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Abstract— The SOTIF standard (ISO 21448) requires scenario-
based testing to verify and validate Advanced Driver Assistance
Systems and Automated Driving Systems but does not suggest
any practical way to do so effectively and efficiently. Existing
scenario generation approaches either focus on exploring or
exploiting the scenario space. This generally leads to test suites
that cover many known cases but potentially miss edge cases or
focused test suites that are effective but also contain less diverse
scenarios. To generate SOTIF-compliant test suites that achieve
higher coverage and find more faults, this paper proposes
semi-concrete scenarios and combines them with parameter
sampling to adequately balance scenario space exploration
and exploitation. Semi-concrete scenarios enable combinatorial
scenario generation techniques that systematically explore
the scenario space, while parameter sampling allows for the
exploitation of continuous parameters. Our experimental results
show that the proposed concept can generate more effective test
suites than state-of-the-art coverage-based sampling. Moreover,
our results show that including a feedback mechanism to drive
parameter sampling further increases test suites’ effectiveness.

I. INTRODUCTION

The Safety of the Intended Functionality (SOTIF)-standard
(ISO 21448) [1] requires scenario-based testing to validate
Advanced Driver Assistance Systems (ADASs) and Auto-
mated Driving Systems (ADSs). In scenario-based testing,
scenarios precisely describe relevant environmental elements
to include in the testing process and the System Under
Test (SUT)’s initial state. Logical scenarios describe the
main semantics of the scenarios and include parameters that
influence their instantiation [2]. For example, a hypothetical
logical scenario for testing an Adaptive Cruise Control (ACC)
might occur on a highway; the ego vehicle travels at a given
speed (vego) and approaches another vehicle.Watanabe [3]
distinguishes between continuous parameters (e.g., vehicle
speed) and discrete parameters (e.g., vehicle model). Contin-
uous parameters are usually defined in terms of ranges (e.g.,
vego = [120, 150] km/h). Scenario-based testing requires
instantiating logical scenarios in concrete scenarios, i.e., test
cases, by assigning specific values to continuous and discrete
parameters [4]. For instance, in a concrete scenario, the ego-
vehicle travels at 123 km/h on a highway and approaches a
VW Beetle. The set of all the generated concrete scenarios
forms a test suite (i.e., scenario suite).
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The SOTIF standard requires scenario-based testing to
ensure that an ADAS/ADS operates as intended within a
specified Operational Design Domain (ODD) [1], i.e., a
set of well-defined execution conditions and their possible
interplay. However, SOTIF does not suggest any concrete
strategy to select discrete parameters and sample continuous
ones; thus, the challenge of instantiating logical scenarios
into concrete ones remains open. According to Birkemeyer
et al. [5], existing research on parameter selection and
scenario generation includes: data-driven techniques that
select parameters based on real-world data instances [6],
[7] or distributions [8], [9]; optimization techniques that
exploit parameter spaces using search-based methods [10]–
[16] or machine learning [17]; and, combinatorial techniques
that explore scenario spaces by systematically combining
atomic scenario elements [18], [19]. SOTIF requires that
scenario suites represent the ODD [1]. Thus, we argue
that although data-driven scenario generation can generate
realistic scenarios and optimization-based scenario generation
can generate critical scenarios, only combinatorial scenario
generation, which systematically covers all interactions of
t atomic scenario elements, has the potential to generate
SOTIF-compliant test suites. However, SOTIF also requires
that the set of scenarios that lead to unsafe behavior of the
SUT (i.e., critical scenarios) becomes minimal [1]. Since
existing combinatorial scenario generation techniques cannot
provide this property [19], they must be extended to balance
scenario space exploration vs. exploitation.

To solve this issue, in this paper, we propose to generate
effective, SOTIF-compliant test suites by combining combina-
torial scenario generation techniques and parameter sampling.
The key enabler of the proposed approach is semi-concrete
scenarios that conceptually sit between logical and concrete
scenarios. Semi-concrete scenarios enable covering discrete
parameters (exploration) while optimizing continuous param-
eters (exploitation). We empirically evaluate the proposed
approach by assessing the effectiveness of the test suites it
generates, and we observed these test suites find more faults
in the SUT than those generated by existing combinatorial
scenario generation techniques.

This paper makes the following contributions:
1) A scenario generation technique based on the novel

concept of semi-concrete scenarios that combines com-
binatorial testing and parameter sampling to generate
effective test suites.

2) An empirical evaluation of the effectiveness of test
suites generated from semi-concrete scenarios using
combinatorial generation and parameter sampling.



Fig. 1: Excerpt of the feature model proposed in [18]. The
initial velocity and type of the ego-vehicle are mandatory
features, while the feature rain is optional.

II. VARIABILITY MODELING TECHNIQUES

This section provides fundamental knowledge regarding
feature modeling and sampling strategies to make the paper
self-contained.

a) Feature Modeling: Variability modeling techniques
are common methods to model highly configurable systems
in software engineering [20], [21]. Configuration options are
modeled as features in a feature model. A feature is a binary,
user-visible system configuration option (e.g., the color or
type of a vehicle). A feature model has a tree structure and
describes characteristics of features (optional/mandatory) and
dependencies between features (alternative/AND/OR as well
as parent/child - relation). In Figure 1, we present an excerpt
of a feature model that represents scenarios for scenario-based
testing inspired by Birkemeyer et al. [18]. The feature model
is structured according to the six-scenario levels proposed by
Scholtes et al. [22] and covers atomic scenario elements. An
atomic scenario element is a concrete entity of a scenario such
as rain with the intensity of 1mm/h or the initial velocity of
a vehicle vego = 25km/h. Thus, the scenario feature model
introduced by Birkemeyer et al. [18] covers the space of
possible scenarios.

b) Sampling Strategies: Due to the combinatorial ex-
plosion, the number of valid configurations represented by
a feature model becomes extremely large [23], [24]; hence,
testing all scenarios is practically infeasible and sampling
strategies to select a subset of all valid configurations [25]–
[27] must be used to generate concrete scenarios. Selecting
a set of configurations that is representative of the overall
configuration space makes it possible to derive sound as-
sumptions about the adequacy of the generated test suites.
Coverage-based sampling strategies select configurations so
that each feature or interaction of t features is covered at least
once in the representative subset. Considering the scenario
feature model, coverage-based sampling explores the scenario
space by ensuring that the resulting scenario suite contains
each combination of t atomic scenario elements. State-of-the-
art algorithms for coverage-based sampling are Chvatal [25],
ICPL [26], and YASA [27].
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Fig. 2: Hybrid scenario feature model to represent logical
(blue), semi-concrete (green), and concrete (orange) scenarios.
The logical scenario feature model is part of the semi-concrete
and part of the concrete scenario feature model.

III. BALANCING EXPLORATION AND EXPLOITATION

This paper aims to establish a novel concept for scenario
generation that allows balancing exploration and exploitation
of scenario spaces to improve the test effectiveness of
SOTIF-compliant scenario-based testing. Klück et al. [19]
state that combinatorial scenario generation (exploration) is
more effective in detecting fault than optimization-based
scenario generation (exploitation). Thus, we use combinatorial
scenario generation as a starting point. However, we observed
that standard combinatorial scenario generation, which uses
equivalence classes, i.e., predefined value assignments, to dis-
cretize continuous parameters, is sub-optimal. The following
example demonstrates that equivalence classes do not properly
represent a continuous parameter space because one parameter
might occur in different scenarios, possibly requiring it to take
different values. In this example, we consider only the initial
velocity of the ego vehicle v. On a straight road (scenario-1),
v1 represents an equivalence class. If we, however, replace
the straight road with a sharp turn (scenario-2), v2 represents
an equivalence class that is different from the equivalence
class defined for scenario-1 (v1 ̸= v2). To sum up, existing
combinatorial scenario generation leads to effective scenario
suites but has issues in discretizing continuous parameters.
Optimization techniques, in contrast, are explicitly designed
to select concrete values from continuous parameters that op-
timize a fitness function [28]. Alternative parameter sampling
strategies select parameters randomly [19], equidistantly [29],
or based on probability density functions [30]. In our scenario
generation concept, we combine the best of both worlds: We
explore scenario spaces by using a combinatorial approach for
sampling discrete components and exploiting the parameter
space by sampling continuous parameters.

A. Semi-Concrete Scenarios

To combine exploration and exploitation in the context of
variability modeling, we introduce semi-concrete scenarios.
A semi-concrete scenario combines logical and concrete
scenarios by assigning concrete values for discrete parameters
but leaves the value ranges of continuous ones. Consequently,
generating semi-concrete scenarios that systematically cover
all interactions of t discrete scenario elements allows us to
explore the scenario space systematically, but it leaves open



the possibility to exploit each of the generated semi-concrete
scenarios by sampling the continuous parameters. To this end,
we extend the existing scenario feature model proposed by
Birkemeyer et al. [18] to include semi-concrete scenarios. The
novel scenario feature model structure can represent scenarios
at different abstraction levels (i.e., logical, semi-concrete, and
concrete). We refer to the resulting extended feature models
as hybrid scenario feature models. Figure 2 exemplifies the
hybrid scenario feature model.

The hybrid scenario feature model consists of (a) structure
features, (b) logical features, and (c) concrete features (cf.
Figure 2). The structure features are abstract and struc-
ture the scenario feature model in a tree structure, e.g.,
to allocate atomic scenario elements to the common six-
scenario levels proposed in [22]. Logical features represent
parameters and possible parameter ranges. In our example,
(Vehicle-)Type and Velocity are logical features. The feature
Type includes a list of discrete parameters (i.e., type =
[A4, Beetle,X5, . . .]), whereas velocity is a continuous
parameter (i.e., v = [0, 210] km/h). Selecting scenarios from
a feature model that contains structure and logical features
results in logical scenarios; thus, we define it as a logical
feature model. In Figure 2, we mark the logical feature model
with a blue bounding box.

Using a logical feature model, we can add concrete
features representing concrete parameter assignments and
obtain concrete scenarios. For discrete parameters, such as
the vehicle type, we add a concrete feature for each type;
however, we need to discretize the range for continuous
parameters. We do so by adding a feature for each equivalence
class. Standard combinatorial approaches use expert-defined
equivalence classes [18], [19]. Adding concrete features to
a logical feature model results in a concrete feature model.
The logical feature model models the same logical scenarios
as the remaining concrete feature model (cf. Figure 2,
orange bounding box). However, the logical feature model
implicitly models a broader space of concrete scenarios wrt.
to continuous scenario parameters.

Finally, to select semi-concrete scenarios, we use the semi-
concrete feature model (cf. Figure 2, green bounding box). In
this feature model, discrete parameter values are modeled as
concrete features, but continuous parameters are represented
with logical features. Sampling the continuous parameters
can be done in various ways. For instance, one can sample
concrete values for the continuous parameters within the
entire range of possible values (see Sect. III-B) or within
sub-parameter ranges (see Sect. III-C).

B. Parameter Range Sampling

During the modeling process of the semi-concrete feature
models, we use logical features to represent representative
upper and lower boundaries for continuous parameters. Those
boundaries might be defined by expert knowledge or derived
from real-world data. For example, the manufacturer specifies
a vehicle’s maximal velocity, whereas minimal and maximal
rain intensity can be derived from real-world observations.
These boundaries allow continuous parameters to be sampled

over the entire range of values. In our evaluation, we opted
to sample parameters randomly to avoid introducing any
bias; however, continuous parameters could be sampled using
optimization techniques or probability density functions.

C. Sub-Parameter Range Sampling

Similar to equivalence classes, we define sub-parameter
ranges that partitions the range of continuous parameter values
into smaller ranges that are combined to cover each interaction
of t parameter ranges. In sub-parameter range sampling,
concrete values are sampled from those ranges every time
a new concrete scenario is generated. Thus, in contrast to
equivalence classes, sub-parameter range sampling does not
always select the predefined representative values defined
by the domain expert. Nonetheless, it systematically covers
(explores) parameter ranges. As for parameter range sampling,
in our evaluation, we opted to sample parameters within
each sub-parameter range randomly. Continuous parameters
could be sampled using optimization techniques or probability
density functions with or against a distribution.

Adopting sub-parameter range sampling requires (1) gen-
erating semi-concrete scenarios and (2) sampling concrete
values for each of them. Parameter range sampling, instead,
does not require covering each interaction of t parameter
ranges; consequently, it is less expensive, as the parameters are
sampled fewer times. However, because the value ranges con-
sidered by parameter range sampling are larger than the ones
considered by sub-parameter range sampling, the generated
test cases might be less effective. In summary, parameter range
sampling only exploits the continuous parameters defined
from the explored logical scenarios, whereas sub-parameter
range sampling adds an intermediate level of exploration, i.e.,
exploring the interaction of t sub-parameter ranges, before the
final parameters exploitation. By selecting one or the other
option, developers can trade off the cost and effectiveness of
the generated test suites.

IV. EVALUATION

To assess the benefits of combining combinatorial testing
and parameter sampling and to understand how parameter
sampling affects the effectiveness of the generated test sce-
narios, we investigate the following main research questions:

RQ1 Does combining combinatorial scenario generation
and parameter sampling generate more effective test
suites than standard combinatorial scenario generation?
Parameter sampling enables exploiting continuous pa-
rameters. Hence, in the sense of fault detection ability,
we want to understand if this leads to generating more
effective test suites than using expert-defined values.

RQ2 How does a specific sampling technique impact test suite
effectiveness? Sampling parameters using sub-parameter
range sampling is more expensive than parameter range
sampling in the overall possible range. This raises
the question of whether sub-parameter range sampling
generates test suites that identify more faults than the
one generated by parameter range sampling.



RQ3 How does “sampling with feedback” impact the effec-
tiveness of a test suite? Optimization techniques use a
feedback loop to guide the parameter sampling process.
We are interested if parameter sampling with feedback
outperforms purely random parameter sampling when
combined with combinatorial scenario generation.

A. Experimental Setup

To evaluate the effectiveness of combining combinatorial
scenario generation and parameter sampling, we implemented
the proposed approach in a prototype1 and used it to generate
concrete scenarios. We executed the concrete scenarios in
the virtual environment provided by IPG Carmaker version
11.0.1.2 As a test subject, we implemented an adaption of
the Adaptive Cruise Control (ACC) provided by IPG and
Mathworks3 in Simulink. The ACC adapts the ego vehicle’s
speed to the leading vehicle’s speed. Following an iterative
process that involved two researchers, we implemented
a hybrid feature model representing relevant scenarios to
test ACC functionality. The resulting hybrid feature model
contains 193 features in total, with 31 parameter features
and 93 expert-defined sub-parameter ranges, i.e., three sub-
parameter ranges per continuous parameter. We share the
feature model online.1 Using the hybrid feature model and
our prototype, we generated test suites by sampling semi-
concrete scenarios with parameter ranges and sub-parameter
ranges. In both cases, we used the state-of-the-art coverage-
based sampling algorithm YASA [27] to cover the interaction
of t parameters; we used YASA t=1 (feature-wise) and YASA
t=2 (pair-wise). Specifically, parameter ranges produced 5
(YASA t=1) and 30 (YASA t=2) semi-concrete scenarios,
whereas sub-parameter ranges produced 7 (YASA t=1)
and 80 (YASA t=2) semi-concrete scenarios. To transfer
semi-concrete scenarios into concrete scenarios, we used
randomized parameter sampling, which we repeated 10 times
to increase confidence in our conclusions. As a baseline
for comparison, we considered the sub-parameter ranges as
equivalence classes and selected scenarios with state-of-the-
art combinatorial scenario generation. We generated test
suites by using YASA (t=1 and t=2) and assigned the
expert-defined values to all the equivalence classes (i.e.,
sub-parameter ranges) instead of sampling them. Notably,
since the baseline uses the same sub-parameter ranges used
by sub-parameter range sampling, it produced the same
amount of concrete scenarios, i.e., 7 (YASA t=1) and
80 (YASA t=2) concrete scenarios. Specifically, for each
comparison, we measure statistical significance (p-value)
using the Mann–Whitney U-test. Broadly speaking, p-values
less than 0.05 indicate statistically significant results. In
addition to assessing statistical significance, we measure the
effect size using the Vargha and Delaney A12, which captures
the magnitude of the differences between two distributions
(i.e., the effectiveness of two scenario suites). For example,

1https://doi.org/10.5281/zenodo.7940902
2https://ipg-automotive.com/
3https://mathworks.com/

a value of A12 equal to = 0.5 means that both suites are
equally effective; thus, the difference in their effectiveness
is negligible. However, as the A12 value moves away from
the 0.5 threshold, the difference in test suite effectiveness
becomes small, medium, or large.

Feedback Loop: Regarding RQ 3, we guide parameter
sampling with a feedback loop trying to increase the test
suites’ effectiveness by limiting the occurrence of potentially
irrelevant scenarios. The feedback loop is a first step and
considered as a proof of concept in combining coverage-
based sampling (exploration) and optimization techniques
(exploitation). We introduce an independent Safety Relevance
Controller (SRC) to determine whether a scenario is relevant.
Regarding the ACC as SUT, we define a concrete scenario as
relevant if at least one object occurs within the sensor’s field
of view within the first 10 seconds. We re-sample parameters
up to 50 times if a scenario is irrelevant.

Test Suite Effectiveness: Inspired by Birkemeyer et al. [18],
we assessed the test effectiveness of all generated test suites
using fault-based testing [31]. Thus, to assess the ability of
tests to expose problems in the SUT, we purposely injected
faults in it and checked whether the tests identified them.
We used the SIMULTATE Framework [32] to generate 50
random faulty versions of the ACC and counted the ones
that are detected by the test suite. Intuitively, the more faults
are found by a test suite, the more effective that test suite is.
Therefore, as an effectiveness metric, we use the mutation
score, i.e., the ratio of detected faulty versions to all.

B. Results and Discussion

RQ1. Benefits of Combining Combinatorial Scenario
Generation and Parameter Sampling: Figure 3 reports the
number of faults found, i.e., mutation score, by each test suite
we generated using YASA t=1 (Figure 3-a) and YASA t=2
(Figure 3-b). From the figure, we can observe that for YASA
t=1, both sampling strategies generate more effective test
suites than the baseline. Comparing the baseline and Parame-
ter Range Sampling resulted in a statistically significant result
(p-value= 0.042) and a large effect size while comparing
the baseline and Sub-Parameter Range Sampling resulted
in a less statistically significant result (p-value< 0.069) and
medium effect size. For YASA t=2, we can observe that the
baseline and Parameter Range Sampling achieved comparable
results (p-value=1.0 and negligible effect size); however,
Sub-Parameter Range Sampling generates statistically more
effective test suites (p-value< 0.005 and large effect size).
Finally, comparing the results achieved by covering single
features (YASA t=1) and pair-wise interactions between them
(YASA t=2), we can observe that -as expected- generating
more scenarios lead to more effective test suites.

In light of those observations, we conclude that combining
combinatorial scenario generation and parameter sampling
is beneficial for scenario-based testing as it systematically
covers all interactions of t features while outperforming basic
combinatorial strategies discretizing continuous parameters.

RQ2. Impact of Sampling on Test Effectiveness: To
address RQ2, we refer again to Figure 3 and compare
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Fig. 3: Test effectiveness of scenario suites generated using combinatorial scenario generation and parameter sampling for
YASA t=1 (a) and YASA t=2 (b). We separate parameter sampling strategies that select parameters purely randomly or with
an iterative feedback loop. For readability, we removed outliers that lead to mutation scores smaller than 0.5

the results obtained using Parameter Range Sampling and
Sub-Parameter Range Sampling. We observe that none of
the two methods always produces the most effective test
suite. Specifically, for YASA t=1, Parameter Range Sampling
produced a slightly better test suite (p-value= 0.3 and small
effect size). On the contrary, for YASA t=2, Sub-Parameter
Range Sampling produced more effective test suites (p-
value=< 0.005 and large effect size). Although Parameter
Range Sampling generated smaller test suites, it achieved
good results (i.e., never worse than the baseline).

In light of those observations, we conclude that Parameter
Range Sampling is a viable choice when scenario generation
focuses on covering all scenario features or when scenario-
based testing is budget-constrained, while Sub-Parameter
Range Sampling might be a better choice when developers
aim to fulfill stronger coverage criteria and can afford to
generate larger test suites.

RQ3: Impact of Sampling with Feedback on Test Effec-
tiveness: To answer RQ3, we compare the test effectiveness
for scenario suites generated with and without feedback loop
during the parameter sampling process. The results are shown
in Figure 3 (”pure random” vs. ”with feedback”). We assume
that the test effectiveness increases for parameter sampling
with feedback. Regarding YASA t=1, there is a clear increase
of effectiveness for both sampling strategies: Parameter Range
Sampling (p-value= 0.03 and large effect size) and Sub-
Parameter Range Sampling (p-value= 0.4 and small effect
size). Regarding YASA t=2, however, the increase is marginal;
(p-value=0.5 and small effect size) for Parameter Range
Sampling and (p-value=0.9 and negligible effect size) for Sub-
Parameter Range Sampling. It is worth mentioning that both
parameter sampling strategies with feedback perform similarly
to each other for YASA t=1 and t=2 as both strategies
without feedback: Parameter Range Sampling leads to more
effective scenario suites for YASA t=1, while Sub-Parameter
Range sampling is more effective for YASA t=2 (cf. RQ 2).

In light of those observations, we conclude that adding
feedback to parameter sampling slightly increases the test
effectiveness of generated scenario suites. However, during
our experiments, parameter sampling with feedback requires
in median of 1.2% (overall parameter range) and 14% (sub-
parameter range) additional simulation effort. For the sake of

fairness in this comparison, we use simple resource allocation
(50 tries for each (sub-)parameter range) [33]. But, relevant
parameters might be rare in some (sub-)parameter ranges,
which impacts the additional effort. However, depending on
the use-case, test engineers need to carefully weigh costs and
benefits while generating SOTIF-compliant scenario suites.

C. Threats to Validity

a) Internal validity: A threat to the internal validity of
our study is relying on expert knowledge to define the feature
model, equivalence classes, etc. To mitigate this threat, we
rely on the knowledge of two independent experts. However,
our results show that using the values defined by equivalence
classes does not lead to equivalent behavior in all scenarios.
We argue that the industry will face similar challenges;
thus, our results are meaningful. Another threat comes with
the definition of relevant scenarios for the feedback loop.
We argue that the definition is arbitrary and a systematic
study in the future could address this threat. Finally, a threat
results from the (external) tools we used for evaluation. To
mitigate this threat, we rely on established tools (Carmaker
and Simulink) in the automotive industry and adapted an
existing implementation of ACC.

b) External validity: Considering only ACC functional-
ity in the evaluation cannot let us generalize the conclusions
to other ADAS or ADS. However, we argue that an ACC is
established in modern vehicles; hence, it must be tested.

V. CONCLUSION
This paper establishes a novel concept for semi-concrete

scenario generation and parameter sampling to generate
effective test suites for scenario-based testing of ADAS/ADS.
The proposed concept allows developers to balance the
trade-off between exploring and exploiting driving scenario
spaces as intended by SOTIF (ISO 21448). Based on our
results, we conclude that semi-concrete scenario genera-
tion and parameter sampling increases the effectiveness of
SOTIF-compliant scenario generation to verify and validate
ADAS/ADS. Moreover, depending on the parameter sampling
strategy (full-/sub-parameter ranges, with/without feedback),
our results indicate the potential for different testing strategies.

In the future, we aim to improve the test effectiveness of
the generated scenario suites and address the major external



and internal threats to validity. We will add real-world data
to define continuous parameter ranges and focus on strategies
to define sub-parameter ranges automatically. Moreover, we
will apply optimization techniques such as search-based or
stochastic optimization to improve parameter sampling with
feedback to balance resource allocations.
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“6-layer model for a structured description and categorization of urban
traffic and environment,” IEEE Access, vol. 9, pp. 59 131–59 147, 2021.
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