
Verification Strategies for
Feature-Oriented Software Product Lines

Elias Kuiter
Otto-von-Guericke-University

Magdeburg, Germany
kuiter@ovgu.de

Alexander Knüppel
TU Braunschweig

Braunschweig, Germany
a.knueppel@tu-bs.de

Tabea Bordis
TU Braunschweig

Braunschweig, Germany
t.bordis@tu-bs.de

Tobias Runge
TU Braunschweig

Braunschweig, Germany
tobias.runge@tu-bs.de

Ina Schaefer
TU Braunschweig

Braunschweig, Germany
i.schaefer@tu-bs.de

ABSTRACT
Highly-customizable software systems in form of software product
lines are becoming increasingly relevant for safety-critical systems,
in which the correctness of software is a major concern. To ensure
the correct behavior of a software product line, each product can
be verified in isolation—however, this strategy quickly becomes
infeasible for a large number of products.

In this paper, we propose proof plans, a novel strategy for verify-
ing feature-oriented software product lines based on partial proofs.
Our technique splits the verification task into small proofs that
can be reused across method variants, which gives rise to a wider
spectrum of verification strategies for software product lines. We
describe applications of our technique and evaluate one of them on
a case study by comparing it with established verification strategies.

CCS CONCEPTS
• Software and its engineering→ Software product lines; For-
mal software verification.

KEYWORDS
Software Product Lines, Deductive Verification, Proof Reuse
ACM Reference Format:
Elias Kuiter, Alexander Knüppel, Tabea Bordis, Tobias Runge, and Ina
Schaefer. 2022. Verification Strategies for Feature-Oriented Software Prod-
uct Lines. In Proceedings of the 16th International Working Conference on
Variability Modelling of Software-Intensive Systems (VAMOS ’22), Febru-
ary 23–25, 2022, Florence, Italy. ACM, New York, NY, USA, 9 pages. https:
//doi.org/10.1145/3510466.3511272

1 INTRODUCTION
In the software industry of today, there is an increased demand for
highly-customizable software systems [13, 29]. Software product
lines (SPLs) are a methodology to plan, develop, and maintain such
systems [3]. In an SPL, a large number of products can be derived

This work is licensed under a Creative Commons Attribution International
4.0 License.

VAMOS ’22, February 23–25, 2022, Florence, Italy
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9604-2/22/02.
https://doi.org/10.1145/3510466.3511272

in an automated fashion from a shared set of assets [10]. This
methodology allows for mass customization of software, reduction
of development costs, and sustained maintainability [10, 20, 29]. In
an SPL, products are distinguished by the presence or absence of
features that implement end-user visible behavior of the software
system [3]. With an extension of OOP known as feature-oriented
programming (FOP), such features can be developed modularly [7].

SPLs are increasingly used for safety-critical systems, where
correct software behavior is a major concern [26]. In deductive
verification, correctness of software is derived as a formal proof in
a verification calculus [1]. To specify the correctness of a piece of
code (e.g., a method), developers annotate methods with machine-
checkable contracts, which consist of a precondition (i.e., what
a method expects from its caller) and a postcondition (i.e., the
program state guaranteed if the precondition is met) [27].

The deductive verification of SPLs is challenging due to the po-
tentially exponential number of products [33, 35]. In particular,
a mere product-based strategy (in which each product is verified
separately) is only feasible for SPLs with few products [33]. To
facilitate large-scale SPL verification, techniques have been devel-
oped that avoid redundant effort [5, 33, 36]. The state of the art (a
family-based strategy) is to encode all products of an SPL into a
singlemetaproduct [35] that can then be verified as a whole with an
off-the-shelf verification system such as KeY [1]. The verification
system can then leverage similarities between products to optimize
the verification effort. However, this approach does not adapt well
to changes, which may have a large impact on the metaproduct
and require costly re-verification [33]. To mitigate this issue, we
may alternatively split the verification task into many small partial
proofs [8, 21], which can be reused to verify similar or evolving
products. A partial proof may leave “gaps” for proof steps that con-
cern method calls, which can later be bound to concrete methods.
So, we can first conduct partial proofs for individual methods (leav-
ing all gaps unbound) and then complete all proofs by successively
binding method calls to concrete methods. Such a feature-family-
based strategy can also be used in evolution scenarios, as changes
to implementation artifacts only invalidate some partial proofs [24].
However, previous evaluations of partial proofs show mixed results
with regard to reduction in verification effort, which suggests that
partial proofs are inferior to metaproducts in this regard [8, 21].

In this paper, we propose a novel partial-proof-based technique
for verifying feature-oriented SPLs. In contrast to previous work

https://doi.org/10.1145/3510466.3511272
https://doi.org/10.1145/3510466.3511272
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3510466.3511272
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3510466.3511272&domain=pdf&date_stamp=2022-02-23

VAMOS ’22, February 23–25, 2022, Florence, Italy Elias Kuiter, Alexander Knüppel, Tabea Bordis, Tobias Runge, and Ina Schaefer

(e.g., abstract contracts [9, 17]), we are not concerned with how to
conduct partial proofs, rather how to apply partial proofs for SPL
verification. To this end, we explicitly model SPL verification strate-
gies with proof plans. A proof plan is a tree structure that describes
how an SPL (or part thereof) can be verified by conducting partial
proofs. Analogous to query plans in database systems [12], proof
plans are manipulable first-class objects that span a space of all pos-
sible verification strategies for an SPL (i.e., its proof graph), which
may be explored to address post-hoc and evolution scenarios for SPL
verification. This sets proof plans apart from previous partial-proof-
based approaches, such as proof repositories [8], which ignore the
possibility for different verification strategies, or Fefalution [21],
which only makes limited use of partial proofs.

We describe several kinds of proof plans with varying degree of
proof reuse. In particular, feature-family-based proof plans guaran-
tee proof reuse, by which we aim to address the mixed evaluation
results for partial proofs. Thus, our techniquemay be used to strike a
balance between only conducting monolithic, product-based proofs
(which prohibit proof reuse) and only conducting partial proofs
(which enable proof reuse, but impose additional overhead).

In summary, we contribute the following in this paper:
• We propose a sound formalization of proof plans, a novel feature-
family-based technique for verifying feature-oriented SPLs.

• We express existing techniques for SPL verification in terms of
proof plans, which yields a spectrum of SPL verification strate-
gies, and we discuss practical applications of proof plans.

• We implement proof plans in a prototype based on the KeY
verification system and evaluate it on a small case study.

As proof reuse (e.g., by feature-family-based proof plans) naturally
aligns with the goal of software reuse in the SPL community, our
work lays the theoretic groundwork for a more comprehensive
discussion on the modular verification of feature-oriented SPLs.

2 FORMAL FOUNDATIONS
We first give a brief introduction into deductive verification with
partial proofs and feature-oriented software product lines.

2.1 Partial Proofs in Deductive Verification
We base our technique onHoare triples, which comprise code and its
specification [16]. A Hoare triple {P} S {Q} consists of a precondi-
tion P , a sequence of statements S , and a postcondition Q . Pre- and
postconditions are first-order logic formulas with access to program
locations, while statements are given as code in some programming
language (e.g., guarded command language [11]; in our examples,
we use a Java-like language). Semantically, a Hoare triple {P} S
{Q} corresponds to the formula P → ⟨S⟩Q in dynamic first-order
logic (DL) [14]. This formula is valid if, whenever the precondition
P holds, the implementation S terminates and the postcondition
Q holds afterwards (i.e., total correctness). For our technique, we
need not distinguish between total and partial correctness.

Programs are structured around methods and their calls. In the
following, we use the notation m(p1, . . . ,pn) : {P} S {Q} to refer to
a method named m that takes parameters pi . The precondition P and
postcondition Q specify what the method expects when it is called
and what it guarantees afterwards (i.e., the method’s contract).
The method’s implementation is then represented as a sequence of

statements S . A method m can call another method n in S , which
we denote as m.n. With Calls(m), we refer to the set of all calls in m.

Example 1. Consider the method ins(A,x) given by

ins(A,x) : {Sorted(A)}
original(A, x); sort(A)
{Sorted(A) ∧ x ∈ A},

where we assume a helper predicate Sorted(·). This method inserts
an element x into a sorted list A; and we want to guarantee that
the resulting list is still sorted and contains x . The method ins uses
a call to original (a keyword in feature-oriented programming,
cf. subsection 2.2) and a subsequent call to sort (e.g., Calls(ins) =
{ins.original, ins.sort}).

To interpret calls as in Example 1, we need bindings to concrete
methods, so we must track which method contains which calls. We
use the notation m.n 7→ m′ to denote that a call m.n is bound to an-
other method m′with a matching signature. Given a set of methods
M and a set of such bindings B, each call of a method inM can be
bound to none, one, or many concrete methods inM by bindings
in B. When B only contains up to one binding per call, we consider
B to be deterministic—to represent variation in SPLs, we also need
nondeterministic binding sets (cf. subsection 2.2). Regarding Ex-
ample 1, consider M = {ins, origList, origSet, sort} and B =
{ins.original 7→ origList, ins.original 7→ origSet, ins.
sort 7→ sort}. The call ins.original is bound to two methods
(origList/origSet), which encode two variants of ins (e.g., list
and set insertion). In subsection 2.2, we show how to represent
SPLs, continuing Example 1.

To verify the correctness of method variants with respect to
their specification, we define proofs as sequences of proof steps,
where a proof step transforms a proof obligation set (i.e., a set of
DL formulas) into another by binding a given call. A proof for a
method m : {P} S {Q} starts with the proof obligation set {P → ⟨S⟩
Q}, which corresponds to the satisfaction of m’s contract. In this
proof obligation set, a call may be bound by replacing it with the
contract of the bound method. By removing all proof obligations
that become provable (i.e., deducible in a first-order logic calculus),
we are left with a set of proof obligations that remain to be proven.
We can repeat this process and successively bind calls, generating
new (reduced) proof obligation sets. The proof is partial as long
as there are unbound calls left. As soon as all calls are bound, the
proof becomes complete; then it may be closed or not (i.e., open),
depending on whether we succeeded to reduce the proof obligation
set to the empty set �.

Definition 1 (Proof). A proof obligation set is a set of DL
formulas Φ. Let Φ be a proof obligation set and b = m.n 7→ m′ a
binding. Then Φ

b−→ Φ′ is a proof step, where

Φ′:={ϕ ′ | ϕ ′ ∈ SubstContract(ϕ, n, m′),NotProvable(ϕ ′),ϕ ∈ Φ}.
A proof Φ̄ for a method m : {P} S {Q} is a sequence of proof steps

Φ̄:=Φ0
b1−−→ . . .

bn−−→ Φn that starts with the proof obligation set
Φ0 = {P → ⟨S⟩Q}.

A proof Φ̄ is complete when each call in Calls(m) is bound by bi
for some i , otherwise it is partial. It is closed when Φn = �.

Verification Strategies for Feature-Oriented Software Product Lines VAMOS ’22, February 23–25, 2022, Florence, Italy

By supplying bindings with b−→, we enforce a separation between
calls and called methods (inspired by abstract contracts [9, 17]).
Complete proofs constructed with this separation are equivalent
to traditional proofs [17]. However, our approach explicitly allows
partial proofs, in which not all calls are bound yet. Below, we demon-
strate how partial proofs can be paused and continued when bind-
ings become available to achieve proof reuse.

In Definition 1, we omit technical details that are orthogonal to
our approach: First, we do not go into detail about how to replace
a call to a method n with the contract of method m′. Instead, we
assume a function SubstContract that takes a formula ϕ, applies
method contracting (e.g., with abstract contracts [17]), and returns a
set of new proof obligations. When ϕ does not contain any call to m′,
SubstContract returns {ϕ} unchanged. Second, we abstract from or-
dinary DL proof steps with the predicate NotProvable, which checks
the DL validity of proof obligations when they have no unbound
calls. In an implementation of our concept, this is where the actual
verification effort lies, as a verification system (e.g., KeY [1]) must
be invoked to check DL validity. Third, we make the assumption
that the underlying verification calculus is sound; that is, a closed
proof for a method implies that the method satisfies its contract.

In the following lemma, we observe that the order of proof steps
does not affect correctness of proofs; that is, bindings commute.

Lemma 1 (Commutativity of Bindings). Let Φ̄ be a proof and

{b,b ′} a deterministic set of bindings such that Φ̄
b−→ Φu

b′−−→ Φv and

Φ̄
b′−−→ Φw

b−→ Φx are also proofs. Then, Φv = Φx .

Proof. This is due to SubstContract always being applied to
disjoint subformulas representing the substituted method calls. □

In particular, Lemma 1 allows us to safely extend the proof step
relation Φ

b−→ Φ′ to sets of deterministic bindings; that is, we can

bind multiple calls with Φ
{b1, ...,bn }−−−−−−−−−→ Φ′:=Φ b1−−→ . . . bn−−→ Φ′.

With smart use of partial proofs, we can achieve proof reuse in
Example 1. That is, we can conduct the following proofs:

Φ̄u = Φ0
ins.sort7→sort−−−−−−−−−−−−−→ Φu

Φ̄v = Φ̄u
ins.original 7→origList−−−−−−−−−−−−−−−−−−−−−→ Φv

Φ̄w = Φ̄u
ins.original 7→origSet−−−−−−−−−−−−−−−−−−−−→ Φw

First, we construct a partial proof Φ̄u . Because Φ̄u may rely on
the definition of sort, this reduces the proof obligation set Φ0 =
{Sorted(A) → ⟨original(A,x); sort(A)⟩ Sorted(A) ∧ x ∈ A} to
Φu = {Sorted(A) → ⟨original(A,x)⟩ x ∈ A}. To check whether
both variants of ins are correct, we can construct two complete
proofs Φ̄v and Φ̄w and determine whether both are closed. By
reusing the proof Φ̄u for both variants, we achieve proof reuse.

2.2 Feature-Oriented Software Product Lines
A software product line (SPL) is a family of programs (i.e., products)
constructed from reusable artifacts [10, 20, 29]. We focus on feature-
oriented SPLs, in which features distinguish products, each of which
is characterized by a configuration of selected features [3, 18].

F = [Base, Set,Ord]
C = {[Base], [Base, Set], [Base,Ord], [Base, Set,Ord]}
M = {Base::ins(A,x), Base::find(A,x), Ord::find(A,x),

Set::ins(A,x) : {. . .} if ¬find(A,x)
then original(A,x) {. . .},

Ord::ins(A,x) : {. . .} original(A, x); sort(A) {. . .},
Ord::sort(A) : {. . .} . . . sort(A[0, |A |

2])
. . . sort(A[|A |

2 , |A|]) . . . {. . .}}

Figure 1: Example SPL for (un-)sorted sets and lists.

As a means for implementing SPLs, we use feature-oriented
programming (FOP) [30, 31], in which methods are refined with
a special original keyword [7]. With this keyword, a method in
a refining feature f can invoke its original method in a refined
feature f ′; similar to how the super keyword invokes a method
of a superclass in OOP.1 The actual method called by original
depends on the configuration, which gives rise to variability.

We formally define feature-oriented SPLs. In the following, we
use brackets ([. . .]) to indicate totally ordered sets (where ⊆ pre-
serves the order) and P(·) for the power set.

Definition 2 (SPL). An SPL ℓ = (F ,C,M) has
• an ordered set of features F = [f1, . . . , fn],
• a set of configurations C ⊆ P(F), each being an ordered set of
selected features, and

• a set of methodsM , each of which is annotated with a containing
feature (e.g., a method f ::m ∈ M is named m and belongs to f).

We refer to all calls in an SPL as Calls(ℓ):=⋃f ::m∈M Calls(f ::m).
A method m may be implemented in several features (e.g., f1::m,

f2::m, . . .), but each method may only be implemented once per
feature. We omit the feature (and write m only) when irrelevant.
Features (and, thus, configurations) have a defined order, which
determines the meaning of original calls; similar to how a class
hierarchy determines themeaning of super. However, unlike super
in OOP, the target of an original call is determined statically.

In Figure 1, we show an example SPL that represents a small
family of list data structures. This SPL consists of three features
Base, Set, and Ord implemented by methods inM (for brevity, we
omit all method contracts). The first feature Base implements basic
list algorithms, namely Base::ins (which inserts an element x into
a list A) and Base::find (which returns whether an element x oc-
curs at least once in a list A; e.g., by linear search). The feature Set
refines Base::ins as it additionally ensures uniqueness of elements
by calling a method named find, which may refer to several con-
crete methods (i.e., Base::find or Ord::find). Finally, the feature
Ord represents a sorted list by implementing a method Ord::sort,
which sorts a listA recursively. To insert a new element into a sorted
list, Ord invokes the original insmethod and calls sort afterwards
(cf. Example 1). Also, Ord refines the method find to implement
an optimized search algorithm (e.g., binary search). Then, the SPL
1For simplicity, we disregard the possibility for original occurrences in contracts.
However, such explicit contract refinement can be supported as well [24].

VAMOS ’22, February 23–25, 2022, Florence, Italy Elias Kuiter, Alexander Knüppel, Tabea Bordis, Tobias Runge, and Ina SchaeferVAMOS ’22, February 23–25, 2022, Florence, Italy E. Kuiter et al.

Base Set Ord
ins # #
find × #
sort × × #

(a) [Base]

Base Set Ord
ins #
find × #
sort × × #

(b) [Base, Set]

Base Set Ord
ins #
find ×
sort × ×

(c) [Base, Ord]

Base Set Ord
ins
find ×
sort × ×
(d) [Base, Set, Ord]

Figure 2: Collaboration diagrams for the SPL from Figure 1.

by calling a method named find, which may refer to several con-
crete methods (i.e., Base::find or Ord::find). Finally, the feature
Ord represents a sorted list by implementing a method Ord::sort,
which sorts a listA recursively. To insert a new element into a sorted
list, Ord invokes the original insmethod and calls sort afterwards
(cf. Example 1). Also, Ord refines the method find to implement
an optimized search algorithm (e.g., binary search). Then, the SPL
in Figure 1 consists of four products represented by configurations
in C: Unsorted lists ([Base]), unsorted sets ([Base, Set]), sorted lists
([Base,Ord]), and sorted sets ([Base, Set,Ord]).

Given an SPL as in Figure 1, we can derive a product for a given
configuration. To this end, we must specify which methods are
included and which call is bound to which method in that product.
In the following, ⊆ and = must respect the order of their operands.

Definition 3 (Product Derivation). Let ℓ = (F ,C,M) be an SPL and
c ∈ C a configuration. The ordered set cm := [f ∈ c | f ::m ∈ M]
restricts c to all features that implement m. The methods in c are given
by M(c) = {f ::m ∈ M | f ∈ c}, while the bindings in c are given by

B(c) := {f ::m.original 7→ f ′::m |
f ::m.original ∈ Calls(ℓ), [f ′, f] ⊆ cm}

∪ {f ::m.n 7→ f ′::n |
f ::m.n ∈ Calls(ℓ), n , original, cn= [. . . , f ′]}

The set of all bindings in the SPL ℓ is then defined as B(ℓ) :=
⋃
c ∈CB(c).

In Figure 2, we exemplify this definition with collaboration di-
agrams [?] for all configurations of the example SPL in Figure 1.
Columns correspond to features, rows to method names, and cells
to methods; so each cell is a method implemented in its column’s
feature (× marks unimplemented methods). A cell is marked with
 when its method is included in the product (or # otherwise). A
product includes all methods implemented in some selected feature.

Each arrow in Figure 2 is a binding from some call to some
method in the derived product. For example, all sort calls (solid
arrows, including the loops) are bound to Ord::sort, the only
method in the sort row. In contrast, original calls (dashed arrows)
are always bound to a method of the same name whose feature
precedes the current feature in F . So, dashed arrows always point to

some cell to the left in the same row, depending on the configuration.
For example, original in Ord::ins is bound to Set::ins in the
configuration [Base, Set,Ord] and to Base::ins in [Base,Ord].

With this notion of product derivation, we formally define when
we consider an SPL to be correct.

Definition 4 (SPL Correctness). An SPL ℓ = (F ,C,M) is correct
(denoted by ℓ✓) when for all configurations c ∈ C and methods m : {P}
S {Q} ∈ M(c), the proof {P → ⟨S⟩Q} B(c)−−−→ � is closed.

That is, an SPL ℓ is correct if the proofs for every method in
every configuration c (where all calls are bound according to the
deterministic set of bindings B(c)), are closed. Assuming that ℓ
contains no dangling method references, these proofs are complete
and thus equivalent to traditional correctness semantics [?].

Definition 4 describes a product-based verification strategy, where
each product is verified in isolation [?]. However, such a strategy
is infeasible for large configuration spaces. Even for our small ex-
ample SPL, already 16 proofs are necessary (i.e., the number of
cells), all of which have potential overlap with at least one other
proof, as each method occurs in at least two configurations. This
shows the potential for proof reuse even in small SPLs.

3 PROOF PLANS
For Example 1, we showed how reusing partial proofs may lead to a
reduction in verification effort. In such a small example, it is easy to
manually locate the potential for reuse and determine which partial
proofs should be conducted. For entire SPLs, this procedure is less
obvious, as the call structure (and, thus, collaboration diagrams)
may be complex, so there may be many strategies for conducting
partial proofs that differ in their verification effort.

To systematically leverage commonalities between proofs, we
propose to track all possible proofs that may be conducted in a proof
graph spanning the entire space of possibilities for verifying an SPL.
Each node in a proof graph (denoted by m[B]) represents all possible
proofs for some method m, in which calls are bound according to a
set of bindings B. Each edge from one node to another then shows
how to bind some new calls in any of these possible proofs, which
leads to a new set of possible proofs that include the new bindings.

The resulting graph uncovers a rich structure of partial proofs,
which we exploit to achieve proof reuse in an SPL.

Definition 5 (Syntax of Proof Graphs). LetM be a set of methods.
A proof graph д = (N ,E) is a directed acyclic graph with
• a set of nodes N ⊆ {m[B] | m ∈ M,B is a deterministic set of
bindings}, each of which represents a method m whose calls are
bound deterministically by the bindings given in B and

• a set of edges E ⊆ {(m[B], m[B′]) ∈ N × N | B ⊂ B′} between
those nodes, each adding some new bindings B′ \ B to a node.

A source (sink) node in д has no incoming (outgoing) edges in E. We
refer to source (sink) nodes with Sources(д) ⊆ N (Sinks(д) ⊆ N).

In Figure 3, we show part of the proof graph for the example SPL
from Figure 1 (below, we show how exactly to construct such a proof
graph). In this proof graph, each method m ∈ M has one connected
component that starts with the method’s corresponding source
node m[�]. This source node branches out into several possible
paths whose branching structure depends on the bindings of the

Figure 2: Collaboration diagrams for the SPL from Figure 1.

in Figure 1 consists of four products represented by configurations
in C: Unsorted lists ([Base]), unsorted sets ([Base, Set]), sorted lists
([Base,Ord]), and sorted sets ([Base, Set,Ord]).

Given an SPL as in Figure 1, we can derive a product for a given
configuration. To this end, we must specify which methods are
included and which call is bound to which method in that product.
In the following, ⊆ and = must respect the order of their operands.

Definition 3 (SPL Products). Let ℓ = (F ,C,M) be an SPL and
c ∈ C a configuration. The ordered set cm:=[f ∈ c | f ::m ∈ M]
restricts c to all features that implement m. The methods in c are given
by M(c) = {f ::m ∈ M | f ∈ c}, while the bindings in c are given by

B(c):= {f ::m.original 7→ f ′::m |
f ::m.original ∈ Calls(ℓ), [f ′, f] ⊆ cm}

∪ {f ::m.n 7→ f ′::n |
f ::m.n ∈ Calls(ℓ), n , original, cn= [. . . , f ′]}

The set of all bindings in the SPL ℓ is then defined as B(ℓ):=⋃c ∈CB(c).
In Figure 2, we exemplify this definition with collaboration di-

agrams [31] for all configurations of the example SPL in Figure 1.
Columns correspond to features, rows to method names, and cells
to methods; so each cell is a method implemented in its column’s
feature (× marks unimplemented methods). A cell is marked with
 when its method is included in the product (or # otherwise). A
product includes all methods implemented in some selected feature.

Each arrow in Figure 2 is a binding from some call to some
method in the derived product. For example, all sort calls (solid
arrows, including the loops) are bound to Ord::sort, the only
method in the sort row. In contrast, original calls (dashed arrows)
are always bound to a method of the same name whose feature
precedes the current feature in F . So, dashed arrows always point to
some cell to the left in the same row, depending on the configuration.
For example, original in Ord::ins is bound to Set::ins in the
configuration [Base, Set,Ord] and to Base::ins in [Base,Ord].

With this notion of product derivation, we formally define when
we consider an SPL to be correct.

Definition 4 (SPL Correctness). An SPL ℓ = (F ,C,M) is cor-
rect (denoted by ℓ✓) when for all configurations c ∈ C and methods

m : {P} S {Q} ∈ M(c), the proof {P → ⟨S⟩Q} B(c)−−−→ � is closed.

That is, an SPL ℓ is correct if the proofs for every method in
every configuration c (where all calls are bound according to the
deterministic set of bindings B(c)), are closed. Assuming that ℓ
contains no dangling method references, these proofs are complete
and thus equivalent to traditional correctness semantics [17].

Definition 4 describes a product-based verification strategy, where
each product is verified in isolation [33]. However, such a strategy
is infeasible for large configuration spaces. Even for our small ex-
ample SPL, already 16 proofs are necessary (i.e., the number of
cells), all of which have potential overlap with at least one other
proof, as each method occurs in at least two configurations. This
shows the potential for proof reuse even in small SPLs.

3 PROOF PLANS
For Example 1, we showed how reusing partial proofs may lead to a
reduction in verification effort. In such a small example, it is easy to
manually locate the potential for reuse and determine which partial
proofs should be conducted. For entire SPLs, this procedure is less
obvious, as the call structure (and, thus, collaboration diagrams)
may be complex, so there may be many strategies for conducting
partial proofs that differ in their verification effort.

To systematically leverage commonalities between proofs, we
propose to track all possible proofs that may be conducted in a proof
graph spanning the entire space of possibilities for verifying an SPL.
Each node in a proof graph (denoted by m[B]) represents all possible
proofs for some method m, in which calls are bound according to a
set of bindings B. Each edge from one node to another then shows
how to bind some new calls in any of these possible proofs, which
leads to a new set of possible proofs that include the new bindings.

The resulting graph uncovers a rich structure of partial proofs,
which we exploit to achieve proof reuse in an SPL.

Definition 5 (Proof Graph). LetM be a set of methods. A proof
graph д = (N ,E) is a directed acyclic graph with

• a set of nodes N ⊆ {m[B] | m ∈ M,B is a deterministic set of
bindings}, each of which represents a method m whose calls are
bound deterministically by the bindings given in B and

• a set of edges E ⊆ {(m[B], m[B′]) ∈ N × N | B ⊂ B′} between
those nodes, each adding some new bindings B′ \ B to a node.

A source (sink) node in д has no incoming (outgoing) edges in E. We
refer to source (sink) nodes with Sources(д) ⊆ N (Sinks(д) ⊆ N).

In Figure 3, we show part of the proof graph for the example SPL
from Figure 1 (below, we show how exactly to construct such a proof
graph). In this proof graph, each method m ∈ M has one connected
component that starts with the method’s corresponding source
node m[�]. This source node branches out into several possible
paths whose branching structure depends on the bindings of the
calls in m. All paths then lead to some sink node (marked gray),
which represents a particular variant of the method m.

Given a proof graph, we define its semantics (i.e., the correctness
of all method variants it represents) by conducting proofs for each
node as follows: That is, we label each node m[B] with a set of

Verification Strategies for Feature-Oriented Software Product Lines VAMOS ’22, February 23–25, 2022, Florence, Italy

proofs for m that bind calls as given by B. Each of these proofs
represents one particular order in which the bindings in B may be
added. Consequently, for all source nodes, there is only one such
proof, which consists of the initial proof obligation (and possibly,
some initial bindings as well). For all non-source nodes m[B′], we
look up predecessor nodes m[B] with edges incoming to m[B′]; that
is, nodes with proofs that can be continued as proofs for m[B′]. We
then continue all these proofs by binding the missing calls given by
B′ \ B, arriving at a new set of proofs for m[B′]. Thus, we conduct
longer (and more complete) proofs by following the edges in the
proof graph. The sink nodes in the proof graph are then labeled
with sets of complete proofs, which must all be closed for the proof
graph to be correct. Intuitively, as each sink node corresponds to
one method variant in an SPL, the correctness of proof graphs then
corresponds to SPL correctness.

Definition 6 (Proof Graph Semantics). Let д = (N ,E) be a
proof graph. We label each node m[B] ∈ N with a set Proofs(m[B]):
• For any source node m[B] ∈ Sources(д) and any method m : {P} S
{Q}, let Proofs(m[B]):={{P → ⟨S⟩Q} B−→ Φ}, while

• for any non-source node m[B′] ∈ N \ Sources(д), let Proofs(m[B′])
:={Φ̄ B′\B−−−−→ Φ | (m[B], m[B′]) ∈ E, Φ̄ ∈ Proofs(m[B])},

where Φ is the new proof obligation set resulting from applying the
bindings B and B′ \ B according to Definition 1.

The proof graph д is correct (denoted by д✓) when for all sink
nodes m[B] ∈ Sinks(д) and all proofs Φ̄ ∈ Proofs(m[B]), Φ̄ is closed.

In Definition 6, our use of proofs is justified by the commutativity
of bindings (cf. Lemma 1) and because all involved sets of bindings
are deterministic. However, as there may be many incoming edges
towards a node, Proofs(m[B])may be a set of many proofs. Thus, we
cannot uniquely identify a single proof to conduct for each node.

We address this issue by introducing proof plans: A proof plan is
a subgraph of a proof graph д in which the proofs for each node
are uniquely determined (i.e., |Proofs(m[B])| = 1) and all method
variants of д are still represented (i.e., the proof plan has all sink
nodes of д), which preserves the correctness of д.

Definition 7 (Proof Plan). Let д = (N ,E) be a proof graph
and Np ⊆ N ,Ep ⊆ E. A subgraph p = (Np ,Ep) of д is a proof plan
derived from д (denoted by p ⊑ д) when each node in Np has at most
one incoming edge in Ep and Sinks(p) = Sinks(д).

In Figure 3, we show an example proof plan (marked dashed).
In this plan, we chose to conduct only a small number of proofs.
Alternatively, we could have chosen all nodes (corresponding to a
collection of spanning trees) or only sink nodes (i.e., the minimal
proof plan). In section 4, we discuss how the chosen proof plan
may influence the verification effort. In contrast to an entire proof
graph, a proof plan represents a single proof per method variant,
as each node by definition has no more than one incoming edge.
Once a proof plan p is selected, we can verify whether p is correct
according to Definition 6 by conducting its complete proofs (i.e.,
proofs for sink nodes) and checking whether they are all closed.

As a theorem, we observe that all proof plans are correctness-
equivalent; that is, they are all either correct or incorrect.

Theorem 1 (Eqivalence of Proof Plans). Let д be any proof
graph and p1,p2 ⊑ д any proof plans. Then, p✓1 ⇔ p✓2 .

O::s[] [O::s.s -> O::s]

O::i[]

[O::i.original -> B::i]

[O::i.s -> O::s]

[O::i.original -> S::i]

S::i[]

[S::i.f -> O::f]

[S::i.original -> B::i]

[S::i.f -> B::f]

O::f[]

B::i[]

B::f[]
[O::i.s -> O::s,O::i.original -> B::i]

[O::i.s -> O::s,O::i.original -> S::i]

[S::i.original -> B::i,S::i.f -> O::f]

[S::i.original -> B::i,S::i.f -> B::f]

Figure 3: Simplified proof graph for the SPL from Figure 1.

Proof. By definition, all proof plans have the same sink nodes
(those of д). Although the paths towards these nodes may poten-
tially differ, Lemma 1 shows that differing paths (i.e., orders of
adding bindings) lead to equivalent proofs. □

To relate proof graphs and plans to the correctness of SPLs, we
describe how to construct the SPL proof graph. An SPL proof graph
represents all method variants of an SPL and corresponds to many
different strategies to verify an SPL (cf. section 4). In an SPL proof
graph, each source node m[�] corresponds to a method m in the
given SPL and spans one connected component. Each binding of a
call m.n to a method m′in the SPL then corresponds to some edges
in this proof graph: That is, we draw an edge from some node to
another node if the former node admits a binding of m.n and the
latter binds m.n to m′. We say that a node admits a binding when
the bound call occurs in the connected component’s method (i.e.,
the binding is syntactically meaningful) and when the resulting
combination of bindings occurs in at least one configuration. By
this construction, each source node (i.e., each method) branches
into multiple paths towards some sink nodes (i.e., method variants).

The formal definition of SPL proof graphs is then as follows:

Definition 8 (SPL Proof Graph). Let ℓ = (F ,C,M) be an SPL.
The SPL proof graph for ℓ is given by

g(ℓ):=(NB(ℓ), {(m[B], m[B′]) ∈ NB(ℓ) × NB(ℓ) | B ⊂ B′}),
where N�:={m[�] | m ∈ M,∃c ∈ C : m ∈ M(c)},
NB̂∪{b } :=NB̂ ∪ {m[B ∪ {b}] | m[B] ∈ NB̂ , m[B] ⊩ b},

and a node m[B] admits the binding b = m′.n 7→ m′′ (denoted by
m[B] ⊩ b) iff m′.n ∈ Calls(m) ∧∃c ∈ C : (m ∈ M(c) ∧B ∪ {b} ⊆ B(c)).

Definition 8 induces an algorithm for calculating the entire SPL
proof graph. In Figure 3, we show this proof graph for the example
SPL in Figure 1 (for better readability, we omit transitive edges).
The source nodes in this graph are added by N� for each method in
the SPL (e.g., B::i[], which abbreviates Base::ins[�]). Then, we
successively construct the set NB̂∪{b } for every binding b in any
configuration of the SPL (i.e., bindings in B(ℓ)). That is, for each
binding, we add nodes for all existing nodes that admit the binding
(⊩). Finally, we connect all nodes according to the subset relation
on their bindings. In the resulting graph in Figure 3, each sink node
(marked gray) corresponds to one variant of a method in the SPL.
For example, the method Base::ins has only one variant, which

VAMOS ’22, February 23–25, 2022, Florence, Italy Elias Kuiter, Alexander Knüppel, Tabea Bordis, Tobias Runge, and Ina Schaefer

is included in several configurations of the SPL and represented
by the node Base::ins[�]. Ord::ins, on the other hand, has two
variants (for insertion into lists and sets, respectively), therefore
there are two sink nodes in the subgraph starting at Ord::ins[�].

To leverage proof reuse for methods with multiple variants (e.g.,
Ord::ins), we inspect the intermediate nodes in between source
and sink nodes. For example, both sink nodes for Ord::ins are
preceded by the node Ord::ins[{ Ord::ins.sort 7→ Ord::sort}].
Thus, they share the verification effort invested in said node, so we
may first conduct a proof for said node and then reuse that proof
twice to arrive at both sink nodes. By choosing some nodes and
edges for the other methods in the SPL, we get a concrete proof
plan (e.g., the one marked dashed in Figure 3). Thus, we can verify
the example SPL by conducting 10 proofs, two of which allow for
partial proof reuse. The SPL is then correct if all proofs conducted
for sink nodes (each corresponding to a method variant) are closed.

In the following, we show formally that the correctness of proof
plans (cf. Definition 7) indeed coincides with the correctness of
SPLs (cf. Definition 4) to justify the correctness of our approach.

Theorem 2 (Proof Plan Correctness). Let ℓ = (F ,C,M) be
any SPL and p ⊑ g(ℓ) any proof plan. Then, p✓ ⇔ ℓ✓ . That is, an
SPL is correct iff any proof plan derived from its proof graph is correct.

Proof. All proof plans are correctness-equivalent (cf. Theo-
rem 1), so it suffices to find a single proof plan p with p✓ ⇔ ℓ✓ .
Consider the minimal proof plan pop , which consists of the sink
nodes of g(ℓ) and no edges. By Definition 6 and Definition 8, each
sink node m[B] in this plan corresponds to exactly one variant of
the method m ∈ M in some configuration c ∈ C such that B ⊆ B(c).

Thus, it only remains to be shown that a sink node’s proof
Proofs(m[B]) = {Φ̄} is equivalent to the proof for its method variant;

that is, Φ̄ = {P → ⟨S⟩Q} B−→ � iff {P → ⟨S⟩Q} B(c)−−−→ �. This
follows because B ⊆ B(c) and all bindings in B(c) \ B do not affect
any proof for m (cf. Definition 1). □

Theorem 2 justifies the correctness of our approach. However, it
makes no statement about the verification effort associated with a
proof plan. In fact, proof plansmay largely differ in their verification
effort. Consider, for example, the extreme examples mentioned
above: If we chose to conduct proofs for all nodes in the SPL proof
graph, we would conduct several proofs that do not correspond or
contribute to the proof of any method variant, which would have
a negative impact on the verification effort. On the other hand,
choosing to conduct proofs only for sink nodes leaves room for
improvement as well, as no proof reuse is leveraged.

Our notion of proof plans lays the foundation for finding amiddle
ground: Ideally, we would like to maximize proof reuse, while min-
imizing the number of partial proofs and thus, their overhead [21].

4 SPL VERIFICATION STRATEGIES
The flexible definition of proof plans allows us to implement sev-
eral concrete verification strategies [33], which we discuss in the
following in the context of proof plans.

Definition 9 (SPL Verification Strategies). Let ℓ be an SPL
and д = g(ℓ) its SPL proof graph. We introduce three particular kinds
of proof plans derived from д:

• pop :=(Sinks(д),�) is the optimized product-based proof plan,
• pfp :=(Sources(д) ∪ Sinks(д), {(m[�], m[B]) | m[B] ∈ Sinks(д), B ,
�}) is the feature-product-based proof plan, and

• pff = (N ,E) ⊑ д is a feature-family-based proof plan when it is
not (feature-)product-based and each non-sink node in N has at
least two outgoing edges in E.

A product-based strategy verifies each method variant in isola-
tion, thus it does not leverage proof reuse. As noted in the proof for
Theorem 2, there is a minimal proof plan pop for any SPL, which
implements the product-based verification strategy given in Defini-
tion 4. In this proof plan, we conduct one proof for each sink node
(i.e., method variant). Because we ignore identical occurrences of a
variant in several configurations, our strategy can be considered
optimized, in contrast to one that reproves such occurrences [33].

Product-based strategies often serve as a baseline for evaluating
SPL analysis strategies, as they are simple to implement, sound, and
complete; however, they do not scale to large SPLs [33]. Instead,
one step towards increased proof reuse (and, thus, possibly a re-
duction in verification effort) is to conduct partial proofs without
any bindings for each method in an SPL, which we then complete
with the bindings for each individual method variant. The partial
proofs may then reduce the proof obligation set for a method such
that only proof obligations related to (yet unbound) calls remain.
In terms of proof plans, this corresponds to taking the source and
sink nodes of a proof graph and drawing edges between them (pfp).
This proof plan implements a feature-product-based strategy [33],
as it consists of a feature-based phase (verifying methods in isola-
tion) followed by a product-based phase (verifying actual method
variants based on the results from the feature-based phase).

With a proof plan such as the one shown in Figure 3 (marked
dashed), we can continue the idea ofpfp to increase proof reuse even
further by relying on intermediate (i.e., non-source and non-sink)
nodes. That is, all non-sink nodes included in such an improved
proof plan (pff) must have at least two outgoing edges, which means
that each conducted partial proof is reused to verify at least two
distinct method variants (as seen in Figure 3). We argue that this
way of using intermediate nodes to construct partial proofs can
be considered a family-based phase, making this a feature-family-
based strategy [33]. This is becausewe no longer consider individual
method variants in isolation as above; instead all conducted partial
proofs contribute to the verification of several method variants.

In summary, we can understand these verification strategies—
product-, feature-product-, and (arguably) feature-family-based—
as special cases of our technique for SPL verification. As there
are many proof plans for a given SPL, this shows that there is a
nuanced spectrum of SPL verification strategies in between these
known strategies and we can construct hybrids from the proof
plans given in Definition 9: For example, such a hybrid plan may
be product-based in one connected component of the proof plan
and feature-family-based elsewhere. In practice, this means that we
can combine and leverage the individual strengths of the discussed
strategies. On a theoretical level, we show that there are nuances
to SPL verification, which have (to the best of our knowledge) not
been considered before. This also allows us to judge the degree to
which a verification strategy (given as a proof plan) is product-,
feature-product-, or feature-family-based.

Verification Strategies for Feature-Oriented Software Product Lines VAMOS ’22, February 23–25, 2022, Florence, ItalyVerification Strategies for Feature-Oriented Software Product Lines VAMOS ’22, February 23–25, 2022, Florence, Italy

ℓ g(ℓ) p

ℓ′ g(ℓ′) p′
≃

Def. 8Def. 2–4

≃
Def. 9Def. 5–6

≃
Def. 7

Figure 4: Usage of proof plans for post-hoc verification
(solid), evolution scenarios (dotted), and lazy exploration
(dashed).

be product-based in one connected component of the proof plan
and feature-family-based elsewhere. In practice, this means that we
can combine and leverage the individual strengths of the discussed
strategies. On a theoretical level, we show that there are nuances
to SPL verification, which have (to the best of our knowledge) not
been considered before. This also allows us to judge the degree to
which a verification strategy (given as a proof plan) is product-,
feature-product-, or feature-family-based.

Besides the discussed strategies, there are two widely known SPL
analysis strategies that are not representable as proof plans, namely
feature-based verification [?] and family-based verification with
metaproducts [?]: First, feature-based strategies verify each feature
(in our context, each method) in isolation, ignoring all references to
other features (here, all calls). In terms of proof graphs, this would
mean conducting proofs only for the proof graph’s source nodes,
not for intermediate or sink nodes. However, this contradicts that
all sink nodes must be included in a proof plan, which reflects the in-
completeness of feature-based strategies (i.e., they can detect some,
but not all errors) [?]. Second, family-based strategies encode all
method variants into a single metaproduct, which is then verified
as a whole. This strategy is incompatible with our approach be-
cause proof plans and metaproducts follow opposing ideas: While
proof plans split the verification into many small, separate proofs,
metaproducts only require a single, monolithic proof. Thus, proof
plans allow for parallelization and evolution (see below); while
proofs for metaproducts can profit from internal optimization.

5 APPLICATIONS
In Figure 4, we show three potentially useful directions for applying
proof plans in practice, which we describe in more detail.
• Post-Hoc Verification. In this paper, we are mostly concerned with
post-hoc verification (solid arrows in Figure 4). That is, we have
an SPL ℓ, and to check it for correctness, we calculate its proof
graph g(ℓ) and derive some proof plan p ⊑ g(ℓ) (cf. Definition 2–
9). In this scenario, we profit from proof reuse due to variability
in space [?], as similar products share proofs.

• Evolution Scenarios. In practice, variability in time [?] is usually
also involved (dotted arrows in Figure 4). This includes scenarios
like evolution, maintenance, debugging, focusing on critical prod-
ucts, safe feature removal, and correctness-by-construction [?].
In such scenarios, ℓ is known to be (in-)correct due to some proof
plan p and we want to determine whether an evolved SPL ℓ′ is
still (in-)correct. Assuming that ℓ′ is quite similar to the original
ℓ (ℓ ≃ ℓ′), their proof graphs can be expected to be similar as
well (g(ℓ) ≃ g(ℓ′)). Thus, a proof plan p′ similar to p (p ≃ p′);

should be derivable, and we also profit from proof reuse due to
variability in time. Notably, family-based verification does not
support evolution scenarios well, in contrast to proof plans.

• Lazy Exploration. Calculating the entire proof graph g(ℓ) accord-
ing to Definition 8 is infeasible for larger SPLs. Thus, we must
consider skipping its calculation and instead explore the space
of possible proof plans lazily. To this end, we need an algorithm
to derive a proof plan p directly from its SPL ℓ (dashed arrows in
Figure 4). However, as we now skip manually choosing a proof
plan, heuristics for determining a “good” proof plan (or optimiz-
ing an existing one) are needed as well. Depending on the use
case, a “good” proof plan may be derived by strictly maximizing
branching (cf. Definition 9) or predicting how possible future
versions ℓ′ might evolve to minimize costly re-verification.
Because a complete description and evaluation of the second and

third application would require further definitions (e.g., similarity),
theorems (e.g., g(ℓ) ≃ g(ℓ′)), and algorithms (e.g., for constructing
p′), we leave those to be investigated in future work.

6 EVALUATION
To demonstrate feasibility, we implemented proof plans in the pro-
totype KeYPl (KeY for Proof Plans).2 We use the KeY verification
system [?] as underlying verification calculus and the Java mod-
eling language (JML) [?] for specification. As KeY has no built-in
support for partial proofs, we implement them with model meth-
ods, which are methods on the specification-level [?]. In particular,
model methods can be abstract, which allows us to pause a proof un-
til a concrete definition is substituted. KeYPl completely automates
the process of generating JML-annotated Java code and performs
the necessary substitutions to implement partial proofs. Our proto-
type implements a slightly expanded version of our formal concept
that also supports composition of method contracts via explicit
contract refinement [? ?].

We use our prototype to evaluate the verification effort required
by proof plans in a post-hoc verification scenario (solid arrows in
Figure 4). That is, we aim to create proof plans to verify a given
SPL using all verification strategies described in Definition 9, after
which we compare their verification effort.
Experimental Setup. As a subject system, we developed a case
study of list data structures, which is an extension of our example
SPL in Figure 1. The case study comprises 5 features and 13 methods
with 16 calls in total (11 of which are original calls, 7 of those in
contracts). With KeYPl, we can calculate its entire SPL proof graph
according to Definition 8, which consists of 37 nodes.

We use KeYPl to derive proof plans from this graph for the verifi-
cation strategies discussed in Section 4 as follows: First, the opti-
mized and feature-product-based proof plans pop and pfp are both
uniquely determined (cf. Definition 9). Second, we calculate all
feature-family-based proof plans pff (to ensure reproducibility)—as
the proof graph is small, we do this by iterating all proof plans
(cf. Definition 7) and filtering those that are feature-family-based
(cf. Definition 9), yielding 14 in total. Third, we emulate an unopti-
mized product-based strategy, which comprises the same proofs as
pop , but does not eliminate strict duplicates [?]. Finally, to compare

2Prototype, case study, and results available at: https://github.com/ekuiter/KeYPl

Figure 4: Using proof plans for post-hoc verification (solid),
evolution scenarios (dotted), and lazy exploration (dashed).

Besides the discussed strategies, there are two widely known
SPL analysis strategies that are not representable as proof plans,
namely feature-based verification [6] and family-based verification
with metaproducts [35]: First, feature-based strategies verify each
feature (in our context, each method) in isolation, ignoring all refer-
ences to other features (here, all calls). In terms of proof graphs, this
would mean conducting proofs only for the proof graph’s source
nodes, not for intermediate or sink nodes. However, this contradicts
that all sink nodes must be included in a proof plan, which reflects
the incompleteness of feature-based strategies (i.e., they can detect
some, but not all errors) [33]. Second, family-based strategies en-
code all method variants into a single metaproduct, which is then
verified as a whole. This strategy is incompatible with our approach
because proof plans and metaproducts follow opposing ideas: While
proof plans split the verification into many small, separate proofs,
metaproducts only require a single, monolithic proof. Thus, proof
plans allow for parallelization and evolution (see below); while
proofs for metaproducts can profit from internal optimization.

5 APPLICATIONS
In Figure 4, we show three potentially useful directions for applying
proof plans in practice, which we describe in more detail.
• Post-Hoc Verification. In this paper, we are mostly concerned with
post-hoc verification (solid arrows in Figure 4). That is, we have
an SPL ℓ, and to check it for correctness, we calculate its proof
graph g(ℓ) and derive some proof plan p ⊑ g(ℓ) (cf. Definition 2–
9). In this scenario, we profit from proof reuse due to variability
in space [2], as similar products share proofs.

• Evolution Scenarios. In practice, variability in time [2] is usually
also involved (dotted arrows in Figure 4). This includes scenarios
like evolution, maintenance, debugging, focusing on critical prod-
ucts, safe feature removal, and correctness-by-construction [23].
In such scenarios, ℓ is known to be (in-)correct due to some proof
plan p and we want to determine whether an evolved SPL ℓ′ is
still (in-)correct. Assuming that ℓ′ is quite similar to the original
ℓ (ℓ ≃ ℓ′), their proof graphs can be expected to be similar as
well (g(ℓ) ≃ g(ℓ′)). Thus, a proof plan p′ similar to p (p ≃ p′);
should be derivable, and we also profit from proof reuse due to
variability in time. Notably, family-based verification does not
support evolution scenarios well, in contrast to proof plans.

• Lazy Exploration. Calculating the entire proof graph g(ℓ) accord-
ing to Definition 8 is infeasible for larger SPLs. Thus, we must
consider skipping its calculation and instead explore the space
of possible proof plans lazily. To this end, we need an algorithm
to derive a proof plan p directly from its SPL ℓ (dashed arrows in
Figure 4). However, as we now skip manually choosing a proof

plan, heuristics for determining a “good” proof plan (or optimiz-
ing an existing one) are needed as well. Depending on the use
case, a “good” proof plan may be derived by strictly maximizing
branching (cf. Definition 9) or predicting how possible future
versions ℓ′ might evolve to minimize costly re-verification.
Because a complete description and evaluation of the second and

third application would require further definitions (e.g., similarity),
theorems (e.g., g(ℓ) ≃ g(ℓ′)), and algorithms (e.g., for constructing
p′), we leave those to be investigated in future work.

6 EVALUATION
To demonstrate feasibility, we implemented proof plans in the pro-
totype KeYPl (KeY for Proof Plans).2 We use the KeY verification
system [1] as underlying verification calculus and the Java model-
ing language (JML) [25] for specification. As KeY has no built-in
support for partial proofs, we implement them with model meth-
ods, which are methods on the specification-level [1]. In particular,
model methods can be abstract, which allows us to pause a proof un-
til a concrete definition is substituted. KeYPl completely automates
the process of generating JML-annotated Java code and performs
the necessary substitutions to implement partial proofs. Our proto-
type implements a slightly expanded version of our formal concept
that also supports composition of method contracts via explicit
contract refinement [24, 34].

We use our prototype to evaluate the verification effort required
by proof plans in a post-hoc verification scenario (solid arrows in
Figure 4). That is, we aim to create proof plans to verify a given
SPL using all verification strategies described in Definition 9, after
which we compare their verification effort.
Experimental Setup. As a subject system, we developed a case
study of list data structures, which is an extension of our example
SPL in Figure 1. The case study comprises 5 features and 13 methods
with 16 calls in total (11 of which are original calls, 7 of those in
contracts). With KeYPl, we can calculate its entire SPL proof graph
according to Definition 8, which consists of 37 nodes.

We use KeYPl to derive proof plans from this graph for the verifi-
cation strategies discussed in section 4 as follows: First, the opti-
mized and feature-product-based proof plans pop and pfp are both
uniquely determined (cf. Definition 9). Second, we calculate all
feature-family-based proof plans pff (to ensure reproducibility)—as
the proof graph is small, we do this by iterating all proof plans
(cf. Definition 7) and filtering those that are feature-family-based
(cf. Definition 9), yielding 14 in total. Third, we emulate an unopti-
mized product-based strategy, which comprises the same proofs as
pop , but does not eliminate strict duplicates [33]. Finally, to compare
KeYPl with a family-based strategy, we also generate the metaprod-
uct [35] for our case study with FeatureHouse [4]. We then verify
all derived proof plans (cf. Definition 6) and the metaproduct with
KeY and trace the number of open (i.e., failed) proofs. We further
measure the required verification effort with commonly used met-
rics, namely the number of KeY-internal proof steps/branches and
the required time [1, 22]. We perform our evaluation with 5 repeti-
tions (plus JVM warm up) on a quad-core 2.3 GHz CPU with 12 GB
of RAM and were able to reproduce the results on another machine.

2Prototype, case study, and results available at: https://github.com/ekuiter/KeYPl

https://github.com/ekuiter/KeYPl

VAMOS ’22, February 23–25, 2022, Florence, Italy Elias Kuiter, Alexander Knüppel, Tabea Bordis, Tobias Runge, and Ina Schaefer

Table 1: Comparison of verification strategies for our case
study (w.r.t. open proofs, KeY-internal steps/branches, time).

Verification strategy #Open #Step #Branch Time [s]
Metaproduct [35] 2 18350 245 20.0
pop 0 21400 281 23.7
pff (avg., N = 14) 0 24217 313 26.2
pfp 0 25921 348 28.8
Unoptimized 0 148528 1964 157.7

Results and Discussion. In Table 1, we show the results of our
evaluation, ordered by increasing verification effort. For the feature-
family-based strategy, we show the arithmeticmean of all 14 derived
proof plans (with a negligible standard deviation of 201 proof steps
and 0.8s). We observe that the family-based strategy, which is not
based on partial proofs, performs best in terms of verification effort
(20s). In particular, this strategy requires less verification effort than
all partial-proof-based strategies, which is in line with previous
evaluations of partial proofs [8, 21]. However, the proofs for two
(of 13) methods (i.e.,insert and remove) cannot be closed by this
strategy, although the metaproduct was correctly generated (which
we checked manually). We suspect that this is due to the complexity
of those methods, which may push KeY to its limits.

The following three strategies are based on proof plans and
all have comparable verification effort (24-29s). Surprisingly, the
feature-family-based approach with partial proofs for intermediate
nodes performs worse than the optimized product-based approach,
which suggests that partial proof reuse could not be attained as
intended. Finally, the unoptimized product-based strategy performs
considerably worse than all other strategies, as expected (158s).

In summary, our evaluation shows that proof plans perform
worse than metaproducts in a post-hoc verification scenario; how-
ever, they are able to compete at least in the same magnitude.
Threats to Validity. Regarding internal validity [37], due to the
two open proofs for the family-based strategy, we only have a lower
bound on the measured time (20s), which may in truth be higher.

Regarding construct validity, our results show that partial proof
reuse could not be successfully achieved in the feature-family-based
proof plans. Thus, we encountered similar issues as others in im-
plementing partial proofs in KeY [15, 21, 28]. In particular, the
optimized product-based strategy outperforms all strategies with
partial proofs, suggesting that the overhead imposed by our imple-
mentation of partial proofs outweighs the potential for proof reuse.
However, this issue does not threaten the validity of our concept, as
our evaluation only concerns one implementation of partial proofs
(i.e., model methods) in one verification system (i.e., KeY).

Regarding external validity, first, we focus on a single case study,
which limits the generalizability of our findings. However, this is
acceptable as case studies for deductive verification of SPLs are
rare and difficult to construct from scratch: We are only aware of
two such case studies (IntList and BankAccount), both of which
are smaller (in terms of specified methods) and less complex (in
terms of original calls) than our case study. Second, we only eval-
uate the post-hoc verification scenario from section 5, as only this
application is thoroughly covered by Definition 2–9. In evolution

scenarios, proof plans can be expected to perform much better than
metaproducts due to the added variability-in-time proof reuse.

7 RELATEDWORK
Bubel et al. [8] propose proof repositories as a framework for proof
reuse. Similar to our work, they aim to reduce verification effort
for many similar method implementations by conducting and com-
pleting partial proofs. Their framework is generalizable to several
notions of compositionality. Our work is inspired by proof reposi-
tories, but we significantly extend the idea of Bubel et al.: First, we
adapt their general framework to a concrete use case (i.e., feature-
oriented SPLs), prove its correctness, and evaluate it on a realistic
instance. Second, proof repositories are nondeterministic; whereas
we clearly distinguish proof graphs and plans and discuss the re-
sulting spectrum of verification strategies. Third, proof repositories
are conceptually coupled to abstract contracts, an implementation
of partial proofs. In contrast, we provide the first systematic for-
malization of partial proofs, bindings, and proof reuse.

Knüppel et al. [21] introduce a partial-proof-based technique for
proof reuse in evolving FOP-based software systems. Their algo-
rithm Fefalution is feature-family-based and completes partial
proofs using a metaproduct. Compared to this work, they strictly
limit their usage of partial proofs to the feature-based phase, while
we also consider a potentially large number of intermediate partial
proofs. Thus, we focus mostly on proof reuse by partial proofs,
while they aim for a symbiosis of partial proofs and metaproducts.

Klebanov [19] and Thüm et al. [36] propose techniques for proof
reuse (proof replay and proof composition, respectively) that oper-
ate on a proof-step level. Their approaches are more flexible than
ours, but require hand-written proofs. Hähnle et al. [17] introduce
abstract contracts as an implementation of partial proofs in a verifi-
cation system. They extend the verification calculus with a new rule
that allows for separating a call from the called method. Steinhöfel
and Hähnle [32] propose a generalization of abstract contracts, ab-
stract execution, for proving properties about an infinite number of
programs. Our technique works on a meta-level: We describe how
to utilize partial proofs once implemented.

8 CONCLUSION
In this paper, we proposed proof plans as a partial-proof-based
technique for verifying feature-oriented SPLs. We showed how
proof graphs span a space of all possible proofs, how proof plans
represent a spectrum of SPL verification strategies, and how to
apply proof plans in practice. We briefly described a prototype
that implements proof plans using the KeY verification system and
evaluated the verification effort of proof plans on a case study. Our
work is the first to fully automate partial proofs; thus, it constitutes
an important step towards aligning software reuse with proof reuse.

In future work, we aim to improve our implementation of partial
proofs in KeY or another verification system. Thus, we want to
decrease the overhead of partial proofs and achieve proof reuse
in feature-family-based proof plans as well. Then, we may also
implement advanced applications, such as discerning “good” proof
plans with heuristics that predict and maximize the amount of
proof reuse, efficient lazy exploration of the SPL proof graph, and
evolution scenarios to synergize proof reuse over time and space.

Verification Strategies for Feature-Oriented Software Product Lines VAMOS ’22, February 23–25, 2022, Florence, Italy

REFERENCES
[1] Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle, Peter H.

Schmitt, and Mattias Ulbrich (Eds.). 2016. Deductive Software Verification – The
KeY Book. Springer.

[2] Sofia Ananieva, Sandra Greiner, Thomas Kühn, Jacob Krüger, Lukas Linsbauer,
Sten Grüner, Timo Kehrer, Heiko Klare, Anne Koziolek, Henrik Lönn, Sebastian
Krieter, Christoph Seidl, S. Ramesh, Ralf Reussner, and BernhardWestfechtel. 2020.
A Conceptual Model for Unifying Variability in Space and Time. In Proceedings of
the 24th ACM Conference on Systems and Software Product Line: Volume A - Volume
A (Montreal, Quebec, Canada) (SPLC ’20). Association for Computing Machinery,
NewYork, NY, USA, Article 15, 12 pages. https://doi.org/10.1145/3382025.3414955

[3] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2013. Feature-
Oriented Software Product Lines. Springer.

[4] Sven Apel, Christian Kästner, and Christian Lengauer. 2009. FeatureHouse:
Language-Independent, Automated Software Composition. In Proceedings of the
International Conference on Software Engineering. IEEE. https://doi.org/10.1109/
icse.2009.5070523

[5] Sven Apel, Hendrik Speidel, Philipp Wendler, Alexander von Rhein, and Dirk
Beyer. 2011. Detection of Feature Interactions using Feature-Aware Verification.
In Proceedings of the International Conference on Automated Software Engineering.
IEEE, 372–375. https://doi.org/10.1109/ase.2011.6100075

[6] Sven Apel, Alexander von Rhein, Thomas Thüm, and Christian Kästner. 2013.
Feature-interaction detection based on feature-based specifications. Computer
Networks 57, 12 (2013), 2399–2409. https://doi.org/10.1016/j.comnet.2013.02.025
Feature Interaction in Communications and Software Systems.

[7] Don Batory, Jacob Neal Sarvela, and Axel Rauschmayer. 2004. Scaling Step-Wise
Refinement. IEEE Transactions on Software Engineering 30, 6 (2004), 355–371.
https://doi.org/10.1109/TSE.2004.23

[8] Richard Bubel, Ferruccio Damiani, Reiner Hähnle, Einar Broch Johnsen, Olaf Owe,
Ina Schaefer, and Ingrid Chieh Yu. 2016. Proof Repositories for Compositional
Verification of Evolving Software Systems. In Transactions on Foundations for
Mastering Change I, Bernhard Steffen (Ed.). Springer, 130–156. https://doi.org/10.
1007/978-3-319-46508-1_8

[9] Richard Bubel, Reiner Hähnle, and Maria Pelevina. 2014. Fully Abstract Oper-
ation Contracts. In Proceedings of the International Symposium On Leveraging
Applications of Formal Methods, Verification and Validation, Tiziana Margaria and
Bernhard Steffen (Eds.). Springer, 120–134. https://doi.org/10.1007/978-3-662-
45231-8_9

[10] Paul Clements and Linda Northrop. 2002. Software Product Lines: Practices and
Patterns. Addison-Wesley.

[11] Edsger W. Dijkstra. 1975. Guarded Commands, Nondeterminacy and Formal
Derivation of Programs. Commun. ACM 18, 8 (1975), 453–457. https://doi.org/
10.1145/360933.360975

[12] Ramez Elmasri and Shamkant Navathe. 2010. Fundamentals of Database Systems.
Addison-Wesley.

[13] Shannon Fischer, Lukas Linsbauer, Roberto E. Lopez-Herrejon, and Alexander
Egyed. 2014. Enhancing Clone-and-Own with Systematic Reuse for Developing
Software Variants. In Proceedings of the International Conference on Software
Maintenance and Evolution. IEEE, 391–400. https://doi.org/10.1109/ICSME.2014.
61

[14] David Harel. 1979. First-Order Dynamic Logic. Springer. https://doi.org/10.1007/3-
540-09237-4

[15] Marlen Herter-Bernier. 2021. Verifikation Evolvierender Softwareproduktlinien
mittels Uninterpretierter Prädikate. Master’s thesis. Technische Universität Braun-
schweig.

[16] C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun.
ACM 12, 10 (1969), 576–580. https://doi.org/10.1145/363235.363259

[17] Reiner Hähnle, Ina Schaefer, and Richard Bubel. 2013. Reuse in Software Verifi-
cation by Abstract Method Calls. In Proceedings of the International Conference
on Automated Deduction. Springer, 300–314. https://doi.org/10.1007/978-3-642-
38574-2_21

[18] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer
Peterson. 1990. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Tech-
nical Report CMU/SEI-90-TR-21. Software Engineering Institute, Carnegie Mellon
University.

[19] Vladimir Klebanov. 2007. Proof Reuse. In Verification of Object-Oriented Software.
The KeY Approach, Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt (Eds.).
Springer, 507–529. https://doi.org/10.1007/978-3-540-69061-0_13

[20] Peter Knauber, Jesús Bermejo Muñoz, Günter Böckle, Julio Cesar Sampaio
do Prado Leite, Frank van der Linden, Linda Northrop, Michael Stark, and
David M. Weiss. 2001. Quantifying Product Line Benefits. In Proceedings of
the International Workshop on Software Product-Family Engineering. Springer,
155–163. https://doi.org/10.1007/3-540-47833-7_15

[21] Alexander Knüppel, Stefan Krüger, Thomas Thüm, Richard Bubel, Sebastian
Krieter, Eric Bodden, and Ina Schaefer. 2020. Using Abstract Contracts for Verifying
Evolving Features and Their Interactions. Springer, 122–148. https://doi.org/10.
1007/978-3-030-64354-6_5

[22] Alexander Knüppel, Thomas Thüm, Carsten Padylla, and Ina Schaefer. 2018.
Scalability of Deductive Verification Depends on Method Call Treatment. In
Proceedings of the International Symposium On Leveraging Applications of Formal
Methods, Verification and Validation. Springer, 159–175. https://doi.org/10.1007/
978-3-030-03427-6_15

[23] Derrick G. Kourie and Bruce W. Watson. 2012. The Correctness-by-Construction
Approach to Programming. Springer. https://doi.org/10.1007/978-3-642-27919-5

[24] Elias Kuiter. 2020. Proof Repositories for Correct-by-Construction Software Product
Lines. Master’s thesis. University of Magdeburg.

[25] Gary T. Leavens and Yoonsik Cheon. 2006. Design by Contract with JML. Technical
Report. University of Texas at El Paso.

[26] Jing Liu, Josh Dehlinger, and Robyn Lutz. 2007. Safety Analysis of Software
Product Lines using State-Based Modeling. In Proceedings of the International
Symposium on Software Reliability Engineering. IEEE, 10–30. https://doi.org/10.
1109/issre.2005.36

[27] Bertrand Meyer. 1992. Applying “Design by Contract”. IEEE Computer 25, 10
(1992), 40–51. https://doi.org/10.1109/2.161279

[28] Maria Pelevina. 2014. Realization and Extension of Abstract Operation Contracts
for Program Logic. Bachelor’s thesis. Technische Universität Darmstadt.

[29] Klaus Pohl, Günter Böckle, and Frank van der Linden. 2005. Software Product
Line Engineering: Foundations, Principles and Techniques. Springer.

[30] Christian Prehofer. 1997. Feature-Oriented Programming: A Fresh Look at Objects.
In European Conference on Object-Oriented Programming. Springer, 419–443.

[31] Yannis Smaragdakis and Don Batory. 2002. Mixin Layers: An Object-Oriented
Implementation Technique for Refinements and Collaboration-Based Designs.
ACM Transactions on Software Engineering and Methodology 11, 2 (2002), 215–255.
https://doi.org/10.1145/505145.505148

[32] Dominic Steinhöfel and Reiner Hähnle. 2019. Abstract Execution. In Proceedings
of the International Symposium on Formal Methods. Springer, 319–336. https:
//doi.org/10.1007/978-3-030-30942-8_20

[33] Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer, and Gunter Saake.
2014. A Classification and Survey of Analysis Strategies for Software Product
Lines. Comput. Surveys 47, 1 (2014), 1–45. https://doi.org/10.1145/2580950

[34] Thomas Thüm, Alexander Knüppel, Stefan Krüger, Stefanie Bolle, and Ina Schae-
fer. 2019. Feature-Oriented Contract Composition. Journal of Systems and
Software 152 (2019), 83–107. https://doi.org/10.1016/j.jss.2019.01.044

[35] Thomas Thüm, Ina Schaefer, Sven Apel, and Martin Hentschel. 2012. Family-
Based Deductive Verification of Software Product Lines. In Proceedings of the
International Conference on Generative Programming: Concepts & Experiences.
ACM, 11–20. https://doi.org/10.1145/2371401.2371404

[36] Thomas Thüm, Ina Schaefer, Martin Kuhlemann, and Sven Apel. 2011. Proof
Composition for Deductive Verification of Software Product Lines. In Proceedings
of the International Conference on Software Testing, Verification and Validation.
IEEE, 270–277. https://doi.org/10.1109/icstw.2011.48

[37] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, and Björn Regnell.
2012. Experimentation in Software Engineering. Springer.

https://doi.org/10.1145/3382025.3414955
https://doi.org/10.1109/icse.2009.5070523
https://doi.org/10.1109/icse.2009.5070523
https://doi.org/10.1109/ase.2011.6100075
https://doi.org/10.1016/j.comnet.2013.02.025
https://doi.org/10.1109/TSE.2004.23
https://doi.org/10.1007/978-3-319-46508-1_8
https://doi.org/10.1007/978-3-319-46508-1_8
https://doi.org/10.1007/978-3-662-45231-8_9
https://doi.org/10.1007/978-3-662-45231-8_9
https://doi.org/10.1145/360933.360975
https://doi.org/10.1145/360933.360975
https://doi.org/10.1109/ICSME.2014.61
https://doi.org/10.1109/ICSME.2014.61
https://doi.org/10.1007/3-540-09237-4
https://doi.org/10.1007/3-540-09237-4
https://doi.org/10.1145/363235.363259
https://doi.org/10.1007/978-3-642-38574-2_21
https://doi.org/10.1007/978-3-642-38574-2_21
https://doi.org/10.1007/978-3-540-69061-0_13
https://doi.org/10.1007/3-540-47833-7_15
https://doi.org/10.1007/978-3-030-64354-6_5
https://doi.org/10.1007/978-3-030-64354-6_5
https://doi.org/10.1007/978-3-030-03427-6_15
https://doi.org/10.1007/978-3-030-03427-6_15
https://doi.org/10.1007/978-3-642-27919-5
https://doi.org/10.1109/issre.2005.36
https://doi.org/10.1109/issre.2005.36
https://doi.org/10.1109/2.161279
https://doi.org/10.1145/505145.505148
https://doi.org/10.1007/978-3-030-30942-8_20
https://doi.org/10.1007/978-3-030-30942-8_20
https://doi.org/10.1145/2580950
https://doi.org/10.1016/j.jss.2019.01.044
https://doi.org/10.1145/2371401.2371404
https://doi.org/10.1109/icstw.2011.48

	Abstract
	1 Introduction
	2 Formal Foundations
	2.1 Partial Proofs in Deductive Verification
	2.2 Feature-Oriented Software Product Lines

	3 Proof Plans
	4 SPL Verification Strategies
	5 Applications
	6 Evaluation
	7 Related Work
	8 Conclusion
	References

