄ have to be zero. Therefore, this k̄ determines
the value of η+nj . The largest possible value that η+nj ≥ 0 may take can be obtained by
maximizing over k:

η+nj ≤ max
k=1,...,Knj

max

ß
πC(n),jk
2k−1βnj

, 0

™
.
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If all πC(n),jk ≤ 0, then η+nj = 0 ≤ σmax
n . Otherwise,

η+nj ≤ max
k=1,...,Knj

πC(n),jk
2k−1βnj

. (47)

We now exploit the bounds in the Lagrangian dual problem (30). We choose
∥·∥• = ∥·∥1,w, hence for each m ∈ C(n), the dual multipliers are bounded by ∥πm∥∞,w ≤
σm. Recall that by our choice of the weight matrix W , this is equivalent to |πmk| ≤
σm2

κ(k)−1βn,j(k) for all k = 1, . . . ,Kn. Restricting to some component j, we have
|πmjk| ≤ σm2

k−1βnj for all k = 1, . . . ,Knj , and thus |πC(n),jk| ≤ σmax
n 2k−1βnj for all

k = 1, . . . ,Knj . Consequently, in (47) it follows η+nj ≤ σmax
n .

Case 3. η−nj in the basis. We can prove η−nj ≤ σmax
n by using the same reasoning

as for Case 2.
Since ηnj = η+nj − η−nj , but only one of both variables can be non-zero, we conclude

ηnj ≤ σmax
n .

Due to separability, the above reasoning can be applied for each j = 1, . . . , dn
separately, so it follows ηnj ≤ σmax

n for all j. Hence, ∥ηn∥∞ ≤ σmax
n . Note that the

above reasoning is completely independent of the values of βnj or Knj .

M Proof of Lemma 5.12

Proof. The CPC is defined as the minimum of finitely many linear functions, which we
enumerate by ℓ = 1, . . . , L. Each such function ψℓC(n)(·) is determined by an extreme

point (µℓn, ν
ℓ
n, η

ℓ
n) of (38). Consider two arbitrary points x1n, x

2
n ∈ Rdn . Using the Hölder

inequality and Lemma 5.11, we obtain

|ψℓC(n)(x2n)− ψℓC(n)(x1n)| = |(ηℓn)⊤(x2n − x1n)| ≤ ∥ηℓn∥∞∥x2n − x1n∥1 ≤ σmax
n ∥x2n − x1n∥1.

Hence, each ψℓC(n)(·) is Lipschitz continuous w.r.t. ∥·∥1 with Lipschitz constant σmax
n .

Taking the maximum of all Lipschitz constants over ℓ = 1, . . . , L, we obtain a Lipschitz
constant for the CPC, which is again σmax

n . By equivalence of norms in Rdn , for any
other norm than ∥·∥1, we can obtain a Lipschitz constant σ̃C(n) > 0 by multiplying σmax

n

with an appropriate positive constant.

N Proof of Theorem 5.13

Proof. We first prove validity property (S1). From Corollary 5.7 we have QC(n)(xn) ≥
ϕB;C(n)(λn) for all xn ∈ Rdn and any λn ∈ [0, 1]Kn , such that xn = Bnλn. Hence

QC(n)(xn) ≥ max
λn

{
ϕB;C(n)(λn) : λn ∈ [0, 1]Kn ,Bnλn = xn

}
= ϕC(n)(xn)

for all xn ∈ Rdn , where the last equality applies the definition of the CPC in (37).
Since this result is true for all ϕrC(n)(·), r = 1, . . . , i+ 1, it also holds for their pointwise

maximum Qi+1
C(n)(·).

Next, we prove the overestimation property (S2). Note that ϕiB;C(n)(λ
i
n) = ϕiC(n)(x

i
B,n)

by the definitions of xiB,n and the CPC. Hence, under our assumptions, Corollary 5.8
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yields

ϕiC(n)(x
i
B,n) ≥ QR;i+1

C(n) (xiB,n;σC(n)∥·∥◦).

By definition of Qi+1
C(n)(·) in (39) it directly follows

Qi+1
C(n)(x

i
B,n) ≥ QR;i+1

C(n) (xiB,n;σC(n)∥·∥◦).

Finally, we prove Lipschitz property (S3) using Lemma 5.12. Under our assumptions,
for any ∥·∥◦, each ϕrC(n)(·), r = 1, . . . , i + 1, is σ̃C(n)-Lipschitz continuous with σ̃C(n) >
0, finite and independent of βn,j ∈ (0, 1), j = 1, . . . , dn. The pointwise maximum of
Lipschitz continuous functions is Lipschitz continuous with its Lipschitz constant the
maximum of the individual constants. Therefore, Qi+1

C(n)(·) is σ̃C(n)-Lipschitz continuous

w.r.t. ∥·∥◦.
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of space.



Supplementary Material

“On Lipschitz regularization and Lagrangian

cuts in multistage stochastic mixed-integer

linear programming”

Christian Füllner, X. Andy Sun, Steffen Rebennack

1 The role of copy constraints – Two-dimensional example

Example 1.1. Consider the value function

Q(x) = min
y,z

− 16y1 − 19y2 − 23y3 − 28y4

s.t. 2y1 + 3y2 + 4y3 + 5y4 ≤ 10− 1

3
x1 −

2

3
x2

6y1 + y2 + 3y3 + 2y4 ≤ 10− 2

3
x1 −

1

3
x2

y1, y2, y3, y4 ∈ {0, 1}

taken from [2], together with the two-dimensional state space

X =
{
(x1, x2) ∈ Z2 : x1, x2 ∈ [0, 5], x2 ≤

9

2
− x1

}
.

To generate Lagrangian cuts, we introduce copy constraints z = x together with
constraint z ∈ Z. We analyze the effect of different choices for Z on the cut tightness.
We consider X,R2 and the following sets in between as choices for Z:

conv(X) =
{
(x1, x2) ∈ R2 : x1, x2 ∈ [0, 5], x2 ≤ 4− x1

}
,

X̄ =
{
(x1, x2) ∈ R2 : x1, x2 ∈ [0, 5], x2 ≤

9

2
− x1

}
,

X̃ =
{
(x1, x2) ∈ R2 : x2 ≤

9

2
− x1

}
,

X ′ =
{
(x1, x2) ∈ Z2 : x1, x2 ∈ [0, 5]

}
,

conv(X ′) = X̄ ′ =
{
(x1, x2) ∈ R2 : x1, x2 ∈ [0, 5]

}
.

These sets are illustrated in Figure 1.
We generate cuts at three different incumbents: x̄ = (0, 4)⊤, x̄ = (3, 1)⊤, x̄ = (2, 1)⊤

which are highlighted with red circles. Depending on the choice of Z, these incumbents
may be located at an extreme point of Z (thus satisfying the sufficient condition for
tightness in Theorem 3.13), on the boundary of Z, or in the interior of Z (if Z is discrete,
we define ext(Z) := ext(conv(Z)) and bd(Z), int(Z) analogously). These relations and
the values of the obtained Lagrangian cuts at x̄ are summarized in Table 1.
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Figure 1: Different choices for Z in Example 1.1.

Table 1: Cut value at x̄ for different choices of Z in Example 1.1.

x̄ = (0, 4)⊤ x̄ = (3, 1)⊤ x̄ = (2, 1)⊤

Q(x̄) = -44.0 Q(x̄) = -47.0 Q(x̄) = -47.0
Z rel. to Z cut value rel. to Z cut value rel. to Z cut value

X ∈ ext(Z) -44.0 ∈ bd(Z) -47.0 ∈ int(Z) -51.0
conv(X) ∈ ext(Z) -44.0 ∈ bd(Z) -47.0 ∈ int(Z) -51.0

X̄ ∈ bd(Z) -46.1 ∈ int(Z) -48.8 ∈ int(Z) -52.3

X̃ ∈ int(Z) -46.3 ∈ int(Z) -50.4 ∈ int(Z) -53.8

X ′ ∈ bd(Z) -44.0 ∈ bd(Z) -50.9 ∈ int(Z) -53.8
conv(X ′) = X̄ ′ ∈ bd(Z) -46.1 ∈ bd(Z) -51.1 ∈ int(Z) -53.8

R2 ∈ int(Z) -48.4 ∈ int(Z) -53.1 ∈ int(Z) -55.4

We can see that x̄ ∈ ext(Z) guarantees tight cuts with respect to Q(·), whereas for
x̄ ∈ int(Z) tightness is never achieved. For x̄ ∈ bd(Z), tightness is achieved sometimes,
however, not guaranteed in general. This observation is in accordance with the sufficient
condition provided in Theorem 3.13.

In particular, we notice that computing cuts as tight as possible requires not only to
consider box and integrality constraints, but also the additional linear constraint x2 ≤
9
2 − x1 defining X, when imposing constraints on the copy variable z.
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2 CPC and augmented Lagrangian cuts

We compare the non-convex Lagrangian cuts derived in Sect. 5, referred to as CPCs,
with the non-convex augmented Lagrangian cuts proposed in [1] and enhanced in [4].

2.1 Augmented Lagrangian cuts

To compute augmented Lagrangian cuts, given some some norm ∥·∥ and some multipliers
πn ∈ Rda(n) and ρn ≥ 0, we consider the inner problem

ALi+1
n (πn, ρn;x

i
a(n)) := min

xn,yn,zn,θCn
fn(xn, yn) + θC(n) − π⊤n (zn − xia(n))

+ ρn∥zn − xia(n)∥
s.t. (xn, yn, zn, θC(n)) ∈Mi+1

n ,

(48)

which defines the augmented dual function ALi+1
n (·). Apart from some constant in the

objective, this problem differs from the inner problem (10) to the classical Lagrangian
dual by the penalization term ρn∥zn−xia(n)∥ in the objective. Note that this penalization
term resembles the one that we use for regularization in Sect. 4.

Similar to the classical outer problem (11), the augmented dual problem optimizes
ALi+1

n (·) over the multipliers πn and ρn.

γAD,i+1
n := QAD,i+1

n
(xia(n)) := max

πn,ρn
ALi+1

n (πn, ρn;x
i
a(n))

s.t. ρn ≥ 0.
(49)

For some optimal solution (πin, ρ
i
n) of problem (49) with optimal value γAD,i+1

n , an
augmented Lagrangian cut (ALD cut) can be defined by function

ϕADn (xa(n)) := γAD,i+1
n + (πin)

⊤(zn − xia(n))− ρn∥zn − xia(n)∥.

Given some n ∈ Ñ and some trial point xin, by taking expectations of γAD,i+1
m , πim

and ρim over all m ∈ C(n), we obtain coefficients γAD,i+1
C(n) , πiC(n) and ρ

i
C(n) and can define

the function

ϕADC(n)(xn) := γAD,i+1
C(n) + (πiC(n))

⊤(xn − xin)− ρn∥xn − xin∥, (50)

which defines an aggregated augmented Lagrangian cut. This cut is valid, i.e.,

QC(n)(xn) ≥ ϕADC(n)(xn)

for all xn ∈ Xn (this is true even for suboptimal multipliers πm, ρm, m ∈ C(n)), and
tight [1], i.e.,

Qi+1
C(n)(x

i
n) :=

∑

m∈C(n)
pnmQ

i+1
m

(xin) = ϕADC(n)(x
i
n).

2.2 Comparison of CPC and ALD cuts

We summarize some important similarities and differences between the computation and
application of CPCs and ALD cuts.

In both cases, Lipschitz continuity and tightness of the cuts are required for conver-
gence. This in turn, requires to compute cuts for Lipschitz continuous value functions, as

3
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otherwise arbitrarily steep cuts might be generated close to discontinuities or infinitely
steep sections. Lipschitz continuity can be guaranteed by Lipschitz regularization, see
Sect. 4, or a complete continuous recourse (CCR) assumption [5]. In Sect. 5, for the
CPC, we focus on Lipschitz regularization, while for the ALD cuts in [1] CCR is as-
sumed. Reverse choices are possible, though, see for instance Sect. 4.5. Therefore, we
consider both cases for both approaches.

2.2.1 Case 1: Lipschitz continuous value functions

Consider the case of Lipschitz continuous value functions. Let αn denote the Lipschitz
constant of Qn(·). Then, according to Lemma 4.15, for any n ∈ N̄ and for σn ≥ αn,
the regularized value function QRn (·;σn∥·∥) and the value function Qn(·) coincide on
dom(Qn). The same holds true for the approximate value functions QR;i+1

n
(·;σn∥·∥) and

Qi+1
n

(·). Therefore, for any n ∈ N , some norm ∥·∥ and some σn ≥ αn, any sufficient
CPC also satisfies the tightness condition

Qi+1
C(n)(x

i
B,n) = Qi+1

C(n)(x
i
B,n)

at the anchor point xiB,n. This follows by combining properties (S1) and (S2) in Defini-
tion 5.1. Crucially, this tightness result requires a sufficiently large choice of σn. At best,
the Lipschitz constant αn is known, so that tightness is achieved while simultaneously
avoiding overly steep cuts.

In comparison, for any n ∈ N , some norm ∥·∥ and some sufficiently large ρn ≥ αn,
the ALD cut (50) is tight at Qi+1

C(n)(x
i
n) (it can be shown that ρn = αn is sufficient for

this result to hold [1]). Importantly, as no binarization is required, here tightness is
achieved at xin and not only at xiBn.

2.2.2 Case 2: Non-Lipschitz continuous value functions

Suppose that the CCR property cannot be satisfied, so the value functions are not
guaranteed to be Lipschitz continuous.

In our proposed approach, we apply a Lipschitz regularization. According to Defi-
nition 5.1, for any n ∈ N , some given norm ∥·∥◦ and some σn ≥ αn, any sufficient CPC
overestimates QR;i+1

C(n) (xiB,n;σn∥·∥◦) and is Lipschitz continuous.
Non-bounded ALD cuts. For ALD cuts, things are a bit more intricate. If we

follow the ALD approach from above, without Lipschitz regularization and dual bounds,
the obtained ALD cuts may still become tight at Qi+1

C(n)(x
i
n) if we choose ρn sufficiently

large, however, at the cost of being very steep at trial points xin close to discontinuities
or infinitely steep sections. The same is true if we apply a Lipschitz regularization in
the forward pass, but do not impose appropriate dual bounds in the backward pass.

Generalized conjugacy cuts. However, if we additionally bound the dual variables
by ∥πn∥∗ ≤ σn, 0 ≤ ρn ≤ σn, in the augmented dual problem, then the obtained ALD
cuts are guaranteed to overestimate QR;i+1

C(n) (xin;σn∥·∥◦) [4, Proposition 3], but are also

guaranteed to be 2σC(n)-Lipschitz continuous [4, Proposition 5]. This means that the
ALD cuts are sufficient in the sense of Definition 5.1. The guaranteed Lipschitz constant
differs from that for the CPC, though. Again, as no temporary lifting is required, the
overestimation result holds at xin instead of xiBn. This type of ALD cut is formally
introduced in [4] and referred to as a generalized conjugacy (GC) cut, as it is a special
case of cuts that can be derived using generalized conjugacy theory.

4
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2.2.3 Overall comparison

We provide an overview of this comparison in Table 2.
The previous comparison seems to indicate that ALD cuts are superior to our pro-

posed CPC, as they achieve tightness without the state space lifting and the projection
back to the original state space. This seems to be particularly true for GC cuts, which
also ensure Lipschitz continuity without relying on a strong recourse assumption.

In fact, it is true that our proposed non-convex approximations suffer from some
noteworthy drawbacks:

� They require to solve a Lagrangian dual problem in a lifted, i.e., higher-dimensional
space, which is computationally detrimental.

� The obtained CPCs are tight at xiB,n instead of xin, with the approximation error
depending on the precision of the state space binarization.

� Compared to ALD cuts, the non-convex CPC requires more (binary) variables
and constraints to be represented by MILP constraints and to be included in the
SDDiP subproblems.

� The Lagrangian dual problem often exhibits degeneracy, see Sect. 5.8. With a
second optimization step minimizing the norm of all optimal solutions, usually
cuts with suitable space-filling behavior can be computed, though.

However, we may also observe some challenges for ALD cuts.

� As mentioned before, for an unbounded dual problem, the cuts may become ex-
tremely steep close to discontinuities of Qn(·). Therefore, convergence may not be
guaranteed.

� Augmented Lagrangian dual problems are in general more expensive to solve than
classical Lagrangian dual problems. One reason is that in contrast to problem (10),
the inner problem (48) is nonlinear in general due to the norm in the objective
function, even though for ∥·∥1 or ∥·∥∞, it can be reformulated as an MILP. Due
to the computational challenges, instead of optimizing over both πn and ρn, in
practice often a fixed value ρn > 0 is considered and iteratively increased (similarly
to σn in [3]).

� For a fixed ρn ≥ σn, we may end up with πn = 0, which yields a trivial reverse-
norm cut that is tight for QR;i+1

C(n) (·;σn∥·∥), but also very steep. The reason is that

it only takes the Lipschitz constant of QR;i+1
C(n) (·;σn∥·∥) into account, but not its

actual shape. This may result in a suboptimal space-filling, i.e., the approximation
is very loose outside of xin. Even minimizing the norm of all dual optimal solutions
does not help in this case, as πn = 0 implies ∥πn∥ = 0.

In order to obtain better space-filling cuts, then ρn has to be reduced, at the risk
of losing tightness. Ahmed et al. [1] propose the following mechanism: Compute
πn, either by solving the augmented Lagrangian dual problem for some fixed ρn
or by solving the dual of the LP relaxation, and then use a bisection procedure to
find the smallest ρn for which tightness is still ensured. This approach is heuristic,
though.

We further investigate these theoretical differences using an illustrative example.

5
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Example 2.1. Consider the problem (7).
Let the incumbent be x = 6

5 . We compare three different non-convex cuts for different
values of σ. First, the CPC obtained in Example 5.14 for fixed binary precision (K = 4).
Second, ALD cuts obtained by solving an augmented Lagrangian dual problem for fixed
ρ = σ. For this example, the obtained cuts are the same, no matter if we introduce dual
bounds or not. Third, the trivial ALD cuts defined by ρ = σ and π = 0. The cuts are
displayed in Fig. 2 (CPC: blue dashed line, best ALD cut: cyan dotted line, trivial ALD
cut: magenta dash-dotted line).

We observe that the ALD cuts may be tighter at the trial point, especially since they
are constructed at this point and not at a deviating anchor point. On the other hand, the
CPC yields much better space-filling approximations than the trivial ALD cut. Compared
to the best obtained ALD cut, at least for larger values of σ, the space-filling is better as
well. For smaller values of σ this is not always the case.

We compare the same types of cuts for the incumbent x = 1.249, which is close to a
discontinuity. Again, the ALD cuts are the same, no matter if we introduce dual bounds
or not. The CPC is as tight as the trivial ALD cut at x = 1.249, but exhibits better
approximation quality elsewhere. It is also slightly less steep than the best obtained ALD
cut.

We should note that the ALD cuts could be further improved in Example 2.1, for
instance by applying the bisection heuristic from [1] and optimizing over ρ. In general,
the quality of the obtained cuts seems to rather depend on fine-tuning and parameter
choices, e.g., selecting appropriate σ or ρ, or in the case of dual degeneracy, obtaining
the best possible space-filling without compromising tightness, and less on whether our
proposed lift-and-project or an augmented Lagrangian approach is used.
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Figure 2: CPC and ALD cuts at x = 6
5 for different values of σ in Example 2.1.
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Abstract

Based on recent advances in Benders decomposition and two-stage stochastic integer
programming we present a new generalized framework to generate Lagrangian cuts in
multistage stochastic mixed-integer linear programming (MS-MILP). This framework can
be incorporated into decomposition methods for MS-MILPs, such as the stochastic dual
dynamic integer programming (SDDiP) algorithm. We show how different normalization
techniques can be applied in order to generate cuts satisfying specific properties with
respect to the convex hull of the epigraph of the value functions, e.g. having a maximum
depth or being facet-defining. We provide computational results to evaluate the efficacy
and performance of different normalizations in our new framework and compare them with
existing techniques from the literature.

1 Introduction

In this paper, we study cut generation strategies that can be applied in decomposition
methods for solving multi-stage stochastic mixed-integer linear programs (MS-MILP).
More precisely, we present an alternative framework for the generation of Lagrangian
cuts as they are used for instance in stochastic dual dynamic integer programming
(SDDiP) proposed by [31].

1.1 Motivation and Prior Work

Multistage stochastic programs are very relevant to model decision-making processes
in practice because often sequential decisions have to be made over a finite number of
stages and under uncertainty considering the problem data of the following stages. For
a large number of considered scenarios, solving these problems with standard solvers is
computationally intractable, as their size grows exponentially in the number of stages.
For this reason, decomposition methods exploiting their sequential and block-diagonal
structure have been established as predominant solution techniques, among the most
prominent ones nested Benders decomposition (BD) [6] and stochastic dual dynamic
programming (SDDP) [24]. These methods decompose the large-scale problem into

1
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stage- and scenario-specific subproblems, coupled by state variables and so-called value
functions, denoted Qn(·). For multistage stochastic linear programming problems (MS-
LPs) these functions are convex polyhedral and can be exactly represented by finitely
many affine functions called cuts [7]. However, in many applications some of the decision
variables have to be integer or binary to model more complicated constraints. In this
case, we obtain an MS-MILP and the value functions are in general non-convex and
discontinuous.

A key challenge is that in this case, linear under-estimators are in general not tight.
They may at best yield the closed convex envelope co(Qn)(·) of Qn(·), which is the
pointwise supremum of all affine functions majorized by Qn(·) [4]. Even this property
is not achieved by classical Benders cuts in general. Therefore, more focus has been
put on Lagrangian cuts lately, which are constructed by solving special Lagrangian dual
problems, as introduced in the original SDDiP paper [31]. These Lagrangian cuts have
useful properties: They are valid under-estimators of Qn(·) and they can be used to
recover co(Qn)(·). As shown in [31], if all state variables of the MS-MILP are binary,
this even ensures tightness for Qn(·), which is sufficient to establish almost sure finite
convergence of SDDiP.

Nonetheless, applying Lagrangian cuts computationally in practice comes with some
considerable challenges: First, Lagrangian dual problems are often degenerate with
multiple optimal solutions. Even if all the cuts associated with these solutions are
tight, their approximation quality may differ significantly, as illustrated in Fig. 1. This
issue is especially common for the binary state space required in SDDiP because all cuts
are constructed at extreme points of the state space.

1

1

2

xa(n)

Qn(xa(n))

Figure 1: Tight Lagrangian cuts with different approximation quality.

Second, even if the Lagrangian dual is a convex optimization problem, it may be
very costly to solve repeatedly due to its non-smooth objective function. This is only
aggravated if the state space is artificially increased by a binary expansion, as it is
proposed in SDDiP to ensure cut tightness in the case of non-binary state variables [31].
This computational drawback of Lagrangian cuts is already identified in the original
SDDiP work [31]. It is concluded that performance-wise the improvement in cut quality
is often not worth the significant increase in solution time.

Finally, tight Lagrangian cuts are crucial to ensure theoretical convergence of SDDiP,
but this convergence may be quite slow. In the worst case, a complete enumeration of
the binary state space is required. It is conceivable that there exist alternative, possibly
non-tight, cuts that may significantly speed-up the convergence process.

For the aforementioned reasons, in this paper we address the question of how to
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improve and accelerate the generation and usage of Lagrangian cuts in decomposition
methods for MS-MILP such as SDDiP.

Some first attempts with this aim have been made recently. In the original SDDiP
paper it is proposed to combine tight cuts with strengthened Benders cuts that are not
tight in general, but outperform classical Benders cuts and are efficient to compute [31].
Rahmaniani et al. [25] present a heuristic to generate Lagrangian cuts more efficiently
using inner approximations or partial relaxations. Chen and Luedtke [11] suggest to
restrict the feasible set of dual multipliers to the span of Benders cut coefficients of
previous iterations (without convergence guarantees for the multi-stage case).

In addition, there has been a lot of research on alternative cut generation techniques
for BD, which may be applicable to the stochastic and Lagrangian setting as well. To
address degeneracy and dominated cuts in BD, in their seminal paper [22] present
a two-step approach to generate Pareto-optimal cuts. Their ideas are improved by
[23] who shows that it is sufficient to solve a single optimization problem to generate
Pareto-optimal cuts. Sherali and Lunday [27] propose to generate certain maximal
non-dominated Benders cuts by solving a perturbation of the original subproblem.

A novel framework to generate Benders cuts is introduced by [17]. Its starting
point is the observation that in classical BD there exists an unfavorable bias towards
feasibility cuts over optimality cuts. As an alternative, the proposed framework allows
to generate optimality and feasibility cuts in a unified way using the same cut generation
problem. Additionally, based on this unified framework, several different cut generation
techniques can be explored. More precisely, applying the framework initially leads to
an unbounded separation problem. For the actual cut generation, unbounded rays have
to be identified, which allows for a lot of methodological flexibility.

Fischetti et al. [17] show that using a special normalization of the cut generation
problem, the obtained cuts can be proven to correspond to minimal infeasible subsys-
tems. Hosseini and Turner [21] use a different normalization to generate deep cuts
in BD, which are characterized by their property to maximize the distance between
the separating hyperplane and the point to separate. They report considerable perfor-
mance gains compared to classical BD. The idea of deep cuts is not new, but priorly
discussed in context of disjunctive programming [10, 13]. Brandenberg and Stursberg
[9] show how facet-defining and Pareto-optimal cuts can be generated in BD using the
unified framework and the so-called reverse polar set [see also 28]. It is shown that the
performance improvement using this approach is significant. The same cut generation
procedure is put forward by [26] in their recent paper, but motivated from a differ-
ent angle, that is geometrically. A different approach to separate facet-defining cuts is
presented by [12] for disjunctive programming. To our knowledge, only the work by
Fischetti et al. has been applied to the stochastic setting and to Lagrangian cuts so far
[11]. The authors use the alternative framework and a specific normalization technique
to generate Lagrangian cuts for two-stage stochastic MILPs.

In this paper, we provide a more general framework for the multistage case and com-
pare various different normalization techniques from a theoretical and computational
perspective. In particular, we analyze the Lagrangian cuts that are obtained if the
Lagrangian dual is normalized using norm constraints or linear constraints. We show
that under some assumptions, these cuts are deep, facet-defining or Pareto-optimal.

1.2 Contribution

The key contributions of this paper are summarized below.

3
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(1) We show how the alternative cut generation framework proposed by [17] for BD
can be applied to the generation of Lagrangian cuts for MS-MILPs. This idea has
already been used by [11] in two-stage stochastic MILPs, but to our knowledge
has not been extended to the multistage case yet.

(2) As the Lagrangian dual problems in this framework are unbounded, some nor-
malization is required to select cut coefficients in a reasonable way. We draw
on recent concepts for cut selection in BD, such as optimizing over the reverse
polar set [9] or generating deep cuts [21], and extend them to the stochastic and
Lagrangian setting. This way, we obtain a variety of different normalization tech-
niques and by that generalize the cut generation approach from [11]. We show
that depending on the chosen normalization, cuts satisfying different quality cri-
teria can be obtained, e.g., deep cuts, facet-defining cuts or Pareto-optimal cuts.
Moreover, we investigate in detail the geometrical ideas and relations behind these
normalizations.

(3) We show that linear normalizations are closely related to the identification of core
points in the epigraphs epi(Qn), which can be challenging for multistage stochastic
problems. Therefore, we propose five heuristic approaches for the computation of
core point candidates, and thus setting up linear normalizations for the generation
of Lagrangian cuts.

(4) The proposed framework for Lagrangian cut generation can be incorporated into
NBD or SDDiP. We prove that under some assumptions, still (almost sure) finite
convergence of these methods is guaranteed.

(5) We perform extensive computational tests for SDDiP incorporating the new cut
generation framework on a capacitated lot-sizing problem from the literature. We
show that the obtained lower bounds in SDDiP are majorly improved using cuts
from our proposed generation framework compared to classical Lagrangian cuts
or Benders cuts. We also observe that this does not necessarily guarantee an
improvement of the in-sample performance of the obtained policies, though.

1.3 Structure

This paper is structured as follows. In Sect. 2 we introduce MS-MILPs formally together
with our notation. In Sect. 3 we introduce the new cut generation framework for
Lagrangian cuts in general. We then present different types of Lagrangian cuts that
can be obtained by using special normalizations. In Sect. 4 we discuss convergence
of NBD and SDDiP if these cuts are incorporated. After that, in Sect. 5, we present
computational experiments for SDDiP with these new Lagrangian cuts for a capacitated
lot-sizing problem from the literature. We finish with a conclusion in Sect. 6. For reasons
of space, some technical proofs are shifted to Appendix B.

2 Problem Formulation

We start by introducing MS-MILPs and their decomposition formally, mostly following
the notation from [31]. We consider MS-MILPS with a finite number T ∈ N of stages,
where some of the problem data is uncertain and evolves according to a known stochastic
process ξ := (ξ1, . . . , ξT ) with deterministic ξ1. We assume that the random data vectors
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ξt, t = 1, . . . , T, are discrete and finite, such that the uncertainty can be modeled by a
finite scenario tree. Let N denote the set of nodes of this tree. For each node n ∈ N , the
unique ancestor node is denoted by a(n) and the set of child nodes is denoted by C(n).
The probability for some node n is pn > 0 and assumed to be known. The transition
probabilities between adjacent nodes n,m ∈ N can then be determined as pnm := pm

pn
.

For the root node r, we assume a(r) = ∅ and pr = 1. We define N := N \ {r} to

address the set of nodes without the root node, ‹N to address the set of nodes without
leaf nodes and denote by N (t) the nodes at stage t.

For each node n ∈ N , we distinguish state variables xn ∈ Rdn , which also appear
in child nodes of n, and local variables yn ∈ Rd̃n . fn(·) denotes the objective function
of node n and Fn(xa(n)) denotes the feasible set of node n, which depends on the state
variable xa(n) from the ancestor node. We assume that fn(·) is a linear function in xn
and yn, and that Fn(·) is a mixed-integer polyhedral set for all xa(n). More precisely,
we assume it to be defined by

Fn(xa(n)) :=
{
(xn, yn) ∈ Rdn × Rd̃n : xn ∈ Xn, yn ∈ Yn,

Anxa(n) +Bnxn + Cnyn ≥ bn
}
.

(1)

Here, An, Bn, Cn, bn denote appropriately defined data matrices and vectors. The sets
Xn and Yn comprise constraints only associated with xn or yn, e.g., box constraints or
non-negativity constraints. More precisely, we assume that both sets are intersections
of polyhedral sets X̄n, Ȳn and possible integrality constraints. In the following, we also
refer to Xn as the state space.

An MS-MILP can then be expressed by its dynamic programming equations. For
the root node, we obtain

v∗ := min
xr ,yr

ß
fr(xr, yr) +

∑

m∈C(r)
prmQm(xr) : (xr, yr) ∈ Fr(xa(r))

™
(2)

with xa(r) = 0, and v∗ is the optimal value of the original problem. Let R := R∪{+∞}.
For all n ∈ N , the value function Qn : Rda(n) → R is defined by

Qn(xa(n)) := min
xn,yn

ß
fn(xn, yn) +

∑

m∈C(n)
pnmQm(xn) : (xn, yn) ∈ Fn(xa(n))

™
.

For the leaf nodes n ∈ N \ ‹N , we set
∑

m∈C(n) pnmQm(xn) ≡ 0. Moreover, we set
Qn(xa(n)) = +∞ if Fn(xa(n)) = ∅, and denote by dom(Qn) the effective domain of
Qn(·).

Remark 2.1. Note that regarding Qn(·) as a function on Rda(n) is not standard in
stochastic programming. Often it is (implicitly) assumed to be defined only on the domain
Xa(n). However, from our view, allowing Qn(·) to be defined on Rda(n) with extended real
values appears more suitable for the following steps.

As this proves beneficial in the cut generation process, we introduce local variables
zn and accompany them with copy constraints xa(n) = zn and constraints zn ∈ Za(n),
with Za(n) ⊇ Xa(n). The most natural choice is Za(n) = Xa(n), but also other choices are
possible, e.g., Za(n) = conv(Xa(n)). For more details we refer to [18]. This reformulation

5
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yields the equivalent subproblems

Qn(xa(n)) = min
xn,yn,zn

ß
fn(xn, yn) +

∑

m∈C(n)
pnmQm(xn) : (zn, xn, yn) ∈ Fn,

zn = xa(n), zn ∈ Za(n)
™
,

(3)

where, Fn :=
¶
(xn, yn, zn) ∈ Rda(n) × Rdn × Rd̃n : (xn, yn) ∈ Fn(zn)

©
.

For the remainder of this article, we make some basic assumptions.

Assumption 1. The following conditions are satisfied by (1)-(3):

(A1) For all n ∈ N , the sets Xn and Yn are compact.

(A2) For all n ∈ N , all coefficients in An, Bn, Cn, bn, fn, X̄n and Ȳn are rational.

(A3) For all n ∈ N , Za(n) is compact, rational MILP-representable and Za(n) = dom(Qn).

Note that the boundedness in (A1) immediately implies that Fn(xa(n)) is bounded

for all xa(n) ∈ Rda(n) and n ∈ N . Property (A3) implies relatively complete recourse,
which is a standard assumption in multistage stochastic programming. It allows us
to focus on optimality cuts approximating Qn(·) without requiring feasibility cuts that
approximate dom(Qn).

We obtain the following properties for the value functions.

Lemma 2.2. Under Assumption 1, for all n ∈ N , the value functions Qn(·) are proper,
l.sc. (lower semicontinuous) and piecewise polyhedral with finitely many pieces.

By applying the properness reasoning to the root node, we conclude that v∗ is finite.

3 A New Cut Generation Framework

In this section, we present a novel framework for the generation of Lagrangian cuts
in multistage stochastic mixed-integer programming, which serves as an alternative to
the classical Lagrangian cut generation framework from SDDiP [31], which we state in
Appendix A for comparison. The new framework is based on ideas that go back to [17],
and in one specific form has been applied to two-stage stochastic programs in [11].

3.1 An Epigraph Perspective on Cut Generation

Recall the definition of the epigraph of the value functions Qn(·), n ∈ N :

epi(Qn) =
{
(xa(n), θn) ∈ Rda(n) × R : θn ≥ Qn(xa(n)), xa(n) ∈ dom(Qn)

}
. (4)

We can use this definition to reformulate the subproblems (3) to

Qn(xa(n)) = min
xn,yn,zn,(θm)

ß
fn(xn, yn) +

∑

m∈C(n)
pnmθm : (zn, xn, yn) ∈ Fn,

zn = xa(n), zn ∈ Za(n)

(xn, θm) ∈ epi(Qm), m ∈ C(n)
™
.

(5)
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Here, and in the following, we use (θm) as a shortened notation for (θm)m∈C(n).

Remark 3.1. The condition xn ∈ dom(Qm) from the definition in (4) is always satisfied
implicitly in problem (5), since dom(Qm) = Zn by Assumption 1 and xn ∈ Xn ⊆ Zn by
construction.

In classical Benders-like decomposition methods, such as SDDiP, iteratively opti-
mality cuts are constructed to approximate Qn(·) and, if required, feasibility cuts are
constructed to approximate dom(Qn). This is done by solving distinct cut generation
problems. However, from (4) it is evident that both types of cuts actually approximate
epi(Qn). Therefore, we may as well consider a unified cut generation problem to obtain
polyhedral approximations Ψm of the sets epi(Qm) [17]. Whereas we solely focus on
optimality cuts in this paper, see Assumption 1, the resulting cut generation framework
still proves itself valuable, as we shall see.

Remark 3.2. In multistage stochastic programming the cuts are often aggregated to
obtain cuts for the expected value functions

∑
m∈C(n) pnmQm(xn) ( single-cut approach),

as this reduces the total number of cuts in the subproblems. In this paper, instead,
we consider a separate set of cuts, i.e., separate approximations Ψm, for each epi(Qm)
(multi-cut approach). This approach is better suited to our cut generation framework.

As the value functions Qn(·) are not known explicitly within our decomposition
method, we may not use subproblems (5) directly in the cut generation process. How-
ever, we can replace each occurrence of epi(Qm) with its current approximation Ψi+1

m

(with iteration index i). We refer to the associated value functions Qi+1
m

(·) as approx-
imate value functions. Note that this way, we actually generate cuts approximating
epi(Qi+1

m
). However, by construction these cuts do also yield outer approximations of

epi(Qm). To avoid unboundedness, each set is initialized with a valid outer approxima-
tion Ψ0

m,m ∈ C(n).
For notational simplicity, for the remainder of this paper we define the set

W i+1
n :=

{(
xn, yn, zn, (θm)

)
: (xn, yn, zn) ∈ Fn, zn ∈ Za(n), (xn, θm) ∈ Ψi+1

m ,m ∈ C(n)
}
,

and further define λn :=
(
xn, yn, (θm)

)
and c⊤nλn := fn(xn, yn) +

∑
m∈C(n) pnmθm (re-

call that f(·) is linear). Then, the approximate subproblems and approximate value
functions associated with problem (5) can be compactly written as

Qi+1
n

(xia(n)) = min
λn,zn

{
c⊤nλn : (λn, zn) ∈ W i+1

n , zn = xia(n)

}
. (6)

We make another assumption for the remainder of this paper.

Assumption 2. For all n ∈ N and all iterations i, all linear cuts defining the polyhedral
set Ψi+1

m are defined by rational coefficients.

Furthermore, in the next sections, we often require the convex hull conv(W i+1
n ) of a

set W i+1
n . It has the following important property.

Remark 3.3. Under Assumptions 1 and 2, the set conv(W i+1
n ) is a closed convex poly-

hedron. That means that there exist matrices Ãn, B̃n and a vector d̃n such that

conv(W i+1
n ) =

¶
(λn, zn) : Ãnλn + B̃nzn ≥ d̃n

©
.
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3.2 A Feasibility Problem for the Epigraph

We can now start to address the actual cut generation process in the proposed unified
framework. Given a point (xia(n), θ

i
n), we consider the feasibility problem

vf,i+1
n (xia(n), θ

i
n) := min

λn,zn

{
0 : (λn, zn) ∈ W i+1

n , zn = xia(n), θ
i
n ≥ c⊤nλn

}
, (7)

which can be shown to verify if (xia(n), θ
i
n) ∈ epi(Qi+1

n
).

Lemma 3.4. Under Assumptions 1 and 2 and given a point (xia(n), θ
i
n), problem (7) is

a feasibility problem for epi(Qi+1
n

), that is,

vf,i+1
n (xia(n), θ

i
n) =

{
0, if (xia(n), θ

i
n) ∈ epi(Qi+1

n
)

+∞, else.

Proof. Let (xia(n), θ
i
n) ∈ epi(Qi+1

n
). Then according to (4) we have

θin ≥ min
λn,zn

{
c⊤nλn : (λn, zn) ∈ W i+1

n , zn = xia(n)

}
. (8)

This implies that there exists some (λn, zn) such that for (xia(n), θ
i
n) all constraints of (7)

are satisfied. Hence, vf,i+1
n (xia(n), θ

i
n) = 0.

Let vf,i+1
n (xia(n), θ

i
n) = 0. Then, there exist (λn, zn) such that for (xia(n), θ

i
n) all con-

straints of (7) are satisfied. However, this implies (8), and thus (xia(n), θ
i
n) ∈ epi(Qi+1

n
).

3.3 Lagrangian Cuts in the New Framework

To generate Lagrangian cuts, we apply a Lagrangian relaxation to problem (7). A key
difference to the classical Lagrangian relaxation from SDDiP (see Appendix A) is that
not only xia(n), but (xia(n), θ

i
n) is regarded as a fixed incumbent for the cut generation

process. Therefore, we relax all constraints containing either xia(n) or θin. For given

multipliers (πn, πn0) ∈ Rda(n) × R+ the dual function is then given by

L i+1
n (πn, πn0) := min

λn,zn

{
π⊤
n zn + πn0c

⊤
nλn : (λn, zn) ∈ W i+1

n

}
. (9)

The corresponding Lagrangian dual problem is

max
πn,πn0

{
L i+1
n (πn, πn0)− π⊤

n x
i
a(n) − πn0θin : πn0 ≥ 0

}
. (10)

We state some important properties of this dual problem.

Theorem 3.5. Under Assumptions 1 and 2, for the Lagrangian dual (10) it holds:

(i) The dual function L i+1
n (·) is piecewise linear concave in (πn, πn0).

(ii) Its optimal value v̂D,i+1
n (xia(n), θ

i
n) satisfies

v̂D,i+1
n (xia(n), θ

i
n) =

{
0, if (xia(n), θ

i
n) ∈ epi(co(Qi+1

n
))

+∞, else.
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Proof. (i) is a standard result on Lagrangian relaxation [see 20]. Another well-known
property of the Lagrangian dual is that it is equivalent to a primal convexification of
the original subproblem [19]. In our case, this convexification is given by

min
λn,zn

{
0 : (λn, zn) ∈ conv(W i+1

n ), zn = xia(n), θ
i
n ≥ c⊤nλn

}
. (11)

The closed convex envelope co(Qi+1
n

)(·) can be expressed through the convex problem

co(Qi+1
n

)(xia(n)) = min
λn,zn

{
c⊤nλn : (λn, zn) ∈ conv(W i+1

n ), zn = xia(n)

}
, (12)

see for instance [18, Theorems 3.8 and 3.9] for a formal proof. Therefore, by the same
reasoning as in Lemma 3.4, problem (11) is a feasibility problem for epi(co(Qi+1

n
)).

Theorem 3.5 directly implies that the Lagrangian dual is unbounded whenever
(xia(n), θ

i
n) /∈ epi(co(Qi+1

n
)). Therefore, there exists an unbounded ray (πin, π

i
n0) such

that

L i+1
n (πin, π

i
n0)− (πin)

⊤xia(n) − πin0θin > 0,

and (xia(n), θ
i
n) violates the following Lagrangian cut:

Definition 3.6. For all n ∈ N and some multipliers (πin, π
i
n0), a Lagrangian cut is

given by

πin0θn + (πin)
⊤xa(n) ≥ L i+1

n (πin, π
i
n0). (13)

This type of cut is valid for any feasible (πin, π
i
n0) in (10). We provide a proof in

Appendix B.1.

Lemma 3.7. Under Assumptions 1 and 2, for any (πin, π
i
n0) ∈ Rda(n) × R+ the La-

grangian cut (13) is satisfied by all (xa(n), θn) ∈ epi(co(Qi+1
n

)), and thus by all (xa(n), θn) ∈
epi(Qn).

We analyze the relation between the Lagrangian cuts (13) and the classical ones (22).
We restrict to πn0 > 0 because πn0 = 0 leads to feasibility cuts that by assumption are
not required in our case.

Remark 3.8. Let πin0 > 0 in cut (13). As shown in Proposition 1 in [11], with division
by πin0, it follows

θn ≥
1

πin0
L i+1
n (πin, π

i
n0)−

Å
πin
πin0

ã⊤
xa(n)

= L i+1
n (π̂n, 1)− π̂⊤

n xa(n)

= Li+1
n (π̂n)− π̂⊤

n xa(n)

with π̂n := πin
πin0

. This is an equivalent representation of (13) in the form of a classical

Lagrangian optimality cut (22), see Appendix A.

We should emphasize that despite the scaling relation shown in Remark 3.8, the
new cut generation framework may yield different cuts than the classical one because
the choice of dual multipliers is based on a different dual problem.

9
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3.4 Cut Selection Criteria

It is not immediately clear how to select cut coefficients (πin, π
i
n0) from the unbounded

Lagrangian dual (10) in the most reasonable way. On the one hand, computationally we
aspire to determine coefficients (πin, π

i
n0) by solving a bounded and feasible optimization

problem instead of dealing with an unbounded one. On the other hand, we want to
make sure that the obtained cuts are not only separating the incumbent (xia(n), θ

i
n) from

epi(Qn), but also of good approximation quality. For instance, they should not be
unnecessarily steep (see Sect. 1.1) and they should be supporting epi(co(Qi+1

n
)).

The first aim can be achieved by bounding problem (10) artificially, e.g., by introduc-
ing bounds on the dual multipliers. Another common approach is to fix its unbounded
objective to 1. Combined with Remark 3.3 this allows to identify unbounded rays by
analyzing a compact polyhedron called alternative polyhedron [17]. Finally, we may
introduce a normalizing constraint to the Lagrangian dual (10).

With regard to the second aim, various quality criteria for cutting-planes have been
put forward in the literature, see [14] for an overview. Many of these criteria have been
applied in the context of BD or disjunctive programming before, as shown in Table 1,
but our paper is the first one applying them to Lagrangian cuts, and incorporating most
of them at once. We focus on three important criteria:

� Facet-defining cuts. These cuts reproduce facets of a convex polyhedral set, in our
case epi(co(Qi+1

n
)), and thus may be helpful in ensuring finite convergence.

� Pareto-optimal cuts. For πn0 > 0, Pareto-optimal cuts (13) are non-dominated in
the sense that there exists no other cut

π̃n0θn + (π̃n)
⊤xa(n) ≥ L i+1

n (π̃n, π̃n0)

such that

L i+1
n (π̃n, π̃n0)− (π̃n)

⊤xa(n)
π̃n0

≥ L i+1
n (πin, π

i
n0)− (πin)

⊤xa(n)
πin0

for all (xa(n), θn) ∈ epi(co(Qi+1
n

)). Note that Pareto-optimality with respect

to epi(co(Qi+1
n

)) does not necessarily imply Pareto-optimality with respect to

epi(Qi+1
n

), but is easier to achieve. The idea of Pareto-optimal cuts was first
put forward by [22].

� Deep cuts. The concept of deep cuts goes back to [8]. These cuts are deep in the
sense that a maximum distance between the incumbent (xia(n), θ

i
n) and the sepa-

rating hyperplane is realized, i.e., they cut as deep as possible into the suboptimal
region.

As shown in the literature, especially in [9], many of these criteria can be satisfied by
optimizing over the so-called reverse polar set of epi(co(Qi+1

n
)) shifted by the incumbent

(xia(n), θ
i
n). The reverse polar set is an important tool in the theory on cut generation,

as it is directly linked to the support function of epi(co(Qi+1
n

)), and thus provides a

characterization of normal vectors of (xia(n), θ
i
n)-separating hyperplanes [9, 13].

The reverse polar set was first introduced by [3] and can be defined as follows.
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Table 1: Examination of cut quality criteria in the literature on BD and disjunctive
programming.

Paper MIS Max. depth Facet-def. Pareto-opt.

Magnanti and Wong [22] ✓
Cornuéjols and Lemaréchal [13] ✓ ✓
Papadakos [23] ✓
Cadoux [10] ✓ ✓
Fischetti et al. [17] ✓
Sherali and Lunday [27] ✓
Conforti and Wolsey [12] ✓
Brandenberg and Stursberg [9] ✓ ✓ ✓
Hosseini and Turner [21] ✓
Seo et al. [26] ✓
This paper ✓ ✓ ✓
MIS: Cuts that correspond to minimal infeasible subsytems of the feasibility subproblem.

Definition 3.9. The reverse polar set of a set S ⊂ Rn is defined as

S− :=
{
d ∈ Rn : d⊤x ≤ −1 ∀x ∈ S

}
.

To simplify notation, we set Ri+1
n (xia(n), θ

i
n) :=

(
epi(co(Qi+1

n
))− (xia(n), θ

i
n)
)−

for the

reverse polar set of epi(co(Qi+1
n

)) shifted by (xia(n), θ
i
n). Using Remark 3.3, it can be

reformulated.

Lemma 3.10. The reverse polar set Ri+1
n (xia(n), θ

i
n) can be expressed as

Ri+1
n (xia(n), θ

i
n) =




(γn, γn0) ∈ Rda(n) × R : ∃µn ≥ 0 :

γn0 ≤ 0

− Ã⊤
nµn − γn0cn = 0

− B̃⊤
n µn − γn = 0

d̃⊤nµn + γ⊤n x
i
a(n) + γn0θ

i
n ≥ 1




.

We provide a proof in Appendix B.2.

Remark 3.11. Even with the above reformulation of Ri+1
n (xia(n), θ

i
n), an explicit for-

mulation is usually not readily available due to the existence quantor and due to Ãn, B̃n
and d̃n not being known.

Based on the existing work for BD, in the next sections, we present and investigate
different strategies to generate Lagrangian cuts satisfying the above quality criteria. In
the light of Remark 3.11, Ri+1

n (xia(n), θ
i
n) may not be used without further ado to gener-

ate such cuts computationally. Still, it proves useful in the derivation of Lagrangian cuts
with favorable properties. In particular, as we shall see, optimizing over Ri+1

n (xia(n), θ
i
n)

is closely linked to solving normalized Lagrangian dual problems. So in fact, our two
perspectives to approach cut selection are intertwined and boil down to considering
specific (bounded) normalizations of problem (10).

We first define the normalized Lagrangian dual in a general form and state some
important properties. For simplicity, from now on, we assume that Assumptions 1 and 2

11
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Table 2: Examination of normalized cut generation problems and different perspectives
on it in the literature.

Norm normalization Linear normalization
Paper Prim Proj RP Prim Proj RP

Cornuéjols and Lemaréchal [13] ✓ ✓ ✓ ✓ ✓
Cadoux [10] ✓ ✓ ✓
Fischetti et al. [17] (✓)
Brandenberg and Stursberg [9] ✓ ✓
Hosseini and Turner [21] ✓ ✓ ✓
Chen and Luedtke [11] (✓∗)
Seo et al. [26] ✓
This paper ✓∗ ✓∗ ✓∗ ✓∗ ✓∗ ✓∗

Prim: Primal perspective. Proj: Projection perspective. RP: Reverse polar perspective.

(✓): Perspective is applied, but not further explored. ✓∗: Examination for Lagrangian cuts.

are satisfied, even if not explicitly stated.

Definition 3.12. For some homogeneous normalization function gn : Rdn × R+ → R,
the normalized Lagrangian dual is defined as

v̂ND,i+1
n (xia(n), θ

i
n) := max

πn,πn0

{
L i+1
n (πn, πn0)− π⊤

n x
i
a(n) − πn0θin :

gn(πn, πn0) ≤ 1, πn0 ≥ 0
}
.

(14)

Remark 3.13. As long as the normalization constraint gn(πn, πn0) ≤ 1 is satisfied
by some neighborhood N of the origin, we do not exclude any potential cuts due to
the scaling property of πn0, see Remark 3.8. In fact, Chen and Luedtke [11] prove
that restricting the dual multipliers to N ∩ (Rda(n) × R+) yields a family of possible
Lagrangian cuts that is satisfied by the same set of points (xa(n), θn) as the family of
classical Lagrangian (optimality and feasibility) cuts from Appendix A.

Lemma 3.14. If (xia(n), θ
i
n) ∈ epi(co(Qi+1

n
)), then v̂ND,i+1

n (xia(n), θ
i
n) = 0, and vice versa.

We provide a proof in Appendix B.3. Lemma 3.14 allows us to solely focus on the
case where (xia(n), θ

i
n) /∈ epi(co(Qi+1

n
)) for the remainder of this section.

In the next two subsections, we consider two different types of normalization: by
norm constraints and by linear constraints. As we show, both types of normalization
can be viewed from three different perspectives (a primal perspective, a projection
perspective and a reverse polar perspective). These perspectives have been analyzed in
the literature before, as shown in Table 2, but have not been linked all together in a
generalized framework and have not been applied to Lagrangian cuts.

3.5 Normalization by Norm and Deep Cuts

We consider the normalized Lagrangian dual (14) and the associated Lagrangian cuts
if some norm is used as the normalization function. We start by formally defining this
type of cut.

12
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Definition 3.15. Let ∥·∥ be some arbitrary norm. The Lagrangian cut (13) defined
by the solution (πn, πn0) to the normalized Lagrangian dual (14) with gn(πn, πn0) =
∥πn, πn0∥ is called ∥·∥-deep Lagrangian cut. For ℓp-norms we may also use the term
ℓp-deep Lagrangian cuts.

If appropriate norms are used, e.g., the ℓ1-norm or the ℓ∞-norm, then the normaliza-
tion can be expressed by linear constraints. However, due to the nonlinearity of L i+1

n (·),
the cut generation subproblem is still not an LP, and therefore may be difficult to solve.

For the special choice of the ℓ1-norm, this normalization is used by Chen and Luedtke
[11] to generate Lagrangian cuts in two-stage stochastic programs, however without
discussing the conceptual idea behind it in detail. Deep cuts allow for three theoretical
and geometrical interpretations (cf. Table 2), which also explain why they are called
deep. As the existing results from the literature can be applied to the multistage and
Lagrangian setting in a straightforward way, we do not provide proofs here.

(1) Maximizing cut depth. Deep cuts maximize the distance between the incum-
bent (xia(n), θ

i
n) and the hyperplane associated with this cut in the dual norm ∥·∥∗

of ∥·∥, which means that they cut as deep as possible into the suboptimal region.
Therefore, this distance can be interpreted as the depth or a scaled violation of
this cut.

Lemma 3.16 (based on Hosseini and Turner [21]). Let ∥·∥ be some norm and
∥·∥∗ its dual norm. Further, let dn

(
(xia(n), θ

i
n); (πn, πn0)

)
denote the distance be-

tween the hyperplane defined by (πn, πn0) and the point (xia(n), θ
i
n) /∈ epi(co(Qi+1

n
))

measured in ∥·∥∗. Then, the optimal value v̂ND,i+1
n (xia(n), θ

i
n) of problem (14) with

gn(πn, πn0) = ∥πn, πn0∥ equals

max
πn,πn0

{
dn
(
(xia(n), θ

i
n); (πn, πn0)

)
: πn0 ≥ 0

}
.

(2) Projection onto the epigraph. From a primal perspective, generating ∥·∥-deep
cuts is in some sense equivalent to minimizing the distance in ∥·∥∗ between the
incumbent (xia(n), θ

i
n) and the epigraph epi(co(Qi+1

n
)), i.e., related to projecting

(xia(n), θ
i
n) onto the epigraph.

Lemma 3.17 (based on Lemma 2.5 in [10]). Let ∥·∥ be some norm and ∥·∥∗
its dual norm. Then, the optimal value v̂ND,i+1

n (xia(n), θ
i
n) of problem (14) with

gn(πn, πn0) = ∥πn, πn0∥ equals that of the projection problem

min
xa(n),θn

{
∥xa(n) − xia(n), θn − θin∥∗ : (xa(n), θn) ∈ epi(co(Qi+1

n
))
}
. (15)

Lemma 3.17 implies that v̂ND,i+1
n (xia(n), θ

i
n) > 0 if (xia(n), θ

i
n) /∈ epi(co(Qi+1

n
)),

whereas v̂ND,i+1
n (xia(n), θ

i
n) = 0 if not, so it confirms Lemma 3.14. Therefore, as

for the non-normalized case, we have a unique flag for cases where no separating
cut has to be constructed. However, in contrast to the non-normalized case, the
dual problem is bounded.

We can also conclude from Lemma 3.17 that a deep cut supports epi(co(Qi+1
n

)).

Corollary 3.18 (based on Proposition 3 in Hosseini and Turner [21]). Sup-
pose (xia(n), θ

i
n) /∈ epi(co(Qi+1

n
)) and let (x̂a(n), θ̂a(n)) ∈ epi(co(Qi+1

n
)) be a solution

13
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to (15). Then, any ∥·∥-deep cut separating (xia(n), θ
i
n) from epi(co(Qi+1

n
)) supports

epi(co(Qi+1
n

)) at (x̂a(n), θ̂a(n)).

(3) Minimizing a norm over the reverse polar set. Interestingly, deep cuts
allow for another geometric interpretation that is related to the reverse polar set
Ri+1
n (xia(n), θ

i
n). It is based on the observation thatRi+1

n (xia(n), θ
i
n) is directly linked

to the normals of separating hyperplanes.

Lemma 3.19 (Lemma 2.9 in [10]). Let (πin, π
i
n0) be the coefficients of a ∥·∥-deep

cut constructed at (xia(n), θ
i
n) /∈ epi(co(Qi+1

n
)). Then there exists some α > 0 such

that −α(πin, πin0) minimizes ∥·∥ over the reverse polar set Ri+1
n (xia(n), θ

i
n).

The main idea to prove this result is that due to positive homogeneity of norms,
the norm ∥·∥ in the normalization constraint and the Lagrangian dual objective
can be swapped.

To illustrate these three perspectives for different norms we provide an example,
inspired by illustrations from the literature [9, 21].

Example 3.20. We consider a given epigraph epi(co(Qn)), an incumbent (xia(n), θ
i
n),

the associated reverse polar set Ri+1
n (xia(n), θ

i
n) and the obtained deep Lagrangian cuts for

different norms (ℓ2, ℓ1, ℓ∞ and a weighted ℓ1-norm). The sets and cuts are illustrated in
Fig. 2-5 for the different norms. In each case, the illustration consists of two parts (a)
and (b). In part (a), the incumbent (black dot) and the epigraph are depicted. More-
over, several norm balls are shown for the respective dual norms ( red lines). We can
see that the obtained deep Lagrangian cuts (blue lines) maximize the distance between
the incumbent and the hyperplane in the dual norm. This is illustrated by depicting dif-
ferent valid cuts (dashed/dotted cyan lines) with smaller distances. On the other hand,
it is also shown that the deep cuts minimize the distances between the incumbent and
the epigraph in the dual norm and support the epigraphs at the corresponding projection
to the epigraph ( violet line or point). In part (b), the reverse polar set is depicted.
Moreover, the optimal solutions ( teal line or point) for optimizing the given norm (il-
lustrated by a norm ball, green line) over the reverse polar set are highlighted. These
solutions (apart from sign changes) characterize the normal vectors of the obtained cuts
(see Lemma 3.19), as is additionally illustrated in part (a). Note that for none of the
considered cases, the deep cuts are tight for epi(co(Qn)) at xia(n), contrary to classical
Lagrangian cuts.

Example 3.20 also illustrates possible properties of deep cuts. Whereas deep cuts can
be unique (see Fig. 2,3,4), also degenerate solutions with infinitely many different deep
cuts are possible (see Fig. 5). This is the case if the optimization over Ri+1

n (xia(n), θ
i
n) in

Lemma 3.19 does not have a unique solution. Only for the ℓ2-norm a unique solution
is guaranteed. While non-unique solutions are not disadvantageous in general, degen-
eracy of the Lagrangian dual (14) may lead to selection of non-dominant cuts, compare
Sect. 1.1.

Further, even if unique, deep cuts are not guaranteed to be facet-defining (see Fig. 2).
In fact, while they cut deep into the suboptimal region, analyses in [10] (for the ℓ2-norm)
and in Hosseini and Turner [21] (for the ℓ1-norm) show that they tend to be flat, at
least in early stages of the algorithm when the optimality gap is still large. We can
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epi(co(Qn))

xa(n)

θn

(a) Epigraph and deep cut.

Ri+1
n (xia(n), θ

i
n)

γn

γn0

(b) Reverse polar set.

Figure 2: Illustration of deep cuts for the ℓ2-norm.

epi(co(Qn))

xa(n)

θn

(a) Epigraph and deep cut.

Ri+1
n (xia(n), θ

i
n)

γn

γn0

(b) Reverse polar set.

Figure 3: Illustration of deep cuts for the ℓ1-norm.

anticipate from Fig. 3 and Lemma 3.19, though, that deep cuts are facet-defining if ∥·∥∗
takes its minimum over Rn(xia(n), θin) in a vertex.

Finally, also the projection problem (15) is not guaranteed to have a unique solution
for all but the ℓ2-norm (see Fig. 4). If the solution is non-unique, then the associated
deep cut is unique and facet-defining.

Remark 3.21. Another intuitive way to bound the Lagrangian dual (10) and to select
cut coefficients (πn, πn0) is to introduce simple box constraints for the multipliers. For
symmetric boxes around the origin, which can be modeled by a weighted ℓ∞-norm, we
may interpret the obtained cuts as deep cuts. However, which specific cuts are selected
highly depends on the chosen multiplier bounds. Too large bounds may favor degeneracy
and very steep cuts, for too small bounds, only almost horizontal cuts can be selected.

3.6 Linear Normalization

We consider the normalized Lagrangian dual (14) with a linear normalization function
gn(πn, πn0) = u⊤n πn + un0πn0 defined by some coefficients (un, un0) ∈ Rdn× ∈ R. Recall
that the initial Lagrangian dual problem (10) is unbounded and that we introduce the
normalization constraint in (14) in order to transform the problem to a bounded one to
identify unbounded rays. In contrast to the norm-based normalization from Sect. 3.5,

15
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epi(co(Qn))

xa(n)

θn

(a) Epigraph and deep cut.

Ri+1
n (xia(n), θ

i
n)

γn

γn0

(b) Reverse polar set.

Figure 4: Illustration of deep cuts for the ℓ∞-norm.

epi(co(Qn))

xa(n)

θn

(a) Epigraph and deep cut.

Ri+1
n (xia(n), θ

i
n)

γn

γn0

(b) Reverse polar set.

Figure 5: Illustration of deep cuts for a weighted ℓ1-norm.

a linear normalization does not guarantee boundedness, though. Hence, the choice of
(un, un0) is crucial to ensure that an optimal solution exists. We further analyze this
later in this section, but for now take the following assumption.

Assumption 3. Given some (un, un0) ∈ Rdn ×R, the normalized Lagrangian dual (14)
with gn(πn, πn0) = u⊤n πn + un0πn0 has a finite optimal value v̂ND,i+1

n (xia(n), θ
i
n) > 0.

3.6.1 Linear Normalization Cuts

We can then define the associated type of Lagrangian cuts.

Definition 3.22. Let (un, un0) ∈ Rdn ×R and let the normalized Lagrangian dual (14)
satisfy Assumption 3. Then, we refer to the Lagrangian cut (13) defined by its solution
(πn, πn0) as a linear normalization (LN) Lagrangian cut.

Again, we can take three different perspectives on LN cuts.

(1) Pseudonorm perspective. Hosseini and Turner [21] restrict to choices of (un, un0)
such that gn(πn, πn0) = u⊤n πn+ un0πn0 ≥ 0 for all (πn, πn0) ∈ Rdn ×R+. In such a
case, gn(·) is a linear pseudonorm (in contrast to norms, it is not positive definite).
This means that LN cuts can be interpreted as maximizing the distance between
the associated hyperplane and (x̂ia(n), θ̂

i
n) in a linear pseudonorm.
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(2) Projection on a line segment. This perspective has been brought up several
times in the literature in different variants, most recently by Seo et al. [26]. Even
though the geometric idea is the same in the Lagrangian context, the formal
description changes a bit.

First, we exploit that for linear gn(·), the normalized Lagrangian dual (14) can be
reformulated as an LP and then be dualized with strong duality.

Lemma 3.23. Let (un, un0) ∈ Rdn × R. The normalized Lagrangian dual (14)
with gn(πn, πn0) = u⊤n πn + un0πn0 can be formulated as an LP, and its dual is

min
λn,zn,ηn

{
ηn : (λn, zn) ∈ conv(W i+1

n ), ηn ≥ 0, un0ηn ≥ c⊤nλn − θin,

unηn = zn − xia(n)
}
.

(16)

We provide a proof in Appendix B.4. Problem (16) can be interpreted as finding
the smallest scaling factor ηn ≥ 0 such that starting from (xia(n), θ

i
n) along direction

(un, un0) a point in epi(co(Qi+1
n

)) is reached. Again, for the optimal value it follows

v̂ND,i+1
n (xia(n), θ

i
n) = η∗n > 0 if and only if (xia(n), θ

i
n) /∈ epi(co(Qi+1

n
)). Given

the optimal value, the projection of (xia(n), θ
i
n) onto epi(co(Qi+1

n
)) along direction

(un, un0) can be determined as

(x̂a(n), θ̂a(n)) = (xia(n), θ
i
n) + η∗n(un, un0). (17)

We then obtain the following result:

Corollary 3.24. Let (un, un0) ∈ Rdn × R and let the normalized Lagrangian
dual (14) satisfy Assumption 3. Furthermore, let (x̂a(n), θ̂a(n)) ∈ epi(co(Qi+1

n
))

satisfy (17). Then, the associated LN cut supports epi(co(Qi+1
n

)) at (x̂a(n), θ̂a(n)).

(3) Maximizing a linear function over the reverse polar set. Again, an inter-
pretation with respect toRi+1

n (xia(n), θ
i
n) is possible based on its characterization of

normal vectors of separating hyperplanes. More precisely, LN cuts can be obtained
by maximizing the linear objective function u⊤n γn + un0γn0 over Ri+1

n (xia(n), θ
i
n):

max
γn,γn0

{
u⊤n γn + un0γn0 : (γn, γn0) ∈ Ri+1

n (xia(n), θ
i
n)
}
. (18)

This perspective is discussed in detail in Brandenberg and Stursberg [9] for BD and
in [13] for general convex sets (where solving problem (18) is shown to correspond
to evaluating a function called reverse gauge). For the relation to the normalized
Lagrangian dual (14), the following result holds. For a sketch of the proof, see
Appendix B.5.

Theorem 3.25 (based on [9]). Let (un, un0) ∈ Rdn×R and (xia(n), θ
i
n) /∈ epi(co(Qi+1

n
)).

(i) If the normalized Lagrangian dual (14) satisfies Assumption 3, then prob-
lem (18) has a finite optimal value, and vice versa. The optimal points are
the same up to scaling with some negative scalar and the optimal values mul-
tiply to -1.

(ii) The induced cuts for epi(co(Qi+1
n

)) are equivalent for both problems.
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Geometrically, a favorable property of generating cuts based on Ri+1
n (xia(n), θ

i
n) is

that supporting cuts for epi(co(Qi+1
n

)) can be obtained in a straightforward way. Even

more, if epi(co(Qi+1
n

)) is a full-dimensional polyhedron, then each vertex (γn, γn0) of

Ri+1
n (xia(n), θ

i
n) corresponds to the normal vector of a facet of epi(co(Qi+1

n
)), and vice

versa [9]. In order to identify such points, we can use the LP (18), given a choice of
(un, un0) ∈ Rdn × R such that a finite optimum is attained.

In fact, perspectives (2) and (3) make a sufficient condition for such a finite optimum
readily available, and by that also allow us to conclude when Assumption 3 is satisfied.
This result is already proven in [13] and [9] using perspective (3), and then follows for
the normalized Lagrangian dual (14) with Theorem 3.25. In Appendix B.6, we provide
an alternative proof based on perspective (2).

Lemma 3.26. Assumption 3 is satisfied if

(un, un0) ∈ cone
(
epi(co(Qi+1

n
))− (xia(n), θ

i
n)
)
\ {0} , (19)

where cone(S) denotes the conical hull of a set S.

Lemma 3.26 implies that also choosing (un, un0) from epi(Qi+1
n

)− (xia(n), θ
i
n) or even

from epi(Qn)− (xia(n), θ
i
n) is sufficient. In other words, choosing reasonable coefficients

(un, un0) ∈ Rdn × R boils down to finding a core point within one of these epigraphs.
We discuss this in more detail in Sect. 3.6.2.

We can now address some beneficial properties of LN cuts with respect to the afore-
mentioned cut quality criteria. According to Theorem 3.25 there exists a one-to-one
relation between optimal solutions of the normalized Lagrangian dual (14) and prob-
lem (18). However, this does not extend to optimal vertices, leading to a slightly less
strong result for facet-defining cuts with respect to problem (14) [9]. We obtain the
following properties:

Theorem 3.27. Let (un, un0) ∈ Rdn × R. Consider the normalized Lagrangian dual
problem (14) with gn(πn, πn0) = u⊤n πn + un0πn0. Then,

(i) for all (un, un0) ∈ cone
(
epi(co(Qi+1

n
))−(xia(n), θin)

)
\{0}, the optimal point (π∗

n, π
∗
n0)

defines a supporting cut for epi(co(Qi+1
n

)),

(ii) for all (un, un0) ∈ cone
(
epi(co(Qi+1

n
))− (xia(n), θ

i
n)
)
\ {0}, there exists an optimal

extreme point (π∗
n, π

∗
n0), such that the obtained cut is facet-defining for epi(co(Qi+1

n
)),

(iii) for all (un, un0) ∈ relint
(
epi(co(Qi+1

n
)) − (xia(n), θ

i
n)
)
, any optimal point (π∗

n, π
∗
n0)

with π∗
n0 > 0 defines a Pareto-optimal cut for epi(co(Qi+1

n
)) on conv(Za(n)).

Part (i) directly follows from Lemma 3.26 and Corollary 3.24. Part (ii) follows from
Theorem 3.3 in [9], and part (iii) follows from Theorem 3.43 in [28]. Note that the results
from the literature require to choose (un, un0) from the relative interior of the epigraph
restricted to conv(Xa(n)). However, under Assumption 1, if we choose Zn = Xa(n) or
Zn = conv(Xa(n)), in our case the considered epigraphs are always restricted to this set.

Considering part (ii), the only case in which no facet-defining cut is obtained occurs
if the optimal solution to the normalized Lagrangian dual (14) is not unique. However,
this is only the case for a small subset of choices (un, un0). Especially if the choice is
adapted in each iteration, the occurrences of such cases should be negligible [9]. With
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respect to (iii), we should emphasize again that Pareto-optimality for epi(co(Qi+1
n

)) does

not necessarily imply Pareto-optimality for epi(Qi+1
n

).
We finish our theoretical results in this subsection with two remarks.

Remark 3.28. Based on the perspective taken, LN cuts are also called pseudo-deep
cuts (perspective (1), Hosseini and Turner [21]) or closest cuts (perspective (2), Seo
et al. [26]) in the literature. We could also refer to them as core point cuts, or based on
perspective (3) as reverse gauge cuts.

Remark 3.29. Choosing (un, un0) = (0, 1) in Definition 3.22 yields the classical La-
grangian cuts presented in Appendix A.

We illustrate the different perspectives on LN cuts again using an example.

Example 3.30. Consider epigraph epi(co(Qn)), incumbent (xia(n), θ
i
n) and reverse polar

set Ri+1
n (xia(n), θ

i
n) from Example 3.30. These objects and an exemplary LN cut are

illustrated in Fig. 6. In part (a) the geometric idea of projection along a line segment is
highlighted. The direction of this line segment is (un, un0) and obtained as the difference
between a known core point ( yellow dot) in epi(co(Qn)) and (xia(n), θ

i
n). In part (b) we

can see that (apart from sign changes) the cut normal to the LN cut can be determined by
maximizing the linear function u⊤n γn+un0γn0 over Ri+1

n (xia(n), θ
i
n). As the solution is an

extreme point of Ri+1
n (xia(n), θ

i
n) ( green dot), the corresponding LN cut is facet-defining.

epi(co(Qn))

xa(n)

θn

(a) Epigraph and deep cut.

Ri+1
n (xia(n), θ

i
n)

γn

γn0

(b) Reverse polar set.

Figure 6: Illustration of LN cuts given some known core point.

3.6.2 Identifying Core Points

As described before, a key challenge of generating LN cuts with favorable properties is
to choose (un, un0) appropriately, i.e., according to Lemma 3.26 or Theorem 3.27. In the
literature on decomposition methods, it is often proposed to evaluate feasible points in
the objective function to obtain core points. Whereas this approach is straightforward
for BD or the two-stage stochastic case [9, 28], in the multistage case, evaluating Qn(·)
exactly is computationally prohibitive in general. Furthermore, note that we also cannot
evaluate co(Qi+1

n
)(·) efficiently, as this function is not known explicitly and evaluating

it requires to solve a Lagrangian dual problem. Therefore, we propose heuristics to
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identify potential core points (x̂ia(n), θ̂
i
n), and by that reasonable coefficients (un, un0),

based on function Qi+1
n

(·). This comes with some considerable challenges, as we shall

see. Some of these heuristics are particularly suited to SDDiP where Xa(n) = {0, 1}da(n) .
We consider the following approaches:

� Mid. We set x̂ia(n) = mid(conv(Xa(n))) where mid denotes the midpoint (we

assume box constraints for xa(n)). The idea is that incentivizing the LN cuts to
support epi(co(Qi+1

n
) in the interior of the state space may be useful to avoid

the degeneracy issues for SDDiP discussed in Sect. 1.1. We then evaluate the
approximate value function to obtain θ̂in = Qi+1

n
(x̂ia(n)), even if this does not

satisfy the relative interior requirement in Theorem 3.27.

� In-Out. We use the dynamic approach to compute core points proposed by
Papadakos [23] heuristically, that is, we set x̂ia(n) = 1

2 x̂
i−1
a(n) +

1
2x

i
a(n) and θ̂in =

Qi+1
n

(x̂ia(n)) to obtain a candidate core point.

� Eps. For some ε > 0, we use an ε-perturbation of xia(n) into the interior of

conv(Xa(n)), and set θ̂in = Qi+1
n

(x̂ia(n)). This idea is inspired by the perturba-

tion strategy described in Sherali and Lunday [27]. A similar approach is also
used in Seo et al. [26]. It is particularly suited to SDDiP, as it avoids the pos-
sible degeneracy issues related to generating cuts at extreme points of the state
space, see Sect. 1.1, and thus may contribute to identifying facet-defining cuts.
For sufficiently small ε, the LN cut should still be supporting epi(co(Qi+1

n
)) at

(xia(n), co(Q
i+1
n

)(xia(n))).

� Relint. We solve an auxiliary feasibility problem with slack variables to find a
potential core point in relint

(
epi(Qi+1

n
)
)
. This feasibility problem is defined in a

similar way to the one described in Sect. 5.1 of Conforti and Wolsey [12].

These heuristics are illustrated in Fig. 7 for a simple example, where all of them are
sufficient to get reasonable directions (un, un0), but lead to very different cuts being
selected.
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Figure 7: Illustration of core point identification heuristics.

Note. LEFT: Value function Q(·) and convex envelope co(Q)(·) for an example with continuous state
space X = [0, 7]. RIGHT: Identification of different core points and computation of the associated LN
cuts for incumbent (x̄, θ̄) = (7, 0). For In-Out we assume x̂i−1 = 7

2
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Despite their straightforwardness, the aforementioned approaches come with some
notable challenges. Crucially, the first three approaches yield candidates satisfying
x̂ia(n) ∈ conv(Xa(n)). However, this choice is not necessarily feasible if integrality con-

straints are present, thus leading to Qi+1
n

(x̂ia(n)) = +∞ (especially if Za(n) = Xa(n)). We

thus do not obtain a core point or a reasonable choice of (un, un0). This is illustrated in
Fig. 8. Instead of evaluating Qi+1

n
(·), in such a case we may revert to the value function

QLP,i+1
n

(·) of the associated LP relaxation (LP-value). While this may yield a sufficient

direction (un, un0), it may also yield one that does not point into co(Qi+1
n

)(·), see Fig. 8.
To mitigate this risk, we may alternatively utilize the current state θin (epi-state) or
the primal objective value Qi+1

n
(xia(n)) at the incumbent (primal-obj) if they exceed

QLP,i+1
n

(x̂ia(n)), see again Fig. 8. All these approaches have no guarantees to yield true
core points, though.

+∞

0 1 2 3 4 5 6 7

1

2

3

4

x

Q

co(Q)

QLP

LP-value

+∞

0 1 2 3 4 5 6 7

1

2

3

4

x

LP-value

epi-state

primal-obj

Figure 8: Core point identification challenges for integer state space.

Note. LEFT: Value function Q(·) and convex envelope co(Q)(·) for an example with integer state space
X = {0, 1, 2, . . . , 7}. Given incumbent (x̄, θ̄) = (7, 0), using the LP relaxation value leads to a sufficient
core point candidate and generation of an LN cut. RIGHT: The approach LP-value is not sufficient
given incumbent (x̄, θ̄) = (7, 5

2
). A sufficient core point candidate for generation of an LN cut is obtained

using epi-state or primal-obj, though.

Even with the proposed heuristics we may end up with a normalized Lagrangian dual
problem (14) that is unbounded. This is unintended, because the decomposition method
may terminate with an error. Therefore, we should check for a potential unboundedness
in practice, and if it is detected, take some special counter-measures. For instance, we
could try another heuristic, generate a different type of cut instead of an LN cut,
e.g., a strengthened Benders cuts, or artificially bound the normalized Lagrangian dual
problem (14).

Problem (16) provides a natural way to check for unboundedness, or the validity of
direction (un, un0), respectively. However, it cannot be solved immediately, as we do
not know conv(W i+1

n ) explicitly. We may instead solve the approximation

min
λn,zn,ηn

{
ηn : (λn, zn) ∈ W i+1

n , ηn ≥ 0, un0ηn ≥ c⊤nλn − θin, unηn = zn − xia(n)
}

(20)
using the known setW i+1

n instead of conv(W i+1
n ). If the normalized Lagrangian dual (14)

is unbounded, then this problem is infeasible. Therefore, we can use infeasibility of (20)
as a proxy for possible unboundedness. Unfortunately, in the presence of integrality
constraints, infeasibility of (20) may occur very often, even given an appropriate direc-
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tion (un, un0), thus leading to taking the previously discussed counter-measures more
often than required. On the other hand, using the LP relaxation of (20) is not sufficient
to rule out all cases of unboundedness. For an effective practical implementation of LN
cuts this is a significant challenge.

Finally, let us present an alternative, fifth approach to come up with core points.

� Conv. We note that any convex combination of two (or more) feasible points(
x1, Q

i+1
n

(x1)
)
and

(
x2, Q

i+1
n

(x2)
)
is always contained in epi(co(Qi+1

n
). One such

point is readily available with
(
xia(n), Q

i+1
n

(xia(n))
)
. For the case Xa(n) = {0, 1}da(n) ,

an intuitive strategy to obtain a second one is to consider the diagonal counterpart
of xia(n) (swapping 0 and 1 for all components) and its function value for Qi+1

n
(·).

If this counterpart is feasible, we obtain a whole family of core points. Setting the
convex combination parameter appropriately, we may even obtain a core point
with first component mid(conv(Xa(n))), but without having to evaluate the ap-
proximate value function in a non-integer state. This approach is highlighted in
Fig. 9.
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Figure 9: Illustration of core point identification heuristics.

Note. LEFT: Neither LP-Value, epi-state nor primal-obj are sufficient to identify an appropriate
projection direction given incumbent (x̄, θ̄) = (0, 0). RIGHT: Choosing a core point as a convex combi-
nation of (0, 1) and (7, 4) (light green) with parameter 1

2
and the resulting LN cut.

4 Convergence of NBD and SDDiP

For the case of binary state variables, i.e., xn ∈ {0, 1}dn for all n ∈ N , classical La-
grangian cuts are sufficient to ensure (almost sure) finite convergence of decomposition
methods such as NBD or SDDiP because these cuts are valid, tight and finite (see Ap-
pendix A). In this section, we address the convergence properties of these methods if
the proposed new cut generation framework is incorporated. We restrict our discussion
to NBD, that is exploring the whole scenario tree in each iteration. The considered
NBD algorithm is displayed in Appendix C.

For SDDiP, only a sample of scenarios is considered in each iteration, so we have
to replace line 6 of the NBD algorithm in Appendix C with a sampling step, but
stagewise independence is assumed. Given the convergence of NBD, the almost sure
finite convergence of SDDiP, follows with the same arguments as in the original SDDiP
article [31, Theorem 2]. Moreover, instead of presenting a complete, self-contained
convergence proof, we focus on the decisive properties of the Lagrangian cuts obtained in
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our new cut generation framework. The rest of the convergence proof remains unchanged
compared to [31].

The validity of the new Lagrangian cuts is already proven in Lemma 3.7. Therefore,
some results with respect to finiteness and tightness remain to be proven. An important
property in that regard is the polyhedrality of the closed convex envelopes co(Qi+1

n
)(·).

Lemma 4.1. For all n ∈ N and all iterations i, co(Qn)(·) and co(Qi+1
n

)(·) are piecewise
linear convex functions.

Lemma 4.1 is proven in Appendix B.7. It implies that epi(co(Qn)) and epi(co(Qi+1
n

))
are polyhedra with finitely many facets. Additionally, we take a technical assumption:

Assumption 4. In any node n ∈ N and any iteration i of NBD, given the same
trial point (xia(n), θ

i
n) and the same approximations Ψi+1

m for all m ∈ C(n), solving the

normalized Lagrangian dual problem (14) yields the same cut.

This assumption is required to avoid that infinitely many different cuts are generated
given the same state and the same approximate value function. It should be satisfied
by most deterministic MILP solvers.

4.1 Results for LN Cuts

For NBD using LN cuts, we can exploit that the cuts are guaranteed to be (almost
always) facet-defining. If we restrict to facet-defining cuts, we obtain the following
convergence result.

Theorem 4.2. Let Xn = {0, 1}dn for all n ∈ N . Assume that for any n ∈ N and
any iteration i the normalized Lagrangian dual problem (14) and the generated cuts
satisfy Theorem 3.27 (ii). Then, after a finite number of iterations i, for all n ∈ N the
approximations Ψi+1

n are exact for epi(Qn(·)) at all xin ∈ Xa(n) computed in the forward
pass.

We provide a proof in Appendix B.8. Note that the proof still works if the number
of steps between the generation of facet-defining cuts is always finite.

4.2 Results for Deep Cuts

For deep Lagrangian cuts proving convergence is a bit more tedious, since the facet
property is not as straightforward to assure. The main idea to prove finite convergence
thus is the following: Even if deep cuts are not guaranteed to be facet-defining or tight
at xia(n) in general, such tight cuts will eventually be generated after finitely many steps.
This is illustrated in Fig. 10.

As a first step, we introduce an auxiliary result where we consider a sequence of
trial points with fixed first component x̄a(n). Here, we do not exploit the binary nature
of the state variables yet, but only the polyhedrality of co(Qi+1

n
)(·). For notational

convenience, we set θ̄n := co(Qi+1
n

)(x̄a(n)) for the remainder of this section. The proof
is shown in Appendix B.9.

Lemma 4.3. For any n ∈ N , consider a subsequence of trial points (x̄a(n), θ
iν
n )ν∈N

with fixed first component x̄a(n) ∈ Xa(n) for all ν ∈ N. Then, the point (x̄a(n), θ̄n)

and any sequence (x̂iνa(n), θ̂
iν
n )ν∈N of solutions of the projection problems (15) satisfy

limν→∞(x̂iνa(n), θ̂
iν
n ) = (x̄a(n), θ̄n).
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(x̄, θ1)
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(x̂1, θ̂1)

(x̂2, θ̂2)

(x̂3, θ̂3)

Figure 10: Illustration of deep cuts leading to tightness after finitely many steps for
fixed x̄. The blue cut is tight at (x̄, θ̄), thus equal to a classical Lagrangian cut from
Appendix A.

We now consider subproblems with fixed first component x̄a(n) and with fixed ap-

proximations Ψm for all m ∈ C(n) and all n ∈ N (for instance, the latter is satisfied for
the leaf nodes). In this case, the set epi(co(Qi+1

n
)) remains constant over the iterations,

so we drop the iteration index for simplicity.
Let K with |K| ∈ N denote the finite set of facets of epi(co(Q

n
)). We use the symbol

F to refer to specific facets. Let K ⊆ K denote the subset of facets in which (x̄a(n), θ̄n)

is contained, i.e., (x̄a(n), θ̄n) ∈ Fk for all k ∈ K. Analogously, let “Kν ⊆ K denote the

subset of facets in which (x̂iνa(n), θ̂
iν
n ) is contained. Based on Lemma 4.3, we obtain the

following result, which is proven in Appendix B.10.

Lemma 4.4. There exists some ν̂ ∈ N such that for all ν ≥ ν̂ we have “Kν ⊆ K.

As “Kν ̸= ∅ by definition, this implies that for sufficiently large ν, the points
(x̂iνa(n), θ̂

iν
n ) and (x̄a(n), θ̄n) are located on a joint facet. Due to the convergence result in

Lemma 4.3, this is intuitively clear. The case “Kν ̸⊆ K is excluded by this convergence
result. However, the case “Kν ⊂ K is possible if (x̄a(n), θ̄n) is located at the boundary
of some facets.

We require some further auxiliary results.

Lemma 4.5. There exists some ν̄ ∈ N such that for all ν ≥ ν̄ the point (x̂iνa(n), θ̂
iν
n ) is

equal to (x̄a(n), θ̄n) or not a vertex of epi(co(Q
n
)).

This result follows immediately from Lemma 4.3. For sufficiently large ν, (x̂iνa(n), θ̂
iν
n )

may only be a vertex if (x̄a(n), θ̄n) is a vertex and if they are equal.

Lemma 4.6. Consider a convex polyhedron S. Let x1, x2 ∈ S be two points located on
a joint face (not necessarily a facet) F of S with x2 ∈ relint(F). Then, a cut supporting
S at x2 is also supporting S at x1.

We provide a proof in Appendix B.11. We are now able to prove our first main
result, stating that for sufficiently large ν a deep Lagrangian cut supporting (x̂iνa(n), θ̂

iν
n )

will also support (x̄a(n), θ̄n).
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Lemma 4.7. For any N , consider subproblem (6) with fixed approximations Ψm for
all m ∈ C(n). Moreover, consider a subsequence of trial points (x̄a(n), θ

iν
n )ν∈N with fixed

first component x̄a(n) ∈ Xa(n) for all ν ∈ N. Then, there exists some ν̌ ∈ N such that
for all ν ≥ ν̌, a deep Lagrangian cut as defined in Definition 3.15 supports epi(co(Q

n
))

at (x̄a(n), θ̄n).

We provide a proof in Appendix B.12. We can now turn to properties of the cuts
generated within NBD. Here, we exploit that xn ∈ {0, 1}dn for all n ∈ N .

Theorem 4.8. Let Xn = {0, 1}dn for all n ∈ N , and let Assumption 4 be satisfied.
Then, after a finite number of iterations i, for all n ∈ N the approximations Ψi+1

n are
exact for epi(Qn(·)) at all xin ∈ Xa(n) computed in the forward pass.

A proof is presented in Appendix B.13.

4.3 Convergence Result

Based on the results in Theorem 4.2 or Theorem 4.8, respectively, finite convergence of
NBD can be concluded. For more details, see [31].

Corollary 4.9. Let Xn = {0, 1}dn for all n ∈ N , and let Assumption 4 be satisfied.
Assume that NBD is applied with generation of deep Lagrangian cuts or LN Lagrangian
cuts satisfying Theorem 3.27 (ii). Then, NBD terminates with an optimal policy for
(MS-MILP) after a finite number of iterations.

We should emphasize again that this result only holds because of the finiteness and
the binary character of Xn, so it is not necessarily true for general continuous state
spaces. Furthermore, in the above proofs we use the idea that for any xa(n) ∈ Xa(n)

after finitely many steps the deep or LN Lagrangian cuts will coincide with the original
Lagrangian cuts, i.e. become tight in the sense of [31]. While this seems to imply more
iterations than classical NBD (or SDDiP), the vision is that in practice convergence
may actually be achieved faster.

5 Computational Experiments

We report results for a computational study of SDDiP using the proposed cut gener-
ation framework. For comparison, we also run tests using established cut generation
techniques in SDDiP. More precisely, we consider the following approaches to generate
cuts:

� B: Classical Benders cuts using either a single-cut or a multi-cut approach.

� SB: Strengthened Benders cuts [31] using either a single-cut or a multi-cut ap-
proach.

� L: Classical Lagrangian cuts from Appendix A using either a single-cut or a multi-
cut approach.

� ℓ1, ℓ∞, ℓ1∞: Deep Lagrangian cuts from Definition 3.15 for the ℓ1-norm, the ℓ∞-
norm and a linear combination of 0.5∥·∥1 + 0.5∥·∥∞.
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� LN: LN Lagrangian cuts from Definition 3.22 using the Mid, In-Out, Eps, Relint
and Conv heuristics from Sect. 3.6.2 to identify core points and to determine the
normalization coefficients. For Eps we use a perturbation of the incumbent by
10−6.

For now, we do not test the improvement techniques epi-state or primal-obj from
Sect. 3.6.2. By construction, all deep and LN cuts require using a multi-cut approach.

We test the proposed methods on different instances of a capacitated lot-sizing prob-
lem (CLSP), which is described in the appendix of Trigeiro et al. [29] and has stagewise
independent uncertain demand for each product. This problem is also considered in
Ahmed et al. [1] and identified to be challenging for exact decomposition methods like
SDDiP.

In our experiments, we consider instances with 3 or 10 state variables, 4, 6, 10 or 16
stages and 20 realizations of the uncertain demand at each stage. For the case of 3 state
variables and 20 realizations per stage, we use the exact same scenarios as in Ahmed
et al. [1], for larger instances we use the same methodology to generate scenarios.

For instances with 3 state variables we apply SDDiP with a binary approximation of
the continuous state variables with discretization precision of 1.0 [see 31]. This means
that the modified MS-MILP which is tackled by SDDiP contains 30 state variables. For
instances with 10 state variables initially, using a binary approximation would produce
state dimensions which are computationally intractable for SDDiP, as its complexity
grows exponentially in the dimension of the state space [30]. Therefore, in these cases,
we apply SDDiP without a binary approximation.

We describe our implementation of SDDiP and our parameter choices in more detail
in Sect. 5.1. Then, we discuss results for experiments of CLSP with state binarization,
where we compare the above cut generation techniques when they are applied individ-
ually (Sect. 5.2) as well as combined with SB cuts (Sect. 5.3). In Sect. 5.4 we study a
restriction of the dual space. In Sect. 5.5 we deal with larger instances of CLSP where
no binary approximation is applied.

5.1 Implementation Details

SDDiP and all cut generation approaches are implemented in Julia-1.5.3 [5] based
on the existing packages SDDP.jl [15] and JuMP.jl [16]. The code is available on
GitHub as part of a larger project called DynamicSDDiP.jl (see https://github.com/
ChrisFuelOR/DynamicSDDiP.jl).

SDDiP is terminated after a predefined time limit or if the obtained lower bounds
start to stall. In each forward pass, one scenario path is randomly sampled. After
termination of SDDiP, an in-sample Monte Carlo simulation with 1000 replications is
conducted on the finite scenario tree to compute a statistical upper bound for the current
policy.

The Lagrangian dual problems in SDDiP are solved using a level bundle method with
a maximum of 1000 iterations and an optimality tolerance of 10−4. The multipliers πn
are initialized with a vector of zeros and πn0 is initialized with 1. Sometimes the level
bundle method reports infeasibilities in the quadratic auxiliary problem. In that case,
we proceed with a standard Kelley step instead. Moreover, in the case of different
numerical issues in solving the Lagrangian dual, the solution process is stopped and a
valid cut is constructed with the current values of the multipliers.

For the LN cuts, as pointed out before, the choice of normalization coefficients
(un, un0) is crucial for the cut quality, but also to achieve a bounded subproblem. If the
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chosen heuristic yields only coefficients (close to or) equal to zero, in our implementation
no cut is generated at all. Moreover, non-zero coefficients may not yield a bounded dual
problem if they correspond to a direction (un, un0) /∈ cone

(
epi(co(Qi+1

n
))− (xia(n), θ

i
n)
)
\

{0}, see Sect. 3.6.2. We use infeasibility of problem (20) as a flag for possible unbound-
edness. In that case, we add some artificial bounds to the dual problem (14) to at least
generate some valid cuts. Some pre-testing indicated that for LN-Mid, LN-Relint and
LN-Conv using multipliers bounds πn ∈ [−10, 10]da(n) , πn0 ∈ [0, 10] and for LN-Eps and
LN-In-Out introducing an artificial objective bound of 1000 leads to reasonable results.
Additionally, note that if problem (20) is feasible, we obtain an upper bound for the
optimal value of the dual problem (14). We can use this bound to ensure boundedness
for the approximating models in the level bundle method.

All occuring LP, MILP and QP subproblems are solved using Gurobi 9.0.3 with an
optimality tolerance of 10−4 and a time limit of 300 seconds. All tests with binary
approximation are run on a Windows machine with 64 GB RAM and an Intel Core
i7-7700K processor (4.2 GHz). All tests without binary approximation are run on a
Windows machine with 128 GB RAM and an Intel Xeon E5-1630v4 processor (3.7
GHz).

5.2 Comparison with Classical Lagrangian and Benders Cuts

For our first experiments we apply SDDiP (with binary approximation) to CLSP in-
stances with 3 state variables. We only use one type of cut for the whole solution
process. The results are illustrated in several figures throughout this section. The full
results are provided in Appendix D.

First, we consider experiments with T = 4 or T = 6 stages and a maximum run time
of 3 hours and 4 hours, respectively. The obtained lower bounds are depicted in Fig. 11.
We observe that B and SB do not manage to close the optimality gap and that the
obtained lower bounds stall very fast. L, whereas better in theory, leads to even worse
lower bounds. One reason is that solving the dual problems is computationally costly,
but additionally, compared to SB the tighter cuts seem to lead to worse incumbents on
earlier stages or in following iterations. In fact, even in the first iteration, the lower
bound obtained by SB is superior to that obtained by L. Many variants of deep and LN
Lagrangian cuts outperform SB and L with respect to the lower bounds and gaps, even
if the optimality gap is not completely closed in the predefined time horizon. While the
quality of the lower bounds is better, the iteration times and the number of iterations
in the bundle method are not necessarily reduced despite solving a bounded problem,
especially not for LN cuts.

Among the new approaches, ℓ∞-deep cuts perform rather bad. Our hypothesis is
that for binary state variables this approach is very prone to degeneracy in the nor-
malized Lagrangian dual problems, which then leads to cuts of bad quality, see Sect. 1.
To test this hypothesis, we perform experiments using an additional optimization step
that was proposed in an earlier version of SDDP.jl and resembles the two-step cut
generation in [22]. In this step we minimize the norm among all optimal solutions of
the Lagrangian dual. Therefore, we label this approach as MNC (minimal norm choice).
With MNC, the bounds obtained by ℓ∞-deep cuts improve considerably. For this reason,
without further notice, we always use this approach in the following experiments. For
all other cut generation approaches, we observe no significant improvement in lower
bounds per time using an MNC step.

We now consider experiments with more stages, T = 10 and T = 16 to be precise,
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Figure 11: Lower bound development over time for experiments on CLSP with state
binarization.

Note. LEFT: T = 4. RIGHT: T = 6. For T = 4, the shaded gray area is where the optimal value
lies according to an approximate solution of the deterministic equivalent. For B and SB, SDDiP quickly
terminates due to stalling lower bounds, so the last lower bound is interpolated over the whole time
horizon. Marks at every second iteration, except for B and SB.

with run times of 5 and 8 hours, respectively. The obtained lower bounds are depicted in
Fig. 12. We observe that deep cuts perform mediocre for 16 stages. LN cuts perform best
with respect to the lower bounds, but for 16 stages hardly outperform SB. This is mainly
due to long iteration times, even in comparison to deep cuts, see Fig. 13. Moreover,
as Fig. 14 shows, an improvement in lower bounds does not necessarily translate to an
improvement of the obtained policies. In fact, SB achieves the best simulated upper
bounds. It seems that using SB it is possible to quickly identify good feasible solutions,
but that the lower bounds are too loose to get a certificate for optimality, whereas for
Lagrangian cuts it is the opposite.

5.3 Combination with SB Cuts

As shown in the previous section, using SDDiP with only Lagrangian cuts becomes
extremely slow for large problems. Therefore, in practice, it is reasonable to combine
different types of cuts. Already in the original SDDiP work [31] it is proposed to combine
Lagrangian cuts, which can provide convergence guarantees, and strengthened Benders
cuts, which can be computed efficiently.

To evaluate the performance of deep and LN cuts in this setting, we conduct ex-
periments where we start with only SB for the first 20 iterations to get a quick bound
improvement, and then generate SB cuts and Lagrangian cuts in each iteration. The
lower bounds are depicted in Fig. 15, while the simulation results and optimality gaps
are presented in Fig. 14 next to the ones of the previous case.

The lower bound results heavily improve for L, but are not affected too much for
deep or LN cuts. They are still better for these approaches than the ones obtained using
only SB, though. As the simulated upper bounds are better than in the previous setting
for all types of cuts, we can conclude that a combination of SB cuts and Lagrangian
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Figure 12: Lower bound development over time for experiments on CLSP with state
binarization.

Note. LEFT: T = 10. RIGHT: T = 16.
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Figure 14: Optimality gaps for experiments on CLSP with state binarization with
T = 16.

Note. LEFT: Run with only one type of cuts. RIGHT: Runs with SB plus additional cuts from iteration
21.

cuts combines the advantages of good lower bounds and reasonably good simulation
results for the policies.

5.4 The Chen-Luedtke Approach: Restricting the Dual Space

Another approach suited to accelerate SDDiP was recently put forward by Chen and
Luedtke [11] for the two-stage case. They propose to restrict the feasible set of the
normalized Lagrangian dual problem (14) to a small subset of valid multipliers (πn, πn0).
More precisely, the idea is to restrict the multipliers πn to the span of a set of previously
generated Benders cut coefficients π̂kn, k = 1, . . . ,K, for some predefined parameter K.
That is, we introduce the constraint

πn =
K∑

k=1

γnkπ̂
k
n,

which also means that we add variables γnk, k = 1, . . . ,K, to the dual problem. While
we lose tightness and convergence guarantees using this dual space restriction, the search
space for the level Bundle method is significantly reduced, so that cuts can be generated
faster. We refer to this as the CL approach.

In principle, the CL approach can be combined with any of the previously used
normalization techniques. Additionally, it allows for an alternative normalization [11].
Instead of using g(πn, πn0) = ∥πn, πn0∥1, we may as well use some normalization function
g(πn, πn0, γn) = ∥γn, πn0∥1. This choice should lead to solutions with sparse γ. In the
following, we denote this approach by CL-γ.

For our computational experiments, we choose K = 20. Apart from the dual space
restriction, we use the same setting as for the previous runs (20 iterations of only SB,
after that SB and Lagrangian cuts).

The results are depicted in Fig. 16. The number of Lagrangian iterations and the
time per iteration are reduced significantly. Moreover, compared to only using La-
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Note. LEFT: T = 10. RIGHT: T = 16. 20 iterations with SB and then SB and Lagrangian cuts in each
iteration.
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Figure 16: Lower bound development over time for experiments on CLSP with state
binarization using the Chen-Luedtke approach.

Note. LEFT: T = 10. RIGHT: T = 16. 20 iterations with SB and then SB and Lagrangian cut in each
iteration with dual space restriction for K = 20.

31

328 Paper D – A new framework to generate Lagrangian cuts



grangian cuts, much better lower bounds are obtained in the same time. This implies
that the lower bounds for the combined approach are also much better than for only
using SB. Interestingly, the lower bounds are even better per iteration than without
dual space restriction, similar to what we observed for SB before. This illustrates that
the quality of cuts does not only depend on tightness or depth, but also on the incum-
bents which they induce in the previous stages and following iterations. The chosen
normalization approach seems not to be decisive in this setting.

5.5 Results for Larger Instances

As discussed before, for experiments with a larger state dimension, we do not apply
a binary approximation. This means that we do not have convergence guarantees and
cannot expect the optimality gap to be closed. However, in return iterations should take
considerably less time. Note that this is often the go-to approach to apply SDDP-like
methods to mixed-integer programs in practice.

In this case, we also consider LN-Conv with convex combination parameters of 0.5,
0.75, 0.9 and 0.99 (with higher values encoding a higher proximity to

(
xia(n), Q

i+1
n

(xia(n))
)
).

The results show that deep and LN Lagrangian cuts manage to achieve better lower
bounds and gaps than conventional cuts, see Fig. 17 and 18. Using a dual space re-
striction allows to further reduce the optimality gap to about 21% in 3 hours and to
about 19% in 5 hours. This is a considerable improvement compared to Benders cuts,
which are most frequently used in practice. This means that the proposed cut genera-
tion techniques may be helpful to improve the convergence behavior even if no binary
approximation is applied. However, as for the previous experiments, we cannot con-
clude that the improvement in lower bounds necessarily leads to an improvement of the
in-sample performance of the obtained policy, and thus to better optimality gaps.

We also observe that the average iteration time is reduced considerably compared
to the previous test cases with binary state approximation (about 60-75% reduction).
For this reason, and because the state space is also lower-dimensional, even without
convergence guarantees, better optimality gaps are obtained than for the previous test
cases in the same time.

5.6 Discussion and Potential Improvements

Overall, our results show significant improvements of the obtained lower bounds using
the new cut generation framework in all cases: with state binarization, without state
binarization, combined with strengthened Benders cuts or applying the cuts on their
own. With binarization, especially LN cuts yield strong improvements, whereas without
binarization also deep cuts perform reasonably well. We see that better lower bounds
do not necessarily translate to better performances of the obtained policies, though.
Additionally, we observe that even using the new framework, SDDiP suffers from well-
known computational drawbacks such as high computational cost to solve Lagrangian
dual problems (especially if a binary approximation of the state space is applied) and
slow convergence of lower bounds due to premature stalling [2], so even after hours of
run time the observed optimality gaps are still considerable.

In the future, the performance of SDDiP including our proposed cut generation
framework could be improved in several ways. First, the solution of independent La-
grangian duals for nodes m ∈ C(n) could be parallelized. Second, potential warm
starting or acceleration techniques for the Lagrangian dual (e.g. using sub-optimal so-
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Note. LEFT: Run with only one type of cuts. RIGHT: Runs with SB plus additional cuts from iteration
21.

lutions) could be explored, even if challenging for multistage problems. Third, the dual
space restriction suggested by Chen and Luedtke [11] looks promising to reduce the
computational effort while not compromising cut quality by too much. We think that
future research could focus more on priorly restricting the dual space to reduce the
computational effort for solving Lagrangian dual problems.

Our computational experiments also reveal that, especially for LN cuts, SDDiP
may occasionally suffer from numerical issues, and that the obtained results show a
high sensitivity with respect to the chosen parameters. First of all, it is a common
issue of cutting-plane methods that they may lead to ill-conditioned problems if the cut
and problem coefficients are not properly scaled. In this context, an appropriate choice
of normalization coefficients (un, un0) for LN cuts is crucial. In addition, core point
identification in general remains a challenging task, especially when integer requirements
are apparent. Addressing these challenges in detail merits further research.

Finally, we have only considered a very specific test problem so far. For a more
profound and general performance assessment, therefore experiments for more and also
larger test problems have to be carried out. In fact, we are planning to enhance our
experiments with tests of a capacited facility location problem with pure binary state
variables and local integer constraints. This will also allow us to further explore the
challenges of core point identification in the context of integer requirements.

6 Conclusion

In this article, we propose a new framework to generate Lagrangian cuts for value
functions occurring in MS-MILPs, which generalizes earlier proposals for 2-stage prob-
lems. We prove that using different normalizations of the Lagrangian dual problems,
cuts with different favorable properties can be obtained, such as maximal depth, being
facet-defining or Pareto-optimal. Our framework allows for a lot of flexibility in cut
generation, and thus notably extends the toolbox of SDDiP. If all state variables are
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binary, finite almost sure convergence of SDDiP is assured, as for classical Lagrangian
cuts.

We provide computational results for experiments on a capacitated lot-sizing prob-
lem. The results show that the lower bounds in SDDiP can be vastly improved by
incorporating our proposed framework, although not eliminating other well-known com-
putational drawbacks, such as excessive computational effort, slow convergence and in-
ability to close the optimality gap. As described in the previous section, therefore more
theoretical and computational research is required to efficiently apply our proposed
framework, and SDDiP in general, on large-scale problems in practice.

Finally, our cut generation framework requires a multi-cut approach, whereas for
multistage problems often a single-cut approach is favored computationally, as much
less cuts have to be added per iteration. Trying to compute deep Lagrangian cuts or
LN Lagrangian cuts in a single-cut framework in a computationally efficient way could
therefore be an interesting research direction.
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A Classical Lagrangian Cuts

For any n ∈ N , let Qi+1
n (·) denote the current cut approximation for value function

Qn(·) in a decomposition method, such as SDDiP. Then, a Lagrangian cut can be
generated by considering a special Lagrangian relaxation of the nodal subproblem (that
is, subproblem (3) with Qm(·),m ∈ C(n), replaced by Qi+1

m (·)). More precisely, the copy
constraints zn = xia(n) are relaxed using a given vector of dual multipliers πn ∈ Rda(n) ,
which yields

Li+1
n (πn) := min

xn,yn,zn,(θm)

ß
fn(xn, yn) +

∑

m∈C(n)
pnmθm − π⊤

n zn : (zn, xn, yn) ∈ Fn,

zn ∈ Za(n), θm ≥ Qi+1
m (·)(xn), m ∈ C(n)

™
.

For varying πn, this relaxation defines the dual function Li+1
n (·). The problem of

optimizing the dual function over the dual multipliers πn is the Lagrangian dual problem:

max
πn

{
Li+1
n (πn) + π⊤

n x
i
a(n)

}
. (21)

By solving problem (21), a Lagrangian cut for Qn(·) can be derived as

θn ≥ Li+1
n (πin) + (πin)

⊤xa(n), (22)

where πin denotes feasible dual multipliers in (21) for node n [31]. If required, feasibility
cuts can be derived in a similar fashion [see 11, 25].

The Lagrangian cuts (22) have useful properties [31]. Their right-hand sides are
valid under-estimators of Qn(·) and tight at co(Qi+1

n
)(xia(n)) (given that optimal dual

multipliers πin are used). Moreover, only finitely many different Lagrangian cuts exist if
only dual basic solutions are considered. Finally, if the state variables xn are binary, the
cuts are even tight atQi+1

n
(xia(n)). These properties ensure almost sure finite convergence

of SDDiP.

B Proofs

In this section, we present the proofs that are not displayed in the main text.

B.1 Proof of Lemma 3.7

Proof. This is proven in [11] for epi(Qn), but we provide a customized proof here. Let
(xa(n), θn) ∈ epi(co(Qi+1

n
)). Then,

(πin)
⊤xa(n) + πin0θn ≥ min

xa(n),θn

{
(πin)

⊤xa(n) + πin0θn : (xa(n), θn) ∈ epi(co(Qi+1
n

))
}

= min
λn,zn

{
(πin)

⊤zn + πin0c
⊤
nλn : (λn, zn) ∈ conv(W i+1

n )
}

= min
λn,zn

{
(πin)

⊤zn + πin0c
⊤
nλn : (λn, zn) ∈ W i+1

n

}

= L i+1
n (πin, π

i
n0).
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The inequality follows by feasibility. The first equality uses the same relation that is
also applied in (11). The second equality exploits that the objective function is linear,
and the last one follows from the definition of L i+1

n (·) in (9). The second part of the
assertion follows with epi(Qn) ⊆ epi(co(Qi+1

n
)).

B.2 Proof of Lemma 3.10

Proof. According to Brandenberg and Stursberg [9], Ri+1
n (xia(n), θ

i
n) can be rewritten as

Ri+1
n (xia(n), θ

i
n) =

{
(γn, γn0) ∈ Rda(n) × R :

γ⊤n x
i
a(n) + γn0θ

i
n − suppepi(co(Qi+1

n
))(γn, γn0) ≥ 1

}
,

(23)

where suppepi(co(Qi+1
n

))(·) denotes the support function of epi(co(Qi+1
n

)). This function

can be expressed as follows:

suppepi(co(Qi+1
n

))(γn, γn0)

= max
xa(n),θn

{
γ⊤n xa(n) + γn0θn : (xa(n), θn) ∈ epi(co(Qi+1

n
))
}

= max
xa(n),θn,λn,zn

{
γ⊤n xa(n) + γn0θn : Ãnλn + B̃nzn ≥ d̃n, zn = xa(n), θn − c⊤nλn ≥ 0

}

= min
µn,πn,πn0

{
d̃⊤nµn : Ã⊤

nµn − cnπn0 = 0, B̃⊤
n µn − πn = 0,

πn = γn, πn0 = γn0, πn0 ≤ 0, µn ≤ 0
}

= min
µn

{
− d̃⊤nµn : −Ã⊤

nµn − cnγn0 = 0,−B̃⊤
n µn − γn = 0, γn0 ≤ 0, µn ≥ 0

}
.

(24)
The first equation applies the definition of support functions. The second one follows
from Remark 3.3 and the third one exploits strong duality for LPs. We insert (24)
into (23), and observe that the set remains unchanged if we replace the minimum
operator using an existence quantor.

B.3 Proof of Lemma 3.14

Proof. According to Theorem 3.5, we have v̂D,i+1
n (xia(n), θ

i
n) = 0 for the non-normalized

Lagrangian dual (10). By definition of (10) and its normalization (14), we can thus
conclude v̂ND,i+1

n (xia(n), θ
i
n) ≤ v̂D,i+1

n (xia(n), θ
i
n) = 0.

Let (π̂n, π̂n0) be an optimal point for problem (10), i.e., L i+1
n (π̂n, π̂n0)−(π̂n)⊤xia(n)−

π̂n0θ
i
n = 0. If ∥π̂n, π̂n0∥ ≤ 1, then it is also feasible for (14). As the objective of both

problems is the same, v̂ND,i+1
n (xia(n), θ

i
n) = 0.

Otherwise, there exists µ > 0 such that 1
µ(π̂n, π̂n0) is feasible for (14). By feasibility,

it follows

v̂ND,i+1
n (xia(n), θ

i
n) ≥ L i+1

n

Å
1

µ
π̂n,

1

µ
π̂n0

ã
− 1

µ
(π̂n)

⊤xia(n) −
1

µ
π̂n0θ

i
n

=
1

µ

(
L i+1
n (π̂n, π̂n0)− (π̂n)

⊤xia(n) − π̂n0θin
)
= 0,

(25)

where we exploited that L i+1
n (·) is positive homogeneous. The reverse direction can be
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shown in a similar way.

B.4 Proof of Lemma 3.23

Proof. By definition, the normalized Lagrangian dual problem is equivalent to

max
(πn,πn0)∈Πn

ß
min

(λn,zn)∈Wi+1
n

{
π⊤
n (zn − xia(n)) + πn0(c

⊤
nλn − θin)

}™

= max
(πn,πn0)∈Πn

ß
min

(λn,zn)∈conv(Wi+1
n )

{
π⊤
n (zn − xia(n)) + πn0(c

⊤
nλn − θin)

}™

with Πn :=
{
(πn, πn0) ∈ Rda(n) × R : πn0 ≥ 0, u⊤n πn + un0πn0 ≤ 1

}
. The equation

follows from linearity.
Using Remark 3.3 and then LP duality for the inner minimization problem, we

obtain the equivalent problem

max
πn,πn0,µn

{
d̃⊤nµn − π⊤

n x
i
a(n) − πn0θin : µn ≥ 0, πn0 ≥ 0, u⊤n πn + un0πn0 ≤ 1,

Ã⊤
nµn − πn0cn = 0, B̃⊤

n µn − πn = 0
}
.

This is an LP. Using LP duality and Remark 3.3 again, the assertion follows.

B.5 Proof of Theorem 3.25

To prove this, we first require the definition and some results for the alternative poly-
hedron.

Definition B.1 ([17]). The alternative polyhedron of (10) is defined as

An(xia(n), θin) :=




(µn, πn, πn0) ∈ Rk × Rda(n) × R :

µn, πn0 ≥ 0

Ã⊤
nµn − πn0cn = 0

B̃⊤
n µn − πn = 0

d̃⊤nµn − π⊤
n x

i
a(n) − πn0θin = 1




.

If we relax the last equality constraint to d̃⊤nµn − π⊤
n x

i
a(n) − πn0θin ≥ 1, we call the

obtained set the relaxed alternative polyhedron and denote it by “An(xia(n), θin).

As shown in [9], the sets “An(xia(n), θin) and Ri+1
n (xia(n), θ

i
n) are closely related by a

linear transformation, which in our case involves a unit matrix Ida(n)
of dimension da(n).

Lemma B.2 (Theorem 2.1 in [9]). The reverse polar set Ri+1
n (xia(n), θ

i
n) and the relaxed

alternative polyhedron “An(xia(n), θin) satisfy the relation

ÇÄ
0 −Ida(n)

ä
0

0 −1

å
“An(xia(n), θin) = Ri+1

n (xia(n), θ
i
n).

Therefore, for problem (18) we obtain the related problem

max
µn,πn,πn0

¶
−u⊤n πn − un0πn0 : (µn, πn, πn0) ∈ “Ai+1

n (xia(n), θ
i
n)
©
. (26)
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We can finally prove Theorem 3.25.

Proof. We first prove (i). It can be shown that the normalization constraint is binding at
an optimal solution of the normalized Lagrangian dual problem (14), see the reasoning
in Proposition 9 in [21]. Then, by using the reformulation ideas from Remark 3.3 and
applying Theorem 3.20 from [28], this problem is equivalent to problem (26) in the
following way:

Let (µ∗
n, π

∗
n, π

∗
n0) be optimal for (14) with optimal value v∗n > 0. Then (µ̄n, π̄n, π̄n0) =

1
vn
(µ∗

n, π
∗
n, π

∗
n0) is optimal for (26) with optimal value v̄n = − 1

vn
< 0. In reverse, let

(µ̄n, π̄n, π̄n0) be optimal for (26) with optimal value v̄n < 0. Then (µ∗
n, π

∗
n, π

∗
n0) =

− 1
vn
(µ̄n, π̄n, π̄n0) is optimal for (14) with optimal value v∗n = − 1

v̄n
> 0. Note that the

optimal values multiply to -1.
According to Corollary 2.2 in [9], which is based on the relation stated in Lemma B.2,

(γ̂n, γ̂n0) is optimal for problem (18) if and only if there exists some µ̂n such that
(µ̄n, π̄n, π̄n0) = (µ̂n,−γ̂n,−γ̂n0) is optimal for problem (26). Moreover, the optimal
values v̂n and v̄n are the same.

Hence, by the first step, we have a scaling relation between the optimal points of (14)
and (26), and by the second step, we have a sign change relation between the optimal
points of (26) and (18). The optimal values multiply to -1 after the first step and do
not change in the second step. This proves the assertion.

We now prove (ii). Let (γ̂n, γ̂n0) be optimal for problem (18) with a valid certificate
µ̂n ≥ 0 in Ri+1

n (xia(n), θ
i
n). Then, the valid cut

d̃⊤n µ̂n + (γ̂n)
⊤xa(n) + γ̂n0θn ≤ 0

is induced, separating (xia(n), θ
i
n) from epi(co(Qi+1

n
)) [13]. By the optimality relations

used to prove (i) and by multiplying with − 1
v̂n

= − 1
v̄n
> 0, this is equivalent to

− 1

v̄n
d̃⊤n µ̄n +

1

v̄n
π̄⊤
n xa(n) +

1

v̄n
π̄n0θn ≤ 0.

However, this is equivalent to

d̃⊤nµ
∗
n − (π∗

n)
⊤xa(n) − π∗

n0θn ≤ 0

and by definition also to

L i+1
n (π∗

n, π
∗
n0)− (π∗

n)
⊤xa(n) − π∗

n0θn ≤ 0,

which exactly corresponds to the Lagrangian cut (13). The reverse direction follows in
a similar way.

B.6 Proof of Lemma 3.26

Proof. Suppose that condition (19) is satisfied. Then there exist some (x̃a(n), θ̃n) ∈
epi(co(Qi+1

n
)) − (xia(n), θ

i
n) and µ > 0 such that (un, un0) = µ(x̃a(n), θ̃n). This implies

(x̃a(n) + xia(n), θ̃n + θin) ∈ epi(co(Qi+1
n

)). Therefore, the system

{
(λn, zn) : θ̃n + θin ≥ c⊤nλn, (λn, zn) ∈ conv(W i+1

n ), zn = x̃a(n) + xia(n)

}
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is non-empty. However, this set is equivalent to

{
(λn, zn) :

1

µ
un0 ≥ c⊤nλn − θin, (λn, zn) ∈ conv(W i+1

n ), zn − xia(n) =
1

µ
un

}
.

With choosing ηn = 1
µ > 0 it immediately follows that problem (16) is feasible. By

ηn ≥ 0, its optimal value is also bounded from below, hence it is finite. By LP duality
this implies that Assumption 3 is satisfied.

B.7 Proof of Lemma 4.1

Proof. Recall that co(Qi+1
n

)(·) can be expressed by problem (12). Moreover, according

to Remark 3.3, under Assumption 1, the set conv(W i+1
n ) is a convex polyhedron. This

implies that problem (12) can be reformulated as an LP where the state xa(n) appears
in the RHS only. The assertion then follows from LP duality and the finite number of
different dual extreme points. For co(Qn)(·) a very similar reasoning can be used.

B.8 Proof of Theorem 4.2

Proof. We start with considering leaf nodes n ∈ N \ Ñ , where Ψi+1
m = ∅ is fixed by

definition. According to Lemma 4.1, co(Qi+1
n

)(·) is a piecewise linear convex function,

so epi(co(Qi+1
n

)) is polyhedral and has finitely many facets. As Theorem 3.27 (ii) is
satisfied, all generated cuts are facet-defining. This means that only finitely many
different cuts can be generated, and thus only finitely many different realizations of
Ψi+1
n exist. In particular, after finitely many steps, for any (xia(n), θ

i
n) computed in the

forward pass of NBD, a cut will have been generated that supports epi(co(Qi+1
n

)(·))
at this point. Additionally, as no child nodes exist, we have Qi+1

n
(·) ≡ Qn(·), and as

Xa(n) = {0, 1}da(n) , we have co(Qn)(xa(n)) = Qn(xa(n)) for all xa(n) ∈ Xa(n). This implies
that the cut supports epi(Qn) at (x

i
a(n), θ

i
n) (tight cut).

For each realization of Ψi+1
n , the same reasoning as above can now be applied to

the ancestor nodes of the leaf nodes. The assertion then follows by induction over
the whole scenario tree. This implies that NBD terminates with an optimal policy for
(MS-MILP).

B.9 Proof of Lemma 4.3

Proof. For any ν̃ ∈ N, the trial point (x̄a(n), θiν̃n ) either satisfies (x̄a(n), θ
iν̃
n ) ∈ epi(co(Qiν̃+1

n
)),

and by that θiν̃n = θ̄n, or it satisfies θ
iν̃
n < θ̄n. In the first case, (x̄a(n), θ

iν̃
n ) = (x̄a(n), θ̄n) =

(x̂iν̃a(n), θ̂
iν̃
n ) and the assertion is trivially satisfied for all ν ≥ ν̃.

In the second case, the trial point is separated from epi(co(Qiν̃+1
n

)) by a newly con-

structed Lagrangian cut. Therefore, the sequence (θiνn )ν∈N is monotonically increasing
and bounded, thus converging. More precisely, by the above separation argument it
converges to θ̄n. It immediately follows that the distance between the trial point and
(x̄a(n), θ̄n) converges to zero:

lim
ν→∞
∥x̄a(n) − xiνa(n), θ̄n − θiνn ∥∗ = ∥x̄a(n) − x̄a(n), θ̄n − θiνn ∥∗ = 0. (27)

Since (x̄a(n), θ̄n) is always feasible for the projection problem (15), this also implies

that any sequence (x̂iνa(n), θ̂
iν
n )ν∈N of (possibly non-unique) solutions of problem (15)

40

337



satisfies

lim
ν→∞
∥x̂iνa(n) − x̄a(n), θ̂iνn − θiνn ∥∗ = 0. (28)

By using the triangle inequality together with (27) and (28) we obtain

lim
ν→∞
∥x̂iνa(n) − x̄a(n), θ̂iνn − θ̄n∥∗ = 0.

From the definition of norms, the assertion follows.

B.10 Proof of Lemma 4.4

Proof. We prove the result by contradiction. For that reason, we assume that there
exists an infinite subsequence, indexed by ℓ ∈ N, such that for all ℓ there exists some
k̂νℓ ∈ “Kνℓ with k̂νℓ /∈ K. For simplicity, we assume that this facet index k̂νℓ is the same
for all ℓ, i.e., k̂νℓ ≡: k̃, even though this is not guaranteed. If it is not true, however,
we can apply the same arguments after another restriction to subsequences for each
possible facet, of which only finitely many exist.

Let the facet Fk̃ be described by the equation q⊤xa(n) + q0θn = r, with appropriate

coefficients q0, r ∈ R and q ∈ Rda(n) . Because of k̃ ∈ “Kνℓ for all ℓ, it follows that

q⊤x̂
iνℓ
a(n) + q0θ̂

iνℓ
n − r = 0

This immediately implies that

lim
ℓ→∞

(
q⊤x̂

iνℓ
a(n) + q0θ̂

iνℓ
n − r

)
= 0. (29)

On the other hand, we know from Lemma 4.3 that (x̂
iνℓ
a(n), θ̂

iνℓ
n ) converges to (x̄a(n), θ̄n),

as for a convergent series every subsequence converges to the same limit. This implies

lim
ℓ→∞

(
q⊤x̂

iνℓ
a(n) + q0θ̂

iνℓ
n − r

)

= q⊤ lim
ℓ→∞

(
x̂
iνℓ
a(n)

)
+ q0 lim

ℓ→∞

(
θ
iνℓ
n

)
− r

= q⊤x̄a(n) + q0θ̄n − r
< 0.

(30)

The inequality follows from k̂νℓ /∈ K for all ℓ ∈ N and (x̄a(n), θ̄n) ∈ epi(co(Qi+1
n

)).
Obviously, the results in (29) and (30) contradict each other, so our initial assumption
must have been wrong.

B.11 Proof of Lemma 4.6

Proof. Since at least x2 satisfies x2 ∈ relint(F), there exists some λ > 1 such that the
point x3 := x1 + λ(x2 − x1) = (1 − λ)x1 + λx2 is contained in F as well. We can now
prove the assertion by contradiction. Let α and β denote the intercept and the slope
of the cut supporting S at x2. Then, we have α+ β⊤x2 = 0. Now assume that the cut
does not support x1, which implies α+ β⊤x1 < 0, as x1 ∈ S. We obtain

α+ β⊤x3 = λ(α+ β⊤x2) + (1− λ)(α+ β⊤x1) = (1− λ)(α+ β⊤x1) > 0. (31)

41

338 Paper D – A new framework to generate Lagrangian cuts



The first equation applies the definition of x3, the second one follows from α+β⊤x2 = 0.
The third one follows from α+β⊤x1 < 0 and λ > 1. The result in (31) implies that either
x3 /∈ S or that the cut is not valid for all x ∈ S. Both cases lead to a contradiction.

B.12 Proof of Lemma 4.7

Proof. We assume that ν is sufficiently large, that is, ν ≥ ν̌ for some ν̌ ∈ N satisfying
ν̌ ≥ ν̃ from Lemma 4.3, ν̌ ≥ ν̂ from Lemma 4.4 and ν̌ ≥ ν̄ from Lemma 4.5.

If for all ν ≥ ν̌ we have (x̂iνa(n), θ̂
iν
n ) = (x̄a(n), θ̄n), then by Corollary 3.18 the assertion

follows immediately. Therefore, we assume that this is not true, and distinguish different
cases.

Case 1. Let |K| = 1, i.e., (x̄a(n), θ̄n) ∈ int(Fk̄) with K =
{
k̄
}
. From Lemma 4.4

it follows “Kν =
{
k̄
}

for all ν ≥ ν̌, thus (x̂ia(n), θ̂
iν
n ) ∈ int(Fk̄) as well. According to

Corollary 3.18, for each ν, the obtained deep Lagrangian cut supports epi(co(Q
n
)) at

(x̂iνa(n), θ̂
iν
n ). The assertion then follows from Lemma 4.6.

Case 2. Let |K| > 1, i.e., (x̄a(n), θ̄n) ∈ bd(Fk) for all k ∈ K. For any ν ≥ ν̌ there
are two possible sub-cases.

Sub-case i). The solution (x̂iνa(n), θ̂
iν
n ) to the projection problem (15) satisfies

(x̂iνa(n), θ̂
iν
n ) ∈ int(Fk) for some k ∈ K̄. Then, the assertion follows from Lemma 4.6.

Sub-case ii). The solution (x̂iνa(n), θ̂
iν
n ) to the projection problem (15) satisfies

(x̂iνa(n), θ̂
iν
n ) ∈ bd(Fkν ) for all kν ∈ “Kν , with “Kν ⊆ K. Then, (x̂iνa(n), θ̂

iν
n ) and (x̄a(n), θ̄n)

are still located on a joint sub-facet (face) F of epi(co(Q
n
)). Additionally, Lemma 4.5

implies that for all ν ≥ ν̌, (x̂iνa(n), θ̂iνn ) is not a vertex of epi(co(Q
n
)). Therefore, we have

(x̂iνa(n), θ̂
iν
n ) ∈ relint(F). Again, the assertion follows from Lemma 4.6.

B.13 Proof of Theorem 4.8

Proof. We start with considering leaf nodes n ∈ N \ Ñ , where Ψi+1
m = ∅ is fixed by

definition. For any fixed xa(n) ∈ Xa(n), according to Lemma 4.7, after finitely many
steps, a cut supporting epi(co(Qi+1

n
)(·)) at (xia(n), θin) is obtained. Since Qi+1

n
(·) ≡ Qn(·)

for the leaf nodes and co(Qn)(xa(n)) = Qn(xa(n)) for all xa(n) ∈ Xa(n) = {0, 1}da(n) , this
implies that the cut supports epi(Qn) at (x

i
a(n), θ

i
n) (tight cut). As Xa(n) is a finite set

and as Assumption 4 is satisfied, it follows (i) that only finitely many different cuts
can be generated, and thus that only finitely many different realizations of Ψi+1

n exist,
(ii) that after finitely many steps these realizations become exact at all xin computed
in the forward pass. Note that not all of these realizations have to be generated in
NBD, though, but that it is also possible that an optimal x∗n has been reached before
(all possible) cuts have been generated at xn ̸= x∗n.

For each realization of Ψi+1
n , the same reasoning as above can now be applied to

the ancestor nodes of the leaf nodes. The assertion then follows by induction over the
whole scenario tree.

C Nested Benders Decomposition

In Algorithm 1, we provide a description of the NBD algorithm.
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Algorithm 1 Nested Benders Decomposition with the new cut generation framework

Require: Scenario tree T = (N , E), tolerance ε > 0, normalization functions gn(·) for all n ∈ N .
1: Initialization: bounds v0 ← −∞, v0 ← +∞, initial approximations Ψ1

n for all n ∈ N and
iteration counter i← 0.

2: while v0 − v0 > ε do
3: Set i← i+ 1.
4: Solve subproblem (6) for the root node r to obtain a lower bound vi. Store the compo-

nents
(
xir, y

i
r, (θ

i
m)m∈C(r)

)
of the solution.

5: for stages t = 1, . . . , T do
6: for nodes n ∈ Nt do
7: Solve subroblem (6) associated with function Qi

n
(xia(n)) and store the components(

xin, y
i
n, (θ

i
m)m∈C(n)

)
of the solution. ▷ Forward pass

8: end for
9: end for

10: Obtain an upper bound as vi =
∑

n∈N fn(x
i
n, y

i
n).

11: for stages t = T, . . . , 2 do ▷ Backward pass
12: for nodes n ∈ Nt do
13: for children m ∈ C(n) do
14: Solve the normalized Lagrangian dual (14) for (xin, θ

i
m) and gn(·) to compute

a cut according to formula (13).

15: Update Ψi
m to Ψi+1

m in node n using this cut.
16: end for
17: end for
18: end for
19: end while

D Computational Results

D.1 CLSP with Binarization

The full computational results for our experiments of CLSP with state binarization are
depicted in Tables 3-6. The table columns contain the number of stages, the used cut
generation approach, the best lower bound obtained by SDDiP, a simulated statistical
upper bound computed after termination of SDDiP (we report the upper limit of the
computed confidence interval), the number of iterations, the time in seconds, the average
time per iteration and the average number of iterations required in the level bundle
method to solve the Lagrangian dual per iteration. We should note that in some cases,
the simulation did not yield an upper bound estimate due to numerical issues.

In Table 3 we present the results for instances with T = 4, T = 6 and T = 10 stages
and a time limit of 3 hours, 4 hours and 5 hours respectively. For T = 4, we also solve
the deterministic equivalent with Gurobi for comparison.

In Table 4 we present the results for T = 16 stages and 8 hours of run time.
In Table 5 we present the results for runs that combine SB and different types of

Lagrangian cuts.
In Table 6 we present the results for runs that use the Chen-Luedtke approach for

a dual space restriction, again combining SB and different types of Lagrangian cuts.

D.2 CLSP without Binarization

For our tests of CLSP without state binarization, the full results are stated in Table 7.
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Table 3: SDDiP results for CLSP with state binarization for T = 4, T = 6 and T = 10.

Method Best LB Stat. UB Gap [%] # Iter. Time [s] Time/It [s] Lag-It/It

T = 4

Det. Equiv. 1503.0 1542.3 3

B (single) 803.2 1595.5 50 85 6 0 -
B (multi) 804.5 1602.6 50 59 5 0 -
SB (single) 1155.8 1572.9 27 32 16 1 -
SB (multi) 1187.1 1608.7 26 73 49 1 -
L (single) 681.8 1766.4 61 109 10800 99 49
L (multi) 702.6 1736.6 60 27 10908 404 51
ℓ1-deep 1478.3 1582.5 7 39 11196 272 67
ℓ1∞-deep 1462.9 1649.4 11 38 10944 288 63
ℓ∞-deep 660.5 1854.1 64 43 11160 259 30
ℓ∞-deep (MNC) 1049.0 1720.7 39 54 10944 203 77
LN-Mid 1502.2 - - 38 11088 351 80
LN-In-Out 1017.0 1742.3 42 21 12024 573 97
LN-Eps 1499.0 - - 28 11556 413 116
LN-Relint 1500.4 1621.2 8 33 11088 336 88

T = 6

B (single) 1354.5 2854.2 53 479 69 0 -
B (multi) 1355.0 2889.4 53 165 37 0 -
SB (single) 2077.9 2825.1 26 46 41 1 -
SB (multi) 2093.4 2838.7 26 251 517 2 -
L (single) 669.7 3095.0 78 90 14580 162 50
L (multi) 682.5 3111.7 78 24 14688 612 130
ℓ1-deep 2414.1 2975.4 19 34 14508 427 62
ℓ1∞-deep 2375.8 2984.5 20 35 15012 429 59
ℓ∞-deep (MNC) 1411.1 3003.5 53 48 14868 310 58
LN-Mid 2500.3 2892.9 14 24 14904 621 101
LN-In-Out 1162.2 3056.4 62 18 14940 830 97
LN-Eps 2454.2 2865.1 14 20 14580 729 135
LN-Relint 2477.0 2871.8 14 22 14616 664 108

T = 10

B (single) 2165.3 5120.8 58 136 26 0 -
B (multi) 2183.6 5168.8 58 334 197 0 -
SB (single) 3377.1 4949.8 32 89 122 1 -
SB (multi) 3472.9 4942.9 30 206 1066 5 -
L (single) 616.4 5466.6 89 69 18144 263 51
L (multi) 682.4 5443.1 88 20 18720 936 54
ℓ1-deep 3782.5 - - 38 19260 507 47
ℓ1∞-deep 3862.7 - - 37 18504 500 47
ℓ∞-deep (MNC) 2004.3 5256.8 62 44 18576 422 43
LN-Mid 4222.2 5168.9 18 18 18216 1012 110
LN-Eps 3642.8 5223.9 30 18 18360 1020 144
LN-Relint 4145.1 - - 17 20232 1190 119
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Table 4: SDDiP results for CLSP with state binarization for T = 16.

Method Best LB Stat. UB Gap [%] # Iter. Time [s] Time/Iter [s] Lag-Iter/Iter

T = 16

B (single) 3917.5 9012.6 57 224 74 0 -
B (multi) 3937.2 9008.2 56 254 274 1 -
SB (single) 5913.7 8673.6 32 194 493 3 -
SB (multi) 6030.2 8676.8 31 585 9252 16 -
L (single) 607.4 9524.5 94 63 28836 458 51
L (multi) 651.6 9444.7 93 19 31176 1641 55
ℓ1-deep 3547.5 9756.3 64 42 28944 689 34
ℓ1∞-deep 3353.0 9997.3 67 37 31248 845 16
ℓ∞-deep (MNC) 2563.3 9917.7 74 52 29664 571 39
LN-Mid 6910.7 9125.9 24 18 32112 1784 119
LN-Eps 6014.5 9195.2 35 16 32040 2003 143
LN-Relint 6105.6 9085.9 33 15 29772 1985 123

Table 5: SDDiP results for CLSP using Lagrangian cuts combined with SB cuts.

Method Best LB Stat. UB Gap [%] # Iter. Time [s] Time/Iter [s] Lag-Iter/Iter

T = 10

L (single) 3475.5 5003.9 31 132 18072 136 50
L (multi) 3483.0 5014.4 31 51 18360 360 51
ℓ1-deep 3804.1 5161.6 26 35 19656 562 88
ℓ1∞-deep 3914.2 5233.7 25 36 19656 546 83
ℓ∞-deep (MNC) 3551.5 5042.8 30 49 18108 340 180
LN-Mid 4052.9 5130.9 21 31 20484 661 115
LN-Eps 4087.7 5092.9 20 31 21096 681 141
LN-Relint 4034.3 5135.4 21 31 19944 643 119

T = 16

L (single) 5907.1 8728.4 32 136 28944 213 47
L (multi) 5922.0 8750.8 32 52 30096 579 48
ℓ1-deep 6477.5 9078.4 28 33 29916 907 90
ℓ1∞-deep 6417.4 9024.6 29 34 30708 903 87
ℓ∞-deep (MNC) 5991.3 8889.8 33 45 28800 640 191
LN-Mid 6675.7 9102.9 27 29 31680 1092 127
LN-Eps 6705.0 8947.8 25 29 30528 1053 146
LN-Relint 6705.3 8995.5 26 29 31284 1079 134
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Table 6: SDDiP results for CLSP with T = 10 and T = 16 using the CL approach.

Method Best LB Stat. UB Gap [%] # Iter. Time [s] Time/Iter [s] Lag-Iter/Iter

T = 10

γ 4395.5 5224.4 16 74 18396 249 17
ℓ1-deep 4344.5 - - 53 18108 341 41
ℓ∞-deep (MNC) 4249.9 5270.7 19 34 18216 536 383
LN-Mid 4400.0 5217.6 16 52 18288 352 34
LN-Eps 4389.3 5240.2 16 52 18684 359 38
LN-Relint 4371.4 5235.3 17 51 18036 354 34

T = 16

γ 7565.5 9067.7 17 65 29160 449 18
ℓ1-deep 7254.2 9095.4 20 49 29160 589 42
ℓ∞-deep (MNC) 7248.9 9147.6 21 33 29808 903 432
LN-Mid 7521.0 9061.8 17 52 29340 611 38
LN-Eps 7510.8 9080.5 17 52 29232 622 40
LN-Relint 7543.3 9051.4 17 49 30204 617 38
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Table 7: SDDiP results for CLSP with 10 state variables and no binary approximation.

Method Best LB Stat. UB Gap [%] # Iter. Time [s] Time/Iter [s] Lag-Iter/Iter

T = 16, One type of cut

B (single) 15190 29701 49 193 57 0 -
B (multi) 15199 29747 49 207 189 1 -
SB (single) 20373 29601 31 111 211 2 -
SB (multi) 21045 29343 28 281 3123 11 -
L (single) 13676 32003 57 84 10832 129 42
L (multi) 19199 31437 39 27 10971 406 45
ℓ1-deep 23486 30367 23 34 11061 325 30
ℓ1∞-deep 23887 30111 21 32 11472 359 33
ℓ∞-deep (MNC) 23224 30074 23 26 10839 417 48
LN-Mid 19820 30450 35 19 11922 628 88
LN-Eps 22027 30599 28 22 10820 492 63
LN-Relint 8857 31188 72 19 11484 604 96
LN-Conv(50) 22588 30438 26 16 11132 696 98
LN-Conv(75) 22931 30206 24 17 10829 637 88
LN-Conv(90) 23215 30235 23 19 11342 597 79
LN-Conv(99) 22639 30374 26 22 11025 501 62

T = 16, Combination with SB cuts

L (single) 21129 30040 30 92 10809 118 42
L (multi) 22271 30540 27 37 11312 306 44
ℓ1-deep 23235 30342 23 35 11571 331 51
ℓ1∞-deep 23197 30049 23 35 11364 325 49
ℓ∞-deep (MNC) 22975 30210 24 36 11025 306 92
LN-Mid 22638 30413 26 30 12231 408 107
LN-Eps 22798 30382 25 32 10800 338 66
LN-Relint 22814 30303 25 29 11068 382 113
LN-Conv(50) 22641 30255 25 30 11941 398 110
LN-Conv(75) 22804 30120 24 31 12145 392 96
LN-Conv(90) 23162 30097 23 32 11590 362 79
LN-Conv(99) 23152 30118 23 33 11833 359 67

T = 16, Combination with SB cuts, CL approach

γ 23715 29894 21 72 11028 153 23
ℓ1-deep 24036 30231 21 48 11006 229 51
ℓ∞-deep (MNC) 23803 30253 21 49 11051 226 82
LN-Mid 23114 30184 23 36 11118 309 98
LN-Eps 23566 30252 22 41 10822 264 65
LN-Relint 22938 30096 24 36 11288 314 99
LN-Conv(50) 22817 30344 25 31 11870 383 91
LN-Conv(75) 22701 30287 25 31 10974 354 82
LN-Conv(90) 22951 30344 24 32 10838 339 71
LN-Conv(99) 22902 30085 24 33 11084 336 61
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Supplementary Material

“A new framework to generate Lagrangian cuts

in multistage stochastic mixed-integer

programming”

Christian Füllner, X. Andy Sun, Steffen Rebennack

1 Using a Single-cut Approach in the New Framework

The unified cut generation framework presented in Sect. 3 comes at the cost of having to
use a multi-cut approach to approximate the epigraphs of the value functions separately.
While this approach often yields better approximations than a single-cut approach, it
also tends to be computationally detrimental because too many cuts have to be added to
the subproblems. Therefore, in multistage stochastic programming usually a single-cut
approach is preferred.

The main idea of a single-cut approach is to still generate cuts for each subproblem
separately, thus exploiting decomposability of the multistage problem, but to then ag-
gregate these cuts. There are a few reasons why such an aggregation is not possible in
the unified framework. First, the cut coefficient πn0 in the Lagrangian cut formula (13)
does not allow for a straightforward aggregation due to different scaling of cuts. At
least for optimality cuts satisfying πn0 > 0, however, this issue may be avoided by first
dividing by πn0 before aggregating, see Remark 3.8. Second, and more critical, setting
up the Lagrangian dual problems (10) requires an incumbent (xia(n), θ

i
n). This implies

that we need to compute a value θin for each node n ∈ N in the forward pass, whereas
a single-cut approach only provides an aggregated value.

It is still possible to combine a single-cut approach with the ideas of the proposed
unified cut generation framework, as we show in the remainder of this section. However,
for the above reasons, it is not possible while retaining complete decomposability of the
subproblems at each stage t. Instead, we can only achieve partial decomposability.

For this section, we assume all assumptions made in Sect. 2 to hold as well. For
notational simplicity, we mostly use the same symbols as for the multi-cut approach
instead of introducing separate notation.

1.1 An Epigraph Perspective on Cut Generation

For all n ∈ N , we define by

QC(n)(xa(n)) :=
∑

m∈C(n)
pnmQm(xn)

the expected value functions starting from node n. Using the single-cut approach, our
aim is to approximate epi(QC(n)) using polyhedral approximations ΨC(n) (recall the
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definition of epigraphs from (4). Note that under Assumption 1, if we choose the same
set Za(n) at all nodes n ∈ N (t), we have dom(QC(n)) = dom(Qm) for all m ∈ C(n).

In the same vein as in Sect. 3, we define the set

Ŵ i+1
n :=

{(
xn, yn, zn, θC(n)

)
: (xn, yn, zn) ∈ Fn, zn ∈ Za(n), (xn, θC(n)) ∈ Ψi+1

C(n)

}
,

λn :=
(
xn, yn, θC(n)

)
and ĉ⊤n λn := fn(xn, yn)+θC(n). Then, the approximate subproblems

and approximate value functions can be expressed as

Qi+1
n

(xia(n)) = min
λn,zn

{
ĉ⊤n λn : (λn, zn) ∈ Ŵ i+1

n , zn = xia(n)

}
. (32)

Analogously, we define the expected approximate value functions as

Qi+1
C(n)(xa(n)) :=

∑

m∈C(n)
pnmQ

i+1
m

(xn). (33)

1.2 A Feasibility Problem for the Epigraph

Consider some node n ∈ Ñ and all successor nodes C(n). Given an incumbent (xin, θ
i
C(n)),

we formulate a feasibility problem to verify if it satisfies (xin, θ
i
C(n)) ∈ epi(Qi+1

C(n)). In its
most simple form this can be expressed as

vf,i+1
C(n) (xin, θ

i
C(n)) := min

xn,θC(n)

{
0 : xn = xin, θC(n) = θiC(n),

(xin, θ
i
C(n)) ∈ epi(Qi+1

C(n))
}
.

(34)

Using the definition of Qi+1
C(n)(·) from (33), this can be converted to

vf,i+1
C(n) (xin, θ

i
C(n)) := min

(λm),(zm)

{
0 : (λm, zm) ∈ Ŵ i+1

m , zm = xim,m ∈ C(n),

θiC(m) ≥
∑

m∈C(n)
pnmĉ

⊤
mλm,

}
,

(35)

where (λm) := (λm)m∈C(n), (zm) := (zm)m∈C(n).
Importantly, and a crucial difference to the multi-cut approach from Sect. 3, here the

feasibility problem contains variables and constraints that are related to several nodes
m ∈ C(n), and thus epigraphs epi(Qi+1

m
), and not only to one single node and epigraph.

In other words, since we use aggregated cuts to approximate epi(QC(n)) by a single set of
cuts, the obtained feasibility problem in the unified framework is no longer decomposed
by subproblems. Instead, we obtain one single feasibility problem per stage.

Additionally, we notice that including constraints (λm, zm) ∈ Ŵ i+1
m for all m ∈ C(n)

means that for each such m a separate set of cut approximations Ψi+1
C(m) are included (in

the case of stagewise independent uncertainty as in SDDiP, the same cut constraints are
included several times, but have to be satisfied by different variables). This contradicts
the initial aim of the single-cut approach to reduce the number of cuts occurring in the
subproblems. Fortunately, when we consider a Lagrangian relaxation of problem (35),
we achieve a partial decomposability, so that each subproblem that is solved in the
actual cut generation process only contains a single set of cuts. We shows this in the
next subsection.
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1.3 Lagrangian Cuts in the New Framework

As in the multi-cut approach, we apply a Lagrangian relaxation where we relax the copy
and epigraph constraints. Importantly, here we have to relax |C(n)| copy constraints.
This yields the relaxation

Li+1
C(n)
(
(πm), γC(n)

)
:= min

(λm),(zm)

{ ∑

m∈C(n)
π⊤mzm + γC(n)

( ∑

m∈C(n)
pnmĉ

⊤
mλm

)
:

(λm, zm) ∈ Ŵ i+1
m ,m ∈ C(n)

}
,

(36)

where we omitted the constant term in the objective.
The corresponding Lagrangian dual problem is

v̂D,i+1
C(n) (xin, θ

i
C(n)) := max

(πm),γC(n)

{
Li+1
C(n)
(
(πm), γC(n)

)
−

∑

m∈C(n)
π⊤mx

i
n − γC(n)θC(n) :

γC(n) ≥ 0
}
.

(37)

Compared to the multi-cut version, we only have to solve one Lagrangian dual prob-
lem (37) for all m ∈ C(n) together instead of one Lagrangian dual problem for each.
Considering how computationally challenging it is to solve Lagrangian dual problems,
this is favorable. On the other hand, the obtained Lagrangian dual problem is not
decomposed by nodes, thus much larger, and possibly more time-consuming to solve.

Fortunately, at least some partial decomposability can be achieved. Let

Li+1
m

(
(πm), γC(n)

)
:= min

λm,zm

{
π⊤mzm + γC(n)pnmĉ

⊤
mλm : (λm, zm) ∈ Ŵ i+1

m

}
. (38)

Then, the overall dual function defined in (36) can be equivalently written as

Li+1
C(n)
(
(πm), γC(n)

)
:=

∑

m∈C(n)
Li+1
m

(
(πm), πm

)
, (39)

which allows for a solution of the inner problem in the Lagrangian dual for each node
m ∈ C(n) separately. However, we notice that all inner problems contain the same dual
multiplier γC(n), so the outer problem (37) cannot be decoupled in a straightforward
way.

The Lagrangian dual (37) has the same properties that we already discussed in
Theorem 3.5 for the multi-cut case.

Theorem 1.1. Under Assumptions 1 and 2, for the Lagrangian dual (37) it holds:

(i) The dual function Li+1
C(n)
(
·
)
is piecewise linear concave in

(
(πm), πm

)
.

(ii) Its optimal value v̂D,i+1
C(n) (xin, θ

i
C(n)) satisfies

v̂D,i+1
C(n) (xin, θ

i
C(n)) =

{
0, if (xin, θ

i
C(n)) ∈ epi(co(Qi+1

C(n)))

+∞, else.
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Based on these properties, analogously to Sect. 3, a valid Lagrangian cut can be
defined.

Definition 1.2. For all n ∈ N and some multipliers
(
(πm), γC(n)

)
, a Lagrangian cut is

given by

γiC(n)θC(n) +
∑

m∈C(n)
(πim)

⊤xn ≥ Li+1
C(n)
(
(πim), γ

i
C(n)
)

⇔ γiC(n)θC(n) + (πiC(n))
⊤xn ≥ Li+1

C(n)
(
(πim), γ

i
C(n)
) (40)

with πiC(n) :=
∑

m∈C(n) π
i
m.

This type of cut is valid for any feasible
(
(πm), γC(n)

)
in (37).

Lemma 1.3. Under Assumptions 1 and 2, for any
(
(πm), γC(n)

)
∈ Rda(n)|C(n)| × R+

the Lagrangian cut (40) is satisfied by all (xn, θC(n)) ∈ epi(co(Qi+1
C(n))), and thus, by all

(xn, θC(n)) ∈ epi(co(QC(n))).

The presented approach at least allows to decompose the inner problem in solution
methods for the Lagrangian dual, such as subgradient methods or cutting-plane meth-
ods. Whether it is sufficient to obtain performance gains compared to the multi-cut
version is problem-dependent, since the dual problem grows in dimension. We did not
perform any computational tests in this regard so far, so a computational evaluation is
left for future research.
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Abstract

We consider the generation of cuts in stochastic dual dynamic programming (SDDP) for
multistage stochastic linear programming problems with stagewise dependent uncertainty
in the right-hand side described by a nonlinear autoregressive process. We first derive
cut formulas for the general nonlinear autoregressive process. For these general cuts, the
computational tractability becomes a major challenge for SDDP-type algorithms. We
are, however, able to develop closed-form cut formulas for the special case of log-linear
autoregressive processes. The obtained cuts are in general non-convex in the history of
the stochastic process, and thus can be used to tightly approximate the occurring non-
convex value functions. As the cuts are still linear in all decision variables, they can be
directly incorporated into the subproblems in SDDP without compromising their linearity.
If solvers do not allow for this, our formulas can be used to adapt the intercept of a given
cut to a scenario at hand in a computationally tractable way. In this sense, cuts generated
for one specific scenario are shared with other scenarios. Our findings are supported by
illustrative examples and by a computational study of a hydrothermal scheduling problem.

1 Introduction

1.1 Motivation

In many decision-making situations, multiple subsequent decisions have to be taken
while at least some of the decision-relevant data are uncertain. Often, the premise is that
at the first stage some decisions have to be taken before any uncertain data are revealed
and to hedge against the existing uncertainty. At later stages, then corrective decisions
can be made under the knowledge that some part of the uncertain data has been realized.
Typically, the aim is to determine an optimal policy (sequence of decision rules) in
expectation, and only linear objectives and constraints are considered. Formalizing this
constitutes the class of multistage stochastic linear programming problems (MSLPs).

Stochastic dual dynamic programming (SDDP), introduced by Pereira and Pinto in
1991 [20], is one of the state-of-the-art solution methods for this class of problems. It
is proven to converge to an optimal policy for a given MSLP in finitely many iterations

1
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almost surely. Since its invention, SDDP-type algorithms have been applied to numer-
ous case-studies in practice, and extended to broader problem classes such as convex
problems [12], mixed-integer linear problems [33], mixed-integer nonlinear non-convex
problems [10, 31], risk-averse problems [24] or distributionally robust settings [9]. More-
over, several proposals have been made to accelerate the algorithm, e.g., [1, 5, 14, 29].
For a comprehensive overview on SDDP we refer to the review [11].

A crucial requirement of standard SDDP is the stagewise independence of the un-
certainty in the data. However, in many applications, this assumption is not warranted.
Therefore, the last three decades have seen a lot of research on efficiently extending
SDDP to problems exhibiting stagewise dependent uncertainty, comprising approxima-
tions of the uncertainty by some Markov chain [18], combining SDDP with an incorpo-
rated Markov chain [21], using conditional cuts [30], and using saddle cuts [6] or dual
variants of SDDP [15] for stagewise dependent uncertainty in the objective function.

To model uncertainty in the right-hand side of the constraints, especially autoregres-
sive (AR) processes have gained a lot of attention, as they are often used in practice,
e.g., to model inflows in hydrothermal scheduling problems [4, 17, 19]. Whereas signif-
icant progress has been made for the cases of linear and convex AR processes, results
on nonlinear non-convex AR processes are limited. So far, only very simple nonlinear
non-convex processes, satisfying additivity or a specific notion of linearity, have been
successfully incorporated into SDDP [16]. More general nonlinear processes have not
been analyzed yet. These types of processes are practically important, though, for
instance to describe uncertain wind power [32] or uncertain non-negative inflows [27].

In this paper, we therefore deal with the question of extending SDDP to problems
where the uncertain data are modeled by nonlinear, possibly non-convex AR processes.
One of the main challenges is that in this case the expected value functions, which
are iteratively approximated by cutting-planes (also called cuts) within SDDP, are non-
convex. For this reason, linear cuts are not sufficient for valid and tight approximations,
and thus cannot guarantee convergence of SDDP. As a remedy, we show that instead,
cuts can be generated that are linear in the original state variables, but non-convex
in the history of the considered AR process, therefore allowing for valid and tight
approximations of the non-convex expected value functions. Our paper is the first work
proposing nonlinear cuts in this context.

For these general cuts, the computational tractability becomes a major challenge
for SDDP-type algorithms, as they are in general hard to convert into closed-form
expressions and often computationally prohibitive to evaluate. We are, however, able
to develop closed-form cut formulas for the special class of log-linear (periodic) AR
processes. This class is prominently used to model uncertain non-negative inflows within
hydrothermal systems in practice [27]. We show that for this class, tractable closed-
form expressions for non-convex cuts can be derived, which then can be incorporated
within SDDP to approximate the expected value functions. We perform computational
tests for a long-term hydrothermal scheduling problem to assess the performance of this
version of SDDP.

1.2 Contribution

The key contributions of this paper are summarized below.

(1) We show how to recursively compute generic nonlinear cuts for the non-convex
expected value functions if the uncertainty in the right-hand side of a multistage
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stochastic linear program follows a general nonlinear AR process (see Sect. 3.2).
We identify the computational challenges that come with evaluating these recur-
sive cuts or with translating them into closed-form cut formulas, rendering their
application within SDDP computationally intractable in general.

(2) We then analyze log-linear (periodic) AR processes as a special and practically
relevant class of non-convex AR processes that has been considered in the context
of SDDP before (see Sect. 4). We show that for this class, valid and tight non-
convex cuts for the expected value functions can be derived (see Sect. 4.3). These
cuts can be computed and evaluated using tractable closed-form expressions.

(3) This new type of cuts is non-convex in the history of the AR process, but linear in
all decision variables. Therefore, it can be directly incorporated into the subprob-
lems in SDDP without compromising their linearity. If solvers do not allow for
this, our formulas can be used to adapt the intercept of a given cut to a scenario
at hand, thus to share the cut with that particular scenario. The incorporation
into SDDP is discussed in Sect. 4.4.

(4) Even under special conditions where both the expected value functions and our
proposed nonlinear cuts become convex, these cuts provide a more accurate ap-
proximation than previously proposed linear cuts, as we show for an illustrative
example in Sect. 4.3.

(5) We conduct computational experiments on a long-term hydrothermal scheduling
(LTHS) problem with stochastic inflows. Our experiments show that, although
coming with a non-negligible computational overhead, our proposed version of
SDDP with non-convex cuts yields favorable policies compared to running SDDP
using linearized inflow models. More precisely, assuming that the log-linear AR
process provides a more accurate representation of the inflows, which is supported
by historical data, we achieve a 7-10% total cost reduction on average in an out-
of-sample simulation.

1.3 Structure

This paper is structured as follows. In Sect. 2, we formally introduce the considered
problems and the AR processes describing the uncertainty. In Sect. 3, we discuss exten-
sions of SDDP to uncertainty modeled by general nonlinear AR processes. After that,
in Sect. 4, we dedicate to the special class of log-linear AR processes, derive closed-form
cut formulas and discuss their integration into SDDP. To support our theoretical find-
ings, in Sect. 5, we present computational experiments for a hydrothermal scheduling
problem. We finish with a conclusion in Sect. 6.

Appendix A contains some longer proofs that are outsourced from the main paper.
In Appendix B, we summarize the notation used throughout this paper. Finally, we
provide an electronic companion (EC) with supplementary material, especially on our
computational experiments. For comparison, we also present SDDP in its standard
form in the EC.

2 Problem Formulation

We consider a general multistage stochastic linear programming problem with a finite
number T ∈ N of stages, henceforth referred to as (MSLP). At each stage t ∈ [T ] :=

3
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{1, . . . , T}, decisions xt ∈ Rnt , nt ∈ N, have to be taken, which satisfy a set of Lt ∈ N
linear constraints defined by matrices Tt−1 ∈ RLt−1×nt ,Wt ∈ RLt×nt and vectors ht ∈
RLt , and parametrized by xt−1, with T0 ≡ 0, x0 ≡ 0. (MSLP) can be represented in the
following nested form (for equivalent non-nested representations we refer to [11, 25]):

v∗ := min
x1≥0

W1x1=h1

c⊤1 x1 + Eξ2|ξ1


 min

x2≥0
T1x1+W2x2=h2

c⊤2 x2 + Eξ3|ξ[2]

[
· · ·

+ EξT |ξ[T−1]

[
min
x2≥0

TT−1xT−1+WT xT=hT

c⊤T xT

]]


(1)

We assume that some of the data in (MSLP) are subject to uncertainty, which is
revealed over time. The premise is that decisions x1 are taken hedging against the full
uncertainty, whereas at the following stages t = 2, . . . , T , recourse decisions xt are taken
after the uncertain data on stage t has realized. The aim is to compute the optimal value
and policy (sequence of decisions given a realization of the uncertainty) in expectation.

The uncertain data is modeled based on a filtered probability space (Ω,F ,P) with
sample space Ω, σ-algebra F and probability measure P. Further let (Ft)t∈[T ] with
FT := F be a sequence of σ-algebras containing the events observable up to time t.
Thus defining a filtration with F1 ⊆ F2 · · · ⊆ FT , and let Ωt be the sample space
restricted to stage t ∈ [T ]. We can then define a stochastic process (ξt)t∈[T ] with Ft-
measurable random vectors ξt : Ωt → RLt and corresponding realizations ξt. For the
first stage, the data are assumed deterministic, i.e., Ω1 is a singleton.

Importantly, whereas in most of the literature on SDDP stagewise independent
uncertainty is presumed, we allow the data process (ξt)t∈[T ] to be stagewise dependent.
This means that ξt may depend on lagged realizations of (ξt)t∈[T ], yielding an AR
process. To formalize this, we make the following definitions.

� We denote by ξ[t−1] := (ξ1, . . . , ξt−1)
⊤ ∈ RL[t−1] , with L[t−1] :=

∑t−1
k=1 Lk, the

history of the data process up to stage t− 1.

� For all t ∈ [T ], let bt(·, ·) : RL[t−1] × R → RLt be a given vector-valued function,
and let ηt be a stagewise independent random vector with realizations ηt. Then,
we formalize the AR process by

ξt = bt(ξ[t−1], ηt). (2)

� For all t ∈ [T ], let b̃t(·, ·) : RL[t−1] × R→ RL[t] be a vector-valued function defined
by

ξ[t] =
(
ξ[t−1], bt(ξ[t−1], ηt)

)⊤
=: b̃t(ξ[t−1], ηt). (3)

Remark 2.1. As defined, most generally ξ[t−1] is assumed to contain the whole history of
the stochastic process over the horizon [t− 1]. However, to reduce storage requirements
we may also limit it to a minimal subset if the function bt(·, ·) does not require all
previous realizations. Furthermore, depending on the lag order of the data process, past
realizations for stages t < 1 may be required in bt(·, ·). In such a case, these realizations
have to be stored in ξ[t−1] as well. For the ease of presentation, we abstain from this
case unless stated otherwise. For a detailed discussion on this topic, see [13].

4

357



Remark 2.2. If function bt(·, ·) is linear, it may be represented as a linear mapping
using matrices, see for instance [16, 27]. In all other cases, it is most commonly defined
componentwise using functions bti : RL[t−1] × R→ R for all i = 1, . . . , Lt [13].

For simplicity, we assume that only the data vectors ht(ξt) occurring in the right-
hand side (RHS) of the constraints are uncertain. However, all of the ideas presented
in this paper do also hold if we allow for uncertainty in Tt−1,Wt and ct, as long as this
additional uncertainty is stagewise independent.

We further take the following assumptions with respect to the uncertainty in (MSLP).

Assumption 1. The data process (ξt)t∈[T ] satisfies the following conditions:

(a) For all t ∈ [T ], ht(ξt) = ξt.

(b) For any t = 2, . . . , T , given any history ξ[t−1] and any realization ηt, the realization
ξt is defined by relation (2) and the state ξ[t] is defined by relation (3).

(c) For all t ∈ [T ], the random vectors ηt follow a known, discrete and finite distri-

bution with realizations η
(j)
t and associated probabilities ptj for j = 1, . . . , qt and

qt ∈ N.

Part (a) simplifies the dependency of the RHS vector ht on ξt and is standard
for most work on SDDP. Part (b) formalizes our assumption of stagewise dependent
uncertainty. We explicitly allow non-convex functions bt(·, ·). Part (c) is a standard
assumption to ensure computational tractability of (MSLP). Note that by relation (2)
and assumption (c), the uncertainty can be illustrated by a finite scenario tree.

Notationwise, as done in (c), we set upper indices in brackets to distinguish them
from exponents.

The nested formulation (1) of (MSLP) can be decomposed into a set of coupled
subproblems by means of its dynamic programming equations (DPE) [2]. More precisely,
for t = 2, . . . , T , any history ξ[t−1] and any j = 1, . . . , qt, the DPE are given by

Qt(xt−1, ξ
(j)
t ) :=





min
xt

c⊤t xt +Qt+1(xt, ξ[t])

s.t. Tt−1xt−1 +Wtxt = ht(ξ
(j)
t )

xt ≥ 0,

(4)

with ξ
(j)
t = bt(ξ[t−1], η

(j)
t ),

Qt+1(xt, ξ[t]) := Eξt+1|ξ[t] [Qt+1(xt, ξt+1)] (5)

and QT+1(xT , ξ[T−1]) ≡ 0. Qt(·, ·) is called value function and Qt(·, ·) is called expected
value function or cost-to-go function. For the deterministic first stage, we obtain

v∗ =





min
x1

c⊤1 x1 +Q2(x1, ξ[1])

s.t. W1x1 = h1
x1 ≥ 0.

Importantly, by relation (2), the value functions Qt(·, ·) do implicitly depend on the
history ξ[t−1], and by using conditional expectations, also the expected value functions
Qt(·, ·) depend on ξ[t−1].

To ensure feasibility, we make two more assumptions for the remainder of this paper:
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Assumption 2.

(a) The feasible set of MSLP is non-empty and bounded, which implies that v∗ is finite.

(b) We have relatively complete recourse, i.e., for any xt−1 and ξ[t−1], the stage-t

subproblem (4) is feasible for all ξ
(j)
t , j = 1, . . . , qt.

A challenge in exploiting the DPE to solve (MSLP) is that the expected value
functions are not known in analytical form in advance. The key idea in SDDP is to
iteratively approximate them from below using functions in all its arguments; see Sect. D
in the EC for a detailed description. We refer to these functions as cuts. Combined,
these cuts build outer approximations Qt(·, ·) of Qt(·, ·) for all t = 2, . . . , T , which we
refer to as cut approximations.

Replacing the true expected value functions with cut approximations in (4), we can
define approximate value functions

Q
t
(xt−1, ξ

(j)
t ) :=





min
xt

c⊤t xt +Qt+1(xt, ξ[t])

s.t. Tt−1xt−1 +Wtxt = ht(ξ
(j)
t )

xt ≥ 0.

(6)

For QT+1(·, ·) ≡ 0, we have QT+1(·, ·) ≡ 0.
Cuts being also functions in ξ[t−1] is crucial because it allows cuts generated given

one specific history of the data process to be shared with different nodes in the scenario
tree. This is computationally important in SDDP, as otherwise cuts would have to
be generated for each node in the scenario tree separately, with the number of nodes
growing exponentially in T .

If Qt(·, ·) is convex, linear functions (also called cutting-planes, or cuts in a narrower
sense) can be used for a tight and valid approximation from below. In the standard
setting of SDDP with stagewise independent uncertainty (ξt = bt(ξ[t−1], ηt) ≡ ηt, see
Sect. D in the EC), this is satisfied. The expected value functions do not depend
on ξ[t−1] in this special case, and can be shown to be piecewise linear and convex in
their only argument xt−1. In contrast, for general functions bt(·, ·), things become more
intricate, as Qt(·, ·) is in general not guaranteed to be convex in ξ[t−1]. In this case,
non-convex cuts may be required for tight and valid outer approximations. We analyze
this in more detail in the following sections.

3 SDDP with General Nonlinear AR Processes

We now address SDDP for the case of general nonlinear stagewise-dependent uncertainty
in the RHS. Again, we refer to Sect. D in the EC for a description of standard SDDP.

3.1 Existing Approaches for Stagewise Dependent Uncertainty

A natural approach to handle AR processes (2) in (MSLP) is to reformulate the problem
in such a way that it exhibits stagewise independence as in standard SDDP. The key
idea is to interpret ξ[t−1] as an additional state variable for the stage-t subproblem, thus
considering the state (xt−1, ξ[t−1]). Then, the remaining uncertainty is only described
by the stagewise independent random vector ηt. This can be achieved by adding the
process equation (3) as an explicit constraint to the subproblems and adding ξt as a
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decision variable, as for instance proposed by Shapiro et al. in [27].

Q̃
t

(
(xt−1, ξ[t−1]), η

(j)
t

)
=





min
xt,ξt

c⊤t xt +Qt+1(xt, ξ[t])

s.t. Tt−1xt−1 +Wtxt = ht(ξt)

ξ[t] = b̃t(ξ[t−1], η
(j)
t )

xt ≥ 0.

(7)

We use the symbol Q̃
t
(·, ·) here to differentiate the value function from the original

one where the dependence on ξ[t−1] is implicit, even though their values are the same
for a given scenario.

While this reformulation is helpful in restoring stagewise independence, both the
state space dimension and the decision space dimension are increased. Additionally,
problem (7) only remains linear if b̃t(·, ·) is a linear function.

An alternative – that at least avoids the decision space expansion – is to replace

each occurrence of ht(ξ
(j)
t ) = ξ

(j)
t and of ξ[t] with equations (2) and (3), respectively [13].

Q̃
t

(
(xt−1, ξ[t−1]), η

(j)
t

)
=





min
xt

c⊤t xt +Qt+1

(
xt, b̃t(ξ[t−1], η

(j)
t )
)

s.t. Tt−1xt−1 +Wtxt = bt(ξ[t−1], η
(j)
t )

xt ≥ 0.

(8)

The new state ξ
(j)
[t] that enters stage t + 1 as a parameter can then be computed

using equation (3) outside of the subproblem.
The key idea of both approaches (often called expanding the state space) is that, by

restoring stagewise independence and considering ξ[t−1] as an additional state variable,
cuts for Qt(·, ·) can be naturally derived as functions in both xt−1 and ξ[t−1]. Thus, they
can be naturally shared between scenarios. However, as already mentioned in Sect. 2,
linear cuts are only guaranteed to be valid under-approximators if Qt(·, ·) is convex
in xt−1 and ξ[t−1]. This, in turn, is only guaranteed if bt(·, ·) only enters the RHS of
problem (MSLP) and if bt(·, ·) is linear. If we allow it to enter the RHS of ≥- constraints
instead of equality constraints, convexity can also be established for convex functions
bt(·, ·) [13]. In contrast, if stagewise dependent uncertainty appears in Wt or ct, or if
bt(·, ·) is a general non-convex function, then convexity of Qt(·, ·) is not ensured and
linear cuts may lead to invalid approximations [23].

For this reason, extensions of SDDP to AR processes have been mostly limited to
different types of linear processes so far (differing in lag order, periodicity, dependencies
between different components of ξt etc.) [13, 16, 17, 22, 28]. Guigues [13] shows that by
using subgradients, under certain assumptions (i.e., ξt entering the RHS of≥-constraints
and bt(·, ·) being monotonically increasing) also valid linear cuts can be derived for
Qt(·, ·) if bt(·, ·) is convex. Note that his results also allow for the RHS vector ht(·)
being a monotonically increasing, convex function of ξt instead of a constant (compare
Assumption 1 (a)). Infanger and Morton [16] derive cut formulas for possibly non-
convex functions bt(·, ·), however relying on additivity in ηt and linearity in ξt−1 in
order to obtain computationally tractable formulas, meaning that the process may only
be nonlinear in deterministic or stagewise independent problem components, such as
ηt−1, ct−1, Tt−2 or Wt−1.

In this paper, we extend these results to more general types of non-convex processes.
In particular, we consider log-linear processes, where bt(·, ·) satisfies additivity with
respect to ηt, but is non-convex in ξ[t−1].
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Finally, we should highlight that it is not necessarily required to explicitly include
ξ[t−1] and ηt in the constraints, as it is done in (7)-(8). Instead, as Infanger and Morton
[16] showed first (see also [13, 23]), it is also possible to compute ξt = bt(ξ[t−1], ηt) and

ξ[t] = b̃t(ξ[t−1], ηt) outside of the stage-t subproblem and to only use these vectors in the
SDDP subproblems then, similar to standard SDDP. In that case, the dependence on
ξ[t−1] is not immediately visible in the subproblems, and only taken into account in the
cut generation process. Again, cuts for Qt(·, ·) can be derived as functions in xt−1 and
ξ[t−1]. To include them in the stage-(t − 1) subproblem, ξt−1 and ξ[t−1] are computed
outside of the subproblem and then inserted into the RHS and the cut formulas. For
stage t, this yields subproblems of the form

Q
t

(
xt−1, ξ

(j)
[t]

)
=





min
xt

c⊤t xt +Qt+1(xt, ξ
(j)
[t] )

s.t. Tt−1xt−1 +Wtxt = ht(ξ
(j)
t )

xt ≥ 0.

(9)

Even more, it is also possible to adapt the cuts to the history ξ[t] outside of the
subproblems, such that only ξt explicitly enters these problems. More precisely, the
cut intercepts can be interpreted as being composed of a scenario-independent and a
scenario-dependent term, with the latter being adapted to the scenario at hand before
formulating the subproblem [16]:

αt(ξ[t−1]) = αind
t + αdep

t (ξ[t−1]). (10)

Explicit and recursive formulas for αind
t and αdep

t (ξ[t−1]) are provided in [16] for
different types of AR processes.

Importantly, even if cuts are computed, stored and evaluated in a different way with
this scenario-adaptable cut formula approach, the obtained cuts are equivalent to those
obtained by classical expanding the state space [22].

3.2 Cuts for General Nonlinear AR Processes

As pointed out before, for nonlinear AR processes bt(·, ·), several challenges occur.
First, if incorporated in the subproblems (7)-(8), the linearity of these problems is
destroyed. Second, and more crucial, even if this is avoided (see (9)), the expected
value functions Qt(·, ·) are in general non-convex in the history ξ[t−1]. Therefore, they
cannot be approximated by tight and valid linear cuts.

In this section, we show how nonlinear cuts for Qt(·, ·) can be derived instead,
given general nonlinear processes bt(·, ·). Afterwards, we highlight the computational
challenges that come with these cuts and why incorporating them in SDDP is intractable
in general. As a byproduct, we are able to identify why for the special case of log-linear
processes tractable closed-form expressions can be derived for the cuts.

We take a general perspective on the cut generation process in SDDP given some
nonlinear functions bt(ξ[t−1], ηt) and b̃t(ξ[t−1], ηt) as defined in (2) and (3). For this case,
we can derive a general cut formula for some arbitrary stage t.

Theorem 3.1. For any t = 2, . . . , T and any state (xt−1, ξ[t−1]), a valid cut for the
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expected value function Qt(·, ·) is given by

Qt(xt−1, ξ[t−1]) ≥
qt∑

j=1

pt−1,jβ
⊤
tj

︸ ︷︷ ︸
=:β⊤t

xt−1 +
T∑

τ=t

qt∑

j=1

ptjα
(τ)
tj (ξ[t−1])

︸ ︷︷ ︸
=:α

(τ)
t (ξ[t−1])

(11)

with

βtj := −(π∗
tj)

⊤Tt−1 (12)

and

α
(t)
tj (ξ[t−1]) := (π∗

tj)
⊤bt(ξ[t−1], η

(j)
t )

α
(τ)
tj (ξ[t−1]) :=

∑

r∈Rt+1

ρ∗rtjα
(τ)
r,t+1

(
b̃t(ξ[t−1], η

(j)
t )
)
, τ = t+ 1, . . . , T. (13)

Here, π∗
tj and ρ

∗
rtj denote dual optimal solutions for the original constraints and existing

cut constraints r ∈ Rt+1.
This cut is tight for Qt(·, ·) := Eηt

[
Q̃
t
(·,ηt)

]
at the state (x̄t−1, ξ̄[t−1]) of construction.

We provide a proof in Appendix A.1.
As the intercept terms depend on b̃t(·, ·), the cut is nonlinear, and in general non-

convex. Cut formula (11) reveals some of the computational challenges of evaluating
these cuts for a given scenario in SDDP. Assume that we cannot express the cuts (11)
through a closed-form expression. Then, the cut intercept consists of T−t+1 summands
and each of them has to be evaluated recursively. More precisely, each intercept term

α
(τ)
tj requires the intercepts for all cuts at stage t+1 evaluated for all possible realizations

η
(i)
t+1, i = 1, . . . , qt+1, each of which in turn require the intercepts for all cuts at stage t+2

evaluated for all possible realizations η
(k)
t+2, k = 1, . . . , qt+2, and so on. This means that

in order to evaluate cut formula (11), we have to traverse the whole subtree starting at
the node associated with ξ[t−1]. Even more, this has to be done every time a subproblem
is solved for a specific scenario and for each cut in order to adapt it to that scenario. As
the size of the scenario tree grows exponentially in T , this is computationally infeasible
in general. Moreover, it counteracts the concept of SDDP to avoid traversing the whole
tree in each iteration.

However, even if we are in principle able to derive closed-form expressions for the
cut intercepts, generating and evaluating these nonlinear cuts remains computationally
challenging. The reason is that for a general nonlinear function bt(·, ·), the formulas
become more and more complicated the more we step backwards through the stages. Let

us make that more precise. The intercept α
(T )
T in formulas (11)-(13) contains function

bT (ξ[T−1], ηT ). The intercept α
(T )
T−1 in formula (A.1) essentially amounts to a function

in the order of bT (̃bT−1(ξ[T−2], ηT−1), ηT ), and analogously the intercept α
(T )
t in (11)

essentially amounts to a function in the order of

bT

(
b̃T−1

(
· · · b̃t+1

(
b̃t(ξ[t−1], ηt), ηt+1

)
· · · , ηT−1

)
, ηT

)
. (14)

Most nonlinear functions bt(·, ·) do not possess explicit general closed-form expres-
sions for this kind of composition. In particular, the structure of the composite function
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may change for each stage. For instance, for polynomials the number of monomials and
the degree of the polynomial may not be the same for all t. This may severely complicate
deriving closed-form cut formulas in this case.

In contrast, for the linear case, for which efficient cut formulas have been derived in
the literature (see Sect. 3.1), this complication does not exist. We explore this by first
showing that formulas (11)-(13) generalize the linear case.

Corollary 3.2. Consider a linear order-p PAR process of form

ξt = bt(ξ[t−1], ηt) =

p∑

k=1

Φ
(k)
t ξt−k + ηt =

t−1∑

k=t−p
Φ

(t−k)
t ξk + ηt (15)

with parameter matrices Φ
(k)
t , k = 1, . . . , p, p ∈ N.

Then, the general cut formula (11) is valid, but the cut intercept summands from (13)
are described more specifically by the linear relations

α
(τ)
t (ξ[t−1]) =

t−1∑

k=t−p
C

(τ,t−k)
t ξk + ω

(τ)
t , τ = t, . . . , T, (16)

with matrices

C
(t,t−k)
tj := (π∗

tj)
⊤Φ(t−k)

t

C
(τ,t−k)
tj :=

{∑
r∈Rt+1

ρ∗rtj
(
C

(τ,t+1−k)
r,t+1 + C

(τ,1)
r,t+1Φ

(t−k)
t

)
, if k ≥ t− p+ 1

∑
r∈Rt+1

ρ∗rtjC
(τ,1)
r,t+1Φ

(t−k)
t , if k = t− p

,
(17)

for τ = t+ 1, . . . , T , vectors

ω
(t)
tj := (π∗

tj)
⊤η(j)t

ω
(τ)
tj :=

∑

r∈Rt+1

ρ∗rtj
(
C

(τ,1)
r,t+1η

(j)
t + ω

(τ)
r,t+1

)
, τ = t+ 1, . . . , T, (18)

and

C
(τ,t−k)
t :=

qt∑

j=1

ptjC
(τ,t−k)
tj , ω

(τ)
t :=

qt∑

j=1

ptjω
(τ)
tj , τ = t, . . . , T. (19)

We provide a proof for this result in Appendix A.2. Note that the formulas in

Corollary 3.2 can be further aggregated and simplified. For instance, C
(τ,t−k)
t and ω

(τ)
t

can be aggregated over all τ = t, . . . , T , so there is no need to store several of these
terms, see also the cut formulas in the literature cited in Sect. 3.1. Here, we present the
cuts in a form that directly relates to the formulas (11)-(13) for the general case. This
allows us to identify the similarities and the key differences between the linear and the
nonlinear case.

First, we obtain explicit closed-form expressions for α
(τ)
t (·), which only require the

constant quantities C
(τ,t+1−k)
r,t+1 and ω

(τ)
r,t+1 from the existing stage-(t+ 1) cuts instead of

a recursion including ξ[t−1]. This means that we do not have to recursively evaluate the
cut intercepts on the whole subtree starting at ξ[t−1], but only have to compute the cut
coefficients once.

Second, for all t, bt(·, ·) and b̃t(·, ·) are linear functions in ξ[t−1]. As compositions
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of linear functions are linear functions again, recursively the closed-form cut intercept
expressions for all stages can be shown to be linear, instead of changing their shape
between stages and becoming overly complicated. It is also this linearity that allows for
the previously mentioned additional aggregation.

For the general nonlinear case, one idea to deal with the challenges discussed above
is to approximate the intercepts in a reasonable way. In order to retain validity of the
cuts, the intercepts have to be underestimated. Under certain assumptions, this can be
achieved by limiting the number of intercept terms that are taken into account.

Assume that for all t = 2, . . . , T , we consider inequality constraints

Tt−1xt−1 +Wtxt ≥ ht(ξt)

in the subproblems, such that both types of dual multipliers πt and ρrt, r ∈ Rt+1,
are guaranteed non-negative. Additionally, assume that bt(·, ·) ≥ 0 (and thus, also
b̃(·, ·) ≥ 0) for all t.

In that case, by backward recursion, we can conclude that in (13) we have α
(τ)
tj ≥ 0

for all t = 2, . . . , T , τ = t, . . . , T and j = 1, . . . , qt. This directly implies that we
may underestimate the cut intercept by omitting some of these terms. In this regard,

note that by definition in (13), α
(t)
t involves no recursion, α

(t+1)
t involves a one-step

recursion, α
(t+2)
t involves a two-step recursion etc. Consequently, by truncating the cut

intercept to terms α
(τ)
t only for τ = t, . . . , τ̄ for some τ̄ ∈ N, τ̄ ∈ [t+ 1, T ], the required

recursion can be significantly limited. Moreover, as this also reduces the complexity of
the involved nonlinear function compositions, nonlinear closed-form expressions for the
cut intercepts are less difficult to derive.

We formalize this result in the following corollary.

Corollary 3.3. Let the coupling constraints in subproblems (4) be ≥-inequalities for all
t = 2, . . . , T and let bt(·, ·) ≥ 0 for all t = 1, . . . , T (and potentially required earlier lags).
Further, let τ̄ ∈ N and τ̄ ∈ [t+ 1, T ].

Then, for any t = 2, . . . , T and any state (xt−1, ξ[t−1]), a valid cut for the expected
value function Qt(·, ·) is given by

Qt(xt−1, ξ[t−1]) ≥ β⊤
t xt−1 +

τ̄∑

τ=t

α
(τ)
t (ξ[t−1]). (20)

The cuts given by (20) are not tight in general, so there exists a trade-off between
computational tractability of the nonlinear cuts in formula (11) on the one side and
approximation quality and convergence guarantees for SDDP on the other side. We
leave exploring this in detail for future research.

In the remainder of this paper, we take a different approach by considering a special
type of nonlinear process bt(·, ·) that allows the derivation of tractable explicit closed-
form expressions for nonlinear cuts. Importantly, similar to the linear case, the intercept
coefficients can be computed once recursively and, despite being nonlinear, the cut
formulas have the same structure for all stages t ∈ [T ]. The main reason is that for this
type of process, the compositions (14) are also structure-preserving. As a motivational
example, let bt(ξt−1) = eatξctt−1 for all t ∈ [T ] with some constants at, ct ∈ R. Then,
apart from a change in exponents,

bt
(
bt−1(ξt−2)

)
= eat

(
eat−1ξ

ct−1

t−2

)ct = eat+at−1ctξ
ct−1ct
t−2 (21)
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has exactly the same structure as bt(·, ·).

4 SDDP with Log-linear AR Processes

4.1 Log-linear AR Processes

In the remainder of this paper, we consider a special type of nonlinear AR processes to
describe the uncertainty in the RHS of (MSLP), which we call log-linear AR processes, as
they explain the autoregressive relation between ξt and ξ[t−1] in a logarithmized form. In
[18], such processes are also called geometric autoregressive. In the literature on SDDP,
this type of process is often considered in order to ensure that the realizations ξt are
guaranteed non-negative, which may not be the case for classical linear AR processes.
For instance, this feature is important for water inflows into hydro reservoirs [27].

We consider different types of log-linear AR processes, which differ in generality.
Later on, we derive cut formulas for all of them.

The General Case. We define the log-linear AR process componentwise (see
Remark 2.2), given some finite lag order p. More precisely, for any t ∈ [T ], for any
realization ξt and for some order p ∈ N, p < T , the components ξtℓ, ℓ = 1, . . . , Lt, are
defined by

log(ξtℓ) = γtℓ +

p∑

k=1

Lt−k∑

m=1

ϕ
(k)
tℓm log(ξt−k,m) + ψtℓηtℓ. (22)

Here, we use log(·) to denote the natural logarithm. The quantities γt ∈ RLt ,

ψt ∈ RLt and ϕ
(k)
tℓ ∈ RLt−k for ℓ = 1, . . . , Lt and k = 1, . . . , p are parameter vectors that

are estimated from the data, whereas ηt is a realization of the stagewise independent
vector ηt as defined in Sect. 2.

Remark 4.1. We make several remarks with respect to the above definition.

(1) By definition, process (22) is only well-defined for ξt > 0 for t ∈ [T ].

(2) In standard definitions of AR processes, the parameters in γ, ψ and ϕ(k) are often
assumed to be equivalent for all t ∈ [T ]. In contrast, we allow them to change with
t. For example, this is required if periodic autoregressive (PAR) processes are used
where separate models are estimated for different months, years or the like, but
ϕt = ϕt+κ, γt = γt+κ and ψt = ψt+κ for some period κ ∈ N [17].

(3) Importantly, process (22) allows for dependencies between process components,
i.e., one component ξtℓ is not only explained by an error term and by lagged values
of the same component ( i.e., ξt−p,ℓ, . . . , ξt−1,ℓ), but also by lagged values of other
components of the process. As a practical example, the inflows of different hydro
reservoirs may have some spatial dependency, which can be modeled by a spatial
periodic autoregressive (SPAR) process [17].

(4) In general (S)PAR processes, not only the coefficients, but also the lag orders ptℓm
are allowed to differ between stages t and components ℓ and m [13, 17]. However,
we abstain from this, thus assuming a constant lag order p ∈ N, p < T . As shown in
Sect. 4.3, this proves crucial in the generation of neat cut formulas. If less lagged
realizations are required for some index combination t, ℓ,m in practice, then we

12

365



may simply set the corresponding parameters ϕtℓm to 0, so that the corresponding
realization has no impact on the value of ξt.

(5) In the literature, see for instance [17], (SP)AR processes are often introduced in a
detrended form, which in our case translates to

log(ξtℓ)− µtℓ
σtℓ

=

p∑

k=1

Lt−k∑

m=1

ϕ̃
(k)
tℓm

log(ξt−k,m)− µt−k,m
σt−k,m

+ ηtℓ, (23)

with µtℓ the expected value and σtℓ the standard deviation of the process at stage t
and for component ℓ. This does not diminish the generality of formulation (22),

as (23) can always be converted to (22) by setting ϕ
(k)
tℓm = ϕ̃

(k)
tℓm

σtℓ
σt−k,m

, ψtℓ = σtℓ

and γtℓ = µtℓ −
∑p

k=1

∑Lt−k

m=1 ϕ
(k)
tℓmµt−k,m.

For each ℓ = 1, . . . , Lt we can use exponentiation on both sides of (22) to obtain

ξtℓ = eγtℓeψtℓηtℓ

p∏

k=1

Lt−k∏

m=1

ξ
ϕ
(k)
tℓm

t−k,m

= eγtℓeψtℓηtℓ

t−1∏

k=t−p

Lk∏

m=1

ξ
ϕ
(t−k)
tℓm

km

=: b
(p)
tℓ (ξ[t−p:t−1], ηt).

(24)

Note that this expression resembles (21). Furthermore, this definition corresponds
to the definition of function bt(·, ·) in (2), with an additional index signifying the lag
order p and with ξ[t−p:t−1] := (ξt−p, . . . , ξt−1) summarizing only the required history of
ξt for this lag order.

We consider two special cases of log-linear AR processes.
Special Case: Componentwise Independent Lag-p Process. In many appli-

cations, it may be sufficient to assume componentwise independent processes, that is,
only lags of the same component are used to explain ξtℓ. In that case, it is reasonable
to assume Lt ≡ L for all t ∈ [T ]. The process equation (22) then simplifies to

log(ξtℓ) = γtℓ +

p∑

k=1

ϕ
(k)
tℓ log(ξt−k,ℓ) + ψtℓηtℓ

for each ℓ = 1, . . . , L, and (24) simplifies to

ξtℓ = eγtℓeψtℓηtℓ

t−1∏

k=t−p
ξ
ϕ
(t−k)
tℓ

kℓ = b
(p)
tℓ (ξ[t−p:t−1], ηt).

Summarizing this for all components, we can use vector notation and express this
more compactly as

ξt = eγt ⊙ eψtηt ⊙ ξϕ
(1)
t

t−1 ⊙ · · · ⊙ ξ
ϕ
(p)
t

t−p

= eγt ⊙ eψtηt ⊙
p⊙

k=1

ξ
ϕ
(k)
t

t−k

= b
(p)
t (ξt−p:t−1, ηt).

(25)
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Here, all vector exponents are applied componentwise, either to the same value if
the base is a scalar or to the corresponding component if the base is a vector. The
operator ⊙ denotes the Hadamard product (componentwise product) of vectors, and
the operator

⊙
denotes an indexed sequence of Hadamard products.

Special Case: Componentwise Independent Lag-1 Process. For p = 1,
process (25) further simplifies to

ξt = eγt ⊙ eψtηt ⊙ ξϕtt−1 = bt(ξt−1, ηt). (26)

In this case, we may omit the upper index k for ϕt.

4.2 Existing Approaches

We now turn to how SDDP can be applied in the case of uncertainty in the RHS of
(MSLP) that is modeled by processes (22) (or its special cases (25)-(26)). As discussed
in Sect. 3.1, the functions Qt(·, ·) become non-convex, and nonlinear approximations
are required to ensure convergence of SDDP.

To avoid this difficulty, in the literature on SDDP it is proposed to either draw on
Markov chains instead of general AR processes to model nonlinear uncertainty [18] or
to linearize the process (22) (or its special cases (25)-(26)) [27]. More precisely, Shapiro
et al. [27] propose to approximate the function bt(·, ·) in (25) by a linear function b̂t(·)
using a first-order Taylor approximation. This linear process has the special feature
that the stagewise independent error terms ηt enter its formula in a multiplicative form.
Still, this simplifies the model in such a way that only convex (but modified) expected
value functions Q̂t(·, ·) are considered in SDDP. Therefore, expanding the state space
and cut generation can be applied in the same way as for the standard linear case. As
the random process is linearized, (MSLP) is only solved approximately, though.

In addition to this linearization approach, we should note that under special con-
ditions the functions bt(·, ·) defining the processes (22), (25) or (26) are convex in
ξ[t−p:t−1]. In such a case, despite the nonlinearity of the process, the expected value
functions Qt(·, ·) remain convex in all states. This means that linear cuts can be con-
structed using the cut generation approach by Guigues [13] that we already mentioned
in Sect. 3.2. As these cuts are not only valid, but also tight at trial points xit−1, almost
sure finite convergence of SDDP is ensured [13].

The crucial part is that some strict assumptions have to be satisfied for this case
to apply. First, it is required that ξt only enters the RHS of ≥-constraints instead of
equality constraints in (MSLP), which may not yield an equivalent problem. Second,
convexity of bt(·, ·) may impose strict restrictions on the possible choice of coefficients
ϕktℓm. Third, the approach by Guigues [13] additionally requires that bt(·, ·) is mono-
tonically increasing, further restricting the possible values of ϕktℓm. These requirements
may not be satisfied in all practical applications.

We propose a novel and differing SDDP approach, exploiting the special structure
of processes (22). In particular, we do neither linearize the functions bt(·, ·) nor re-
quire convexity, monotonicity or a specific type of constraints. This directly implies
that we have to deal with non-convex value functions Qt(·, ·). In our SDDP approach,
we therefore obtain cuts that are nonlinear (and in general non-convex) in ξ[t−p:t−1].
In contrast to the general case presented in Sect. 3.2, however, we are able to derive
tractable closed-form expressions for these cuts, for which the coefficients can be com-
puted recursively.
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Table 1: Comparison with approaches in the literature.

Shapiro et al. [27] Guigues [13] Our work

Process bt(·, ·)
- Type linearized convex* non-convex
- Monotonicity no yes* no
- Componentwise no yes no (22) /

independent yes (25),(26)

Constraint type arbitrary ≥ arbitrary
RHS ht(·) constant monotonic constant
Expanding the state explicitly cut generation cut generation
Value functions convexified convex non-convex

Cuts
- Type in xt−1 linear linear linear
- Type in ξ[t−1] linear linear non-convex
- Tightness yes yes yes

Tackled problem approximation original* original

* restricts possible values of ϕ
(k)
tℓm

Finally, we postulate that even if we restrict to the convex setting discussed above,
our proposed nonlinear (but then convex) cuts provide better approximations of the
convex functions Qt(·, ·) than the linear ones proposed in [13], as they better capture
the nonlinear nature of these functions.

We summarize and compare the properties of all three approaches in Table 1.

4.3 Nonlinear Cut Formulas

We derive and present closed-form expressions of nonlinear cuts for the expected value
functions Qt(·, ·), t = 2, . . . , T , if the log-linear autoregressive processes defined in the
previous section are used to model the uncertainty in the RHS of (MSLP).

4.3.1 The General Case

We first consider the general case, that is, process (22) or (24), respectively.
For any t = 2, . . . , T − 1, let the set Rt+1 index cuts that have been derived for

stage t + 1 already, and let αr,t+1 denote the associated cut intercepts. Moreover, for

any t = 2, . . . , T , some state (x̄t−1, ξ̄[t−p:t−1]) and some realization η
(j)
t , j = 1, . . . , qt, let

(π∗
tj , ρ

∗
rtj) denote the dual optimal solutions to the corresponding dual subproblems. We

can then define cut coefficients

β⊤
tj := −

(
π∗
tj

)⊤
Tt−1,

α
(t)
tℓj := π∗

tℓje
γtℓeψtℓη

(j)
tℓ ,

α
(τ)
tℓj :=

( ∑

r∈Rt+1

ρ∗rtj
(
α
(τ)
r,t+1,ℓ

)) Lt∏

ν=1

eγtνΘ(t+1,τ,ℓ,ν,t)eψtνη
(j)
tν Θ(t+1,τ,ℓ,ν,t),

τ = t+ 1, . . . , T

(27)
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for t = 2, . . . , T, ℓ = 1, . . . , Lτ and j = 1, . . . , qt, and

βt :=

qt∑

j=1

ptjβtj

α
(τ)
tℓ :=

qt∑

j=1

ptjα
(τ)
tℓj , τ = t, . . . , T,

(28)

together with recursively defined quantities

Θ(t, t, ℓ,m, k) := ϕ
(t−k)
tℓm

Θ(t, τ, ℓ,m, k) :=





∑Lt
ν=1

(
ϕ
(t−k)
tνm Θ(t+ 1, τ, ℓ, ν, t)

)

+Θ(t+ 1, τ, ℓ,m, k), if k ≥ t− p+ 1∑Lt
ν=1

(
ϕ
(p)
tνmΘ(t+ 1, τ, ℓ, ν, t)

)
, if k = t− p

(29)

for t = 2, . . . , T , τ = t+ 1, . . . , T , k = t− p, . . . , t− 1, ℓ = 1, . . . , Lτ and m = 1, . . . , Lk.
For the expected value function at stage t, we obtain the following cut result.

Theorem 4.2. Suppose that the RHS uncertainty in problem (MSLP) is defined by
process (24) with p ∈ N, p < T . For any t = 2, . . . , T and any state (xt−1, ξ[t−p:t−1]), a
nonlinear cut for Qt(·, ·) is given by

Qt(xt−1, ξ[t−p:t−1]) ≥ β⊤
t xt−1 +

T∑

τ=t

Lτ∑

ℓ=1

(
α
(τ)
tℓ

t−1∏

k=t−p

Lk∏

m=1

ξ
Θ(t,τ,ℓ,m,k)
km

)
, (30)

with the coefficients defined as in (27)-(29).

We provide a proof in Appendix A.3.
The cut coefficients in (27) are independent of ξ[t−p:t−1], so they just have to be

computed once after solving the corresponding subproblems (6) in SDDP. We discuss
this in more detail in Sect. 4.4.

Remark 4.3. Recall that for linear AR processes, we can dissect the cut into a cut
gradient for xt−1, which is multiplied with xt−1, a cut gradient for ξt−1, which is mul-
tiplied with ξt−1 (this may also be interpreted as a scenario-dependent cut intercept,
see (10)), and a scenario-independent cut intercept [16]. Here, the same additive dis-
section is not possible. We have a cut gradient βt for xt−1, but the cut intercept is the

sum of scalar products of scenario-independent vectors α
(τ)
t and powers of (components

of) lagged variables in ξ[t−p:t−1].

The cut formula (30) in Theorem 4.2 shows the validity of the nonlinear cuts with
respect to underestimating Qt(·, ·). Analogously to linear cuts in standard SDDP, see
Sect. D in the EC, these nonlinear cuts possess some more beneficial properties. The
most important one is tightness.

Corollary 4.4. The cuts defined in Theorem 4.2 are tight for Qt(·, ·) at (x̄t−1, ξ̄[t−p:t−1]).

Proof. This result follows from equation (40). Reformulating the right-hand side and
taking expectations in the same way as in the proof of Theorem 4.2 yields the RHS of
cut formula (30) evaluated at (x̄t−1, ξ̄[t−p:t−1]). Taking expectations over the left-hand
side yields Qt(x̄t−1, ξ̄[t−p:t−1])).
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Additionally, as the dual feasible sets of the dual subproblems are independent of
xt−1 and ξ[t−p:t−1] for all stages t ∈ [T ] (see proof of Theorem 4.2), by restricting to
optimal dual basic solutions, only finitely many different cuts can be generated. This
is crucial for finite convergence of SDDP.

4.3.2 Special Case: Componentwise Independent Lag-p Process.

We now address the special case of process (25). In this case, the cut coefficients simplify
to the vectorial form

β⊤
tj := −

(
π∗
tj

)⊤
Tt−1,

α
(t)
tj := π∗

tj ⊙ eγt ⊙ eψtη
(j)
t ,

α
(τ)
tj :=

( ∑

r∈Rt+1

ρ∗rtj
(
α
(τ)
r,t+1

))
⊙ eγtΘ(t+1,τ,t) ⊙ eψtη

(j)
t Θ(t+1,τ,t),

τ = t+ 1, . . . , T

(31)

and

βt :=

qt∑

j=1

ptjβtj

α
(τ)
t :=

qt∑

j=1

ptjα
(τ)
tj , τ = t, . . . , T,

(32)

with recursively defined quantities

Θ(t, t, k) := ϕ
(t−k)
t

Θ(t, τ, k) :=

{
ϕ
(t−k)
t Θ(t+ 1, τ, t) + Θ(t+ 1, τ, k), if k ≥ t− p+ 1

ϕ
(p)
t Θ(t+ 1, τ, t), if k = t− p

(33)

for t = 2, . . . , T , τ = t+ 1, . . . , T and k = t− p, . . . , t− 1.
For the cuts, we obtain the following result.

Corollary 4.5. Suppose that the RHS uncertainty in problem (MSLP) is defined by
process (25) with p ∈ N, p < T . For any t = 2, . . . , T and any state (xt−1, ξ[t−p:t−1]), a
valid nonlinear cut for Qt(·, ·) is given by

Qt(xt−1, ξ[t−p:t−1]) ≥ β⊤
t xt−1 +

T∑

τ=t

(
α
(τ)
t

)⊤ t−1⊙

k=t−p
ξ
Θ(t,τ,k)
k , (34)

with the coefficients defined as in (31)-(33). This cut is tight at Qt(x̄t−1, ξ̄[t−p:t−1])).
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4.3.3 Special Case: Componentwise Independent Lag-1 Process.

With a further simplification to p = 1, i.e., for process (26), we obtain cut coefficients

β⊤
tj := −

(
π∗
tj

)⊤
Tt−1,

α
(t)
tj := π∗

tj ⊙ eγt ⊙ eψtη
(j)
t ,

α
(τ)
tj :=

( ∑

r∈Rt+1

ρ∗rtj
(
α
(τ)
r,t+1

))
⊙ eγt

∏τ
k=t+1 ϕk ⊙ eψtη

(j)
t

∏τ
k=t+1 ϕk ,

τ = t+ 1, . . . , T

(35)

and

βt :=

qt∑

j=1

ptjβtj

α
(τ)
t :=

qt∑

j=1

ptjα
(τ)
tj , τ = t, . . . , T.

(36)

For the cuts, we obtain the following result

Corollary 4.6. Suppose that the RHS uncertainty in problem (MSLP) is defined by
process (26). For any t = 2, . . . , T and any state (xt−1, ξt−1), a valid nonlinear cut for
Qt(·, ·) is given by

Qt(xt−1, ξt−1) ≥ β⊤
t xt−1 +

(
α
(t)
t

)⊤
ξϕtt−1 +

T∑

τ=t+1

(
α
(τ)
t

)⊤
ξ
∏τ

k=t ϕk
t−1 , (37)

with the coefficients defined as in (35)-(36). This cut is tight at Qt(x̄t−1, ξ̄[t−p:t−1])).

4.3.4 Illustrative Examples

Example 4.7 (Non-convex expected value function). We consider an illustrative 3-
stage example for SDDP with componentwise independent lag-1 processes (26).

The subproblems in the first iteration of SDDP are

v∗ = min
{
|x1 − 4|+ θ1 : x1 ∈ [0, 6], θ1 ≥ 0

}
,

Q2(x1, ξ2) = min
{
2y2 + x2 + θ2 : y2 − x2 = ξ2 − x1, x2, y2 ∈ [0, 6], θ2 ≥ 0

}
,

Q3(x2, ξ3) = min
{
x31 + x32 : x31 − x32 = ξ3 − x2, x31, x32 ∈ [0, 6]

}

with the RHS uncertainty described by

ξ1 = 3, ξt = eηtξ
1
4
t−1, ηt ∈ {−1, 1} , for t = 2, 3. (38)

The stage-1 objective is nonlinear, but the absolute value can be reformulated using
linear constraints.

We focus our analysis of the non-convex cuts on Q3(·, ·), for which values of ξ2 ≈
0.484 and ξ2 ≈ 3.577 may occur in the subproblems. This function is depicted in Fig-
ure 1a. It is convex in x22, but not in ξ2, thus non-convex.
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(a) Expected value function Q3(·, ·).
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(b) Non-convex cut for Q3(·, ·).

Figure 1: Expected value function Q3(·, ·) and non-convex cut for Example 4.7.

In iteration i = 1 of SDDP, we sample (η12, η
1
3) = (1, 1), and thus obtain ξ12 ≈ 3.577

and ξ13 ≈ 3.738. The forward pass yields the trial points x11 = 4 and x12 = 0.4225 at
which cuts are constructed in the backward pass.

For stage 3, we obtain the non-convex cut

θ2 ≥ −x2 +
1

2
(e−1 + e1)ξ

1
4
2 ,

which is illustrated in Figures 1b and 2.
For stage 2, we may derive the non-convex cut

θ1 ≥
1

2
x1 −

1

2
e−1ξ

1
4
1 +

1

4

(
e−

3
4 + e

5
4
)
ξ

1
16
1 ,

even though its dependence on ξ1 is irrelevant due to ξ1 being fixed to 3.

Example 4.8 (Convex expected value functions). We consider the illustrative problem
from Example 4.7, but now with ≥-inequalities in all former equality constraints. More-
over, while ξ1, ξ2 and η2 are defined as in (38), the RHS uncertainty at stage 3 is now
described by

ξ3 = eη3ξ
3
2
2 , η3 ∈ {−2,−1} .

In this setting, Q3(·, ·) is convex in x2 and ξ2, as shown in Figure 3a.
In iteration i = 1, at stage t = 3 and trial point (x12, ξ2) ≈ (0.4225, 3.577), we

generate the cut

θ2 ≥ −x2 +
1

2
(e−1 + e−2)ξ

3
2
2 ,

which is a nonlinear, but convex function. Additionally, we use the approach from [13]
to generate a linear cut at the same state. Both cuts are illustrated in Figure 3b. We
can see that both cuts are tight at the point of construction, but that the nonlinear cut
provides a better approximation at different values of ξ2.
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(a) Q3(·, ·) (black) and non-convex cut (blue)
projected on trial point x12 = 0.4225.
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(b) Q3(·, ·) (black) and non-convex cut (blue)
projected on x2 = 0. Both projections coin-
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(c) Q3(·, ·) and non-convex cut projected on
x2 = 2.

Figure 2: Non-convex cut obtained for Q3(·, ·) in Example 4.7.
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(a) Convex expected value function Q3(·, ·).
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(b) Convex expected value function Q3(·, ·)
(black), linear cut (blue) and nonlinear cut
(red) projected on x12 = 0.4225.

Figure 3: Expected value function and cuts for Example 4.8.

4.4 Integration into SDDP

The nonlinear (and in general non-convex) cuts derived in Sect. 4.3 can be incorporated
into SDDP (see Alg. 1 in Sect. D of the EC) without substantial changes to the algo-
rithm. Importantly, due to the validity, tightness and finiteness of the cuts, almost sure
finite convergence is assured as for standard SDDP.

Approach I: Including Nonlinear Cuts in Subproblems. In the vein of for-
mulation (8), for all stages t = 1, . . . , T − 1, we can incorporate the cuts for Qt+1(·, ·)
in the stage-t subproblem (6) in their nonlinear form (30). In both the RHS of the
original constraints and in cut formula (30), we then have to replace each occurrence of
ξt with function bt(ξ[t−p:t−1], ηt) in order to express it using the stage-t state variables.
As functions in ξ[t−p:t−1], the cuts can then be evaluated for the scenario at hand.

Whereas this approach introduces nonlinear terms into the stage-t subproblem, these
terms are only nonlinear in parameters ηt and states ξ[t−p:t−1] that are fixed for the
subproblem, but remain linear in all decision variables, as long as we do not follow
formulation approach (7). Therefore, the subproblems remain linear and we can use
SDDP as usual. Apart from expanding the state space, the only difference in SDDP is
that when cuts are generated (lines 15-16 of Alg. 1 in Sect. D of the EC), the formulas
for linear cuts have to be replaced with the respective formulas from Sect. 4.3.

We acknowledge that many solvers and modeling frameworks (e.g., the SDDP.jl and
JuMP.jl packages in Julia that our experiments in Sect. 5 are based on) do not allow
for nonlinear terms in linear programs, no matter if they contain parameters or decision
variables. In such a case, a different approach can be applied to use the nonlinear cuts
from Sect. 4.3.

Approach II: Adapting the Cut Intercepts. In the vein of formulation (9)
and the cut-adaptation formulas by Infanger and Morton [16], alternatively we can
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Table 2: Computation complexity and storage requirements of cut formulas.

Process (24) (25) (26)
Lag Order p > 1 p > 1 p = 1
Formulas (27)-(30) (31)-(34) (35)-(37)

Operation Complexity Frequency

COMPUTE(Θ) O(T 2L3p) O(T 2Lp) O(T 2L) once
COMPUTE(β) O(Lnq) O(Lnq) O(Lnq) per cut
COMPUTE(α) O(RTL2q) O(RTLq) O(RTLq) per cut
EVAL(stage-t cut) O(TL2pn) O(TLpn) O(TLn) per cut & iteration
EVAL(stage-t cuts) O(RTL2pn) O(RTLpn) O(RTLn) per stage & iteration
EVAL(all cuts) O(RT 2L2pn) O(RT 2Lpn) O(RT 2Ln) per iteration

STORE(γ) O(TL) O(TL) O(TL)
STORE(ψ) O(TL) O(TL) O(TL)
STORE(ϕ) O(TL2p) O(TLp) O(TL)
STORE(Θ) O(T 2L2p) O(T 2Lp) O(T 2L)
STORE(one stage-t cut) O(TL) O(TL) O(TL)
STORE(all stage-t cuts) O(RTL) O(RTL) O(RTL)
STORE(all cuts) O(RT 2L) O(RT 2L) O(RT 2L)

T : number of stages, L : dimension of ξ, n : dimension of x (state space dimension)

R : number of existing cuts, p : lag order, q : number of realizations of η

first compute ξt outside of the stage-t subproblem. For all cuts existing in the stage-

t subproblem, we can then use the known values of ξ[t+1−p:t] and η
(j)
t to evaluate the

intercepts in cut formula (30) and to adapt them to the given scenario within the stage-t
subproblem. In this case, in SDDP still linear cut formulas are used, but the intercepts
are scenario-dependent. This means that each time, a subproblem is solved in SDDP
(lines 6, 9, 13, 18 of Alg. 1 in Sect. D of the EC), first the intercepts of all existing cuts
have to be adapted to the current scenario.

Computation and Storage Requirements. We now analyze the computational
and storage requirements if our nonlinear cuts are used within SDDP. All the coefficients,
exponents and parameters that have to be computed, stored or evaluated depend on
several index sets. In order to provide a clear picture of the requirements, we summarize
them in Table 2. We distinguish between the three cases of log-linear processes for which
we derived cut formulas in the previous subsections. The storage requirements are based
on the indices of the considered cuts and cut coefficients (note that some of them are
hidden in vector notation in the cut formulas). The computational complexity is based
on the formulas itself.

First, clearly the parameters ϕ and γ defining the data process (22) have to be
known and stored (see STORE(γ) and STORE(ϕ) in Table 2). Additionally, the cut
formulas require quantities Θ(·), as defined in (29). Noteworthy, whereas depending on
the stage t, the intercept factor index τ , the lag k and the component ℓ, these quantities
do neither depend on the current iteration nor on the considered scenario. Therefore,
they can be computed recursively starting at stage T once before running SDDP (see
COMPUTE(Θ) in Table 2) and then be stored centrally (see STORE(Θ) in Table 2).

When a nonlinear cut (30) is computed, the scenario-independent coefficients βt and
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α
(t)
t , . . . , α

(τ)
t have to be computed using formulas (27)-(28) or the simpler alternative

formulas (see COMPUTE(β) and COMPUTE(α) in Table 2). Once computed, these
coefficients have to be stored for the given cut (see STORE(one stage-t cut) in Table 2).
They can then be used in order to add the cut formula to the subproblem of stage-(t−1)
explicitly (Approach I), to evaluate and adapt the cut for a given scenario outside of the
subproblem (Approach II), and also to compute the coefficients at the previous stage;

recall that each computation of some α
(τ)
t requires the intercept factors α

(τ)
t+1 from the

following stage.
If Approach II is used, additionally all cut intercepts have to be adapted manually

to the current scenario before a particular subproblem can be solved (see EVAL in

Table 2). As all required coefficients like α
(τ)
t and Θ(·) have already been computed

and stored before, only the actual cut intercept formula has to be evaluated by taking
the required values and inserting them into formula (30). Importantly, the product∏t−1
k=t−p

∏Lk
m=1 ξ

Θ(t,τ,ℓ,m,k)
km in the intercept formula only has to be computed once per

subproblem, as it is cut-independent.
Given that Approach II is used and that one cut is generated per stage, we can

estimate the (worst-case) computational complexity per iteration by

COMPUTE(β) · T +COMPUTE(α) · T + EVAL(all cuts) = O(RT 2L2pnq).

We conclude that the computation/evaluation and storage effort can be quite signif-
icant, especially for large values of T, L and R. In particular, it grows with the number
of previously generated cuts R = TI with I the number of finished iterations. However,
in contrast to the general nonlinear case discussed in Sect. 3.2, the complexity does not
grow exponentially in the number of stages, as it does not depend on the size of the
scenario tree. It is polynomial.

As SDDP is known to have a worst-case iteration complexity (number of iterations
until convergence) that is exponential in T , exponential in n (as well as p and L if
expanding the state space) and polynomial in qt, we suspect that the polynomial cut
generation cost should be computationally bearable. Additionally, compared to using
linear cuts, our cuts ensure almost sure convergence for SDDP applied to the true
(MSLP) (see Table 1). Finally, when the value functions of (MSLP) are convex, our
cuts lead to higher cost per iteration than linear cuts, but may also reduce the number
of required iterations to achieve convergence.

5 Computational Tests

5.1 Case Study Description and Inflow Modeling

We test our version of SDDP on a long-term hydrothermal scheduling (LTHS) problem
using a simplified version of the Brazilian power system with 4 reservoirs, 95 generators
and a planning horizon of 60 months. The reservoirs are modeled as energy-equivalent
reservoirs (EER) representing the regions Southeast (SE), South (S), Northeast (NE)
and North(N) of the Brazilian power system, and thus aggregating information of several
existing hydro reservoirs. In addition to the four EERs, the power system contains a
fifth transshipment node (T) used to model transmission constraints.

This problem has been widely studied in the literature, see for instance [18, 26, 27].
The objective of LTHS is to compute an optimal operation policy for the power system,
meaning that the load in each month and node is covered by the power supply from
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thermal generators and hydro power plants or power flow from another node at a cost
minimum, while satisfying generator limits and transmission constraints. As we assume
the hydro inflows to be stochastic, LTHS can be modeled as a multistage stochastic
problem, where we aim for a policy with optimal expected cost. For the full problem
formulation, we refer to Sect. D in the EC.

To model the stochastic inflows for the four reservoirs, we fit a loglinear PAR model
of type (25) based on historic monthly inflow data from 1931 to 2009. We consider two
different model variants.

� LOG-BIC. A loglinear PAR model where the lag orders for each component are
selected using the Bayesian Information Criterion (BIC). This choice yields p = 10.

� LOG-1. A loglinear PAR model where the lag order is fixed to p = 1.

A comprehensive description of the model fitting and validation steps, as well as the
obtained model specification, is provided in Sect. E of the EC.

For comparison, we also consider variants of a linearized AR model, based on the
Taylor approximation approach described in Sect. 4.2.

� LIN-FIT. A linear AR model of order 1 fitted using the same procedure as the
log-linear models.

� LIN-SHA. A linear AR model of order 1 with parameters as reported in [26].

Note that our fitted model LIN-FIT uses a univariate distribution for each compo-
nent to model the stagewise independent random variable ηt, whereas LIN-SHA uses a
multivariate distribution [26].

Remarkably, the average inflow level obtained using LOG-BIC and LOG-1 is consis-
tently lower than for the linearized models. For instance, for the largest system SE it is
3-4% lower on average. A simulation analysis indicates that sample paths obtained from
the log-linear models better match the statistical properties of the historical monthly
inflow data, so they provide a more accurate representation of the inflows. Note that
similar observations are made in [18]. For details, again we refer to Sect. E of the EC.

As we shall see, this difference in inflow levels also results in a clear difference of
total costs, thus highlighting the importance of directly incorporating log-linear inflows
models into SDDP instead of linearizing them. On the other hand, different inflow levels
make it hard to get a clear comparison of both considered versions of SDDP in itself.

5.2 Implementation

Our version of SDDP, incorporating the nonlinear cuts from Sect. 4, is implemented in
Julia-1.9.2 [3] based on the existing packages SDDP.jl [7] and JuMP.jl [8]. The code
and our test data are available on GitHub, see https://github.com/ChrisFuelOR/

LogLinearSDDP.jl.
All LP subproblems are solved using Gurobi 9.0.3 with an optimality tolerance of

10−4. As Gurobi does not allow nonlinear functions in the constraints, even if they are
linear in all decision variables, we apply “Approach II: Adapting the Cut Intercepts”
from Sect. 4.4 in our implementation.

LTHS is solved for a planning horizon of 120 stages (60 original stages + 60 stages
to remove the end-of-horizon effect) and for 100 different realizations of the stagewise
independent random variable ηt per stage. SDDP is terminated after 1000 iterations. In
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each forward pass, one scenario path is randomly sampled. We execute five independent
runs of SDDP for each model variant, differing in the seed chosen for the forward pass
sampling, and present average results.

After termination of SDDP, an in-sample Monte Carlo simulation is conducted to
compute a statistical upper bound for the current policy. Additionally, we perform
several out-of-sample Monte Carlo simulations. In particular, we cross-validate each
policy (obtained for one specific inflow model) using out-of-sample inflow data from
each of the other inflow models. All simulations use 2000 replications.

For the linearized inflow models, the same configuration as above is used for running
SDDP and the following simulations, however, the standard SDDP implementation in
SDDP.jl is applied.

All experiments are executed on a Windows machine with 128 GB RAM and an
AMD Ryzen 9 7900X 12-Core processor (4.7 GHz).

5.3 Computational Results

We now present the results of our experiments, starting with the output of SDDP.

5.3.1 SDDP Results

We first analyze the quality and development of the bounds obtained in SDDP. The
lower bounds (LB) and the simulated objective values per iteration are depicted in
Fig. 4 for all four model variants. More precisely, what is shown are the averages over
the 5 independent runs of SDDP. For the fluctuating simulated objective values we
additionally plot a moving-average with a window length of 50. We observe a similar
convergence behavior of SDDP in all four cases. The bounds obtained for LOG-BIC and
LOG-1 are similar, with slightly higher values for LOG-BIC.

Both, the LBs and the simulated objective values, are significantly lower for LIN-FIT
and LIN-SHA. As mentioned before, the main reason for this difference is that the inflows
obtained using the linearized inflow models tend to exceed those obtained using the log-
linear models by about 3-4%, which leads to about 30% lower total costs.

Despite different levels of inflows, we may still compare both versions of SDDP by
consulting the statistical UBs computed in the in-sample simulation. These bounds are
also depicted in Fig. 4 in dashed black lines. On average, the gap between the UBs and
LBs is smaller for the log-linear models (27-28% compared to 29-32%).

On the other hand, comparing the computational cost, we observe that our version
of SDDP exhibits some significant overhead. As Fig. 5 shows, the iteration time is
considerably higher than for standard SDDP using a linearized AR model. Moreover, it
also shows a linear increase over the iterations, as the number of cuts increases. This is
in line with our theoretical analysis in Sect. 4.4. As expected, the time per iteration is
higher for LOG-BIC compared to LOG-1. However, the difference is not too substantial
given that p is 10 times larger for LOG-BIC.

To analyze which algorithmic steps are most time consuming in practice, we acquire
data on the time requirements for individual steps. The results are presented in Sect. F
of the EC. It is evident that two steps are critical. First, the computation of factors(∑

r∈Rt+1
ρ∗rtj
(
α
(τ)
r,t+1,ℓ

))
. Second, the re-evaluation of the cut intercepts for each cut

and each given scenario. Both steps have in common that they require to iterate over
all existing cuts, i.e., r ∈ Rt+1.
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(b) LOG-1.
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Figure 4: Development of lower bounds (LB) and simulated objective values over itera-
tions of SDDP. Bounds are averaged over 5 independent runs. For the simulated values,
also a moving-average with windows length 50 is plotted (see thick blue lines). The
black dashed lines highlight the statistical UBs obtained in the in-sample simulation
after SDDP has terminated.

5.3.2 Out-of-sample Simulation Performance

As mentioned before, for each policy obtained by running SDDP with a specific inflow
model, we perform simulations using out-of-sample data for each of the other inflow
models. Again, we present results for averages over 5 independent runs, i.e., 5 different
policies. In each run, for each policy, the same out-of-sample data is used. Fig. 6
illustrates the obtained average total costs (statistical UBs) and confidence intervals.
We can see that the log-linear models consistently outperform the linearized ones, and
yield better performing policies.

Assuming that the true inflows follow a log-linear PAR model, running our tailor-
made version of SDDP instead of standard SDDP with a linearized inflow model leads
to a 7-10% reduction of the average total cost in the out-of-sample simulations. These
improvements are not limited to average costs: The cost distributions over all sample
paths lean towards lower costs in general, as shown in Sect. F.1 of the EC.

An explanation for this observation is that the policies based on linear inflow models
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Figure 5: Time (in seconds) per iteration of SDDP.
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Figure 6: Average statistical upper bounds (and confidence intervals) in out-of-sample
simulations over 5 independent runs.

tend to use more hydro power in water-rich periods, leading to lower reservoir levels
and the occurrence of higher supply deficits in arid periods, as noticeable in Fig. 7.
This, in turn, may be attributed to the policies being “trained” on a higher inflow level
on average. However, interestingly, the policies based on log-linear inflow models even
yield slightly lower costs on average when simulated with data from the linearized inflow
models, i.e., data exhibiting higher inflows on average. One possible explanation is that
for both types of models, after 1000 iterations of SDDP, the obtained policies are still
far from optimal, but with lower in-sample gaps for the log-linear models, see above.

5.4 Discussion

Our computational experiments show that our proposed version of SDDP works as
intended, so they can be regarded as a proof of concept.

We observe that the performance of SDDP using log-linear and linearized inflow
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Figure 7: Average of reservoir volumes and supply deficit costs over the first 60 stages
for 2000 out-of-sample simulations on LOG-1 inflow data.

models is hard to compare, as the inflow levels differ significantly. Especially the ob-
tained bounds cannot be directly compared. A comparison of the out-of-sample per-
formance of the obtained policies is possible, though. Here, the policies obtained from
the log-linear models yield superior results. In particular, assuming that the log-linear
inflow model is correct, using standard SDDP with a linearization leads to a 7-10% cost
increase in out-of-sample simulations compared to our proposed version of SDDP. This
is important, as our model validation results indeed show that the log-linear models
provide a more accurate description of the inflows based on their historical data.

In general, for both types of models, we observe a remarkable difference in total cost
and obtained policies. This sensitivity underlines the importance of running SDDP with
an appropriate inflow model. Our proposed approach allows for more flexibility, and
thus potentially more accuracy in that regard.

Crucially, we experience a considerable computational overhead using our non-
convex cuts in SDDP. This is mostly caused by the requirement to iterate over all
existing cuts when computing cut intercept factors or adapting the cut intercepts to a
given scenario. There exist several mechanisms to improve the performance, though.
First, we conjecture that the computation of the cut intercept factors may be imple-
mented in a more efficient way than we did. Second, the overhead from adapting the
cut intercepts can be reduced by directly incorporating the non-convex cuts into the
subproblems giving that solvers support this. Third, we show in Sect. G of the EC that
our approach naturally allows for a hybrid SDDP where a log-linear AR process and
non-convex cuts are used in early stages, while a coarser linearized process and linear
cuts are used in later stages.

Finally, we notice that our experiments do not allow for an unobscured performance
comparison between non-convex and linear cuts, and the associated versions of SDDP.
The reason is that the considered inflow models also lead to differences in the inflow lev-
els, and thus the considered models itself. Some tests using scaled inflows, see Sect. F.2
of the EC, indicate that for similar inflow levels also the performance of the policies
obtained from both versions of SDDP is similar. However, exploring this in more detail
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is left for future research. To get a completely fair comparison, a case study with a
convex log-linear AR process could be analyzed. In that case, the exact same inflows
can be used in SDDP with either non-convex cuts or linear cuts.

6 Conclusion

In this paper, we explore in detail the extension of SDDP to stagewise dependent
uncertainty in the RHS described by non-convex AR processes. This version of SDDP
makes use of non-convex cuts to approximate the expected value functions. First, we
show the computational challenges that come with these cuts for general processes.
Then, we show how for log-linear AR processes closed-form cut formulas can be derived
and incorporated into SDDP.

We perform computational tests on a LTHS problem, which show that our pro-
posed version of SDDP works as intended, allows to incorporate more accurate inflow
models into SDDP, and thus yields better performing policies than previously proposed
approaches to linearize the log-linear processes.

In general, our contribution to the toolbox of SDDP allows for more flexibility, and
therefore potentially more accuracy in modeling uncertainty in the RHS when dealing
with multistage stochastic linear programs.

For future research, three extensions of our work seem natural. First, the efficiency
of our implementation could be improved to reduce the computational overhead of using
our proposed non-convex cuts. Second, experiments could be conducted for a case study
with a convex log-linear AR process to get a clearer comparison of the quality of non-
convex and linear cuts. Third, our proposed version of SDDP could be compared to the
Markov chain SDDP approach from [18] that also allows for non-convex processes.
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A Proofs

A.1 Proof of Theorem 3.1

Proof. Consider stage T , some state (x̄T−1, ξ̄[T−1]), some j ∈ {1, . . . , qT} and a corre-
sponding optimal dual solution π∗

Tj . Using the same line of arguments as for standard
SDDP (see Sect. D of the EC), i.e., π∗

Tj being dual feasible, but not necessarily optimal
for any (xT−1, ξ[T−1]), we obtain

Q̃T ((xT−1, ξ[T−1]), η
(j)
T ) ≥ −(π∗

Tj)
⊤TT−1︸ ︷︷ ︸

(12)
= β⊤Tj

xT−1 + (π∗
Tj)

⊤bT (ξ[T−1], η
(j)
T )

︸ ︷︷ ︸
(13)
= α

(T )
Tj (ξ[T−1])

.

Taking expectations, this yields the cut

QT (xT−1, ξ[T−1]) ≥
qT∑

j=1

pTjβTj

︸ ︷︷ ︸
(11)
= β⊤T

xT−1 +

qT∑

j=1

pTjα
(T )
Tj (ξ[T−1])

︸ ︷︷ ︸
(11)
= α

(T )
T (ξ[T−1])

with scenario-dependent cut intercept α
(T )
T (ξ[T−1]). The use of the upper index (T )

becomes evident in the following.
Going backwards, let RT denote the set of stage-T cuts that have already been

generated and added to stage T − 1. Then, for some state (x̄T−2, ξ̄[T−2]) and some
j ∈ {1, . . . , qT−1}, the dual objective function is

−π⊤
T−1TT−2xT−2 + π⊤

T−1bT−1(ξ[T−2], η
(j)
T−1) +

∑

r∈RT

ρr,T−1α
(T )
rT

(
b̃T−1(ξ[T−2], η

(j)
T−1)

)
.

Using optimal dual solutions π∗
T−1,j and ρ

∗
r,T−1,j for all r ∈ RT , we obtain

Q̃
T−1

(
(x̄T−2, ξ̄[T−2]), η

(j)
T−1

)
= −(π∗

T−1,j)
⊤TT−2x̄T−2 + (π∗

T−1,j)
⊤bT−1(ξ̄[T−2], η

(j)
T−1)

+
∑

r∈RT

ρ∗r,T−1,jα
(T )
rT

(
b̃T−1(ξ̄[T−2], η

(j)
T−1)

)
.

With the same reasoning as for stage T , it follows

Q̃
T−1

(
(xT−2, ξ[T−2]), η

(j)
T−1

)
≥ −(π∗

T−1,j)
⊤TT−2︸ ︷︷ ︸

(12)
= β⊤T−1,j

xT−2 + (π∗
T−1,j)

⊤bT−1(ξ[T−2], η
(j)
T−1)︸ ︷︷ ︸

(13)
= α

(T−1)
T−1,j(ξ[T−2])

+
∑

r∈RT

ρ∗r,T−1,jα
(T )
rT

(
b̃T−1(ξ[T−2], η

(j)
T−1)

)

︸ ︷︷ ︸
(13)
= α

(T )
T−1,j(ξ[T−2])

.

Here, α
(T )
rT (·) denotes the scenario-dependent cut intercept related to cut r.
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Since Q̃
T−1

(
·, ·
)
≤ Q̃T−1(·, ·) and by taking expectations, this yields the cut

QT−1(xT−2, ξ[T−2]) ≥
qT−1∑

j=1

pT−1,jβ
⊤
T−1,j

︸ ︷︷ ︸
(11)
= β⊤T−1

xT−2 +
T∑

τ=T−1

qT−1∑

j=1

pT−1,jα
(τ)
T−1,j(ξ[T−2])

︸ ︷︷ ︸
(11)
= α

(τ)
T−1(ξ[T−2])

.

Proceeding this way recursively, we obtain a general cut formula for some arbitrary
stage t.

The tightness result follows with the same reasoning as for standard SDDP, see
Sect. D in the EC, which is based on strong duality of linear programs and using
optimal dual solutions to the subproblems.

A.2 Proof of Corollary 3.2

Proof. We prove the result using backward induction.
Base case. For the base case, we consider the stage-T subproblem (8) for some fixed

state (x̄T−1, ξ̄[T−1]) and some arbitrary realization η
(j)
T , with j ∈ {1, . . . , qT}. Using the

dual objective to this subproblem and some dual optimal solution π∗
Tj , we obtain

Q̃T

(
(x̄T−1, ξ̄[T−1]), η

(j)
T

)
= (π∗

Tj)
⊤
(
bT (ξ̄[T−1], η

(j)
T )− TT−1x̄T−1

)
.

As the uncertainty only appears in the RHS of the subproblem, which translates to the
objective of its dual problem, the dual feasible region is scenario-independent. Moreover,
the dual feasible region is also independent of xT−1. Therefore, π

∗
Tj is feasible, but not

necessarily optimal, for any state (xT−1, ξT−1) differing from (x̄T−1, ξ̄[T−1]). We obtain

Q̃T

(
(xT−1, ξ[T−1]), η

(j)
T

)
≥ (π∗

Tj)
⊤
(
bT (ξ̄[T−1], η

(j)
T )− TT−1xT−1

)

= (π∗
Tj)

⊤
(

T−1∑

k=T−p
Φ

(T−k)
T ξk + ηT − TT−1xT−1

)

= −(π∗
Tj)

⊤TT−1xT−1 + (π∗
Tj)

⊤
(

T−1∑

k=T−p
Φ

(T−k)
T ξk

)
+ (π∗

Tj)
⊤ηT ,

where we applied the process definition (15) in the pre-last step.
By applying the definitions in (17), (18) and (12), the last line can be reformulated,

which yields

Q̃T

(
(xT−1, ξ[T−1]), η

(j)
T

)
≥ β⊤

TjxT−1 +
T−1∑

k=T−p
C

(T,T−k)
Tj + ω

(T )
Tj

According to (19), by taking expectations with respect to ηT , it follows

QT (xT−1, ξ[T−1]) ≥ β⊤
T xT−1 +

T−1∑

k=T−p
C

(T,T−k)
T + ω

(T )
T

(16)
= β⊤

T xT−1 + α
(T )
T (ξ[T−1]).
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This cut has the same form of formula (11), where all but one summand related to
τ vanish for t = T .

Induction step. We consider some arbitrary stage t ∈ {2, . . . , T − 1}, and assume
that cut formula (11) holds for stage t + 1. More precisely, we assume that Rt+1 cuts
of form (11), (16)-(19) have been generated for stage t + 1 so far. We prove that the
assertion then also holds for stage t.

As a preparation step, we use formula (16) to express α
(τ)
r,t+1(ξ[t]) through ξ[t−1] for

all r ∈ Rt+1 and τ = t+ 1, . . . , T . We obtain

α
(τ)
r,t+1(ξ[t])

=
t∑

k=t+1−p
C

(τ,t+1−k)
r,t+1 ξk + ω

(τ)
r,t+1

=
t−1∑

k=t+1−p
C

(τ,t+1−k)
r,t+1 ξk + ω

(τ)
r,t+1 + C

(τ,1)
r,t+1ξt

(15)
=

t−1∑

k=t+1−p
C

(τ,t+1−k)
r,t+1 ξk + ω

(τ)
r,t+1 + C

(τ,1)
r,t+1

(
t−1∑

k=t−p
Φ

(t−k)
t ξk + ηt

)

=
t−1∑

k=t+1−p

(
C

(τ,t+1−k)
r,t+1 + C

(τ,1)
r,t+1Φ

(t−k)
t

)
ξk + C

(τ,1)
r,t+1Φ

(p)
t ξt−p + ω

(τ)
r,t+1 + C

(τ,1)
r,t+1ηt.

(39)

The dual objective function of subproblem (8) at stage t is

−π⊤
t Tt−1xt−1 + π⊤

t ξt +
∑

r∈Rt+1

ρrt

(
T∑

τ=t+1

α
(τ)
r,t+1(ξ[t])

)
.

Exploiting (39) and the process definition (15), this can be rewritten as

− π⊤
t Tt−1xt−1 + π⊤

t

(
t−1∑

k=t−p
Φ

(t−k)
t ξk + ηt

)
+
∑

r∈Rt+1

ρrt

(
T∑

τ=t+1

(

t−1∑

k=t+1−p

(
C

(τ,t+1−k)
r,t+1 + C

(τ,1)
r,t+1Φ

(t−k)
t

)
ξk + C

(τ,1)
r,t+1Φ

(p)
t ξt−p + ω

(τ)
r,t+1 + C

(τ,1)
r,t+1ηt

))
.

For the next step, consider some fixed state (x̄t−1, ξ̄[t−1]) and some arbitrary real-

ization η
(j)
t , j ∈ {1, . . . , qt}, and let π∗

tj and ρ∗rtj , r ∈ Rt+1, denote the corresponding
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optimal dual solutions. Then, using the same reasoning as for the base case, we obtain

Q̃t

(
(xt−1, ξ[t−1]), η

(j)
t

)

≥ −(π∗
tj)

⊤Tt−1︸ ︷︷ ︸
(12)
= β⊤tj

xt−1 + (π∗
tj)

⊤
(

t−1∑

k=t−p
Φ

(t−k)
t ξk + η

(j)
t

)
+
∑

r∈Rt+1

ρ∗rtj

(
T∑

τ=t+1

(

t−1∑

k=t+1−p

(
C

(τ,t+1−k)
r,t+1 + C

(τ,1)
r,t+1Φ

(t−k)
t

)
ξk + C

(τ,1)
r,t+1Φ

(p)
t ξt−p + ω

(τ)
r,t+1 + C

(τ,1)
r,t+1η

(j)
t

))

= β⊤
tjxt−1 +

t−1∑

k=t−p
(π∗
tj)

⊤Φ(t−k)
t︸ ︷︷ ︸

(17)
= C

(t,t−k)
tj

ξk + (π∗
tj)

⊤η(j)t︸ ︷︷ ︸
(18)
= ω

(t)
tj

+
∑

r∈Rt+1

ρ∗rtj

(
T∑

τ=t+1

ω
(τ)
r,t+1 + C

(τ,1)
r,t+1η

(j)
t

)

+
∑

r∈Rt+1

ρ∗rtj

(
T∑

τ=t+1

( t−1∑

k=t+1−p

(
C

(τ,t+1−k)
r,t+1 + C

(τ,1)
r,t+1Φ

(t−k)
t

)
ξk + C

(τ,1)
r,t+1Φ

(p)
t ξt−p

))
.

By distributivity and exchanging sums, we can reformulate the last two lines and
obtain

Q̃t

(
(xt−1, ξ[t−1]), η

(j)
t

)

≥ β⊤
tjxt−1 +

t−1∑

k=t−p
C

(t,t−k)
tj ξk + ω

(t)
tj +

T∑

τ=t+1

∑

r∈Rt+1

ρ∗rtj
(
ω
(τ)
r,t+1 + C

(τ,1)
r,t+1η

(j)
t

)

︸ ︷︷ ︸
(18)
= ω

(τ)
tj

+
T∑

τ=t+1

t−1∑

k=t+1−p

( ∑

r∈Rt+1

ρ∗rtj
(
C

(τ,t+1−k)
r,t+1 + C

(τ,1)
r,t+1Φ

(t−k)
t

)

︸ ︷︷ ︸
(17)
= C

(τ,t−k)
tj

)
ξk

+
T∑

τ=t+1

∑

r∈Rt+1

ρ∗rtjC
(τ,1)
r,t+1Φ

(p)
t

︸ ︷︷ ︸
(17)
= C

(τ,p)
tj

ξt−p

= β⊤
tjxt−1 +

t−1∑

k=t−p
C

(t,t−k)
tj ξk + ω

(t)
tj +

T∑

τ=t+1

(
ω
(τ)
tj +

t−1∑

k=t+1−p
C

(τ,t−k)
tj ξk + C

(τ,p)
tj ξt−p

)

= β⊤
tjxt−1 +

T∑

τ=t

ω
(τ)
tj +

t−1∑

k=t−p
C

(t,t−k)
tj ξk +

T∑

τ=t+1

t−1∑

k=t−p
C

(τ,t−k)
tj ξk

= β⊤
tjxt−1 +

T∑

τ=t

(
ω
(τ)
tj +

t−1∑

k=t−p
C

(τ,t−k)
tj ξk

)
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According to (19), taking expectations with respect to ηt on both sides yields

Qt(xt−1, ξ[t−1]) ≥ β⊤
t xt−1 +

T∑

τ=t

(
ω
(τ)
t +

t−1∑

k=t−p
C

(τ,t−k)
t ξk

︸ ︷︷ ︸
(16)
= α

(τ)
t (ξ[t−1])

)

Again, this corresponds to cut formula (11).

A.3 Proof of Theorem 4.2

Proof. We prove the result using backward induction.
Base case. For the base case, we consider the stage-T subproblem for some fixed

state (x̄T−1, ξ̄[T−p:T−1]) and some arbitrary realization η
(j)
T , with j ∈ {1, . . . , qT}. Using

the dual objective to this subproblem and some dual optimal solution π∗
Tj , we obtain

Q̃T

(
(x̄T−1, ξ̄[T−p:T−1]), η

(j)
T

)
= (π∗

Tj)
⊤
(
b
(p)
T (ξ̄[T−p:T−1], η

(j)
T )− TT−1x̄T−1

)
.

As the uncertainty only appears in the RHS of the subproblem, which translates to the
objective of its dual problem, the dual feasible region is scenario-independent. Moreover,
the dual feasible region is also independent of xT−1. Therefore, π

∗
Tj is feasible, but not

necessarily optimal, for any state (xT−1, ξ[T−p:T−1]) differing from (x̄T−1, ξ̄[T−p:T−1]). We
obtain

Q̃T

(
(xT−1, ξ[T−p:T−1]), η

(j)
T

)
≥ (π∗

Tj)
⊤
(
b
(p)
T (ξ̄[T−p:T−1], η

(j)
T )− TT−1xT−1

)
.

By applying the definitions in (24), (27) and (29), it follows

Q̃T

(
(xT−1, ξ[T−p:T−1]), η

(j)
T

)

(24)

≥ −(π∗
Tj)

⊤TT−1xT−1 +

LT∑

ℓ=1

π∗
Tℓje

γTℓeψTℓη
(j)
Tℓ

p∏

k=1

LT−k∏

m=1

ξ
ϕ
(k)
Tℓm

T−k,m

(27)
= β⊤

TjxT−1 +

LT∑

ℓ=1

α
(T )
Tℓj

p∏

k=1

LT−k∏

m=1

ξ
ϕ
(k)
Tℓm

T−k,m

= β⊤
TjxT−1 +

LT∑

ℓ=1

α
(T )
Tℓj

T−1∏

k=T−p

Lk∏

m=1

ξ
ϕ
(T−k)
Tℓm

km

(29)
= β⊤

TjxT−1 +

LT∑

ℓ=1

α
(T )
Tℓj

T−1∏

k=T−p

Lk∏

m=1

ξ
Θ(T,T,ℓ,m,k)
km

where we rearranged some indices in the prelast step.

Using expectations over all η
(j)
T , j = 1, . . . , qT , this cut has the same form as stated

in (30), where all but one summand related to τ vanish for t = T .
Induction step. We consider some arbitrary stage t ∈ {2, . . . , T − 1}, and assume

that cut formula (30) holds for stage t+1. More precisely, we assume that Rt+1 cuts of
form (30) have been generated for stage t+ 1 so far. We prove that the assertion then
also holds for stage t.
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Using cut formula (30), the stage-t subproblem (8) can be written as





min
xt,θt+1

c⊤t xt + θt+1

s.t. Wtxt = −Tt−1xt−1 + ξt

θt+1 − β⊤
t+1xt ≥

T∑

τ=t+1

Lτ∑

ℓ=1

(
α
(τ)
r,t+1,ℓ

t∏

k=t+1−p

Lk∏

m=1

ξ
Θ(t+1,τ,ℓ,m,k)
km

)
, r ∈ Rt+1

xt ≥ 0.

Hence, the objective function of its dual is

−π⊤
t Tt−1xt−1 + π⊤

t ξt +
∑

r∈Rt+1

ρrt

( T∑

τ=t+1

Lτ∑

ℓ=1

(
α
(τ)
r,t+1,ℓ

t∏

k=t+1−p

Lk∏

m=1

ξ
Θ(t+1,τ,ℓ,m,k)
km

))
.

For the next step, consider some fixed state (x̄t−1, ξ̄[t−p:t−1]) and some arbitrary

realization η
(j)
t , j ∈ {1, . . . , qt}. Representing each occurrence of ξtℓ by b

(p)
tℓ (ξ̄[t−p:t−1], η

(j)
t )

yields

− π⊤
t Tt−1x̄t−1 +

Lt∑

ℓ=1

πtℓb
(p)
tℓ (ξ̄[t−p:t−1], η

(j)
t )

+
∑

r∈Rt+1

ρrt

(
T∑

τ=t+1

Lτ∑

ℓ=1

(
α
(τ)
r,t+1,ℓ

Lt∏

ν=1

(
b
(p)
tν (ξ̄[t−p:t−1], η

(j)
t )
)Θ(t+1,τ,ℓ,ν,t)

·
t−1∏

k=t+1−p

Lk∏

m=1

ξ̄
Θ(t+1,τ,ℓ,m,k)
km

))
.

Let a dual optimal solution for this case be given by π∗
tj and ρ∗rtj , r ∈ Rt+1. Then,

in accordance with the definition in (8), we obtain

Q̃
t

(
(x̄t−1, ξ̄[t−p:t−1]), η

(j)
t

)

= −(π∗
tj)

⊤Tt−1︸ ︷︷ ︸
(27)
= β⊤tj

x̄t−1 +

Lt∑

ℓ=1

π∗
tℓjb

(p)
tℓ (ξ̄[t−p:t−1], η

(j)
t )

+
∑

r∈Rt+1

ρ∗rtj

(
T∑

τ=t+1

Lτ∑

ℓ=1

(
α
(τ)
r,t+1,ℓ

Lt∏

ν=1

(
b
(p)
tν (ξ̄[t−p:t−1], η

(j)
t )
)Θ(t+1,τ,ℓ,ν,t)

·
t−1∏

k=t+1−p

Lk∏

m=1

ξ
Θ(t+1,τ,ℓ,m,k)
km

))
.

(40)

Exploiting that Q̃
t

(
·, ·
)
underestimates Q̃t

(
·, ·
)
, and using the same reasoning on
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dual feasibility and optimality as in the base case, we can conclude that

Q̃t

(
(xt−1, ξ[t−p:t−1]), η

(j)
t

)

≥ β⊤
tjxt−1 +

Lt∑

ℓ=1

π∗
tℓjb

(p)
tℓ (ξ[t−p:t−1], η

(j)
t )

+
∑

r∈Rt+1

ρ∗rtj

(
T∑

τ=t+1

Lτ∑

ℓ=1

(
α
(τ)
r,t+1,ℓ

Lt∏

ν=1

(
b
(p)
tν (ξ[t−p:t−1], η

(j)
t )
)Θ(t+1,τ,ℓ,ν,t)

·
t−1∏

k=t+1−p

Lk∏

m=1

ξ
Θ(t+1,τ,ℓ,m,k)
km

))
.

With the definitions in (24) and (27), the RHS can be reformulated, and we obtain

Q̃t

(
(xt−1, ξ[t−p:t−1]), η

(j)
t

)

≥ β⊤
tjxt−1 +

Lt∑

ℓ=1

π∗
tjℓe

γtℓeψtℓη
(j)
tℓ

︸ ︷︷ ︸
(27)
= α

(t)
tℓj

( t−1∏

k=t−p

Lk∏

m=1

ξ
ϕt−k
tℓm

km

)

+
∑

r∈Rt+1

ρ∗rtj

(
T∑

τ=t+1

Lτ∑

ℓ=1

(
α
(τ)
r,t+1,ℓ

Lt∏

ν=1

(
eγtνeψtνη

(j)
tν

t−1∏

k=t−p

Lk∏

m=1

ξ
ϕ
(t−k)
tνm

km

)Θ(t+1,τ,ℓ,ν,t)

·
t−1∏

k=t+1−p

Lk∏

m=1

ξ
Θ(t+1,τ,ℓ,m,k)
km

))

= β⊤
tjxt−1 +

Lt∑

ℓ=1

α
(t)
tℓj

( t−1∏

k=t−p

Lk∏

m=1

ξ
ϕt−k
tℓm

km

)

+
∑

r∈Rt+1

ρ∗rtj

(
T∑

τ=t+1

Lτ∑

ℓ=1

(
α
(τ)
r,t+1,ℓ

Lt∏

ν=1

eγtνΘ(t+1,τ,ℓ,ν,t)eψtνη
(j)
tν Θ(t+1,τ,ℓ,ν,t)

·
( Lk∏

ν=1

t−1∏

k=t−p

Lk∏

m=1

ξ
ϕ
(t−k)
tνm Θ(t+1,τ,ℓ,ν,t)

km

) t−1∏

k=t+1−p

Lk∏

m=1

ξ
Θ(t+1,τ,ℓ,m,k)
km

))
. (41)

By distributivity and exchanging sums, the RHS of (41) is equivalent to

β⊤
tjxt−1 +

Lt∑

ℓ=1

α
(t)
tℓj

( t−1∏

k=t−p

Lk∏

m=1

ξ
ϕt−k
tℓm

km

)

+
T∑

τ=t+1

Lτ∑

ℓ=1

(( ∑

r∈Rt+1

ρ∗rtjα
(τ)
r,t+1,ℓ

) Lt∏

ν=1

eγtνΘ(t+1,τ,ℓ,ν,t)eη
(j)
tν Θ(t+1,τ,ℓ,ν,t)

︸ ︷︷ ︸
(27)
= α

(τ)
tℓj

·
( Lt∏

ν=1

t−1∏

k=t−p

Lk∏

m=1

ξ
ϕ
(t−k)
tνm Θ(t+1,τ,ℓ,ν,t)

km

)( t−1∏

k=t+1−p

Lk∏

m=1

ξ
Θ(t+1,τ,ℓ,m,k)
km

))
.
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Therefore, using rules of powers and the definitions in (29), it follows

Q̃t

(
(xt−1, ξ[t−p:t−1]), η

(j)
t

)

≥ β⊤
tjxt−1 +

Lt∑

ℓ=1

α
(t)
tℓj

( t−1∏

k=t−p

Lk∏

m=1

ξ
ϕ
(t−k)
tℓm

km

)

+
T∑

τ=t+1

Lτ∑

ℓ=1

α
(τ)
tℓj

( Lt∏

ν=1

t−1∏

k=t−p

Lk∏

m=1

ξ
ϕ
(t−k)
tνm Θ(t+1,τ,ℓ,ν,t)

km

)( t−1∏

k=t+1−p

Lk∏

m=1

ξ
Θ(t+1,τ,ℓ,m,k)
km

)

(29)
= β⊤

tjxt−1 +

Lt∑

ℓ=1

α
(t)
tℓj

( t−1∏

k=t−p

Lk∏

m=1

ξ
Θ(t,t,ℓ,m,k)
km

)

+
T∑

τ=t+1

Lτ∑

ℓ=1

α
(τ)
tℓj

( Lt∏

ν=1

t−1∏

k=t−p

Lk∏

m=1

ξ
ϕ
(t−k)
tνm Θ(t+1,τ,ℓ,ν,t)

km

)( t−1∏

k=t+1−p

Lk∏

m=1

ξ
Θ(t+1,τ,ℓ,m,k)
km

)

(#)
= β⊤

tjxt−1 +

Lt∑

ℓ=1

α
(t)
tℓj

( t−1∏

k=t−p

Lk∏

m=1

ξ
Θ(t,t,ℓ,m,k)
km

)

+
T∑

τ=t+1

Lτ∑

ℓ=1

α
(τ)
tℓj

( t−1∏

k=t−p

Lk∏

m=1

ξ
∑Lt

ν=1 ϕ
(t−k)
tνm Θ(t+1,τ,ℓ,ν,t)

km

)( t−1∏

k=t+1−p

Lk∏

m=1

ξ
Θ(t+1,τ,ℓ,m,k)
km

)

(∗)
= β⊤

tjxt−1 +

Lt∑

ℓ=1

α
(t)
tℓj

( t−1∏

k=t−p

Lk∏

m=1

ξ
Θ(t,t,ℓ,m,k)
km

)
+

T∑

τ=t+1

Lτ∑

ℓ=1

α
(τ)
tℓj

·
( t−1∏

k=t+1−p

Lk∏

m=1

ξ
∑Lt

ν=1 ϕ
(t−k)
tνm Θ(t+1,τ,ℓ,ν,t)+Θ(t+1,τ,ℓ,m,k)

km

)( Lt−p∏

m=1

ξ
∑Lt

ν=1 ϕ
(p)
tνmΘ(t+1,τ,ℓ,ν,t)

t−p,m

)

(29)
= β⊤

tjxt−1 +

Lt∑

ℓ=1

α
(t)
tℓj

( t−1∏

k=t−p

Lk∏

m=1

ξ
Θ(t,t,ℓ,m,k)
km

)

+
T∑

τ=t+1

Lτ∑

ℓ=1

α
(τ)
tℓj

( t−1∏

k=t+1−p

Lk∏

m=1

ξ
Θ(t,τ,ℓ,m,k)
km

)( Lt−p∏

m=1

ξ
Θ(t,τ,ℓ,m,t−p)
t−p,m

)

= β⊤
tjxt−1 +

Lt∑

ℓ=1

α
(t)
tℓj

( t−1∏

k=t−p

Lk∏

m=1

ξ
Θ(t,t,ℓ,m,k)
km

)

+
T∑

τ=t+1

Lτ∑

ℓ=1

α
(τ)
tℓj

( t−1∏

k=t−p

Lk∏

m=1

ξ
Θ(t,τ,ℓ,m,k)
km

)

= β⊤
tjxt−1 +

T∑

τ=t

Lτ∑

ℓ=1

α
(τ)
tℓj

t−1∏

k=t−p

Lk∏

m=1

ξ
Θ(t,τ,ℓ,m,k)
km .

By taking expectations on both sides with respect to ηt, we obtain cut formula (30),
which proves the assertion.

Remark A.1. For completeness, let us analyze the proof of Theorem 4.2 in the light
of Remark 4.1 (4). If p is not assumed constant, but depends on t, ℓ and m, then first,
the two product operators in the process definition (24) have to be swapped due to the
dependencies of p. More crucially, the steps in the proof marked by (#) and (∗) do
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not work anymore. In step (#), the product over ν cannot be reformulated to a sum in
the exponents, as p depends on ν. In step (∗), factors from different product operators
cannot be subsumed, as their index sets differ. Consequently, the obtained cut formulas
become considerably more complicated. For this reason, as described in Remark 4.1, it
is beneficial to assume a sufficiently large, constant lag order p and to introduce zero
coefficients to compensate for it.

B Notation

Tables 3 and 4 summarize the symbols that are used throughout the paper.

Table 3: Notation used in the paper - Part 1.

Problem parameters

T : time horizon, last stage
t: time index
[t]: horizon from stages 1 to t
nt: dimension of state/decision space
ct: objective coefficients at stage t
Tt−1: technology matrix at stage t
Wt: recourse matrix at stage t
ht: RHS at stage t
Lt, L[t]: no. of constraints at stage t / from stages 1 to t

Uncertainty modeling

Ft,F : σ-algebra at stage t / end of horizon
Ωt,Ω: sample space at stage t / over whole horizon
P: probability measure
ptj probability of realization j at stage t
ξt, ξt: random vector / realization at stage t
ηt, ηt: stagewise independent random vector / realization at stage t
qt: no. of realizations of ξt/ηt

ξ
(j)
t , η

(j)
t : j-th realization of ξt/ηt, with j ∈ {1, . . . , qt}

ξ[t], ξ[k:t]: history of (ξt)t∈[T ] up to stage / between k and t

ξit: sampled realization at iteration i
bt(·, ·): function in ξ[t−1] and ηt describing ξt
b̃t(·, ·): function in ξ[t−1] and ηt describing ξ[t]
b̂t(·, ·): linear approximation of bt(·, ·)
γt, γtℓ: intercept at stage t (for component ℓ)
ψt, ψtℓ: coefficient at stage t for ηt (for component ℓ)

ϕ
(k)
tℓm: coefficient at stage t for lag k, components ℓ and m

Φ
(k)
t : coefficient matrix for linear AR process at stage t for lag k

p: lag order

Decision variables

xt: state/decision variable at stage t
θt+1, θt+1: epigraph variable at stage t and initial lower bound
πtj : dual variable for for realization j at stage t
ρrtj : dual variable for cut r for realization j at stage t

38

391



Table 4: Notation used in the paper - Part 2.

Optimal solutions

v∗: optimal value of MSLP
xi
t: optimal xt at iteration i

π∗
tj , π

i
tj : optimal πtj (at iteration i)

ρ∗rtj , ρ
i
rtj : optimal ρrtj (at iteration i)

Value functions

Qt(·, ·): stage-t value function
Qt(·, ·): stage-t expected value function

Q̃t(·, ·): stage-t value function (expanding the state space)

Q̂t(·, ·): stage-t expected value function (Taylor approximation)
Qi

t
(·, ·): approx. stage-t value function at iteration i

Q̃
i

t
(·, ·): approx. stage-t value function at iteration i (expanding the state space)

Qi
t
(·): expected approx. stage-t value function at iteration i

Qi
t(·): cut approximation for stage-t at iteration i

SDDP in general

i: iteration index
vi, vi: lower bound / upper bound for v∗ at iteration i
αt, αrt, αtj : cut intercept for stage t (and cut r / realization j)
βt, βrt, βtj : cut gradient for stage t (and cut r / realization j)
Rt+1, R

i
t+1: no. of cuts at stage t (and iteration i)

αind
t , αdep

t (ξ[t−1]): scenario-independent / dependent part of incercept for stage t

SDDP with linear AR process

C
(τ,t−k)
tj : intercept matrix for stage t, lag k and realization j

C
(τ,t−k)
t , C

(τ,t−k)
rt : intercept matrix for stage t, lag k (and cut r)

ω
(τ)
t , ω

(τ)
rt , ω

(τ)
tj : intercept vector for stage t (and cut r / realization j)

SDDP with log-linear AR process

α
(τ)
t , α

(τ)
rt , α

(τ)
tj : intercept factor for stage t and cut r / realization j)

Θ(t, τ, ℓ,m, k): exponent for stage t, intercept factor τ , components ℓ,m and lag k
τ : index for intercept factors

Operators

⊙: Hadamard product (componentwise product) of vectors⊙k
i=1: indexed sequence of Hadamard products
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Electronic Companion

D Standard SDDP

We provide a brief presentation of SDDP in its standard form, and refer to [3] for more
details. For standard SDDP, the assumption of stagewise independence is crucial.

Assumption 3. The stochastic process (ξt)t∈[T ] which appears in the RHS of problem
(MSLP) is stagewise independent, that is, for all t ∈ [T ]:

ξt = bt(ξ[t−1], ηt) ≡ ηt.

Under this assumption, all expectations in (5) become unconditional, and Qt(·, ·) and
Qt(·) do no longer depend on ξ[t−1]. With xt−1 being the only argument of Qt(·), con-
vexity is assured, and thus linear cuts are sufficient for a tight and valid approximation.
We can then reformulate subproblems (6) as linear programs

Q
t
(xt−1, ξ

(j)
t ) =





min
xt,θt+1

c⊤t xt + θt+1

s.t. Wtxt = −Tt−1xt−1 + ht(ξt)

− β⊤r,t+1xt + θt+1 ≥ αr,t+1, r ∈ Rt+1

xt ≥ 0

(41)

using the relation

Qt+1(xt) = min
{
θt+1 | θt+1 ≥ β⊤r,t+1xt + αr,t+1, r ∈ Rt+1

}

and |Rt+1| ∈ N. Here, Rt+1 denotes the index set of cuts that have been constructed to
approximate Qt(·) so far. Quantities βr,t+1 and αr,t+1 are cut-specific parameters whose
computation we explain in detail in the remainder of this section.

Note that in this setting, cuts are shared between scenarios naturally because, in-
dependent of the history ξ[t−1], all nodes in the scenario tree share the same expected
value functions.

SDDP consists of two main steps in each iteration i, a forward pass and a backward
pass through the stages t ∈ [T ]. In the forward pass, a sequence of trial points (xit)t∈[T ]
is generated, at which then new cuts are constructed in the following backward pass.
By this alternating procedure, SDDP iteratively improves the cut approximations Qt(·)
of Qt(·). Alg. 1 provides a pseudo-code for standard SDDP.

We now provide a more detailed and technical look at the algorithmic steps.

1
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Algorithm 1 SDDP

Input: Problem (MSLP) satisfying Assumptions 1, 2, 3. Bounds θt, t = 2, . . . , T . Stop-
ping criterion.

1: Initialize cut approximations with θt ≥ θt for all t = 2, . . . , T .
2: Initialize lower bound with v0 = −∞.
3: Set iteration counter to i← 0.
4: while Stopping criterion not satisfied do
5: Set i← i+ 1.

Forward Pass

6: Solve the first-stage problem (42) to obtain trial point xi1.
7: for stages t = 2, . . . , T do

8: Sample one realization ξit from
{
ξ
(1)
t , . . . , ξ

(qt)
t

}
.

9: Solve the stage-t subproblem (41) associated with Qi
t
(xit−1, ξ

i
t) to obtain trial

point xit.

10: end for

Backward Pass

11: for stages t = T, . . . , 2 do
12: for realizations j = 1, . . . , qt do
13: Solve the updated stage-t subproblem (41) associated with

Qi+1
t

(xit−1, ξ
(j)
t ). Store the optimal dual variables πitj and ρ

i
rtj , r ∈ Rt+1.

14: end for
15: Use relations (43), (44), (45) to create an optimality cut for Qt(·).
16: Update the cut approximation Qi

t(·) to Qi+1
t (·) using relation (46).

17: end for
18: Solve the updated first-stage problem (42) to obtain a lower bound vi.
19: end while
Output: (Approximately) optimal feasible policy for (MSLP) defined by xi1 and

Qi
t(·), t = 2, . . . , T .

D.1 Forward Pass

At the start of each iteration i, the first-stage subproblem




min
x1

c⊤1 x1 +Qi
2(x1)

s.t. W1x1 = h1
x1 ≥ 0

(42)

is solved, which yields the trial point xi1.
Afterwards, for each stage t = 2, . . . , T we iteratively draw one sample ξit from the set{

ξ
(1)
t , . . . , ξ

(qt)
t

}
of all realizations using random sampling, and then solve the subprob-

lem (41) associated with Qi
t
(xit−1, ξ

i
t); this subproblem contains the cut approximation

Qi
t+1(·). This way, we obtain trial points xit that can be used as a parameter in the

following stage. Over all stages, this yields a sequence of trial points (xit)t∈[T ].

Remark D.1. In standard SDDP it is also common to sample more than one realization
per stage, meaning that we run several forward passes and obtain several sequences of

2
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trial points per iteration ([3]). All our results in this paper naturally extend to this case,
but for notational convenience, we restrict to the case of one sample per iteration.

Remark D.2. By evaluating the trial points (xit)t∈[T ] in the objective
∑

t∈[T ] ct(ξ
i
t)

⊤xit
for the chosen sample path, we obtain a simulated objective value. This is not guaranteed
to provide reasonable information on v∗, though, as it depends on only one specific
sample.

By repeating the same evaluation for a large number of sample paths and taking the
mean, at least an unbiased estimator of an upper bound for v∗ can be computed, a so-
called statistical upper bound. This kind of simulation is often executed after SDDP
has terminated to assess the quality of the obtained policy. It can either be done using
the same realizations of ηt as in SDDP (in-sample simulation) or with realizations that
were not considered within the algorithm (out-of-sample simulation).

D.2 Backward Pass

In the backward pass, new cuts for the expected value functions Qt(·) are generated at
the trial points xit−1, thus improving their approximation from Qi

t(·) to Qi+1
t (·).

The backward pass starts at stage T . Here, we consider the subproblems (41) for
the trial point xiT−1 computed in the forward pass, but all possible noise realizations

ξ
(j)
T , j = 1, . . . , qT . That is, we consider functions Qi+1

T
(xiT−1, ξ

(j)
T ) for all j = 1, . . . , qT .

As Qi+1
T+1(·) = QT+1(·) ≡ 0, we have Qi+1

T
(·, ξ(j)T ) = QT (·, ξ(j)T ). The LP dual to the

subproblem (41) associated with Qi+1
T

(xiT−1, ξ
(j)
T ) is





min
xT

π⊤T
(
− TT−1x

i
T−1 + ξ

(j)
T

)

s.t. W⊤
T πT = cT

πT ≥ 0.

Let π∗Tj be a dual optimal solution. Then, by strong duality

QT (x
i
T−1, ξ

(j)
T ) = (π∗Tj)

⊤(− TT−1x
i
T−1 + ξ

(j)
T

)
.

As the dual feasible set is independent of xT−1, π
∗
Tj remains feasible, although not

necessarily optimal, for any xT−1 ∈ RnT−1 . Therefore, we obtain the cut

QT (xT−1, ξ
(j)
T ) ≥ (π∗Tj)

⊤(− TT−1xT−1 + ξ
(j)
T

)

= −(π∗Tj)⊤TT−1︸ ︷︷ ︸
=:β⊤

Tj

xT−1 + (π∗Tj)
⊤ξ(j)T︸ ︷︷ ︸

=:αTj

= β⊤TjxT−1 + αTj .

βTj is called cut gradient and αTj is called cut intercept or constant.
Executing this for all j = 1, . . . , qT , and then taking expectations over cuts (D.2),

we obtain a cut

QT (xT−1) ≥ β⊤T xT−1 + αT

for the expected value function QT (·), with

βT :=

qT∑

j=1

pTjβTj , αT :=

qT∑

j=1

pTjαTj .
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With this new cut, the cut approximation Qi
T (·) is updated to

Qi+1
T (xT−1) = max

{
Qi
T (xT−1), β

⊤
T xT−1 + αT

}
,

and thus the updated cut index set satisfies Ri+1
T = {1, . . . , i+ 1} = RiT ∪ {i+ 1}.

In the same way, for stages t = T − 1, . . . , 2, cuts for Qt(·) can be constructed by

solving subproblems (41) for the trial points xit−1 and all realizations ξ
(j)
t , j = 1, . . . , qt.

Importantly, by going backwards through the stages, at stage t we can already factor
in the cuts that have been constructed at the following stage t+ 1, thus using a better
approximation as the basis to construct a new cut. This means that we consider Qi+1

t+1(·)
and by that Qi+1

t
(·, ·) with index i+ 1 in the backward pass of iteration i.

The objective function to the dual of the stage-t subproblem (41) associated with

Qi+1
t

(xit−1, ξ
(j)
t ) is

π⊤t
(
− Tt−1x

i
t−1 + ξ

(j)
t

)
+

∑

r∈Ri+1
t+1

ρrtαr,t+1.

Let (π∗tj , ρ
∗
tj) be a dual optimal solution. By strong duality, we obtain

Qi+1
t

(xit−1, ξ
(j)
t ) = (π∗tj)

⊤(− Tt−1x
i
t−1 + ξ

(j)
t

)
+

∑

r∈Ri+1
t+1

ρ∗rtjαr,t+1.

As for stage T , the dual feasible set is independent of xt−1. Therefore, (π∗tj , ρ
∗
tj)

remains feasible, although not necessarily optimal, for any xt−1 ∈ Rnt−1 . We obtain

Qi+1
t

(xt−1, ξ
(j)
t ) ≥ (π∗tj)

⊤(− Tt−1xt−1 + ξ
(j)
t

)
+

∑

r∈Ri+1
t+1

ρ∗rtjαr,t+1.

Finally, as Qi+1
t

(·, ξ(j)t ) underestimates Qt(·, ξ(j)t ), we obtain the cut

Qt(xt−1, ξ
(j)
t ) ≥ (π∗tj)

⊤(− Tt−1xt−1 + ξ
(j)
t

)
+

∑

r∈Ri+1
t+1

ρ∗rtjαr,t+1

= −(π∗tj)⊤Tt−1︸ ︷︷ ︸
=:β⊤

tj

xt−1 + (π∗tj)
⊤ξ(j)t +

∑

r∈Ri+1
t+1

ρ∗rtjαr,t+1

︸ ︷︷ ︸
=:αtj

= β⊤tjxt−1 + αtj .

(43)

Executing this for all j = 1, . . . , qt, and then taking expectations over cuts (43), we
obtain a cut

Qt(xt−1) ≥ β⊤t xt−1 + αt (44)

for the expected value function Qt(·), with

βt :=

qt∑

j=1

ptjβtj , αt :=

qt∑

j=1

ptjαtj . (45)

With this new cut, the cut approximation Qi
t(·) is updated to

Qi+1
t (xt−1) = max

{
Qi
t(xt−1), β

⊤
t xt−1 + αt

}
. (46)
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At the first stage, the updated first-stage subproblem (42) is solved with optimal
value vi. As Qi+1

2 (·) is a lower approximation of Q2(·), vi is a valid lower bound to the
optimal value v∗ of (MSLP). In contrast, we are not guaranteed to obtain a valid upper
bound for v∗ in SDDP, as we only consider one sampled scenario per iteration instead
of evaluation over the entire scenario tree.

After each iteration of SDDP, one or several stopping criteria are checked, such as
statistical stopping criteria, reaching a predefined number of iterations or stalling of the
lower bounds vi ([3]). If SDDP does not stop, a new iteration i+ 1 is started.

As mentioned before, the polyhedral dual feasible sets at each stage t are independent
of xt−1, thus they possess finitely many extreme points. Using this reasoning inductively
starting at stage T and assuming that we restrict to optimal dual basic solutions in the
cut generation process, it can be shown that only finitely many different cuts can be con-
structed. Additionally, the cuts are tight, i.e., evaluating the RHS of (44) at xit−1, yields
Qi+1
t (xit−1), which implies that the approximations eventually become exact. Combin-

ing this with the properties of the sampling procedure, almost sure finite convergence
of SDDP to an optimal policy can be proven [10].

E Long-term Hydrothermal Scheduling Problem

The LTHS problem with 4 EERs and 95 generators that we consider in our computa-
tional experiments in Sect. 5 can be formulated as follows:

min

T∑

t=1

βt−1

(∑

k∈K

(∑

j∈Gk

ctjgtj

)
+ δtkrtk

)

s.t. vtk = vt−1,k + atk + qtk + stk, t = 1, . . . , T, k ∈ K
qtk +

∑

j∈Gk

gj + rtk +
∑

ℓ∈K
(ftℓk − ftkℓ) = dtk, t = 1, . . . , T, k ∈ K,

0 ≤ vtk ≤ vk, t = 1, . . . , T, k ∈ K
0 ≤ qtk ≤ qk, t = 1, . . . , T, k ∈ K
st5 = 0, 0 ≤ stk, t = 1, . . . , T, k ∈ K
g
tj
≤ gtj ≤ gtj , t = 1, . . . , T, j ∈ G

0 ≤ rtk ≤ rtk, f tkℓ ≤ ftkℓ ≤ f tkℓ, t = 1, . . . , T, k ∈ K, ℓ ∈ K.
Here K denotes the set of five sub-systems in the overall power system. The variables

vtk, atk, qtk and stk denote the water level, inflow, hydro power generation and spillage
for the reservoirs associated with systems k ∈ K at stage t. Note that only four of these
systems contain a hydro reservoir, so for the fifth one the bounds vk and qk are zero, and
the spillage variable is always set to zero as well. The first set of contraints describes the
water balance of the hydro reservoirs. The initial levels v0k are given, while the inflow
vector at is considered uncertain and described by a PAR process.

The set Gk contains all the thermal generators in system k ∈ K. The variables gtj
denote the thermal power generation of generator j ∈ G at stage t, with lower limits
g
tj

and upper limits gtj . The second set of constraints ensures the load balance for

all systems k ∈ K at all stages t by satisfying the load dtk using thermal generation,
hydro power generation and energy exchange between systems which is represented by
variables ftℓk for k, ℓ ∈ K. Additionally, we may allow for a load deficit, represented by
variable rtk. Both types of variables are bounded as well.

5
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In the objective function we minimize costs, which are discounted using the annual
discount rate β. The costs include the generation costs by thermal generators, taken
into account using specific costs ctj , as well as the penalization of load curtailment, i.e.,
a positive deficit rtk. We assume that the latter costs are piecewise linear so that they
increase with the amount of curtailment. This is modeled using the piecewise linear
function δtk. It is assumed that hydro generation does not cause any costs.

F Inflow Modeling

The following procedure is applied to all four EERs (SE, S, N, NE) independently, as
we do not take spatial inflow dependencies into account. The performed model fitting
and validation steps are standard in time series analysis as part of the Box-Jenkins
method [1]. However, we follow an adapted variant for PAR models, which is mostly
based on [6]. In that regard, our inflow modeling deviates from [12], where the same
historical data is used, but the model selection (i.e., identifying the lag order of the
process) and model validation are executed for a single non-seasonal AR model and
not specifically for a PAR model. For details, we refer to our GitHub project https:
//github.com/ChrisFuelOR/LogLinearSDDP.jl, which also contains the preparation
of the inflow data.

F.1 Data Preparation

Let Xt denote the true historical inflow time series and let Yt = log(Xt). The monthly
box-plot diagram in Figure 1a shows that Yt follows a seasonal, i.e., monthly pattern.
To account for this pattern, we perform a deseasonalization using monthly means µt
and standard deviations σt, which yields a time series of the form

Zt :=
Yt − µt
σt

, (47)

see also Remark 4.1 (e). The monthly means and standard deviations satisfy µt =
µt+12, σt = σt+12. The box-plot diagram in Figure 1b for Zt shows that the monthly
pattern is removed.

1 2 3 4 5 6 7 8 9 10 11 12

9.5

10.0

10.5

11.0

11.5

(a) Before detrending.

1 2 3 4 5 6 7 8 9 10 11 12

−2

0

2

4

(b) After detrending.

Figure 1: Boxplot of Yt before and after detrending for system SE.
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F.2 Stationarity Analysis

To evaluate the time series Zt for stationarity, we analyze its partial autocorrelation
function (PACF) and perform an augmented Dickey-Fuller (ADF) test. The PACF
shows a fast decline, which is an indicator for stationarity. The ADF test rejects the
null hypothesis of a unit root at a 5% significance level, which again implies stationarity.
Note that stationarity is a prerequisite for most of the following fitting and validation
techniques.

F.3 Model Selection and Fitting

Next, we split the data into a training data set (from 1931 to 1994) and a test data set
(from 1995 to 2009). The model selection, fitting and validation via hypothesis tests are
only using the training data. Later on, we use the test data for out-of-sample validation.

As we consider a log-linear PAR model of type (22) to model Xt, the time series Yt
follows a standard PAR model. We assume a monthly resolution, so the coefficients of
the AR model may vary with each month. This can be interpreted as fitting separate
models for each month, only considering the corresponding lagged data, see [6, 8] for
details. To identify a reasonable lag order for each of these models, for each month,
we first estimate the periodic autocorrelation function (ACF) [6]. Additionally, for
each month, we fit AR models with lag orders between 1 and 12 and use the Bayesian
Information Criterion (BIC) to compare these models. The latter approach yields the
following lag orders for the components of the model, summarized in Table 1.

Table 1: Lag orders identified using the BIC.

System Month
1 2 3 4 5 6 7 8 9 10 11 12

SE 1 2 1 1 1 1 3 1 1 1 1 1
S 1 2 1 2 1 1 1 1 1 1 1 1
NE 1 2 1 1 1 3 10 1 1 1 2 1
N 1 4 1 1 1 10 3 4 5 1 1 1

In conformity with Sect. 5, we refer to the model using these lag orders as LOG-BIC.
For comparison, we also consider a PAR model of lag order 1 for Yt, which we refer
to as LOG-1. Moreover, we consider a linear model that is obtained by linearizing the
log-linear PAR model for Xt using a first-order Taylor approximation (cf. Sect. 4.2).
Varying coefficients have been reported for this model and the given inflow data in the
literature [2, 9, 11]. We therefore apply two different variants: For LIN-SHA we use the
model coefficients as reported in [11], for LIN-FIT we use coefficients obtained using the
same fitting and validation steps that we describe for the log-linear models below. We
should mention that in contrast to our approach, LIN-SHA uses a multivariate normal
distribution for the error terms.

Recall that we assume a constant lag order in our cut formulas, see Sect. 4, so the
values in Table 1 imply the choice p = 10, whereas all other models satisfy p = 1.

F.4 Model Validation – Diagnostic

For validation of the monthly models constituting LOG-BIC (or LOG-1, LIN-FIT, respec-
tively), we perform several diagnostic tests and analyses.

7
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We observe that all monthly models exhibit a reasonable goodness of fit (adjusted
R2 > 0.35) and autoregression coefficients that are significantly different from zero (as
validated using a t-test for lag-order p = 1 or an F-test for lag orders p > 1, respectively).

We then analyze the residuals of the PAR model. First, we check for heteroscedas-
ticity using a scatter plot of the residuals (this can be done on a monthly basis or for all
residuals of the PAR model combined). The plots give no indication of variance changes
in the residuals.

Second, we check the residuals for autcorrelation. To this end, we estimate the
periodic residual autocorrelation function (RACF) [6]. For all months and all systems,
we see no indication of significant autocorrelation. Still, we perform a Portmanteau test,
as proposed in [6], to statistically assess the hypothesis of no autcorrelation. In most
cases, this hypothesis cannot be rejected.

Finally, we check the residuals for normal distribution. Not only does the validity of
the previous test results rely on normally distributed residuals, we also may assume the
stagewise independent error term ηt appearing in formula (22) to be normally distributed
in this case. For our analysis, we use histograms, qq-plots and different hypothesis tests
(Jarque-Bera test, Anderson-Darling test, Kolmogorov-Smirnov test). It turns out that
in many cases, the hypothesis of normality is debatable and can be rejected statistically.
Importantly, we make the same observation when we fit the linearized model by Shapiro
et al. [12] to the data (note that in [12] and the related technical report [11], model
validation is only performed for the full time series, but not for the actual periodical
model).

Since using normally distributed error terms ηt still yields reasonable forecasting and
simulation results, see the following subsections, in our computational tests in Sect. 5,
we nevertheless follow the normality hypothesis. In the future, a more elaborate PAR
model may be applied to the LTHS problem.

F.5 Model Validation – Forecasting

To further validate our fitted models, we use them for forecasts and compare them to the
historical data. More precisely, we use the fitted models (without error term) together
with the historical data to compute one-step ahead forecasts for the training horizon
(in-sample forecast) and the test horizon (out-of-sample forecast). For the obtained
point forecasts we remove the deseasonalization and take the exponential function to
obtain forecasts for the original time series Xt. Note that in general, simply taking the
exponential function of forecasts for a logarithmized time series yields biased forecasts
for the original time series, which can be avoided using a correction factor [5]. How-
ever, without this correction we observe better forecasting results. The mean absolute
forecasting errors for the test set data are presented in Table 2. For comparison, also
the errors for LIN-FIT and LIN-SHA are presented. As we can see, the linearized models
show smaller one-step ahead forecasting errors than the log-linear ones, but relative to
the mean value of the original time series, the differences are subtle.

F.6 Model Validation – Simulation

As a last step, that is most relevant for our application of SDDP, we use the fitted
models andN(0, (σ̂et )

2)-distributed errors ηt together with some historical starting values
to generate 1000 alternative scenarios (sample paths) of 79 years length. Here, (σ̂et )

2

denotes the sample variance of the residuals. As before, we remove the deseasonalization

8
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Table 2: One-step-ahead forecasting MAE (mean absolute error) on the test data.

SE S NE N

LOG-BIC 4888.3 4085.0 1309.7 978.1
LOG-1 4879.7 4106.3 1309.7 1009.5
LIN-FIT 4903.5 4047.8 1336.5 968.7
LIN-SHA 4853.3 3913.4 1392.2 958.2

Mean historical value 34805.9 10118.5 6496.1 6041.4

and take the exponential function for each value in the obtained time series. Then, we
compare the statistical properties of the obtained series with the historical data. More
precisely, we compare the monthly means and standard deviations. This is exemplified
in Figures 2 to 5, which show box plots of the means and standard deviations for the
systems SE and S. The historical monthly values are indicated by black crosses in each
plot. Again, we consider all four different types of models.
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(a) LOG-BIC.
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(c) LIN-FIT.
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(d) LIN-SHA.

Figure 2: Boxplot of monthly means for system SE over 1000 sample paths.

For system SE, the simulated paths provide a good fit for the statistical properties
observed in the historical data. The log-linear models seem to match the true monthly
means slightly better. Especially in the first three months, the historical inflow means
are consistently exceeded by the inflows from the linearized models, which is not the
case for the log-linear models.

For system S, fitting seems most difficult among all four systems. Even though the
linearized models provide a reasonable fit to the mean and standard deviation observed
in the historical data, the historical values are again matched better using the log-linear
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Figure 3: Boxplot of monthly standard deviations for system SE over 1000 sample paths.
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Figure 4: Boxplot of monthly means for system S over 1000 sample paths.
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(b) LOG-1.
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Figure 5: Boxplot of monthly standard deviations for system S over 1000 sample paths.

models. In particular, we do not observe the systematic underestimation of the historical
mean that is apparent for the linearized case. Additionally, the log-linear models lead
to less variability in the observed means and standard deviations over all sample paths.

In Tables 3 and 4 we provide some additional information on our simulation com-
parison for all four systems. Table 3 addresses the monthly averages and their deviation
from the historical monthly averages. It presents the average of these deviations. As
from the boxplots, we can see that the log-linear models on average provide a more
accurate fit for the historical time series, except for system NE where the deviations are
similar.

Table 4 presents similar results, but for deviations from the monthly averages ob-
tained using LOG-BIC. Hence, it gives a hint on the relative differences in the inflow levels
between the log-linear and the linearized models. We observe a considerable difference
in the average inflow level, especially for systems SE and S. As SE is by far the reser-
voir with the largest capacity, we conclude that the linearized models yield significantly
larger total inflows as well.

Table 3: Averages of deviation (in %) of monthly averages from historical monthly
averages over 1000 sample paths.

SE S NE N

LOG-BIC -0.6 -1.8 5.6 1.6
LOG-1 -0.4 -2.1 5.6 1.8
LIN-FIT 3.8 11.4 5.2 4.7
LIN-SHA 2.9 3.2 5.9 4.1
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Table 4: Averages of deviation (in %) of monthly averages from LOG-BIC monthly aver-
ages over 1000 sample paths.

SE S NE N

LOG-1 0.2 -0.3 0.0 0.2
LIN-FIT 4.5 13.6 -0.4 3.1
LIN-SHA 3.5 5.3 0.3 2.4

Importantly, these difference in the inflow levels, as well as the accuracy of simulating
inflows with similar statistical properties to the historical data, do still occur if we use
the exact same parameters in the log-linear and linearized models (instead of those
obtained in the fitting process). These differences seem to be directly linked to the
difference between the log-linear model formulas (24) and their Taylor approximations.
We should note that similar observations have been already made by Löhndorf and
Shapiro in [9].

G Additional Computational Results

G.1 Standard Runs

Table 5 summarizes the computational requirements of different steps in SDDP.

Table 5: Average time requirements in computational tests (in % of total computation
time of SDDP).

Algorithmic step LOG-BIC LOG-1

Set-up log-linear AR process initially 0 0
Compute exponent factors Θ(t, τ, ℓ,m, k) in (29) 0 0
Compute cut intercept factors (27) 38 44

thereof: Compute pre-factor
(∑

r∈Rt+1
ρ∗rtj
(
α
(τ)
r,t+1,ℓ

))
32 37

Compute deterministic part of intercept 6 1
Evaluate cut intercepts in (30) 36 34
Solver calls 11 13
Other steps 9 8

Fig. 6 illustrates the cumulative distribution of the obtained statistical upper bounds
during the out-of-sample simulations for the LTHS problem.

Fig. 7 present different statistics for the temporal development of the reservoir filling
levels observed in the out-of-sample simulations.

Fig. 8 presents the average costs caused by a supply deficit compared to the demand
in the out-of-sample simulations.

G.2 Experiments with Scaled Inflows

Our presented results seem heavily affected by the difference of inflows levels of the
log-linear and linearized models. To get a better comparison between standard SDDP
and our proposed version, we run a second batch of experiments. In this batch, even
if contradicting our fitting results, we scale the inflows from the log-linear models by
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(a) LOG-BIC inflow data.
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(b) LOG-1 inflow data.
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(c) LIN-FIT inflow data.
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(d) LIN-SHA inflow data.

Figure 6: Cumulative distribution of upper bounds in out-of-sample simulations.
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(a) System SE - 5% quantile.
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(b) System S - 5% quantile.
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(c) System SE - average.
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(d) System S - average.
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(e) System SE - 95% quantile.
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(f) System S - 95% quantile.

Figure 7: Statistics of reservoir volumes for systems SE and S over the first 60 stages
for 2000 out-of-sample simulations using LOG-1 inflow data.
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(a) Using LOG-1 data.
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(b) Using LOG-1 data.

Figure 8: Average supply deficit costs over the first 60 stages for 2000 out-of-sample
simulations.

1.04, lifting them to a similar level as those from the linear models. In this case, the
differences in the out-of-sample performance are far less pronounced, as illustrated in
Fig. 9.
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Figure 9: Average statistical upper bounds (and confidence intervals) in out-of-sample
simulations over 5 independent runs with scaled inflows for log-linear models.

H Cut Formulas under Linearization Breakpoint

In Sect. 4.4, we detected that using our proposed non-convex cuts in SDDP may come
with a substantial computational overhead. On the other hand, it allows for a more ac-
curate representation of uncertainty in situations that warrant a log-linear PAR process.
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In this section, we show that our proposed method can be straightforwardly extended
to a combined approach where the uncertainty in earlier stages is modeled with more
accuracy and complexity, while using a more granular model for later stages. More
precisely, assume that we approximate the nonlinear function bt(·, ·) defining the AR
process (ξt)t∈[T ] by a linear function b̂t(·) (see the idea by Shapiro et al. [12] described in

Sect. 4.2) for later stages T̂ +1, . . . , T , thus computing linear cuts for the expected value
functions of these stages, while only considering the more accurate nonlinear function
bt(·, ·) for stages 1, . . . , T̂ , with T̂ ∈ N, T̂ ∈ [1, T ]. We call T̂ the breakpoint stage. If
we choose T̂ = T , then we consider the cases discussed in Sect. 4, whereas for T̂ = 1,
only linear cuts are constructed following the idea from [12] (recall that ξ1 is assumed
deterministic and that no cuts are computed for stage 1). For T̂ ∈ (1, T ), we obtain a
trade-off between model accuracy and computational efficiency. This trade-off can be
used to reduce the computational burden associated with the generation and evaluation
of nonlinear cuts.

We now analyze how the incorporation of a breakpoint stage T̂ ∈ (1, T ) affects the
cut formulas for the nonlinear cuts. For simplicity, we restrict to the lag-one process (26)
in this context, however, the same ideas can be applied to processes (24) and (25).

We assume that the linear cuts generated in stages t = T̂ + 1, . . . , T have the form

Qt(xt−1, ξt−1) ≥ β⊤t xt−1 + µ⊤t ξt−1 + wt (48)

with µt the cut gradient for ξt−1 and wt the scenario-independent cut intercept (see
[4, 7], Sect. D and Sect. 3.1).

For stages t = T̂ − 1, . . . , 2, let the cut coefficients be defined as in (35)-(36). Addi-
tionally, we define stage-T̂ factors

α
(T̂ )

T̂ j
:=

(
π∗
T̂ j

+
∑

r∈Rt+1

ρ
rT̂ j

µ
r,T̂+1

)
⊙ eγT̂ ⊙ eψTℓη

(j)

T̂ ,

α
(T̂ )

T̂
:=

qt∑

j=1

ptjα
(T̂ )

T̂ j

(49)

and for all t = 2, . . . , T̂ the intercepts

wtj :=
∑

r∈Rt+1

ρ∗rtjwr,t+1,

wt :=

qt∑

j=1

ptjwtj .

(50)

Then, we obtain the following cut result.

Theorem H.1. Suppose that the RHS uncertainty in problem (MSLP) is defined by pro-
cess (26) for stages 2, . . . , T̂ and by a linear approximation b̂t(·) for stages T̂ +1, . . . , T .
For any t = 2, . . . , T̂ and any state (xt−1, ξt−1), a nonlinear cut for the expected value
function Qt(·, ·) is then given by

Qt(xt−1, ξt−1) ≥ β⊤t xt−1 +
T̂∑

τ=t

(
α
(τ)
tj

)⊤
ξ
∏τ

k=t ϕk
t−1 + wt, (51)

with α
(τ)
t defined as in (35)-(36) for stages T̂ − 1, . . . , 2 and as in (49) for stage T̂ , and

with wt defined as in (50).
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Proof. We consider an arbitrary backward pass in SDDP and assume that for stages
t = T̂ + 1, . . . , T already Rt+1 linear cuts of form (48) have been generated.

For some fixed state (x̄t−1, ξ̄t−1) and some arbitrary realization η
(j)
t , j ∈ {1, . . . , qt},

the dual objective function to the stage-T̂ subproblem is

π⊤
T̂

(
b
T̂
(ξ̄
T̂−1

, η
T̂
)− T

T̂−1
x̄
T̂−1

)
+

∑

r∈R
T̂+1

ρ
rT̂

(
µ⊤
r,T̂+1

b
T̂
(ξ̄
T̂−1

, η
T̂
) + w

r,T̂+1

)
.

Let a dual optimal solution be given by π∗
T̂ j

and ρ∗
rT̂ j

, r ∈ R
T̂+1

. Then, using the

same reasoning as in the previous proofs, we obtain

Q̃
T̂

(
(x
T̂−1

, ξ
T̂−1

), η
(j)

T̂

)

≥ (π∗
T̂ j
)⊤
(
b
T̂
(ξ
T̂−1

, η
T̂
)− T

T̂−1
x
T̂−1

)
+

∑

r∈R
T̂+1

ρ∗
rT̂ j

(
µ⊤
r,T̂+1

b
T̂
(ξ
T̂−1

, η
T̂
) + w

r,T̂+1

)

= −(π∗
T̂ j
)⊤T

T̂−1︸ ︷︷ ︸
(35)
= β⊤

T̂ j

x
T̂−1

+ (π∗
T̂ j
)⊤
(
eγT̂ ⊙ eψT̂

η
(j)

T̂ ⊙ ξϕT̂
T̂−1

)

+
∑

r∈R
T̂+1

ρ∗
rT̂ j

(
µ⊤
r,T̂+1

(
eγT̂ ⊙ eψT̂

η
(j)

T̂ ⊙ ξϕT̂
T̂−1

)
+ w

r,T̂+1

)

= β⊤
T̂ j
x
T̂−1

+
∑

r∈R
T̂+1

ρ∗
rT̂ j

w
r,T̂+1

︸ ︷︷ ︸
(50)
= w

T̂ j

+
(
π∗
T̂ j

+
∑

r∈R
T̂+1

ρ∗
rT̂ j

µ
r,T̂+1

)⊤(
eγT̂ ⊙ eψT̂

η
(j)

T̂ ⊙ ξϕT̂
T̂−1

)

= β⊤
T̂ j
x
T̂−1

+ w
T̂ j

+

((
π∗
T̂ j

+
∑

r∈R
T̂+1

ρ∗
rT̂ j

µ
r,T̂+1

)
⊙ eγT̂ ⊙ eψT̂

η
(j)

T̂

︸ ︷︷ ︸
(49)
= α

(T̂ )

T̂ j

)⊤
ξ
ϕ
T̂

T̂−1

= β⊤
T̂ j
x
T̂−1

+ w
T̂ j

+
(
α
(T̂ )

T̂ j

)⊤
ξ
ϕ
T̂

T̂−1

Taking expectations over all j = 1, . . . , q
T̂
, we obtain

Q
T̂
(x
T̂−1

, ξ
T̂−1

) ≥ β⊤
T̂
x
T̂−1

+ w
T̂
+
(
α
(T̂ )

T̂

)⊤
ξ
ϕ
T̂

T̂−1

Except for the additional scenario-independent constant w
T̂
, this looks exactly like a

cut (37) for stage T had we not used a breakpoint stage. Following the inductive proof
of Theorem 4.2, for all the earlier stages t = 2, . . . , T̂ − 1, the cuts can also be expressed
by formula (37), but with T̂ in the role of T and by adding the constant wt as defined
in (50).
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