KIT | KIT-Bibliothek | Impressum | Datenschutz

Controlling Structure and Morphology of MoS2 via Sulfur Precursor for Optimized Pseudocapacitive Lithium Intercalation Hosts

Tobis, Maciej 1; Elmanzalawy, Mennatalla 1; Choi, Jaehoon 1; Frąckowiak, Elżbieta; Fleischmann, Simon ORCID iD icon 1
1 Karlsruher Institut für Technologie (KIT)

Abstract:

Molybdenum disulfide (MoS2)-based electrode materials can exhibit a pseudocapacitive charge storage mechanism induced by nanosized dimension of the crystalline domains, which is why control over material structure via synthesis conditions is of significance. In this study, we investigate how the use of different sulfide precursors, specifically thiourea (TU), thioacetamide (TAA), and L-cysteine (LC), during the hydrothermal synthesis of MoS2, affects its physicochemical, and consequently, electrochemical properties. The three materials obtained exhibit distinct morphologies, ranging from micron-sized architectures (MoS2 TU), to nanosized flakes (MoS2 TAA and LC). While all three synthesized samples exhibit pseudocapacitive Li+ intercalation properties, the capacity retention of the latter two consisting of nanosized flakes is further improved at high cycling rates. The individual charge storage properties are analyzed by operando X-ray diffraction, dilatometry, and 3D Bode analysis, revealing a correlation between the morphology, porosity, and the electrochemical intercalation behavior of the obtained electrode materials. The results demonstrate a facile strategy to control MoS2 structure and related functionality by choice of hydrothermal synthesis precursors.


Zugehörige Institution(en) am KIT Helmholtz-Institut Ulm (HIU)
KIT-Bibliothek (BIB)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 11.2024
Sprache Englisch
Identifikator ISSN: 2566-6223
KITopen-ID: 1000173523
HGF-Programm 38.02.01 (POF IV, LK 01) Fundamentals and Materials
Erschienen in Batteries & Supercaps
Verlag John Wiley and Sons
Band 7
Heft 11
Seiten e202400277
Vorab online veröffentlicht am 20.08.2024
Nachgewiesen in Scopus
Web of Science
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page