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Abstract

In a university context, large combined data center and campus networks often consist

of different layers of components: From centrally managed routers, layer 3 switches and

firewalls in its core to decentralized routers, servers and clients managed and operated by

research institutes and other organizational units (OUs). To enforce global (organization-

wide) security policies as well as local policies (e.g. defined by decentralized administrators)

and requirements in the operation of those structures, large centralized firewalls are

deployed. A policy in the context of this work defines how specific traffic flows between

hosts or networks are handled by policy enforcement points like firewalls.

Centrally firewalling large networks requires high performance and expensive appli-

ances capable of securing the whole network from outside of the network as well as

enforcing local requirements and policies. Despite most modern components like routers,

servers or many other network attached devices being able to firewall themselves ("host

firewalls"), most local operators tend to rely on the centralized firewall instead of managing

and configuring each individual device with their vendor or operating system specific in-

terface, as this is the least labor-intensive approach from the device operator’s perspective.

In addition to that there might still be end systems which cannot be used for firewall rule

enforcement for technical or organizational reasons.

In order to utilize this firewalling capacity in the end systems, this thesis proposes a

model, which allows to define a network topology and a policy, which gets distributed

among members of the network. To be able to integrate global as well as local policies

defined by e.g. system administrators, this model includes trust level of hosts and trust

requirements for policies. This allows the network operator(s) to assign trust levels to

hosts which define, which firewall rule can be implemented on which systems. A firewall

rule distribution algorithm which is proposed in this thesis then assigns the rules to the

network in way, which allows the implementation of the policy on end systems if possible.

It is shown experimentally, that this approach is able to be used to optimize networks

regarding their firewall utilization and can be used to reduce the need of large, central

firewall appliances. In addition to that, the architecture of the software created is able to

be used as a centralized management system for firewall rules which can be used by the

network’s administrators as well as administrators of decentralized systems.
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Zusammenfassung

Im universitären Kontext bestehen große kombinierte Rechenzentrums- und Campusnetze

oft aus verschiedenen Komponenten: Von zentral verwalteten Routern, Layer-3-Switches

und Firewalls im Kern des Netzes bis hin zu dezentralen Routern, Servern und Clients,

die von Forschungsinstituten und anderen Organisationseinheiten (OEs) verwaltet und

betrieben werden. Zur Durchsetzung globaler (organisationsweiter) Sicherheits-Policies

sowie lokaler (z. B. von dezentralen Administratoren festgelegter) Policies und Anforde-

rungen beim Betrieb dieser Strukturen werden große, zentralisierte Firewalls eingesetzt.

Eine Policy im Kontext dieser Arbeit definiert, wie bestimmte Datenflüsse zwischen Hosts

oder Netzwerken von Policy-Durchsetzungsstellen wie Firewalls behandelt werden.

Eine zentrale Firewall für große Netze erfordert leistungsstarke und teure Geräte, die

in der Lage sind, das gesamte Netz von außen abzusichern und gleichzeitig lokale An-

forderungen und Policies durchzusetzen. Obwohl die meisten modernen Komponenten

wie Router, Server oder viele andere an das Netzwerk angeschlossene Geräte in der Lage

sind, sich selbst mit einer eigenen Firewall zu schützen ("Host-Firewalls"), tendieren die

meisten lokalen BetreiberInnen dazu, sich auf die zentralisierte Firewall zu verlassen,

anstatt jedes einzelne Gerät mit seiner hersteller- oder betriebssystemspezifischen Schnitt-

stelle zu verwalten und zu konfigurieren, da dies aus Sicht des Gerätebetreibers der am

wenigsten arbeitsintensive Ansatz ist. Genauso kann es weiterhin Szenarien geben, in

denen Durchsetzung von Firewallregeln auf Endsystemen technisch oder organisatorisch

nicht möglich ist.

Um die im Netzwerk vorhandene Firewall-Kapazität in den Endsystemen besser zu nut-

zen, schlägt diese Arbeit ein Modell vor, das es erlaubt, eine Netzwerktopologie und eine

Policy zu definieren, die auf das Netzwerk verteilt wird. Um sowohl globale als auch lokale

Policies, die z. B. von SystemadministratorInnen definiert werden, integrieren zu können,

beinhaltet dieses Modell eine Vertrauensstufe von Hosts und Vertrauensanforderungen

für Policies. Dies ermöglicht es den NetzbetreiberInnen, den Hosts Vertrauensstufen zuzu-

weisen, die festlegen, welche Firewall-Regel auf welchen Systemen implementiert werden

kann. Ein in dieser Arbeit vorgeschlagener Algorithmus zur Verteilung von Firewall-

Regeln weist dann die Regeln teilnehmenden Systemen des Netzwerks in einer Weise zu,

die die Verwirklichung der Regeln auf Endsystemen – sofern möglich – bevorzugt. Es

wird experimentell gezeigt, dass dieser Ansatz dazu geeignet ist, Netzwerke hinsichtlich

ihrer Firewall-Auslastung zu optimieren und den Bedarf an großen, zentralen Firewall-

Appliances zu reduzieren. Darüber hinaus ist die Architektur der erstellten Software in

der Lage, als zentrales Management-System für Firewall-Regeln eingesetzt zu werden, das

sowohl von NetzwerkadministratorInnen als auch von AdministratorInnen dezentraler

Systeme genutzt werden kann.
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1. Introduction

Computer networks, especially on large sites like university campuses, consist of a large

number of different systems, starting from end systems by users to servers, routers and

dedicated firewalls. To protect systems from traffic or accesses from or to network resources

which might pose a security risk, firewalls are used. Firewalls are components in a network,

which are able to filter traffic based on policies defined by their operators. The network is

often operated by a single, central entity. Modern operating systems like Linux include

firewall software implementations in their kernel as well. This allows operators of end

systems to implement firewall rules for their end systems directly on the machine itself.

Most relevant end systems are servers but may also include other types of devices like

domain specific appliances.

In theory, most servers could protect themselves by implementing firewall rules using

this capability, if the desired policy is known by the operator. This could reduce the required

capacity of centrally deployed firewalls in certain network architectures, if those hosts can

be attached to the network in a way that bypass the firewalls. Such an approach allows the

network to scale fast, as not much central firewalling infrastructure is required in order to

copewith the additional traffic. While this increases flexibility in the distribution and design

of the network’s firewall architecture, more firewalls on different systems with different

firewall implementations significantly increase the management effort required to maintain

the security requirements in the network. In addition to that, servers and other systems in

the network are not necessarily administrated by the network administrators but by other

teams within or outside the network administrator’s organization or organizational unit.

Those systems are referred to as "decentrally operated".

Some network operators may also want to define and enforce policies globally to meet

security objectives. One example of such a policy is the limitation of e-mail related traffic

in order to prevent spam messages to originate from the network. Decentrally operated

systems should not be able to bypass this kind of policy.

As networks grow in size, managing all firewalls and ensuring the correct enforcement

of the desired policies can become an unmanageable and error-prone task if done manually.

This is why operators of both centrally and decentrally operated systems tend to use

monolithic central firewalls instead. Those systems provide a unified interface to manage

all firewall rules centrally. The downside of this approach is high costs for those systems,

especially with increasing bandwidth requirements, as the central firewall is the most

likely bottleneck of the network. Additionally this structure is less flexible, if the structure

or size of the network changes or if additional sites are added to the network. Such

firewalling appliances need to be overprovisioned in the point of time of the acquisition of

the hardware in order to accommodate future growth of the network.

This work aims to make a contribution to solve this management problem (firewall

distribution problem) by creating and evaluating a model and accompanying algorithm to

1



1. Introduction

distribute firewall policies in a network which contains multiple firewalls on both centrally

and decentrally operated systems while still fulfilling security objectives defined by global

and local firewall policies.

This thesis is structured as follows: First, preliminaries and terminology required for

this work are outlined in chapter 2. Subsequently, the previously outlined problem is

further introduced and analyzed in chapter 3. Chapter 4 outlines a set of use cases, that

is networks and policies on which the model and algorithm may be applied. Afterwards

the models created for this work are introduced in chapter 5 and the algorithm using that

model is defined in chapter 6. The algorithm is then evaluated in chapter 8 using the use

cases defined in chapter 4. After that, work related to this thesis is summarized in chapter

9. Finally the findings of this work are summarized and future work is outlined in chapter

10.

2



2. Preliminaries

Computer networks historically evolved from the need of sharing and accessing resources

between computers [CK74]. The American Defence Advanced Research Projects Agency

(DARPA) therefore developed mechanisms to achieve this goal. Those mechanisms are

still mostly present in today’s network and internet architecture. One basic concept is

that networks are packet switched networks. This means, that data is put into a packet

with an defined length which is labeled with its destination address. The packet is then

sent into the network, where it is delivered to its destination (in comparison to circuit

switched networks where a communication line between two hosts is established which is

used exclusively by the source/destination until the line gets terminated). In general, this

allows a more flexible network design, as the path of packets through the network can

change dynamically and packet-switching components do not need to hold any state in

order to forward a packet [Cla88]. This process requires a protocol, which standardizes

the way computers in the network are addressed as well as mechanisms which allow the

packet-based inter-network communication with other computer networks via gateways.

This protocol is called Internet Protocol (IP) which was proposed in 1974 [CK74; Cla88]. IP

is designed in a way which deliberately leaves the implementation of the physical network

as well as the content of those packets open. This allows on one hand the implementation

of IP upon different network types (for example Ethernet) and on the other hand the

implementation of more advanced protocols on top of IP (for example the Transmission

Control Protocol, TCP).

This layered architecture was formalized by ISO 7498 (Open Systems Interconnection

model, OSI model) [IEC7498-1] in 7 abstract layers. For the context of this work, only the

first (lower) four layers are relevant:

1. Physical Layer: "The Physical Layer provides the mechanical, electrical, functional

and procedural means to activate, maintain, and deactivate physical connections

for bit transmission between data-link-entities. A physical-connection may involve

intermediate open systems, each relaying bit transmission within the Physical Layer.

Physical Layer entities are interconnected by means of a physical medium." [IEC7498-

1, section 7.7.2]

This covers standards for physical communication on wires, fibers or wireless com-

munications.

2. Data Link Layer: "The Data Link Layer provides functional and procedural means

for connectionless-mode among network-entities, and for connection-mode for the

establishment, maintenance, and release data-link-connections among network-

entities and for the transfer of data-link-service-data-units. A data-link-connection

is built upon one or several physical-connections." [IEC7498-1, section 7.6.2.1]

3



2. Preliminaries

Protocols like Ethernet are connectionless OSI-Layer-2.

3. Network Layer: "The basic service of the Network Layer is to provide the transpar-

ent transfer of data between transport-entities. This service allows the structure and

detailed content of submitted data to be determined exclusively by layers above the

Network Layer." [IEC7498-1, section 7.5.3.1.1]

By this definition, IP is an OSI-Layer-3 protocol.

4. Transport Layer: "The transport service provides transparent transfer of data

between session-entities and relieves them from any concern with the detailed way

in which reliable and cost effective transfer of data is achieved." [IEC7498-1, section

7.4.2.1]

By this definition, TCP or UDP are an OSI-Layer-4 protocol.

Layer-3 network members (i.e. network members with an IP address) which are con-

nected in the same Layer-2 domain can communicate directly with each other by utilizing

protocols which allow the resolution of IP addresses to Layer-2 addresses. In order to

designate, which part of an address belongs to the same subnetwork (e.g. within a Layer-2

network), Classless Inter-domain Routing (CIDR, [RFC4632]) is used. With CIDR, addresses

are split into a prefix (the "network address") and a host part. If both the sender’s and

destination’s addresses are within the same network, a packet can potentially be deliv-

ered directly via its link network after resolving the destination’s Layer-2 address. If the

destination address is not within the Layer-2 domain, other networks can be reached by

sending the packet to a gateway which must also be reachable through the link network.

A gateway (from a sender’s perspective or "router" from a global perspective) is con-

nected to multiple Layer-2 domains and provides an IP interconnect between those net-

works. This process is called forwarding. The coordination of this process through one or

multiple gateways to interconnect all desired networks is called routing [RFC791]. Each

host which wants to communicate with hosts outside its networks needs to keep a table

of network-gateway mappings which defines, which gateway should be used for which

network(s). This table is commonly called routing table.

While the exact routing decision process is an implementation-specific detail of hardware

or software routers, the following basic convention on routing decisions on incoming

packets can be found in most implementations [IEN30; RFC823]:

1. Upon an incoming packet, inspect its destination address.

2. Consult the router’s routing table for the longest (i.e. most specific) prefix matching

the packet’s destination.

3. Forward to the destination associated to the prefix in the routing table.

The longest prefix matching can be implemented efficiently in hardware for example by

using Ternary Content Addressable Memory (TCAM) [RM04]. A routing table can contain

other hosts (which must be reachable by the router) or one of the router’s interfaces as

destination.

4



The Internet Protocol is used in two versions in today’s internet: Internet Protocol

version 4 (IPv4) as defined in [RFC791] and Internet Protocol version 6 (IPv6) as defined in

[RFC8200]. One of the main differences of those IP versions is the address length: Whereas

IPv4 addresses contain 32 bits (which equals 2
32
possible addresses), IPv6 addresses contain

128 bits (equals 2
128

possible addresses). This allows to accommodate themassively growing

number of devices in today’s internet without the use of network address translation

(NAT). In IPv6, conventionally addresses are written using hexadecimal numbers which

are grouped in 4-digit nibbles, separated by colons. Continuous zero-nibbles can be

compacted exactly one time by using a double colon.

An IPv6 address for a network interface in CIDR notation can look like this:

2001:0DB8:1:12::1/64

In this case, the prefix length is 64 bits. To find the prefix (network address) of the subnet,

the first 64 bits of the address is taken and then right-padded with zeros. For the previous

example, the prefix is:

2001:0DB8:1:12::

This means that all hosts within this prefix should be reached directly via their Layer-2

link from other hosts within this prefix.

In this work, only IPv6 addresses are used in examples, although they can be inter-

changed on an abstract level as implementation details of IP protocols are not relevant for

the scope of this work.

One very common example of a higher-layer protocol "on top of" (OSI Layer 4) IP is TCP

as historically introduced in [CK74] and defined in [RFC9293]. TCP does provide packet

ordering, retransmissions in case of packet loss and error correction, which is not provided

by IP or by the User Datagram Protocol (UDP) [RFC768] which is defined as a Layer-4

protocol as well. These features are achieved by first establishing a connection using a

three-way handshake and afterwards by explicit acknowledgements of each segment. In

order to establish a connection, the initializing host first sends a packet with the SYN-flag

set. The communication partner answers this packet by sending a packet with SYN and

ACK-flags set in order to establish the connection in both directions and acknowledging

the receipt of the SYN packet. Finally, the initializing host acknowledges the receipt

of the SYN packet by sending an ACK. During the initialization, the general state of

the connection is called "related", afterwards its "established". When using firewalls,

the firewall needs to track the state of those connections in order to selectively allow

bidirectional communication as a result of a connection establishment. This state tracking

is also required for selectively allowing bidirectional UDP traffic, although not based on

connections but on other attributes of the packets.

Firewalls are (system) components used to police network traffic. In this work, firewalls

are considered to handle IP (Layer 3) traffic with optional (depending on the firewall’s

capabilities) additional properties and attributes from Layer-4 protocols like TCP, although

other types of firewall exists which can handle Layer-2 traffic or application-level traffic.

They enforce policies by applying rules upon the traffic. Conventionally, firewalls are a

part of IP routers. They apply firewall rules on traffic through them and decide the fate

5



2. Preliminaries

of the packet, for example to accept the packet and forward it or to drop it. A simple

way to use firewalls is to create rules which contain conditions (matchers) and associated

actions (like accept or drop). Upon packet forwarding, the firewall inspects packets and can

match conditions based on direct attributes of the packet currently inspected. This kind of

firewalling does not require additional knowledge beyond the information provided by

the packet itself – they are stateless. This works for simple policies. A typical scenario in

current networks is to protect hosts from access originated outside the network. When

implementing this using stateless firewalls, all packets from the outside are dropped. This

does not account for bidirectional communication for example when using TCP though.

In order to allow bidirectional communication without allowing access from outside in

general, the firewall needs to track the establishment of connections and selectively allow

packets which are related to the connections towards inside hosts. This makes the firewall

stateful, as it needs to keep this state for a longer time during the communication of the

hosts in order to be able to identify packets as part of a connection previously established.

As most modern networks contain such scenarios, e.g. to protect primitive end systems

by users from the internet while allowing to access resources in the internet, stateful

firewalls are often a requirement in modern networks. If this state gets lost, the connection

cannot continue and is terminated in a timeout after for example TCP segments don’t get

acknowledged anymore because packets may be dropped by the firewall as it does not

recognize the packets as part of a connection anymore.

Most routers are not able to track state though. Especially so called "layer 2.5" or "layer

3 switches" are able to act as a router, but only support simple access control lists without

stateful connection state tracking (for example the Cisco Nexus 9000 series
1
). To achieve

stateful firewalling, often additional appliances are required. Host firewalls are usually

able to track "their" connections and are therefore stateful firewalls.

As stateless firewalls are just defined by their configuration, redundancy is easily

achieved by placing multiple firewalls with the same configuration in the network. In

case of an outage, the traffic can get dynamically routed to the other firewall. This can be

achieved by using dynamic routing protocols. When building redundancies for stateful

firewalls, the design needs to deal with trade-offs, as the CAP theorem applies. The CAP

theorem described in [Bre00] and proven in [GL02] states, that any stateful distributed

system can only fully achieve two of the following three properties:

• Consistency: The data on all member of the distributed system is consistent.

• Avalability: The system is fully available, even one member fails.

• Network Partition Tolerance: The distributed system is able to cope with loss of

connectivity between members which divides the system into multiple partitions.

One variant is to have one primary firewall which handles the traffic under normal

conditions and one backup firewall with the same configuration. In case of an outage

of the primary firewall, the traffic gets rerouted to the secondary firewall. This causes

established or related connection states (and thus the connections themselves) established

1https://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/

datasheet-c78-736967.html
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through the primary firewall to get lost, as the connection states are only stored on

the primary firewall (no consistency, full availability and partition tolerance). Another

variant is to constantly synchronize the connection states between the two (or more)

firewalls, rendering each firewall able to handle all existing connections at any time (high

consistency, full availability, no partition tolerance). This increases the complexity of the

firewalls though, especially if high bandwidths, high connection counts and low latencies

during packet processing are required which causes that those components need to be

implemented in hardware to reduce time overhead as far as possible. The higher complexity

causes the cost of large stateful firewalls to increase in comparison to stateless firewalls.
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3. Problem Analysis

In this chapter the basic issues posed by the firewall distribution problem are described in

section 3.1 and analyzed in section 3.2.

3.1. Problem

As introduced in chapter 1, this work aims to provide a solution for the management

problem posed by applying firewalling policies to a network, which contains a multitude

of devices that are theoretically capable of implementing firewall rules (policy enforcement

point, PEP). As assigning firewall rules to each PEPmanuallymay be error-prone, especially

if the network grows in size, an automatic distribution is desired. The management

complexity is dependent on the number of hosts contributing to the fulfillment of a policy:

Whereas a fully centralized approach with one firewall covering all policies requires

only the maintenance of rules on one device, a (theoretical) fully distributed approach

where rules are implemented on all end systems require the rules to be maintained on

all end devices. The first approach simplifies the management problem and maximizes

the required central firewalling capacity whereas the second approach complicates the

management problem and minimizes the required central firewalling capacity.

In order to be able to minimize the required central firewalling capacity, the definition of

data structures, which allow to model the network as well as firewall policies, is required.

Those must be suitable to allow the automatic distribution of rules among PEPs in a way

which

1. ensures the fulfillment of the (abstract) policies in the network, and

2. does fulfill the policies in a way which allows as much of the rules as possible to

be implemented on end systems in order to facilitate as much of already available

firewalling capacity as possible. This may allow network administrators to reduce

the need to operate large and costly central firewalls.

In a theoretical "perfect" network, every end device could firewall itself and thus no

central firewall would be required at all once the distribution problem has been solved.

Real networks introduce several further problems:

1. It is not possible to implement firewalls on all end systems. This can have several

reasons: For example a device may lack technical abilities to implement packet filters

in their hard- or software like internet of things (IoT) devices, which are reduced to

minimal networking functionalities in order to reduce cost or to save power. Other

devices might be outside the network operator’s administrative domain like private

devices by users.
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This requires firewalling in the device’s network’s routers.

2. Not all PEPs capable of implementing firewalls support all features required to

implement some policies. For example some routers only support stateless firewalling,

see chapter 2.

3. Not all PEPs can be fully trusted to implement all rules. This is especially true if PEPs

in the network are operated by third parties. Those decentral PEPs may not be trusted

to implement some global security-relevant policies which must be implemented in

all cases. Also some infrastructure components like end systems may be more prone

to compromise, either by external or internal attacks. Some policies are required to

be tamper-proof.

4. Operators of decentral infrastructure might need to facilitate central firewalls. This

is required e.g. if decentral operated devices which are not able to implement firewall

rules are placed into the network without a dedicated firewall operated by the

decentral administrator who demands certain policies to protect those devices. This

makes a centralized firewall management necessary in order to allow decentral

operators to "contribute" their policies to the central firewall.

Therefore, the full implementation of firewall rules in end systems is not realistic given

the current network requirements and intermediate, centrally managed firewalls are still

required. Thus, a model for centralized management of decentralized and distributed

firewalls is required.

The firewall distribution problem is defined as follows:

Definition 3.1 (The Firewall Distribution Problem) The firewall distribution prob-

lem is defined by a Policy P and a network N . The goal is to find a distribution D of
rules 𝑟 derivable from P among the nodes 𝑛 ∈ N such that

• All rules relevant for hosts within N are fulfilled

• rules are implemented on end systems where possible

3.2. Analysis

When deploying policy definitions as rules on policy enforcement points (either manually

or automated), the rules for the firewall need to be phrased from the perspective of the

firewall itself. For example if network A and network B are both routed on Firewall F and A

must not communicate with B, F needs to implement the following rule (see figure 3.1):

For IP forwarding, drop packets where the source address is in network A and

the destination address in network B.

The same goal can also be reached by implementing rules on each host’s firewall in

network B:

Drop all incoming packets whose source address is from network A.
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Yet another approach would be to block all outgoing packets on all hosts in network A

whose destination address lies within network B:

Drop all outgoing packets whose destination address is in network B.

This approach is usually very uncommon, as the implementation of this kind of rules

requires a lot more management and tends to be more error-prone than implementing

the rules on the "path" towards the communication target or on the destination itself,

especially with growing complexity of policies. In addition to that, all senders need to be

fully trusted by the network operator in order to allow this kind of implementation, as

they can be easily bypassed by senders.

In general it is assumed that measures against address spoofing are in place on all

routers.

A.1 B.1

F

A.n B.n

Figure 3.1.: Sample network with two networks A and B, both containing 𝑛 hosts routed

on firewall F.

All those previous scenarios are possible functional indistinguishable implementations

of the same rule, but result into different realizations of the policy.

Definition 3.2 (Functional Indistinguishability) Two firewall implementations in a
network are functionally indistinguishable if every data flow from all nodes and to all
nodes covered by the policy definition(s) result in the same firewalling actions.

If two firewall implementation on a network result in the same firewalling actions but can

be distinguished by other means (e.g. timing), they are still functional indistinguishable.
As this work aims to distribute firewall rules among the network and could be used

to apply the same rules on different network topologies, all rules need to be phrased

topology-independent. This includes that all policy definitions cannot include assumptions

for incoming or outgoing interfaces of individual hosts or the ability of one host to reach

another via the network.

Assumption 3.1 (Policy-Topology Independence) All firewall rules need to be phrased
independently of the network topology.
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Many firewall definition languages like Linux iptables are position dependent. This

means that rules to match a packet are evaluated in a defined order. The first matching

rule gets executed and the evaluation stops. This allows to add exceptions to broad rules

without modifying the base rule. For example if there is one specific host A.1 in network A

from the previous example which must be able to communicate with hosts in B but all

other hosts in A must not, firewall F can implement the policy using following rules:

1. If the packet’s source address matches the address of A.1 forward the

traffic.

2. Drop packets where the source address is in network A and the destination

address in network B.

This causes a positional dependency of the rules. As the first rule is evaluated first,

all packets from A but A.1’s are dropped. If the order is changed (i.e. the second rule

is evaluated first), all packets from A including those from A.1 are dropped despite the

existence of the second rule. As the policy’s rules may get distributed by the algorithm on

different policy enforcement points depending on arbitrary aspects like their firewalling

capability, positional dependent firewall rules may be executed in an incorrect order and

thus the policies may be implemented differently than intended, causing ambiguous results

(same traffic behaves differently on different deployments of the same policy). For example

if F implements the second rule and all hosts in B the first rule, all traffic from A including

A.1 is still blocked, as network A is routed on F and thus packets from A necessarily need

to pass though F. The previous example policy could be changed into an unambiguous

policy:

• Drop packets where the source address is in the upper-exclusive address

range from the first address of network A up to A.1.

• Drop packets where the source address is in the lower-exclusive range

from A.1 to the last address of network A.

This phrasing of the policy allows the implementation on all 3
2 = 9 combinations of hosts

and rules on the path (assuming every host is capable of implementing each rule) like in

the first example.

Assumption 3.2 (No Interdependent Rules) In order to be able to distribute rules in a
way which does not create a deviation from the intended policy, firewall rules must not depend
on other firewall rules.

A path for a rule is defined by the hosts matched by the source addresses as starting

points and hosts matched by the rule’s destination addresses as destinations. Usually

firewalls are an integrated component of a router and in this case packet filters can be

applied before, during or after routing decisions. Therefore the devices in between source

and destination are defined by the possible routes a packet can take while being routed

through the network (see chapter 2). It is possible that a system has multiple gateways.

Those may be set dynamically using routing protocols or statically using metrics. As a

result, a network model needs to include all possible paths through a network.
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The naive way of distributing firewall rules in a network would be to implement all

rules on all hosts. This is not possible, because not all PEPs may be able to implement

(all) rules and this may also cause significant overhead during packet processing in the

existing firewalls. When calculating a firewall distribution which does not require to

implement all rules on all hosts in the network, a suitable minimization needs to be found

which checks if the desired policy is fully enforced. Otherwise, a policy could not be fully

enforced which could create security risks. In this work it is assumed that a policy always

gets implemented correctly on all firewalls as intended, such that the fate of each packet

doesn’t change when the policy is applied on every element of each path respectively. A

host-specific rule implementation on actual firewalls is considered out of scope for this

work. If all possible paths a packet matching a policy between entities in the network

model can take are known, it is sufficient to implement a deny rule on every path at least

once (including the end systems of the path) in order to fully implement the rules despite

the existence of multiple paths. Accept rules need to be implemented on all nodes on all
paths.

Lemma 3.3 (Path Behaviour of Rules) Two variants of path behaviour of firewall rules
can be observed:

1. On each existing path between a rule’s source and destination, a firewall deny rule needs
to be implemented at least once to reach correctness.

2. On each existing path between a rule’s source and destination, a firewall accept rule
needs to be implemented on all nodes to reach correctness.

Not all routers in a network may be able to implement a firewall at all or may only

support stateless firewalling. In case a router is only able to route without implementing

any packet filters the router just forwards all packets.

Lemma 3.4 Routers with no firewalling capability at all are equivalent to firewalls which
always accept all packets.

As the algorithm which distributes the rules needs to cope with such members of the

network, the explicit declaration of accept rules is not required as this needs to be seen as

default behaviour of the components. Therefore, only deny rules are considered in this

work’s algorithm.

Assumption 3.5 (Only Deny Rules) In this work, accept rules must be omitted during
policy definitions.

13





4. Use Cases

In order to understand the problem domain where the approach developed in this work

could be applied and evaluate the effectiveness of the algorithm later in chapter 8, some

realistic network models and policies are required. In this chapter, the approach followed

to define the use cases is explained in section 4.1. After that a collection of realistic network

models along with target policies are presented in sections 4.2 and 4.3.

4.1. Approach

Use cases should both be able to demonstrate the algorithm’s basic functionality (i.e. that

it produces correct results) and also demonstrate cases in which the algorithm produces

results which for example might allow network operators to optimize their network.

Use cases should demonstrate the limits of the algorithm as well. As the purpose of the

algorithm is not the optimization of network designs per se, but to distribute firewall rules,

the algorithm needs to be executed on different variants of a network model in order to

evaluate these variants in regard to optimizations and test, if all firewall rules can still be

distributed in another network configuration.

Therefore, the use cases presented in the following sections are separated into two

categories: Basic Use Cases (section 4.2) and Network Optimization Use Cases (section

4.3). Basic Network Use Cases are use cases, where the algorithm is executed upon a fixed

network representation, whereas Network Optimization Use Cases introduce realistic

variations into the network architecture in order to test optimizations a network operator

might want to try in order for example to reduce cost in network components or enhance

the network’s architecture. When testing different network architectures within a use

case, the policies are kept constant.

In the following, all nodes labeled "Clients" are not centrally managed and do not

implement their own firewalls or are firewalls which cannot be managed by a central entity.

They are used as a placeholder for networks which contain for example mobile clients

like laptops, smartphones and other systems which are outside the network operator’s

management domain and which may be added and removed form the network at any time.

In general, Clients are considered untrusted devices.

To visualize the different networks, Cisco’s Network Topology Icons
1
are used to repre-

sent routers and firewalls. Data flows which must be blocked are drawn using red arrows

from its source to its destinations, covering all possible paths. Labels at data flows further

specify the conditions for block rules. The condition must evaluate to true for a packet to

be blocked.

1https://www.cisco.com/c/en/us/about/brand-center/network-topology-icons.html
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As routers which do not have any firewalling capabilities can be considered as firewalls

which always accept flows (see 3.4), only block rules are considered in the use cases.

4.2. Basic Use Cases

This type of use cases aims to demonstrate experimentally the correctness and limits of

the algorithm.

4.2.1. Router with Redundant Upstream Gateways

Routers can have multiple upstream routers (i.e. towards the internet), for example to

achieve redundancy. How its upstream routers are used depends on the routing configura-

tion of the downstream router. In this use case, depicted in figure 4.1, a network containing

Clients is routed on firewall Firewall 1 which has two uplink routers with firewalling

capabilities Firewall 2 and Firewall 3. Each of those uplink routers are connected to

the internet independently. All firewalls are fully trusted.

The clients must not be reachable from the internet but for related and established

connections (stateful connection tracking). This means that only incoming packets towards

clients are allowed which are an result of a previously initiated communication by the

clients.

Firewall 1
Clients

Firewall 3

Internet

Firewall 2

!related && !established

Figure 4.1.: Network with Full Trust, Router with Redundant Upstream Gateways

4.2.2. Network without Full Trust, Router with Redundant Upstream
Gateways

This use case is structured similarly to the previous use case in subsection 4.2.1 but places

less trust into Firewall 1.
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As an additional policy, clients must not in any case communicate with an adversary

host A, which is positioned in the internet. This must still hold true, if Firewall 1 fails to

implement policies and accepts all flows. The use case is depicted in figure 4.2.

This simulates a network, where one part of the network (Firewall 1 and Clients) is

operated in a decentralized manner in combination with central policies which must be

fulfilled in any case.

Firewall 1
Clients

Firewall 3

Internet

Firewall 2

A

!related && !established

Figure 4.2.: Network without Full Trust, Router with Redundant Upstream Gateways

4.2.3. Router with Redundant Upstream Gateways and Hosts in same L2
Domain

This use case is again structured similarly to the use case introduces in subsection 4.2.1 but

adds a fully trusted Server 1. Server 1 and Clients are placed within the same OSI-Layer

2 domain and can thus reach themselves directly without traversing through Firewall 1

(see figure 4.3). As an additional policy, Clients must not communicate with Server 1.

This use case aims to test a scenario where rules must be implemented on a end system,

as Server 1 is directly reachable by Clients, which are by themselves unable to implement

firewall rules.

4.2.4. Router with Redundant Upstream Gateways and Decentral Hosts in
same L2 Domain

This use case adds another variation to the previous use cases (see figure 4.3). In this case,

Server1 is considered as decentrally operated and thus receives a lower trust level, while

the policy which prohibits communication from Clients towards Server 1 needs to be

implemented as a global policy, which must not be implemented by firewalls with a lower

trust level like decentralized servers.

This use case poses a scenario which cannot be implemented without breaking trust

requirements. The algorithm is expected to fail when executed on this network and policy

combination.
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Firewall 1

Clients
Firewall 3

Internet

Firewall 2
Server 1

!related && !established

Figure 4.3.: Router with Redundant Upstream Gateways and Hosts in same L2 Domain

4.2.5. Router with Redundant Upstream Gateways and Asymmetric Paths

As shown in figure 4.4, this use case consists of Clients and IoT Devices, which are all

routed on Firewall 1. Similar to the use case defined in subsection 4.2.1, Firewall 1

has a redundant upstream. In this case, the upstream consists of one primary path via

Firewall 2 and a backup path through a series of routers: The firewalls Backup 1 and

Backup 3 which are able to do stateful firewalling and Backup 2 which is only capable of

stateless firewalling.

In this case, IoT devices have a higher need for protection against attacks from outside

as well as inside of the network, Clients are not allowed to communicate with the IoT

Devices. Additionally, both Clients and IoT Devices must not be reached from the

internet without previously initiated by them.

This use case is created because it allows a large number of possible realizations of the

given policies.

4.3. Network Optimization Use Cases

These types of use cases consists of at least two networks in order to test whether the

algorithm can be used as a tool to evaluate, if a simplification or improvement in the

network design is feasible from the distributed firewall’s perspective.

4.3.1. Network with Full Trust, Central Router & Border Router

In this use case three servers and a client network are routed on a central firewall

(Firewall 1). The central firewall is connected via a border router (Border 1) to the inter-

net. Border 1 can only handle stateless firewall rules, while Firewall 1 and Server 1-3

can handle both, stateful and stateless rules. All devices besides the clients are fully trusted.

This network is visualized in figure 4.5a.
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Firewall 1

Clients

Firewall 2

Internet

IoT Devices

Backup 2 Backup 1Backup 3

!related && !established

Figure 4.4.: Router with Redundant Upstream Gateways and Asymmetric Paths

The clients must not be reachable from the internet but for related and established

connections (stateful connection tracking) whereas the servers must be reachable from all

networks. Server 1 and 2 must not be reached on TCP port 548 from the internet.

To reduce the load on Firewall 1, a variant of the network is introduced where

Server 1-3 are connected directly to the border router which reduces the potential load of

Firewall 1 as only traffic from and to the Clients needs to be processed by the firewall

as visualized in figure 4.5b.

4.3.2. Network with Full Trust, Central Router & Border Router, Decentralized
Server

This use case is structured equally to the use case previously defined in subsection 4.3.1,

but Server 1 is operated in a decentralized manner.

The policy to block TCP port 548 must be guaranteed in any case and must not be

bypassed by any system which is affected by this rule.

4.3.3. Multi Stage Firewall

This use case aims to simulate a simplified multi staged firewall setup. Such a setup can

be found at KIT. The network is protected by the Border firewall towards the internet.

Behind this firewall, the core router interconnects all subnetworks within the network.

This router is only able to handle stateless firewall rules. To be able to protect certain

networks within the network from accesses from other subnetworks within the network,

a second level firewall Stage 2 is deployed.
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Firewall 1

Server 2Server 1 Server 3

Clients

Border 1

Internet

!related && !established
tcp port 548

(a) Centralized Variant

Firewall 1

Server 2

Server 1

Server 3

Clients

Border 1

Internet

!related && !established

tcp port 548

(b) Distributed Variant

Figure 4.5.: Network with Full Trust, Central Router & Border Router in two variants.

In the network, Border, Core and Stage 2 as well as Mail Server 1 are centrally op-

erated and fully trusted. Mobile Clients is used as a representant for BYOD network

members like devices in a campus wireless network. Decentral Server 1 and Internal

Clients are operated by an decentralized entity and are not trusted.

Like in the previous use cases, all clients must not be reached from the internet besides

for related and established connections. In addition to that, Intenal Clients must not be

reached by Mobile Clients. Decentral Server 1 must not be reached from the internet.

As a global policy, the network operator requires that TCP port 25 is blocked for all systems

from and towards the internet besides for mail servers to prevent spam.

In the centralized variant (figure 4.6a), Decentral Server 1 is placed behind Stage 2

while in the distributed variant (figure 4.6b) Decentral Server 1 is attached to the core

directly.
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Internet

Border

Stage 2

Mail Server 1

Decentral Server 1 Internal Clients

Mobile Clients

Core

port 25 (not for mail servers)

(a) Centralized Variant

Internet

Border

Stage 2

Mail Server 1

Decentral Server 1 Internal Clients

Mobile Clients

Core

port 25 (not for mail servers)

(b) Distributed Variant

Figure 4.6.: Network with multi stage firewalls, clients with different protection levels

within the network, a mail server and a decentrally managed server in two

variants. Client rules for related and established connection states omitted for

clarity.
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In order to implement the algorithm, a model of the relevant aspects of the system and its

components needs to be created which meets the requirements defined in chapter 3. A

network topology model needs to include all system types commonly used in a network.

To reduce complexity the network model should be condensed to the aspects relevant

for firewalling. As the goal of the rule distribution algorithm is to distribute policies to

applicable components in the network, the policy definition should not contain direct

references to the network model itself but should only use attributes related to packets

instead (see assumption 3.1). In this chapter, the model and abstract data structures created

for this work are defined.

5.1. Firewall

A firewall is a component of a device (mostly routers) participating in a network as a

packet filter. Therefore more specialized firewalls used to filter packets on layers below

routers and routing endpoints are not considered in this work.

On a more abstract view, a firewall can also be seen as a configurable mapping from

packet matchers (defined by firewall rules which are a representation of policies) to

corresponding actions. Actions include – depending on the firewall implementation – at

least one of the following two actions:

• ACCEPT: The packet is accepted and forwarded to its destination.

• DROP: The packet is silently discarded (dropped).

Firewall implementations like Linux iptables offer more actions which are not included

into this work.

Depending on the implementation, a matcher can match on any attribute of a packet

like – among many others – the protocol field, source address (src_addr) and destination

address (dst_addr) but also protocol or even application-specific attributes. If a packet

matches the expression defined by a matcher, the corresponding action is executed for the

packet.

To visualize this high-dimensional matcher space, a model of multidimensional hyper-

cubes is introduced. Hypercubes (or 𝑛-cubes) are a geometrical construct, which describe

higher-dimensional (𝑛-dimensional) cubes. In this visualization, each discrete dimension

of the cube represents an attribute on which a packet can be matched and the discrete fields

represent the action taken for each combination of attributes. Figure 5.1 illustrates the

dimensions src_addr, dst_addr and protocol of a uninitialized cube. In figures, undefined

(uninitialized) actions are colored white, ACCEPT actions colored green and DROP actions

red.
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protocol

src_addr

dst_addr

Figure 5.1.: Three dimensions (source address, destination address, protocol) of the unini-

tialized firewall hypercube.

As IP packets consist of a finite, countable and discrete number of protocol-specific

units, each subdivision along the axis of the (hyper-) cube corresponds to one specific

discrete unit. Each matcher can be represented as a hypercube which is by itself a subcube

of the complete matcher space hypercube.

In order to interact with the hypercubes within the context of this work, a collection of

operations on this data structure is defined:

• Combine The combine operation combines two hypercubes into one. In case two hy-

percubes intersect, the overlapping actions become undefined (white units in figures).

Intersecting hypercubes happen, when two rules are constructed interdependent as

described in chapter 3 and assumption 3.2. If for example two rules overlap each

other’s space and define different actions, the order in which the cubes are combined

is relevant for the output of the function. As ambiguous firewall definitions most

likely cause unintended results, overlapping input hypercubes should be avoided.

This is why the combine operation is commutative.

Figure 5.2 shows an example of a combination of two three-dimensional (hyper-)

cubes.

• Select The select operation selects a part of the cube based on arbitrary criteria

like address ranges or protocols. Figure 5.3 illustrates the selection of a sub cube

matching a selection criteria. Criteria are Boolean expressions, which can match

any conjunction or disjunction in all dimensions of the hypercube. Every part of the

hypercube which matches the defined criteria is returned as a new (sub) hypercube.

Those expressions can consist from specific addresses or address ranges (for example

in the form of "addr is contained in src_addr") to high level fields like the connection

state (for example "packet’s connection_state is related").
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• Cut The cut operation removes a sub cube from a target cube. If the sub cube is

not included in the target cube, the unmodified target cube is returned. Figure 5.4

illustrates the removal of a sub cube from a target cube.

This is used to remove a sub-hypercube from the complete policy hypercube when

distributing rules to firewalls. It can be seen (together with select) as the "reverse"

operation to combine but with specific criteria.

protocol

src_addr
dst_addr

protocol

src_addr
dst_addr

combine protocol

src_addr
dst_addr

Figure 5.2.: Combination of two policies into one policy. Policy one (top left) drops packets

with protocol 3 from and to all addresses, policy two (bottom left) drops packets

with protocol 2 from source address 3 to destination address 0 and accepts

packets with protocol 2 and 0 from source address 2 to destination address 0.

protocol

src_addr
dst_addr

select(src_addr=2) protocol

src_addr
dst_addr

Figure 5.3.: Selection of all actions for src_addr 2.

5.2. Network Topology

In order to implement the policies into a network, the definition of a network topology

model is required. A network can be viewed as directed graph with devices as nodes and
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protocol

src_addr
dst_addr

cut

protocol

src_addr
dst_addr

protocol

src_addr
dst_addr

Figure 5.4.: Cut a hypercube (which was previously selected in figure 5.3) out of a target

hypercube.

links as paths. A node can represent different types of network participants. As firewalls

in this work are only considered on end systems and routers, only routers and end systems

(OSI-Layer 3 devices [IEC7498-1]) need to be included into the topology model as well as

their logical layer 3 connectivity.

Each node may have different capabilities in relation to its firewall. For example,

some nodes are capable of full stateful firewalling, while others may only be capable to

implement stateless access control lists (ACLs) as well as nodes which are completely

incapable of firewalling or nodes, where the implementation of host firewalls (that is a

firewall directly on an end device) is organizationally or technically impossible (from now

on called "clients"). Such devices can be for example mobile devices, private devices ("Bring

your own Device", BYOD) or Internet of Things (IoT) devices such as network attached

sensors. Because of the wide variety of possible nodes, the model needs to be flexible

concerning the node types.

To define logical links between nodes, interface lists are introduced. Each node contains

a list of addresses with subnet definition in the form of <interface address>/𝑛 with 𝑛 as

prefix length (Classless Inter Domain Routing notation as defined by [RFC4632]). This

notation allows to extract the network address from the interface, by splitting the address

at the 𝑛-th bit and right-padding the address with zeros. All hosts possessing interfaces

with same network address are in the same OSI-Layer 2 [IEC7498-1] domain and are

therefore able to reach each other directly without a router in between. Interface lists

therefore implicitly define layer 2 rechability lists for each node (link reachabilities). In

graphical representations like in figure 5.5, link reachabilities from each node’s perspective

are depicted using black arrows. In order to simplify the inclusion of clients into the model,

one proxy interface instead of an explicit interface list can be defined in a node, which

allows the implicit creation of interface lists by declaring an address range (containing 𝑛

consecutive interfaces from the beginning to the end of the range) within the subnet. This

acts like 𝑛 instances of the same node in the same subnet.

The network model is not required to include every component of the network but only

those which are capable of routing packages and are used as a router or are able to receive
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or send packets into the network. A router which is composed of multiple devices but

topologically act as one device can be added to the model as one node.

As not every node may be capable of implementing all relevant rules, nodes need a

way to detect, if they could be a firewall for "subordinated" nodes as they may need to

implement rules "for them". In order to be able to build this relation, all possible L3 paths

of packets through the network needs to be added to the model (see Lemma 3.3). This

is achieved by adding gateway relations into to model of the nodes. A gateway relation

contains the route (route property) which is routed from its origin to its target node and

must be accommodated by a link reachability between the origin and target nodes in the

same direction. As routing is not a part of the model itself as actual routing information

from the network and thus the actual path selection is not taken into account, all possible
paths of packets need to be included into the model. For example if a node obtains its

routing information using dynamic routing protocols, the model needs to include all

possible nodes which could become gateway for each subnet. This is required to cover all

possible paths of packets towards a node for the policy enforcement. Otherwise, nodes

which must implement a policy in order to fully cover it through all L3 paths might be

missed by the algorithm. Nodes with no incoming gateway relations are called "leafs"

while nodes with at least one incoming gateway relation are called "routers". A graphical

representation of an example network model is depicted in figure 5.5. In this example,

server2 is connected to two routers called firewall1 and firewall2 which could both

act as their gateways. Hence, both firewalls have an interface within a subnet, which

corresponds to interfaces with an individual subnet each on server2 which is used to

connect to a gateway (transfer networks). The gateway relations’ route is ::/0 which

means that firewall1 and firewall2 might both be used as gateway for all networks

outside server1’s link reachabilities (see chapter 2).

A node must provide the following operations:

• Get Matching Rules Return a subcube of a given input policy which matches the

node, i.e. the node has an address within the policy’s source or destination address.

• Can Implement Rules Check, if a subcube can be implemented on the node (i.e. are

the cube’s trust requirements fulfilled and does the node support the attributes used

in the matcher).

• Implement Rules Mark a subcube as implemented (i.e. covered by the node).

• Get Neighbors(destination address) Return a list of neighbors where a packet

with a given destination address would be forwarded to.

To model networks outside of the modeled network e.g. to be able to control flow

of packets outside of the network, a special internet node is introduced. The internet

node is defined by declaring the CIDR subnet of the modeled network and the internet-

side interface addresses of the transfer network towards/from the internet. This node

cannot match or implement any firewall rules as it is considered outside the network’s

administrative domain.

27



5. Model

f i rewall1 (2)

I n t e r n e t

::/0

se rve r2  (1 ) c l i en t s

f irewall2 (2)

::/0 2001:db8:: /322001:db8:: /32

se rve r1  (1 )

::/0::/0 2001:db8:2:1::2/64-2001:db8:2:1::ffff/64::/0

Figure 5.5.: Visualization of a network model. Leaf nodes are marked with green outlines

and horizontal bars. Nodes with gray infill do not have any firewalling capabil-

ities. firewall1 is a firewall capable of handling stateful rules, firewall2 can

only handle stateless firewall rules (depicted with a box node). The number

in parenthesis next to node names represent their trust level. Black arrows

represent direct reachable nodes from each node’s perspective, while dashed

arrows represent proxy interfaces. Interface addresses of links are omitted for

better readability. Proxy links are labeled with their address range. Gateway

edges are represented with blue arrows and are labeled with their route at-

tribute. The "Internet" node represents a special node, which cannot match or

implement anything and acts as a source and sink for packets from or towards

sources and destinations outside the network.

5.3. Trust

As nodes may be decentralized, a model of trust towards nodes is required. Decentralized

nodes cannot be trusted to implement rules correctly at any given time, for example due

to intervention or misconfiguration by their administrators. Therefore a trust model needs

to insure that "important" policies cannot be bypassed by nodes with lower trust.

To add a trust dimension to the network model (section 5.2), each node receives a

numeric trust value. In the firewall model (section 5.1), a trust requirement is added

to each action in the hypercube. The Get Matching Policy operation must not return

subcubes containing actions with a trust requirement which is smaller than the node the

operation is called on. By defining trust levels in a numerical representation, a hierarchy

of trust levels can be modeled, allowing a more fine-grained concept of "trust". This allows

the algorithm to leave policies with higher trust requirements untouched by nodes with

lower trust levels. An example of such a scenario can be found in use cases 4.3.2 and 4.2.4

where nodes have different trust levels and some policies have higher trust requirements

(policies which need to be implemented in any case even if a decentralized node e.g. has a

misconfigured firewall).
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In this chapter the algorithm to distribute firewall rules on policy enforcement points is

described.

As firewall policies and the network model needs to be provided upfront, the algorithm

is an offline algorithm which calculates a complete solution (i.e. firewall rule distribution)

for a given network at once. It is assumed, that the policy definition is provided in an

organized manner which allows to query policies efficiently (policy definition database).

The algorithm needs to check, whether the desired policy defined in the policy definition

database can be implemented on a given network and calculate, which member of the

network needs to implement which rules – the algorithm transforms the policy definition

database into a policy distribution database. Policy-preserving rule construction from the

policy definition on the individual firewalls is not part of this algorithm. Changes in the

network need to be added to the model and the algorithm needs to be re-executed upon

the new network in order to produce a solution for the new network.

The algorithm consists of two stages: In the first stage (subsection 6.1) firewall rules

which can be enforced directly by hosts affected by the rules are implemented. In the

second stage (subsection 6.2), remaining rules which must be enforced by intermediate

firewalls are implemented.

6.1. Host Rule Assignment

This stage is the first round of the algorithm (see algorithm 1, lines 3-7). In this stage, all

rules which can be enforced directly on nodes are implemented. This is done by iterating

over all nodes in no particular order and all rules returned by the node function Get

Matching Nodes (see section 5.2) are implemented.

To implement the node function Get Matching Nodes, all rules are considered which

match the following conditions:

• The rule is not marked as implemented.

• The rule’s trust requirement is smaller or equal the node’s trust level.

• Any "hard" condition which does not allow the implementation of these rules at all

based on the node’s firewalling capability. One example of such a hard condition

would be an unsupported action. A "soft" condition would be something, which

could be still implemented after a cut along an axis is performed (to "cut out" the

unsupported part of the rule).

In the first step, all interfaces of the current node are iterated. For each interface there are

two ways in which the node can be affected by a rule:
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1. The node’s interface address is contained in the rule’s src_addr. This means, that

the rule must be implemented as outgoing rule from the node’s perspective.

2. The node’s interface address is contained in the rule’s dst_addr. This means, that

the rule must be implemented as incoming rules from the node’s perspective.

Each rule which affects the current node is cut out of the policy andmarked as implemented

by the current node in the policy distribution database (algorithm 1 lines 5-6).

In the second step, all outgoing gateway edges are iterated. If the interface address on

the link edge on which the gateway is reached is in the rule’s src_addr and the intersection

between the gateway edge’s route and the rule’s dst_addr is not empty, the rule must

be implemented as outgoing rule from the node’s perspective. This means, that the node

reaches the rule’s destination address via its gateway and can therefore cut the rule on the

node’s address and mark the cut itself as implemented by the node (algorithm 1 lines 5-6).

After those two steps, all parts of the rules which could be implemented on the hosts

are implemented. The remaining rules cannot be fulfilled on the hosts and must be

implemented by intermediate firewalls (section 6.2).

6.2. Intermediate Firewalls

In the second stage of the algorithm, the remaining rules which are not marked as imple-

mented by the previous step are implemented on the intermediate firewalls in the network.

As of lemma 3.3, all paths between a rule’s source and destination need to be cut at least

once in order to reach full network coverage of a rule. To reach this, all unimplemented

remaining rules are considered. For each rule, all paths between matching nodes need to

be found using a path finding algorithm. In order to find paths, each node needs to know

its neighbors which can be used to reach the destination. A neighbor is not considered a

neighbour if the rule is already implemented on the node. If there are multiple matching

gateway edges with the same prefix length an undefined one is chosen.

Once a path is found, the rule needs to be implemented on one of the nodes on the path.

Which node is determined by the firewalling capabilities of the nodes. If there are more

than one node capable of implementing the rule, the following heuristic used to decide

the node:

• By adding a weight attribute to the nodes the rule can be assigned to the node with

the highest weight. This can be used to add the capacity of the firewalls to the

model. If the network contains large firewall appliances this metric can be used to

concentrate intermediate rules on hosts with higher capacity.

• In case of no weights or equal weights on the path nodes, assign to an undefined

node.

The implementation of the rule on the chosen node is marked in the policy distribution

database. If no node on the path is able to implement the rule, the algorithm fails.

This path finding algorithm and rule assignment is repeated for the rule until no path is

found, resulting in rule coverage on all paths.
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6.3. Finalization

After both steps of the algorithm are finished, the policy distribution database is evaluated.

If there are any rules which are neither implemented on any host nor on intermediate

hosts and there are nodes which have interfaces with IP addresses within the source or

destination address of the remaining rules, not all rules could be implemented on the

network and the algorithm fails. Otherwise, the rules must be materialized in the nodes

mentioned in the policy distribution database. Materialization means, that the rules as

phrased in the policy definition are translated in each node’s native firewall language. This

should reach full coverage of the policy in the network.

6.4. Pseudo Code

In this section, the algorithm is outlined as pseudo code in algorithm 1.

Algorithm 1 Policy Distribution Algorithm

1: 𝑁 ← 𝑁𝑜𝑑𝑒𝑠

2: 𝑃 ← 𝑃𝑜𝑙𝑖𝑐𝑦

3: for 𝑛 ∈ 𝑁 do ⊲ Host Rule Assignment

4: 𝑟𝑢𝑙𝑒𝑠 ← 𝑛.𝑔𝑒𝑡_𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔_𝑟𝑢𝑙𝑒𝑠 (𝑃)
5: 𝑛.𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡_𝑟𝑢𝑙𝑒𝑠 (𝑟𝑢𝑙𝑒𝑠)
6: 𝑃 ← 𝑃 .𝑐𝑢𝑡 (𝑟𝑢𝑙𝑒𝑠)
7: end for
8:

9: for 𝑟 ∈ 𝑃 do ⊲ Intermediate Firewalls

10: 𝑠𝑟𝑐_𝑛𝑜𝑑𝑒𝑠 ← all nodes with an interface address ∈ 𝑟 .𝑠𝑟𝑐_𝑎𝑑𝑑𝑟
11: 𝑑𝑠𝑡_𝑛𝑜𝑑𝑒𝑠 ← all nodes with an interface address ∈ 𝑟 .𝑑𝑠𝑡_𝑎𝑑𝑑𝑟
12: while ∃ path without rule implementation 𝑝 between any 𝑠𝑟𝑐_𝑛𝑜𝑑𝑒 and any

𝑑𝑠𝑡_𝑛𝑜𝑑𝑒 do
13: 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑒𝑑 ← 𝐹𝑎𝑙𝑠𝑒

14: 𝑝 ← 𝑠𝑜𝑟𝑡_𝑏𝑦_𝑛𝑜𝑑𝑒_𝑤𝑒𝑖𝑔ℎ𝑡 (𝑝)
15: for 𝑛 ∈ 𝑝 do
16: if 𝑛.𝑐𝑎𝑛_𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 (𝑟 ) then
17: 𝑛.𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡_𝑟𝑢𝑙𝑒𝑠 (𝑟 )
18: 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑒𝑑 ← 𝑇𝑟𝑢𝑒

19: break
20: end if
21: end for
22: if ¬𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑒𝑑 then
23: fail ⊲ Not all paths could be covered

24: end if
25: end while
26: end for
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In this chapter, overall design considerations of the software are outlined in section 7.1.

Afterwards, the implementation of the data structures (based on the model introduced in

chapter 5) and algorithm (see chapter 7) is outlined in sections 7.2 and 7.3.

The implementation which acts as a proof of concept (PoC) for this work’s model and

algorithm is written in Python and uses PostgreSQL
1
as data store for dynamic data.

Implementation resources can be obtained from this work’s complimentary material and

the setup process is documented in appendix section A.1.

7.1. Application Design and Components

In order to integrate the model and algorithm into an usable system, several components

are required. In figure 7.1 the proposed architecture of the software is illustrated. The

central component is the policy distribution algorithm, which uses information provided

by the policy definition database and the network model to generate a policy distribution,

which is stored in the policy distribution database. Network model, policy definition

database, policy distribution database and a visualizer for network models and policy

distributions within the network are implemented in this work as described in the following

sections.

In order to realize the abstract policy definitions on the actual firewalls, a compiler which

converts the abstract policy definition into firewall rules is required (platform-specific

firewall language output). This can for example be a translation into Linux iptables syntax

or into access control lists of routers. To deploy those rules on the hosts, a host agent is

required. This either runs on the firewall controller – which also executes the distribution

algorithm and holds the databases – or on another machine in order to deploy the rules

via a vendor specific interface or or on the PEP itself. The latter might be the case for

servers with firewalling abilities. In order to reduce manual management of the inventory,

host agents could contribute "their" definitions of hosts they manage into the network

model. For example a Linux PEP host agent could contribute its hostname, interface IP

addresses and routing definitions into the model. This allows a flexible deployment of the

distributed firewall.

As seen in the "block traffic from the internet" example in chapter 3, some policies

might consist of multiple entries in the policy definition database due to non-contiguous

addresses ranges. This example shows, that a high-level policy language is needed to

increase the ease of use and reduce potential configuration errors due to inconsistently

updated policies in case changes are required to the policy. Such a language might be

1https://www.postgresql.org
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developed or an existing one might be adapted in the future. The language must be

topology independent (see assumption 3.2) and must not allow policy interdependencies

(see assumption 3.1). Languages like Mignis [Adã+14] could provide a good baseline to

achieve those features.

Policy Language Input

Policy Definition Database Policy Distribution Algorithm Policy Distribution Database

Platform−specific

Firewall Language Output
DOT Visualizer

Network Model

Host Agent

Figure 7.1.: Components of the software. Highlighted: Implemented in this work

7.2. Data Structures

In this section, the implementation of the data structures defined in chapter 5 is described.

7.2.1. Firewall Policies

To implement the firewall policy model described in section 5.1, PostgreSQL is used.

The dimensions of firewall hypercubes are implemented using range types. Range types

represent an interval on any datatype which has a total order. In this implementation, all

ranges are handled as closed intervals. As IP addresses, port ranges, protocol identifiers

and other properties of IP packets are represented by discrete numbers, range types can

be used. Ranges can be grouped into a multirange, containing a ordered list of non-empty

ranges
2
. PostgreSQL’s range and multirange types allow a multitude of operations. The

following PostgreSQL range operations
3
are used in the algorithm:

• range1 @> range2 and range1 <@ range2: Checks whether range1 contains range2

or if range1 is contained in range2. The containment check can also be done with a

single element of the range’s base type and a range (element @> range1).

2https://www.postgresql.org/docs/current/rangetypes.html
3https://www.postgresql.org/docs/15/functions-range.html
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• range1 && range2: Checks whether range1 and range2 overlap, i.e. if they have

elements in common

• multirange1 - multirange2: Calculates the difference between two multiranges.

Returns a multirange which contains the remaining ranges.

Example: Given multirange1 as {[a,z]} and multirange2 as {[c,c]}, the result of

multirange1 - multirange2 would be {[a,b], [d,z]}.

The whole policy is stored in a SQL table (policy_definition) which represents a sparse

policy hypercube. This table represents the policy definition database as a sparse matrix.

The table contains the source and destination address ranges (src_addr and dst_addr) as

well as the trust requirement (trust_requirement), the action (such as DROP) and all other

matchers like protocol and port as columns.

On this data structure, the policy model with its operations (see section 5.1) is imple-

mented:

Combine The combine function is implemented by adding rows to policy_definition.

The entity calling the combine function is responsible for checking, that the rules do not

overlap (see assumption 3.1).

Select The select operation is implemented using PostgreSQL’s native SELECT operation.

For example, if all rules (subcubes) matching a specific source address addr (i.e. if addr is

contained in the src_addr column) should be selected, the query

SELECT * FROM policy_definition WHERE addr <@ src_addr;

returns all rows which match this condition.

Cut In order to cut the match out of the matching row, the previously defined select

operation can be expanded by calculating the difference between the original range and

the match:

SELECT *, ((src_addr::inet_multirange) - (addr::inet::inet_multirange))

AS cut FROM policy_definition WHERE src_addr @> addr;

The column cut returned by this query contains the original src_addr column without

addr. If addr was not the first or last element of the range, cut is a multirange containing

two elements: The range from the first source address of the rules until addr and from

addr + 1 until the last source address. By duplicating the same row but multiple times

with all ranges contained in the cut multirange as new src_addr value and deleting the

original row, the cut operation along the src_addr is finalized. This can be performed

along all columns in order to implement only rules or parts of rules matching the policy

enforcement point’s firewalling capabilities.
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7.2.2. Network

The network model is implemented as python classes. In this PoC, policy Enforcement

Points (PEPs) with their types, interfaces and gateway relations are defined statically by

defining a so called "inventory definition", which is represented by a YAML file which

gets deserialized into the aforementioned python classes. YAML is a human readable data

serialization format, which allows the definition of several scalar data types like numbers

and strings as well as lists and objects (key-value mappings)
4
. To accommodate different

firewall implementations and capabilities, each PEP needs its type defined in the inventory

file, which could be extended with data provided by hosts agents in the future. In the PoC,

the only implemented PEP types are a stateful and stateless generic firewall and clients,

which represent devices with no firewalling capability.

The special node Internet is added automatically and is defined by specifying the

network which is the subject of the distribution as CIDR.

To visualize the inventory, the PoC contains a DOT visualizer, which renders the network

model as a graph. DOT
5
is a graph description language, which allows the definition of

nodes and edges. An additional external compiler like GraphViz’s dot transforms the DOT

description into different image types. An example of this visualisation generated by the

PoC using the example inventory definition mentioned in appendix section A.1 can be

found in chapter 5 in figure 5.5.

7.3. Algorithm

In the following, functions declared in the models defined in chapter 5 are used. To

ensure that a policy is fully implemented in the network, the implementation of rules

on nodes is tracked in a PostgreSQL table called policy_work. This table is a copy of

the policy_definition (see 7.2.1) table but additionally contains a implemented_by and

path_implemented column to track the implementation status of each rule. As cut opera-

tions are performed during the execution of the algorithm, a origin column is introduced to

reference the originating rule out of the policy_definition table from which the result-

ing rules where created. Upon the execution of Implement Rules on a node, the affected

subcube is cut out of the policy definition (see section 7.2) and marked as implemented in

the policy_work table.

The host rule assignment stage is implemented as described in chapter 6.1: For all hosts

the algorithm checks, if the rule can be directly implemented on the host firewalls. To

track host implementations, the implemented_by column is used to mark, by which node

the rule is implemented. If implemented_by is NULL, the rule is not implemented on any

host.

In the next stage (intermediate firewalls), calls of Implement Rules append the imple-

menting node to the path_implemented column. The column is of the type ARRAY, which

allows the addition of multiple entries into the column. This is necessary, as there may be

multiple paths (and by extent multiple nodes) on which a rule needs to be realized.

4https://yaml.org/
5https://www.graphviz.org/documentation/
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To find paths, Dijkstra’s Algorithm [Dij22] is used to return the paths between two nodes,

sorted by path length in ascending order This is done to make results more reproducible

as paths are always inspected from shortest to longest as each path is "disrupted" by the

realization of a rule on the path. For each unimplemented rule, all nodes covered by the

rule’s src_addr are used as starting nodes and all nodes covered by the rule’s dst_addr are

used as destination nodes for Dijkstra’s Algorithm. Because Dijkstra’s Algorithm requires

each node to know its neighbors, Get Neighbors is called on each traversed node which

ignores neighbours, where the rule currently inspected is already implemented. As this

depends on the node’s routing information from the network model and routing decisions

can vary from implementation to implementation of each node type, this function is placed

into the node class within the network model’s implementation. The basic implementation

of the generic firewall supplied in this work uses the same rules as commonly used by

routing decisions in routers: If the destination address is within one interface’s network

of the node, use the interface. Otherwise, use the longest matching route prefix first,

considering the node’s outgoing gateway edges. In case a different heuristic is required,

another node type can be implemented.

After both stages of the algorithm have completed, the software terminates and the

policy_work table becomes the policy distribution database. The network model’s DOT

visualizer is extended to allow the visualization of the distribution in the model’s DOT

graphs, as shown in the evaluation in chapter 8.
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In this chapter, the use cases previously defined in chapter 4 are transferred into the model

defined in chapter 5 and the algorithm described in chapter 6 and implemented in 7 is

executed upon this input and the results are discussed in section 8.1 to show by experiment,

if the model is useful for realistic examples. Afterwards, the running time of the algorithm

is evaluated in section 8.2.

8.1. Use Cases

In general, the documentation IPv6 prefix 2001:db8::/32 in accordance to [RFC3849] is

used to represent addresses in the network modeled. End system networks are assigned

/64 networks within 2001:db8:a::/48. Intermediate systems (i.e. routers and firewalls)

are assigned /64 networks within 2001:db8:1::/48. Hosts used as gateways in networks

are assigned the address <prefix>::1/64. To simplify the evaluation, networks within

2001:db8:1::/48 are never routed via gateway edges and gateway addresses are excluded

from firewall rules to avoid implementation of input rules on gateways. This is based on

the assumption that in general no services are offered on gateway interfaces or get utilized

by the gateways directly.

To improve readability, repeating IPv6 nibbles containing only ffff are shortened using

three dots ("...") and ranges containing only one element are shortened to "<element>"

instead of "[<element>,<element>]".

Each rule in policy_definition (see chapter 7.2) is assigned a unique identifier (id).

The network model and the firewall rule distribution results are visualized using graphs

like in figure 5.5 with rule ids assigned to the node in the text line below each node’s label.

In order to classify the results of the algorithm, some definitions to define a correct

outcome of the rule distribution algorithm are required:

Definition 8.1 (Correctness of a Distribution) A distribution of firewall rules on a net-
work is correct if the behaviour of the network for all possible data flows is functional
indistinguishable from a theoretical network where every member implements all rules
(ignoring node capabilities).

Definition 8.2 (Redundancy-Free Solution) A correct distribution of firewall rules on
a network is not redundant/locally minimal if no implementation of a rule can be removed
without creating an incorrect distribution.

In order to quantitatively evaluate, whether the algorithm is in general able to reach

the goal of distributing rules on end systems whenever possible, the following metric is

introduced:
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Definition 8.3 (End System Distribution Factor (ESDF)) The end system distribution

factor 𝑑rule in a correct distribution of rules in a network is defined by

𝑑rule =

{
leaf_implementations(rule)

matching_leafs(rule) if matching_leafs(rule) > 0

0 otherwise

With matching_leafs(rule) being the number of leafs affected by rule (i.e. at least one of
a node’s interface addresses matches either the rule’s source or destination address) and
leaf_implementations(rule) the number of leaf nodes which implemented rule.

This metric becomes zero for a rule, if the distribution is fully centralized from the perspec-

tive of end systems and one, if the rule is fully implemented on end systems. If there are

any rules in any solution for the firewall distribution problem (see 3.1) with an 𝐸𝑆𝐷𝐹 > 0,

the algorithm fulfills the aforementioned goal of distributing rules on end systems. In

order to compare distributions among different use cases, 𝐸𝑆𝐷𝐹max is defined:

Definition 8.4 (𝐸𝑆𝐷𝐹max) The maximum end system distribution factor 𝐸𝑆𝐷𝐹max in a
correct distribution of rules in a network is defined by

𝐸𝑆𝐷𝐹max = max(𝑑1, . . . , 𝑑𝑛)

With 𝑑𝑛 being the ESDF for rule 𝑛.

The following results have been created using a reference implementation of the al-

gorithm and datastructures written in Python, which can be obtained this work’s com-

plementary material. A documentation on how to reproduce the results can be found in

section A.2.

8.1.1. Basic Use Cases

8.1.1.1. Router with Redundant Upstream Gateways

In this subsection, the use case defined in subsection 4.2.1 is evaluated.

To block not related or established connections from the internet towards Clients, the

policy is phrased using two rules to keep them dependency-free (assumption 3.1):

• Drop packets with not state established or state related with source addresses from

address 0 (::) to the exclusive beginning of the network (2001:db7:ffff:...)

• Drop packets with not state established or state related with source addresses from

the first address outside the network (2001:db9::) to the maximum IPv6 address

(ffff:...:ffff)

The policy definition can be obtained from table 8.1 and the network model including the

final distribution of firewall rules in figure 8.1a.

As there are two paths affected by the rules (Internet→ Firewall2→ Firewall1→
Clients and Internet → Firewall3 → Firewall1 → Clients), each rule needs to be

implemented on both paths at least once (see Lemma 3.3). Because there is no weight
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assigned to the Firewall nodes and all three Firewall nodes are capable of implementing

the rules in the policy definition, the rules have been implemented on an undefined node

on the path (see chapter 6). The reference implementation has chosen Firewall1 and

Firewall2 as they happen to be the first ones in the implementation’s data structure (see

figure 8.1a). As Firewall1 needs to handle the traffic for Clients in any cases, a higher

weight in comparison to the other firewalls can be assigned to Firewall1 in order to

concentrate the rules there. The result of this weighted variant can be seen in figure 8.1b.

Both solutions meet the correctness definition (see definition 8.1) and are a minimal
solution for the firewall distribution problem (see definition 8.2). In all solutions, the ESDFs

𝑑1 and 𝑑2 are zero, as no end system is capable of implementing firewall rules.

id src_addr dst_addr action
1 [::, 2001:db7:ffff:ffff:. . . :ffff:ffff] [2001:db8:a:1::2, 2001:db8:a:1::ffff] DROP

2 [2001:db9::, ffff:ffff:. . . :ffff:ffff] [2001:db8:a:1::2, 2001:db8:a:1::ffff] DROP

id trust_requirement tcp_state_established tcp_state_related protocol port
1 1 false false NULL NULL

2 1 false false NULL NULL

(2 rows)

Table 8.1.: Policy definition for use case 4.2.1 "Router with Redundant Upstream Gateways"

Firewal l1  (1)

Firewal l2  (1)
1 , 2

::/0

Firewal l3  (1)
1 , 2

::/0

Cl ien t s

2001:db8:a:: /48

I n t e r n e t

::/0

2001:db8:a:: /48

::/02001:db8:: /32 2001:db8:: /32

2001:db8:a:1::2/64-2001:db8:a:1::ffff/64::/0

(a) Default Variant

Firewal l1  (1)
1 , 2

Firewal l2  (1)

::/0

Firewal l3  (1)

::/0

Cl ien t s

2001:db8:a:: /48

I n t e r n e t

::/0

2001:db8:a:: /48

::/02001:db8:: /32 2001:db8:: /32

2001:db8:a:1::2/64-2001:db8:a:1::ffff/64::/0

(b) Firewall1-weighted Variant

Figure 8.1.: Network model and rule distribution for use case 4.2.1 "Router with Redundant

Upstream Gateways"

8.1.1.2. Network without Full Trust, Router with Redundant Upstream Gateways

In this subsection, the use case defined in subsection 4.2.2 (a variation of the previous use

case in subsection 4.2.1) is evaluated.
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As in table 8.2 visualized, the additional rule with id = 3 is added with trust_requirement
= 2 blocking traffic from Clients towards the address 2a00:1398:b::8d03:81e2 which

is acting as adversary A. The trust level of Firewall1 and Firewall2 is increased to two,

while Firewall1 has a trust level of one. Similarly to the previous use case, a variant with

default weights is depicted in figure 8.2a. Figure 8.2b shows a variant, where like in the

previous use case Firewall1 received a higher weight. As the rule with id = 3 has a higher

trust requirement which is only fulfilled by Firewall2 and Firewall3, the rule can only

be implemented on them.

Both solutions meet the correctness definition (see definition 8.1) and are a minimal

solution for the firewall distribution problem (see definition 8.2). In all solutions, the ESDFs

𝑑1 and 𝑑2 are zero, as no end system is capable of implementing firewall rules.

id src_addr dst_addr action
1 [::, 2001:db7:ffff:ffff:. . . :ffff:ffff] [2001:db8:a:1::2, 2001:db8:a:1::ffff] DROP

2 [2001:db9::, ffff:ffff:. . . :ffff:ffff] [2001:db8:a:1::2, 2001:db8:a:1::ffff] DROP

3 [2001:db8:a:1::2, 2001:db8:a:1::ffff] 2a00:1398:b::8d03:81e2 DROP

id trust_requirement tcp_state_established tcp_state_related protocol port
1 1 false false NULL NULL

2 1 false false NULL NULL

3 2 NULL NULL NULL NULL

(3 rows)

Table 8.2.: Policy definition for use case 4.2.2 "Network without Full Trust, Router with

Redundant Upstream Gateways"

Firewal l1  (1)

Firewal l2  (2)
1 , 2 , 3

::/0

Firewal l3  (2)
1 , 2 , 3

::/0

Cl ien t s

2001:db8:a:: /48

I n t e r n e t

::/0

2001:db8:a:: /48

::/02001:db8:: /32 2001:db8:: /32

2001:db8:a:1::2/64-2001:db8:a:1::ffff/64::/0

(a) Default Variant

Firewal l1  (1)
1 , 2

Firewal l2  (2)
3

::/0

Firewal l3  (2)
3

::/0

Cl ien t s

2001:db8:a:: /48

I n t e r n e t

::/0

2001:db8:a:: /48

::/02001:db8:: /32 2001:db8:: /32

2001:db8:a:1::2/64-2001:db8:a:1::ffff/64::/0

(b) Firewall1-weighted Variant

Figure 8.2.: Network model and rule distribution for use case 4.2.2 "Network without Full

Trust, Router with Redundant Upstream Gateways"
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8.1.1.3. Router with Redundant Upstream Gateways and Hosts in same L2 Domain

In this subsection, the use case defined in subsection 4.2.3 (a variation of the previous use

case in subsection 4.2.1) is evaluated.

The use case adds a decentralized host Server1 in the same L2 domain as the clients as

indicated by the black reachability arrows between the nodes in figure 8.3. Clients must

not communicate with Server1 with the IPv6 address 2001:db8:a:1::a:1. This rule with

id = 3 is shown in table 8.3.

Like in the previous use cases, a distribution variant with default weights and one with

a higher weight on Firewall1 is shown in figure 8.3. As Clients and Server1 can reach

each other directly, rule three must be implemented on Server1. Because the node is able

to implement the rule, it gets implemented on the node.

Both solutions meet the correctness definition (see definition 8.1) and are a minimal

solution for the firewall distribution problem (see definition 8.2). In all solutions, the ESDFs

𝑑1 and 𝑑2 are zero, as no matching end system is capable of implementing firewall rules.

The ESDF 𝑑3 is 0.5, as the rule gets fully covered by Server1 which is a leaf node. As the

rule matches exactly two nodes in the network and no other nodes including the internet,

the maximum value for 𝑑3 in aminimal solution is 0.5. An ESDF of one would require both

Clients and Server1 to implement the rule which would create a non-minimal solution,
as one of those rule implementations could be removed without creating an incorrect
solution.

id src_addr dst_addr action
1 [::, 2001:db7:ffff:ffff:. . . :ffff:ffff] [2001:db8:a:1::2, 2001:db8:a:1::ffff] DROP

2 [2001:db9::, ffff:ffff:. . . :ffff:ffff] [2001:db8:a:1::2, 2001:db8:a:1::ffff] DROP

3 [2001:db8:a:1::2, 2001:db8:a:1::ffff] 2001:db8:a:1::a:1 DROP

id trust_requirement tcp_state_established tcp_state_related protocol port
1 1 false false NULL NULL

2 1 false false NULL NULL

3 1 NULL NULL NULL NULL

(3 rows)

Table 8.3.: Policy definition for use case 4.2.3 "Router with Redundant Upstream Gateways

and Hosts in same L2 Domain"

8.1.1.4. Router with Redundant Upstream Gateways and Decentral Hosts in same L2 Domain

In this subsection, the use case defined in subsection 4.2.4 (a variation of the previous use

case defined in subsection 4.2.3) is evaluated.

This variant changes the trust_requirement of the rule with id = 3 to two while leaving

all trust levels of all leaf nodes at one as shown in table 8.4.
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Firewal l1  (1)

Firewal l2  (2)
1 , 2

::/0

Firewal l3  (2)
1 , 2

::/0

Cl ien t s
Se rve r1  (1 )

3

2001:db8:a:: /48

I n t e r n e t

::/0

2001:db8:a:: /48

::/02001:db8:: /32 2001:db8:: /32

2001:db8:a:1::2/64-2001:db8:a:1::ffff/64::/0

2001:db8:a:1::2/64-2001:db8:a:1::ffff/64

::/0

(a) Default Variant

Firewal l1  (1)
1 , 2

Firewal l2  (2)

::/0

Firewal l3  (2)

::/0

Cl ien t s
Se rve r1  (1 )

3

2001:db8:a:: /48

I n t e r n e t

::/0

2001:db8:a:: /48

::/02001:db8:: /32 2001:db8:: /32

2001:db8:a:1::2/64-2001:db8:a:1::ffff/64::/0

2001:db8:a:1::2/64-2001:db8:a:1::ffff/64

::/0

(b) Firewall1-weighted Variant

Figure 8.3.: Network model and rule distribution for use case 4.2.3 "Router with Redundant

Upstream Gateways and Hosts in same L2 Domain"

The algorithm fails as Server1 cannot implement the rule as of its trust level and the

direct path between Clients and Server1 is not covered by any implementation besides

rule 3 matching these nodes, which is the expected behaviour.

id src_addr dst_addr action
1 [::, 2001:db7:ffff:ffff:. . . :ffff:ffff] [2001:db8:a:1::2, 2001:db8:a:1::ffff] DROP

2 [2001:db9::, ffff:ffff:. . . :ffff:ffff] [2001:db8:a:1::2, 2001:db8:a:1::ffff] DROP

3 [2001:db8:a:1::2, 2001:db8:a:1::ffff] 2001:db8:a:1::a:1 DROP

id trust_requirement tcp_state_established tcp_state_related protocol port
1 1 false false NULL NULL

2 1 false false NULL NULL

3 2 NULL NULL NULL NULL

(3 rows)

Table 8.4.: Policy definition for use case 4.2.4 "Router with Redundant Upstream Gateways

and Decentral Hosts in same L2 Domain"

8.1.1.5. Router with Redundant Upstream Gateways and Asymmetric Paths

In this subsection, the use case defined in subsection 4.2.5 is evaluated.

The policies regarding connection states for Clients and IoT devices are implemented

similarly to the previous use cases as rules with the id one to four as shown in table 8.1.1.5.

To prevent communication of Clients with IoT devices, the rule with id = 6 is defined,

which DROPs all packets originated in the Client IPv6 address range and destinations in

the IoT IPv6 address range range.

The resulting distribution with default weights can be seen in figure 8.4a. As Firewall1

needs to handle all the traffic from Clients and IoT anyway, a variant with higher weight

on Firewall1 has been executed as well and is depicted in figure 8.4b.
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As the order of path traversals is defined by the shortest path first by using Dijkstra’s

algorithm to find matching paths for rules, the path Internet→ Firewall2→ Firewall1

→ Clients/IoT is evaluated first for the rule implementation on intermediate firewalls.

This caused the implementation of rules 1-4 to be implemented in Firewall2 first in the

unweighted variant, as it happened to come first in the algorithm’s data structure. In the

next iteration, Dijkstra’s algorithm yields the next shortest path Internet→ Backup3-1

→ Firewall1→ Clients/IoT causing the implementation of rules one to four on one

PEP in this path, in this case Firewall1. Now, the implementation on Firewall1 could be

removed without causing an incorrect solution, thus making the non-weighted solution

not minimal. The Firewall1-weighted solution however meets the minimal definition.

In all solutions, the ESDFs of all rules are zero, as no end system is capable of imple-

menting firewall rules.

id src_addr dst_addr action
1 [::, 2001:db7:ffff:ffff:. . . :ffff:ffff] [2001:db8:a:1::2, 2001:db8:a:1::ffff] DROP

2 [2001:db9::, ffff:ffff:. . . :ffff:ffff] [2001:db8:a:1::2, 2001:db8:a:1::ffff] DROP

3 [::, 2001:db7:ffff:ffff:. . . :ffff:ffff] [2001:db8:a:2::2, 2001:db8:a:2::ffff] DROP

4 [2001:db9::, ffff:ffff:. . . :ffff:ffff] [2001:db8:a:2::2, 2001:db8:a:2::ffff] DROP

5 [2001:db8:a:1::2, 2001:db8:a:1::ffff] [2001:db8:a:2::2, 2001:db8:a:2::ffff] DROP

id trust_requirement tcp_state_established tcp_state_related protocol port
1 1 false false NULL NULL

2 1 false false NULL NULL

3 1 false false NULL NULL

4 1 false false NULL NULL

5 1 NULL NULL NULL NULL

(5 rows)

Table 8.5.: Policy definition for use case 4.2.5 "Router with Redundant Upstream Gateways

and Asymmetric Paths"

8.1.2. Network Optimization Use Cases

8.1.2.1. Network with Full Trust, Central Router & Border Router

In this subsection, the use case defined in subsection 4.3.1 is evaluated.

The policies regarding connection states for Clients are implemented similarly to the

previous use cases as rules with the id one and two as shown in table 8.6. To block TCP

port 548 to Server1 and Server3 four rules are defined:

• Drop packets with protocol = 6 (TCP according to IP protocol numbers defined by the

Internet Assigned Numbers Authority, IANA
1
) and port = 548 with source addresses

from address 0 (::) to the exclusive beginning of the network (2001:db7:ffff:...)

1https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
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Firewal l1  (1)
1 ,2 ,3 ,4 ,5

Firewal l2  (1)
1 ,2 ,3 ,4

::/0

Backup1 (1)

::/0

Cl ien t s IoT

2001:db8:a:: /48

I n t e r n e t

::/0

2001:db8:a:: /48

Backup2 (1)

::/02001:db8:a:: /48

Backup3 (1)

::/0 2001:db8:a:: /48

::/0

2001:db8:: /32

2001:db8:: /32

2001:db8:a:1::2/64-2001:db8:a:1::ffff/64::/0 2001:db8:a:2::2/64-2001:db8:a:2::ffff/64 ::/0

(a) Default Variant

Firewal l1  (1)
1 ,2 ,3 ,4 ,5

Firewal l2  (1)

::/0

Backup1 (1)

::/0

Cl ien t s IoT

2001:db8:a:: /48

I n t e r n e t

::/0

2001:db8:a:: /48

Backup2 (1)

::/02001:db8:a:: /48

Backup3 (1)

::/0 2001:db8:a:: /48

::/0

2001:db8:: /32

2001:db8:: /32

2001:db8:a:1::2/64-2001:db8:a:1::ffff/64::/0 2001:db8:a:2::2/64-2001:db8:a:2::ffff/64 ::/0

(b) Firewall1-weighted Variant

Figure 8.4.: Network model and rule distribution for use case 4.2.5 "Router with Redundant

Upstream Gateways and Asymmetric Path"

and destination addresses of Server1 (2001:db8:a:2::2) and Server2 (2001:db8:a:4::2),

represented by the rules with ids 4 and 6.

• Drop packets with protocol = 6 and port = 548 with source addresses from the first

address outside the network (2001:db9::) to the maximum IPv6 address (ffff:...)

and destination addresses of Server1 and Server2, represented by the rules with ids
3 and 5.

The distributions for the two network variants are shown in figure 8.5. As both solutions are

correct, both networks can be implemented and thus the distributed variant in figure 8.5b

allows a load reduction of Firewall1 while still fulfilling the policies. Both distributions

are minimal as well.
In all solutions, the ESDFs 𝑑1 and 𝑑2 are zero, as no matching end system is capable of

implementing firewall rules. Rules 3 − 6 reach an ESDF of one in both solutions and thus

are fully distributed according the definition 8.3.

8.1.2.2. Network with Full Trust, Central Router & Border Router, Decentralized Server

In this subsection, the use case defined in subsection 4.3.2 (a variant of the previous use

case 4.3.1) is evaluated.

To implement the changed trust definitions in comparison to the previous use case, the

trust levels of Border1, Firewall1 and Server3 are increased to 2 and the trust_requirement
of rules 3-6 is increased to 2 as well as shown in table 8.7.

The distributions for the two network variants are shown in figure 8.6. In the centralized

variant (figure 8.6a), the changed trust values cause rules 3 and 4 to be implemented in
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id src_addr dst_addr action
1 [::, 2001:db7:ffff:ffff:. . . :ffff:ffff] [2001:db8:a:1::2, 2001:db8:a:1::ffff] DROP

2 [2001:db9::, ffff:ffff:. . . :ffff:ffff] [2001:db8:a:1::2, 2001:db8:a:1::ffff] DROP

3 [::, 2001:db7:ffff:ffff:. . . :ffff:ffff] 2001:db8:a:2::2 DROP

4 [2001:db9::, ffff:ffff:. . . :ffff:ffff] 2001:db8:a:2::2 DROP

5 [::, 2001:db7:ffff:ffff:. . . :ffff:ffff] 2001:db8:a:4::2 DROP

6 [2001:db9::, ffff:ffff:. . . :ffff:ffff] 2001:db8:a:4::2 DROP

id trust_requirement tcp_state_established tcp_state_related protocol port
1 1 false false NULL NULL

2 1 false false NULL NULL

3 1 NULL NULL 6 548

4 1 NULL NULL 6 548

5 1 NULL NULL 6 548

6 1 NULL NULL 6 548

(6 rows)

Table 8.6.: Policy definition for use case 4.3.1 "Network with Full Trust, Central Router &

Border Router"

Firewal l1  (1)
1 , 2

Border1  (1)

::/0

Serve r1  (1 )
3 , 4

Se rve r2  (1 )
Se rve r3  (1 )

5 , 6
Cl ien t s

2001:db8:a:: /48

I n t e r n e t

::/0 2001:db8:: /32

::/0 ::/0 ::/0 2001:db8:a:1::2/64-2001:db8:a:1::ffff/64 ::/0

(a) Centralized Variant

Firewal l1  (1)
1 , 2

Border1  (1)

::/0

Cl ien t s

2001:db8:a:: /48

I n t e r n e t

::/0

Serve r1  (1 )
3 , 4

Se rve r2  (1 )
Se rve r3  (1 )

5 , 6

2001:db8:: /32

::/0 ::/0 ::/0

2001:db8:a:1::2/64-2001:db8:a:1::ffff/64::/0

(b) Distributed Variant

Figure 8.5.: Network model and rule distribution for use case 4.3.1 "Network with Full

Trust, Central Router & Border Router"

Firewall1 instead directly in Server1 as the rules’ trust_requirement is not met. In the

distributed variant (figure 8.6b), the change in trust causes rules 3 and 4 to be implemented

in Border1. Border1 can implement these rules as they do not require stateful firewalling

and it meets the rules’ trust_requirement as well.
Both distributions meet the correctness definition and are minimal. Compared to the

previous use case, the ESDFs 𝑑3 and 𝑑4 are reduced to zero while rules 5 and 6 still reach

an ESDF of one.

8.1.2.3. Multi Stage Firewall

In this subsection, the use case defined in subsection 4.3.3 is evaluated.
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id src_addr dst_addr action
1 [::,2001:db7:ffff:ffff:. . . :ffff:ffff] [2001:db8:a:1::2,2001:db8:a:1::ffff] DROP

2 [2001:db9::,ffff:ffff:. . . :ffff:ffff] [2001:db8:a:1::2,2001:db8:a:1::ffff] DROP

3 [2001:db9::,ffff:ffff:. . . :ffff:ffff] 2001:db8:a:2::2 DROP

4 [::,2001:db7:ffff:ffff:. . . :ffff:ffff] 2001:db8:a:2::2 DROP

5 [2001:db9::,ffff:ffff:. . . :ffff:ffff] 2001:db8:a:4::2 DROP

6 [::,2001:db7:ffff:ffff:. . . :ffff:ffff] 2001:db8:a:4::2 DROP

id trust_requirement tcp_state_established tcp_state_related protocol port
1 1 false false NULL NULL

2 1 false false NULL NULL

3 2 NULL NULL 6 548

4 2 NULL NULL 6 548

5 2 NULL NULL 6 548

6 2 NULL NULL 6 548

(6 rows)

Table 8.7.: Policy definition for use case 4.3.2 "Network with Full Trust, Central Router &

Border Router, Decentralized Server"

Firewal l1  (2)
1 ,2 ,3 ,4

Border1  (2)

::/0

Serve r1  (1 ) Se rve r2  (2 )
Se rve r3  (2 )

5 , 6
Cl ien t s

2001:db8:a:: /48

I n t e r n e t

::/0 2001:db8:: /32

::/0 ::/0 ::/0 2001:db8:a:1::2/64-2001:db8:a:1::ffff/64 ::/0

(a) Centralized Variant

Firewal l1  (2)
1 , 2

Border1  (2)
3 , 4

::/0

Cl ien t s

2001:db8:a:: /48

I n t e r n e t

::/0

Serve r1  (1 ) Se rve r2  (2 )
Se rve r3  (2 )

5 , 6

2001:db8:: /32

::/0 ::/0 ::/0

2001:db8:a:1::2/64-2001:db8:a:1::ffff/64::/0

(b) Distributed Variant

Figure 8.6.: Network model and rule distribution for use case 4.3.2 "Network with Full

Trust, Central Router & Border Router, Decentralized Server"

Firewall rules handling connection state towards Clients and MobileClients are han-

dled equally like in all other use cases and are handled by the rules with the ids 1-4 as
shown in table 8.8. To enforce the global policy to DROP TCP port 25 from the internet for all

servers but mail servers, all end system ranges but the mail server’s (2001:0DB8:a:3::/64)

receive rules which DROP TCP packets on port 25 from the internet in a similar pattern

as in previous use cases. As those rules (ids 5-10) must not be bypassed by decentralized

systems, their trust_requirement is set to 2 as well as the trust levels of all systems but the

DecentralServer1. To block all remaining traffic from the internet to DecentralServer1,

rules 11 and 12 are added. As this is not a global policy, the trust_requiremnent for this
rule is set to 1. Finally, to block traffic from MobileClients to Clients rule 13 is added.
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The distributions for the two network variants are shown in figure 8.7. Both distributions

are correct andminimal. Compared to the centralized variant (figure 8.7a), Stage2 needs to

implement 2 rules less in the distributed variant and Stage2 only need to firewall Clients

so the distributed variant can be seen as an optimization of the network compared to the

centralized variant.

In all solutions, the ESDF of rule 1-8 and 13 is zero, as no matching end system is

capable of implementing firewalls. The ESDF of rules 9 and 10 is always zero as well, as no

matching end systems meets the rules’ trust_requirement. In both solutions, rules 9 and 10

reach an ESDF of 1 as all matching end systems (DecentralServer1) implement the rules.

id src_addr dst_addr action
1 [::, 2001:db7:ffff:ffff:. . . :ffff:ffff] [2001:db8:a:1::2, 2001:db8:a:1::ffff] DROP

2 [2001:db9::, ffff:ffff:. . . :ffff:ffff] [2001:db8:a:1::2, 2001:db8:a:1::ffff] DROP

3 [::, 2001:db7:ffff:ffff:. . . :ffff:ffff] [2001:db8:a:4::2, 2001:db8:a:4::ffff] DROP

4 [2001:db9::, ffff:ffff:. . . :ffff:ffff] [2001:db8:a:4::2, 2001:db8:a:4::ffff] DROP

5 [::, 2001:db7:ffff:ffff:. . . :ffff:ffff] [2001:db8:a:1::2, 2001:db8:a:1::ffff] DROP

6 [2001:db9::, ffff:ffff:. . . :ffff:ffff] [2001:db8:a:1::2, 2001:db8:a:1::ffff] DROP

7 [::, 2001:db7:ffff:ffff:. . . :ffff:ffff] [2001:db8:a:4::2, 2001:db8:a:4::ffff] DROP

8 [2001:db9::, ffff:ffff:. . . :ffff:ffff] [2001:db8:a:4::2, 2001:db8:a:4::ffff] DROP

9 [::, 2001:db7:ffff:ffff:. . . :ffff:ffff] [2001:db8:a:2::2, 2001:db8:a:2:ffff:. . . ] DROP

10 [2001:db9::, ffff:ffff:. . . :ffff:ffff] [2001:db8:a:2::2, 2001:db8:a:2:ffff:. . . ] DROP

11 [::, 2001:db7:ffff:ffff:. . . :ffff:ffff] [2001:db8:a:2::2, 2001:db8:a:2:ffff:. . . ] DROP

12 [2001:db9::, ffff:ffff:. . . :ffff:ffff] [2001:db8:a:2::2, 2001:db8:a:2:ffff:. . . ] DROP

13 [2001:db8:a:4::2, 2001:db8:a:4::ffff] [2001:db8:a:1::2, 2001:db8:a:1::ffff] DROP

id trust_requirement tcp_state_established tcp_state_related protocol port
1 1 false false NULL NULL

2 1 false false NULL NULL

3 1 false false NULL NULL

4 1 false false NULL NULL

5 2 NULL NULL 6 25

6 2 NULL NULL 6 25

7 2 NULL NULL 6 25

8 2 NULL NULL 6 25

9 2 NULL NULL 6 25

10 2 NULL NULL 6 25

11 1 NULL NULL NULL NULL

12 1 NULL NULL NULL NULL

13 1 NULL NULL NULL NULL

(11 rows)

Table 8.8.: Policy definition for use case 4.3.3 "Multi Stage Firewall"
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Figure 8.7.: Network model and rule distribution for use case 4.3.3 "Multi Stage Firewall"

8.1.3. Summary

In this subsection, all use case evaluation results are summarized and shown in table 8.9.

While the algorithm is able to produce minimal results it is not guaranteed to do so, as

the evaluation of "Router with Redundant Upstream Gateways and Asymmetric Paths"

(subsection 8.1.1.5) with default weights shows. For all given use cases, the algorithm

produces correct results.
The existence of 𝐸𝑆𝐷𝐹max > 0 shows, that the algorithm is able to reach the goal of

utilizing existing firewalling capabilities on end systems where possible.

8.2. Running Time

In this section, the worst case running time of the unoptimized algorithm as in chapter 6

defined and implemented in chapter 7 is briefly analyzed.

In the first stage, the algorithm iterates once over all nodes 𝑁 in order to distribute rules

on nodes which can be directly implemented. The lookup processes for query rules and

nodes are considered constant. This yields the following running time for the first stage:

O(|𝑁 |) (8.1)

In the second stage, the algorithm needs to iterate over all remaining rules, which are

worst case all rules 𝑅 if the first stage couldn’t implement any rules. Within each iteration,

the current implementation needs to traverse all paths between all nodes in case of rules,

which match the whole network including the internet. This yields the following running
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Use Case Correct? Loc. Minimal? 𝐸𝑆𝐷𝐹max

Router with Redundant Upstream

Gateways
��

✓ ✓ 0

Network without Full Trust, Router with Re-

dundant Upstream Gateway
��

✓ ✓ 0

Router with Redundant Upstream Gateways

and Hosts in same L2 Domain
��

✓ ✓ 0.5

Router with Redundant Upstream Gateways

and Decentral Hosts in same L2 Domain

(✓)
a

N/A N/A

Router with Redundant Upstream Gateways

and Asymmetric Path
��

✓ ✗�/✓�
0

Network with Full Trust, Central Router &

Border Router
�

✓ ✓ 1

Network with Full Trust, Central Router &

Border Router, Decentralized Server
�

✓ ✓ 1

Multi Stage Firewall
� ✓ ✓ 1

�
With default weights

�
Weighted

a
Algorithm fails which is correct in this case.

Table 8.9.: Comparison of evaluation results.

time for the second stage:

O(|𝑅 | ∗ O(Dijkstra)2) (8.2)

Theworst case running time of Dijkstra’s algorithm according to [Cor01] when assuming

linear search in adjacency lists is

O(|𝑁 |2) (8.3)

In combination with 8.1, this yields a total worst case running time of

O(|𝑁 | + |𝑅 | ∗ O(|𝑁 |2)2) = O(|𝑁 | + |𝑅 | ∗ |𝑁 |4) = O(|𝑅 | ∗ |𝑁 |4) (8.4)

The algorithm is thus within polynomial running time.
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9. Related Work

As firewalls are essential security-relevant tools for networks, research covers a lot of

different aspects of firewalls. Because this work implements a distributed firewall by

distributing rules on firewall-capable devices in a defined network topology, the first

category of related work summarizes work regarding distributed firewall architectures

in section 9.1. As the security-wise most important goal of the distribution algorithm

implemented in this work is the distribution of the rules among the firewalls in a way

which completely fulfills the policies, research regarding the verification of (distributed)

firewalls is related to this thesis as well. Thus, the second category of related work is

firewall modelling and verification, summarized in section 9.2.

9.1. Distributed Firewall Architectures

Steven Bellovin described the advantages of distributed firewalls in a 1999 USENIX article

[Bel99]: Whereas conventional central firewalls separate the "trusted" local networks

from the "untrusted" internet, a distributed approach allows more flexibility regarding the

location of network members inside and outside the network. Bellovin proposes a centrally

managed distributed architecture, which means that the firewall rules are managed in one

central place which get distributed on the network members. The article assumes that not

every system is centrally managed (i.e. systems might be administrated by their users)

but the system administrators allow the management of firewall rules on their systems

by a central "security administrator". This thesis implements this notion of a "security

administrator", by creating a model of the network, which also allows local administrators

to create rules centrally and automates the distribution based on trust levels of nodes and

trust requirements for rules.

A way which addresses trust issues explicitly is proposed in [PM04]. The paper im-

plements "trustworthy" firewalls, by expanding the software (firmware) running on the

network interface cards (NIC) in a way that allows the remote management and imple-

mentation of the firewall directly on the NIC itself. This allows system operators to run

any operating system and software they want on the systems, while the "local" firewall is

being cared of by a central management controller and by the NIC itself. While this ap-

proach effectively solves the trust issues into the members of the system itself, this kind of

platform is not necessarily tamper-proof. Manipulation on hardware level and on network

level might still be possible. In addition to that, this approach requires specialized network

hardware, which needs to interoperate with the controller infrastructure. Those solutions

also reduce flexibility in regards to specialized applications, which might need direct hard-

ware access and as less indirections in the packet path from the operation system towards

the network as possible, for example if low latencies are required. Especially in a research
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environment like in universities, this kind of approach is not applicable universally and

still requires a higher-level model which includes "conventional" firewalls as well. This is

due to for example specialized research equipment, IoT devices or BYOD clients, which

does not support expansion slots required for specialized NICs. Specialized NICs may

be not economically viable in mass as well. The concept of expanding the capabilities

of NICs has found some adoption in the industry in recent years by the introduction of

so called "Smart NICs" like for example in Nvidia’s ConnectX Smart NICs
1
, Intel’s FPGA

Smart NICs
2
or Cisco Nexus Smart NICs

3
(just to name a few), which contain dynamically

programmable hardware in order to allow offloading of tasks related to networking (like

low-level data processing) into the NIC. This work’s model and algorithm is capable of

including such a platform as well in case the adoption of those devices becomes necessary

in the future.

A different use of distributed firewalls is presented in [GH01]. This paper proposes the

use of distributed firewalls in end systems (so called "micro firewalls"). Here, the trust

issues are solved by splitting the network apart into security domains, each controlled

by a policy manager. Each domain’s policy manager is responsible for the distribution

and management of local policies within its policy boundary. Global policies are enforced

by gateway firewalls between networks and towards the internet. While the proposed

architecture strongly encourages a distributed firewalls into end systems and considers

that internal system might get compromised, the proposed system relies solely on dynamic

intrusion detection and tight coordination between policy controllers to react to such

situations. The model in this thesis includes trust assumptions directly into the model,

which causes "sensitive" policies to be implemented on more "trustworthy" infrastructure

which increases the basic security of the network, but may also reduces the general

flexibility in regards to the network topology because this might require the deployment

of additional central firewalls.

In the context of software defined networking (SDN) a multitude of approaches for

distributed firewalls have been discussed in literature [PY14; Kau+15; Cho+18; TA15]. The

purpose of SDN is to increase flexibility in networks in regards to support for existing

or new applications, by dynamically adapting functions of network devices (mostly SDN

switches) to the required applications in software. This is achieved by decoupling the data

and control plane of network devices such as switches or routers. While the data plane

(i.e. the handling of traffic, e.g. packet forwarding) is handled by the network devices, the

control plane (i.e. decisions onwhat should happenwith packets) is handled in a centralized

SDN controller. The controller itself receives its instructions from SDN applications, which

contain the application specific logic. The interfaces towards the SDN application layer is

commonly called "northbound" and the interface towards the data plane "southbound".

[PY14; Kau+15] proposed a distributed firewall as a "northbound" application, which installs

all rules on all networking devices. [Cho+18] added the capability of stateful firewalling

in such a kind of SDN applications. [TA15] introduced dynamic rule deployment by

supplying topology information to the SDN application, which increased the efficiency of

1https://www.nvidia.com/en-us/networking/ethernet-adapters/
2https://www.intel.com/content/www/us/en/products/details/fpga/platforms/smartnic.html
3https://www.cisco.com/c/en/us/products/interfaces-modules/nexus-smartnic/index.html
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the firewalling process, as not all rules needed to be evaluated on every device. This is

done by selectively installing firewall rules on switches upon the connection of a matching

device to the switch. Whereas those approaches follow a similar goal as this work, SDN

approaches are limited to SDN capable network devices. In addition to that, the SDN

approaches do not consider trust toward network participants into their model. The model

in this work is capable of modeling SDN firewalls as well though as this work’s model

provides an abstract mapping of different device types and host agents (see section 7.1).

The network hardware vendor HPE Aruba Networks implemented dynamic policy

enforcement on distributed firewalls in the context of so called "Distributed Services

Architectures" as described in a white paper [LM21]. The goal of this kind of architecture

is to achieve scalability in fast growing data center architectures. When data centers grow

fastly, centralized infrastructure (like central firewalls) need to be resized more often –

the scalability is dependent on the capacity of the central infrastructure. To counter this

inflexibility, Aruba proposes the implementation of firewalls (among other services) directly

in the networking infrastructure – in the context of a data center this would be the top-of-

rack switch (i.e. the router supplying network connectivity to the servers or appliances in

a rack). The network topology and configurations of the switches is configured centrally

as well as firewalling policies. As the controller is topology-aware, it is able to distribute

policies to the matching switches in order to achieve a distributed firewall without the need

of centralized firewalls. This requires switches with specialized programmable hardware

though, which increases the cost per device. Especially in (historically) diverse and hybrid

campus and datacenter networks like in a university setting, this approach is not universally

applicable as the specialized hardware is not available on all sites and upgrading to such

hardware may not be viable in all areas. Like with SDN, those architectures can be used as

a firewall policy implementing component controlled by an host agent (see section 7.1) in

this thesis’s model, which allows a more abstract view of the network and policies.

Overall, different approaches to strongly distribute firewalls and their advantages have

been discussed in literature. However, if this approach is implemented in existing and

large networks which contain a large variety of different devices with different capabilities,

a more abstract approach is required to create a (more) distributed firewall (see chapter 3).

In a way, this thesis can be seen as a compromise between a strongly distributed and a

"conventional" centralized approach.

9.2. Firewall Modelling, Analysis & Verification

As needed for this work, creating a model of firewalls (i.e. policies, rules and in some

cases network topology) is also required when verifying firewalls. The goal of firewall

verification is to ensure correctness of the firewall, i.e. that the firewall implements rules

as intended. There are different categories of approaches to reach this goal [AG10]:

1. Firewall Testing: The firewall is tested experimentally by generating different

packets and evaluating the fate of the packet. If the firewall makes the expected

decisions for all generated packets, the firewall is considered correct. An approach

for this is given in [AES09].
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2. Firewall Analysis: The firewall is analyzed for defects or anomalies, e.g. caused

by vulnerabilities or conflicts. A classification of different anomalies in the context

of distributed firewalling is created in [Al-+05]. The first anomaly described by

the aforementioned paper is the Shadowing Anomaly. This anomaly is caused by

the implementation of two rules where one of them "covers" other rules, which

make other rules ineffective. Another anomaly described is the Correlation Anomaly.
Those are caused by two intersecting matchers which results in different actions. The

two aforementioned anomalies has been identified in this work’s problem analysis

(chapter 3) as well which resulted in assumption 3.1. In the context of hypercubes,

shadowing is a special case of correlation. The Irrelevance Anomaly is caused by

rules which can never have any effects on packets on a firewall. This cannot happen

in this work’s implementation, as only hosts are considered for rule enforcement

which are in some way related to the rule – either directly or by being on the path

along the route through the network. As the evaluation (chapter 8) showed though,

the Redundancy Anomaly, where rules are more often enforced than necessary can

be observed in this work’s algorithm in form of not minimal results. This anomaly is

not influential on pure security considerations though as long as the firewalls are still

able to enforce the rules. It will however affect the performance of the distributed

firewall.

3. Firewall Verification: Firewall verification algorithms are used to verify that a

firewall fulfills a certain property. One example of such an algorithm is given

in [AG10], which verifies a firewall in O(𝑛𝑑) time with 𝑛 being the number of rules

and 𝑑 the number of fields checked by a firewall. Whereas this specific verification

algorithm is defined on single firewalls, it could be adapted for the use in distributed

firewalls. Such an approach for the validation of distributed firewalls is presented in

[GLJ08]. In that paper, the two properties validated upon the distributed firewalls

are the accept property and the discard property, i.e. whether a firewall accepts or

discards packets as expected in all cases. In order to achieve this the firewalls are

modeled in a tree containing all paths between network nodes ("domain nodes")

and intermediate firewalls. To verify the discard property it is sufficient, that one

firewall on each path between two nodes affected by a discard rule fully discards a

packet. This is consistent with this work’s Lemma 3.3 (on each existing path between

a rule’s source and destination, a firewall rule needs to be implemented at least once).

Because of assumption 3.5, it would be sufficient for a firewall verification in this

work to only check the discard property. As of the similar construction of this thesis’s

distribution algorithm and firewall model compared to the verification steps executed

in [GLJ08], it is very likely, that firewall validations using the paper’s validation

algorithm executed upon distributions created by this work’s algorithm yield a

successful result, given the firewalls implement the rules correctly and the rules are

transformed correctly from the policy definition into the firewalls. Frameworks to

query existing firewalls implementations for their decisions, which is required to

verify some properties of firewalls is discussed in [LG08b] and [MWZ00].

As shown by [AG11], the verification and redundancy checking (see Redundancy
Anomaly in firewall analysis) of stateless firewalls are believed to be equivalent
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problems and that every redundancy checking algorithm could also be used to

validate a firewall and vice versa.

4. Firewall Design: Firewalls could be created and designed in a way to fulfill certain

properties by construction. Algorithms to create single firewalls from a specification

are proposed in [LG08a; GL07]. This work’s algorithm and firewall model can be

considered as a firewall design tool for distributed firewalls, but this work only

focuses on the distribution, not on the on the (rule) construction of the individual

firewalls themselves.
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In this work, the firewall distribution problem (see definition 3.1) has been analyzed in

chapter 3, a model created (chapter 5) and a distribution algorithm developed (chapter 7).

Use cases which on one hand aim to test the algorithm and its limits in general (basic use

cases) and on the other hand aim to test, whether network optimizations can be evaluated

(network optimization use cases) using real-world scenarios have been defined in chapter

4. Based on those use cases, the algorithm has been evaluated in chapter 8.

The created firewall and network model is sufficient to create a firewall rule distribution. As

demonstrated by the successful rule distributions, themodel provides sufficient information

to algorithmically create a firewall distribution. The model is constructed with the correct

level of abstraction to be able to model various real-world firewalls like presented in

section 9.1. As shown by comparison with related work in the field of firewall verification

in section 9.2, the model created is in line with models created to verify firewalls but adds

trust which allows to create an hybrid firewall distribution including all possible firewalls.

The firewall distribution problem can be solved algorithmically. It has been shown by the

design and prototype of an algorithm, that the problem can be solved in polynomial time

(O(|𝑅 | ∗ |𝑁 |4) with 𝑁 being nodes and 𝑅 being rules, see section 8.2).

Further research into optimizations, especially regarding the second stage of the algo-

rithm for the distribution of rules on intermediate firewalls, is necessary to reduce the

worst case running time.

The algorithm is capable of utilizing end system firewalls where possible. As the evaluation

showed, the algorithm’s prioritization of rule enforcement on end systems is effective, if all

constraints can be met. This is demonstrated by the existence of End System Distribution
Factors > 0 in the evaluation (see chapter 8.1.3).

To materialize the abstract firewall rule representations on actual firewall implementa-

tions like iptables, a compiler needs to be implemented in the future which provides an

interface between the abstract policy definition database and the local firewall language.

The algorithm can be used as a tool to evaluate network topology optimizations regrading fire-
walling capacity. The evaluation of network optimization use cases (section 4.3) showed,

that the algorithm can be used to evaluate network optimizations. For example if a given

network has end systems behind an internal firewall but the end systems are able to

implement the firewall by themselves, it can be evaluated if the end systems can bypass the

internal firewall (like evaluated in section 8.1.2.3). If the algorithm still yields a solution,

this optimization can be done. This evaluation considers the trust level and all firewalling

capabilities of each system in the network. Through the optimizations, reductions in

infrastructure cost can be possible in some cases.
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The proposed algorithm does not provide redundancy-free results. Whereas the algorithm

was able to produce correct (definition 8.1) solutions for all given use cases, in general

results are not redundancy-free (see definition 8.2 and evaluation in subsection 8.1.1.5).

This means, that results may contain redundant rule implementations, which are not

necessary to fully enforce a policy.

Additional research into effective optimizations, for example actively utilizing common

nodes in paths by algorithmically assigning them higher weights, is required.

Further research into a formal verification of the distribution algorithm is required. In this

work the correctness and other properties have been evaluated based on realistic use

cases, but not formal proof was conducted, that distributed firewalls created by this work’s

algorithm fully cover all policies. Further research into the validation of the algorithm

should be carried out.

A policy definition language needs to be added in order to create a user interface. As policy

definitions can be only provided directly in the policy definition database, a suitable policy

definition language may be defined or adapted in the future, which translates a policy

definition into the policy definition database. This can be used to simplify rule definitions,

for example to allow the definition of of rules like "block traffic from another external

network" without the need to explicitly declare two rules, which "cut out" the local network

from the complete address space (see examples in the evaluation of use cases in section

8.1). The manual definition of this type of rule might be more error-prone, as changes in

the policy require at least two redundant changes in this case.
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A. Appendix

A.1. Implementation Setup

The reference implementation in this work’s complimentary material is implemented in

Python and requires at least Python 3.6. Additional dependencies are documented in

the pyproject.toml. The main script fwtool and all its dependencies can be installed for

example running by pip install . in the project’s root directory.

The schema of the PostgreSQL database is stored in the pgschema.sql in the project’s

root directory. An example inventory file (network model definition) can be found in

model.example.yml.

A.2. Reproducing Evaluation Results

The evaluation files for the use cases are placed in the /eval directory. Each directory

within this directory contains at least one inventory definition (network model) and one

policy.sql (policy definition). Each policy.sql contains each use case’s policy definition

as shown in the tables in chapter 8 in PostgreSQL syntax.

The policy distributions including graphics and simple LATEX representations of the

tables can be created for each inventory can be created by running Python DoIt
1
(doit) in

the eval folder.

This requires Python DoIt, Graphviz dot, psql (the PostgreSQL command line client),

ps2pdf and fwtool (see section A.1) to be installed.

1https://pydoit.org
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