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Kurzfassung

Analysetechniken wie die Röntgenbeugung (XRD) und die Raman-Spektroskopie
sind für die Untersuchung von Materialien, Molekülen und anderen Objekten in
Größenordnungen jenseits der menschlichen Wahrnehmung von entscheidender
Bedeutung. Diese Methoden sind unverzichtbar, um sowohl bekannte als auch
noch nicht entdeckte Stoffe fundamental zu verstehen und zu bewerten. Die
im Rahmen der XRD oder Raman-Spektroskopie aufgenommen Daten werden
typischerweise als "Spektren" bezeichnet und zeigen einen Intensitätsverlauf in
Abhängigkeit von einer variablen Messgröße. In diesen Messungen zeigen die
verschiedenen Substanzen einzigartigeMuster, ähnlich eines Fingerabdrucks. De-
mentsprechend lässt sich das Vorhandensein verschiedener Materialien festellen,
in dem ihre Fingerabdrücke in den gemessenen Daten nachgewiesen werden.

Da die Nachfrage nach Stoffen mit verbesserten Eigenschaften, z.B. für leis-
tungsfähigere Batterien, Antibiotika ohne Resistenzen oder leichtgewichtige In-
frastrukturmaterialien, steigt, liegt der Fokus zunehmend auf der Erforschung
von verschiedenen Materialsystemen. Infolgedessen wurden Hochdurchsatzsys-
teme mit integrierter Robotik entwickelt, um die Herstellung und Untersuchung
neuer Materialien und Moleküle zu beschleunigen, welche alle mit Hilfe der oben
genannten Techniken analysiert werden. Zur Analyse der Messungen werden je-
doch hauptsächlichMethoden eingesetzt, welche manuelle Handhabung erfordern
oder das Vorhandensein von Referenzdaten voraussetzen und deswegen die Er-
forschung der Substanzen oft ausbremsen.

Als Alternative, präsentiert diese Arbeit ein umfangreiches Konzept, welches die
Analyse von XRD Mustern und Raman Spektren mittels Einsatz von künstlichen
neuronalen Netzwerken automatisiert. Dieses Konzept beinhaltet einen flexiblen
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Kurzfassung

Ansatz zur Simulation von exemplarischen Daten, der die Fingerabdrücke der
zu untersuchenden Materialien exakt widerspiegelt. Anschließend wird das neu-
ronale Netz mit Hilfe der simulierten Daten darauf trainiert, die Materialien in
den experimentellen Messungen zu erkennen. Die Effektivität dieses Konzepts
wird durch seine Anwendung auf drei verschiedene experimentelle Datensätze
demonstriert, die jeweils die Herstellung verschiedener Materialien untersucht.
Die Ergebnisse zeigen, dass die neuronalen Netze eine schnelle und akkurate
Auswertung der gemessenen Signale ermöglichen, obwohl sie auf simulierten
Daten trainiert wurden. Darüber hinaus wird die Flexibilität dieses Konzepts her-
vorgehoben, da es in der Lage ist, Messungen zu analysieren, die mit verschiede-
nen Messkonfigurationen aufegenommen wurden, ohne, dass eine Anpassung der
Methoden notwenig ist. Das entwickelte System lässt sich dementsprechend prob-
lemlos in bestehende Hochdurchsatzsysteme integrieren und bietet das Potenzial,
die Entdeckung neuer Materialien erheblich zu beschleunigen.
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Abstract

Analytical techniques such as X-ray diffraction (XRD) and Raman spectroscopy
are crucial for studying materials, molecules, and other objects at scales beyond
human vision. These methods are indispensable for understanding and assessing
both known and yet-to-be-discovered substances. They generate one-dimensional
intensity patterns, often referred to as "spectra", and each substance has a unique
pattern, much like a fingerprint. By examining these patterns, often a combi-
nation of fingerprints from known materials and molecules, one can accurately
determine a sample’s composition. As the demand for substances with enhanced
properties, e.g., more efficient batteries, antibiotics resistant to bacterial adapta-
tion, or lightweight infrastructure materials, grows, there is an increasing focus
on exploring material compositions to unearth novel discoveries. Consequently,
high-throughput systems integrated with robotics have emerged to expedite the
production and study of new materials and molecules, all of which are analyzed
using the techniques mentioned before. However, the reliance on manual ad-
justments in traditional methods of analyzing spectra and diffraction patterns
frequently becomes a bottleneck in the evaluation process.

Accordingly, a novel framework is introduced that addresses the bottleneck of
analyzing XRD patterns and Raman spectra, employing a neural network for
automated data analysis. This framework includes a versatile data simulation
approach that accurately represents the materials under investigation. Utiliz-
ing this synthetic data, the neural network is trained to identify novel materials
within experimental signals. The effectiveness of this framework is demonstrated
through its application to three distinct experimental datasets, each focused on
the formation of different materials. The results highlight that the high predic-
tive quality of the models trained on synthetic data effectively translates to the
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Abstract

analysis of measured signals. Moreover, the flexibility of this framework is em-
phasized, as it is capable of analyzing scans from various measurement modalities
without the need to alter the training data generation or model training methodolo-
gies. This developed framework is readily available for integration into existing
high-throughput systems, offering the potential to expedite the discovery of new
materials significantly.
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1 Introduction

1.1 Motivation

The discovery of novel materials is the key to advancing technological appli-
cations in fields such as battery technology. With the increasing demands of
energy consumption and storage, it is necessary to develop materials with im-
proved properties that are fit for future conditions [1]. Similarly, there is a need
for high-performance materials that can be used to improve characteristics in
rocket nozzles [2] or lightweight but strong materials in transport or infrastruc-
ture technology [3]. However, the process of discovering new materials through
experimental testing is a time-consuming and laborious task.

The conventional process ofmaterials discovery typically involves several steps [4].
Researchers start by mixing precursor materials and synthesizing a few samples
with unique compositions identified as promising candidates based on earlier
experiments. Those materials are then evaluated using different characterization
techniques to determine the relevant properties of the produced samples. For ex-
ample, the analysis of stresses and strains in materials subjected to external forces
is a relevant property for substances in mechanical or aerospace applications.
Thus, specimens of these novel materials are prepared for tensile testing, and sci-
entists then interpret the stress-strain curve of the respective samples to determine
attributes, such as the ultimate strength or Young’s modulus [5]. Alternatively,
the synthesized materials are examined via other characterization techniques to
determine properties on the atomic scale, conductivity, or magnetic behavior,
among many other attributes. These techniques generate large amounts of data
that experts in the respective fields need to analyze and interpret [6, 7].
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Conventional Automated

2

3

4

3

4

1 2

Figure 1.1: Conventional and automated process of materials discovery experiments. 1) Production
of samples, 2) evaluation of materials, 3) data analysis, 4) planning further experiments.
While the conventional approach involves scientists for several tasks, the automated
method excludes the humans-in-the-loop to enhance the throughput.

Recent advances in high-throughput synthesis experiments enable researchers to
rapidly identify materials with desired properties and accelerate the materials
discovery process [7]. Combinatorial synthesis and screening of large numbers
of compounds allow for rapid exploration of compositional spaces [6], and statis-
tical methods reveal patterns and correlations in the data that may not be apparent
through traditional analysis methods. Additionally, the development of special-
ized hardware, such as automated deposition systems, enabled high-throughput
synthesis experiments beyond combinatorial approaches and further accelerated
material discovery experiments [7].

Accordingly, Figure 1.1 visualizes the process of conventional and automated ma-
terial discovery experiments, split into the following essential steps: fabrication
of sample(s), experimental material evaluation, data analysis, and the planning
of further experiments. The conventional workflow integrates researchers for
manufacturing, sample preparation, instrument operation, and subsequent inter-
pretation of the data obtained from characterization techniques. Based on the
data analysis results that identify prospective specimens, as conceptualized by the
crosses, further target materials are manually defined for the next experimental
series, and the process starts over. Thus, the pipeline’s throughput is restricted by
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1.1 Motivation

several factors, such as the available workforce or merely the expertise to analyze
the recorded data from the characterization techniques. As an alternative, a con-
ceptual automated material discovery workflow increases the throughput of the
experiments by eliminating the integration of humans in the pipeline. Samples are
produced on a robotic platform and subsequently examined (1 & 2), while the data
analysis (3) and planning of subsequent experimental series (4) are performed by
mathematical models and computerized systems. However, the automated anal-
ysis of the experimental data remains a significant challenge [8, 9]. Thus, the
conceptual, fully automated workflow has yet to be fully realized.

Therefore, it is essential to strategically select and employ characterization tech-
niques that provide the most crucial information to reduce and simplify the data
analysis effort. Although tension testing allows for determining key mechanical
properties such as strength, flexibility, and fracture toughness, the preparation
of the specific specimen is rather time-consuming and, hence, unsuitable for a
high-throughput workflow. Alternatively, researchers can deploy non-destructive
techniques that directly provide insights into atomic-scale properties from the
produced samples. For example, diffraction techniques, such as X-ray or neu-
tron diffraction, can offer information about a material’s crystalline structure and
packing of atoms, which infers other essential traits of the substance [10]. Effi-
ciently packed structures generally exhibit enhanced mechanical properties due
to their high density, while open-packed structures, with more space between
atoms, might offer different properties, such as increased reactivity [5]. Thus,
applying characterization techniques that enable the determination of properties
on the atomic scale is crucial for automating the material discovery experiments.

While atoms and molecules, the building blocks of matter, are tiny, typically
on the scale of picometers (10−12m) and nanometers (10−9m), their interaction
with incident radiation or external vibrations enables the deduction of inherent
attributes. Consequently, various characterization techniques have been developed
to examine the properties of these microscopic structures. For example, X-ray
diffraction (XRD) exploits the interaction of periodically arranged atoms with X-
rays, which depicts several parameters of the underlying crystalline lattice and is a
valuable tool for analyzing the crystal structures of materials. Consequently, XRD

3



1 Introduction

instruments are commonly found in labs worldwide because they are versatile and
widely applicable to many materials [10]. Similarly, techniques like Raman
scattering and Nuclear Magnetic Resonance (NMR) spectroscopy are particularly
capable of analyzing vibrational modes, shedding light on the dynamic behavior
of atoms and molecules. Owing to their ability to determine key properties of
the synthesized samples, these characterization techniques have become essential
tools in the analysis of novel materials [11].

Nonetheless, diffraction and spectroscopy data analysis can be elaborate and
time-consuming, requiring expertise in material science and data analysis. To
address this challenge, researchers have increasingly employed machine learning
techniques, primarily to diminish the dimensionality of spectral data, thereby
improving its interpretability [12, 13, 14]. Furthermore, neural networks have
emerged to identify crystalline phases from XRD patterns and Raman spectra,
offering a fully automated evaluation of characterization data that eliminates the
need for human intervention [15, 16, 17]. However, while the integration of
neural networks has shown promise in accelerating the data evaluation proce-
dure, it is essential to note that their application, so far, has predominantly been
demonstrated in specialized tasks. The broader transferability of these automated
approaches to diverse datasets, including materials that have not yet been discov-
ered, remains a notable challenge in current research efforts. As such, there is a
pressing need to explore and enhance the adaptability of these techniques for a
more comprehensive and generalized application across a spectrum of scientific
investigations.

Accordingly, this thesis addresses the inherent challenges of applying neural net-
works for data analysis in material discovery experiment pipelines. Thus, several
methods are presented to facilitate model development, training, and application,
thereby accelerating the data analysis procedure across various characterization
techniques. Integrating these automated data analysis approaches represents a
crucial first step toward achieving fully automated material discovery workflows,
as illustrated in Figure 1.1.
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1.2 Crystalline Structures

To gain a comprehensive understanding of the novel methods introduced in this
thesis, it is imperative first to grasp the foundational principles of crystalline sub-
stances and the characterization techniques utilized for acquiring the scattering
and spectroscopy data. Consequently, Section 1.2 provides a thorough overview
of crystalline materials, while Section 1.3 illustrates the interaction of samples
with incoming radiation, which results in the measured characterization data.
Subsequently, the manual approach for analyzing the measurements is demon-
strated (see Section 1.4), and a synopsis of state-of-the-art methods for automated
analysis of such techniques is provided in Section 1.5. Finally, the limitations of
previous studies are stated (see Section 1.6), and the objectives of the thesis are
summarized in Section 1.7.

1.2 Crystalline Structures

Elementary particles, such as protons, neutrons, and electrons, constitute the
observable universe and all objects. Based on the elementary particles, various
species of atoms are formed and are known as chemical elements, differing in
the number of protons in their nuclei. Most of the substances found in nature are
compounds of elements with ionic, covalent, or metallic bonds that keep the atoms
of different species together [18]. In addition to the forces that result in strong
bonds, atoms connect through weak forces, such as dipole-dipole interactions or
the van der Waals force. The bonding forces dictate in which state of matter a
material occurs naturally. If the particles are locked in place by strong bonds that
allow only minor vibration movement of atoms, then a substance is denoted as
solid. Although attracting forces are also prevalent in liquid substances, particles
can move and slide past each other while remaining relatively close together.
Therefore, liquids have a definite volume but not a definite shape, as they adopt
the shape of the container. However, there is little free space between particles
in liquid and solid substances, so they are not compressible. On the contrary,
particles in gaseous matter interact weakly and occupy all of the available space
[10].
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Figure 1.2: Types of Bravais lattices in two-dimensional space with their respective unit cells (high-
lighted) and the spanning vectors a, b plus the enclosed angle γ. [20]

State transitions occur when external properties are changed, e.g., temperature
or pressure. For example, a solid substance changes into a liquid state when the
supplied thermal energy amplifies minor movements of the particles to a certain
extent that break the weakest bonds [19]. Similarly, gaseous and liquid substances
can be cooled, so the movement of their particles becomes restricted until they
are locked in place. When solids are formed, the particles are distributed in an
equilibrium between attractive and repulsive forces. Most frequently, the optimal
distribution of particles results in periodic arrangements: crystals. An example of
this is halite, the naturally occurring crystalline state of sodium chloride (NaCl).
Nonetheless, crystals can appear in all sorts of shapes and colors. Alternatively,
when liquid materials are rapidly cooled so that particles do not have time to
distribute to optimal states, atoms are randomly arranged, called an amorphous
solid, which occurs most prominently in glass.

Crystals are periodic in one, two, or three dimensions and are theoretically infinite
but, in practice, limited because of naturally occurring defects. The periodic
structure is usually described as a lattice with elementary parallelepipeds, unit
cells, that are repeated throughout the area or volume and are identical in shape
and content [10]. Figure 1.2 shows the definition of different Bravais lattices
with their spanning vectors a and b. Furthermore, the unit cell of each lattice is
highlighted and described by the scalar quantities a and b plus the angle γ that
specifies the relative orientation of the vectors. By definition, each point within
the Bravais lattice is representable through linear combinations of vectors with
coefficients that belong to the set of whole numbers. Notably, these points in
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1.2 Crystalline Structures

the lattice are not limited to representing atoms or ions; they can also signify
molecules (groups of atoms bonded together) [18].

One way to discriminate between the different Bravais lattices is the relations
and restrictions of the lattice parameters a, b, and γ that specify the lattice
type/system [20]. For example, the lattice vectors must be orthogonal for both
rectangular and square unit cells (γ = 90◦) but differ in the relationship of their
magnitudes: a = b for the square lattice (tetragonal system), a ̸= b for the
rectangular (orthorhombic system). Similarly, the conditions a = b and γ =

120◦ apply for all hexagonal lattices, whereas the oblique unit cell (monoclinic
system) has no restrictions. An additional discrimination is the position of the
lattice points within the unit cell. For primitive lattices, particles (atoms, ions,
or molecules) are located only at the corners of the unit cell, as illustrated in
Figure 1.2a-c. Alternatively, Figure 1.2d shows a lattice with an additional point
inside the unit cell, so the orthorhombic crystal system is split into primitive and
centered rectangular lattices. Thus, a two-dimensional crystal can correspond to
one of five distinct Bravais lattices and four unique lattice systems (monoclinic,
orthorhombic, tetragonal, and hexagonal) [20].

However, solid matter has a volume, and thus, the periodicity in crystals usually
spans three dimensions, which complicates the Bravais lattices and systems. In
three-dimensional space, the lattice is described via three vectors, a, b, and c.
Accordingly, there are six parameters to describe the lattice: the lengths of the
unit cell edges a, b, c, plus three angles to describe the relative orientations,
α, β, and γ. Table 1.1 shows the seven lattice systems with their unit cell
parameter restrictions and relationships for a three-dimensional space. While the
two-dimensional monoclinic, orthorhombic, tetragonal, and hexagonal systems
are complemented with two orthogonal angles to arrange their three-dimensional
variants, there are additional systems (triclinic, trigonal, and cubic) with unique
relationships and conditions. In addition to the primitive lattices for each system,
three centered variants exist: body-centered with a point in the middle of the cell,
face-centered with a point on every face, and base-centered with only two points
in the middle of two parallel faces. Overall, there are 14 distinct Bravais lattices
in three-dimensional space.
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Table 1.1: Lattice systems and unit cell shapes in three dimensions [10]

Lattice system Unit cell shape/parameters
Triclinic a ̸= b ̸= c;α ̸= β ̸= γ ̸= 90◦

Monoclinic a ̸= b ̸= c;α = γ = 90◦;β ̸= 90◦

Orthorhombic a ̸= b ̸= c;α = β = γ = 90◦

Tetragonal a = b ̸= c;α = β = γ = 90◦

Cubic a = b = c;α = β = γ = 90◦

Hexagonal a = b ̸= c;α = β = 90◦; γ = 120◦

Trigonal/Rhombohedral a = b = c;α = β = γ

As previously noted, lattice points can represent individual atoms, ions, or even
entire molecules, leading to complex crystal structures and the associated chal-
lenges in identifying their corresponding lattices. For instance, Figure 1.3a depicts
the NaCl crystal with a face-centered cubic arrangement. The larger black dots in
this structure represent sodium (Na) ions, which precisely align with the Bravais
lattice points. Contrasting this, the smaller gray dots, representing chloride (Cl)
ions, are positioned along the unit cell’s edges and do not correspond to the Bravais
lattice points. To streamline the crystallographic representation, the concept of a
basis, which associates a specific group of atoms or ions with each lattice point, is
often employed [18]. In the context of NaCl, the crystal structure becomes more
discernible when the pair of sodium and chloride atoms is defined as the basis.
Similarly, the Bravais lattice can be identified for the crystal structure of PuPt4, as
visualized in Figure 1.3b. The larger black markers denote the plutonium atoms
in this illustration, while the smaller gray dots indicate the platinum atoms. By
designating the Pt-Pu-Pt atomic arrangement as the basis, the structure aligns
distinctly with a base-centered orthorhombic lattice.
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a
a

a

(a) Face-centered cubic crystal
structure of NaCl [20]

a b

c

(b) Base-centered orthorhombic crystal
structure of PuPt4 [21]

Figure 1.3: Exemplary unit cell arrangements with differing content (black and grey points).

The crystal structures in Figure 1.3 exhibit another property that appears frequently
in nature: symmetry. There exist several basic symmetry operations that can be
described by their respective symmetry elements [10]:

• rotation by the rotation axis,

• inversion by the center of inversion,

• reflection by the mirror plane, and

• translation by the translation vector.

Accordingly, the NaCl structure in Figure 1.3a is defined by its definite symmetry
operations. Primarily, it has three 4-fold rotation axes that pass perpendicular
through the center of the cube’s faces. The structure also showcases four 3-
fold rotation axes, aligned diagonally between the cube’s vertices, and six 2-fold
rotation axes that pass through the centers of diagonally opposite, parallel edges.
Furthermore, this face-centered cubic structure incorporates nine mirror planes
and a center of inversion. By comparison, the orthorombic structure of PuPt4
also has the center of inversion. Still, a few mirror planes and rotation axes
are missing due to the mismatch of unit cell edge lengths (a ̸= b ̸= c) and the
difference between base-centered and face-centered lattices.
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Additionally, basic operations can be combined and are then characterized by their
complex symmetry elements: the (roto-)inversion axis for the mixture of rotation
and inversion, the screw axis for rotation and subsequent translation, and the glide
plane for the combination of reflection and translation [10]. By a combination of
the 14 unique Bravais lattices and 32 distinct sets of crystallographic symmetry
operations (point groups), the 230 essential space groups are formed (certain
combinations results are not valid), which allows for the classification of all
crystalline structures [18].

1.3 Characterization Techniques

1.3.1 General Diffraction of X-rays

Atoms and crystalline structures are too small to be observed using conventional
light sources with wavelengths ranging from 400 to 700 nm, as their size is
smaller by a factor of 103 [10]. However, electromagnetic radiation with shorter
wavelengths can interact with solid matter, as first demonstrated by Max von
Laue in 1912 [22]. Most importantly, X-rays are used to analyze crystal lattices
using effects such as scattering and interference. X-rays were first discovered by
Wilhelm Conrad Röntgen [23] and have wavelengths between 0.1 and 100 Å,
although only wavelengths in the range of 0.5 and 2.5 Å are commonly used in
crystallography [10].

Most commonly in a laboratory setting, X-rays are produced using an X-ray tube,
where high-energy electrons interact with a metal target. When the electrons col-
lide with atoms of the metal target, they knock out orbital electrons from the inner
electron shell of the atom. If electrons in the inner shell are missing, electrons
from higher energy positions fill the vacancies and emit electromagnetic radiation
when they change positions. The resulting wavelength of electromagnetic radia-
tion depends on the target element used and the orbitals of the electrons. As a
result, multiple characteristic wavelengths emerge from the X-ray tube, even for a
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1.3 Characterization Techniques

homogeneous target material, which is qualitatively presented in Figure 1.4. For
electrons that transition from higher-energy orbitals, the emerging radiation has
a higher energy, thus resulting in a lower wavelength. The three most prominent
emission lines are Kα1, Kα2, and Kβ with decreasing intensities in the same
order. Typically, copper anodes are used in laboratories to produce X-rays, but
molybdenum or cobalt targets are also used in specific settings [10].

WhenX-rayswith a characteristic wavelength interact withmatter, different effects
occur depending on the properties of the impacted material. Firstly, X-rays are
scattered by electrons of atoms, producing electromagnetic radiation spread in all
directions. If the kinetic energy of the incident photons is not conserved, e.g.,
because of ionization, the wavelength of the scattered X-rays is increased, which
is described as inelastic scattering. Alternatively, the energy and wavelength of
the scattered X-rays match the incident beam for elastic scattering. Since X-rays
interact with electrons, the scattered waves’ intensity depends on the impacted
material’s electron density. Because not all radiation is scattered in the same
direction, the intensity of the X-rays decreases with respect to the thickness of the
material and might also be absorbed entirely [10].

When incident radiation interacts not only with individual atoms but also with
atoms arranged in a periodic arrangement, the resulting scattered waves may share

Kβ
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Kα2

Wavelength, λ
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Figure 1.4: Qualitative emission spectrum of electromagnetic radiation from an X-ray tube. X-rays
appear not only with a single wavelength but also with multiple characteristic wavelengths
originating from different orbitals. Here, only the three most intensive emission lines are
schematized and labeled. Based on [10].
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a common orientation. However, owing to the spacing between the atoms, a path
difference in the outgoing waves may arise. Figure 1.5 illustrates this for incident
radiation under angle θ scattered on atoms arranged on parallel lines with distance
dhkl. The resulting path difference is 2 · dhkl · sinθ.

If the path difference aligns with the magnitude of the radiation wavelength,
it results in either cancellation or amplification of the scattered waves. This
phenomenon is described by the terms destructive and constructive interference.
While visible light can not be used to record the diffraction pattern of a crystal, the
wavelength of X-rays is comparable to the unit-cell spacings in crystals. Laue and
his colleagues were the first researchers to come to this conclusion and reported
the first-ever X-ray diffraction pattern in 1912 [22].

Expanding on this foundational work, Bragg’s law [24] emerged as a crucial
principle, describing the condition for constructive interference in the diffraction
pattern:

nλX-ray = 2 · dhkl · sinθ. (1.1)

Consequently, for a givenwavelengthλX-ray and a planar distancedhkl, a diffraction
peak of order n is observed at angle θ.

d
hkl

d h
k
l·

si
n
θ

θ

•

θ

θθ

Figure 1.5: Diffraction of X-rays in a crystalline lattice with distance dhkl between the two illustrated
parallel lines (planes in three-dimensional space) of lattice points. The incoming radiation
occurs under angle θ.
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Families of parallel and equally spaced planes in a crystalline lattice are commonly
described using Miller indices h, k, and l. They denote the reciprocals of where
these planes intersect the crystal axes a, b, and c. As depicted in Figure 1.6a, the
plane (001) intersects the c-axis at c = 1. Similarly, in Figure 1.6b, the illustrated
plane (110) cuts through the axes at a = b = 1. As a result, the distance between
neighboring planes is related to the lattice parameters [10]. In the trivial case
shown in Figure 1.6a, d001 is equal to the length of the lattice edge c. In general,
the formula relating the interplanar distances with the lattice parameters is given
below

1

dhkl
=

√
h2

a2
+

k2

b2
+

l2

c2
. (1.2)

Consequently, a crystal has limited unique interplanar distances that satisfy the
Bragg condition at specific scattering angles θ. Notably, the intensity of diffraction
spots from distinct planes remains unaffected by the presence of others so that
multiple diffraction spots can be observed simultaneously in a single diffraction
pattern (occurring at unique angles). The number of diffraction spots in a crystal
pattern is intricately tied to its symmetry, as high-symmetry crystals exhibit fewer
diffraction spots than their low-symmetry counterparts. The inherent symmetry
in high-symmetry crystals leads to equivalent distances of Miller planes, so the
resulting diffraction spots overlap. For example, in a cubic latticewherea = b = c,
the distances of the planes perpendicular to the vectors spanning the unit cell are
all equivalent d100 = d010 = d001. In contrast, three distinct diffraction points

a
b

c

(a) Miller plane (001)
a

(b)Miller plane (110)

Figure 1.6: Two exemplary Miller planes in a monoclinic lattice.
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can be observed for the d100, d010, and d001 planes of an orthorhombic structure
due to the diverging lengths of the unit cell edges [10].

Recording all diffraction spots, however, is an intricate task, as specific crys-
tallographic planes must be precisely aligned to satisfy the Bragg condition for
reflection. For example, planes oriented either perpendicular or parallel to the
incoming X-rays do not yield a detectable reflection because there is no differ-
ence in the paths of rays scattered from these planes. Hence, in single-crystal
diffraction, the sample is rotated during measurement to capture planes from all
orientations; the resulting diffraction spots are registered on a planar detector [25].
Nonetheless, a comprehensive detector and sophisticated sample rotation mech-
anism are essential for this method. An alternative approach grinds the material
into a powder, containing multiple crystals in random orientations, thus fulfilling
Bragg conditions without necessitating sample rotation — this is elaborated upon
in the subsequent section.

1.3.2 Powder Diffraction Patterns

Due to the challenges in preparing the specimen for single-crystal diffraction,
powder diffraction is most commonly used to analyze crystalline samples [26].
In a powder specimen, multiple tiny crystals are randomly oriented and produce
several diffraction cones that satisfy the Bragg condition. Figure 1.7a shows
how a beam of incident X-rays produces multiple diffraction cones at angles
2θ with respect to the originating orientation. Consequently, the Bragg-Brentano
geometry enables a straightforward recording technique in which the X-ray source
and detector are placed in a circular orbit R and move in opposite directions to
increase angle 2θ, as depicted in Figure 1.7b. The resulting intensity profile is a
cross-section through all diffraction cones [10].
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2θX-Ray
Beam

Powder sample

(a) Origin of diffraction cones with Debye-Scherrer
rings for powder samples. From [26].
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(b) Powder diffraction instrument employing the Bragg-
Brentano geometry [27]. From [18].

Figure 1.7: Acquisition of X-ray powder diffraction patterns. The diffraction pattern appears as cones
for samples that have been ground into a fine powder. Instead of recording the whole
cones, scanning through the rings’ cross-section reduces the required data volume while
retaining the essential information.
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Figure 1.8: Powder X-ray diffraction scan of
NaCl structure. From [28].
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Figure 1.9: Characteristic appearance of peaks
in powder diffraction patterns with
properties height h and width W at
half maximum.

The resulting one-dimensional powder diffraction pattern of a mineral sample
is shown in Figure 1.8. In this example, the instrument recorded the diffracted
intensities from 5 to 90 degrees 2θ in steps of size∆2θ = 0.01◦1, so the measure-
ment results in 8501 data points [28]. Thus, intensities are typically recorded as
discrete counts, and, depending on measurement variables such as radiation dose

1 The range of the scans, as well as the step width, can vary based on the specific use-case and
configuration of the instrument.
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and scanning duration per step, the absolute intensities vary considerably [10].
The recorded intensities depend on the respective atoms in the lattice that scatter
the X-rays and are typically described by the structure factor, but other effects,
such as temperature, can also affect the peak heights [18].

In the case of the one-dimensional signal of Figure 1.8, the diffraction pattern
depicts the characteristic powder diffraction pattern of the NaCl structure from
Figure 1.3a. For an XRD instrument with a copper radiation source, the sodium
chloride sample yields nine characteristic diffraction peaks in the measurement
range between 5 and 90◦ 2θ that are attributed to unique distances dhkl in the
crystal. Owing to differences in structure factors and plane geometries, the
intensities of the recorded peaks vary, and specific peaks are barely discernible
due to measurement noise introduced by the employed electrical components.
Thus, the peak attributed to the d331 planes, expected at approximately 74◦, is
not detectable in this scan, and the d311 at 54.5◦ only marginally rises above the
noise. Moreover, two ancillary peaks at 29◦ and 41◦ are present, as highlighted
by the question marks, that do not result from the NaCl structure and are therefore
attributed to impurities.

Furthermore, Figure 1.8 demonstrates another characteristic of XRD patterns: the
diffraction peaks exhibit a broadened and modulated shape that diverges from the
discrete interference effect formulation depicted by the Bragg equation. Though
the Bragg equation pinpoints the ideal position of these peaks, corresponding to
constructive interference of X-rays scattered by inter-atomic planes, the observed
peak profiles in a pattern are often bell-shaped. The deviation from discrete peaks
is partly attributed to the finite size of the crystals in the analyzed powder. In
practice, imperfections and defects in the lattice are reasons why the Miller planes
are not perfectly equidistant. Hence, the Bragg condition is satisfied for a small
range of angles around the ideal distance dhkl, and the diffraction intensities appear
as broad peaks [10]. Moreover, the broadening is caused due to the interaction
of the radiation with the optical components of the instruments. Accordingly,
Figure 1.9 illustrates a typical peak shape with characteristic properties such as
the peak height h and the widthW , which is measured at half the peak height and
thus referred to as the full width at half maximum (FWHM).
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The diffraction pattern of NaCl, as shown in Figure 1.8, is like a fingerprint for the
mineral. Although other crystal structures have a matching arrangement of atoms
in space and, therefore, identical space groups, the interatomic distances in the
lattice depend on the atomic radii, so smaller or larger particles in the lattice shift
the angles and positions of the diffraction peaks. Furthermore, different species
of atoms feature varying scattering factors, so the intensities of the diffraction
peaks differ, even for matching lattice parameters. Consequently, only the face-
centered cubic crystal structure ofNaCl generates a diffraction patternwith relative
peak heights and positions, as shown in Figure 1.8. Yet, sodium chloride can
adopt different arrangements due to variations in temperature, pressure, or other
external conditions. Each distinct arrangement represents a different crystalline
phase, which describes the precise atomic or molecular configuration for a given
chemical composition. Therefore, the XRD pattern acts as a fingerprint for
crystalline phases rather than chemical compositions [10].

As visualized in Figure 1.4, an X-ray tube produces radiation with multiple
characteristic wavelengths in a laboratory setting. Hence, every Miller plane
produces not one but three diffraction peaks if the electromagnetic radiation is not
filtered. Similarly, focusing the beam on the sample is essential, or the diffraction
peaks become broad and overlap. X-ray tubes, commonly used in laboratory
settings, produce unfocused X-rays; therefore, powder diffraction instruments
require additional apertures to condition the beam. Figure 1.10a shows two
devices to restrict the dispersion of the beam in two directions: divergence slits
for collimation of the beam and Soller slits with length l and distance d to limit
axial divergence. In simple terms, the divergence slits focus the X-rays on the
sample, while the Soller slits aim to improve the resolution of the diffraction
pattern through parallelization of the waves (dispersing only with angle αd).

The characteristic emission profile of the X-ray tube can be filtered as shown
in Figure 1.10b. Since electromagnetic waves with shorter wavelengths carry
more energy, it is possible to filter higher frequency waves such as the Kβ peak.
As explained in the previous section, the absorption of X-rays occurs for some
materials when high-energy radiation ionizes the material. For an X-ray tube
with a copper anode, a Ni foil works best as a Kβ filter that absorbs photons
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Figure 1.10: Collimation and monochromatization of X-rays generated from an X-ray tube most
commonly used in a laboratory setting. From [10]

with shorter wavelengths. At the same time, the energy of the Kα radiation is
insufficient to ionize thematerial, thus penetrating the foil. This effect is illustrated
by the dotted line in Figure 1.10b, so both the Kα1 and Kα2 pass through the
filter. In practice, the two Kα wavelengths are very similar, and the peaks in the
emission spectrum almost overlap, so filtering Kα2 also reduces the intensity of
the Kα1 wavelengths. Hence, a monochromatization of pure Kα1 is not feasible
in most laboratory settings, and both Kα shares are present in many available
diffraction patterns [10]. In practice, the peaks generated from both wavelengths
overlap for lower angles 2θ, and peak splitting is only observable for peaks that
are located at higher angles, such as the peaks for 2θ > 50◦ in Figure 1.8. All
three devices, divergence slits, Soller slits, and Kβ filters, are commonly placed in
X-ray diffraction instruments. Both slits are typically located on both the emitter
and detector site of the instrument depicted in Figure 1.7b [10].

Furthermore, the signal-to-noise ratio of the one-dimensional patterns is crucial
to discriminate between low-intensity peaks and noise. Noise refers to recorded
intensities that are not directly attributed to the analyzed sample but originate
from other sources. Some of this unwanted intensity arises from X-rays reflecting
off instrument components, such as the sample holder, rather than the powder
sample itself. Additionally, the detector introduces uncertainties in intensity
measurements due to inherent statistical effects. While longer measurement
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durations can mitigate these statistical variations, an optimal experimental setup
and specimen preparation are required to record XRD patterns with a sufficient
signal-to-noise ratio.

1.3.3 Variation in Diffraction Patterns

While local imperfections and defects in the crystal cause broadening of the
diffraction peaks, defects that affect the entire crystal introduce further pattern
variations. Strained lattices emerge when the regular atomic arrangements of a
crystal are disturbed or displaced, often due to external pressures, thermal effects,
or the incorporation of foreign atoms. This strain-induced distortion results in
peak shifts in the powder XRD signals, altering the characteristic patterns of
phases. Similarly, there exist effects that change the scattering behavior of atoms
and ions in the lattice, leading to height variations of the peaks. Consequently,
the characteristic patterns of crystalline samples vary slightly, even for samples
with identical phases.

Accordingly, Figure 1.11 shows the diffraction pattern for two samples of the
mineral dolomite that differ in their peak positions and heights. Here, the pattern
of sample B (orange) is offset on the y-axis to improve visibility. Apart from the
presence and absence of some minor peaks, the most notable difference between
the two patterns is that peaks at lower angles 2θ are less shifted than peaks at
higher angles. The shift of peak positions suggests the presence of a strained
lattice and diverging lattice parameters between the two samples of the identical
mineral. According to the Bragg equation (1.1), the change of lattice parameters
shifts the peaks linear to sin(θ). Hence, the position difference of corresponding
peaks is more significant for higher angles 2θ.

The causes for divergences in diffraction patterns of samples from an identical
phase are presented in Table 1.2. Specific properties of the crystal structure,
the specimen, or the instrument’s parameters affect either the peak positions,
intensities, or shapes, which results in variations of the recorded interference
pattern. For example, the defects and limited sizes in actual crystals cause the

19



1 Introduction

Bragg angle, 2θ

In
te

n
si

ty

25 30 40 5035 45

Figure 1.11: Two powder diffraction patterns for distinct specimens of the mineral Dolomite. To
improve visibility, the pattern for sample B is shifted slightly on the y-axis. The patterns
exhibit a modest mismatch in peak positions and intensities. From [28].

Table 1.2: Classification of properties, effects, and parameters that influence powder diffraction pat-
terns, attributed to the crystal structure, specimen properties, and instrument parameters.
Overall, the position and intensity of the peaks and the peak shape can be manipulated.
Adapted from [10].

Crystal structure Specimen property Instrument parameters

Peak position
Unit cell parameters

(a, b, c, α, β,γ)

Absorption

Porosity

Radiation - wavelength

Instrument/sample alignment

Axial divergence of the beam

Peak intensity
Atomic parameters

Temperature factor

Preferred orientation

Absorption

Porosity

Geometry and configuration

Radiation - Lorentz polarization

Peak shape
Crystallinity

Disorder

Defects

Crystallite size

Strain

Stress

Radiation - spectral purity

Geometry

Beam conditioning

broadened peak shapes, as observed in Figure 1.8 and conceptualized in Figure 1.9.
The relation between the characteristic peak width W and crystallite size L, is
defined by the Scherrer equation [10] with the Scherrer constant K

Lcrystallite =
KλX-ray

W cos(θpeak)
. (1.3)
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Thus, the Scherrer equation allows for deducing the underlying size of the crys-
tallite grains in the sample, given the wavelength of the incoming radiation λX-ray,
the position of the peak θpeak, and the measured width of the peakW . In practice,
however, the FWHM is affected by the size of grains in the powder and other
effects, as shown in the third row of Figure 1.2. Although the broadening of the
peaks preserves the area under the curve [10], the analysis of diffraction patterns is
complicated once neighboring peaks start overlapping. Thus, thorough specimen
preparation and proper beam conditioning are necessary to produce informative
signals.

Finally, the recorded diffraction intensities vary considerably if the diffraction
experiment is not cautiously performed. Theoretically, the intensities are related
to the scattering factors of the atoms in the lattice, so it does not only matter what
atoms are present in the lattice but also their positions. Furthermore, the vibra-
tion of atoms in the lattice is accounted for by the temperature factor, as higher
temperatures increase the vibrations of the particles in the lattice and, therefore,
influence the scattering factors. However, temperature-dependent influences, as
well as other effects such as the specimen’s absorption or porosity and the radia-
tion’s polarization, cause minor variances compared to the preferred orientation
effect that occurs for an ill-prepared specimen. As shown in Figure 1.7a, the
powder sample produces diffraction cones, and Debye-Scherrer rings as long as
all particles are randomly orientated in the sample. For a well-prepared sample,
the orientation of the grains ensures that every dhkl for Miller-planes in the lattice
is represented equally. However, if the crystallites do not represent an isotropic
shape but instead are shaped like needles or plates, the grains are more likely
to lie flat in the specimen, and therefore, some of the Miller planes are over- or
underrepresented. Consequently, this effect has the potential to change the rela-
tive intensities of the diffraction pattern completely, so the formation of preferred
orientations has to be prevented during the specimen preparation process.
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1.3.4 Analogies to Spectroscopic Techniques

While XRD instruments record the diffracted intensity across a varying angular
spectrum, denoted as 2θ, spectroscopic techniques, on the other hand, produce
patterns of peaks and valleys across a scanned range of energies or frequencies.
More specifically, the x-axis of the acquired data represents energy for X-ray or
UV-visible spectroscopy, frequency in the case of Nuclear Magnetic Resonance
or microwave spectroscopy, and wavenumber for techniques such as Infrared
or Raman spectroscopy. Similarly to XRD, the specific positions and relative
intensities of the peaks in these spectroscopic patterns serve as characteristic
indicators for certain features of the materials or molecules.

Raman spectroscopy, for instance, serves as a tool for analyzing the molecules’
vibrational or rotational modes, which are defined by the atomic bonds that
constitute the substance. This technique contrasts the elastic scattering effect
exploited in XRD, where incident X-rays excite electrons in a sample material,
leading to the emission of X-rays with equivalent wavelengths as the electrons
revert to their initial orbitals. Conversely, Raman scattering engages the inelastic
scattering effect, which absorbs a portion of the incident energy. Consequently, the
energy of the scattered radiation diverges from the incidentwaves, and the presence
of specific wavelengths in the outgoing radiation corresponds to characteristics of
bonds within the analyzed substance. Furthermore, Raman spectroscopy employs
a laser to excite molecular vibrations, providing insight into the properties of
molecules rather than inter-atomic distances. As a result, the wavelength used in
Raman spectroscopy is typically three orders of magnitude greater than that of X-
rays, such as the commonly used wavelength of 785 nm. Thus, XRD is primarily
utilized for the analysis of long-range ordered structures, which are based on
symmetries in crystalline materials, while Raman spectroscopy is more sensitive
to short-range order and can be employed for the analysis of both crystalline and
amorphous materials [29].

Figure 1.12 shows a Raman spectrum for the mineral dolomite on the right. Here,
the signal shows several intensity peaks at various positions across the scanned
variable, the Raman shift, that describe the vibrational and rotational modes of
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Figure 1.12: XRD pattern and Raman spectrum for the mineral dolomite, as acquired from the same
specimen. Both techniques show intensity spikes that encode the relevant information
concerning the peak positions and intensities. From [28].

the evaluated sample. For the identical sample, the XRD pattern is illustrated
on the left in Figure 1.12, and both signals, XRD and Raman, exhibit notable
similarities in their visual representation. Firstly, they share similar peak shapes
due to the interaction of the measured radiation with optical components or other
effects. Additionally, the essential information about the material or sample under
study is encoded in the position and intensity of these peaks.

Another commonality in both XRD patterns and Raman spectra is the principle
of superposition, which plays a crucial role when analyzing mixtures contain-
ing multiple substances. If a sample comprises several compounds, the observed
pattern or spectrum is effectively a sum of the individual signals from each compo-
nent. This means that the combined measurement can often be decomposed into
its constituent parts. Nonetheless, the principle of superposition may not apply
to all spectroscopy methods, especially if the presence of multiple components
results in interactions that alter the measurement’s outcome.

Another similarity of both characterization techniques is the shift of peak posi-
tions and intensities due to various effects that influence the sample. Mechanical
strain, for example, affects the lengths and properties of bonds in crystals or
molecules, which alters the recorded Raman shifts for the corresponding vibra-
tional modes compared to an unstrained sample [30]. Accordingly, Figure 1.13
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(a) Variation of Raman spectra for two dolomite sam-
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Figure 1.13:Measured Raman spectroscopy patterns that exhibit variation concerning peak position,
intensities, and shapes.

shows the variation of different Raman spectra for various materials and sub-
stances. In Figure 1.13a, two measured Raman patterns for distinct samples of the
mineral dolomite are shown, which differ slightly in peak positions, intensities,
and shapes. Additionally, Figure 1.13b shows ten different Raman spectra for
the bacteria isotope Escherichia coli that exhibit similar variation. Hence, while
Raman spectra serve as fingerprints revealing the distinctive characteristics of the
underlying sample’s molecular bonds, associating these spectra with correspond-
ing molecules can be challenging due to these subtle variations. Compared to
XRD, Raman spectroscopy can also be used to evaluate organic samples that do
not feature a crystal structure. The similarity in appearance and variation of the
patterns from different characterization techniques results in the need for universal
analysis methods.

1.4 Conventional Analysis of 1D Patterns

Building upon the theoretical background of signals acquired from techniques
such as XRD or Raman scattering, the focus is now on the practical applica-
tion of this knowledge for material characterization. Although the patterns for
identical substances can vary due to artifacts, there is an underlying consistency
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in the positions and heights of peaks in these patterns characteristic of certain
substances. Therefore, this section delves into the methodologies employed for
pattern analysis, primarily by utilizing reference data from various databases.

Figure 1.14 provides an overview of the conventional signal analysis process for
identifying unknown samples. Themeasured signals contain artifacts that obscure
the relevant information, so preprocessing methods are necessary to suppress
noise or elevated baseline intensities in the signal. Because the characterization
techniques have been established for centuries, many crystalline and organic
samples have been examined and recorded to re-identify unknown specimens.
Flawless reference patterns are stored in the database, or the material information
is encoded and has to be transformed for comparison with the measured signals.
Finally, the acquired information is compared with the database entries, and
similarity metrics enable the matching with existing references.

Consequently, the following subsections explain the essential steps of conventional
data analysis for one-dimensional patterns. First, Subsection 1.4.1 describes the
preprocessing steps to obtain cleaner, more consistent signals ready for subsequent
analysis. Then, Subsection 1.4.2 presents the conditioning steps to prepare the ref-
erence information from the databases for the matching. Finally, Subsection 1.4.3
defines metrics to assess the similarity of measured and reference patterns.

Measurements Database

Pre-

processing

Con-

ditioning
Matching

Figure 1.14: Process of identifying unknown specimens by matching the recorded patterns with
database information using established methods. The acquired patterns are preprocessed
to eliminate artifacts that hamper the matching procedure. Simultaneously, the database
information is conditioned to match the properties of the recorded signals. Expert users
can attribute the samples to database entries based on similarity metrics calculated in
the matching step.
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1.4.1 Preprocessing Methods
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(b) Denoising of the scan to suppress
intensity variations due to statis-
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Figure 1.15: Essential preprocessing steps to obtain the relevant peak properties (position, height)
from the raw data, as shown on an exemplary XRD pattern of the mineral Manganite.
Data from [28].

The detector in diffraction or spectroscopy analysis instruments records intensity
values, but the acquired signal does not only contain the reflections related to the
analyzed sample. For once, measured signals display fluctuations of the measured
intensity values that have the potential to obscure the spectral or diffraction peaks,
commonly known as noise. One of the most critical noise sources is detector
noise, which arises from the electronic circuitry used to read out the detector,
causing distortion in the recorded intensities. This introduces a statistical effect
that causes the measured intensity values to scatter around the actual count.
Additionally, radiation is scattered or reflected on the instrument’s sample holder
or other components if the beam or laser is not collimated correctly, resulting in
elevated intensities across the measurement range [10].

One approach to compensate for noise in spectroscopic or diffraction data is to
increase the acquisition time during the measurement. Increasing acquisition
times can compensate for random and uncorrelated noise, as the longer measure-
ment duration allows for averaging out of the fluctuations. Yet, as acquisition
time increases, the sample may experience changes due to environmental factors,
such as temperature or humidity, which can affect the quality and accuracy of the
measurement. Additionally, longer acquisition times may not always be practical,
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as they may be limited by the instrument’s stability, the sample’s availability, or
the need for a quick analysis. Similarly, elevated baselines can be avoided through
the use of elaborate components such as divergence or Soller slits. However,
in a laboratory setting, the available instruments often limit pattern acquisition.
Therefore, if available, careful consideration of the potential noise sources and the
implementation of noise-reduction techniques are essential for achieving accurate
and precise results in such sample characterization techniques [10].

To extract vital scientific information from measured signals that still contain
artifacts, several preprocessing methods are crucial to prepare the noisy signals
for the matching procedure. Accordingly, Figure 1.15 illustrates crucial prepro-
cessing methods commonly applied when analyzing the recorded patterns on the
example of an XRD signal for the mineral Manganite [28]. The raw diffraction
scan is shown as the black line plot in Figure 1.15a, which exhibits increased
intensity variations and an uneven baseline. However, the presence of complex,
non-uniform background signals complicates the analysis process, as it poses a
challenge in accurately quantifying the intensities of peaks. As a result, baseline
correction is often necessary before analyzing XRD or Raman spectra to avoid
misinterpretation of the results. Baseline correction can be performed through
various methods, including polynomial fitting, spline interpolation, or Wavelet
transforms [10, 32]. Polynomial fitting is a standard method that fits a polynomial
curve to the data points in a selected region, subtracting it from the original sig-
nal. Alternatively, the Wavelet transforms method analyzes the signal at different
frequencies, identifying baseline variations that can be subtracted.

Correspondingly, a fitted polynomial curve was used for the baseline removal step,
as illustrated by the red line in Figure 1.15a. The corrected signal is then illustrated
as the black line in Figure 1.15b, which still contains high noise levels. Similarly,
various algorithms and approaches exist to suppress the noise in the signal while
retaining the relevant information. One common approach to smoothing signals is
to apply filters, which are mathematical functions that can reduce high-frequency
noise while preserving the general shape and features of the signal. The choice
of filter and its parameters depend on the specific characteristics of the signal and
the type of noise present [32].
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Figure 1.15b shows a denoised version of the diffraction signal in red. Here, a
low-pass filter was used to eliminate the increased frequency noise in the signal
while retaining the relevant diffraction peaks. The parameters of the filters have to
be chosen manually, as no set of filter parameters exists that fits all the problems
at hand [32]. Inappropriately chosen filters can also affect the shape of the
relevant peak shapes, which complicates the following analysis process. The
denoised signal still contains numerous peaks, some of which are leftovers from
the suppressed noise. Hence, an essential step is identifying the relevant peaks
characteristic of the analyzed specimen. Typically, peaks are identified by the
first or second derivative methods, which identify peaks only in well-processed
signals [10]. Alternatively, numerical peak search algorithms search for the highest
intensity point and determine prominent points in the signal that satisfy defined
parameters, such as the minimum intensity or the proximity to other peaks. Here,
the identified peaks for the XRD scan of Manganite are displayed by the red bars
in Figure 1.15c.

In addition to the described baseline correction, denoising, and peak search steps,
more preprocessing steps exist, which are not necessary for the XRD pattern of
the Manganite sample but can be relevant for other one-dimensional patterns. For
example, due to the low-intensity nature of the Raman scattering process, the
detectors in Raman scattering experiments are even sensitive to cosmic radiation,
which produces narrow, additional peaks in the signals and must be removed.
Similarly, non-monochrome X-rays result in duplicate reflections from families
of planes in XRD patterns, so additional peak removal methods are necessary to
obtain a clean diffraction signal. Information about additional preprocessing steps
and more details regarding the presented data correction methods can be found in
separate literature, including [10] and [32].

1.4.2 Conditioning of the Reference Data

While the previously described preprocessing steps address the preparation of the
measured signals for the matching procedure, the reference information may also
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require conditioning. If pristine scans match the measured signal with references,
a prerequisite is that the length and step size of measured and reference spectra are
consistent, so interpolation or cropping steps can be required. This is the standard
procedure for the analysis of Raman spectra, for which several databases are
available that contain Raman spectra of organic [33] or inorganic [34] materials
and provide clean signals of the respective substances. In many cases, however,
reference information is unavailable as pristine signals, as databases often store
only the extracted data, such as the description of the identified crystal for XRD
patterns.

Commonly used databases for the analysis of XRD data, including the Crystallog-
raphy Open Database (COD) [35] and the Inorganic Crystal Structure Database
(ICSD) [36], provide descriptions of distinct crystal structures derived from ear-
lier research results. Determining crystal structures from XRD patterns involves
a multi-step procedure, encompassing processes such as ab initio indexing and
unit cell determination. However, the intricacies of these steps are not detailed
within this thesis, which primarily focuses on the subsequent pattern matching,
so a detailed explanation of this procedure can be found in separate literature,
including [10]. To match this encoded information with the measured peaks,
it is first necessary to compute the diffraction angles for the respective distances
of inter-atomic planes in the crystal. Because the positions of the reflections in
the diffraction patterns correspond with distances of parallel planes in the lattice,
the Fourier transform, which allows for converting the spatial information of the
crystal lattice into a frequency domain, is a method for rapid calculation of the
exact positions [10]. To match the frequency of planes in the structure with the
reflections in the diffraction pattern, it is furthermore necessary to consider the
wavelength of the radiation in the XRD instrument to compute the exact positions
of reflections using the Bragg equation (1.1) for all unique database entries.
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1.4.3 Pattern Matching Procedure

Comparing the acquired signal with reference data from databases is commonly
known as pattern matching. Typically, a single measured pattern exhibits similar-
ities to multiple entries within the database. Consequently, methods are necessary
to identify the most appropriate reference. Given that one-dimensional patterns
may contain artifacts that cannot be eliminated through preprocessing steps, it be-
comes crucial to employ methods capable of accommodating differences between
the measured and reference information. The selection of a matching approach
depends on the specific characterization technique and the available reference
information, leading to various methods with differing complexities. Notably,
more sophisticated techniques often demand expert knowledge for effective ap-
plication [10, 25].

This subsection briefly introduces, compares, and discusses the limitations of three
primary methods for pattern matching: correlation coefficients, figure-of-merit,
and full profile analysis.

Correlation Coefficients

The simplestmethods for patternmatching involve comparing twoone-dimensional
vectors of identical length: the measured signal and a reference. Techniques such
as correlation coefficients (e.g., Pearson rP and Spearman rS) and error metrics
(i.e., Mean Squared Error, MSE) fall into this category. The correlation coefficient
quantifies the degree to which the two vectors vary, yielding a value between -1
and 1, and is commonly applied for analyzing Raman spectra [37]. A high abso-
lute correlation coefficient value implies a substantial similarity between the two
patterns. On the other hand, error metrics describe the total or average difference
between corresponding points in the two patterns. Hence, a lower error score
indicates a closer match between the patterns.

However, these techniques may not always yield reliable results when dealing with
complex patterns. For example, measured patterns that are shifted on the x-axis
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yield unfit error metrics when compared with non-shifted reference information,
and only the ranked correlation coefficient is appropriate for evaluating data with
such shifts [38]. Similarly, artifacts including broad peak shapes or duplicate
reflections (from non-monochrome radiation) hamper the efficiency of those cor-
relation and error metrics. In such scenarios, more sophisticated methods are
required.

Figure-of-Merit

As an alternative to basic pattern matching metrics, including correlation coeffi-
cients, the figure-of-merit (FoM) based approach offers a more nuanced approach
by directly considering position or height variances of peaks. Unlike correlation
coefficient-based matching, this approach compares discrete information rather
than entire spectra. Hence, the FoM-based approach is applicable only when
the reference information is provided in a discrete form. For instance, in XRD
analysis, the peak positions and intensities can be derived from the database infor-
mation, as explained in Section 1.4.2. Furthermore, it is necessary to determine
the position and intensity of the peaks in the measured signal, as outlined in Sec-
tion 1.4.1, which is not required for correlation coefficient-based matching [10].

The core idea behind FoM is to quantify the degree of alignment between the
measured and reference peaks by calculating the differences in their positions
or heights. With many peaks in the measured pattern, the initial crucial step is
to establish correspondence between the peaks in the measured signal and their
counterparts from the reference data. This correspondence can be established
through strategies like nearest-neighbormatching or rank-based approaches. Once
corresponding peaks are determined, differences in their positions or heights can
be evaluated to determine the FoM value. In application, the FoM is typically
scaled to 1 (perfect match), and higher FoMvalues indicate a better match between
measured and reference peak information [25].

However, challenges may arise when matching the measured peak data with
reference information. As the measured signal represents a superposition of
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the fingerprints from all underlying substances, it potentially contains peaks that
lack corresponding matches in the reference data. Furthermore, when a peak
is present in the reference but remains unmatched in the measured signal, it
could be obscured by baseline intensity or noise. To address this issue, software
programs that analyze such patterns often incorporate customizable versions of
the FoM. For instance, QualX, an established tool for XRD pattern analysis,
provides options to fine-tune penalty terms related to peak position deviations or
unmatched peaks [39]. Furthermore, it is essential to highlight that there is no
definite FoM formula because closed-source applications, such as HighScore [40]
or DIFFRAC.EVA [41], employ their variant of the metric.

Nonetheless, employing the FoM metric is not straightforward, as determining
suitable parameters often demands expertise and a nuanced understanding of the
sample. Appendix Section A.1 describes the phase identification procedure for
the halite XRD scan illustrated in Figure 1.8 using QualX. Even with careful
application, this example illustrates that the FoM metric may suggest phases not
genuinely present in the sample, emphasizing the need to interpret the results
thoroughly.

Full Profile Analysis

While the FoM method primarily focuses on assessing individual discrepancies
in the data, full profile analysis, mostly recognized as Rietveld refinement, takes
a more holistic approach. Rietveld refinement employs a model encompassing
sample properties such as unit cell dimensions, site occupancies, and instrument
and specimen-dependent factors to reproduce the measured diffraction pattern.
This model allows for simulating a comprehensive diffraction pattern, including
accurate diffraction peak positions and intensities, realistic peak profiles, and the
background intensity. The underlying model is then fine-tuned through iterative
adjustments to align simulated and measured intensity values while considering
constraints by the crystal symmetry of the underlying structure. Hence, if the lat-
tice dimensions of the analyzed sample deviate from the corresponding reference
in the database, causing mismatches in peak positions and diminishing the FoM
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metric, Rietveld refinement addresses this mismatch by systematically adjusting
the unit cell dimensions. This nuanced process holds the potential for a more
precise alignment with measured intensities.

While Rietveld refinement is typically used to determine the underlying crystal
structure, it can also be used to quantify the similarity of the measured signal
with a reference. The consensus between the simulated and observed pattern is
described by the Goodness of Fit (GoF) with indicators such as the Chi-Squared
(χ2) or theWeighted Pattern Residual (Rwp) metrics [10]. In practice, full profile
analysis has proven to be particularly effective for analyzing complexmixtures and
non-ideal samples, where the overlapping of several reflections often complicates
the interpretation of individual peak positions. Appendix Section A.2 presents
the full profile analysis of an exemplary XRD scan in detail.

Despite its effectiveness, the refinement process comes with a high computational
cost. Fitting sample parameters for thousands of reference materials demands
substantial resources and is significantly more time-consuming than methods
that involve metrics such as the FoM or correlation coefficients. The Rietveld
refinement is inherently iterative, where the sequence of operations is pivotal,
demanding a deep expertise in its application and a thorough understanding of
the specimen in question. Therefore, the full profile analysis method introduces
a considerable degree of complexity for adequate selection of parameters for
refinement and restricting the range of valid values, posing a high risk of sample
misclassification due to poorly selected parameter sets.

Accordingly, Table 1.3 presents an overview of the described pattern-matching
techniques. The unique fingerprint within an acquired signal is compared to a list
of candidates usingmatchingmetrics to identifymolecules ormaterials. Typically,
the candidate with the best match is selected as the corresponding substance for the
measured pattern. Nonetheless, the described limitations underscore the frequent
need for manual fine-tuning of the matching methods and thorough interpretation
of the matching result to ensure accurate identification. Hence, an automated
system that streamlines the matching process by computing the matching metrics
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Table 1.3: Comparison of pattern-matching approaches for one-dimensional signals.

Matching approach Correlation coefficient Figure-of-Merit Full profile analysis

Reference information full signal
discrete positions
& intensities

crystal structure

Applicable domains universal universal XRD
Metrics rS, rP, MSE FoM GoF: χ2, Rwp
Computational cost low medium high
Required expertise low medium high

Limitations
shifted peaks,
experimental artifacts

occluded peaks,
identifying
corresponding peaks

complexity

and selecting the candidate with the best matching metric would suffer the same
limitations.

1.5 Neural Networks for Diffraction and
Spectroscopy Data

Representing an alternative to conventional methods, neural networks, a subset
of machine learning and specifically deep learning, are a powerful approach for
analyzing the acquired data. Thesemathematicalmodels consist of interconnected
layers with artificial neurons, including input and output layers, with a set of
weights and biases for each neuron. Depending on the task, the network can
predict one or many outputs for any given input, and the output is generated
through a complex interplay of the input data and the underlying weights and
biases. In the domain of supervised learning, pairs of input and desired output are
available to adjust and fine-tune the parameters of the network in a training process
so that the predicted output aligns with the actual output. Appendix Section A.3
explains the functionality and modules of the neural networks in more detail.

Neural networks have successfully been applied to achieve state-of-the-art re-
sults for automated data analysis across various domains, including the field of
image recognition. In this context, images serve as inputs and display diverse
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objects in various sizes and orientations, ranging from animals and cars to plants.
The network’s output layer features a neuron for each unique object, generating
probability estimates for the presence of these objects in a given image. To ad-
dress variations in object appearances, the network learns to filter out irrelevant
elements in the images, such as backgrounds and noise, while detecting robust
features that allow for identifying each object. In image classification tasks, neu-
ral networks consistently demonstrate superior performance on image recognition
benchmarks, outperforming alternative machine learning methods and, in some
cases, even surpassing human capabilities.

Similar to the challenges that occur in the field of image recognition, one-
dimensional spectra, and diffraction patterns present unique fingerprints that ex-
hibit variability in appearance, often obscured by background elements and noise.
Accordingly, Table 1.4 presents a list of studies that applied neural networks for
the automated analysis of Raman and XRD scans, ordered by publication date.
Accordingly, the first documented usage of neural networks for analyzing one-
dimensional patterns was demonstrated in the work of Park et al. [42], in which
a model was successfully trained to classify XRD patterns by their structural
symmetries (i.e., space groups). Since then, numerous distinct neural network
models have been developed, each tailored for specific tasks, such as the analysis
of complex multi-phase compounds [16, 43] and the identification of bacterial
pathogens in organic samples [31].

In developing neural networks for analyzing one-dimensional patterns, a signif-
icant challenge lies in capturing the inherent variation in the fingerprint of each
substance within the training data. For instance, in XRD, Table 1.2 categorizes
various effects impacting peak positions, intensities, and shapes, necessitating the
inclusion of such variances in the training data. Consequently, many networks
designed to analyze XRD scans are trained using synthetic diffraction patterns
generated based on entries from crystallographic databases. As an alternative ap-
proach, particularly in domains where simulating patterns is not as straightforward
as in XRD, an elaborate sample preparation procedure has been implemented to
manually generate several specimens that capture the variations for each unique
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Table 1.4: Overview of selected publications that apply neural networks to analyze diffraction or
spectroscopy data.

Publication Domain Description

Park et al. [42] XRD

Classification of crystal system, extinction group, and
space group (7, 101, and 230 unique classes, respectively)
Trained using simulated patterns from ICSD
94.99%, 83.83%, 81.14% accuracies

Liu et al. [17] Raman
Distinction of 512 minerals.
Trained on measured spectra from RRUFF
93.3% accuracy

Oviedo et al. [44] XRD

Classification of crystal dimensionalities (3) and selected
space groups (7)
Trained using simulated patterns from ICSD
92.9% and 89.3% accuracies

Fan et al. [45] Raman
Component identification in mixtures (167 classes)
Trained using generated mixtures from pure spectra
≥ 98.8% accuracies

Vecsei et al. [46] XRD
Distinction of space groups (230)
Trained using simulated patterns from ICSD
76% accuracy

Ho et al. [31] Raman
Distinction of bacterial pathogens (30)
Acquired measured spectra for pathogens
82.2% accuracy

Wang et al. [15] XRD

Classification of metallic organic framework phases
(1012).
Trained using simulated patterns from Cambridge Crys-
tallographic Data Centre (CCDC)
56.7% accuracy

Lee et al. [16] XRD

Classification of multi-compound samples (38 unique
phases).
Trained using simulated patterns from ICSD
98% accuracy

Szymanski et al. [43] XRD
Iterative classification of multi-compound samples (140).
Trained using simulated patterns from ICSD
93.4% accuracy

class. Hence, developing a neural network for analyzing one-dimensional pat-
terns is only viable if training data representing the necessary variations can be
simulated or a substantial number of phase-pure specimens can be produced to
obtain measured scans.
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Numerous studies have employed neural networks for automated data analysis, yet
the reported metrics exhibit a notable variance. The primary performance metric,
accuracy, quantifies the ratio of correctly identified samples to total samples. As
illustrated in Table 1.4, the reported accuracies range widely from 54% to 99%.
Notably, a distinctive aspect among these studies is the development of unique
network architectures, individually evaluated with specific datasets corresponding
to each application. This discrepancy raises questions about whether the reported
architectures have been explicitly fine-tuned for the signals in each study. More-
over, it raises uncertainty about how these models can be effectively transferred
to different measurements.

1.6 Open Questions

While neural networks have been effectively applied to analyze diffraction data
and spectra, research in this area remains fragmented. Their application has
mainly focused on re-identifying already known substances, leaving uncertainty
about utilizing these networks to identify novel molecules or materials effectively.
Accordingly, the following questions remain:

• In the realm of material discovery, particularly within high-throughput
systems, the potential of neural networks to automate data analysis is a
promising avenue. However, the challenge lies in identifying a practical
and beneficial application for these networks. Given the diverse range of
substances analyzed in such settings and the variability in system configu-
rations, which employ distinct instruments for the characterization of the
samples, a general concept is necessary to integrate networks into such
systems.

• Neural networks require training data to adjust the underlying parameters
and align predictions with the actual output. However, crystallographic
databases do not represent novel materials, so it remains questionable how
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these materials can be represented. Similarly, producing phase-pure spec-
imens of those substances is not an option to acquire measured training
data. Thus, there arises a need for a conceptual framework to represent
novel materials in training data, allowing neural networks to be trained to
analyze such signals.

• To ensure the training of robust neural networks, it is imperative to include
the full range of potential variations within the training data. Consequently,
an extensive set of exemplary patterns is required to train the network
appropriately. This prompts the need for a strategy to generate a large-scale
set of signals depicting novel substances and the diverse variations in their
fingerprints for adequate training of a robust model.

• Prior research has introduced various neural network architectures tailored
to specific datasets. However, the effectiveness of applying these networks
to other measurements, especially those containing novel substances, re-
mains uncertain. Consequently, identifying the optimal architecture for
recognizing unknown substances within these patterns becomes impera-
tive.

• In the realm of material discovery experiments, where diverse substances
are analyzed under various experimental conditions and characterized using
a range of techniques, substantial volumes of data are generated. Recogniz-
ing the inherent diversity of this data, utilizing multiple networks becomes
necessary to accommodate the diverse nature of substances and signals en-
countered in these experiments. Hence, developing an end-to-end approach
spanning data generation to network training is imperative for streamlining
the application of neural networks to distinct diffraction and spectroscopy
patterns.

• The performance metric of the developed neural networks varies consid-
erably across the different studies. Thus, an assessment is necessary to
determine how effectively the networks perform compared to manual anal-
ysis of acquired signals. This evaluation includes the accuracy metric and
factors such as the required time and complexity of the approach.
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1.7 Objectives and Thesis Outline

Based on the previously described questions, the central objectives of this thesis
are:

1. The design of a novel concept for facilitating the application of neural
networks in high-throughput material discovery platforms. While neural
networks are undeniably valuable tools for accelerating data analysis or en-
abling fully automated exploration, their effectiveness depends on selecting
an appropriate architecture and implementing a robust training procedure.
The proposed novel concept addresses these challenges, presenting a so-
lution that streamlines the utilization of neural networks for automated
data analysis of diffraction and spectroscopic data from material discovery
experiments.

2. The development of a concept for representing novelmaterials frommaterial
discovery experiments. Despite the inherent uncertainty in the outcomes of
these experiments, the properties of the materials and molecules involved
remain known. Consequently, a thorough analysis of experiment outcomes
concerning input substances’ properties and composition is imperative to
represent the resulting materials effectively. These representations enable
the generation of training data essential for instructing neural networks
to identify these substances within complex diffraction or spectroscopy
datasets.

3. The design of a conceptual framework to facilitate the generation of train-
ing data in large volumes. As measured patterns contain a diverse range of
naturally occurring artifacts, the crucial task is to guarantee that the train-
ing data thoroughly represents the full range of variation that influences
the unique fingerprints. Consequently, the formulated framework enables
the simulation of varied patterns for novel substances. It serves as a crit-
ical resource for training neural networks, equipping them to analyze and
interpret real-world measured data effectively.
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4. The development of a unified neural network architecture capable of an-
alyzing various material characterization signals generated from experi-
ments. Compared to established network structures that are tuned for
specific datasets, this architecture should be optimized for signal analysis
in general and exceed the performance metrics of the models presented in
previous studies. Furthermore, the novel architecture should combine accu-
rate predictions with minimal computational demands, facilitating seamless
integration into existing systems.

5. The practical implementation of the innovative concepts and frameworks.
To ensure accessibility and adaptability across diverse applications, the
novel methods and associated tools are intended to be made available in
open-source repositories. This initiative aims to foster collaboration, trans-
parency, and the widespread adoption of the developed approaches within
the scientific community.

6. As a practical demonstration, the developed concept is applied to automate
the analysis of XRD data from distinct material discovery experiments
focused on enhancing battery materials. The automated analysis approach
is compared to manual data analysis, considering factors such as accuracy,
complexity, and processing time, providing a comprehensive evaluation of
the proposed method’s effectiveness.

Accordingly, the thesis is structured as follows: Chapter 2 presents a framework to
employ neural networks for automated data analysis in high-throughput systems.
The framework includes an innovative concept for generating the training data,
explained in detail in Chapter 3. Chapter 4 summarizes the commonalities and
differences of network structures presented in previous studies to analyze unique
datasets and introduces a universal dataset to assess the fundamental differences
of these architectures. Based on the benchmarking results, the principles for the
efficient design of neural networks are formulated, ensuring optimal applicability
across various tasks and datasets.

To illustrate the utility of the introduced concept, Chapter 6 demonstrates the
application of the framework for the automated analysis of various XRD datasets,
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which were generated in experiments targeting the development of new battery
materials. Additionally, the development effort for such a network is evaluated,
comparing its accuracy and time efficiency against manual data analysis. Finally,
Chapter 7 summarizes the contributions and provides an outlook on potential
further research subjects.
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2 Novel Substance Identification
Concept

2.1 Material Discovery Experiment Analysis

In material discovery experiments, the primary objective is to identify combina-
tions of precursors and experimental parameters that yield substances with advan-
tageous properties. For instance, steel is a material of longstanding prominence
with various applications. Fundamentally, it is an alloy composed of iron and
carbon. Research has revealed that integrating various elements, like manganese,
nickel, chromium, and vanadium, into steel can considerably enhance its key
properties, notably toughness, strength, and corrosion resistance. Consequently,
conducting experiments is essential to determine the appropriate combination
of elements and the experimental conditions leading to structurally beneficial
structures [47].

Accordingly, combinatorial synthesis is acknowledged as an effective method
for screening multi-compound chemical spaces [7, 48, 49]. This approach is
characterized by the definition of a chemical space through a set of precursors,
which collectively span the composition space. In various experimental series,
unique combinations of these precursors are mixed, and the resultant samples
are subsequently analyzed. Hence, this approach facilitates the rapid identifica-
tion of compounds that may possess beneficial properties, thereby enhancing the
efficiency of material discovery research.
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Figure 2.1: Exemplary ternary phase diagram with end members A, B, and C. Within this ternary
composition space, the distinct phases α, β, γ, and δ are formed, depending on the
composition of the end members.

In experiments aimed at forming solid materials with crystalline structures, phase
diagrams are crucial analytical tools in materials science, offering a visual repre-
sentation of the stability of different material phases under various conditions of
temperature, pressure, and composition [50, 51]. The diagrams provide clear in-
sights into phase transitions, such as melting or evaporation, and are instrumental
in determining the precise compositions for desired phases. Figure 2.1 presents
an exemplary ternary phase diagram featuring arbitrary end members A, B, and
C. This diagram displays the phase equilibria at constant pressure in a ternary
system, and each corner represents a pure end member (100% concentration).
The coordinates within the ternary diagram represent the specific proportions of
each component in a mixture.

Researchers can discern intricate phase relationshipswithin such amulti-component
system in the detailed analysis of ternary phase diagrams. The diagrams typically
delineate distinct regions where single phases are stable, such as the α, β, γ, and
δ phases in Figure 2.1. Moreover, they reveal areas where mixtures of phases
coexist, for instance, regions indicating the simultaneous presence of α and δ

44



2.1 Material Discovery Experiment Analysis

phases. By interpreting these diagrams, scientists can understand the conditions
under which specific phases or combinations are thermodynamically favored.

The exemplary phase diagram provides a clear representation of the solubility
and phase behavior of components A, B, and C under specific conditions. It
clarifies that at high concentrations of component C, only minimal amounts of
A can be incorporated to maintain a phase-pure γ structure. Exceeding these
concentrations leads to the formation of an additional phase, δ. In contrast,
when component C is present in minor quantities, a wide range of mixtures
of components A and B is permissible, consistently resulting in the formation
of phase β. This detailed interpretation assists in understanding the complex
interactions between the components, guiding the synthesis of materials with
desired phase compositions.

Assuming phase β is identified as having beneficial properties for a specific task,
researchers can strategically utilize the information from the phase diagram to
guide experimental designs. The diagram indicates the precise compositional ra-
tios of componentsA,B, andC that lead to the formation of phase β. By targeting
these specific ratios in their synthesis, scientists can optimize the likelihood of
obtaining phase β in their experiments. This approach significantly reduces trial-
and-error experimentation, allowing for a more focused and efficient exploration
of the chemical space.

Introducing an additional precursor, D, into this system complicates the phase
diagram, as it extends beyond the ternary system to a quaternary one. This
requires a more complex representation, often a three-dimensional diagram or
a series of two-dimensional slices at different concentrations of D. Each slice
or representation would show how the inclusion of D affects the stability and
formation of the various phases, including β. Researchers can then analyze
these diagrams to understand how D influences the phase behavior and identify
the optimal combination of all four components to achieve the desired phase β.
This expanded diagram provides a broader scope for experimentation, potentially
leading to the discovery of more effective material compositions.
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Phase diagrams for various combinations of components are readily available in
scientific literature, providing a foundational understanding of material behavior
in specific systems [21, 52]. However, further phase diagrams can be gener-
ated through combinatorial synthesis to explore uncharted compositions or refine
existing diagrams. This approach involves systematically creating an array of
specimens, for example, with different ratios of components A, B, C, and poten-
tially D. The resulting specimens are then analyzed to determine their crystalline
structures, with XRD analysis being a primary tool for this purpose.

An exemplary study on determining phase diagrams is the work conducted by
Velasco et al. [53]. Their investigation focused on complex multi-compound ox-
ides, exploring systems with five components: Ce, Pr, La, Sm, and Y. Depending
on the specific composition of these elements, the resulting materials exhibited
either a Fluorite or Bixbyite structure, or in some cases, a multi-phase mixture
was formed. To accurately identify the crystal structures present in these speci-
mens, the research team employed XRD and Raman spectroscopy, enabling the
precise characterization of the materials and their corresponding structural prop-
erties. The primary objective of this study was to identify high-entropy materials
that show promise for use in battery technology. Notably, unique compositions
within these systems resulted in enhanced properties, highlighting the potential
for improved applications in energy storage solutions.

In addition to the combinatorial synthesis and experimental evaluations, com-
putational tools offer a complementary approach to material discovery. No-
tably, Density Functional Theory (DFT) [54, 55] and Graph Neural Networks
(GNNs) [56, 57] have emerged as powerful methods in this domain. These tools
take a specific composition with a defined structure as input and then predict fun-
damental properties, such as stability. However, a detailed explanation of these
computational methods would be beyond the scope of this thesis. The outcomes
of such simulations, including theoretical predictions of material properties, are
typically cataloged in databases, including the Open QuantumMaterials Database
(OQMD) [58] or the Materials Project (MP) [59]. These databases serve as a
repository for the results of these simulations, providing a valuable resource
of theoretical materials for further research and validation. Integrating these
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computational approaches with traditional experimental techniques represents a
significant stride in the field of material science, enabling a more efficient and
comprehensive exploration of material properties.

Despite the advancements in computational tools for identifying novel materials,
the necessity for experimental validation remains [60]. One critical aspect is the
determination of suitable precursor combinations and experimental conditions
required to synthesize the material in question. In practice, the process can lead
to the formation of either stable intermediate phases or volatile phases that may
hamper the development of the intended target structure. Additionally, there
is the possibility that the material, while matching the expected composition,
may crystallize into a different structure than that predicted by computational
models. These scenarios underscore the importance of experimental work and
the necessity of methods to accelerate the data analysis process to identify the
synthesized structures.

For instance, Szymanski conducted a study on the production of a highly fluori-
nated disordered rocksalt material, which has the potential to enhance the capacity
of batteries [61]. However, there was a possibility of forming a volatile phase
during the synthesis process. Therefore, several precursor combinations and
experimental conditions have been evaluated to synthesize the target material.
Ultimately, Szymanski et al. successfully determined an experimental pathway
for synthesizing the desired material; however, the resulting sample still contained
impurities.

Accordingly, characterization techniques, including X-ray diffraction, which en-
able the identification of structures based on their unique fingerprints, are crucial
in material discovery experiments. These methods play a key role in verifying
the presence of desired structures within synthesized samples. Consequently,
the use of neural networks for analyzing sample characterization signals emerges
as a powerful tool to accelerate the data analysis process, which is currently a
substantial bottleneck in material discovery workflows. However, training neu-
ral networks to analyze such patterns and spectra necessitates a comprehensive
representation of all possible outcomes in material discovery experiments. A
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substantial challenge arises from the fact that novel materials frequently are not
represented in crystallographic databases, as their occurrence and exact properties
have not been confirmed through experimental validation before. Hence, the ex-
perimental pathways to synthesize these materials often remain theoretical rather
than established. Additionally, identifying potential alternative phases in these
experiments demands an in-depth understanding of material systems.

Furthermore, the development of an appropriate neural network architecture is
critical. Such an architecture must be capable of accurately identifying materials
based on their fingerprints while simultaneously disregarding irrelevant phases
and experimental artifacts. This gap highlights the necessity of a concept for
developing and applying neural networks to this data. Alongside the complexi-
ties associated with training data and network architecture, the concept must be
versatile enough to accommodate a wide range of materials and characterization
techniques. Additionally, it should be user-friendly and easily implementable,
considering that researchers conducting these experiments typically lack special-
ized expertise in the domain of deep learning. Nonetheless, integrating neural
networks with existing systems represents a pivotal step forward in the efficient
and precise discovery of new materials, complementing combinatorial synthesis
and computational methods.

2.2 Novel Substance Identification Framework

Figure 2.2 presents the developed framework designed for integrating neural net-
works to analyze material discovery data. At its core is the domain-specific neural
network model, trained to identify crystal structures in a specific experimental
series using a particular type of characterization data (e.g., XRD). The framework
is structured into two main phases: training and application. During the training
phase, which is separate from the sample production and data acquisition plat-
form, the network undergoes a model optimization process to determine a set of
model parameters Φ that achieve optimal model performance.
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Figure 2.2: A unified framework to apply neural for uncovering novel substances in material discovery
experiment data. To train the model, diffraction data or spectra are simulated to represent
the target material. Using the generated training data, the parameters of a neural network
Φ are optimized using a loss function L. Once a robust set of model parameters has
been identified, the neural network can be applied to identify distinct substances in the
measured scans.

Once the model is trained, the framework facilitates the automatic identification
of specimens by their unique fingerprints. Due to the requirement of developing
a distinct network for each characterization technique and target structure, the
framework emphasizes efficient network design and training, ensuring it does not
become a bottleneck in the data analysis process. Consequently, this framework is
designed for seamless integration into existing high-throughput material discovery
platforms and is versatile enough to handle diverse datasets.

The central aspects of the presented framework can be itemized as follows:

• Simulated scans as training data:
A limitation of applying neural networks to measured diffraction and spec-
troscopy data is the availability of analyzed scans to train the models.
Therefore, simulated scans, matching the characterization technique do-
main and the scanning range of the measured signals, are employed as
training data. By simulating scans, novel substances can be represented
as long as their properties can be described in a way that allows for the
simulation of corresponding fingerprints. Moreover, the concept incorpo-
rates a generalized method for representing alternative phases within the
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simulated signals, eliminating the need to outline every potential outcome
of the experiments explicitly. As a result, the neural network excels at
identifying substances in spectra or diffraction data, even handling cases
where the experimental outcomes were not as anticipated.

• Unified neural network architecture:
As the central component for analyzing both simulated andmeasured scans,
an appropriate network architecture is required to identify the samples cor-
rectly. Given its intended application across different data characterization
techniques and for identifying a range of structures, the framework incor-
porates a unified network architecture. This unified approach eliminates
the need to develop different types of networks for each specific task. Addi-
tionally, the network is intentionally designed to be lightweight, eliminating
networkmodules commonly found in established network architectures that
increase the computational complexity without improving the performance
proportionally. This streamlined design removes the need for specialized
hardware to train the networks, facilitating integration into existing material
discovery systems without requiring significant modifications.

• Robust model training:
A robust training procedure is required to obtain a model that performs
well on the measured data. During the training phase, the parameters of
the network Φ are adjusted to minimize the loss L, which quantifies the
discrepancy between prediction and label for the simulated samples. There-
fore, guidelines are formulated to determine the appropriate loss function ℓ
and metrics to assess the model’s performance during training.

• Application to measured scans:
After optimizing the network’s parameters with simulated training data,
the model can be applied to identify substances of interest in the measured
scans derived from material discovery experiments. Minimal data pro-
cessing routines are applied to ensure optimal performance. Importantly,
this process is entirely automated and does not require human intervention,
facilitating an efficient and accelerated data analysis pipeline.
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In summary, the framework includes all essential steps for applying neural net-
works to identify those specimens containing the target structure based on their
fingerprint in diffraction data or spectra. As the framework integrates a unified
neural network architecture and robust model training approach, the concept does
not require expertise in the field of deep learning, thus enabling researchers from
other fields to develop neural network models for integration into their specific
material discovery platforms. The following sections thoroughly explain the
framework’s central aspects and the detailed steps for applying the concept to
specific data sets.

2.3 Framework Structure

Several prerequisites are essential to develop a domain-specific neural network
model, which requires a thorough understanding of the samples and data involved.
Firstly, an explicit knowledge of the domain of characterization data and measure-
ment properties, such as the scanning range and stepwidth, is necessary. Secondly,
it is crucial to determine first which material needs to be identified. This could
involve a description of the crystalline structure and the elemental composition so
that corresponding diffraction patterns or spectra can be simulated. Furthermore,
it is essential to know whether diverging experimental outcomes, for example, the
presence of impurities, are crucial in the experimental series. Once the targets
for identification and the types of scans are determined, the following steps can
be undertaken to develop the neural network model for automated data analysis.

2.3.1 Simulated Scans as Training Data

The initial step in the framework is the generation of training signals for the neural
network model. Prior studies have approached this by either simulating patterns
based on entries from crystallographic databases [15, 16, 43] or acquiring pristine
measurements of the substances targeted for identification [31, 45, 53]. Nonethe-
less, these methods might not be practical for material discovery experiments,

51



2 Novel Substance Identification Concept

where various compounds can form, potentially diverging from existing reference
materials or not being phase-pure. Therefore, an alternative approach is needed to
generate the necessary training data, which does not demand extensive knowledge
about the material system or the phases that may occur. This method offers a
more accessible and adaptable solution for generating training data in complex
material discovery contexts.

Accordingly, Chapter 3 describes the developed method for training data gener-
ation in detail. Central to this conceptual framework is the ability to identify
materials based on their crystal structure, leading to a primary focus on the
simulation of artificial XRD patterns in the framework. These patterns are effi-
ciently computed for crystal descriptions through the Fourier transformation of
the lattice [10]. Conversely, while Raman spectra are also helpful for material
identification based on their unique fingerprint, simulating these spectra involves
more complex ab initio calculations [62]. Consequently, tools for Raman spectra
simulation are not as widely available or intuitive to use as those for diffraction
patterns. However, recent research is focused on addressing this gap [63, 64, 65].
Thus, while the presented framework primarily focuses on XRD patterns, it can
be extended to Raman spectra or similar characterization techniques, provided
that tools are available to simulate the characteristic fingerprints accurately.

The conceptualized framework requires only a basic description of the target
structure for generating training data. For structures identified through computa-
tional tools, this description can be obtained from databases cataloging theoretical
materials, such as the OQMD [58] or the MP [59]. It is recognized that these
described materials potentially exhibit variations in lattice dimensions when syn-
thesized, and the data simulation approach is designed to accommodate these
differences. In cases where experiments focus on material systems comprising
multiple components, defining the target phase is adequate, such as the exemplary
phase β in Figure 2.1. The integration or substitution of different components
typically leads to the expansion or contraction of the unit cell, impacting both the
positions and intensities of the peaks in the characteristic fingerprints. However,
the overall pattern typically remains similar. Accordingly, the framework is de-
signed to represent these variances related to the target structure in the simulation
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process, providing the training data to fit a neural network for identifying such
diverse materials. As a result, these neural networks are equipped to recognize a
wide array of novel materials, including those from combinatorial synthesis exper-
iments or theoretical structures, enhancing their applicability in diverse material
discovery scenarios.

Furthermore, the data simulation concept integrates an innovative method for
representing alternative experimental outcomes without the need to explicitly
describe the resulting phases or mixtures. In comparison to previous studies, this
eliminates the need for a comprehensive understanding of the material system
under investigation, thus streamlining the training data generation process. This
innovative and exhaustive approach to data generation equips the neural network
with a robust training dataset, enhancing its accuracy and reliability in identifying
specific structures within the experimental variations.

2.3.2 Unified Neural Network Architecture

The framework features a unified neural network architecture, specifically tai-
lored to accommodate the variations commonly found in diffraction patterns and
spectra, and is effective across various types of characterization technique data.
This is an improvement over the neural network structures developed in previous
studies, which were developed for a specific dataset at hand. Therefore, Chap-
ter 4 is dedicated to the development of the unified network architecture and
the comparison with alternative network models. Consequently, two datasets are
presented for the design and evaluation of an optimized neural network structure.
These datasets unify consistent features of different characterization techniques
and allow for a comprehensive evaluation of various network architectures. As a
result, a model with an optimal set of parameters Φ is presented, which promises
high performance in the analysis of measured signals from material discovery
experiments.
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2.3.3 Robust Model Training

Once the training data is generated and the exact network structure is determined,
the network’s parameters must be adapted to achieve optimal performance. To
facilitate this, the generated set of signals is divided into a training set and a
validation set. Typically, 80-90% of the examples are allocated to the training
set, with the remaining samples comprising the validation set. This division is
a standard practice in deep learning, where models are often over-parametrized
and could otherwise memorize the training samples rather than learning robust
classification rules applicable to unseen samples[66]. While the samples in the
training set are used in the backpropagation procedure to fit the parameters of the
model, the validation samples are not used to modify the parameters; instead, the
model’s performance on the validation samples is continuously monitored during
training. Finally, training is halted once there is no further improvement in per-
formance on these validation samples, ensuring the model’s ability to generalize
beyond the training data.

In this context, a sample is defined as a pair consisting of a signal (a one-
dimensional vector describing intensities) and a label (a singular value specifying
the corresponding class). The primary task of the network in this context is to
identify fingerprints corresponding to the target substance, which corresponds to a
binary classification task. Accordingly, the fingerprint is either correct (the target
substance is present, label 1) or incorrect (the target substance is absent, label
0). As a result, the model is designed to predict a singular value for each signal,
which is typically scaled between 0 and 1 using the sigmoid activation function.

To optimize the predictions of the model during the training process, the binary
cross-entropy loss function is employed, as is common practice for binary clas-
sification tasks [66]. Given the known class affiliations of signals in the training
set, the binary cross-entropy computes a measure of the quality of the align-
ment between predicted and actual labels for each sample. This value guides the
backpropagation algorithm in fine-tuning the model parameters to enhance the
network’s prediction, as the goal of the training task is to minimize the loss.
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For straightforward interpretation of the predictions, the output is commonly
binarized [66]. This binarization process involves categorizing predictions greater
than 0.5 as containing the target substance’s fingerprint and those less than or
equal to 0.5 as not containing it. These discrete predictions can then be directly
compared with the discrete labels of the training data (either 0 or 1). Accordingly,
the accuracy metric is calculated by assessing the proportion of instances where
the model’s predictions align with the actual labels, providing a clear measure of
the model’s performance, as introduced in Section 1.4.3.

While the principles andmethodologies described here arewell-establishedwithin
the field of deep learning [66], their inclusion in this comprehensive framework is
crucial. This ensures accessibility for researchers who may not be familiar with
deep learning techniques and facilitates a broader range of scientists in effectively
employing neural networks for their specific research needs. The outcome of the
model training process is a finely tuned neural network characterized by a set of
parameters Φ that yield optimal performance on the validation set. As the sim-
ulated training samples are specifically designed to replicate the artifacts present
in measured scans, the fine-tuned model generally exhibits effective performance
when applied to acquired signals.

2.3.4 Application to Measured Scans

In the final stage, the developed neural network can be applied to analyzemeasured
data to identify substances in material discovery experiments. For the model to
perform optimally, the instrument used for data acquisition must be correctly
calibrated. While manual analysis has the capacity to adjust for minor calibration
errors, the neural network’s ability to recognize patterns is limited by the variation
depicted in the training data. Accordingly, the trained model can consistently
identify the fingerprint of the target material, as long as those deviations result
in minor variations of the positions, intensities, and shapes of the peaks in the
signal. Hence, larger deviations or systematic errors when capturing the signals
could lead to unsatisfactory results. This highlights the importance of maintaining
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precise calibration standards to ensure the accuracy and reliability of the neural
network’s identifications in practical applications.

Furthermore, it is essential for the length and step width of the measured scans
to match those of the training data for optimal neural network performance. If
a specific experimental series is acquired with a narrower scanning range than
the training data, the missing intensity positions can be filled with zero values.
Additionally, if the scans are acquired with a step size different from that of
the training data, it is possible to adjust them through resampling or interpolation
methods. However, if required, implementing appropriate data processing routines
is mandatory to manage these deviations effectively.

Moreover, before inputting the measured signals into the network, it is crucial to
scale them according to their minimum and maximum values. Because the train-
ing signals are generated without specific considerations for instrument configura-
tions or data acquisition times, which can vary in actual experimental settings, the
network is trained to process inputs scaled between 0 and 1. Consequently, this
scaling process is crucial to normalize variations in absolute intensities that may
result from different instruments or varying scan acquisition durations, thereby
ensuring the network processes data consistently and accurately.

2.4 Framework Utilization

Several considerations are necessary to integrate the proposed framework into
existing material discovery systems for analyzing various datasets. Due to the
specialization of the trained neural network in identifying a specific type of sub-
stance and being tailored to a particular type of data from distinct characterization
techniques, a uniquemodel is required for each dataset. Accordingly, the following
information is required to generate a new network model:

• Characterization Technique and Radiation Source:
Different characterization techniques are employed to highlight distinct
properties of substances, each yielding a unique fingerprint of the material
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or molecule. Consequently, distinct models are required for interpreting
the diverse characterization data. The choice of the radiation source is also
crucial, e.g., what type of anode is used to generate the X-rays in diffraction
experiments, as it significantly influences the resulting pattern.

• Measurement Range and Resolution:
Determining the starting point, end point, and step width in measurements
is another crucial aspect of training neural networks for anticipating the
corresponding dimensionality of the inputs.

• Target Material Description:
Formulating the unique properties of the target material is essential to
train a network for identifying novel materials. Furthermore, whether the
presence of impurities phases is acceptable has to be defined. Based on
these properties, training data is simulated to train the models.

• Simulation tool:
While the proposed framework is adaptable to various characterization
techniques, a universal simulation tool for generating synthetic training
data does not exist. Consequently, it is essential to identify or provide a
simulation tool capable of producing the corresponding training data to
effectively implement the automated data analysis concept with the given
data.

Upon acquiring the necessary information outlined in the aforementioned points,
the framework can be effectively employed. This framework encompasses a
complete pipeline, starting from the generation of training data to the training of
themodel, culminating in a fully trainedmodel that can be applied to themeasured
data without requiring manual intervention. Notably, the model is designed to be
lightweight and quick to train, eliminating the need for extensive expertise in deep
learning. As a result, this simplicity and efficiency facilitate the straightforward
integration of the framework into various material discovery systems, enhancing
their capabilitieswithout demanding significant resource investment or specialized
knowledge.
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3.1 Overview

The training of neural networkmodels for application in spectroscopic and diffrac-
tion data analysis necessitates exemplary signals for fitting the parameters of the
models. However, the characteristic fingerprint of novel materials is typically
unknown, and experimental data depicting this fingerprint is not available, so
generating examples using simulation tools is mandatory. Accordingly, the fol-
lowing Chapter unveils methodologies for accurately depicting material discovery
experiment data in XRD patterns and spectra. Notably, the precise and efficient
computation of such data holds a high degree of complexity, which could substan-
tiate an independent thesis. Therefore, the presented framework utilizes existing
simulation tools.

The Chapter is structured as follows: Section 3.2 analyzes established procedures
for generating artificial XRD patterns or Raman spectra on a large scale to train
neural networks to analyze such signals. Based on these methods, Section 3.3
highlights the limitations of existing approaches for applying material discovery
data. Accordingly, a novel concept for generating an XRD training data set that
overcomes these challenges is introduced in Section 3.4. The central component
of the concept is the simulation of patterns that represent the target material;
therefore, the concept is primarily designed to simulate XRD scans. However,
Section 3.5 explains how this methodology can later be extended to the generation
of Raman spectra and other spectroscopic techniques. Please note that parts of
the current chapter are extensions to the work presented in [67].
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3.2 Established Training Data Compilation
Approaches

The goal of the automated data analysis approach is that the neural networks iden-
tify materials based on their fingerprint in diffraction data or spectra. Therefore, it
is crucial that the training data contains all possible variations of the fingerprints,
as demonstrated in various studies [44, 68]. Accordingly, several approaches have
been utilized to compile effective training sets.

Measured training data

An effective strategy for assembling a comprehensive training dataset involves
acquiring multiple signals for each substance targeted for identification. For ex-
ample, Ho et al. [31] prepared several samples of bacterial isotopes, subsequently
obtaining their Raman spectra under diverse conditions. However, this approach
is notably complex and time-intensive, mainly when the dataset must include a
broad range of classes. Moreover, the instruments’ characteristics can fundamen-
tally influence the signal profiles, with each instrument adding a unique signature
to the peaks. Therefore, relying solely on data generated from a single instrument
raises concerns about the transferability and applicability of the dataset to spectra
obtained from different instruments.

Alternatively, numerous studies [17, 45, 69, 70, 71, 72, 73] have utilized measured
scans from the RRUFF database [28], which frequently offers multiple scans
per material, to train neural networks for material identification. However, as
outlined in Section 1.3.2, scans from the RRUFF database may include impurities,
potentially training the networks to recognize incorrect fingerprints and resulting
in misclassifications. Additionally, the representation of materials in the database
is not consistent, leading to an imbalanced dataset. This disparity can prevent the
effective convergence of the model, impacting its overall accuracy and reliability
for materials that are less frequently represented.
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Augmenting scans

To address the challenge of limited measured training data, one method involves
synthetically augmenting the existing data to enhance the variation within the
training dataset. These augmentation techniques can include modifications like
shifting the signals along the x-axis (in terms of 2θ or wavenumber), adjusting the
intensity of peaks (amplifying, diminishing, or eliminating them), or introducing
noise and background intensities to the scans. Such augmentation methods are
well-established for spectroscopy analysis techniques [74, 75], wherematerials are
typically identified using exemplary scans and straightforward matching metrics,
such as coefficient correlations (refer to Section 1.4). In the context of XRD
patterns, a similar approach was adopted by Oviedo et al. [44] to expand a dataset
for neural network training, demonstrating the adaptability of these techniques
across different sample characterization techniques.

This approach to compiling a training dataset has been employed in various studies
focused on the automated identification of materials via neural networks [44, 69,
71]. However, it necessitates the availability of a few exemplary scans for each
material class intended for identification. These scans are typically obtained either
through instrumental analysis or from databases offering exemplary spectra. Yet,
this method proves inadequate for novel materials, where the appropriate set of
precursors or experimental pathways remain unknown and are not represented in
reference databases. As an alternative solution, Oviedo et al. [44] employed a
data simulation technique, creating a set of artificial signals to which experimental
artifacts were subsequently added, thus addressing the challenge of data scarcity
for new materials.

Training data simulation

A third approach in generating training datasets involves the simulation of training
signals, which is particularly beneficial forXRDdata. SimulatingXRDdiffraction
patterns is straightforward, as Section 1.4.2 explains, making it an instrumental
technique in this context. Accordingly, several tools are available for simulating
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diffraction patterns [36, 76, 77]. In contrast, the simulation of training data is less
established for Raman spectra and similar methods, mainly due to the need for
complex ab initio simulations [62]. Central to this approach is the availability of
material descriptions, typically provided in crystallographic databases [35, 36].
This method provides a viable alternative for generating robust training data,
particularly in cases where experimental data are limited or unavailable.

Therefore, several studies presenting neural networks for analyzing XRD patterns
utilized the training data simulation approach [15, 16, 42, 43, 44, 46, 68]. This
approach can generally be separated into distinct steps:

1. identification of phases,

2. crystal structure variation,

3. peak intensity variation,

4. peak shape representation,

5. mixing of patterns,

6. addition of noise and background intensities.

In the following, each step is explained in more detail.

An appropriate set of phases must be selected from the available crystallographic
databases, which commonly provide hundreds of thousands of references, albeit
with varying degrees of data quality. Consequently, the first step involves filtering
out unsuitable references for the intended purpose [42, 44, 46]. Additionally,
since the training data often represents patterns from a specific material system, it
becomes crucial to identify phases pertinent to this system and exclude irrelevant
ones [16, 43, 68]. This process of selective filtration ensures that the resulting
dataset is both relevant and of high quality, tailored to the specific requirements
of the study.

The second step in the process involves the variation of crystal structures. As
detailed in Section 1.3.3, the lattice parameters of a crystal structure are subject
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to variation due to different factors, which show as position variations of peaks
in the patterns. Lee et al. [16] addressed this issue by identifying all database
entries corresponding to a specific material and simulating diffraction patterns for
each individual entry. However, the frequency of database entries for each unique
phase is inconsistent. While this method is effective for well-documented mate-
rials with multiple reports, it becomes impractical for specialized materials with
limited representation in the database. Therefore, a universal strategy involves
selecting a representative crystal structure for each material to be identified and
then systematically altering the lattice parameters to artificially generate a range
of patterns, accommodating the required variation [43, 68].

Another essential variation in the characteristic fingerprint of materials is the
variation in peak intensities (see Table 1.2). Yet, only a few studies have incor-
porated this aspect. One effective method to depict this variation is considering
the preferred orientation effect [43, 68]. By incorporating this effect into the
training data, machine learning models can be trained to recognize variations in
the position of peaks and their intensity variations. This ensures a more accurate
and robust interpretation of the material’s fingerprint by the models [68].

Furthermore, various factors contribute to the peak broadening effect in diffrac-
tion studies, leading to diffraction peaks displaying a more diffuse shape rather
than sharp, distinct reflexes. Accordingly, the shape of powder diffraction peaks
is commonly approximated using probability density functions to describe the
statistical processes that cause the peak broadening. For instance, the centered
GaussianG(x) and a LorentzianL(x) profiles with their characteristic parameters
σ and Γ can be used to model peak shapes in diffraction patterns [78]:

G(x) =
1

σ
√
2π

e−
x2

2σ2 , (3.1)

L(x) =
Γ

π

1

(x2 + Γ2)
. (3.2)
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Most important is the broadening related to the crystallite size, which is described
by the Scherrer equation (1.3). The equation relates the crystallite size L to the
FWHM of the profile, which is connected to σ and Γ as follows:

FWHMGaussian = 2
√
2 ln 2 · σ, (3.3)

FWHMLorentzian = 2Γ. (3.4)

Building on this, the synthetic diffraction patterns are generated by utilizing these
probability density functions to depict the peak shapes realistically. This method
enables the modification of peak profiles to represent both changes in crystal size
and distinct instrument configurations.

The previous steps have outlined the generation of characteristic patterns for
unique phases. However, in practical applications, compounds typically comprise
multiple phases. The principle of superposition applies to both diffraction patterns
and spectra, as explained in Chapter 1, enabling a straightforward procedure for
mixing patterns to represent such compounds. For instance, consider a compound
composed of phases A and B. The generated patterns for these phases are denoted
as signalA and signalb, with each pattern’s highest peak scaled to 1. A mixed
scan, represented as signalmix, can then be formulated as follows:

signalmix = cA · signalA + cb · signalB with cA + cB = 1, (3.5)

where cA and cB are the mixing coefficients corresponding to phases A and
B, respectively. This mathematical representation allows for creating composite
patterns that accurately reflect the presence and proportion of multiple phases
within a compound. Accordingly, several studies concerning the identification
of materials in multi-compound mixtures have utilized this data generation ap-
proach [16, 43, 45, 68].

As the final step, noise and baseline intensities are added to the simulated patterns
to account for the experimental artifacts. The Chebyshev polynomials Tn(x),
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which constitute a family of polynomials, are typically used as a representation
for the background [16, 68] and are generally employed in signal processing to
describe the effects of various kinds [79]. The polynomials of the first kind are
recursively defined by the relation

Tn+1(x) = 2xTn(x)− Tn−1(x) with T0 = 1, T1 = x. (3.6)

To generate diffuse backgrounds of various shapes, the Chebyshev polynomials
up to the N -th order are summed using random coefficients cn

P (x) =

N∑
n=0

cn · Tn(x) (3.7)

and are evaluated for equally spaced points in the range [-1,1], matching the steps
of the measured patterns.

Noise is typically simulated by drawing random values from the Gaussian G(x)

profile (Equation 3.1). To describe the level of noise in the signal, the signal-to-
noise ratio (SNR) is a valuable metric

SNR =
ISignal
INoise

. (3.8)

Since arbitrary diffraction intensities are simulated, themaximumof the simulated
intensities ISignal is typically set equal to one. Empirically, the typical SNR value
lies between 10 and 35 for most XRD patterns [80], but low-count signals may
require even lower ratios. Correspondingly, the mean µ and standard deviation
σ have to be adapted to match the level of noise intended to be depicted in the
simulated patterns. Alternatively, Wang et al. [15] complimented their synthetic
diffraction patterns with experimental signals, from which the peaks have been
eliminated so only the baseline intensities and the noise remain in the signal.

The simulation approach for training data has considerably facilitated the appli-
cation of neural networks to XRD data from diverse sources. Simulated XRD
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scans have undergone thorough comparisons with their experimental counter-
parts, both visually and through systematic analysis, confirming that they are
indistinguishable from each other [45, 46, 68]. Consequently, the performance
of models trained on these simulated patterns translates effectively to measured
data, yielding near-perfect accuracy metrics [16, 43, 45, 68].

3.3 Navigating the Challenges in Material
Discovery Data

In material discovery experiments, various outcomes are possible, each with its
own implications. The ideal scenario involves synthesizing the target structure
without the presence of other phases. However, there are instances where the
desired material may crystallize into an alternate structure, deviating from the
anticipated experiment result. Additionally, the presence of other phases in the
measured data is a common occurrence. Hence, the fingerprint of the target
structure can be clearly detectable, overlap with patterns of other phases, or be
entirely absent from the measured signal. Consequently, it is essential for the
training data to depict all these potential scenarios.

As long as the key properties of the novel materials can be described, it is
possible to simulate the fingerprint of the structures, so the training data sim-
ulation approach presents a straightforward method for tackling this challenge.
These key properties specifically involve understanding the content within the
corresponding unit cell and its arrangement, including consideration of the unit
cell’s dimensions. Alternative approaches, such as synthesizing pure specimens
of the target material, acquiring their corresponding signals, and subsequently
augmenting the training dataset, are not practical for novel materials. Although
computational tools or phase diagrams often predict the existence of these novel
structures, the methodologies for their successful synthesis are typically unknown
prior to experimental attempts. Therefore, the training data simulation approach is
without an alternative in material discovery data analysis using a neural network.
While simulating XRD scans can be readily accomplished, tools for generating
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characteristic Raman spectra of novel materials are currently unavailable. There-
fore, this innovative approach should primarily focus on generating XRD patterns
to facilitate the training of neural networks in identifying new materials. Impor-
tantly, the framework should be designed with adaptability in mind, allowing for
the inclusion of alternative spectroscopic signals once tools capable of simulating
accurate patterns become accessible.

Utilizing the training data simulation approach, Szymanski et al. [61] developed
a neural network tailored explicitly for material discovery data. This model is
designed to identify the desired structure based on its distinctive fingerprint in
XRD scans. To accomplish this, they cataloged all possible phases that could
be formed from the precursors used in their experiments and generated synthetic
mixtures of these phases. Following the data simulation steps outlined in the
previous section, they trained their model, which proficiently identified the target
substance amidst various impurity phases. This highlights the practicality and
effectiveness of neural networks for structure identification in material discovery
experiments.

However, the approach adopted by Szymanski et al. [61] necessitates an initial
comprehensive determination of all possible phases in their dataset, demanding
an extensive understanding of the material system. This prerequisite, demanding
prior knowledge of all possible phases, may not always be viable in material
discovery experiments. In typical material discovery experiments, only the target
structure and its corresponding fingerprint are known before performing the ex-
periments. Identifying alternative forms of the target material or impurity phases
generally necessitates conducting experiments and manually analyzing the ac-
quired sample characterization data. Therefore, a more versatile and generalized
approach becomes essential to accommodate the unpredictable and diverse nature
of material discovery experiments.

Thus, it can be concluded that the data simulation approach, as outlined, is
practical for generating training data. Still, it does not include a concept for
accurately representing the range of possible outcomes in material discovery
experiments. In general, the training data needs to depict both successful and
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failed experimental results. This necessitates the development of a concept that
can depict not only the desired structure but also impurity phases or alternative
forms of the target material, including amorphous structures that manifest as
diffuse diffraction patterns. Such a comprehensive approach ensures that the
training data reflects the true complexity and variability of experimental outcomes,
providing a robust foundation for the development of predictive models.

3.4 Novel XRD Pattern Simulation Concept

Figure 3.1 illustrates the developed framework for creating exemplary patterns,
which are instrumental in training neural networks to identify novel substances
within material discovery data. This concept constitutes a comprehensive, end-
to-end framework for data generation that necessitates minimal inputs and au-
tonomously produces realistic training patterns without the need for further hu-
man intervention. Central to the concept is the integration of existing simulation
tools, such as pymatgen [76] or cctbx [77], for determining the exact positions
and heights of the characteristic peaks. The first essential input to apply this
novel framework is a detailed description of the target structure, typically avail-
able as a crystallography information file (CIF). Additionally, researchers must
provide clear criteria defining what constitutes a successful synthesis outcome,
particularly concerning the presence or absence of impurities. Subsequently,
the framework generates patterns representing successful ("positive") and failed
("negative") experimental outcomes in synthetic XRD scans. These patterns are
crucial for training neural networks to analyze and interpret such data effectively.

The primary objective of the overarching concept is to identify materials in mea-
sured data that have either been proposed by computational tools or novel material
compositions situated in stable regions of a multi-dimensional phase diagram.
Thus, the input to the data generation pipeline is either a computationally derived
structure from a database or a structure that represents the stable phase targeted
for production. However, several modifications to these foundational structures
are required to reflect the natural variability encountered in experimental data
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Figure 3.1: Framework for the generation of realistic powder diffraction patterns. Based on the pro-
vided material description (structure), exemplary signals are generated that either depict
the correct fingerprint ("positive") or contain patterns that represent failed experimental
outcomes ("negative"). The positive examples can either contain impurities or only depict
phase-pure signals depending on the defined experimental conditions.
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accurately. While computational tools are instrumental in confirming the stabil-
ity of structures, they do not provide precise dimensions of lattice parameters.
Similarly, the stable structure in a multi-dimensional phase diagram can display
variations in unit cell dimensions due to incorporating species with different di-
ameters, leading to either contraction or expansion of the lattice. Consequently, it
is crucial to include these variations in lattice parameters within the training data
to accurately capture the resulting changes in diffraction peak positions.

Furthermore, the diffraction peaks of the target structure can exhibit varying
heights, especially for structures in multi-component material systems, where
distinct species have differing scattering parameters. Hence, varied structures
and corresponding patterns are generated based on a provided structure and a
simulation tool. The generated patterns show variances in peak positions and
heights while conserving the characteristic appearance of the fingerprint used
to detect the target material in the measured data. Figure 3.1 provides a visual
representation of these steps in the upper section of the figure. Accordingly,
multiple varied structures are generated based on the initial description of the
target’s lattice. For these structures, the simulation tool is utilized to compute the
accurate diffraction patterns, which are further augmented to reflect the intensity
variations, resulting in multiple varied patterns that depict the fingerprint of the
target material.

In the subsequent phase of the training data generation process, alternative materi-
als are represented in themeasured data using peaks with random positions and in-
tensities. Previous studies have approached this by identifying the phases present
in their data, simulating the characteristic patterns of these phases, and mix-
ing these patterns with the primary structure’s fingerprint for identification [61].
However, the methodology introduced here eliminates the need to explicitly de-
termine these additional phases or simulate their precise patterns. As a result, this
approach eliminates the requirement for specialized knowledge about the phases
that may appear in the experimental data. Additionally, it saves time that would
otherwise be needed for computing the accurate patterns using the simulation
tool.
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Because the training data has to depict both successful and failed outcomes of the
experiments, the incorporation of random peaks plays a crucial role in depicting
the varied potential results. Several peaks with random positions and intensi-
ties can be placed in an otherwise empty signal to generate unique fingerprints
representing materials different from the target material. Similarly, the character-
istic diffraction pattern of the target structure can be complemented with a small
number of random peaks to simulate the presence of impurities in the sample.
The addition of these impurities within the framework depends on additional
input, which specifies whether impurities are considered acceptable outcomes of
the experiments. Accordingly, impurities may be added either exclusively to the
"negative" examples or to both the "negative" and "positive" patterns.

In the final step, experimental artifacts are incorporated into the generated signals.
While this methodology has been well-established, its inclusion in the novel
data generation framework remains crucial for generating realistic training data.
The inclusion of experimental artifacts is achieved by convoluting peaks, which
previously had discrete positions and intensities, with diverse Gaussian profiles.
The profiles accurately replicate the various peak shapes observed in experimental
data. A baseline intensity modeled by a Chebyshev polynomial is then added to
the signals along with Gaussian noise.

Additionally, the framework accounts for experimental outcomes that result in the
formation of amorphous materials. The absence of distinct peak shapes charac-
terizes such materials. Therefore, samples containing amorphous materials are
represented by including signals that consist exclusively of background intensities
and noise without any superimposed peaks. This methodology is crucial for gen-
erating training data that enables the neural network model to interpret various
experimental scenarios.

Accordingly, the developed concept for generating realistic XRD scans, as illus-
trated in Figure 3.1, produces a comprehensive dataset that contains both negative
and positive examples for the fingerprint of the material to identify. Figure 3.2
displays a variety of signals generated using this novel framework. Here, the syn-
thesized samples should contain the target material without impurities. Therefore,
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Figure 3.2: Exemplary signals simulated using the presented framework for training data generation.
Here, the presence of impurities has been specified as a failed experiment outcome.

the positive examples, as shown in Figure 3.2a, depict the characteristic fingerprint
without additional peaks. Nonetheless, the simulated fingerprints exhibit varying
peak positions, heights, shapes, diverse background intensities, and SNRs.

Conversely, Figure 3.2b illustrates signals corresponding to failed experimental
outcomes. For example, the cyan signal depicts an exemplary pattern for a sam-
ple containing an amorphous material. The brown and grey patterns, distinctly
different from the characteristic fingerprint of the target material, represent alter-
native structures that could potentially form during the experiments. Finally, the
olive-green and pink signals show the target structure and complementary peaks
representing impurity phases.

Therefore, the developed framework enables the rapid generation of XRD patterns
representing various experimental outcomes. The framework incorporates the
established data simulation steps outlined in Section 3.2 to generate realistic
signals. However, the novelty of the framework can be summarized as follows:

• Comprehensive approach
This framework is an all-including, end-to-end solution for generating train-
ing data. It is designed for efficiency, requiring minimal input and elimi-
nating the need for manual intervention in creating exemplary patterns. It
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incorporates all essential steps to simulate realistic XRD scans, proven to
result in highly effective neural network models. This ease of use means
that generating training data does not require extensive expertise.

• Unified framework
The framework is adaptable to various material discovery experiments,
whether the goal is to synthesize phase-pure specimens or samples with
impurities. It introduces a unified concept that uses predefined criteria for
successful synthesis outcomes as its input. This flexibility negates the need
for additional modifications to suit specific experimental requirements.

• Synthetic representation of phases
Unlike other approaches that necessitate identifying all phases within a
dataset, this framework employs a more general method for representing
alternative phases. Phases distinct from the target structure are simulated
using arbitrary peaks with random positions and intensities. This versa-
tility allows for the effective training of neural network models even in
material systems where the possible phases in experimental data are not
predetermined.

• Inclusion of amorphous phases
Prior studies often overlooked the presence of amorphous structures, which
typically yield patterns devoid of diffraction peaks. This framework ad-
dresses this gap by including negative examples featuring patterns that de-
pict samples containing amorphous structures. This inclusion broadens the
neural network’s capability to recognize various experimental outcomes.

3.5 Extension to Spectroscopic Techniques

At the core of the developed framework lies the utilization of diffraction pattern
simulation tools to accurately generate the characteristic fingerprint of novel ma-
terials. However, for Raman spectra and similar techniques, there exists a notable
gap, as simulation tools for these methods are not readily available. In material
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discovery experiments, Raman spectra analysis is particularly beneficial for the
study of materials without a crystalline structure. Yet, tools that can be seamlessly
integrated into the existing framework are not yet widely accessible, presenting
an area for future development and enhancement.

Originally designed for XRD pattern analysis, the presented framework is ver-
satile enough to be adapted for other characterization techniques, provided that
suitable simulation tools are available. This flexibility allows for the generation
of training data aimed at training neural networks to identify novel materials
based on properties beyond the distances of parallel planes in the crystal, such as
vibrational modes. A crucial aspect of creating an extensive dataset is capturing
the variations in the target material’s fingerprint, including changes in peak posi-
tions, intensities, and shapes. These key variations are integral to the framework,
achieved through variation of the unit cell dimensions and randomly modifying
the simulated intensities and probability distributions.

Introducing arbitrary peaks plays a crucial role in accurately representing struc-
tures that exhibit varying vibrational properties. The framework can be utilized
to alter the unique fingerprint of a material by incorporating peaks at random
positions, effectively simulating impurities in the sample, or generating patterns
indicative of properties that differ from those of the target material. Conse-
quently, realistic spectra can be generated with minimal effort, requiring simply
the substitution of the simulation tool within the existing pipeline of the frame-
work. This capability to adapt and simulate diverse spectra and patterns highlights
the framework’s comprehensive nature and its ability to support a wide array of
characterization techniques.
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4.1 Overview

At the core of the automated signal analysis framework, as introduced in Chap-
ter 2, a neural network is employed for the categorization of the acquired signals.
Numerous studies have demonstrated the application of neural networks to var-
ious XRD or spectra datasets, as summarized in Table 1.4. However, each of
these studies introduced a unique network architecture that has been specifically
tailored for analyzing signals in their respective datasets. Despite the unique
nature of the signals investigated in these studies, certain similarities regarding
the appearance of peaks in the spectra and patterns suggest that an optimized
neural network architecture could achieve accurate predictions for all of these
datasets. The versatility of such a unified neural network architecture would en-
hance the presented framework, enabling its seamless application across diverse
datasets without necessitating the substitution or modification of networks based
on dataset-specific characteristics.

Accordingly, the following chapter outlines the development and evaluation of
a unified network structure. Section 4.2 describes the design of neural network
structures in general and explains the configurable parameters. Based on char-
acteristics derived from measured data, different configurations are examined,
which results in the presentation of the optimized network structure that has been
developed in the context of this thesis. Subsequently, Section 4.3 details an ex-
tensive comparison of the novel network structure with architectures presented in
previous studies, highlighting the distinctive advantages and characteristics that
distinguish the unified network. Finally, Section 4.4 explains how this versatile
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network structure can be applied to diverse datasets generated in material discov-
ery experiments, which does not require modifications to the network architecture.
Please note that parts of the current chapter are extensions to the work presented
in [81, 82, 83].

4.2 Neural Network Design

4.2.1 Parameter Consideration in Neural Network
Design

Convolutional neural networks (CNNs) have demonstrated proficiency in ana-
lyzing noisy XRD patterns and Raman spectra [17, 42]. These networks have
originally been developed in the domain of image recognition [84] and employ
convolutional layers, in which kernels (filters) slide across the input to identify
local, position-invariant features [66]. Rather than manually specifying these
filters, the kernel weights are adjusted automatically during model training on the
raw inputs. As a result, the convolutional layers are also useful for identifying the
relevant features in diffraction patterns and spectra: peaks that are distributed over
the entire length of the signal and obscured by noise and background intensities.

Figure 4.1 illustrates the conceptualized structure of a CNN. First, convolutional
layers are employed for detecting the relevant features in the pattern. To capture
the different kinds of features in the input, each convolutional layer employs mul-
tiple filters, resulting in the encoding of data into several channels. As a measure
to downsample the inputs and identify features of larger sizes, pooling layers are
integrated between the convolutional layers. Following the final convolutional and
pooling layer, a flattening operation is introduced to reshape the encoded informa-
tion, distributed across different channels, into a singular vector. Subsequently,
one or multiple fully-connected layers are incorporated into the network, with the
final layer providing the model’s output. In contrast to the convolutional layers,
designed to identify local patterns, the fully-connected layers are integrated to
recognize features that are distributed across the whole size of the input [66].
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Figure 4.1: Schematic structure of a convolutional neural network.

Designing a neural network involves numerous possibilities, with each layer of-
fering a set of hyper-parameters that can be adjusted. In convolutional layers,
for example, the number of filters and the size of the kernels are parameters
subject to adaptation. Additionally, CNNs can incorporate varying numbers of
convolutional layers. The stacking of layers is another aspect that varies between
CNNs: specialized architectures like VGG [85] or ResNet [84], for instance,
stack multiple convolutional layers between the dimensionality-reducing opera-
tions (pooling). Furthermore, the Inception architecture [86] integrates several
convolutional layers with varying kernel sizes, allowing simultaneous detection
of features in different sizes. As a result, there is a multitude of configurations to
consider just within the convolutional stage.

In light of the diverse configurations available, a straightforward approach could
be the design of an over-parametrized network. For instance, an over-parametrized
CNN might feature an abundance of convolutional layers, numerous filters per
layer, and large kernel sizes. According to the universal approximation theorem,
neural networks have the capability to learn any mappings between input and
output given a sufficient number of parameters [87]. However, the inherent
drawback of large networks lies in the demand for substantial resources during
both training and application, coupled with the increased risk of overfitting. Thus,
the challenge in determining an optimized neural network structure is to strike
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a balance between equipping the network with enough parameters to detect the
relevant features in the data while avoiding extensive parameter configurations.

Moreover, it is common to incorporate specializedmodules into networks to coun-
teract overfitting [66]. A notable example is dropout regularization, a technique
that is typically integrated between fully connected layers. Interestingly, some
studies in the field of spectral data identification have deviated from this stan-
dard configuration and instead integrated the dropout between convolutional lay-
ers [15, 46]. Another technique used to prevent the model from overfitting is batch
normalization, which has also been used in networks presented for the analysis
of Raman spectra [17, 31]. Hence, the task of designing neural networks extends
beyond choosing suitable configurations for parameters and modules within the
network; it also encompasses strategic decisions regarding the integration and
placement of regularization techniques to address the issue of overfitting.

Accordingly, the following choices regarding the design of CNNs have to be
considered:

1. the number of filters and size of the convolutional kernel in the convolutional
layers,

2. the number of convolutional layers to identify complex features,

3. the exploration of the applicability of advanced image recognition concepts
(VGG,ResNet, Inception) in the context of spectral data and pattern analysis
(focusing on the strategic stacking of convolutional and pooling layers),

4. the integration and positioning of regularization techniques.

Therefore, a comprehensive assessment of various network configurations on
an extensive dataset becomes imperative. One viable approach is to utilize the
RRUFF database [28], which provides numerous measured XRD patterns and
Raman spectra for diverse materials, for such an evaluation. However, the analysis
of a halite XRD scan acquired from this database, as detailed in Section 1.4,
exposes that some of these scans exhibit irregularities, as additional diffraction
peaks are present in this pattern that are not attributable to the NaCl structure
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reported by the database. Thus, an alternative large-scale dataset with reliable
labels is necessary for the effective evaluation of the distinct configurations.

As an alternative strategy, a synthetic dataset tailored for the evaluation of network
designs is introduced. This synthetic dataset is designed to mirror the character-
istics observed in measured signals, drawing insights from a detailed analysis of
the RRUFF database. Consequently, parameters identified through the synthetic
dataset are expected to efficiently translate to the analysis of measured signals.
Following the comprehensive assessment of various network configurations on
this dataset, the thesis establishes the optimized network structure, subsequently
integrating it into the novel data analysis framework.

4.2.2 Analysis of Measured Dataset Characteristics

To determine the characteristics of measured XRD patterns and Raman spectra,
the corresponding data is downloaded from the RRUFF database and examined in
detail. The database contains thousands of measurements contributed by different
researchers using various instruments and measurement modalities. As a result,
the database represents a wide range of variation, and the properties inferred from
the RRUFF database are expected to be representative of measurements aimed
at characterizing materials in a general context. The analysis is primarily aimed
at determining key properties of the measurement data, such as scan length and
peak width.

Examining the signals from the RRUFF database reveals a notable variability
in the length of the scans. Considering only XRD patterns, the scans exhibit a
range of 1000 to 9000 measurement steps. This variability is influenced partly by
the specified measurement range tailored for particular materials. Moreover, the
choice of different anode materials significantly impacts the XRD scan length, as
shorter wavelengths cause diffraction peaks to appear at lower angles 2θ, which
plays a role when specifying the measurement range. Additionally, the step width
utilized in acquiring the scans dictates the number of measurement steps, with
smaller step widths resulting in denser recordings of diffraction patterns, yielding
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a higher number of data points. Similarly, the length of Raman spectra varies
greatly with measurement ranges between 15 and 4000 cm−1, resulting in lengths
between 600 and 8000 measurement points.

The measured intensities within those scans can exhibit substantial variations,
spanning from hundreds to millions, attributable to differences in instruments
and acquisition times. Furthermore, signals from both domains show multiple
peaks, which are representative of the material under analysis. While certain
signals showcase fewer than five peaks, others display substantially higher counts,
such as XRD patterns of low-symmetry materials. Despite this variation in peak
count, the shape and width of the peaks appear to be relatively consistent across
all signals. Notably, the width of a peak in an XRD pattern is defined in terms of
angle 2θ, and for Raman spectra, in terms of the Raman shift.

However, the width of peaks can also be expressed in discrete data points of the
measured signal, facilitating a meaningful comparison between the two domains.
For instance, if a peak exhibits a Full Width Half Maximum (FWHM) of 0.5◦

in a diffraction pattern obtained with a 0.01◦∆2θ step width, this corresponds
to an FWHM of 50 in terms of data points. This consideration of peak widths
is particularly crucial in the context of inputting such data into neural network
models. In the domain of analyzing spectral data, a vector detailing the measured
intensities acts as input for the neural network, but it does not include information
regarding the measurement steps. Thus, the deep learning models operate under
the assumption of equidistant steps, even when the signal is acquired with a
variable step width. As a result, the neural network may interpret the XRD peak
with an FWHM of 0.5◦ very differently depending on the step size of the data
acquisition. If acquired with a step width of 0.01◦∆2θ, the peak will be translated
into 50 data points in width, while at 0.02◦∆2θ, the same peak will be described
in only 25 data points, even though it conveys the same underlying information.

Accordingly, Figure 4.2 displays a selection of XRD scans and Raman spectra
from the RRUFF database. As explained earlier, the signals exhibit varying
measurement ranges and lengths, highlighting the diversity of the dataset under
investigation. Furthermore, the FWHM of the peaks has been determined for
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(b) Raman spectra from the RRUFF database.

Figure 4.2: Exemplary XRD scans and Raman spectra from the RRUFF database [28]. The database
contains measurements from different sources, thus, the scans exhibit varying lengths,
FWHMs, and SNRs. The colors indicate the characteristic FWHMof peaks in the signals.

each signal, as showcased by the differing colors. Thus, Figure 4.2 illustrates the
overall consistency in the width of peaks observed in XRD patterns and Raman
spectra from the RRUFF database. Notably, the peaks in the Raman spectra
appear broader compared to their XRD counterparts, a characteristic attributed to
the shorter length of the Raman spectra.

Nonetheless, it is crucial to thoroughly examine the scans available in the database
to identify those with distinctly different properties. Figure 4.3 showcases several
signals from the RRUFF database that stand out from the remaining scans based
on their determined FWHMs. On the basis of this evaluation, XRD patterns with
high and low FWHM values have been identified, which appear to be composed
mainly of noise, as displayed in Figure 4.3a. However, as the signal does not allow
for distinguishing relevant information required to identify a material from noise,
such signals are effectively useless for the purpose of analyzing samples.

Similarly, there are Raman spectra in the database with outstanding FWHM val-
ues, as illustrated in Figure 4.3b. For some of these scans, no FWHM could be
determined (gray), while others had particularly high FWHMs (purple). Upon
closer inspection, the broad peak with the highest intensity in the purple spectrum
appears to be composed of four separate peaks that overlap partially. Conse-
quently, the actual FWHM value for each individual peak within this spectrum
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Figure 4.3: Signals from the RRUFF database [28] that have been identified based on their exceptional
FWHM values. Such signals often consist entirely of noise or are the result of multiple
peaks overlapping in the signal.

may be considerably smaller. Based on this investigation, it is crucial to recognize
that the database includes scans with decisively divergent properties, including
undefined peak widths or FWHMs that are exceptionally large or equal to 1.
Hence, when determining the characteristics of scans within the database, such
signals should be carefully identified and excluded from consideration.

Therefore, Figure 4.4 presents a histogram displaying the distribution of FWHM
values in signals from the filtered RRUFF database. Thus, the frequency of
different FWHM ranges is effectively represented by the histogram, which allows
systematic determination of the peak width property of scans in the RRUFF
database. As a result, the histogram shows that for XRD scans, FWHM values
are predominantly centered around 10, with 99% of the scans having FWHM
values smaller than 30. However, FWHMs of up to 60 can occur in measurement
signals intended for analysis of various materials.
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(a) Distribution of the FWHM values in XRD scans
from the RRUFF database.
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(b) Distribution of the FWHM values in Raman spectra
from the RRUFF database.

Figure 4.4: Distribution of FWHM values in measured signals. The dataset has been selectively fil-
tered to omit signals predominantly consisting of noise or those characterized by extensive
peak overlap.

Consequently, in-depth analysis of the RRUFF database allows for drawing the
following conclusions regarding the properties of measured XRD patterns and
Raman spectra:

• The signals vary in length, containing between 600 and 9000 measurement
steps.

• The measured intensities display a considerable range, varying from a
magnitude of one hundred to one million.

• The number of peaks can vary greatly in the scans.

• Considering only individual peaks in those signals, the FWHMs are mostly
in the range of 2 to 30, with occasional exceptions reaching up to 60.

Therefore, when designing a synthetic dataset to determine an optimized neural
network structure for XRD scans and Raman spectra, careful consideration of
these characteristics observed in measured signals is essential.
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4.2.3 Synthetic Benchmark Generation

Having explored the inherent characteristics of measured signals, this section
shifts focus to the design of a synthetic benchmark dataset. This dataset is
specifically tailored to evaluate different configurations of CNN architectures,
which employ numerous filters that slide across the input for feature detection.
Thus, while the measured signals exhibit varying lengths and peak counts, the
specific peak count and signal length become secondary considerations for the
synthetic dataset. Instead, the focus is on evaluating the CNN’s ability to identify
individual peaks in limited signals. The mechanics of the convolutional layers
suggest that once an optimized structure is established for accurately detecting
individual peaks, the same set of filters can be seamlessly shifted across more
complex signals with longer lengths and larger peak counts to extract the same
information.

Moreover, it is advisable to limit the intensities of signals utilized for training or
evaluating neural networks, as large counts facilitate overfitting [66]. Therefore,
instead of evaluating the networks for analysis of signals with heights in the
range of one thousand to one million, peaks should have much lower intensities.
Furthermore, in signal analysis, the relevant information is generally not the
absolute height of the peak but rather the encoded area beneath it. Hence, these
synthetic peaks should reflect the same variation of peakwidths found inmeasured
signals. As the network is expected to perform effectively across a diverse range
of signals, it is imperative to evaluate the full spectrum of FWHMs.

Finally, the synthetic signals are expected to contain background intensities and
noise, which are commonly found in the measured scans. Such artifacts typically
impact the measured intensity values and therefore complicate the accurate de-
tection of peaks. As a result, a synthetic dataset is constructed that presents a
straightforward task to evaluate the effectiveness of distinct neural network con-
figurations: predicting the characteristic value of peaks in a noisy signal that is
encoded in the area under the curve. To introduce an additional layer of com-
plexity, the position of the peak varies, facilitating a thorough assessment of the
network’s utilization of shifting filters.
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In summary, the synthetic dataset is designed according to the following princi-
ples:

• Signals consist of 1000 data points each.

• Each signal contains a peak with a height ranging from 0.4 to 2.5.

• The peak is characterized by a broad shape with an FWHM ranging from 2
to 60.

• The center of the peak varies between positions 350 and 650.

• Noise and background intensities are introduced in the signals.

Accordingly, Figure 4.5 showcases examples from the synthetic dataset. In Fig-
ure 4.5a, the ideal representation of the peaks is displayed, which highlights the
variance of heights and positions. Furthermore, Figure 4.5b illustrates the appear-
ance of the signals that are provided to the neural network models, which contain
the typical peak shapes, background, and noise. This comprehensive approach
ensures a realistic and challenging test dataset for assessing the performance of
CNNs in analyzing signals with varying peak characteristics.

In
te

n
si

ty

Position

(a) Ideal representation of the peaks with characteristic
heights and varying positions.
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(b) Addition of background, noise and typical peak
shapes.

Figure 4.5: Synthetic dataset for evaluating different neural network architectures. The goal is to
predict the characteristic height of the peak, which is encoded in the area under the curve.
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4.2.4 Evaluation of Distinct Network Configurations

To evaluate the effectiveness of various model configurations, each is tested with
the task of predicting the exact value for the area under the curve. This evaluates
the model’s ability not only to identify different peak widths but also to handle
noise and background interferences that affect peak characteristics. As a metric
to quantify the accuracy of the prediction, the Root Mean Squared Error (RMSE)
is used. In this particular evaluation, the synthetic dataset contains 10,000 signals
which are split into 8,000 training and 2,000 validation samples. Each model
undergoes training 11 times with random initializations, and the median RMSE
is reported on the validation set.

The evaluation first involves a CNN with a single convolutional layer to explore
the effect of various kernel sizes and filter counts. This basic network includes
a flattening operation and a fully-connected layer with only one neuron that pro-
vides the prediction. Further tests include the addition of multiple subsequent
fully-connected layers and the integration of pooling layers. This also includes
the evaluation of the VGG, ResNet, and Inception architecture. Finally, regu-
larization techniques are examined, along with the exploration of using several
fully-connected layers prior to the output.

Single Convolutional Layer

Initially, the analysis is focused on CNNs with a single convolutional layer. These
CNNs were tested with varying configurations, including kernel sizes of 17, 51,
127, 251, and 517, and filter counts of 8, 32, 128, 256, and 512. This methodical
testing aims to identify the optimal combination of kernel size and filter count for
accurately capturing the essential characteristics of the peaks.

Consideration of kernel size can be furthermotivated in the context of the synthetic
dataset’s FWHMs, which range from 2 to 60. For instance, a kernel size of 17
captures only a limited portion of the peak. Conversely, a kernel size of 51 closely
aligns with the FWHM of peaks in the dataset, effectively covering most of the
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peak area and facilitating the identification of features based on the peak’s slopes.
Furthermore, a kernel size of 127 (and greater) is large enough to accommodate
most peaks in the synthetic dataset within a single kernel, thereby providing a
comprehensive view of each peak’s characteristics.

Table 4.1 showcases the performance metrics of various network configurations.
Notably, networks with more filters and larger kernels performed better than those
with fewer parameters. In particular, a filter count of 8 results in worse RMSE
values for all kernel sizes tested here. Additionally, networks with kernel sizes
of 17 and 51 consistently performed worse than those with kernel sizes of 127 or
larger. This suggests that the kernel size should be large enough to accommodate
the full range of intensities in a single kernel, rather than only half the width.

Although the network with 512 filters and 251 kernel size achieved the best
overall Root Mean Squared Error (RMSE) of 1.27%, the benefits of incorporating
additional filters or larger kernels are substantially reduced beyond a certain
threshold. For example, the CNN with a kernel size of 127 and 128 filters
achieved an average RMSE of 1.37%, only slightly larger than the best overall
configuration. However, this network has fewer parameters to adapt, making
it more efficient in terms of training and application. Therefore, it raises the
question of whether networks with filter counts and kernel sizes surpassing this
configuration are truly essential.

Table 4.1:MedianRMSE scores for CNNswith a single convolutional layer on the single peak dataset.
The best-performing configuration is highlighted in bold formatting.

Kernel Size

N
o.

of
fil
te
rs

17 51 127 251 517
8 3.63% 3.30% 2.08% - -
32 3.28% 2.71% 1.57% 1.39% 1.39%
128 3.09% 2.54% 1.37% 1.29% 1.32%
256 - - 1.32% 1.27% 1.29%
512 - - 1.31% 1.27% 1.29%
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Multiple Convolutional Layers

In practical applications, however, CNNs are not limited to the use of a single
convolutional layer. Consequently, the ensuing analysis evaluates how incorpo-
rating additional convolutional layers can further enhance network performance
on the single peak identification task. To this end, configurations that previously
exhibited enhanced performance, particularly those with a high count of filters
and a kernel size of 127, are retained. However, these networks are now modified
to include more convolutional layers.

Figure 4.6 presents a visual comparison of the performance across various neural
network architectures. The networks employing convolutional layers vary in
complexity, ranging from one to eight layers, as denoted by the labels "Conv-
1" through "Conv-8". Here, the grey boxes illustrate the range of RMSE values
recorded for each architecture, encompassing the minimum and maximumRMSE
observed. The median value of these RMSE values is distinctly marked with a
red line within each box, providing a clear visual indicator of the central tendency
in the performance of each network architecture.

Generally, a trend is observed where the RMSE metric decreases as the number
of convolutional layers in the networks increases. For instance, the CNN with a
single convolutional layer recorded a median RMSE of 1.37%. In contrast, this
error metric was reduced to 1.11% in the model utilizing six convolutional layers.
However, the Conv-8 model deviates from this general trend regarding the number
of layers and RMSE. Notably, its overall performance is inferior to that of the
Conv-6 model despite stacking more layers. This observation suggests that the
Conv-8 model memorized the training samples (overfitted) rather than learning
generally applicable features.

Furthermore, the computational complexity of the network increases greatly with
the addition of each convolutional layer. Considering an input configuration with
64 channels, a kernel size of 127, and 64 filters, every added layer contributes
524,288 parameters to the overall network. As a result, while the Conv-6 model
achieves the best RMSE metric at 1.11%, it encompasses roughly six times the
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Figure 4.6: RMSE scores for different neural network architectures on the single peak signal dataset.
The grey boxes indicate the best and worst performance across 11 models; the red line
indicates the median. Networks using convolutional layers are specified with "Conv-n",
where n defines the number of convolutional layers in the network.

number of parameters found in the Conv-1 model, amounting to a total of over
3 million parameters. In contrast, the Conv-1 network demonstrates a relatively
close performance to Conv-6, with only a 0.26 percentage point difference in
RMSE. Therefore, it is evident that the enhancement in prediction accuracy comes
at a significant cost, with only a slight improvement in the resulting metric.

Pooling

In the field of image recognition, the computational cost associated with large
kernel sizes is often mitigated by incorporating pooling layers, which serve to
reduce the dimensionality of the input data. The concept of a receptive field refers
to the spatial extent to which a convolutional kernel can gather information [66].
When a pooling layer downscales the data by a factor of two, the effective receptive
field of a kernel of consistent size is doubled. Consequently, the subsequent
investigation involves the use of pooling layers to utilize networks with smaller
kernel sizes. This has the potential for a more efficient network design without
compromising the network’s ability to accurately identify the broad peaks.

For image recognition networks, consistent use of narrow kernel sizes across
all layers is typical. Hence, one approach to reducing the size of the peak
identification networks is to use a smaller kernel size (e.g., 51 instead of 127)
in combination with pooling layers throughout the network. This approach,
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Table 4.2:Median RMSE scores for CNNs incorporating pooling operations compared to the Conv-6
model. The labels A, B, and C correspond to distinct strategies for evolving kernel sizes.

Network Conv-6 Pool-A Pool-B Pool-C
Kernels 127 (6) 51 (5) 127-63-31-15-7 127-63-42-31-25
RMSE 1.11% 1.20% 1.22% 1.18%
Parameters 2,748,331 855,296 499,712 684,032

however, necessitates that the narrow convolutional filters in the initial layers
retain the relevant information for subsequent layers with a larger receptive field.
If a large kernel size in the initial layers is required for effective identification of
the distinct peaks, an alternative strategy involves progressively reducing the size
of the convolutional kernels. Consequently, additional evaluation is essential to
validate the use of pooling layers and to determine an optimal configuration of
convolutional kernel sizes that balances model performance and size.

Hence, the networks that integrate pooling layers are evaluated on the synthetic
dataset and compared to the performance of the Conv-6 model. Given that the in-
put has a length of 1000, introducing six pooling layers would yield an excessively
narrow feature vector, shorter than the convolutional kernels. Consequently, the
subsequent networks utilize only five convolutional layers to address this con-
straint. The initial pooling network adopts a consistent kernel size of 51 for all
convolutional layers ("Pool-A"). In contrast, the second pooling model starts
with a kernel size of 127 and then decreases the kernels by a factor of 2 for each
pooling layer ("Pool-B"). Thus, the receptive field for the convolutional kernels
in this network remains consistent. The final pooling model also starts with a
127 kernel size but implements a less aggressive reduction ("Pool-C"). While
this also reduces the size of the neural network model, it concurrently enables the
networks to process even larger features, given the increase of the receptive fields
in the later layers.

Table 4.2 displays the median RMSE scores alongside the number of parameters
for each architecture. Notably, the use of pooling layers greatly reduces the
number of parameters in the network, while conserving the level of performance.
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All three approaches (A, B, C) yield nearly identical RMSE scores; however, the
third strategy emerges as the most successful. This suggests that employing a
large kernel size in the initial layers could be beneficial for achieving optimal
performance metrics. However, it is crucial to highlight that this evaluation
specifically considers architectures where convolutional and pooling layers are
sequentially stacked. There exist more advanced architectures in the domain
of image recognition that have the potential to significantly enhance the peak
identification capabilities of the models.

Advanced Architectures

Therefore, neural networks that resemble the VGG, ResNet, and Inception ar-
chitecture are also tested on the synthetic dataset. The performance metrics for
these architectures, in terms of RMSE scores and parameter counts, are detailed
in Table 4.3. The VGG architecture distinguishes itself by stacking multiple con-
volutional layers between the pooling operations in the network. Despite this
arrangement, VGG’s performance does not surpass that of the Conv-6 model,
which does not utilize pooling. In a similar vein, the ResNet model, known for
its intricate architecture, incorporates a greater number of convolutional layers
compared to the other networks evaluated. However, it also does not achieve a
better RMSE metric than the Conv-6 model.

The Inception network is designed to use parallel convolutional layers, each with
varying kernel sizes, to capture features of different scales. However, previous
investigations have highlighted that larger kernel sizes are particularly crucial
for accurately detecting characteristic peak shapes in the data. Consequently,
when evaluating the Inception network, it is observed that its performance does
not match that of other network architectures. This outcome suggests that the
Inception network, despite its notably lower parameter count, does not offer a
significant advantage in this specific application.

Therefore, networks with more parameters do not necessarily perform better than
smaller models, e.g., the Pool-C model, on the synthetic dataset. This lack of
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Table 4.3:Median RMSE scores for CNNs with different architectures for stacking convolutional
layers. "VGG" specifies a network with VGG-like architecture, "ResNet" for a ResNet-
type model, and "Inception" for an Inception-like CNN. All networks have 64 filters.

Network Conv-6 Pool-C VGG ResNet Inception
RMSE 1.11% 1.18% 1.12% 1.16% 1.25%
Parameters 2,748,331 684,032 2,616,513 6,273,601 379,713

improvement could be attributed to overfitting, as largemodels are potentially over-
parametrized and memorize the training samples, limiting their generalization
ability. To validate this hypothesis, the use of regularization methods has to be
evaluated.

Regularization

Various types and configurations of regularization have to be considered. To
this end, the Conv-6, VGG, and Pool-C models are complemented with different
regularization methods during their training phase. One such modification in-
cludes the integration of batch normalization layers at various points throughout
the network. Additionally, the application of dropout regularization is explored
in two distinct configurations. The first approach involves implementing dropout
regularization after each convolutional layer, in the following referred to as "con-
volutional dropout". The second approach applies dropout regularization only
just before the final output layer of the network. Each of these configurations is
tested separately to determine how they influence the model’s ability to perform
the regression task accurately, thereby providing insights into the optimal use of
regularization techniques in neural network training for signal analysis.

Figure 4.7 displays the RMSE scores across various regularization configurations,
providing context by including the performances of networks without any added
regularizations for comparison. To emphasize the differences in performance, a
logarithmic scale is employed. Notably, the addition of convolutional dropout re-
sulted in the worst performancemetric in this study, exceeding 13%RMSE.While
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Figure 4.7: Performance of various CNNs with different regularization techniques.

convolutional dropout did not affect the Conv-6 and VGG models to the same ex-
tent as Pool-C, the performance of all models is worse than their counterparts
without regularization. Similar effects are observed with batch normalization,
resulting in inferior performance across all models. Only dropout regularization
had a minimal impact on model performance, with the model achieving approxi-
mately the same metrics with and without this regularization technique. However,
this evaluation shows that the performance of the large models cannot be further
improved by adding regularization techniques.

Parameter Count

While various model configurations have been tested, the primary focus has pre-
dominantly been on the overall prediction accuracymeasured by RMSE. However,
in order to pick an optimized neural network architecture for use within the novel
material identification framework, it is imperative to also consider the size of the
model. Opting for a network with fewer parameters not only reduces computa-
tional demands during training and application but also diminishes the likelihood
of overfitting. The evaluation of different regularization methods reveals that
employing batch normalization or dropout does not effectively prevent overfit-
ting in larger models, underscoring the advantage of utilizing models with fewer
parameters to mitigate this issue.

Accordingly, Figure 4.8 presents an exhaustive overview that compares the param-
eter count and the median RMSE scores across different network architectures.
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Figure 4.8: Contrasting the median RMSE scores and the number of parameters in different networks
for the single peak signal dataset. While the RMSE decreases as the parameter count
increases, no network configuration achieved an error score below 1%.

This visual representation clearly demonstrates the utility of convolutional layers
in extracting peak information from signals. Notably, this reveals a general trend
where the prediction error tends to decrease as the number of parameters in the
models increases. However, no network achieves an RMSE metric lower than
1.1%, and beyond the Pool-C model, which has about 600,000 parameters, the
benefit of adding more parameters is minimal. This observation is crucial in un-
derstanding the balance between network complexity and performance efficiency
in the context of extracting peak information from noisy signals.

4.2.5 Proposed Network Structure

Contrasting previous studies, which often focused on introducing novel model ar-
chitectures tailored to their particular dataset, this thesis aims to develop a unified
neural network structure that achieves high performance metrics for all types of
Raman spectra andXRDpatterns. Therefore, the systematic evaluation of the syn-
thetic datasets, designed to mirror the properties found in measured signals, has
facilitated a comprehensive comparison of various neural network architectures.
This in-depth analysis has not only provided insights into the relationship between
network parameters and signal properties, such as the connection between kernel
size and peak FWHMs, but it has also revealed that certain regularization tech-
niques commonly used in established networks can negatively affect performance.
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Accordingly, the previously defined open questions can be answered based on
the results obtained through the evaluation of network configurations using the
synthetic datasets. Approximately 64 filters are required to capture the varying
appearance of peak shapes. In addition, a convolutional kernel size of 127 is re-
quired to accurately identify peaks in noisy signals with FWHMs of up to 60 data
points. However, by using pooling layers, the kernel size can be reduced in later
layers without affecting the performance of the model. To accurately identify indi-
vidual peaks, multiple convolutional layers should be stacked, but more advanced
concepts including VGG, ResNet, and Inception do not improve the performance
of such peak identification networks. Furthermore, the dropout regularization
technique is not helpful in these networks, and adding batch normalization or
dropout between convolutional layers seriously degrades performance.

However, the analysis of the synthetic dataset only evaluates the ability of the
networks to identify individual peaks in the signals. Measured signals typically
contain multiple peaks, often overlapping, and the signals exhibit diverse lengths,
as described in Section 4.2.2. While the convolutional kernels adeptly navigate
signals of varying lengths, they prove most effective in identifying local features.
Since the convolutional kernels glide over the input, the analysis of signals of
different lengths is not a challenge, but these filters are only useful for identifying
local features. To enhance the network’s proficiency in identifying global features,
the neural network structure should be extended with a fully-connected layer1.

Therefore, a unified neural network architecture is proposed based on the results
of the synthetic benchmark evaluation. Figure 4.9 illustrates the structure of the
CNN, which resembles the Pool-C model. Therefore, the network consists of
five convolutional layers that are accompanied by pooling operations. The input
layer of the network can be adapted to match the size of the inputs, but it should
include at least 600 neurons to ensure that the data is larger than the size of the
convolutional layers after the pooling operations. After the convolutional stage,

1 The addition of a fully-connected layer was also tested for the CNNs in the synthetic dataset but
did not prove to be useful for identifying the individual peaks in the signal.
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Figure 4.9: Proposed neural network architecture for use with spectroscopic signals and diffraction
patterns. The network is split into several key components: the convolutional stage, the
flattening, the fully-connected layers, and the output. f specifies the number of filters, and
k the kernel size in the convolutional layers. The maximum pooling layers each half the
length of the input.

the flattening operation reshapes the encoded features, and one fully-connected
layer with 100 neurons is employed to detect the spatially distant features.

Furthermore, 35% of the connections between the flattened feature vector and the
hidden layer are randomly dropped during training to mitigate overfitting. This
regularization technique was the only one that did not substantially affect the
network’s performance. Thus, incorporating this regularization method ensures
that the model does not risk overfitting, irrespective of the size and nature of
the data used for training the neural network. This represents another measure
to ensure the straightforward application of the model to datasets that analyze
diverse material systems, affirming its robustness in accommodating a wide range
of data variations.

Although the network is designed for use with both spectra and diffraction pat-
terns, its application has thus far been exclusively demonstrated on signals con-
taining only a single peak. Additionally, despite testing various neural network
configurations, it remains uncertain whether an alternative architecture presented
in a previous study might outperform the proposed network in analyzing such
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fingerprints. Consequently, further tests are imperative to precisely assess the per-
formance of this model when applied to measured signals encompassing multiple
peaks.

4.3 Comparative Analysis of Network
Structures

4.3.1 Configurations of Established Networks

Numerous alternative neural network structures have been presented for the anal-
ysis of Raman spectra and diffraction patterns. The first documented applications
of convolutional neural networks in the field of one-dimensional pattern analysis
were presented by Park et al. [42] and Liu et al. [17], with each utilizing a network
comprising three convolutional layers. Furthermore, there is a broad spectrum
of distinct network configurations, employing varying numbers of filters, kernel
sizes and convolutional layers. Moreover, some of these networks utilize more ad-
vanced network architectures, such as VGG, ResNet, and Inception [15, 16, 31],
and integrate alternative regularization methods including batch normalization
and dropout between the convolutional layers.

Table 4.4 provides a summary of the various network architectures that have been
presented in previous studies, in addition to the proposed model. Most architec-
tures incorporate multiple convolutional layers, except for the network developed
by Mozaffari and Tay [71]. The proposed network architecture distinguishes it-
self from alternative configurations due to its large kernel size. In addition, only
three network configurations have fewer parameters than the proposed architec-
ture. Although the network by Mozaffari and Tay features a single convolutional
layer and fewer fully-connected neurons than the novel model, it still contains
more parameters overall. These additional parameters are predominantly part of
the fully-connected layer, necessary for mapping the intensities encoded in the
feature vector to the output. This highlights the benefits of using pooling layers,
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Table 4.4: Configurations of distinct neural networks for analyzing XRD patterns and Raman spectra.
The number of filters is reported for the last convolutional layer (indicative of the feature
vector), and the kernel size for the first convolutional layer. The regularization methods
dropout and batch normalization are abbreviated as DO and BN, respectively. The number
of layers is determined exclusively by considering the convolutional layers. To determine
the model size, an input size with 5,000 data points was considered.

Network No. Layers Filters Kernel Reg. FC-Neurons Parameters
Park et al. [42] 3 80 100 DO 770 3,170,081
Liu et al. [17] 3 64 21 BN, DO 2048 81,940,865
Oviedo et al. [44] 3 32 8 - - 8,577
Fan et al. [45] 2 64 5 DO 4608 290,406,145
Vecsei et al. [46] 3 80 100 DO 3450 11,785,841
Ho et al. [31] 26 100 5 BN - 1,261,941
Wang et al. [15] 7 64 5 DO 390 2,462,861
Lee et al. [16] 2-9 64/332 50/20 DO 4000 186,617,139
Szymanski et al. [43] 6 64 35 DO 4300 19,612,925
Schuetzke et al. [68] 3 64 20 DO 2500 24,848,373
Sang et al. [70] 16 512 3 BN, DO 512 47,575,617
Bhattacharya et al. [72] 4 32 2 DO 1000 305,037
Mozaffari and Tay [71] 1 32 3 - 64 10,240,257
Proposed 5 64 127 DO 100 1,666,505

as the proposed model reduces the dimensionality of the input by a factor of 32,
resulting in fewer connections for the fully-connected neurons.

Nonetheless, the different neural network architectures described here each
achieved high accuracy metrics for the classification of XRD patterns or Ra-
man spectra in their respective publications. Hence, while the proposed network
structure has been specifically designed for optimal performance when analyzing
such signals, it is mandatory to compare its performance to that of the other mod-
els. However, as explained in Section 4.2.1, the absence of large-scale datasets
with reliable labels complicates an extensive comparison. Thus, another synthetic
dataset is introduced that presents a classification task involving the characteristic
fingerprints of arbitrary substances in signals. As a result, this dataset provides
an unprecedented opportunity to benchmark different network architectures.
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4.3.2 Benchmark Dataset for Comparative Analysis

The synthetic benchmark dataset, as described in this section, allows for evaluat-
ing the accuracy and the computational efficiency of the neural network models.
Unlike the initial synthetic dataset, which was designed to assess the networks’
proficiency in identifying key properties of a single peak amidst noise, this addi-
tional dataset is intended to test the networks’ ability to recognize a characteristic
fingerprint. Accordingly, the dataset includes signals that either display this
specific fingerprint or contain different patterns, including instances where the
fingerprint is present alongside additional peaks. The objective for the neural
networks in this scenario is to determine a single outcome: whether the input
signal exclusively matches the predefined fingerprint or not.

While the samples of this dataset are generated artificially, the signals are intended
to resemble measured scans. Consequently, properties of the signals from the
RRUFF database are systematically incorporated into the design of the synthetic
dataset. This approach ensures that the results obtained from evaluating the
networks on this synthetic data set are expected to reflect the model’s performance
when applied to the analysis of real measured signals.

Therefore, the dataset comprises signals of length 5000, aligning with the median
signal length observed in the RRUFF database. Furthermore, a unique fingerprint
is defined which contains multiple peaks with characteristic positions and heights.
The peaks are represented by broad shapes with FWHMs between 2 and 30 data
points2 and the signals contain noise and background intensities. Furthermore,
the positions, intensities, and widths of the fingerprint can vary, providing a
realistic representation of the diversity typically observed in actual signals. Details

2 Signals from the RRUFF database contain peaks with FWHMs of up to 60. However, the majority
of established network architectures utilize smaller kernel sizes, indicating that these networks
may not have been specifically tailored for broad peaks. Given that 99% of the signals in the
RRUFF dataset have peak widths less than 30 FWHM, a more limited scenario is examined here.
Nevertheless, it is essential to note that the proposed architecture is designed to analyze signals
with FWHMs of up to 60.
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regarding the degree of variation are explained in Section 5.3 and Appendix
Section A.4.2.

In addition, signals are also generated that serve as negative examples for training
and evaluating the various neural network configurations. These alternative pat-
terns feature peaks with positions and heights that differ distinctly from the target
fingerprint, thereby providing a contrasting set of data. Additionally, some of the
generated signals include patterns that closely resemble the key fingerprint but are
distinguished by the presence of additional peaks. In line with the characteristics
observed in the measured signals from the RRUFF database, the peaks within the
characteristic fingerprint may overlap with other peaks. This aspect is deliber-
ately incorporated into the dataset to assess the neural networks’ robustness and
accuracy in scenarios where peak overlap occurs.

Accordingly, Figure 4.10 presents signals from this benchmark dataset that depict
signals without noise and background. Figure 4.10a offers a visual representation
of this characteristic pattern that the neural networks are tasked to identify within
the signals. The illustrated examples demonstrate the actual variations in the
fingerprint, such as shifts in peak positions and changes in peak intensities and
widths. Furthermore, Figure 4.10b presents examples, which the neural networks
are tasked to differentiate from the actual samples containing the fingerprint. The
signals illustrated in brown and pink exhibit patterns that are distinctly different
from the target fingerprint. In contrast, the grey, olive-green, and cyan plots
represent negative examples where the fingerprint is present alongside additional
peaks. Notably, in the cyan plot, these additional peaks partially overlap with one
of the target fingerprint peaks and are difficult to identify due to the small peak
heights. This scenario poses a significant challenge for the models, testing their
ability to accurately identify the fingerprint despite the presence of overlapping
and nonessential peaks.
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(a) Positive examples of the signals in the synthetic
fingerprint identification dataset. The characteristic
pattern is varied with respect to the peak positions,
heights, and widths.
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(b) Negative examples of the signals in the synthetic
fingerprint identification dataset. The patterns are
either completely random or show the fingerprint to
identify amidst complementary peaks.

Figure 4.10: Synthetic Fingerprint Identification Dataset: This dataset is specifically crafted to assess
the capability of various neural network architectures in recognizing a unique fingerprint.
It mirrors properties typically found in measured scans, thereby ensuring the relevance
of the dataset to real-world scenarios.

4.3.3 Results of Comparative Analysis

In total, the models are evaluated using the synthetic benchmark dataset, which
comprises 10,000 signals. Among these, 5,000 depict the variation of the fin-
gerprint without additional peaks (referred to as "positive examples"), while the
remaining 5,000 represent alternative patterns, including cases where the target
fingerprint is present among impurities (considered "negative examples"). There-
fore, each network architecture is specifically designed with a single output node,
employing the sigmoid activation function. The training of these networks is
conducted using the binary cross-entropy loss function. To ensure a robust eval-
uation, the dataset is divided into training and validation sets, with an 80%-20%
split. Thus, the quality of the prediction is measured using the accuracy metric
calculated on the validation set, and the computational complexity is estimated
based on the number of parameters in each model.

Table 4.5 presents the outcomes of the network benchmark, organized by model
size, and highlights the highest accuracy score. Generally, most networks achieved
high classification metrics, with only three models falling short of achieving an
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accuracy exceeding 90%. Moreover, the performance gap between the smallest
and largest model is less than 4 percentage points, indicating that additional pa-
rameters may not necessarily enhance model performance. The proposed model,
with only 1.7 million parameters, achieved the best metric, accurately classify-
ing 99% of the 2,000 validation samples. While a few models approached this
performance, with four models achieving a score of 98.5%, the small numerical
difference corresponds to another 10 misclassified signals.

The proposed model achieved the highest accuracy score while employing less
than 1% of the parameters compared to the largest model. This underscores the
effectiveness of designing the model using the synthetic dataset containing signals
with individual peaks. Despite utilizing this limited dataset, the performance
of the proposed model extends well to identifying signals with multiple peaks.
This emphasizes the functionality of the convolutional filters, which slide across
the input of varying lengths and identify position-irrelevant features. Therefore,
given the model’s demonstrated performance on the benchmark dataset inspired
by measured signals, it is reasonable to expect that its effectiveness will translate
well to the analysis of measured scans.

4.4 Application of Network Model

The presented neural network configuration, as illustrated in Figure 4.9, has been
precisely optimized for a dataset that mirrors the typical parameters commonly
observed in measured scans. This optimization specifically accounts for peaks
with FWHM values ranging between 2 and 60. As a result of this optimized
approach to determining adequate network configurations, the presented model is
suitably equipped to handle most data encountered in practical applications. In
addition, the model can be flexibly applied to signals of varying lengths because
the convolutional filters identify all relevant peaks in the measurements by sliding
over the input. This adaptability implies that the network can be effectively applied
to a wide range of data without necessitating any significant modifications to its
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Table 4.5: Results of the network evaluation on the synthetic fingerprint benchmark. The networks
are sorted in ascending order by the number of parameters. *Two networks that employ
batch normalization classified all samples of the validation set as "positive".

Network Accuracy Parameters
Oviedo et al. [44] 91.78% 8,577
Bhattacharya et al. [72] 72.76% 305,037
Ho et al. [31] 50%* 1,261,941
Proposed 99.01% 1,666,505
Wang et al. [15] 98.05% 2,462,861
Park et al. [42] 98.53% 3,170,081
Mozaffari and Tay [71] 94.31% 10,240,257
Vecsei et al. [46] 98.53% 11,785,841
Szymanski et al. [43] 98.53% 19,612,925
Sang et al. [70] 97.57% 47,575,617
Liu et al. [17] 50%* 81,940,865
Lee et al. [16] 98.53% 186,617,139
Fan et al. [45] 95.26% 290,406,145

underlying architecture, thereby offering a versatile tool for analyzing measured
scans with varying peak characteristics.

However, the application to signals with peaks exceeding the FWHM of 60
measurement points has not been tested. Broad peaks of this magnitude could
be the consequence of a measurement with an extremely small step size. In such
cases, the signals can be resampled to larger step sizes to ensure that the resulting
peaks have widths below 60 FWHM. Nonetheless, researchers would be aware if
they perform measurements with such extraordinary settings, so corresponding
procedures can be applied before feeding the signals into the neural network.

Hence, the training and application procedure of the neural network model is as
follows: The training process begins by providing the neural network with training
data that represents the patterns of the material system being analyzed and defines
the measurement range and step size of the signals. Then, the neural network
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model, including all its incorporated layers, is adapted to the length of the training
data. Through this training, the network learns to identify unique fingerprints
based on relevant features encoded in the feature vector. Thus, once the model
is trained, it is critical to ensure that only data with appropriate measurement
ranges and step sizes are analyzed. This ensures optimal performance because
the network is tuned to detect patterns within the specified measurement steps.
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5.1 Overview

The preceding chapters thoroughly outlined the conceptual framework for auto-
mated analysis of XRD scans and Raman spectra using neural networks. This
included a detailed description of the method for simulating training data and
the complexities of determining an adequate network architecture. The focus
now shifts to the practical implementation of these approaches. Accordingly, this
chapter is dedicated to explaining the step-by-step process of implementing the
algorithms and approaches previously discussed, detailing the technical aspects
and challenges encountered during the implementation phase. Several software
packages have been developed as a key component of this thesis, containing the
implementation of various elements utilized in the previous chapters. This chapter
offers a technical description of the algorithms and explains how these software
packages can effectively integrate the presented concept into existing material
discovery platforms.

Before addressing the specific details of the implementation, it is imperative to
outline the essential requirements for software development in the context of this
thesis. Firstly, the aspect of simulating training data forms the backbone of the
neural network’s learning process. This approach incorporates existing simula-
tion tools, so seamless integration is crucial to enable the simulation of training
signals. Secondly, training and evaluating the neural networks is an essential
element, including generating synthetic datasets to analyze distinct network con-
figurations. Lastly, the seamless processing of acquired signals, generated by
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measuring the samples produced by the material discovery platform, is a funda-
mental requirement. These measurements are typically provided as text files con-
taining numerical values describing the measurement steps and the corresponding
measured intensities. Consequently, selecting a development environment and
programming language that are precisely aligned with these defined requirements
becomes essential.

Given that neural networks constitute the central element of the data analysis con-
cept, as presented in Chapter 2, the Python programming language emerges as an
optimal choice for implementing the essential algorithms. This decision is guided
by Python’s widespread adoption within the deep learning community, notably
in developing libraries such as TensorFlow [88] and PyTorch [89]. Thus, imple-
menting the data simulation approaches in the same language ensures seamless
integration when using the generated data in the neural network training routines.
Moreover, Python provides a rich ecosystem featuring established libraries like
NumPy and SciPy, which mainly facilitate the processing of vectors and matri-
ces. Such capabilities are instrumental in efficiently processing and storing the
simulated training data but also in importing and preprocessing the experimental
signals.

In the context of this thesis, several software packages have been developed.
Figure 5.1 provides a graphical overview of the packages that have been developed
in the context of this thesis. This includes methods for accurate simulation of
powder diffraction scans (python-powder-diffraction), as well as the comparison
of distinct neural network models using a synthetic benchmark (spectra-network-
benchmark). Most notably, the central concept of this thesis, the identification of
target materials in produced samples based on their characteristic fingerprint, is
implemented and available for straightforward integration into existing material
discovery platforms in the form of the crystal-id package. To accomplish this,
the crystal-id package includes an optimized neural network structure that has
been developed using the spectra-network-benchmark repository. Furthermore,
optimized routines for the simulation of a large-scale dataset, which have originally
been developed for the python-powder-diffraction library, are integrated into the
crystal-id package to enable the training of the neural network model.
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Figure 5.1: Overview of the software packages that have been developed as part of this thesis. The
python-powder-diffraction library provides functionality to simulate diffraction patterns
for provided materials (in CIF format). The spectra-network-benchmark repository in-
cludes model implementations and scripts to assess the performance of distinct neural net-
work architectures for the analysis of spectra-like signals. The crystal-id package contains
the functionality to identify target materials using a neural network model. Therefore, the
package includes data simulation methods and results of the network benchmark, which
have been developed or obtained using the other packages.

Accordingly, this chapter is structured as follows: Section 5.2 provides the techni-
cal implementation to simulate realistic XRD patterns. Subsequently, Section 5.3
explains the algorithms and procedure for testing different network configurations
using synthetic datasets. Finally, Section 5.4 introduces the technical implemen-
tation of the crystal-id framework. Furthermore, Section 5.4 explains how to
integrate the framework for the analysis of material discovery data at hand.

5.2 XRD Powder Pattern Simulation

5.2.1 Package Overview

At the start of this dissertation, the training of neural networks for analyzing
XRD patterns predominantly utilized data sourced directly from crystallographic
databases. A notable example is the ICSD database [36], which provides access
to a vast array of crystalline material entries and offers the download of simulated
diffraction patterns for their database entries with specified radiation wavelengths,
measurement ranges, and step widths. While these simulated patterns include the
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representation of peaks as broad profiles, they lack the incorporation of addi-
tional experimental artifacts like background intensities and noise. Moreover, the
limitation to database entries means only those materials listed can be simulated.

As an alternative to the closed-source simulation algorithm of the ICSD, the well-
established pymatgen library [76] provides the functionality to calculate diffraction
patterns using the Python programming language. Pymatgen contains methods to
read and convert crystallographic information files (CIF) from various sources and
is therefore not limited to the entries from the ICSD. The XRDCalculator object
of pymatgen includes the functionality to calculate the diffraction position and
intensities for a given structure, wavelength, and two-theta range. Nonetheless,
the pymatgenmodules do not consider the broad appearance of peaks in measured
signals, and the package also does not include methods for simulating background
intensities and noise.

Accordingly, the python-powder-diffraction package was developed. This ap-
proach takes a material’s structural representation as input in the form of a CIF
and simulates diverse effects that result in altered peak positions and heights in the
corresponding diffraction pattern. Furthermore, the artificial patterns are com-
plemented by background intensities and noise, which ensures that the generated
signals are virtually indistinguishable from measured scans. Hence, it enables
the generation of data that captures the variability of the characteristic fingerprint
without requiring the availability of several database entries. The package is
publicly available on GitHub at
https://github.com/jschuetzke/python-powder-diffraction.

Figure 5.2 provides an overview of the python-powder-diffraction library with
the modules highlighted in yellow and the user-executable script in blue. While
the Powder class and the noise function contain the implementations of the
algorithms discussed in the previous chapters, the generate training data script
can be executed by the user to generate a dataset of diffraction patterns (signals
and the corresponding labels) from a list of CIFs. The following subsections
are dedicated to a detailed explanation of the core modules and objects in the
python-powder-diffraction library.
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Figure 5.2: The structure of the python-powder-diffraction library. At its core, the Powder class
and the noise function can be employed to simulate realistic powder diffraction patterns.
Furthermore, the generate training data script offers a straightforward function to utilize
the library for generating large-scale simulated datasets via the command-line interface.

5.2.2 The Powder Object

The core functionality of the python-powder-diffraction package is built around
the Powder object. This class is based on the pymatgen Structure object and
extends its features to produce varied diffraction patterns. The structure instance
provides functionality to read the crystalline information fromCIFs and represents
the materials. Subsequently, the Powder class introduces methods to manipulate
this information.

The position of peaks in a powder diffraction pattern is determined by the di-
mensions and symmetry of the crystal lattice, as explained in Chapter 1. To
facilitate the variation of these peak positions, the presented software enables the
manipulation of the unit cell parameters for a given material. This manipulation
is achieved by randomly varying the unit cell parameters while adhering to the
constraints imposed by the crystal system of the material. Thus, employing the
vary_strainmethod within the Powder class makes generating multiple variations
of the base crystal structure possible.

Algorithm 1 provides a detailed implementation of this methodology. The input
for the algorithm is a strx structure with parameters a, b, c, α, β, γ. Furthermore,
the constraints of the crystal system are described by cx. To randomly modify
the lattice parameters, function Random(m,n) is necessary to draw a value r

from distribution [a,b]. The maximum degree of the lattice variation is defined
by varmax, and the algorithm outputs the varied structure stry .
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Algorithm 1 Generation of varied lattices in the Powder object.
Require: strx ▷ reference structure
Require: varmax ▷ maximum variation
1: a, b, c, α, β, γ ← strx
2: cx ← strx

Get random factors for all lattice parameters
3: r ← Random(1− varmax, 1 + varmax)

Modify lattice parameters with random factors
4: a, b, c, α, β, γ ← (a, b, c, α, β, γ) · r

Consider the constraints of the crystal system
5: a, b, c, α, β, γ ← cx(a, b, c, α, β, γ)

Modified Structure
6: stry ← cx(a, b, c, α, β, γ)

Furthermore, the Powder class integrates the XRDCalculator object to compute
the diffraction patterns for the structures. Consequently, the Powder object takes
the information regarding the wavelength as input and initializes a calculator to
process the structures accordingly. Noteworthy, measured scans frequently show
diffraction peaks from multiple wavelengths as a result of the Kα1 and Kα2 peaks
in the X-ray profile that cannot be filtered out (see Section 1.3.2). Thus, the
Powder object also takes multiple wavelengths as input and scales the computed
diffraction peaks according to the ratio of the different peaks in the radiation
profile. The functionality to obtain the computed position and intensities of
peaks for the provided structure is integrated into the get pattern method of the
Powder class.

In addition to the positional variations of peaks in diffraction patterns, the heights
of these peaks are subject to variation due to a range of effects, one of which is
the formation of preferred particle orientation in the powder (see Section 1.3.3).
To simulate this phenomenon accurately, the Powder class has been designed to
integrate the variation resulting from preferred orientation effects. For each com-
puted diffraction position and intensity, the XRDCalculator provides information
regarding the corresponding family of Miller planes. The variation process then
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involves randomly selecting a Miller plane and a texture factor and then calcu-
lating the degree of orientation alignment of various planes in the pattern with
this randomly chosen orientation. This process can lead to either amplification
or reduction in peak intensities, depending on their alignment with the selected
orientation. This functionality is implemented in the vary texture method of the
Powder class.

While the diffraction pattern calculator accurately determines the exact positions
of peaks in the pattern, the actual measured patterns yield information only at
specific measurement steps. For the Powder object, it is necessary to define the 2θ
range and step size during the initialization of an instance. Consequently, aligning
the computed peak positions with these measurement steps becomes imperative.
This alignment is achieved through a straightforward procedure involvingmapping
the computed diffraction angles to their nearest measurement steps.

In the final stage of the pattern simulation process, the calculated intensities are
transformed to resemble the broad profiles found in measured signals. This trans-
formation is achieved by convoluting the discrete intensity values with Gaussian
profiles of varying widths. The peak width in diffraction patterns is typically
characterized using the Scherrer equation (Equation 1.3), which relates it to the
grain size of the powder. In this approach, the parameters for the Gaussian profiles
are established by randomly selecting the grain sizes of the powder. The random
selection is performed by drawing from a uniform distribution, with a default
range of 10 to 100 nm. These sizes are then used to determine the corresponding
peak widths, which are further translated into the discrete Full Width at Half
Maximum (FWHM) of the peaks, taking into account the step size attribute of
the scans. To perform the convolution of the discrete signals with these profiles,
the SciPy function gaussian filter1d is integrated, which provides an optimized
implementation of the convolution operation.

Hence, thePowder object takes thewavelength, 2θ range, step size, and parameters
regarding the pattern variation as input and generates varied patterns for the
provided structure. Figure 5.3 provides a visual summary of the Powder class.
Here, the attributes of the object are highlighted in yellow, the methods in gray
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Figure 5.3: Simulation pipeline of Powder object in the python-powder-diffraction package.

(private) and blue (public), and the integration of the pymatgen functionality is
depicted in red. The object takes a CIF as input, and the method get signal enables
the unlimited simulation of varied patterns, which are subsequently saved in the
NumPy format npy to ensure optimal saving and loading procedure for subsequent
processing of the signals.

5.2.3 Noise Simulation

While the Powder class enables the generation of patterns with physics-informed
position shift, height variation, and diverse peak shapes, the simulated patterns
do not contain noise and baseline intensities that are typically found in measured
data, as explained in Section 1.3.3. However, to generate realistic XRD patterns, it
is mandatory to represent all artifacts present in the measured signals. Hence, the
package’s functionality must be extended to include such experimental artifacts
in the simulated patterns.

In contrast to the variations to each pattern, which must be calculated individually,
noise can be computed in bulk to optimize the data generation throughput. Thus, a
noise generation algorithm is implemented that takes a batch of simulated signals
as input and adds noise and background simultaneously for the different powder
diffraction patterns. To simplify the implementation, the NumPy library includes
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functionality to generate Gaussian noise for a given shape (e.g., 100 scans, 5000
data points each).

While noise is present in all measured scans, the level of noise, as described by
the signal-to-noise ratio (SNR) can vary greatly between measurements. Typi-
cally, the maximum intensity attributable to the noise is approximately 20 times
lower than the peak intensity of the highest diffraction peak [80]. The highest
intensity in measured scans can vary substantially, depending on the instrument
or acquisition times used, but simulated scans are typically scaled between 0 and
1 (see Section 3.2). Consequently, a straightforward approach is to draw random
values from a Gaussian distribution with matching mean and standard deviation
parameters that are subsequently added to the simulated patterns.

Hence, the implemented approach involves drawing random values from a Gaus-
sian distribution with a mean of 0.5 and a standard deviation of 0.11, which
ensures that 99.9% of the random values fall within the interval [0, 1]. Fur-
thermore, any drawn values exceeding these limits are clipped, but this has no
meaningful impact on the overall distribution of the random values. This approach
results in noise values within the interval [0, 1], so the subsequent step involves
scaling the noise according to the intended SNRs. For each scan, a unique noise
factor is determined within the range from zero to the highest acceptable level
of noise for simulated patterns. This factor is then multiplied with the generated
noise to achieve the desired noise level and the generated noise is added to the
simulated patterns. Hence, this approach guarantees the presence of unique noise
in terms of exact values and SNRs for each simulated pattern, while preventing
the occurrence of negative intensities.

Similarly, the background intensities can be simulated using the Chebyshev poly-
nomials functionality provided by NumPy. Therefore, noise is generated in bulk
for all simulated scans simultaneously, scaled, and added, together with the back-
ground, to the matrix of scans, which is magnitudes faster than looping over each
scan and generating noise individually.
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5.2.4 Package Utilization

While the Powder object and the noise simulation methods are elemental for
generating varied signals for a single material, generating diffraction patterns for
multiple phases is often necessary to create a comprehensive dataset. Consider the
simulation of patterns for 500 unique phases, each with 100 variations. Table 5.1
presents the recorded times to initialize the Powder from a CIF file and generate
100 varied patterns on the development systems. In this implementation, the con-
volutional operation of representing the broadened peak shapes is the bottleneck
of the signal generation approach. Hence, about 18.5 seconds are required to
simulate 100 signals for a single phase.

Accordingly, simulating the patterns for 500 phases results in a simulation time of
about 154 minutes. To enhance the throughput of this process, the data simulation
script employs the multiprocessing library of Python. This allows the simulation
task of distinct phases to be divided into separate processes distributed across the
available processing cores, optimizing the use of computational resources. Thus,
the same task can be performed in less than 20 minutes on a system with eight
cores, assumingminimal overhead when integrating themultiprocessingmodules.

Figure 5.4 provides a visual explanation of this procedure. Each core can select
a different structure using the provided implementation and generate multiple
variations through unique powder instances without affecting other computations.
Accordingly, the speedup of this parallel approach is related to the number of cores

Table 5.1: Approximate times to utilize the Powder class for simulation of varied diffraction patterns.

step time [s]

initialization
Powder instance

1.5

vary parameters 0.04
get signal 0.13

total (100 times) 18.5
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Figure 5.4: The data simulation approach is optimized by parallel utilization of the CPU cores on the
system.

in the system. Once signals have been generated for all structures, the training
data is saved in one large file in the npy format. Therefore, the python-powder-
diffraction package not only provides the required functionality for the simulation
of realistic powder patterns but also offers scripts to generate datasets rapidly on
a large scale.

5.3 Neural Network Benchmark

5.3.1 Package Overview

The application of neural networks necessitates a robust and efficient framework
that includes the implementation of the models’ functionality, including convo-
lutional layers. To this end, the most common libraries for deep learning are
available in Python: PyTorch and TensorFlow. Accordingly, in the context of this
thesis, neural networks have been implemented within the TensorFlow ecosys-
tem, which provides the optimized implementations of pre-defined layers, loss
functions, and various optimizers.

Nonetheless, exemplary data is necessary to train or evaluate the neural net-
works. Accordingly, a synthetic dataset to evaluate distinct network configu-
rations has been introduced in Chapter 4, which has been implemented in the
spectra-network-benchmark framework and is available in the following repos-
itory: https://github.com/jschuetzke/spectra-network-benchmark.
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Figure 5.5: The structure of the spectra-network-benchmark framework. As the core component,
synthetic datasets can be generated using the generate dataset script. Based on this
dataset, different neural network models can be evaluated using the benchmark script,
which provides the metrics to quantify the performance of the models.

Figure 5.5 provides an overview of this framework, which includes scripts and
methods for simulating the patterns and several model implementations, with the
user-executable scripts highlighted in blue. Currently, implementations of neural
networks from previous studies, as well as the proposed architecture, are included
in the spectra-network-benchmark framework. Thus, the framework is partic-
ularly useful for benchmarking the performance of novel architectures against
established models.

5.3.2 The Synthetic Spectra Benchmark Framework

While the simulation of diffraction patterns or spectra necessitates the integration
of a simulation tool, arbitrary patterns can be generated more rapidly, as the
placement and height of peaks are not related to the physical properties of a
structure. Therefore, it is possible to define a unique pattern unrelated to a
structure or data evaluation domain based on the positions pos and heights his
of its peaks. Here, posi and hisi describe the position and height of the i-th
peak in the pattern with npeaks total peaks. Furthermore, defining the length l of
the signals is necessary. Subsequently, generating nsignals varied patterns rapidly
using Algorithm 2 is possible.

The discrete peak information is convolved with different Gaussian profiles (G)
to generate signals with varying FWHMs. Similar to the XRD pattern simulation
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Algorithm 2 Generation of varied patterns for artificial spectra classes.
Require: l ▷ signal length
Require: nsignals ▷ number of samples to generate
Require: pos, his ▷ positions and heights of the peaks
Require: posshift, hisshift ▷ acceptable shifts
1: for s = 1, 2, . . . , nsignals do
2: for i = 1, 2, . . . , npeaks do
3: posi ← posi +Random(−posshift, posshift)
4: hisi ← hisi +Random(−hishift, hishift)
5: end for
6: signals ← pos, his
7: signals ← samples ∗G ▷ convolve kernel
8: end for

approach, the SciPy function gaussian_filter1d provides an optimized implemen-
tation of this convolution operation. Therefore, the properties of the generated
peaks can be directly manipulated by explicitly setting a range of acceptable
FWHM values that are used to produce the broad peak shapes.

Generating samples that act as negative examples is essential to train and evaluate
neural network models. Thus, additional patterns can be generated through the
simulation of different fingerprints, with peak positions and heights contradicting
the properties of the pattern to identify. In this case, Algorithm 2 can be utilized
without modifications by providing alternative peak positions pos and heights
his. Alternatively, it is possible to generate modifications of the original pattern
by the addition of supplementary peaks.

The approach of generating a synthetic dataset that contains positive and neg-
ative examples is implemented in the generate_dataset.py script. Furthermore,
this repository provides several implementations of network architectures in the
model_implementations directory, including the models developed by Szymanski
et al. [43] and Lee et al. [16]. Using the benchmark.py script, those models can
be trained and evaluated on the synthetic signal samples.
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5.3.3 Framework Utilization

Concurrently, the spectra-network-benchmark framework contains implementa-
tions for some of the established neural network architectures. In case, further
neural networks are developed, those can be added to the framework. To do so, a
new file is added to the model_implementations directory, and the model’s name
is inserted into the benchmark.py script. Then, the performance of the model and
the count of the model’s parameters is determined. The training progression and
the metrics of the models are tracked on the weights & biases platform. On the
https://wandb.ai/jschuetzke/model_selection project page, the logs of
the different network training procedures are available.

It is also possible to evaluate themodels for the detection of alternative fingerprints.
Here, signals with a length of 5000 data points were used and the target fingerprint
was defined with two peaks at positions 4290 and 4700 and relative heights of
74.4% and 100%. A variation of 100 data points (positions) and 10% peak height
(absolute) was also included, while ensuring that all peaks were still detectable.
Thus, one can leverage the spectra-network-benchmark framework to generate
another data set with alternative values and benchmark the models against these
synthetic signals.

5.4 Crystal Structure Identification Framework

5.4.1 Package Overview

The overarching objective of this thesis extends beyond the analysis of synthetic
patterns using neural networks; it aims to integrate these networks into material
discovery systems, thereby enabling the automatic identification of novelmaterials
in diverse datasets. A comprehensive framework has been developed to pursue
this goal, as presented in Chapter 2. This framework contains several methods
tailored for several critical stages: the generation of training data, the design and
training of neural networkmodels, and the analysis ofmeasured data. Accordingly,
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the crystal-id framework provides the technical implementation of the presented
methods and allows for straightforward integration of the framework into existing
material discovery systems. The crystal-id framework is available in a public
GitHub repository:
https://github.com/jschuetzke/crystal-id.

Figure 5.6 provides an overview of the crystal-id framework. As its core func-
tionality, the framework enables the training of a neural network model to identify
a target material using the user-executable scripts, which are highlighted in blue.
To accomplish this, only a CIF description of the target material is required and
the user potentially has to modify the parameters of a configuration file. After
training, the model is available to rapidly analyze measured scans, providing the
results in both human-readable and machine-readable formats. Accordingly, Sec-
tion 5.4.2 explains the scripts of the framework inmore detail. Then, Section 5.4.3
describes the procedure of integrating the framework into existing material dis-
covery systems.

5.4.2 The Crystal Identification Framework

Generally, the framework can be separated into three fundamental scripts: the
training data generation, the model training, and the analysis of measured data.
Accordingly, the crystal-id framework contains three Python scripts that incorpo-
rate this functionality:

CIF generate
training 

dataconfig

crystal-id

apply
model

model

results

dataset trained
model

train

set of
scans

Sim.-tool
wrapper

xrd

Figure 5.6: The structure of the crystal-id framework. The generate training data and train scripts
produce a trained neural network model that can be used for the analysis of measured
scans using the apply model function.
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generate training data

The training data generation script is used to create a comprehensive dataset
of simulated scans that can be used to fit the parameters of the neural network
model. Given that this thesis mainly focuses on analyzing XRD patterns from
material discovery experiments, the methodologies developed for the python-
powder-diffraction package are employed for this data generation. Hence, for the
provided description of a material structure, the script primarily generates varied
diffraction patterns that represent the variations of the characteristic fingerprint
concerning peak positions, intensities, and shapes. However, the python-powder-
diffraction library does not include functionality to represent the experimental
outcomes that failed to produce the target material. To address this, the data gen-
eration script extends the functionality of the Powder class to include simulations
of alternative structure configurations, multi-compound mixtures, and amorphous
scans according to the methodology presented in Section 3.4.

To initiate the generation of training data, a description of the target structure in
CIF format is required. In addition, it is crucial to specify the elemental proper-
ties of the signals to be simulated in the config.yml file, such as the measurement
range, step size, and threshold for the acceptance of impurity phases alongside the
target material. An exemplary config.yml file can be found in the Appendix. By
default, the data generation script is programmed to produce a dataset comprising
1000 simulated signals. Out of these, 500 signals are positive examples displaying
the fingerprint of the target material, while the remaining 500 constitute negative
examples. The composition of these negative examples is carefully structured:
10% are amorphous patterns, 20% represent alternative structures, and the re-
maining 70% are a mix of the target fingerprint with impurities. This distribution
of samples has been empirically found to yield the most effective results for the
training process.

Additionally, the configuration file offers the flexibility to modify the default
properties of the simulation. For instance, users can adjust the range of FWHM
values to generate patterns with broader peaks. The extent of variation in lattice
parameters and peak heights is also customizable, allowing for the generation of
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fingerprints that are even more different from the CIF structure. Furthermore, the
file includes parameters to define the level of noise and the ratio of background
intensities in the simulated scans. However, it is important to note that the default
values have been carefully defined based on the properties of measured scans from
the RRUFF database, and in most cases, these defaults are sufficient and do not
require alteration.

train

The training of the developed neural network model, as described in Section 4.2.5,
is enabled by the train.py script. This script leverages the TensorFlow library
for the implementation of the network, building on optimized code instead of
implementing the functionality of the deep learning model from scratch. A key
feature of this model implementation is its ability to take the length of the signal
as input, allowing for the initialization of a model with parameters tailored to
the dataset at hand. Furthermore, the configuration of the model can be easily
modified by providing alternative arguments during its initialization. For instance,
adjustments such as adding more filters, increasing kernel sizes, or reducing the
number of layers can be achieved by supplying different values to the "filters",
"kernel", or "layers" arguments, respectively. However, it is noteworthy that the
default parameters match the model configuration as described and are, therefore,
optimized.

Initially, the training script imports training and validation datasets and applies a
minimum-maximum scaling to the synthetic signals. This ensures that the input
data is appropriately scaled for neural network processing, a standard practice
in the training of models for analyzing XRD patterns or Raman spectra. To
train the models, an Adam optimizer with a learning rate of 1 · 10−4 and default
parameters β1 = 0.9, β2 = 0.999, and ϵ = 1 · 10−7, is utilized, which is also
provided by the TensorFlow library. During training, the training samples are
used for adapting the model’s parameters and the validation loss is observed to
halt the training process once a plateau in loss minimization is observed. This
strategy is crucial in preventing overfitting on the training data, thereby enhancing
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the model’s ability to generalize effectively to new, unseen samples. Finally, the
trained model is saved, so it can later be loaded into separate data analysis scripts.

apply model

The final step of the crystal-id framework involves the application of the trained
models to the measured data. This is facilitated by the apply_model.py script,
which has been designed for the automatic categorization of a list of measured
signals. To execute the data analysis procedure, the script requires two key inputs:
the specification of the model and the directory containing the scans. Scans
are typically saved in individual text files, e.g., in the "xyd" or "txt" format,
with columns specifying the measurement steps and detected intensity counts.
Upon running the script with these inputs, it systematically processes each scan,
applying the trained neural network model to determine the categorization of
each diffraction pattern. The output of this process is encapsulated into a single
text file, results.csv, where each diffraction pattern is labeled either with a "1",
indicating a match with the target structure, or with a "0" in cases where it does
not match. This streamlined approach enables efficient and accurate classification
of measured data, offering a valuable tool for researchers in the field of material
discovery.

5.4.3 Framework Utilization

To effectively utilize the crystal-id framework, only few steps are necessary. The
framework is readily accessible for download from Github under the following
URL:
https://github.com/jschuetzke/crystal-id.

Once obtained, the next step is to install the required Python packages, such as
TensorFlow and NumPy, which are listed in the requirements.txt file. The initial
operational step involves selecting or formulating a CIF that accurately describes
the target crystal structure. Depending on the experiments, this structure can either
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be representative of a stable region within the compositional space being explored
in experiments or is obtained from a database that provides computed material
structures. Additionally, users need to adjust the parameters in the config.yml file
to align with their specific measurement configuration. This preparatory process
ensures that the framework is precisely configured to analyze the materials and
experiments of interest, laying the foundation for accurate and effective analysis.

Once the preliminary setup is completed, the user can proceed with running
the Python scripts that form the core of the crystal-id framework, as concep-
tualized in Figure 5.6. The process begins with the execution of the gener-
ate_training_data.py script. Here, the user specifies the name of the material
system and the corresponding CIF file as input arguments when running the
script. Next, the model training script train.py is executed, where the only re-
quirement is to specify the name of the material system for which the exemplary
signals have been generated in the first step. Finally, the application of the trained
model is carried out using the application script apply_model.py. In this final
step, the user inputs the name of the material system and the directory containing
the measurement files. This sequential execution of scripts ensures a streamlined
workflow from data generation and model training to the practical application of
the model on real-world data.

The outcomes of the automated analysis conducted by the crystal-id framework are
conveniently compiled in a results.csv file, enabling straightforward interpretation
of the results. The provision of results in a machine-readable format opens up
possibilities for integrating the model’s predictions into an iterative experimental
approach. This feature of the framework makes it particularly conducive to simple
integration into existing material discovery systems, whether they operate on a
semi-automatic or fully automatic basis. Such integration not only streamlines the
experimental workflow but also enhances the efficiency of the material discovery
process by leveraging the predictive capabilities of the model.

The crystal-id framework is also designed with future extensibility in mind, par-
ticularly for the integration of tools that simulate Raman spectra. Currently,
the simulation of XRD scans is facilitated by the XRDCalculator class from
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the pymatgen library, which requires inputs such as material structure, radiation
wavelength, and measurement range to predict the corresponding diffraction peak
positions and intensities. This functionality is implemented in the "wrapper" di-
rectory of the crystal-id repository, where the "xrd.py" simulation tool is currently
the only available module. Thus, the framework’s modular design allows for
the potential addition of a Raman simulation module under "raman.py". Such a
module would similarly take the material structure and measurement range inputs
to produce a list of peak positions and intensities for Raman spectra. Thanks to
this modular design, the crystal-id framework is ready for seamless expansion as
soon as the requisite tools for Raman spectrum simulation become available.
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6.1 Overview

In the previous chapters, a comprehensive framework for the automated identifi-
cation of novel materials through their characteristic fingerprints in experimental
data has been presented. The application of this framework aims to address the
bottleneck of manual data analysis that currently limits the efficiency of various
high-throughput material discovery systems. Therefore, this chapter is dedicated
to presenting the application of the novel framework on datasets from various ma-
terial discovery experiments. Depending on the characterization technique and
the measurement modalities employed to acquire the signals, the fingerprints of
the target material can vary greatly. In addition, a wide variety of synthesis out-
comes can occur in the experiments, resulting in a broad spectrum of distinctive
patterns for analysis. Hence, the framework is applied to three distinct experi-
mental datasets, and its performance, in terms of accuracy and time efficiency, is
compared to that of a manual analysis.

Section 6.2 describes the analysis of high entropy oxidematerials, with the primary
objective of identifying compositions that crystallize into the fluorite structure.
Following this, Section 6.3 focuses on the analysis of experimental data related
to the formation of the disordered rocksalt phase. In this section, the framework
is particularly instrumental in identifying scans that exhibit the presence of target
materials amidst impurities, a necessity due to the inability to synthesize a pure
sample in the study. Section 6.4 then presents the analysis of experimental data
aimed at producing Yttrium Barium Copper Oxide, which is an established super-
conducting material with many use cases. Nonetheless, the experimental series
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tests the synthesis process of this material with respect to precursors and synthesis
temperature with the aim of increasing the yield of the target structure. Accord-
ingly, most of the scans in this dataset do not contain the intended material or it is
only present next to impurity phases. Finally, Section 6.5 critically evaluates the
accuracy of the predictions made by the framework. It also presents a comparative
analysis between the time required for automated analysis and traditional manual
phase identification, highlighting the efficiency and effectiveness of the automated
approach in handling complex material analysis.

6.2 Identification of Fluorite Structures

6.2.1 Description of Dataset

In the study conducted by Velasco et al. [53], a comprehensive investigation
was carried out on a multi-compound oxide material system with end members
lanthanum (La), cerium (Ce), yttrium (Y), praseodymium (Pr), and samarium
(Sm), which form the edges of the multi-dimensionional composition space.
This system is capable of forming a variety of phases, as documented in sev-
eral studies [90, 91]. Notably, the end members CeO2 and PrO2 are known to
form a fluorite structure, while Sm2O3, Y2O3, and La2O3 typically crystallize in
the bixbyite structure [90], with these formations well-documented in the ICSD
database. However, experimental analyses of many combinations of these mem-
bers are still limited. Concurrently, the Materials Project (MP) database includes
entries such as CePrO4, identified as "mp-1226481". These entries represent
computationally predicted structures, yet they have not been confirmed as stable
and exhibit structural characteristics distinct from those previously reported.

Accordingly, the study aimed to determine the phases formed from different com-
positions of the endmembers in thematerial system, which have not been reported
in previous studies. Correspondingly, Figure 6.1 presents a three-dimensional
phase diagram featuring four of these end members, intentionally excluding Y2O3

to avoid the complexity of visualizing an additional dimension. The phase diagram
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illustrates which compositions are reported to form a fluorite (green triangles) or
bixbyite (blue pentagons) structure, as well as the additional compositions (gray
circles) examined in the study. In total, Velasco et al. synthesized 106 samples
with distinct compositions (pure end members plus mixtures).

To identify the crystalline phases that were formed by each composition, all syn-
thesized samples were analyzed using an XRD instrument. Accordingly, analysis
of the XRD scans allowed Velasco et al. to determine the phases for the distinct
compositions. This dataset, which has been made available by the authors of the
study, also presents an interesting case study for the application of the framework.
The objective is to identify the structure that has formed during synthesis for the
various compositions tested in the dataset. Through manual analysis of the XRD
patterns, the baseline for human performance can be established in the context
of this thesis. The novel framework is then applied to automatically analyze the
scans and the predictions of the integrated neural network model are compared to
the results of the manual analysis. While the original study determined the exact
phase or mixture constitution for each composition, the framework is applied
here to demonstrate the rapid identification of samples consistent with the fluorite
structure.

CeO2

La2O3

Sm2O3

PrO2

Flourite
Bixbyite
Investigated
compositions

Figure 6.1: Quaternary phase diagram of the (Ce,Pr,Y,Sm,La)O2 material system (excluding Y2O3).
The gray circles indicate the compositions that were specifically examined in the study.
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6.2.2 Manual Analysis

Figure 6.2 displays selected XRD patterns from the acquired dataset. Specifi-
cally, Figure 6.2a showcases the measured scans (red and purple) for the samples
containing the pure CeO2 and PrO2 end members. These phases are reported
to form a fluorite crystalline structure [90], so the characteristic fingerprint for
this phase is simultaneously presented as gray bars. The samples in this study
were scanned using Ga-jet radiation, featuring a Kβ wavelength of 1.2079 Å, so
the exact positions and heights of the diffraction peaks were simulated using the
pymatgen library for ICSD entry 24887 and a matching wavelength. Accordingly,
the highly symmetric structure is distinctively characterized by the presence of
only five peaks at positions 24, 26, 37, 44, and 45 degrees 2θ.

The measured XRD patterns of the CeO2 and PrO2 samples align more or less
precisely with the positions of the simulated diffraction peaks. However, there
are minor deviations from the simulated pattern, most noticeable in the peaks
occurring at higher angles. This is due to the differences in content and proportions
of the unit cells of the distinct structures. For instance, the ICSD entries for CeO2

and PrO2 show unit cell edge lengths of 5.47 and 5.73 Å, respectively. Moreover,
these elements exhibit slight variations in electron density, resulting in minimally
different scattering factors. As a result, while the diffraction patterns capture the
characteristic features of the fluorite structure, the peak positions and intensities
can vary greatly depending on the composition, which complicates the analysis
of the measured scans.

Furthermore, Figure 6.2b illustrates the measured scans (blue, orange, and green)
for the samples containing the remaining end members of the five-dimensional
composition space. In this study, La(OH)3 was used instead of La2O3, but this has
no meaningful effect on the formation of the intermediate compositions, such as
LaSmO3. Sm2O3 and Y2O3 are reported to crystallize in the bixbyite phase [90],
so the fingerprint of this phase is additionally displayed as gray bars (simulated for
ICSD entry 8493). The bixbyite structure represents a lower symmetry version
of the fluorite structure, so in addition to the five characteristic peaks observed in
Figure 6.2a, there are more unique distances of planes in the bixbyite structure that
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(a) XRD patterns for the samples with compositions
CeO2 and PrO2 in comparison to the simulated
pattern for an exemplary fluorite structure (ICSD
entry 24887).
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(b) XRD patterns for the samples with compositions
Sm2O3, Y2O3, and La(OH)3 in comparison to
the simulated pattern for an exemplary bixbyite
structure (ICSD entry 8493).

Figure 6.2: XRD patterns for the samples that contain the pure end members of the phases that
constitute the multi-component composition space.

result in diffraction peaks. Although there are minor differences between the peak
positions in the measured and simulated patterns, manual analysis of the XRD
patterns attributed to the Sm2O3 and Y2O3 samples allows the conclusion that
these samples formed the bixbyite structure. In contrast, the sample containing
the La(OH)3 material has a diffraction pattern that is significantly different from
the bixbyite fingerprint, so it can be concluded that this sample is not consistent
with either the bixbyite or the fluorite structure.

To accurately determine the crystalline phases present in each sample, the XRD
dataset underwent a thorough manual examination using the QualX software [39]
and entries from the ICSD. Accordingly, the exact structure of the samples was
successfully identified. For example, the sample containing the end member
La(OH)3 is identified as having a fingerprint similar to an apatite structure, with a
hexagonal crystal system and space group P63/m. In total, 88 of the 106 samples
were conclusively determined to contain the fluorite structure without impurities,
while others showed a fingerprint similar to the bixbyite structure or even patterns
that allowed the sample to be identified as multiphase. This manual analysis of
the 106 samples was completed in approximately 90 minutes.
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In addition to the determination of the underlying phases for each sample, the
manual analysis revealed that there is a substantial variation in the properties of
the scans. Figure 6.3 shows XRD patterns with varying peak widths or noise
levels that highlight this variety of properties in the dataset. For instance, the
scan of the pure CeO2 sample (depicted in red) is characterized by peaks with an
FWHM of around 20. In contrast, the Y0.33La0.33Ce0.33O2 sample, depicted in
purple in Figure 6.3a, displays broad diffraction peaks with an FWHM of 80.

Additionally, the high level of noise in some signals (low SNR) complicates
the manual analysis of the scans. In some cases where a bixbyite structure was
formed, the diffraction peaks necessary for drawing this conclusion are barely rec-
ognizable, as displayed in Figure 6.3b. This is exemplified in the XRD scans of
Sm0.5Pr0.5O2 and Y0.5Pr0.5O2 compositions, shown in cyan and dark red, where
subtle intensity elevations between 30 to 35 degrees hint at additional diffrac-
tion peaks. Accordingly, the manual analysis concluded that those compositions
form a bixbyite structure. However, in scans with a lower SNR, such as that of
Y0.33La0.33Ce0.33O2, these minor diffraction peaks cannot be conclusively iden-
tified due to the high level of noise, indicating that the measurement configuration
in some cases does not yield sufficiently high-quality data for clear analysis. In
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(a) XRD patterns with dissimilar FWHM characteris-
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In
te

n
si

ty

Bragg angle, 2θ

10 20 30 40 50

SmPrO4, SNR 33
YPrO4, SNR 28
Bixbyite

YLaCeO6, SNR 14

(b) XRD patterns for intermediary compositions of
the phase diagram where few additional peaks are
barely noticeable.

Figure 6.3: Selected XRD patterns from the multi-component dataset that highlight the variety of
signal properties.
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this particular case, no additional diffraction peak indicative of the bixbyite struc-
ture could be detected above the noise level, so the Y0.33La0.33Ce0.33O2 sample
was identified as consistent with the fluorite structure.

Notably, Velasco et al. also reported the crystal structure determined from the
analysis of the XRD patterns in their study. The results of the manual analysis
performed in the context of this thesis are mostly consistent with the results
reported by the authors of the study. However, deviations are observed for a small
subset of samples (< 5), where patterns are categorized as bixbyite instead of
fluorite, or vice versa. These discrepancies primarily arise due to low SNRs in the
respective signals, where the elevated noise levels potentially obscure additional
diffraction peaks. Thus, the results of the manual analysis conducted in this thesis
are assumed to be correct in the following sections.

6.2.3 Application of the Novel Framework

As a comparison to the manual analysis, the acquired XRD patterns are also
analyzed using the novel framework. Due to the universal design of the framework,
it can be applied for the scans of the different compositions that explore the high-
dimensional composition space without requiring modifications. The automated
approach is designed to identify those samples with a fingerprint that matches a
target phase. For this specific dataset, the fluorite structure has been identified as
the target phase in the context of this thesis. Thus, the goal is to identify the same
88 samples that were previously classified as fluorite through manual analysis
while categorizing the remaining samples as not conforming to fluorite.

The application of the framework requires two essential components: a CIF of the
target structure and a definition ofwhether the presence of impurities is acceptable.
In this specific case, the process was straightforward: a CIF file was sourced from
the ICSD entry that represents the fluorite structure (code 24887). Given that the
presence of additional diffraction peaks could indicate a structure differing from
the target phase, simulated patterns were generated that aligned precisely with the
characteristic fingerprint of the fluorite structure. Any deviation from this pattern
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indicates the presence of impurities or alternative structures, e.g., bixbyite, so the
dataset has to represent this information accurately to enable the training of a
robust neural network model.

Generally, the framework allows for generating synthetic diffraction patterns,
which have identical measurement modalities (scanning range, step width) as the
measured scans. This approach ensures that the neural network, once trained,
can be directly applied to the measured data. The measurement range for the
acquired scans spanned from 10 to 50 degrees 2θ with a step width of 0.015◦∆2θ.
However, the presence of broad diffraction peaks is a significant challenge in this
particular dataset. The neural network was designed with signal characteristics in
mind that match those found in most measured signals, which includes peaks with
FWHMs in the range between 5 and 60. Yet, the dataset contains signals with
peak shapes that are even broader, as shown in Figure 6.3. To effectively address
this, a decision was made to theoretically increase the step size for the models to
0.03◦∆2θ, which effectively halves the width of all peaks.

Accordingly, training data was simulated in the range from 10 to 50 degrees 2θ
for the original Ga-jet radiation wavelength, conserving the original measurement
range, with a step width of 0.03◦∆2θ, resulting in 1334 data points. This ad-
justment allowed the neural network model to handle the broad diffraction peaks
characteristic of this data better. Additionally, it was crucial to simulate scans with
a high level of artificial noise to depict those scans with a low SNR accurately.
This step was essential to ensure that the model was well-trained to recognize pat-
terns even in data where the signal quality was impaired, thereby enhancing the
robustness and applicability of the model under varying data quality conditions.

The entire process of simulating training data and training themodelwas efficiently
completed in approximately five minutes. Analysis of the 106 samples was
performed within less than a second by the trained model. Upon comparison with
manual analysis techniques, it was found that the model’s predictions aligned
with the manual evaluations for 104 out of the 106 samples, demonstrating a
remarkable accuracy of approximately 98%.
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Notably, scans with low-intensity, additional diffraction peaks, and high SNR,
similar to the grey and pink patterns shown in Figure 6.2b, led to misclassifica-
tions by themodel. This discrepancymay highlight a limitation in the optimization
approach: the model must balance between compensating for high noise levels
in some scans and detecting minor diffraction peaks of similar magnitude in
others. However, the challenge presented by low SNR scans also impacted the
manual evaluation, suggesting that the selection of acquisition parameters should
be carefully optimized to ensure high SNR in all measured scans. Such an ap-
proach would allow for more definitive conclusions to be drawn from the analysis,
enhancing both manual and automated evaluations’ reliability and accuracy.

Based on the classification of the samples with distinct compositions, the neu-
ral network model has simplified the creation of an insightful phase diagram,
showcased in Figure 6.4. This diagram specifically illustrates the ternary phase
system involving CeO2, PrO2, and La2O3. Here, the compositions that have been
synthesized as part of the original study are highlighted by the symbols in the
diagram that also signify the model’s predictions. Notably, the analysis of the
samples reveals that the sample with composition Ce0.5Pr0.5O2 exhibits the fluo-
rite structure. Similarly, it was found that a combination of all three end members
(Ce0.33Pr0.33La0.33O2) also resulted in the formation of the fluorite structure.
However, compositions with 50% La2O3 displayed XRD patterns that deviated
from the typical fluorite structure pattern.

The phase diagram was manually compiled using the model’s predictions for
the XRD patterns of the samples with distinct compositions. Consequently, the
model only evaluated these specific positions within the diagram. To complete
the phase diagram, there are two approaches: either the phase boundaries can
be approximated based on these points, or additional samples are generated and
analyzed to fill in the gaps in the diagram. Upon obtaining XRD patterns for these
additional samples, the same neural network model can be applied without the
need for retraining, rapidly providing the corresponding structures for the distinct
samples. This feature underscores the utility of the model in experiments aimed
at accurately determining phase boundaries in complex material systems.
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Figure 6.4: Partial phase diagram of the multi-component material system, as generated by the clas-
sification of the neural network model. The green triangles indicate the formation of the
fluorite phase, while the red pentagons delineate areas where the fluorite phase is not
formed exclusively.

6.3 Identification of Disordered Rocksalt
Structures

6.3.1 Description of Dataset

In recent years, the interest in disordered rock salt (DRX) structures has surged,
particularly due to their inherent cationic disorder and distinct electrochemical
properties, making them highly sought-after for battery applications [92]. DRX
structures emerge as potent cathodes with high energy densities that have the po-
tential to elevate contemporary battery technology. These materials are typically
represented as LiMO2, where "M" denotes various transition metal species, such
as iron, nickel, or titanium. As the nomenclature suggests, these compounds adopt
a rock salt-like configuration, as introduced in Figure 1.8. The term disorder refers
to the intermixing of lithium and transition metal in certain positions within the
lattice [92].

Figure 6.5 presents the lattices of two distinct rock salt structures. In this represen-
tation, black or gray circles symbolize lithium and transition metal sites, whereas
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white circles correspond to oxygen positions within the lattice. The structure in
Figure 6.5a displays the ordered form, characterized by alternating layers of transi-
tion metals and lithium. Conversely, Figure 6.5b illustrates the disordered variant
where lithium and transition metal sites are interspersed uniformly throughout the
lattice. Circles featuring mixed shades indicate sites that can be occupied either
by lithium or a transition metal atom, with occupation probabilities aligning with
the specific DRX composition ratio [93].

Transition metals, a diverse group of elements predominantly located in the d-
block of the periodic table, offer a vast array of candidates that can be incorporated
into the DRX structure. Each of these metals possesses unique electrochemical
properties that can influence the overall performance of the DRX structure when
used as a cathode in batteries. Given the abundance and variety of transition met-
als, combined with the possibility of mixing multiple metals in varying ratios, the
potential compositional combinations within the DRX framework become vast.
Consequently, plenty of compositions need to be synthesized and thoroughly

(a) Layered structure with a
regular order.

(b) Disordered rocksalt
(DRX) structure with
equivalent sites.

Figure 6.5: Distinction between ordered and disordered rocksalt structures that are commonly used as
battery materials. The white circles represent oxygen sites, and the black and gray circles
depict lithium and transition metal sites. Adapted from [93].
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evaluated to comprehensively understand their electrochemical properties, ensur-
ing the optimal selection and design of cathode materials for advanced battery
applications [92].

A noteworthy avenue of research has been the fluorination of DRX structures. By
introducingfluoride ions in place of someoxygen sites, one can further enhance the
electrochemical properties of these materials. This fluorination not only modifies
the lattice energetics but also impacts the electronic and ionic conductivity of the
structure, leading to potentially improved battery performance [94]. However,
only small amounts of fluorite substitutions can be achieved using conventional
synthesis routes [95].

To address this limitation, Szymanski et al. [61] conducted a comprehensive
study to explore different precursor sets and experimental conditions that are
beneficial to the formation of the highly fluorinated DRX phase. In particular, the
Li1.2Mn0.4Ti0.4O1.6F0.4 phase has been identified based, which was pinpointed
based on predictions from a simulation tool. Most notably, the study involved
the use of an in situ instrument to analyze the formation of the DRX phase while
performing the synthesis. These advanced tools enable the continuous acquisition
of powder diffraction patterns while simultaneously monitoring the experimental
conditions, such as temperature. While such advanced instrumentation enables
in-depth analysis of the phase formation processes during synthesis, this approach
also results in the generation of large datasets containing dozens of patterns.

Accordingly, the primary objective of the data analysis procedure is to accurately
identify those diffraction patterns that exhibit the characteristic features of the
DRX phase. In total, 272 powder diffraction patterns have been acquired in the
context of the in situ analysis. Therefore, this large-scale dataset, which has
been provided by the authors of the study, offers another insightful case study for
applying the novel material identification framework.

Nevertheless, Szymanski et al. noted that their experiments did not yield the
successful synthesis of the target material without the presence of impurities.
Consequently, the dataset proves beneficial in illustrating an additional feature of
the novel framework: its adaptability. The automatic data analysis approach is
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also proficient in recognizing the target structure even when additional materials
are present. Accordingly, the following sections present the manual analysis of
the dataset as well as the application of the automated framework, featuring a
systematic comparison between the results obtained from both approaches.

6.3.2 Manual Analysis

Throughout the synthesis process, the XRD patterns measured show substantial
variations, as depicted in Figure 6.6a. The patterns captured at the start of
the synthesis predominantly reflect the precursor materials, including LiMnO2,
Li2TiO3, LiF, MnF2, and C [61]. This is evident in the blue XRD pattern in
Figure 6.6a, which displays a multitude of diffraction peaks attributable to the
various phases present in the mixture. As the temperature increases during the
synthesis, these precursors undergo reactions, leading to the formation of new
phases. This transition is reflected by the reduction in the number of peaks in
the green plot as compared to the initial XRD scan (in blue). As the synthesis
progresses, the number of peaks continues to diminish.

Ultimately, the authors concluded that only the DRX phase is prominent in the
synthesized sample, alongside the MnO impurity phase. Figure 6.6b illustrates
the final XRD pattern obtained in the study, alongside the simulated positions and
heights of the diffraction peaks for the MnO and DRX phases (depicted in blue
and gray, respectively). While both phases share a similar rock salt-like lattice
structure, they differ in their lattice parameters. The larger unit cell of the DRX
phase causes the corresponding diffraction peaks to appear at higher angles 2θ in
the pattern. As a result, the peaks at 36, 42, and 61 degrees 2θ can be attributed to
the DRX phase, while those at 35, 40, and 58 degrees are indicative of the MnO
phase.

While the MnO phase is well documented and represented in crystallographic
databases, the DRX phase has only been identified through simulation tools.
Consequently, conventional methods for analyzing the acquired patterns are not
applicable without further information to characterize the DRX sample. To
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(a) Selected DRX pattern from the dataset. The arrow
indicates the progression of the patterns with respect
to the acquisition time.
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(b) Comparison of measured diffraction pattern with
theoretical peak positions and intensities of the
MnO and DRX phases. The simulated patterns were
simulated using pymatgen [76] based on an MP
entry of MnO (mp-19006) and a cif of the DRX
structure provided by Szymanski et al.

Figure 6.6: Progression of the XRD patterns and temperature in the analyzed DRX dataset.

showcase the distinctive XRD pattern of this unique material, the description of
the structure has been obtained from the authors of the study which enabled the
simulation of the corresponding diffraction pattern.

Szymanski et al. included a detailed analysis of the dataset in their study, par-
ticularly focusing on the weight percentages of the various phases present in the
samples Notably, the authors did not explicitly specify the time required for the
manual analysis. However, despite providing detailed phase information, they did
not establish a clear criterion for defining a "successful" synthesis outcome. In
all measured XRD patterns, the DRX phase was consistently identified alongside
impurities, leaving the term "successful" open to interpretation. Nonetheless,
the dataset is considered here as a means to demonstrate the automated analysis
performed by the novel framework, which provides a binary classification.

Thus, an arbitrary threshold has to be introduced in the context of this thesis to clas-
sify the dataset into "failed" and "successful" results. A straightforward approach
to accomplish this is to consider the weight percentages reported by the authors.
Consequently, the novel framework can be applied to the dataset, instructed to
identify "successful" synthesis outcomes based on the identical definition. This
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6.3 Identification of Disordered Rocksalt Structures

approach enables a direct comparison between the model’s predictions and the
results derived from manual analysis.

Figure 6.7a displays three scans from the dataset corresponding to measurement
numbers 130, 150, and 170. In the case of scan number 130, the MnO impurity
phase shows a peak at angel 40◦ 2θ of nearly the same height as the highest peak
of the DRX phase. As a result, the manual analysis determined that the MnO
and DRX phases are present with approximately the same fractions (wpMnO ≃
wpDRX). In subsequent measurements, the intensity values of peaks linked to
the MnO phase decrease, signaling a heightened prominence of the DRX phase.
Consequently, it has been determined that the weight percentage of the MnO
phase in measurement 150 is approximately two-thirds that of the DRX phase
(wpMnO ≃ 0.65 · wpDRX). This trend persists, with the MnO phase maintaining
a weight percentage of 40% in measurement 170 (wpMnO ≃ 0.4 · wpDRX).

As the primary objective of the study involves the synthesis of the DRX phase,
a "successful" outcome should be characterized by instances where additional
phases represent a minor fraction of the weight percentage compared to the pri-
mary phase. Therefore, the decision was made to establish an arbitrary threshold
of (wpMnO ≤ 0.4 ·wpDRX) to define the "successful" synthesis result. As reported
by Szymanski et al., the specified criterion is satisfied for all scans beginning
from number 170. For all scans later than number 170, the synthesis temperature
was further increased, as shown in Figure 6.7b, resulting in diminishing weight
percentages of the MnO phase [61]. Accordingly, the automated analysis should
identify all scans numbered 170 or higher as aligning with the target material (plus
acceptable impurities), while the preceding scans should be classified as "failed"
synthesis outcomes, which is highlighted by the line in Figure 6.7b.

6.3.3 Application of the Novel Framework

Once the baseline for manual analysis of the dataset has been established (thresh-
old 0.4), the novel framework is applied for automated analysis of the same XRD
patterns. As described earlier, two essential components are required to apply the
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(a) As the synthesis progresses, the DRX phase be-
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(b) Temperature progression during the synthesis. The
previously defined cut-off at measurement number
170 is highlighted by the gray line.

Figure 6.7: Identification of patterns that contain DRX as the most prominent phase.

novel data analysis framework: a CIF of the target structure and a definition of
whether the presence of impurities is acceptable. For the present dataset, the tar-
get material has been identified through computational tools and is not available
from crystallographic databases. In this case, a CIF can typically be acquired
from repositories like the Open QuantumMaterials Database (OQMD) or the MP
database. Here, the CIF has been identified from the original authors of the study
who performed the simulations using custom ab initio software [61].

The XRD signals in the dataset show the diffraction patterns in the range between
10 and 70 degrees 2θ with a step size of about 0.0133◦∆2θ. Consequently, ar-
tificial XRD patterns are generated for the identical 2θ range while considering
the CuKα1 wavelength. However, the step size for simulations was intentionally
increased to 0.02◦∆2θ to avoid the need to simulate intensities for rounded mea-
surement steps. Furthermore, the described factor for acceptable impurity phase
peaks is considered during the training data generation procedure. Apart from
this, no further considerations are necessary for simulating diffraction patterns,
as the scans exhibit high SNRs and narrow FWHMs.

Applying the novel framework took about fiveminutes, which involved the training
data generation methods and model training. The analysis of the measured XRD
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6.3 Identification of Disordered Rocksalt Structures

patterns was performed automatically by the trained neural network in less than
one second. Furthermore, the predictions made by the model were consistent with
the trends identified through manual analysis. Initially, the DRX fingerprint was
not recognizable in the scans, resulting in predicted probability estimates equal to
0. However, as the synthesis progressed, the DRX phase began to form, and once
a certain threshold was surpassed, the DRX phase was consistently predicted as
present by the model. Notably, the model pinpointed measurement number 164 as
the first "successful" synthesis result (according to the definition introduced in the
context of this thesis). As a result, six out of the 272 samples were misclassified,
leading to an accuracy score of 97.8%

Figure 6.8 effectively showcases two distinct XRDpatterns that represent the DRX
detection threshold as analyzed manually and as predicted by the model. On the
left side, the first XRD pattern identified by the model as corresponding to the
target structure is displayed. Conversely, on the right, Figure 6.8 presents the first
XRD pattern that was manually identified as matching the target structure. The
line drawn between corresponding impurity peaks in both plots underscores the
slight difference between these two XRD scans. Similarly, the manually analyzed
weight percentages are virtually indistinguishable (wpMnO,164 ≈ wpMnO,170).
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Figure 6.8: Comparison of DRX Phase Detection in XRD Patterns. Left shows the first XRD pattern
predicted by the model to match the target structure, while the right plot displays the
first pattern manually identified as such. The line indicates the minor impurity peak
discrepancy between the two patterns, illustrating the model’s sensitivity in comparison
to manual analysis.
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While there were six samples that the model misclassified, the disparity between
these two specific scans is relatively negligible. This observation suggests that
the trained model is somewhat less sensitive to the presence of impurities than
the manual analysis. However, this discrepancy does not critically undermine the
efficacy of the framework; it represents aminor inaccuracy that could be addressed
in future refinements.

6.4 Identification of Yttrium Barium Copper
Oxides

6.4.1 Description of Dataset

Yttrium Barium Copper Oxide (YBCO) is recognized as a superconducting mate-
rialwith notably high transition temperatures exceeding 77K.Before the discovery
of high-temperature superconductors, research in this field was largely limited to
specialized laboratories equipped to handle experiments at lower temperatures.
Consequently, YBCO has gained popularity as a superconductor, expanding the
range of research and application possibilities significantly. The emergence of
high-temperature superconductors like YBCO has facilitated the development of
diverse applications, notably in electric motors, bearings, flywheels, and persistent
current switches, utilizing the unique properties of thin film superconductors [96].

The synthesis of pure YBCO is not exceptionally challenging, but it allows for
various precursor combinations and methods, all necessitating either high tem-
peratures or prolonged experiment times [96]. To explore this, Szymanski et al.
[97] performed a study to evaluate the formation of YBCO using diverse pre-
cursor combinations and experimental conditions. In particular, the composition
YBa2Cu3O6.5 was targeted. In this extensive study, samples were generated
and analyzed using XRD instruments for 146 distinct configurations. Although
most samples contained multi-compound mixtures, a few instances of successful
synthesis of pure YBCO samples were recorded.
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This dataset serves as the concluding case study for the newly developed frame-
work dedicated to novel material identification. The previous sections demon-
strated the application of the framework to explore a high-dimensional phase
diagram or to identify the target phase in samples that also contained impuri-
ties. In contrast, this dataset allows the investigation of the framework’s ability
to identify the target phase, particularly in scenarios where it is rarely formed
and in the distinct absence of impurities. Therefore, the framework is utilized in
the following sections for the automated identification of samples containing the
YBCO target phase.

6.4.2 Manual Analysis

In their original study, Szymanski et al. provided a detailed description of the
phases present in their samples, including their respective weight percentages.
However, the duration required for the manual identification of these phases or
full profile matching was not specified in their report. A total of 146 XRD patterns
were acquired, each recorded with a step size of 0.01◦∆2θ in the 2θ range of 10
to 90 degrees. These patterns were obtained using an XRD instrument equipped
with a copper anode, which resulted in the presence of both Kα1 and Kα2 peaks.
Notably, the measured signals exhibit a high SNR and standard peak shapes, with
the FWHM of the peaks being 35 or lower.

Figure 6.9a displays representative XRD patterns, each annotated with labels
denoting their respective precursor sets and synthesis temperatures. Within these
exemplary patterns, the target phase is at least partially present in the signals
colored orange, green, and brown, as reported by the original study. In contrast, the
blue, red, and purple patterns exclusively exhibit alternative phases, highlighting
the variability in phase formation under different synthesis conditions. Hence,
Figure 6.9b illustrates three XRD patterns from samples that match the target
material’s structure, with each sample produced using distinct sets of precursors
and synthesized at high temperatures, specifically at 900◦ C. Out of the array of
samples studied, eight were identified as phase-pure compounds of the yttrium
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(a) Exemplary XRD patterns of samples that either do
not contain the target phase or it is only partially
present.
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(b) Selected XRD patterns for samples that have been
identified as pure YBCO.

Figure 6.9: Selected XRD patterns from the dataset exploring the formation of the YBCO phase.

barium copper oxide phase. Consequently, the objective is to accurately identify
these same eight patterns from the measured XRD scans by utilizing the novel
material identification framework.

6.4.3 Application of the Novel Framework

Concludingly, the application of the proposed concept is exemplified using the
CIF description of YBa2Cu3O6.5, which has been obtained from the ICSD (code
44117). The primary goal is the identification of samples devoid of impurities,
hence the training data for the framework is simulated to reflect the formation
of the target phase. As shown in Figure 6.9a, the relevant diffraction peaks
predominantly span the range of 10 to 70 degrees 2θ. Accordingly, the simulations
of the scans are restricted to this range, with a matching step size of 0.01◦∆2θ.
Furthermore, no adjustments to the configuration are deemed necessary, since the
levels of noise and the FWHM of the peaks align with the default settings of the
framework.

The complete workflow enclosing data generation, model training, and data anal-
ysis was executed in less than five minutes. The trained model demonstrated
proficiency in disregarding samples whose XRD patterns distinctly deviated from
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the characteristic fingerprint of the target material. Overall, the model correctly
classified 143 of the 146 samples evaluated, achieving an accuracy of 97.9%. This
demonstrates the model’s high level of accuracy in identifying the target material
through the characteristic fingerprint.

However, it recognized only five out of the eight samples successfully that were
previously identified as phase-pure. Therefore, the misclassifications of the model
are analyzed in more detail. Figure 6.10a displays two such patterns from samples
that have been reported as phase-pure. Still, the model identified only the sample
derived fromprecursors Ba2(CuO2)3, BaCuO2, Cu2O,Y2O3 (black) as theYBCO
material in its phase-pure form, while the other pattern (red) was not categorized
as YBCO. Notably, the sample generated from the precursors BaO2, CuO, and
Y2Cu2O5, depicted in red, shows markedly higher peak intensities at angles
around 30◦ 2θ (± 2◦). This observation underscores a substantial variation in
the measured patterns, even among those samples that correspond to the YBCO
phase according to the results reported in the original study.

Additionally, Figure 6.10b provides a visual comparison of the simulated diffrac-
tion pattern of YBa2Cu3O6.5 (represented in blue) with an actual measurement
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(a) XRD patterns of two samples identified as phase-
pure YBCO. These signals highlight the notable
variation in peak intensities around 30 degrees 2θ,
even among samples with the same structure.
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(b) Comparison of the simulated diffraction pattern of
the YBCO phase (blue) with an actual measurement
(black), emphasizing the absence of reflections
around 30 degrees in the simulated pattern. This
is indicative of minor impurities in the measured
sample.

Figure 6.10: Comparison of XRD patterns that show the characteristic fingerprint of the YBCOphase.
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from the study (shown in black). A key observation is that the simulated pattern
shows no meaningful reflections around angle 30◦ 2θ. In contrast, the XRD scan
of the measured sample largely aligns with the simulated fingerprint, except for
the peaks that have been detected within this specific range. Consequently, it can
be deduced that the presence of these peaks in the measured sample indicates the
existence of minor impurities in the produced samples.

Thus, the predictions of the novel material identification framework are not nec-
essarily wrong. The automated analysis attributed only those samples to the target
material where the additional diffraction peaks in the region around 30◦ 2θ re-
mained minimal (five out of eight samples). On the contrary, the neural network
model identified irregularities in the remaining three XRD patterns originally
identified as YBCO, consequently categorizing those as "failed" experimental
outcomes. However, these impurities are relatively minor and might not seriously
impede the practical application of the superconducting material. Hence, while
the model’s predictions are visually confirmed as technically correct, the manual
analysis failed to identify the same irregularities concerning the additional peaks
in the XRD pattern.

6.5 Discussion of Results

The novel material identification framework was applied to three distinct datasets,
demonstrating the simplicity and effectiveness of the developed methods. In
each instance, the approach led to the rapid creation of a neural network model,
capable of analyzing measured XRD scans within approximately five minutes
for each dataset. Crucially, generating training data only requires a description
of the target material in CIF format, complemented by a defined acceptance
criterion for impurities in the samples. Notably, these prerequisites are attainable
without the need for prior analysis of the measured scans. Furthermore, the
successful implementation of the presented framework did not necessitate any
specialized knowledge in the domain of deep learning. As a result, the application
of this innovative framework does not demand specialized expertise and can be
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seamlessly incorporated into the analysis process for various materials, enhancing
its accessibility and usability in diverse research contexts.

The three datasets evaluated encompass a variety of radiation wavelengths, mea-
surement ranges, and step sizes. Despite these differences, the application of the
novel concept was demonstrated without necessitating significant modifications to
the framework. This underscores the framework’s versatility, as it proves adapt-
able across various sample characterization domains. Moreover, the approach
consistently achieved accuracy scores of approximately 98%, showcasing the high
level of performance and reliability of the automated analysis. This robustness
further emphasizes the framework’s potential for broad applicability in material
identification and analysis.

Further in-depth analysis of the scans and instances of misclassification revealed
that some of these errors can possibly be attributed to incorrect labeling during
the manual evaluation process. Specifically, in the case of the fluorite structure,
the diverse range of signal-to-noise ratios in the scans added complexity to the
analysis, as potential additional diffraction peaks could be obscured by noise. In
the DRX analysis study, an arbitrary threshold was initially set, and the automated
analysis method identified a slightly different yet similar threshold, which is not
necessarily incorrect. Ultimately, in the analysis of the YBCO dataset, the model
demonstrated a heightened sensitivity to impurity peaks compared to manual
analysis, further evidencing its precision when analyzing the measured XRD
patterns.

Accordingly, the accuracy metric, while informative, does not fully capture the
robust performance exhibited by the model. A critical aspect of its efficacy is
that the model consistently avoided misidentifying multi-compound samples as
the target phase, despite the varied appearances of their diffraction patterns. This
highlights the effectiveness of the data generation approach employed, which, in
addition to the characteristic fingerprints of the target phase, generates alternative
signals for training the model. These alternative examples are efficiently created
by introducing peaks at random positions within the signal, a process considerably
faster than simulating and mixing XRD patterns of various phases present in the
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evaluated material system. Therefore, the robustness of the automated data analy-
sis is especially remarkable, as the network model was never exposed to the exact
patterns of alternative structures or multi-phase compounds during its training
phase. Yet, the presented approach consistently demonstrates high performance
across diverse XRD scans, emphasizing the versatility and effectiveness of the
presented concept for generating training data.

Furthermore, the comparison of automated analysis should not only take the
achieved accuracy metrics into account but also the time efficiency of applying the
automated analysis approach, offering a comprehensive evaluation of its overall
effectiveness. Previous studies have emphasized the substantial manual effort
required to identify materials by their fingerprint [44, 98, 99, 100], yet they
fall short of quantifying the actual time needed for such manual analysis. For
instance, Oviedo et al. [44] note that the process of acquiring measured data for
a sample typically consumes about an hour, followed by an additional one to
two hours for a comprehensive profile analysis of the XRD data, assuming that
the phases present are already identified. However, it is important to recognize
that full profile matching, a technique specific to XRD data, demands specialized
expertise and is not universally applicable. Consequently, it is reasonable to infer
that the task of phase identification, when relying on correlation coefficients or
the figure-of-merit as metrics, requires less time.

For the dataset examining the formation of the fluorite structure within the multi-
compound material system, the manual analysis of 106 measured scans was
completed in approximately 90 minutes. Hence, times for the manual anal-
ysis of the other datasets can be approximated based using the baseline of
50 seconds per scan. However, it is crucial to note that this is a somewhat opti-
mistic estimate, given that the diffraction pattern of the fluorite structure is partic-
ularly easy to discriminate. Therefore, it can be assumed that the identification of
target materials with more complex fingerprints could be more time-consuming
and challenging. Furthermore, this estimation assumes that an expert can main-
tain this pace without misinterpreting any signals, but it does not account for the
potential fatigue from analyzing hundreds of scans. Such fatigue could severely
affect the accuracy of the manual process [101]. Thus, while manual analysis is
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Table 6.1: Comparison of the times required for manual or automated analysis of the different datasets
evaluated in this thesis.

Target phase Fluorite DRX YBCO
Number of samples
in dataset

106 272 146

Time required for
manual analysis [min]

90
227

(estimated)
122

(estimated)
Time to apply
novel framework [min]

5 5 5

assumed to achieve perfect phase identification results for measured scans, analyz-
ing large-scale datasets in automated material system platforms risks introducing
errors due to human factors.

Table 6.1 showcases a comparative analysis of manual analysis versus the auto-
mated analysis framework in terms of time required for data analysis. For this
comparison, only the dataset with the fewest scans was manually analyzed, with
the time for other datasets estimated based on the assumption that each scan
takes about one minute to analyze. Under this assumption, the analysis of the
DRX dataset would take approximately 4.5 hours, not accounting for necessary
breaks when dealing with large datasets. In contrast, the automated approach
required only 5 minutes for each of the tested datasets, encompassing the time for
generating training data, training the model, and analyzing the scans. Remark-
ably, these times were achieved using consumer-grade hardware1. Consequently,
the automated approach not only demonstrates a significant reduction in analysis
time compared to manual methods but also maintains a high level of accuracy,
approximately 98%, highlighting its effectiveness.

Furthermore, the efficiency of the automated analysis framework can be enhanced
by training the model concurrently with conducting the experiments. Since the
synthesis and subsequent analysis of samples span several hours, a neural network

1 CPU: AMD Ryzen 5 3600, RAM: 32 GB DDR4-3200, GPU: NVIDIA GTX1070
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model can easily be trained in this time frame. Once the scans are obtained,
they can be analyzed in seconds, thus, substantially reducing the time reported
for employing the framework. This efficiency opens the possibility of integrating
this novel framework into existing material discovery systems. These systems,
typically only equipped with a CPU, could effectively run the model training while
the samples are being synthesized. This is only possible thanks to the determina-
tion of an optimized model architecture, which minimizes computational efforts
for training, as detailed in Chapter 4. Consequently, the proposed concept can
be seamlessly integrated into existing systems without necessitating additional
powerful hardware, thus enhancing these systems for fully automated material
exploration experiments.

Additionally, the estimated times for manual evaluation of the datasets assume
constant availability of personnel for analysis. In contrast, integrating the auto-
mated analysis approach into a system enables the material discovery platforms to
conduct experiments based on the automated analysis of samples from earlier ex-
periments without human intervention. For instance, in in situ instruments, where
experiments are monitored in real-time, the system could strategically manipulate
the temperature or conclude data acquisition based on the immediate feedback
from the automated analysis. Similarly, in studies exploring the synthesis of a
target structure, this feedback loop could guide the selection of precursor com-
binations and experimental conditions. Consequently, such systems are capable
of running experiments fully autonomously every day during the week, greatly
enhancing efficiency by removing the bottleneck of manual pattern analysis. This
approach not only streamlines the experimental process but also maximizes the
use of experimental time, leading to potentially faster and more efficient material
discovery.

The application of the framework across different datasets has highlighted that
novel materials are often challenging to synthesize. The training data generation
approach presented in this thesis addresses this challenge by integrating a simu-
lation tool for accurate computation of the diffraction patterns that represent the
target structure. Consequently, in the context of material discovery experiments,
the use of simulated signals for model training is without alternative, as measured
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signals that contain the patterns of phase-pure samples are typically not available.
This approach, however, is currently limited mainly to the generation of artificial
XRD patterns due to the lack of simulation tools for Raman spectra. Nevertheless,
the framework is designed to be adaptable; as soon as tools for rapid and accurate
simulation of Raman spectra become available, they can easily be incorporated
into the training data generation pipeline. This expansion would enable the ap-
plication of this novel data analysis approach to Raman spectral analysis. Thus,
this chapter showcases the high level of performance of the presented concept,
emphasizing not only its accuracy and time efficiency but also its versatility in
analyzing patterns from various domains, including different material systems,
radiation wavelengths, instruments, and characterization techniques. This adapt-
ability underscores the potential for the framework to be a powerful tool in diverse
areas of material analysis.
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Modern high-throughput material discovery platforms play a crucial role in the
rapid discovery of novel materials, aiming to enhance the properties of exist-
ing substances in various applications. These platforms facilitate the automatic
mixing of various precursors and enable the exploration of different material
structures under a range of experimental conditions. The primary objective in
these experiments is usually the successful synthesis of a specific target structure.
This target structure is frequently predicted using advanced computational tools or
identified within existing phase diagrams that describe the material system under
investigation. However, it is important to note that not all combinations of precur-
sors and experimental conditions successfully lead to the formation of the desired
structures. Thus, while high-throughput platforms accelerate the production of
samples, it is still necessary to investigate the resulting materials.

Sample characterization techniques like X-ray diffraction (XRD) andRaman spec-
troscopy are crucial for identifying crystalline phases formed during experiments,
enabling the recognition of samples that match the target material based on their
unique "fingerprint". However, the analysis of XRD patterns and Raman spectra
is time-intensive and demands considerable expertise to determine the materials
present in the produced samples accurately. Consequently, this manual iden-
tification process creates a substantial bottleneck in the workflow of existing
high-throughput platforms, impeding the rapid discovery of novel materials that
these platforms aim to achieve.

To address this challenge, a comprehensive framework was developed for the
automated identification of novel materials in the experimental data. This frame-
work automatically identifies samples whose characterization patterns align with
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the characteristic fingerprint of the target structure. The core of this concept in-
volves the generation of an extensive synthetic dataset that accurately depicts the
diverse range of patterns found in material discovery datasets, either from XRD
or Raman spectroscopy analysis. These patterns reflect a range of experiment
outcomes, from successful to failed attempts, and are rapidly generated based on
a detailed description of the target material.

Additionally, the framework features a neural network architecture that has been
specifically tailored for the precise analysis of XRD patterns and Raman spec-
tra. This architecture achieves an optimal balance between predictive accuracy
and computational efficiency, ensuring that the model can be trained quickly
and efficiently, even on hardware with limited computing power. Moreover, the
framework includes methods that facilitate the training and application of these
neural network models without necessitating specialized expertise in deep learn-
ing. This aspect significantly enhances the accessibility and usability of the
framework, allowing users from various backgrounds to effectively employ this
advanced analytical tool in their material discovery endeavors.

Crucially, the effectiveness of this framework is demonstrated on various exper-
imental datasets, encompassing different material compositions and characteri-
zation techniques. When compared to manual data analysis, the neural network
model exhibits almost identical accuracy but substantially reduces the time neces-
sary for analyzing large datasets. Consequently, this framework offers a versatile
solution for the automated analysis of diverse material discovery datasets. Its
integration into existing high-throughput platforms can significantly expedite the
data analysis process, thereby resolving the bottleneck of manual analysis and
unlocking the potential for more efficient material discovery experiments.

Thus, the major contributions in this thesis can be summarized as follows:
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1. The development of a novel concept integrating a neural network model
for the automated analysis of data from material discovery experiments.
Utilizing the proposed framework, neural networks can be trained and em-
ployed to identify targeted material structures in both XRD patterns and
Raman spectra. The integration of this concept holds the potential to accel-
erate material discovery processes substantially, enhancing the efficiency
of high-throughput pipelines (see Chapter 2).

2. The design of a robust data simulation framework that facilitates the training
of neural networks. This method represents a substantial improvement over
existing data simulation approaches, as it eliminates the need for manual
identification of all possible materials and substances that can occur in the
investigated material system. Accordingly, the required expertise to inte-
grate such automated analysis approaches is reduced considerably. Since
the training data generation is built around established simulation tools, it
is currently only available for XRD pattern generation (see Chapter 3).

3. The introduction of an optimized neural network structure that exhibits
high accuracy in analyzing XRD patterns and spectra with default prop-
erties. This innovative model architecture adeptly balances accuracy with
model complexity, enabling fast training and application even on systems
without high-performance computing capabilities. Despite this, it main-
tains an exceptional level of predictive quality, and consistently identifies
the characteristic fingerprint of the target materials in the signals (see Chap-
ter 4).

4. The implementation of the presented methods in the established program-
ming language Python. This enabled leveraging its extensive library ecosys-
tem, which includes several indispensable libraries for efficient training
data generation and neural network model implementation and training.
The code repositories have been made publicly available, enhancing the
accessibility of the proposed data analysis concept. Its accessibility allows
users to apply the framework for experimental data analysis without needing
specialized knowledge in neural network design or training. Accordingly,
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this implementation streamlines the process of integrating these tools into
existing material discovery workflows (see Chapter 5).

5. The demonstration of successful analysis of datasets containing XRD pat-
terns from material discovery experiments using the presented framework.
The approach’s versatility is evident, as it adeptly handles datasets with
diverse properties and unique materials without necessitating any modifica-
tions to the framework. This high level of adaptability is further underscored
by a comparative analysis against the manual analysis of the measured data,
showing that the automated system achieves a prediction accuracy of ap-
proximately 98%, while significantly accelerating the analysis process (see
Chapter 6).

6. The development of a general concept for evaluating distinct neural network
models in the analysis of spectra with diverse properties. This advancement
facilitates the comparison of various network architectures and can also be
extended as more networks are developed. Therefore, it can be assured that
alternative network architectures are indeed better than those presented in
previous studies (see Section 4.3.2 and Section 5.3).

7. The design of a training data generation pipeline is notably adaptable, allow-
ing for the future inclusion of data simulation tools for other characterization
techniques as they become available. At present, the framework primarily
utilizes simulation tools for computing XRD patterns. However, its struc-
ture is specifically crafted for adaptability, ensuring that new simulation
tools can be seamlessly integrated as they are developed. This foresight in
design means that the scope of the novel framework’s application can be
expanded in the future, accommodating a broader range of characterization
techniques and thereby enhancing its utility in the field of material science.
(see Section 3.5 and Section 5.4).
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By employing the presented framework, it becomes feasible to design a high-
throughput platform that utilizes the results of automated data analysis to inform
and plan subsequent experiments in a feedback loop directly. Such platforms are
theoretically capable of exploring the synthesis of novel materials by automati-
cally adjusting precursors and experimental parameters in response to previous
outcomes. Moreover, for platforms that monitor the formation of different struc-
tures in real-time, there is the potential to strategically manipulate variables such
as the temperature to investigate the development of the target material further.
Accordingly, the integration of this innovative framework is a crucial step towards
creating more advanced material discovery platforms. These enhanced platforms
could operate continuously, eliminating the downtime typically required for ex-
pert analysis of measured data between experiments. This continuous operation
not only accelerates the material discovery process but also ensures a more effi-
cient and seamless workflow, paving the way for rapid advancements in material
science research.

In addition to XRD and Raman spectroscopy, material discovery platforms are
typically equipped with a broad range of instruments to analyze the produced
samples. For example, scanning electron microscopy (SEM) is used for the visual
analysis of particles in the samples, providing insights into the size and shape
of the particles, which are crucial factors influencing the material’s properties.
Therefore, studies are increasingly focusing on automating the analysis of such
characterization methods [102]. To realize fully-automated workflows, automat-
ing the data analysis process for all integrated sample characterization techniques
is crucial. Currently, limitations in analyzing various types of material discovery
data hinder the full automation of some high-throughput platforms. Therefore,
there is a significant need for advancements in automating data analysis across
diverse domains to facilitate the complete automation of these platforms
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A.1 Phase Identification using QualX

Several programs are available, both commercially and under academic licenses,
for phase identification in XRD scans, utilizing the Figure of Merit (FoM) metric.
Here, the tool QualX is employed as an illustrative example [39]. In addition, other
programs like HighScore [40] and DIFFRAC.EVA [41] offer similar capabilities,
each distinguished by its unique features and implementation of the FoM metric.
These tools identify phases by comparing themeasured diffraction patterns against
reference patterns from various databases. Similar to the data analysis tools, a
range of databases is available, such as the COD [35] and the ICSD [36], that
provide this essential reference information. These databases are accessible under
different models, ranging from free-to-use to those requiring commercial licenses.

The QualX program integrates the free POW_COD database for phase identifi-
cation tasks [39]. Nonetheless, it is essential to highlight that the data analysis
example presented here is based on the use of these two tools, and employing dif-
ferent programs or databases might yield varied results. In this instance, an XRD
scan of Halite from the RRUFF database [28] is utilized to demonstrate the phase
identification procedure using the FoM metric. As mentioned in Section 1.3.2,
the scan predominantly shows peaks corresponding to the Halite structure’s plane
distances dhkl. However, it also contains two additional peaks that are not at-
tributable to Halite. Consequently, the phase identification process aims not only
to identify the primary phase, Halite, but also to detect and provide insights into
the impurity present in the sample.
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Figure A.1 displays the graphical user interface (GUI) of the QualX application,
showcasing the analysis of theXRDscan for theHalite sample. TheGUI is divided
into two primary sections: the upper part presents the visualization of the XRD
scan under analysis, while the lower section displays the corresponding entries
from the database. As outlined in Section 1.4.2, these data analysis tools calculate
the theoretical positions and intensities of reflections based on the reference data
for phase matching. Subsequently, the theoretical diffraction peak information is
aligned with the measured data, and the reference phases are ranked according to
the quality of their match using the FoM metric.

Figure A.1: Screenshot of the program QualX 2.0, which is commonly applied for analysis of XRD
data. In the upper part of the layout, the measured intensity values are displayed, and the
detected peaks are illustrated as black bars below the pattern. Below the illustration of the
measured pattern is a list of phases from a connected database that have been matched to
the measured values. The program orders the database entries by their quality of match,
as quantified by the FoM metric. For visual assessment of the match, the calculated
positions of the candidates are additionally visualized as green bars in the upper part,
underneath the detected peak positions (black).

160



A.1 Phase Identification using QualX

QualX incorporates the preprocessing routines described in Section 1.4.1 to extract
crucial information on the position and intensities of peaks from themeasured scan
for pattern matching. Hence, to generate the filtered scan shown in Figure A.1,
parameters related to smoothing, baseline removal, and peak search methods
required fine-tuning. The positions of detected peaks are indicated by black
bars beneath the blue signal. For this particular scan, QualX identified several
candidate phases (No. 1-8) with high FoM values ranging from 0.82 to 0.74.
The top-ranked entry, with the highest quality of fit, is listed under database
card number 00-430-0180. Although it does not include the compound name,
it is identified by the chemical formula Cl Na, corresponding to the evaluated
sodium chloride sample. The second and third entries also display the same
formula and also provide the name for the mineral: Halite. Consequently, the
phase identification process strongly suggests that the Halite phase is present in
the scanned sample.

The program additionally displays theoretical peak positions for visual confirma-
tion of the match, shown as green bars below the extracted peak information, as
demonstrated for entry No. 1. However, candidates No. 4-8 also achieved a FoM
marginally lower than the correct Halite entries. These entries are characterized
by a crystal structure with lower symmetry, which should result in a more complex
diffraction pattern, exhibiting additional peaks in the range from 20◦ and 90◦2θ.
In practice, an expert can manually discard these candidates by comparing the
theoretical and measured peak positions. To exclude these samples based solely
on FoM values, the metric’s calculation formula needs adjustment. For instance,
QualX’s FoM implementation includes a penalty term for missing peaks in the
measured pattern, and increasing this term can effectively differentiate entries No.
4-8 from the more accurate sodium chloride entries.

The diffraction pattern, in addition to the major peaks, reveals two additional
peaks at approximately 29◦ and 41◦2θ that are not attributable to the Halite
structure. However, identifying the impurity phase in this sample solely based
on this information is challenging, as no structure exclusively aligns with these
two peak positions. Nonetheless, the corresponding impurity phase may produce
other reflections in the pattern that either overlap with Halite peaks or are obscured
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by noise in the data, thus rendering them undetectable. In practice, accurately
determining the impurity phase is feasible only if the range of possible candidates
is narrowed down using supplementary information. For instance, employing an
alternative characterization technique to determine the predominant elements in
the compound could limit the database search to phases containing only those
elements, thereby facilitating more precise identification.

In addition to the major peaks, the diffraction pattern shows two additional peaks
at about 29◦ and 41◦2θ, which cannot be attributed to the Halite structure. How-
ever, determining the impurity phase in this sample is not possible based on the
prevalent information alone, as there is no structure that only has peaks at these
two positions. Alternatively, the additional peaks could overlap with the Halite
peaks or are obstructed by the noise. In practice, it is only possible to determine
the impurity phase if the list of candidates can be constrained using additional
information. For example, an alternative characterization technique could be
used to determine the prevalent elements in the compound so that the database
is restricted to phases that only contain these elements. Consequently, while
phase identification using the FoMmetric is a valuable tool for discerning present
phases, its accuracy often depends on the expertise of the user in fine-tuning pre-
processing parameters, modifying the FoM calculation equation, or incorporating
supplemental information to narrow down the list of potential candidates.

A.2 Full Profile Analysis using GSAS-II

In full profile analysis, the Rietveld model is employed to approximate a mea-
sured signal based on a given crystal structure. To compare this approach with the
FoM method, the identical XRD pattern of the Halite mineral from the RRUFF
database [28] is analyzed. Figure A.2 displays a screenshot of the GSAS-II soft-
ware [103], which fits a crystal structure of the corresponding phase, obtained
from the ICSD (entry 29929), to the measured intensities. Using the Rietveld
refinement approach, a full diffraction pattern is simulated, capturing peak posi-
tions and intensities, as well as the experimental artifacts of the measured scan.

162



A.2 Full Profile Analysis using GSAS-II

0

500

1000

1500

2000

2500

3000
In

te
ns

ity
obs
calc
bkg
diff
Sodium chloride

20 30 40 50 60 70 80 90
2

0

10

/

Figure A.2: A measurement of the mineral Halite (sodium chloride) is analyzed (from the RRUFF
database [28]) and compared to a simulated pattern generated for the corresponding
crystal structure (ICSD [36] entry 29929) using the GSAS-II software [103]. The
software utilizes the Rietveld refinement method [104] to match the measured intensities
with a model of the underlying crystal structure. The blue crosses present the observed
intensity values, and the green plot illustrates the fitted pattern. Below, the purple bars
demonstrate the computed diffraction positions for the refined structure, and the cyan line
depicts the residual between simulated and measured intensity values. Underneath, the
remaining differences (∆) are displayed and scaled according to the standard deviation
(σ) of the measurement.

Consequently, both the cyan and black lines depict the differences between mea-
sured and simulated intensity values. While the cyan line shows the absolute
differences, the black line scales the residual according to the standard deviation
of the measured pattern (∆/σ), enhancing the interpretability of the fitted model.

Here, the remaining differences appear to constitute mostly the noise present in
the scan, but for some angles, the residual stands out from the noise, e.g., for 29
and 32 deg. As indicated in Figure 1.8, the 29◦ peak cannot be attributed to the
Halite structure, so it can be assumed that the sample contains impurity phases.
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Here, a GoF metric of 1.41 was achieved for the measured XRD scan and the
corresponding crystal structure, which indicates a good fit (a value of 0 means
perfect fit). However, several steps were necessary to adjust the parameters of the
Rietveld model and achieve a high-quality fit. For once, the lattice parameters
of the evaluated mineral differ slightly from the database reference (5.6409 nm
instead of 5.6338 nm), so a refinement of the unit cell was required to match the
diffraction peak positions in the measured signal. Furthermore, an appropriate
model to approximate the baseline intensities had to be selected, and a refinement
of the parameters that approximate the peak profiles was necessary. Nonetheless,
the selection of the appropriate parameters to include during the refinement varies
between signals, so manual intervention is typically required to apply the Rietveld
refinement.

A.3 Neural Networks

Neural networks aremathematicalmodels that form an integral part of themachine
learning domain, specifically within the realm of deep learning. Machine learning
is a subset of artificial intelligence that focuses on developing algorithms and
models to solve specific tasks involving the analysis of data. In particular, the
mathematical models are not explicitly programmed but rather learn to solve
tasks over time as they are exposed to samples of the data. Deep learning, on
the other hand, is a subfield of machine learning that focuses on the development
and training of neural networks. These networks are modeled according to the
structural and functional attributes observed in the neural architecture of the
human brain (or other animals) responsible for processing sensory input [66, 105].

In practice, these models can automatically learn to identify complex features and
patterns in the data, making them particularly effective for tasks such as image
recognition and natural language processing. While alternative machine learning
models such as Support-Vector Machines [106] or Random Forests [107] can also
be effective for certain tasks, they typically require a manual feature extraction or
transformation step, which can be time-consuming and require human expertise.
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Figure A.3: Schematic arrangement of neural networks and the basic neuron unit.

In contrast, deep learning algorithms are designed to automatically learn complex
features and patterns in the raw data, eliminating the need for manual feature
engineering [66]. Hence, neural networks typically excel when trained onmassive
datasets, allowing them to discover intricate patterns and relationships, while
traditional machine learning algorithms tend to outperform neural networks when
dealing with smaller datasets [108].

At a basic level, a neural network processes a given input x to produce a predicted
output ŷ through a series of mathematical operations, as summarized by function
f∗ [66]. The basic unit of a neural network is a neuron, which takes the input x,
multiplies it by a set of weights w, adds a bias b, and then applies an activation
function σ to produce an output, as depicted in Figure A.3a. Mathematically, this
can be expressed as

z = x ·w + b, (A.1)

where z is the weighted sum of the input. The output of the neuron, here denoted
as ŷ, is obtained by applying the activation function [66]:

ŷ = σ(z). (A.2)

In a single layer, multiple neurons operate in parallel, each having its own set of
weights and biases. The outputs of these neurons form the layer’s output vector o.
This layer-wise computation is a fundamental building block, and neural networks
extend this concept by stacking multiple layers on top of each other. The output
of one layer becomes the input of the next, creating a hierarchical structure, as
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conceptualized in Figure A.3b. Mathematically, for a given layer l, the output o(l)

can be expressed as:

o(l) = σ(W (l) · o(l−1) + b(l)), (A.3)

where W (l) represents the matrix of weights, o(l−1) is the output from the
previous layer, b(l) is the vector of biases for the current layer, and σ is the
activation function[66]. This layer-wise connectivity allows neural networks to
learn intricate representations from the input data, enabling them to capture
complex patterns and relationships. The final prediction ŷ is obtained from
the output of the last layer. As a result, f∗ encapsulates the entire process of
transforming the input x through the layers of the neural network to produce the
final prediction ŷ.

To enable the network to learn an represent complex patterns in the data, ac-
tivation functions are used within the layers of a neural network to introduce
non-linearities. The introduction of non-linear activation functions is crucial
because a neural network composed solely of linear operations, such as simple
matrix multiplications and additions, would effectively behave like a single-layer
perceptron [66]. In such cases, regardless of the network’s depth, the overall trans-
formation would remain linear. Commonly used activation functions in neural
networks are, for example, the sigmoid activation function σ

σ(z) =
1

1 + e−z
, (A.4)

and the Rectified Linear Unit (ReLU)

ReLU(z) = max(0, z). (A.5)
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Neural networks offer a versatile framework capable of tackling a multitude of
tasks, with two of the most fundamental being regression and classification. In
regression tasks, the goal is to predict a continuous output, such as predicting the
price of an object based on historic sales data. In this scenario, the network’s
output layer typically consists of a single neuron, and the predicted value ŷ can
take any real number. To model the output to fit the desired range of values,
activation functions like linear (σ(z) = z) or ReLU can be considered. On the
other hand, in classification tasks, the objective is to categorize input data x

into distinct classes cn. Here, the selection of an appropriate activation function
depends on the nature of the task. For tasks where input samples exclusively
belong to one class (multi-class), the softmax activation function is commonly
employed

softmax(z)i =
ezi∑n
j=1 e

zj
. (A.6)

Softmax scales the values of the neurons in the network’s final layer z1, . . . , zn into
a probability distribution, ensuring that the sum of probabilities across all classes
equals one. In this case, the corresponding class for a given input is determined
by identifying the class with the highest probability. Conversely, in multi-label
tasks where an input can belong to multiple classes simultaneously, the sigmoid
activation function is preferred. Thus, the sigmoid activation independently scales
the output for each class between 0 and 1, providing a probability estimate for the
presence of each class. In the case of sigmoid activation, a predicted probability
ŷi > 0.5 is indicative of the presence of the corresponding class ci.

For a given input x, a neural network with underlying parameters Φ (including
W , b) provides a prediction ŷ. However, to ensure that the predicted output ŷ
aligns with the actual output y, the model’s parameters first have to be adjusted
in a training process. In the realm of supervised learning, the essence lies in the
availability of input-output pairs that represent the relationship between the input
data x and its corresponding label or output y. Provided the desired output for
a given input is known, one can compare the prediction of the network ŷ with
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the label to approximate the modifications required to the model’s parameters
to align the prediction with the label. This comparison is facilitated by the use
of a designated metric known as a loss function. The loss function quantifies
the dissimilarity between the predicted output and the true label, providing a
numerical measure of the model’s performance. The objective during training is
to minimize this loss, prompting adjustments to the model’s parametersΦ through
optimization techniques [66]. For a training set containing n samples, the loss L
can be described as

L =
1

n

n∑
i=1

ℓ(ŷi,yi), (A.7)

where ℓ describes the loss function. Depending on the task and activation function
in the output layer, different loss functions can be used. For example, the mean
squared error (MSE), which is commonly used for regression tasks and linearly
scaled outputs, is calculated as follows:

ℓMSE(ŷ,y) = (ŷ − y)2. (A.8)

For classification tasks, on the other hand, the network typically predicts proba-
bility estimates for M outputs, so the cross-entropy loss (CE) is used [66]

ℓCE(ŷ,y) = −
M∑
j=1

yj log(ŷj). (A.9)

To minimize the loss during the training process, the model’s parameters Φ are
adjusted to align prediction and label. This algorithm calculates the gradient of
the loss function with respect to each weight and bias in the network. The gradient
indicates the direction of the steepest ascent, so adjusting the weights and biases
in the direction of the negative gradient reduces the error (loss function) of the
model [66].
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Because of limited available memory during training, neural networks are trained
using batches of data instead of the entire dataset at once, enhancing computational
efficiency. The pace of the iterative weight updates is governed by a predetermined
learning rate, allowing themodel to converge gradually. By using the learning rate,
the model can avoid overshooting the optimal solution, allowing for a controlled
and gradual convergence towards the minimum of the loss function. Although
training with batches may result in noisier weight updates, potentially helping
the model escape local minima, it can also make the convergence process less
smooth, which results in extended training times or a model that fails to fit
properly. Thus, optimizers, such as the Stochastic Gradient Descent (SGD), Adam
(derived from adaptive moment estimation), or Root Mean Square Propagation
(RMSprop), are used to enhance the gradient descent approach. Optimizers
introduce advanced concepts, including momentum or adaptive learning rates,
which facilitate a balance between steady convergence and the ability to escape
local minima, leading to better generalization in the model [66].

The universal approximator property of neural networks means they can theoreti-
cally model any continuous function, given enough hidden units. This flexibility,
while powerful, can lead to overfitting when the network is too complex for the
data. Overfitting occurs when a network starts to memorize the noise present
in the training data instead of learning the actual underlying patterns, which di-
minishes its ability to generalize effectively to new, unseen data. Alternatively,
specialized layers can be incorporated into the neural networks that restrict the
parameters in the network and therefore help to prevent overfitting. For example,
convolutional layers utilize a kernel with shared weights that is shifted across
the input, enhancing the network’s capability to identify local features that are
invariant to position. Furthermore, by hierarchically combining these local fea-
tures through multiple convolutional layers, the network can learn to recognize
increasingly complex patterns within the inputs [66]. This approach has led to the
widespread adoption of convolutional layers in various fields that utilize neural
networks for automated data analysis, including image recognition, where they
have proven to be particularly effective [84, 85].
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In addition to reducing the number of weights through the use of convolutional
kernels that slide over the input, regularization methods are used in neural net-
works to prevent overfitting. By adding constraints to the network’s complexity,
regularization techniques ensure that the model generalizes well from the training
data to new, unseen data. Common methods include L1 and L2 regularization,
which add penalties to the loss function based on the weights’ magnitudes, and
dropout, where random units in a layer are "dropped out" or set to zero during
training, forcing the network to spread out its learning across the weights. These
methods help in creating a model that is complex enough to fit the data well but not
so complex that it fits the noise in the training data, leading to better performance
on unseen data [66].

Figure A.4 illustrates the functionality of a convolutional neural network (CNN) in
the domain of image recognition. An image with two elephants serves as the input
to a network that includes several convolutional layers, each containing multiple
filters. In the network’s early stages, the filters in these layers identify basic shapes
including the elephants’ outlines, the floor, or the sky, each represented on separate
feature maps. As the data progresses through the network, the later convolutional
layers detect more complex features and patterns, such as the elephants’ trunks.
Rather than increasing the size of the convolutional kernels to detect spatially
extensive features, pooling layers are interspersed among the convolutional layers
to reduce the dimensionality of the input, which simultaneously broadens the
receptive field of the kernels that follow. Then, the fully-connected layers relate
the featuremaps with the classes and provide a numerical prediction for each class,
which is transformed into probabilities through the softmax activation function
[66].

State-of-the-art convolutional architectures often incorporate advanced concepts
like batch normalization and complex stacks of the convolutional layers to enhance
performance. Batch normalization [109] normalizes the activations within a
layer, making the training process more stable and allowing for higher learning
rates, thus speeding up convergence. By stacking more convolutional layers,
as prominently introduced by the VGG architecture [85], the network is able
to detect more complex patterns in the data, but deep networks suffer from
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Figure A.4: Schematic functionality of a convolutional neural network (CNN), with multiple filters
shifted across the input to identify feature maps. The typical structure includes batch
normalization, activations to introduce non-linearities, and pooling layers. After the
convolutional layers, fully-connected layers are applied to the complex feature maps and
provide a classification output ŷn. Based on the gradients of the network, the most
relevant regions of the input are calculated and shown as a heatmap for the exemplary
input (Grad-CAM).

vanishing gradients, so the weights cannot be adjusted if the network contains too
many layers. The VGG architecture, in particular, stacks multiple convolutional
layers prior to the pooling operations. Alternatively, residual blocks, introduced in
architectures like ResNet [84], include skip connections that bypass one or more
layers, making it easier to train very deep networks by mitigating the vanishing
gradient problem. Additionally, inception blocks [86] use kernels of different
dimensions to detect features of various sizes, leading to networks with a broader
range of capabilities [110].

In Figure A.4, an Xception network [111], which is an advancement of the
inception architecture that includes batch normalization and skip connections,
was used to analyze the image with two elephants. The early convolutional layers
in CNNs, including advanced architectures like the Xception model, typically
focus on detecting simple features such as outlines and basic shapes. However,
the interpretation of detected features becomes more complex in the later stages
of the deep neural networks, as the layers encode higher-level and more abstract
features.

To gain insights into what these later layers are focusing on, visualization tech-
niques such as Gradient-weighted Class Activation Mapping (Grad-CAM) can be
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used, which highlight the important regions in the image for making a particular
classification decision [112]. Here, the Grad-CAM in Figure A.4 reveals that
features of the larger elephant are more influential for the classification, due to the
greater gradients to this region of the input. Nonetheless, the gradients related to
the region of the smaller elephant are greater than those of the background, so
even this region contributes to the final prediction of the network. This highlights
the functionality of the convolutional layers, in which filters are shifted across the
input, so matching features of both elephants are identified concurrently.

A.4 Python Package Usage

A.4.1 python-powder-diffraction

Listing A.1: Minimal working example to utilize the Powder class.

from powd i f f r a c import Powder
powder = Powder . f r om_c i f (

" s t r u c t u r e . c i f " , # f u l l pa th t o c i f f i l e
# argument s conc e rn i ng t h e s cans
two_ t h e t a : t up l e = ( 1 0 , 8 0 ) , #2 t range (Min , Max )
s t e p _ s i z e : f l o a t = 0 . 0 1 , # s t e p s i z e o f s cans
# argument s c o n t r o l l i n g t h e v a r i a t i o n s
max_ s t r a i n : f l o a t = 0 . 0 4 , # s t r a i n on t h e l a t t i c e
max_ t ex t u r e : f l o a t = 0 . 6 , # t e x t u r e l i m i t
min_domain_s ize : f l o a t = 10 , # g ra i n s i z e l i m i t
max_domain_s ize : f l o a t = 100 , # g ra i n s i z e l i m i t
# argument s t o sw i t c h on / o f f t h e v a r i a t i o n s
v a r y _ s t r a i n : bool = Fa l s e ,
v a r y _ t e x t u r e : bool = Fa l s e ,
vary_domain : bool = Fa l s e ,

)
s i g n a l = powder . g e t _ s i g n a l ( )
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Listing A.2: Minimal working example to utilize the noise generation function

from powd i f f r a c . s im u l a t i o n import g e n e r a t e _ n o i s e
#assume x i s numpy ar ray c o n t a i n i n g t h e s i g n a l s
# i n form [num , l e n g t h ]
#add no i s e t o x and save as x _no i s e
x_no i s e = g e n e r a t e _ n o i s e (

x , # i n p u t a r ray
#random seed
s eed=None ,
# cheby shev po l y nom i a l s
cheb=None , #None −> random po l y nom i a l s
# l e v e l o f n o i s e i n s cans
n o i s e _ l v l =None , #None −> draw from i n t e r v a l
no i se_min =0 .01 ,
noise_max =0 .03 ,

)

Listing A.3: Example for running training data generation from command-line interface. For each
cif in the folder "all_cifs", 120 XRD patterns are generated. The patterns are simulated
in the range from 10 to 70 degrees 2θ with a step size of 0.02◦ ∆2θ. The grain size is
provided explicitly in the interval [20,50). There is no preferred orientation simulation
included in the scans (texture), but strain and domain size variation are "on" by default.

g e n e r a t e _ t r a i n i n g _ d a t a " . / a l l _ c i f s / " − t h e t a _ r a n g e " ( 1 0 , 7 0 ) "
−s t e p _ s c a n 0 .02 −doma in_ s i z e s " ( 2 0 , 5 0 ) " −n o _ v a r _ t e x t u r e
−n _ t r a i n 100 −n_va l 20
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A.4.2 spectra-network-benchmark

Listing A.4: Adaptable parameters in the script to generate synthetic signals.

# s n i p p e t from g e n e r a t e _ d a t a s e t f i l e

# GLOBAL PARAMETERS
s i g n a l _ l e n g t h = 5000
s h i f t _ r a n g e = 100 # a l l peaks s h i f t e d i n d e p e n d e n t l y
v a r i a t i o n _ r a n g e = 0 . 1 # +/− a b s o l u t e h e i g h t f o r each peak
k e r n e l _ r a n g e = ( 2 , 30)

# Targe t F i n g e r p r i n t
p o s i t i o n s _ p h a s e = [4290 , 4700]
h e i g h t s _ p h a s e = [ 0 . 7 4 4 , 1 . 0 ]

# A l t e r n a t i v e F i n g e r p r i n t s
min_peaks = 2
max_peaks = 10

n _ t r a i n = 5000
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A.4.3 crystal-id

Listing A.5: Exemplary config.yml file to simulate training data. The file specifies that diffraction
patterns are simulated with a copper Kα wavelength. The scans are simulated between
10 and 100 2θ with a step size of 0.01◦ ∆2θ. In total, 1000 patterns are simulated.

domain :
method : XRD
r a d i a t i o n : CuKa # a l t e r n a t i v e wave l eng th as f l o a t

measurement :
r ange : [ 1 0 . 0 , 1 0 0 . 0 ]
s t e p : 0 . 01
h o l d e r _ p o s i t i o n : n u l l
i m p u r i t y _ c u t o f f : 0 . 0

s im u l a t i o n :
n _ p a t t e r n s : 1000
l a t t i c e _ v a r i a t i o n : 0 . 02
i n t e n s i t y _ v a r i a t i o n : 0 . 05
fwhm : 30
b a c k g r o u n d _ r a t i o : 0 . 1
n o i s e _ r a t i o : 0 . 03

Listing A.6: Example for running training data generation and subsequent model training from
command-line interface. For a provided material structure in the form of a cif, var-
ied signals are generated. The patterns are simulated according to the values in the
corresponding config.yml file. Here, exemplary signals for the material system "halite"
are generated. The input size of the model is automatically adapted to the length of the
simulated scans.

g e n e r a t e _ t r a i n i n g _ d a t a " h a l i t e "
−s t r u c t u r e _ p a t h " . / h a l i t e . c i f "

t r a i n " h a l i t e "
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