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ABSTRACT
Analyses on the architecture of systems can yield valuable insights
into a system even before it is built. The applicability of the results
of these design time analyses to the system requires the system to
be built according to its specification, i.e., to not violate constraints
defined on the architecture. The conformance of the results of static
code analyses and design time analyses ensures the system is built
according to its specification. The first step for conforming results
of these analyses is to ensure that the system and its specification
is represented consistently in the input of the design time analysis
and static code analysis, i.e., they comprise corresponding system
elements and specifications for them. To achieve conforming inputs,
we used consistency specifications between architecture and code
models and implemented them between annotation models that
enrich the architecture description with security annotations on
the architecture level, as well as security annotations on the code
level. This allows the continuous conformance checking during
implementation and later during evolution of the system. We imple-
mented the consistency specifications in the Vitruvius framework
for an ADL and Java and tested it on case studies.

CCS CONCEPTS
• Computing methodologies → Model verification and vali-
dation; Simulation environments; • Software and its engineering
→ Development frameworks and environments; Software mainte-
nance tools.
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1 INTRODUCTION
The security of software-intensive systems is of great importance,
especially because the systems may handle personal or otherwise
confidential data [18]. The development of secure software is guided
by the Security Development Lifecycle (SDL) [17, 20]. The first step
in the SSDL is to gather, among others, security requirements for
the system to ensure, for instance, the confidentiality or integrity of
the data it processes. From all requirements, a software architecture
is envisioned to describe and connect the building blocks of the
system, i.e., its components [22]. In Figure 1, the architecture is
illustrated as a rounded rectangle on the left. To ensure the sys-
tem realizes security requirements, they are documented, linked to
architectural elements, and checked throughout the development
process [2]. These security requirements are used to specify require-
ments for the system behavior. To link the security requirements,
they can be annotated to, e.g., the services a component provides
that have to fulfill them. Thus, the security requirements are also
linked to the implementing components, through their link to the
architecture. This annotation is illustrated in the middle of Figure 1.
Static analyses are used to check the fulfillment of security require-
ments, e.g., the absence of illicit data flows, illustrated on the right
of Figure 1 with system state three.

If the analyses conclude, e.g., that there are no illicit data flows,
the systems’ security fulfills the security requirements [21]. This
statement contains a very relevant but hidden assumption: the
system is implemented respecting the security requirements [9].
This assumption has to be checked against the implementation, e.g.,
by applying static source code analyses [15], illustrated in the right
of Figure 2.

The static source code analyses need more information than just
the code, illustrated in system state 2 in Figure 2, e.g., to decide
if a data flow is illicit. This information is partly present in the
code annotations, which are related to the architecture security
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Figure 1: Overview over the development steps from an ar-
chitectural perspective
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Figure 2: Overview over the development steps from the
source code perspective

requirements, represented as architectural annotations. This in-
formation from the architecture can be propagated to the source
code. If this propagation is not possible, the security requirements
cannot be checked on the source code level, because they have
no correspondence to the source code. For example, because the
security requirements are related to external services used, and
their validation requires an audit of the external company, which
is not possible with static source code analysis.

During the development of the system and during its evolution,
the system and its architecture change. To be able to handle that
change, we view the propagation from the architecture annotations
to the source code annotations as a bidirectional consistency prob-
lem. Changes to architecture annotations should be reflected in
the code and the other way around. The need for bidirectionality
stems from the different roles evolving the system. An architect
may add further security requirements, due to, e.g., a change in legal
obligations, while a developer may change method calls and thus
produces new or changed information flows. Keeping the inputs of
the analyses used consistent, requires both architecture and code
to be consistent. This is achieved through the bidirectional consis-
tency relation, which enables incremental verification throughout
model evolution. Keeping this consistency relation unidirectional
would reduce its applicability, because then either the architecture
or the code could be adapted and kept consistent, and not both.

We derive two challenges for our approach. The first challenge,
Ch1: Provision of Specifications, is in the domain of analysis
and verification of source code and lies in the difficulty to obtain
the specifications for source code in form of annotations [30]. We
address this challenge by using consistency preservation and pro-
viding the architectural models and their annotations as initial
knowledge source for specifications of security-relevant properties
for a source code analysis that reflect security requirements. For
this purpose, a domain expert must specify how annotations in

the architectural model can be related to annotations used by the
source code analysis.

The second challenge, Ch2: Evolution of Specifications, is
the change of expected security properties in the evolution of the
system. The changes may be due to, e.g., different legal obligations
through new laws that affect the security requirements of the archi-
tecture, or bugs in libraries, which makes the code no longer comply
with security standards. In cases the specifications are adapted to
capture the expected security properties on either level, this change
must be reflected in the other artifacts as well. Otherwise, state-
ments on the views of the same system do not conform anymore.
We address this challenge with the use of consistency preservation,
containing rules for the modification or addition of new elements
of the architectural models or code or their annotations. We im-
prove the state of the art by using consistency preservation, instead
of traceability techniques. This allows the automatic consistency
preservation of the architecture and code models as well as their
annotation models, which improves the evolution process. Addi-
tionally, we look not only on artifacts but also on specifications for
them.

We apply the concept of consistency preservation to a model
quadruple, illustrated in Figure 3, consisting of an architecture
model, an annotation model of a static architecture analysis, as well
as a source code model, and an annotation model of a static source
code analysis. Conceptually, the chosen analyses are arbitrary, but
the consistency preservation rules have to use the appropriate
specifications. The consistency preservation between code and ar-
chitecture and code annotations and architecture annotations are
bidirectional, as changes in both should be reflected in the other. In
contrast, the consistency preservation between code and its anno-
tations and architecture and its annotations is unidirectional. We
chose to keep this consistency preservation unidirectional because
changes in the annotation model are not supposed to have an in-
fluence on the underlying model, e.g., the deletion of a security
requirement should not result in the deletion of the system compo-
nent that had implemented it. There are use cases, where a deletion
of an annotation should result in the deletion of an architectural
element, e.g., if the encryption of a component is removed, but
all components of a system have to be encrypted. In this case, the
consistency preservation would delete the component, the code
annotation and the code parts of the component, to keep the models
consistent. Four our use case, unidirectional consistency preser-
vation between annoations and architecture or code is sufficient.
We implemented the consistency preservation in the consistency
preservation framework Vitruvius [13] in order to discuss the fea-
sibility of the approach.

The remainder of this paper is structured as follows. First, we
discuss the background of this paper, i.e., consistency management
and static analysis in section 2. Afterward, we introduce a running
example to illustrate the annotations and the consistency relations
in section 3. We elaborate on our general approach in section 4
and discuss our empirical evaluation in section 5. After the dis-
cussion of the threats to validity in section 6, we present related
work in section 7 and finish this paper with concluding remarks
in section 8.
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2 BACKGROUND
Our approach combines static analyses with consistency manage-
ment. We thus first introduce the general idea of consistency man-
agement and describe the framework we used to implement the
consistency rules. Afterward, we explain static analyses and the
analyses we used in our prototype.

2.1 Consistency Management
The development of complex systems involves several artifacts of
different types that are created by developers to describe aspects of
the system. The artifacts are often models, and for the remainder of
the paper we will refer to them as models. As the models contain
information about the same system and the developers do not work
independent of each other, the models share certain parts. These
shared parts may become inconsistent, if one model is changed and
the other is not kept consistent [13]. To build a correct system, these
inconsistencies need to be avoided, as consistency is a heuristic for
correctness [6].

Consistency management deals with managing the inconsisten-
cies, e.g., by avoiding or fixing them. One consistency management
approach is consistency preservation, where a consistent system is
changed by a list of changes. This list is the input for the consistency
preservation, which computes consequential changes, that make
the system consistent again, i.e., fixing inconsistencies the initial
changes caused. Both the initial and the consequential changes
are then applied together and transform the system into a new,
consistent state [13].

When two models are consistent with each other depends on the
models and the information they can represent, defined by their
metamodels [13]. Each metamodel pair requires its own definition
of consistency, which can be achieved with the help of consistency
rules. These consistency rules specify what must happen in a model
when a change is made in another model. Consistency rules are
unidirectional, i.e., consistency rules must be defined for both di-
rections between two models.

Vitruvius. We use the consistency management Vitruvius [13],
which defines a virtual single underlying model (V-SUM) as a state-
of-the-art tool for consistency management through consistency
preservation. A V-SUM contains the models describing the system
as well as consistency specifications as consistency preservation

rules (CPRs) [4, 19]. The CPRs are formulated using the Reactions

Security Annotations
Code

Security Annotations
Architecture Model

Code Architecture Model

Figure 3: The four input models for the security analyses.
The arrows represent a consistency preservation between the
models in the corresponding direction.

Listing 1: An example of the Reactions language. The
umlToJavaClass Reactions file reacts to changes in uml by
changing a java model. The CreateUmlClass Reaction is trig-
gered after a UML class is inserted into a UML package as an
OwnedElement and calls the Routine createJavaClass, which
handles the creation of a corresponding Java class.

1 reactions: umlToJavaClass

2 in reaction to changes in uml

3 execute actions in java

4
5 reaction CreatedUmlClass {

6 after element uml::Class

7 inserted in uml:: Package[OwnedElements]

8 call {

9 val umlClass = newValue

10 createJavaClass(umlClass)

11 }

12 }

13
14 routine createJavaClass(uml:Class umlClass) {

15 match { /* retrieve_elements */ }

16 create { /* create_elements */ }

17 update { /* update_models */ }

18 }

language [13, 14]. The concept itself does not depend on any spe-
cific consistency management tool, but on the existing consistency
preservation rules between architecture and code models. These
consistency preservation rules are available for Vitruvius, thus we
used it to implement our prototype.

The Reactions language defines unidirectional and change-driven
Reactions and Routines. An example Reactions file is shown in List-
ing 1, starting with the name of the Reactions defined in the file,
used for importing into other files. Afterward, a source metamodel
is defined, i.e., the metamodel whose instances are modified by the
developer. These changes then make the models inconsistent, i.e.,
the source metamodel and the target metamodel, defined in line 3
of Listing 1.

A Reaction itself also has a name and a trigger, which defines the
change that has to happen in order to execute the Reaction. In the
example in Listing 1 the trigger is the insertion of a UML class into
a UML package as part of the owned elements of a UML package.
The Reaction calls a Routine, consisting of three blocks. The match
block allows retrieving objects, i.e., finding objects corresponding
to other objects, e.g., because they have been created to react to
the creation of each other. The create block can be used to create
new objects. The update block contains arbitrary Xtend1 code to
execute operations necessary to preserve consistency.

2.2 Static Analysis
Static analysis is a process to assess (code) artifacts without execut-
ing them [5]. We use two static analysis, one on our architecture
and one on our code. Architectural security analyses are used to
detect vulnerabilities in the system when no current implementa-
tion is available, e.g., during early design or when the architecture
is evolved. Architectural security analyses are also used to detect
vulnerabilities based on information not available in the implemen-
tation, such as the deployment of a component. Early detection and

1https://eclipse.dev/Xtext/xtend/, accessed 03.07.2024

https://eclipse.dev/Xtext/xtend/
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fixing of vulnerabilities is beneficial as the effort of fixing vulnerabil-
ities increases the later the fix is performed [24]. The architectural
analysis, however, does not free from considering security in the de-
velopment phases, e.g., implementation, because it does not contain
a complete view of the system [25].

This is why static analyses for source code had been developed
to detect security weaknesses in the implementation. For detect-
ing weaknesses, different approaches exist, such as inspecting the
realized information flows [8] or the detection of patterns in the
source code that are expected to be insecure, like the usage of weak
hashing algorithms in an encryption [16]. One type of static se-
curity analysis detects weaknesses by determining whether the
implementation conforms to specifications that describe the ex-
pected properties of the system. With this type of analysis, required
security properties in the architectural model can be verified on the
implementation level. For the analysis of the security properties
defined in the architecture with source code analyses, the informa-
tion captured in the architectural model and the specifications of
the static analyses must be in the same state to represent the same
system, i.e., if something is changed in the architecture model, this
change must also be made in the other models so that the results
of the analyses are conforming.

Architecture — Confidentiality Analysis. We use the security Do-
main Specific Language (DSL) Confidentiality4CBSE (C4C) [15] as
one representative for the description of security specifications for
software architectures that are then used by an architectural analy-
sis. This DSL uses the Palladio Component Model (PCM) [22] for the
description of the software architecture. C4C describes DataSets,
representing some form of information a data-carrying element
in the PCM, such as a parameter or return, is expected to contain.
DataSets can, for instance, express roles the data belongs to or the
type of data it contains, such as flight data or credit card data.

The architectural models are used as prescriptive or descriptive
descriptions, i.e., they specify required properties of the system,
either during its development or during its evolution. The consistent
models can then be used in static architecture analyses [15, 25].

Code — Java Object-sensitive ANAlysis. We use the extended Java
Model Parser and Printer (JaMoPP) [3] to model the Java source
code of our application. To include security annotations, we use
annotation metamodels used for the Java Object-sensitive Analysis
(Joana) [8]. Similar toDataSets in C4C, annotations in Joana describe
expected properties of the data by levels contained in parameters or
fields in the source code. Joana also receives a lattice [7] specifying
allowed flows between data of the specified levels. Based on these
annotations, Joana calculates the information flows in the system
and reports flows between the annotated elements that are not
allowed, given the provided lattice.

3 RUNNING EXAMPLE
For our running example, we chose an excerpt of the travel plan-
ner case study [11]. The excerpt consists of a Booking Agency that
communicates with an Airline to provide services, illustrated in Fig-
ure 4.

Users can book flights via the Booking Agency, illustrated in Fig-
ure 5, by sharing their flight information and their credit card data

Booking
Agency Airline

Figure 4: The Booking Agency communicates with the Airline
to be able to provide services, e.g., the booking of flights.

with the Booking Agency in order for the Booking Agency to book
the desired flight at the desired Airline. The flight information can
be, e.g., the date of the flight, information about the luggage, or seat
reservations. At the architecture level, we do not want the credit
card data to flow to the Airline.

 flows 
Booking

Agency

User

flows flows

shares
shares

Airline

Figure 5: A User may share his flight information with the
Booking Agency for the Booking Agency to be able to book a
flight for him. Additionally, the User shares his credit card
information with the Booking Agency to pay for the flight
booked for him.

The result of the architecture analysis is shown in Figure 6, i.e.,
the Booking agency has access to the flight information and the
credit card data. However, only the flight information is shared
with the airline. Thus, our security requirement is fulfilled.

Analysis

Booking
Agency

Airline

Figure 6: The Booking Agency shares the flight information
with the Airline. The result of the architectural analysis
shows, that only the flight information flows to the Air-
line, and thus our security requirement, that no credit card
information flows to the Airline, is fulfilled.

After the system is implemented, we can implement correspon-
dences between the architecture and the code, illustrated in Figure 7.
The class BookingAgency implements the architectural element
Booking Agency and the class Airline implements the architectural
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element Airline. The static code analysis can now be executed and
detects a flow of flight information and no flow of credit card in-
formation to the Airline. Thus, our implementation conforms to
our architecture with regard to the security requirements, i.e., only
flight information flows to the airline.

Code

Architecture

Booking

Agency
Airline

implements

Class BookingAgency {
    book(flight:Flight, ccd:CreditCard) {
        airline.pay(flight, agencyId);
    }
}

Class Airline {
    pay(flight:Flight, agencyId:int) {
        storePledge(agencyId, flight.cost)
    }
}

implements

Figure 7: The Architecture contains the Booking Agency and
the Airline with their data flows. The Code contains possible
implementations not violating the security specifications by
avoiding the information about the type of the credit card to
flow to the Airline.

Now consider an evolution scenario for the system, in which the
booking agency has a cooperation with the credit card company
VISA and because of that cooperation only accepts VISA cards. The
change in the code is relatively simple, illustrated in Figure 8. The
check about the type of the card is added and booking attempts with
different credit cards are aborted. This detail is not documented in
the architecture, and the static architecture analysis still does not
find a violation. However, the static source code analysis can now
find a violation, i.e., an illicit flow of the type of the credit card to
the Airline, which contradicts our security requirement.

4 APPROACH
We now present our general approach for the consistency manage-
ment between the annotations of static architecture analyses and
static source code analyses, as illustrated in Figure 3. This concept
for maintaining consistency was developed based on the properties
of the model elements. The input models include the source code,
architecture model, security annotations for the source code, and
security annotations for the architecture model. Our concept is
designed for consistency management systems with unidirectional
consistency preservation rules. In order to achieve bidirectionality
for the consistency specifications between the architecture anno-
tations and the code annotations, it is necessary to also define a
rule for the reverse direction between the annotations for each
rule. The direction of the rules between annotations and models
they annotate should only allow modifications of annotations. The
reason for unidirectionality is that annotations should only provide

Code

Architecture

Booking

Agency
Airline

implements

Class BookingAgency {
    book(flight:Flight, ccd:CreditCard) {

        if(ccd.type == "VISA"){
            airline.pay(flight, agencyId);
        } else {
            abort;  
        }
    }

}

Class Airline {
    pay(flight:Flight, agencyId:int) {
        // customer has VISA credit card

        storePledge(agencyId, flight.cost)
    }
}

implements

Figure 8: The Architecture contains the Booking Agency and
the Airline with their data flows. The Code contains possible
implementations violating the security specifications by al-
lowing the information about the type of the credit card to
flow to the Airline. This may be because the Booking Agency
has a new collaboration with VISA as an evolved system re-
quirement.

further information about the annotated element and should not
influence or change the element itself.

The rules for preserving consistency are kept general yet specific
enough to develop a functioning consistency preservation for the
specific instances of the models from the concept. The rules do not
assume any specific consistency management software or models,
but metamodels are specified for the models so that the concept
can refer to specific elements. The security analyses in this study
are limited to annotation-based methods. This is because annota-
tions can be modeled and kept consistent with the source code and
architecture models.

4.1 Security Analysis Structure
To describe consistency preservation rules between models at a
higher level of abstraction than the metamodels of specific models
used, this section presents a specific form of annotation-based
security analysis structure, illustrated in fig. 9. For our reference
structure, a system consists of system elements. An annotation
always refers to one system element and a number of security
information elements.

This structure is not a general structure of annotation-based secu-
rity analyses, but a restriction to annotation-based security analyses
to a specific form. The structure is intentionally kept generic, to
define the consistency preservation rules, that can be applied to a
wide range of annotation-based security analyses. Although the
structure does not constitute the metamodels of the security anal-
yses, it abstracts the security analyses syntactically. By defining
consistency preservation rules using this structure, they are not tied
to specific security analyses but can be used to preserve consistency
between any annotation-based security analyses that are based on
this structure.
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Annotation

System Element

Security Information

system element 1

security information1..n

Figure 9: Structure of annotation models for our approach.
AnAnnotation refers to a System Element, which is part of the
system model, and a Security Information, which contains
security relevant information, e.g., a security level.

4.2 System Model Structure
The system models are based on the system elements, which in
Java include methods and parameters. Annotations are used to
relate security information to domain elements, but do not carry
any information themselves. They reference security information
that cannot be inferred from the element. This consistency only
applies to specification-based security analyses, which utilize secu-
rity information and therefore differ from security analyses that do
not require any additional information beyond the analyzed model.
The reason for this limitation is that an annotation model is only
necessary if information is available for it. Security information
can include simple details such as security levels, as well as more
complex information like grids of security permissions.

4.3 Consistency Preservation Rules
We assume the existence of consistency preservation between the
architecture and code model. Thus, the following section focuses on
the consistency preservation rules between the annotation models
and between the architecture and code and their respective anno-
tation model. The first element to keep consistent are the roots of
both annotation models. The consistency preservation rules are
defined as reactions to changes in a source model, which construct
changes in a target model to preserve their consistency.

4.3.1 Root. Weassumemetamodels andmodels to be representable
as trees, as, for instance, realized by Steinberg et al. [26]. The root
of the model is the element of the tree that transitively contains
all other model elements. Whenever a root is created, the system
should check if a corresponding root already exists in the target
model. If so, a correspondence should be established between the
roots. If a root does not exist, a new one is created in the target
model and a correspondence is established between the roots. This
rule is defined in this form for all models in all directions, and
illustrated in Listing 2 for the direction between Java and Joana.

4.3.2 Code Element. Only the annotatable elements are relevant
for preserving consistency, as the consistency for other elements
will be preserved by the existing consistency preservation rules.
When a code element is deleted, the attached annotations must also
be deleted. When a code element is created, it is necessary to ensure

that the maintainer of the annotation model is consulted to explain
their intentions to avoid incorrect assignment of annotations. When
creating a code element, it is often unclear how to proceed, as
the content of an annotation cannot be determined from the code
element alone. If completeness is required for the analysis, default
values should be used for annotations, e.g., the lowest available
security level as a default security level for new elements.

4.3.3 Architecture Element. The general rules between the archi-
tecture model and its annotations are the same as those between
the source code and its annotations. However, their implementation
may differ, even if they are based on the same rules. This is espe-
cially important when the rules are executed transitively. Transitive
execution allows rules to react to changes made not only by the
user but also to changes created by the rule execution through the
consistency management themselves, ensuring consistency across
more than two models. To prevent an infinite loop, the rules for
transitive execution must be adapted, for example, by using suitable
queries.

4.3.4 Annotation. The annotations are first class entities, i.e., they
are model elements in their own. Annotations can thus be linked
with correspondences, which allows their tracing for consistency
preservation. In general, it cannot be assumed that there is a one-to-
one relationship between annotations. Any number of annotations
in the source model can correspond to any number of annotations
in the target model. An example in our case study is that an informa-
tion flow specification is represented as one annotation in the archi-
tectural annotation metamodel, while a source code analysis uses
two annotations to represent the corresponding information. When
an annotation is removed, the corresponding annotations must also
be removed. Therefore, a rule can change several elements either in
the models of the architectural analysis or the source code analysis.
In such cases, only the explicit correspondence, i.e., a one-to-one
correspondence, should be removed. Additionally, modifications
of the annotated elements, i.e., the source code or architecture ele-
ments, may be necessary. This is recommended if the elements do
not fulfill any other requirement and are thus a potential security
weakness or even vulnerability. If the elements do fulfill other pur-
poses, they should be kept, but the developers should be notified to
re-assess the elements and their requirements.

When creating an annotation, it may be necessary to create
several annotations and edit existing ones. This can either be a
direct reaction to the creation of a new annotation, e.g., the creation
of two new security levels. Additionally, the use of lattices may
necessitate the creation of multiple lattice elements, which in turn
creates new security annotations through consistency preservation.
It is important to check whether suitable annotations already exist
and, if necessary, adapt them instead of creating duplicates, e.g., for
security levels.

It is also important to ensure that the consistency preservation
does not invalidate existing annotations. In case of a deletion of a
security information, it is necessary to ensure that it is no longer
needed by another annotation. An example of such a case might
be the security level used by the two annotations in the source
code analysis, which corresponds to another annotated security
information in the architectural annotation model. The deletion
of the security level in the architectural annotation model would
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JOANA
Annotations

Confidentiality4CBSE
Annotations

JaMoPP Model (Java) Palladio Component Model

Figure 10: The specific models used for the Vitruvius imple-
mentation of the consistency preservation.

invalidate the source code annotations, as they point to a non-
existing element.

4.3.5 Multiplicities. When comparing two security annotation
models, it is important to verify if any security information el-
ements represent the same information. It is possible that a security
information syntactically represented by one element in the source
model is represented by multiple elements in the target model or
vice versa. An example is a security level consisting of several basic
security levels. This security level can be represented as a single
syntactical element in one model, while it is represented by using
the syntactical elements of the basic security levels in the other
models.

4.3.6 Complex Mappings. The structure of security requirements
and the connection between the security annotations on the ar-
chitecture and on the code level may become quite complex. We
currently do not see any limitations for our approach in regard
to the complexity of the consistency preservation, but we did not
implement other, more complex consistency preservation rules, and
therefore cannot make a statement about that. Note, that we do not
consider the complexity of the mapping between architecture and
code itself here, as this a prerequisite of our approach and thus out
of scope for this paper.

4.4 Prototypical Implementation
We implemented the consistency preservation rules between se-
curity annotations as a prototypical implementation. The purpose
of the sample implementation was to evaluate the correctness of
the developed concept. The implementation adhered to the concept
specifications during development and was checked for consistency
with the input models.

The specificmodels used in the implementation, illustrated in Fig-
ure 10, are as follows: The Palladio Component Model (PCM) [22] as
the architecture model, Confidentiality4CBSE (C4C) [15] for static
architecture analysis, the extended Java Model Parser and Printer

(JaMoPP) [3] for the source code model with Java as the source
code, and the Java Object-sensitive Analysis (JOANA) [8] for static
analysis of the source code. The Vitruvius [13] framework was
used to implement consistency preservation using transitive con-
sistency preservation rules, which means that a change caused by a
consistency preservation rule can trigger the execution of another
consistency rule. The consistency rules are written in Vitruvius’

Listing 2: Reaction for the insertion of a java package as
a root into a model, which is the application of the rules
described in subsubsection 4.3.1. The Routines called search
for a corresponding joana root and, if none exists, create
a new one and add the correspondence to the given java
package.

1 reaction JavaRootCreated{

2 after element java:: Package inserted as root

3 with newValue.name === null || (! newValue.name.contains ("

contracts ") && !newValue.name.contains (" datatypes "))

4 call {

5 searchForJoanaRoot(newValue)

6 }

7 }

8
9 routine searchForJoanaRoot(java:: Package javaRoot){

10 match{

11 require absence of joana:: JOANARoot corresponding to javaRoot

12 val joanaRoot = retrieve optional joana:: JOANARoot corresponding

to ContainersPackage.Literals.PACKAGE

13 }

14 update{

15 if(joanaRoot.present){

16 addCorrespondenceBetween(joanaRoot.get , javaRoot)

17 } else {

18 val joanaRoots = javaRoot.eResource.allContents.toList.filter(

JOANARoot).toList

19 if(joanaRoots.empty){

20 createJoanaRoot(javaRoot)

21 } else {

22 addCorrespondenceBetween(javaRoot , joanaRoots.get(0))

23 }

24 }

25
26 }

27 }

28
29 routine createJoanaRoot(java:: Package javaRoot){

30 match{

31 require absence of joana:: JOANARoot corresponding to javaRoot

32 }

33 create{

34 val joanaRoot = new joana:: JOANARoot

35 val lattice = new joana:: Lattice

36 }

37 update{

38 joanaRoot.name = "JoanaRoot"

39 joanaRoot.lattice = lattice

40 persistProjectRelative(javaRoot , joanaRoot , "model/" + joanaRoot

.name + ". joanaRoot ")

41 addCorrespondenceBetween(javaRoot , joanaRoot)

42 addCorrespondenceBetween(joanaRoot , ContainersPackage.Literals.

PACKAGE)

43 }

44 }

Reaction language and are unidirectional. This means that the con-
sistency rules must be implemented in both directions between the
two annotation models.

4.5 Example Consistency Preservation
To examine how the individual rules function, let’s revisit our run-
ning example. We have three objects: A User which can book flights
through a purchase interface, and a booking interface between the
Booking Agency and the Airline. Their data flow is encapsulated by
facades.

We modeled the facades of the objects as PCM Operation Signa-

tures, i.e., the signatures of arbitrary operations, e.g., methods. To
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Listing 3: Reaction to the creation of a SignatureInforma-
tionFlow. If no corresponding EntryPoint is present, creates
a new EntryPoint and a new FlowSpecification. Both are
linked accordingly to also contain the information about the
information flow on the architecture level, described by the
SignatureInformationFlow.

1 reaction SignatureIFCreated{

2 after element c4c:: SignatureInformationFlow created

3 call{

4 createEntryPoint(affectedEObject)

5 }

6 }

7
8 routine createEntryPoint(c4c:: SignatureInformationFlow newFlow){

9 match{

10 require absence of joana:: EntryPoint corresponding to newFlow

11 val method = retrieve java:: InterfaceMethod corresponding to

newFlow.appliedTo

12 val joanaRoot = retrieve joana :: JOANARoot corresponding to

newFlow.eContainer

13 }

14 create{

15 val point = new joana:: EntryPoint

16 val spec = new joana:: FlowSpecification

17 }

18 update{

19 addCorrespondenceBetween(point , newFlow)

20 addCorrespondenceBetween(ContainersPackage.Literals.PACKAGE ,

spec)

21 point.annotatedMethod = method

22 point.securitylevels.addAll(joanaRoot.securitylevel)

23 point.tag.add(( method.eContainer as Interface).name + "." +

method.name)

24 spec.entrypoint = point

25 joanaRoot.flowspecification.add(spec)

26 point.lattice = joanaRoot.lattice

27 for(anno : joanaRoot.annotation){

28 if(anno.tag.contains(point.tag.get(0))){

29 spec.annotation.add(anno)

30 }

31 }

32 }

33 }

model our data flow constraints, we used C4C, which is an approach
for detecting confidentiality leaks in PCM. To analyze confidential-
ity, C4C utilizes confidentiality specifications in conjunction with
the architecture model [15]. From the C4C model, we used a Sig-
natureInformationFlow that is annotated to an OperationSignature.
The SignatureInformationFlow includes an information element
that contains a DataSet. This DataSet makes an assumption about
the confidentiality of the data handled by the OperationSignature.
The DataSet classifies the security of an OperationSignature. In our
running example, we will use two DataSets: Set A for the purchase
interface, between User and Booking Agency, which is allowed to
contain credit card information, and Set B for the booking interface
provided by theAirline, which is not allowed to receive credit card
information.

For the code model, we use a JaMoPP InterfaceMethod corre-
sponding to the OperationSignature. This is illustrated in line 11
in Listing 3, where it is retrieved. The security information added
for the JOANA analysis uses Source and Sink definitions to repre-
sent a possible data flow, each annotated to the method passing on
the data. This actual data flow representation is achieved by linking
sources to sinks at each method to which information can flow

from the source through an EntryPoint. Because we react to cre-
ation of a new SignatureInformationFlow, we have to create a new
EntryPoint, as seen in line 15 as well as a new FlowSpecification
in line 16 in Listing 3. Sink and source have an assigned security
level, indicating whether a data flow is permitted. If data flows from
a source with a high security level to a sink with a low security
level, this data flow is not permitted. Therefore, we assign the sinks
and sources of the purchase interface a high security level, as they
handle credit card information. The airline on the other hand is as-
signed a low security level, as it handles no credit card information.
This assignment of security levels is equal to the assignment of the
DataSets in C4C and is illustrated in lines 21-29 in Listing 3.

The automatic consistency preservation prevents errors by keep-
ing the models consistent, when a change is made in another model.
For instance, if the security level of a source is modified in JOANA,
the DataSet of the corresponding OperationSignature is automati-
cally adjusted. The security level of the corresponding sink is also
updated as a result of the transitive change. This feature enables
the prevention of errors by automatically maintaining consistency.

In order for these models to be complete so that they represent
an executable program, further elements are required, but these
have been omitted in this example for the sake of brevity.

5 EVALUATION
To evaluate the implementation, individual reactions were tested
first, followed by the interaction of all reactions. The evaluation
was conducted using two artifacts: unit tests and a test model.

Unit Test. The unit tests verify whether the modifications made
to the individual CPRs align with the intended outcomes, i.e., the
effects of the rules outlined in section 4. This may entail multiple
unit tests for a single CPR, each examining different outcomes. A
model was generated for each unit test, including the minimum
elements necessary to observe all effects of the corresponding CPR.

A total of 51 unit tests were written, 17 of them for the direc-
tion from C4CBSE to JOANA, 25 for the direction from JOANA to
C4CBSE, 5 for the direction from PCM to C4CBSE and 4 for the di-
rection from JaMoPP to JOANA. The different number of unit tests
stems from the different representations of the security informa-
tion. The unit tests were constructed systematically to cover every
Reaction written and implements the triggering action, as well as a
check of the expected outcome of the consistency preservation.

The following elements were created during the tests: 255 Secu-
rityLevels, 953 InformationFlowRelations, 12 EntryPoints, 19 Sinks
and 19 Sources. The Sinks and Sources each have a SecurityLevel,
an annotated method and an annotated parameter. The Sources
each have one tag. The Sinks each have between 0 and 10 tags.

Out of the 51 unit tests, 96% were successful. The two failed
tests were due to unexpected behavior of the Eclipse Modeling
Framework [26], which we used to implement our prototype. As a
result, it is not possible to determine whether the CPRs in question
exhibit the desired behavior. This allowed the specific verification
of almost all individual reactions.

Test Model. The test model is used to verify the feasibility of the
consistency preservation from an architecture analysis annotation
model to a source code analysis annotation model. The test model
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is an existing architecture model with security requirements in the
form of an architectural security annotation model. The architec-
ture consists of 6 components with a total of 14 interfaces, resulting
in the implementation of 15 provided and 13 required interfaces.
The architectural security annotations consist of 27 ParameterAnd-
DataPairs and 17 InformationFlows. The consistency preservation
has created a source code analysis annotation model as a result
model from this test model. The test data includes the test model,
i.e., an architecture model with corresponding security annotations,
as well as a source code model with generated security annotations,
which we use as a gold standard. To assess consistency, we created
the source code based on the existing consistency preservation rules
between PCM and JaMoPP, and the corresponding security annota-
tions with the Reactions written conforming to this approach. We
then compared the models created by our consistency preservation
approach with the gold standard available. The models matched,
and thus we assume, that our consistency preservation approach is
correct.

6 THREATS TO VALIDITY
We discuss threats to the validity of our approach while following
the guidelines from Runeson and Höst [23] and Wohlin et al. [29].

Internal Validity. We argue, that our approach can be applied to
systems described by an architecture and a code model as well as
annotation models for both. We implemented test cases and a case
study, using prior work. The used test cases and case study con-
form to the preconditions we formulated. Based on the successful
implementation of both, we argue, that our approach is applicable
and the preconditions we proposed are necessary. Nevertheless, we
only implemented a single case study and that was based on our
own prior work, thus restricting the internal validity.

External Validity. The external validity of our approach is lim-
ited due to several factors. Firstly, the limited scope of the eval-
uation poses a risk to external validity, as the concept was only
implemented for one case study with a specific combination of
models and external factors. Additionally, the concept is based on
the model for annotation-based static security analyses presented
in the approach, which limits its applicability. While the approach
is formulated generically, it is unclear how applicable it is to other
annotation-based static security analyses.

7 RELATEDWORK
Kebaili et al. [12] discuss the co-evolution of generated code as
part of metamodel evolution. The code written by developers de-
pends on the code generated from the metamodel. In an evolution
scenario, the generated code changes and its behavior may also
change. The authors envision an automatic approach to ensure
correct co-evolution of the code. We focus on security annotation
for architecture models and handwritten code instead. Additionally,
we ensure a correct evolution by using consistency management,
at the cost of partly complex consistency preservation rules.

Jasser [9] considered a similar question, i.e., how to ensure an
implementation fulfills security decisions made on the architecture
level. The authors propose an approach to check the conformance
of an implementation with its specified architecture by employing

architectural security rules. The rules are formalized using a con-
trolled natural language approach. Afterward, the rules are checked
with dynamic analysis techniques on the system behavior. In con-
trast, we use architectural security specifications and keep them
consistent with code security annotations, e.g., by propagating
them. Furthermore, we use static analysis techniques.

Tuma et al. [27] also worked on checking security compliance
between models and code. The authors point out, that a man-
ual compliance check is labor-intensive and can be error-prone.
They developed a semi-automated approach to automatically de-
fine heuristic-based mappings between design and code models.
Instead, we employ consistency preservation techniques to obtain
the correspondences. Using consistency preservation entails higher
initial specification overhead, but enables our heuristic-free ap-
proach.

Peldszus et al. [21] propose an approach to verify that security
assumptions hold at run-time. The authors use UMLsec [10] as se-
curity annotation DSL for the architecture. Their approach, named
UMLsecRT, supports the annotation of system models with security
properties, which are then synchronized to corresponding source
code annotations. The run-time monitor then checks for violations
of those source code annotations. In contrast, we focus on static
analysis and the consistency preservation between architecture
and code annotations. Furthermore, our generic approach is inde-
pendent of the DSL used and directly embedded into consistency
preservation.

Yurchenko et al. [30] also focus on the verification of security
requirements on architecture in their implementation as source
code. The authors focus on the advantage of a reduced specification
overhead for source code annotations by keeping the annotations,
explicitly specified by the architect on the software architecture,
consistent with the source code annotations. Additionally, the paper
presents an example specific for PCM and KEY [1], a software
verification tool. We also use PCM as an architecture description
language and JOANA as analysis in our example. Nonetheless, our
approach is independent of the analyses used and, apart from the
properties we demand from the analyses, generic. Additionally, we
focus on continuous compliance through delta-based consistency
preservation, instead of the generation of source code annotations
as the authors do [30].

8 CONCLUSION
This paper presents a concept for preserving consistency for in-
put models of two security analyses based on annotations. The
input models are an architecture model, a corresponding source
code model, and security annotation models. The concept describes
consistency preservation rules that describe the required reactions
to changes in the architecture and code models, as well as their
annotation models. The concept establishes consistency preserva-
tion rules between the two annotation models and from the system
models (i.e., architecture model and source code) to the annota-
tion models. We assume our approach will be an addition to an
existing consistency preservation, and thus require the consistency
preservation between the system models. We argue our approach
fulfills the two challenges outlined in the introduction, i.e., the pro-
vision of specifications and the evolution of specifications. For the
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provision of specification, we assume a software architecture and
security requirements in the form of annotations, provided by the
system architect and security experts. We then use the consistency
preservation to create the corresponding source code annotations
and thus provide them. The usage of a consistency preservation
framework and consistency preservation rules also allows us to
cope with evolving specifications, as a change in the specifications
simply triggers the appropriate consistency preservation rule. Thus,
we argue, that our approach can also fulfill the second challenge,
i.e., the evolution of specifications.

The consistency preservation was implemented in Vitruvius
and individual reactions were tested using unit tests, with 96% of
the tests being successful. We also implemented a case study with
concrete system and annotation models and obtained the same
result as the manually defined gold standard. The success of the
unit tests and the case study indicate the feasibility of our approach.

For future work, we plan to implement further case studies us-
ing different security DSLs, e.g., UMLsec. Additionally, we plan to
research on the integration of intellectual property protection in
consistency management for continous verification [28]. Further-
more, we plan to simplify the creation of consistency preservation
rules by adding new language elements to use the annotation char-
acteristic of the annotation models, i.e., to automatically generate
deletion rules by simply annotating a model as the annotation
model of another model. To improve the usability of our approach,
we plan to include the automatic execution of the security analysis
and the propagation of the results in the corresponding models.
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