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Abstract
Objective. 3D-localization of gamma sources has the potential to improve the outcome of
radio-guided surgery. The goal of this paper is to analyze the localization accuracy for point-like
sources with a single coded aperture camera. Approach.We both simulated and measured a
point-like 241Am source at 17 positions distributed within the field of view of an experimental
gamma camera. The setup includes a 0.11mm thick Tungsten sheet with a MURA mask of rank 31
and pinholes of 0.08mm in diameter and a detector based on the photon counting readout circuit
Timepix3. Two methods, namely an iterative search including either a symmetric Gaussian fitting
or an exponentially modified Gaussian fitting (EMG) and a center of mass method were compared
to estimate the 3D source position.Main results. Considering the decreasing axial resolution with
source-to-mask distance, the EMG improved the results by a factor of 4 compared to the Gaussian
fitting based on the simulated data. Overall, we obtained a mean localization error of 0.77mm on
the simulated and 2.64mm on the experimental data in the imaging range of 20−100mm.
Significance. This paper shows that despite the low axial resolution, point-like sources in the
nearfield can be localized as well as with more sophisticated imaging devices such as stereo
cameras. The influence of the source size and the photon count on the imaging and localization
accuracy remains an important issue for further research.

1. Introduction

Gamma probes have become an important tool in radio-guided surgery (RGS) for a variety of cancerous
diseases over the last few years (Heller and Zanzonico 2011, Assam et al 2023, Farnworth and Bugby 2023).
In contrast to counting probes which provide only an acoustic feedback and a count rate reading, imaging
probes, also called gamma cameras allow for a precise detection of structures marked with a radiotracer and
additionally give a broader overview of the incision site (Gonzalez-Montoro et al 2022). Mobile gamma
cameras are particularly used for sentinel lymph node biopsy (SLNB). An accurate assessment of the axillary
lymph node involvement is an essential component in staging breast cancer. Axillary lymph node metastasis
is the most important predictor of overall recurrence and survival (Chang et al 2020, Farnworth and Bugby
2023). Localizing point-like gamma sources in all three spatial dimensions with a mobile gamma camera
could provide valuable information to the surgeon (Bugby et al 2021) and is a first step toward providing
valuable depth information in SLNB.
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Stereo camera systems are currently under investigation as a potential solution for 3D-localization of
gamma sources (Kaissas et al 2015, 2017, Paradiso et al 2018, Bugby et al 2021) at the cost of requiring two
gamma cameras. An alternative approach is to combine a single mobile gamma camera with external
tracking and merge captures from multiple viewpoints into a single 3D map. This approach still requires
additional hardware and suffers from increased acquisition time (Pouw et al 2015).

A further issue with gamma imaging is the choice of collimation. Most gamma camera systems use either
parallel-hole or pinhole collimators to capture an image: while the first allows for high sensitivity, the spatial
resolution of resulting images quickly degrades with distance from the source; on the other hand, pinhole
collimators offer a poor sensitivity at large distances from the camera. In the 1960s, coded aperture imaging
(CAI) was proposed (Ables 1968, Dicke 1968) as a new imaging technique offering a better trade-off between
spatial resolution and sensitivity (Mu and Liu 2006, Accorsi et al 2008, Kulow et al 2020). However, image
reconstruction is required to obtain an interpretable image.

3D imaging of point-like sources is a research field where the capabilities of CAI have not been fully
explored yet (Cannon and Fenimore 1979): by reconstructing the captured detector image at several
successive planes (also referred to as in-focus planes), a 3D reconstruction of the source can be computed.
The lateral position of the source is encoded by the shift of the mask’s shadow, while the source-to-mask
distance is related to the size of the shadow. In a previous work we were able to show that the most common
reconstruction algorithm, called MURA decoding, achieves an axial resolution that is approximately between
15 :1 and 40 :1 relative to the lateral resolution (Meißner et al 2024). This paper aims at answering the
following research question: How accurate can a single high-resolution gamma camera with a coded aperture
collimator localize a single point-like source in the nearfield setting? By localization we mean identifying the
3D coordinates [x̂, ŷ, ẑ] in a camera-based coordinate system in the 3D reconstruction f̂(x,y,z) of a single
point-like source where the source is assumed to be a isotropically radiating gamma source. Two different
localization methods are investigated: one is based on the center of mass (COM) and the other is an iterative
source localization method (ISL) which relies on calculating the deterministic contrast-to-noise ratio (CNR)
profile in axial direction. For the depth estimation, two different fitting functions are compared: a Gaussian
curve and an exponentially modified Gaussian distribution (EMG). After the performance of the two
methods is evaluated on a simulated dataset, the most accurate one is finally used on the experimental
dataset we acquired with our gamma camera. In doing so, this paper has the following contributions to the
state of the art:

(i) We show that the CNR profiles of point-like sources are best fitted by an EMG distribution.
(ii) We propose an iterative localization method based on a deterministically calculated CNR.
(iii) We show that it is possible to achieve a localization accuracy of less than 3mm for point-like sources at

a distance of 20−100mm obtained, which is comparable to the accuracy of more complex technologies
like stereo gamma cameras.

To promote transparency and reproducibility, both the acquired datasets and the localization methods of this
research are publicly available on GitHub at https://zenodo.org/records/11449544.

2. Methods

2.1. Experimental data
We used a compact gamma camera consisting of a detector and a coded aperture mask to capture the images
of a radioactive source. The detector is a hybrid pixel detector (MiniPix EDU, Advacam, Prague, Czech
Republic) composed of a 0.5mm thick silicon sensor with a sensitive area of 14.08× 14.08mm2, bump
bonded to a Timepix3 readout chip with 256× 256 pixels of 55× 55 µm2 size, realized by the Medipix3
collaboration at CERN (https://medipix.web.cern.ch/medipix3). The coded aperture mask is composed of a
0.11mm thick Tungsten sheet with a rank 31 NTHT-MURA pattern with round holes of 0.08mm in
diameter (Accorsi et al 2008). The basic MURA pattern was duplicated in a 2× 2 arrangement leading to as
many as 1920 holes and a total mask size of 9.92× 9.92mm2. A 3D-printed case made of acrylonitrile
butadiene styrene was fabricated to enclose the detector unit and mask, maintaining a detector-to-mask
distance b of approximately 20mm. The point-like 241Am radioactive source is a sealed sphere of 241Am
mainly emitting gamma photons of 59.5keV with a nominal diameter of 1mm with a measured full width at
half maximum (FWHM) of 0.65mm (Bertolucci et al 2002). We used the software Pixet provided by the
manufacturer of the detector (Advacam: https://advacam.com/camera/minipix-tpx3) to capture and save the
detector images in the tiff format (Turecek and Jakubek 2015). Pixel values represent the energy deposited in
keV integrated over the acquisition time which ranged from 13 to 15 min.
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Figure 1. A 241Am source (red circle) was placed at 17 positions within the field of view (FOV) (black lines) of our experimental
gamma camera consisting of a detector (D), mask (M) and a shielding (S) at four different mask-to-source distances z: 20mm,
50mm, 75mm, and 100mm and varying y-coordinates.

A total of 17 images were captured with lateral shifts y from the center at several mask-to-source
distances z: 0mm for z= 20mm; 0mm, 2mm, 4mm, 6mm, and 8mm for z= 50mm, z= 75mm, and at
z= 100mm additionally at y= 14mm. The x-coordinate was kept constant at 0mm. Our setup is depicted
in figure 1 and a table with all positions can be found in the supplementary data. We chose these positions
for two reasons. First, the two automatic linear axes (Physik Instrumente (PI), Karlsruhe, Germany) available
to us imposed practical limitations. Second, it was shown that off-center sources are reconstructed with a
lower contrast than centered sources (Russo et al 2011), however, neither is a difference in the two lateral
coordinates reported, nor can we think of a reason to assume an asymmetry. Thus, to spend our
measurement time efficiently, we captured only data of a source moving along the positive y-coordinate.

2.2. Monte Carlo simulation
We reproduced the experimental setup in silico using the Monte Carlo (MC) simulation software package
TOPAS (version 3.8.1) (Perl et al 2012) which is a wrapper library around Geant4 (Agostinelli 2003). The
source was modeled as a homogeneous sphere of 241Am with a 1mm diameter and emitting a total of 109

photons of 59.5keV. We scored all photons that passed the front surface of the detector in a phase space file.
From this list, we generated a detector image by computing the 2D histogram of all hits. By doing so, we
ignored the charge-sharing effect between neighboring pixels and defective pixels, which is rare in thin
silicon-based detectors (Ruat and Ponchut 2012). The resulting gap between simulation and experimental
data will be discussed in section 4.3.

2.3. Reconstruction
Between the two reconstruction methods capable of producing 3D reconstructions, we chose MURA
decoding, as it is fast enough to be employed in real-time. For more information about this reconstruction
method, the reader is referred to Gottesman and Fenimore (1989). Generally, the FOV of CAI depends on
the reconstruction method used (Fujii et al 2012). To localize the point-like gamma source, we reconstructed
the detector image at many succeeding in-focus planes and thus obtained a 3D reconstruction of the scene.
We explored a depth range of 11-130mm with a step of∆z= 0.5mm, resulting in a stack of 239 images.
Since the size of the reconstructed images depends on z, each image of the stack is resized to the maximally
occurring image size by bilinear interpolation, which is 254× 254 pixels for z= 11mm. The resizing allows
for easy handling of the 3D reconstruction as it can be processed as a 3D matrix, where the z-coordinate
aligns with the source’s extension in z-direction. By doing so, the position of the source does not change with
respect to the FOVs center, which will be helpful during the localization process.

2.4. A deterministic CNR
As a metric to localize the gamma source, we used the CNR. This was preferred over the reconstructed
intensity of the source (which would correspond to the point-spread function (PSF) of the source) since it
increases the robustness of the localization procedure and is consistent with the literature (Cerbone et al
2023, Meißner et al 2023, 2024). The fitting procedure becomes more robust by using the CNR instead of the
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Figure 2. A flowchart representing the Iterative Source Localization algorithm (ISL) with its alternating lateral and axial search
and the final curve fitting to estimate the 3D position of the source.

PSF, as it calculates a single CNR value for an entire image stack (the 3D matrix of successive reconstructed
planes). This mitigates the contributions from Poisson noise, which is highly correlated along the z-axis but
remains unconsidered in MURA decoding. The CNR is here defined as

CNR=
S−B

σB
, (1)

where S, B and σB respectively denote the signal as the average of a region of interest (ROI), the background,
and the background’s standard deviation which is representative of the image noise. However, the CNR is
usually determined by placing the ROI for the signal and background manually, which is time-consuming
and imprecise. Thus, we compute the CNR automatically under consideration of all possible ROIs. We
determine S and B by convolution with a kernel, that represents the circular ROI: the kernel consists of a
quadratic image twice the size of the ROI’s radius in pixels whose values are 0 everywhere except for the
central circular region, where they are set to 1. The kernel is normalized to the sum of 1.0, thus the
convolution generates an image in which each pixel represents the average intensity of a circular ROI
centered at that pixel. The convolution is only applied to the central part of the image where the kernel does
not extend beyond the boundary of the image. Subsequently, we append rows and columns of NaNs (‘not a
number’) to keep the image size constant.

To determine σB, we apply two convolutions: one to obtain the average intensity of a ROI, just as
described above, and another one with the image where each pixel’s intensity was squared. We combined
both results to obtain the ROI’s variance and hence the standard deviation at each possible pixel position.
Finally, we obtain the intensity and the standard deviation at each position for all possible ROIs. To
determine the CNR, S, B, and σB must be selected: first, we choose S as the highest average intensity and find
the position of the corresponding ROIs. All ROIs that overlap with S are then removed. Second, the average
and the standard deviation of the remaining ROIs are considered as background, and by averaging on them
we obtain B and σB respectively. The result is a CNR value that is independent of manual selection.

2.5. Localization with the ISL method
To obtain the source position from a 3D reconstruction, we adopted the ISL method: It consists of iteratively
alternating between a lateral and an axial search, followed by fitting a curve into the obtained CNR profile.
The algorithm requires as input the reconstructed volume, the FOV for each slice, and an initial guess z0 for
the source-to-mask distance. The output of the ISL algorithm is the source’s estimated 3D position [x̂, ŷ, ẑ] in
millimeters. Figure 2 shows a flowchart of the ISL algorithm.
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Figure 3. (a) The detector image of the source located at [0,2,75]mm captured with our experimental gamma camera. The color
coding was limited to intensities between the 1st and the 99th percentile to visualize the projected mask pattern. (b) The 3D
reconstruction of the detector image thresholded at the 99th percentile to visualize the reconstructed source. Note how the
extension in z-direction is much larger than in the lateral directions. (c) The CNR profile with both the Gaussian fit and the EMG
fit, resulting in a z-estimation of 73.7mm (R2 = 0.97) and 81.2mm (R2 = 0.92), respectively.

In the first step, i.e. the lateral search, we begin with the image slice that is closest to the initial estimate
and begin with the search of the lateral position, i.e. [x̂, ŷ]. Similar to the convolution described in section 2.4,
the average intensity of all possible ROIs is calculated and the position of the highest value is assigned to the
current lateral source position. The second step is the axial search, where the lateral position is fixed and a
CNR profile along the z-direction is calculated as described in section 2.4. Then, it is checked if a slice with a
higher CNR value exists than the current slice at zi. If so, the algorithm starts again with a lateral search
followed by an axial search. The ROI size is updated in each iteration based on the given source size and the
FOV of the current slice. As soon as zi does not change within one iteration, the third and last step of the
algorithms is entered: The curve fitting. For a more robust and precise depth estimation we apply a curve
fitting to the latest obtained CNR profile and analyzed two different fitting functions: once a Gaussian curve
with offset CNR(z) = α+(β−α)exp

(
−((z− γ2))/(2δ2)

)
(in the following denoted as Gaussian) and a

scaled EMG distribution with offset (Kalambet et al 2011). An EMG distribution emerges from the sum of
two independent random variables, where one is normal distributed with mean µ and variance σ2 and the
other one exponentially distributed with a rate of λ. This function was suggested to be potentially a good
candidate for the intensity distribution along the axial dimension in chapter 4.3 in Hellfeld (2020). The
resulting function to fit the CNR profile has one additional fitting parameter compared to the Gaussian
function and can eventually be described as

CNR(z) = α+(β−α)
λ

2
exp

(
λ

2

(
2µ+λσ2 − 2z

))
· erfc

(
µ+λσ2 − z√

2σ

)
, (2)

where erfc represents the complimentary error function that is defined as erfc(x) = 2/
√
π
´∞
x e−t2 dt.

Equations for estimating the peak position (also referred to asmode) of an EMG function do exist (Kalambet
et al 2011), however, for simplicity, we utilize the monomodality, sample the fitted function with a step size
of 0.01mm and select the z-value where the sampled function is maximal. The following initial guesses
are directly derived from the CNR profile for the fitting procedure: (α,β,µ,σ,λ) = (min(CNR(z)),
max(CNR(z)),argmaxz(CNR(z)), 1, 1). The parameter λ is dropped for the Gaussian fitting. For the
remainder of this paper, we will refer to the ISL method with a final EMG fit as ISL-EMG and to the one with
a Gaussian fit as ISL-Gaussian. Figure 3(c) shows an exemplary CNR profile with both fits. After a few
iterations and final curve fitting, we eventually obtain the source position [x̂, ŷ, ẑ], where the z-component is
determined by calculating the mode of the fitted function and the x and y-component by the brightest ROI
position.

2.6. Localization with the COM
A more intuitive approach to finding the center of a 3D distribution is with the COM. The advantage is that
no fitting or user input is required, which makes this method independent from hyperparameters like initial
guesses. The COMmethod relies on the fundamental assumption that the source position is the COM of the
largest connected region (LCR) in the given 3D reconstruction. Therefore, we built a pipeline that extracts
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the LCR and calculates the COM: first, the 3D reconstruction f̂(x,y,z) is thresholded by the 99.9th percentile,
a processing step similar to the one proposed by Papadimitropoulos et al (2016). By thresholding the 3D
reconstruction, we assume that all voxels with a lower intensity than the 99.9th percentile contain
background and not the actual reconstructed source. This led to multiple remaining connected regions,
i.e. voxel clusters: a large one where we expect the actual source to be located and multiple smaller clusters
closer to the camera that are roughly positioned between 11mm and 15mm away from the mask. Hence, as a
second step, the region with the largest number of connected voxels is selected and is denoted as LCR:
f̂LCR (x,y,z). The LCR of the simulated source at at [0,2,75]mm is depicted in figure 3(b). Finally, the COM
[x̂, ŷ, ẑ] with the intensity of all voxels within this cluster is calculated via the 0th (M000) and 1st moments
(M100,M010,M001) of a 3D distribution, which corresponds to the intensity-weighted mean of f̂LCR:

M000 =
∑
x

∑
y

∑
z

f̂LCR (x,y,z) (3)

M100 =
∑
x

∑
y

∑
z

x f̂LCR (x,y,z) (4)

M010 =
∑
x

∑
y

∑
z

y f̂LCR (x,y,z) (5)

M001 =
∑
x

∑
y

∑
z

z f̂LCR (x,y,z) (6)

[x̂, ŷ, ẑ] =
1

M000
[M100,M010,M001] (7)

In summary, the COMmethod performs automatic thresholding, selects the LCR, and determines its
COM as the source position. Both localization methods are implemented in Python (3.8.18) with NumPy
(1.24.4), Tensorflow (2.10.1) for the CNR calculation, SciPy (1.10.1) for the fitting, the VTK library (9.3.0)
for finding the LCR and Pandas (2.0.3) for the final analysis. All processing is carried out on a laptop
computer with a 6-kernel Intel Core i7-9750H processor (2.6GHz), 16GB of RAM and a NVIDIA GeForce
RTX 2070 with 8GB vRAM.

2.7. Sensitivity analysis
While the COMmethod does not need any input, the ISL method needs an initial guess of the source
position by the user. To analyze the impact of the initial guess on the resulting z-coordinate, we run the ISL
method with several values of the initial z-value. To mimic a user scrolling through the slices and selecting
the slice where they assume the source is, the initial guess z0 was varied in three categories within a uniform
distribution around the true value with±5mm, with±10mm and±15mm. With the slice interval of
∆z= 0.5mm, the three categories correspond to±10,±20, and±30 slices. Additionally, we analyzed the
localization error when we automatically selected the slice with the highest voxel intensity. We applied the
ISL method on the simulated dataset with randomly varying initial guesses five times and once with the true
z0 and the maximal intensity slice.

3. Results

3.1. Simulation results
The mean localization error and the standard deviation averaged over all 17 position estimations for both
localization methods are presented in table 1. The mean localization errors are (1.65± 1.05)mm,
(3.13± 1.15)mm and (0.77± 0.62)mm for COM, ISL-Gaussian and ISL-EMG, respectively.

A comparison of the localization methods shows that the ISL-EMG method yields overall statistically
better results than the COMmethod. Using the EMG fit results in a mean coefficient of determination (R2)
of 0.97± 0.02 compared to the Gaussian with 0.93± 0.04. The localization error is larger with
(0.77± 0.62)mm (EMG) compared to (3.13± 1.15)mm (Gaussian) which makes ISL-EMG more accurate
than ISL-Gaussian by a factor of 4.06. Furthermore, for the ISL-EMG method, the x, y and z-component
contribute on average 3.2%, 33.6%, and 63.2% to the localization error. The runtimes on the computer
specified above with initialized GPU averaged over the 17 source positions were (1.88± 0.43) s,
(1.48± 0.25) s, and (11.76± 0.46) s for the ISL-Gaussian, ISL-EMG and the COMmethod, respectively.
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Figure 4. The localization error in mm broken down in x, y, and z-component by localization method (COM, ISL-Gaussian and
ISL-EMG) and dataset (simulated and experimental). The boxes indicate the 25th–75th percentile range, whiskers are maximum
and minimum values, and lines are the median error which are also printed vertically in white. The crosses represent the mean
values per boxplot.

Table 1. This table shows the localization errors of the different methods. In addition to the mean error with its standard deviation
(STD) over the 17 3D reconstructions, also the median error and the relative error of the z-component with respect to the true source
distance in percent are presented.

Data Method Fit

Mean Localization error in mm Relative z-error in %

R2 Mean± STD Median Mean± STD Median

Sim. COM — — 1.65± 1.05 1.34 2.32± 1.49 1.95
ISL Gaussian 0.93 3.13± 1.15 3.13 4.38± 1.39 3.90

EMG 0.97 0.77± 0.62 0.58 0.88± 0.68 0.60
Exp. ISL EMG 0.97 2.64± 0.71 2.59 3.06± 1.50 2.98

3.2. Sensitivity analysis
If the initial guess z0 selected for the ISL method was not correct, the mean error remains on average
unaffected at (0.76± 0.66)mm with random variations of±10 slices, but increases to (0.88± 1.18)mm and
(0.95± 1.65)mm for larger variations of±20 and±30 slices around the true z-value. When z0 is chosen
according to the voxel with the highest intensity the localization error increases to (49.85± 32.28)mm. Note
that the mean error is calculated based on different numbers of localization errors: While the initial guess
with the true slice and with the maximal voxel were calculated once on the dataset, the random guess with
increasing variations were carried out five times on the dataset.

3.3. Experimental results
We applied the ISL-EMG method with the ground truth as an initial guess and the correct source FWHM of
0.65mm on the experimental data and a mean localization error of (2.64± 0.71)mm was obtained.
Especially the errors in x and z-direction are not centered around 0 but at approximately−1.5mm and
−2.4mm as can be seen in figure 4. Overall, the localization error is about 3.4 times worse than obtained
from the MC simulation using the same method.

4. Discussion

4.1. Localizationmethod
The MC simulation results reveal that the true mask-to-source distance corresponds to the peak of the CNR
profile (Meißner et al 2023). As the CNR profile of a single source is skewed towards the camera, the mean
value and the mode, i.e. the peak position, do not coincide as they would for symmetric functions. This
explains why the COMmethod overestimates the z-coordinate and hence, has a localization error that is
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Figure 5. The true source positions (red circles) and the estimates from the ISL-EMG method applied to the simulated (green
crosses) and experimental data (blue crosses) in a topview (left) and sideview (right). Note the different range in z-direction.

approximately 2.1 times higher than the ISL-EMG method. This emphasizes the importance of considering
the positive skewness of the intensity distribution in z-direction.

A major disadvantage of the ISL method we presented, is the required knowledge of the source size and
the initial guess z0. One can imagine that the user would quickly scroll through the slices of the 3D
reconstructed, spot the source, and draw a circle indicating both the rough source size and the initial guess
z0. Nevertheless, it would be more convenient if this process was automated as well. It is imaginable to
combine both methods and use the COM to find an estimate for the initialization for the ISL method. The
sensitivity analysis showed that the mean localization error achieved with variations of up to 30
reconstructed images is still below 1mm, even though the standard deviation increases. This can be
attributed to the presence of small clusters of high-intensity voxels at close distance to the camera being
misidentified as the source. Additionally, these clusters are the reason why it is not advisable to select the slice
with the highest pixel intensity for the initial guess as the large mean error of almost 50mm demonstrates. In
most cases, these cluster intensities were the highest occurring intensities in the entire 3D reconstruction.
This adds another type of systematic artifact caused by MURA decoding besides the known cross-shaped
artefact (Vassilieva and Chaney 2002), near field effects (Accorsi and Lanza 2001, Mu and Liu 2006), and
ghost source effect (Willingale et al 1984): the axial ghost sources. All in all, it can be stated that the
sensitivity analysis showed that the ISL method is robust against the initial guess, and the user does not need
to find the source position exactly.

The localization errors obtained from the experimental data show a systematic error in the x and
z-component, despite the overall low error seen in the simulation data. We argue that these systematic errors
are due to inaccuracies related to the measurement setup due to the following reasons: First, the estimated
position in x-direction decreases linearly with respect to the mask-to-source distance (see figure 5), while it
was expected to be zero. This indicates that the source was placed slightly off-center, and additionally, the
camera was tilted around the y-axis, i.e. pointed upwards. Second, the systematic underestimation of the
source-to-mask distance is likely caused by an imprecise detector-to-mask distance b. Even though the
camera case was 3D printed, printing tolerances and assembling the case with the Timepix sensor might have
led to deviations from the targeted distance of 20mm. Furthermore, there is an uncertainty at which depth in
the silicon sensor an impinging photon deposits its energy. When minimizing the error with respect to the
rotation angle β and the detector-to-mask distance b from the estimated source positions we obtain an angle
and a distance of approximately 1.2 degree and 20.6mm.

Less surprising is the fact that circa 2/3 of the error stems from the z-component, as is in accordance with
a previous study, where it was established that with the same camera setup, MURA decoding yields an axial
resolution between 15 and 40 times worse than the lateral resolution and is degrading with increasing
distances (Meißner et al 2024). The runtimes for the localization methods must be considered in the context
of their current implementations which have not been optimized for run time or computational efficiency,
but rather represent a proof of concept.

8



Phys. Med. Biol. 69 (2024) 165004 T Meißner et al

4.2. Comparison to other localization technologies
To compare our results with other localization technologies we focus on the z-component, which dominates
the overall accuracy, we set it in relation to the true source-to-mask distance. All distances in this paragraph
were converted to source-to-mask distances when necessary. Other technologies for localizing gamma
sources are either already commercially available (Pouw et al 2015) or were recently proposed to the research
community (Kaissas et al 2015, 2017, Paradiso et al 2018, Bugby et al 2021). The commercial freehandSPECT
system was also analyzed in regards to its localization accuracy of small gamma sources and mean errors
between 2.9mm and 7.4mm depending on user experience were reported (Pouw et al 2015). Though explicit
distances are not specified by the authors, from figure 2 we can derive a range of 300−800mm, which results
in a relative error below 0.96% and below 2.46% for the respective user group.

Additionally, research groups are investigating stereo gamma cameras with pinhole collimators (Bugby
et al 2021) or coded aperture collimators (Kaissas et al 2015, 2017, Paradiso et al 2018, Bugby et al 2021).
Bugby et al report a median z-error of and 1.23mm (0.83%) on simulated data and 3.54mm (3.63%) on
experimental data (Bugby et al 2021). The research group Kaissas et al report smaller z-errors of 0.28mm
(0.22%) for a source placed at a source-to-mask distance of 130mm (low rank and thus low-resolution
mask) and 1.23mm (0.94%) (high-resolution mask) (Kaissas et al 2015). The same research group
additionally analyzed extended gamma sources of a cylinder with 24mm diameter and 9mm height at
increasing source-to-mask distances. Hereby, they show that the localization error deteriorates from 6.1mm
to 7.8mm for source-to-mask distances of 140−200mm (Kaissas et al 2017). Paradiso et al (2018) aim to use
their gamma camera at much larger distances with source-to-mask distances between 360mm and 4000mm.
A 241 Am source at the distance of 1250mm was estimated to be at 1200mm and at 3000mm to be at
2927mm, resulting in localization errors of 50mm (4.16%) and 73mm (2.43%).

In this paper, with the ISL-EMG method we were able to achieve an error of (0.88± 0.68)% and
(3.06± 1.50)% on the simulated and on the experimental data with median errors of 0.60% and 2.98%.
That means for the range of 20−100mm source-to-mask distance with a single gamma camera equipped
with a coded aperture collimator we obtain a comparable localization accuracy without requiring additional
hardware like external tracking or a second camera. Stereo cameras which also use coded aperture
collimators could benefit from our approach without any changes to the hardware. Their localization
procedure, which is currently performed by triangulation, could potentially be made more robust by
combining it with two separate single estimations using the here proposed methods.

4.3. Limitations
The study of this paper has a number of limitations that range from specific localization issues to more
general difficulties with CAI. First, the algorithm presented can only be applied when no more than one
source is located within the FOV. Second, we only analyzed sources up to a distance of 100mm. A
degradation of the localization accuracy can be expected, as already shown in Kaissas et al (2017), which
limits the source localization with a single camera to its direct nearfield. In a surgery setting for RGS this
could be mitigated by placing the camera closer to the incision site. Third, the 0.5mm thick silicon pixel
sensor adopted has low detection efficiency at 59.5keV, which implied long acquisition times up to 15min.
However, Timepix3 detector employing a thick cadmium-zinc-telluride (CdZnTe, or CZT) or cadmium
telluride (CdTe) detector exist (Chmeissani 2004, Ruat and Ponchut 2012), which could determine a
detection efficiency multiple times higher, correspondingly. Based on a rough estimation, the detector
images from our MC simulation contain on average 4.8 times more photons than the actual number of
detected photons, which could also partially explain the large difference in localization accuracy.

This emphasizes that a more precise understanding of the relationship between the number of captured
photons and the reconstruction quality and thus the localization accuracy is required, especially in a low-flux
real-time application as RGS. Fourth, the localization study with extended gamma sources of Kaissas et al
(2017) indicate an increasing difficulty to localize sources with increasing size. One possible reason can be
found in the supplementary material from Fujii et al (2012) (supplementary figure 7) where it is shown that
the reconstruction quality decreases exponentially with growing source size. Analyzing the influence of the
source size was beyond the scope of this paper, but the authors acknowledge that extended sources can
represent a serious challenge in the development of a coded aperture camera for RGS. For example, in SLNB
lymph nodes cannot be considered as point-like sources as their sizes vary from 5 to 20mm (Fujii et al 2012,
Kaissas et al 2017), and thus, the influence of the source size on the source localization is yet to be
investigated.

In this study, we used a single camera setup to analyze the 3D-localization accuracy of a point-like source.
However, we expect other factors to affect the accuracy, including the detector-to-mask distance which
directly influences the magnification of the mask pattern. We further assume the pinhole size, pinhole shape
(round or square) and the MURA rank to affect the accuracy as well as the size of the source. These factors
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were beyond the scope of this work, but their investigation could lead to a broader understanding of
3D-localization.

Due to practical restrictions in our experimental setup we did not evaluate the localization accuracy
beyond 100mm. However, the advantage of our approach is that the camera can be positioned in close
proximity to the source (up to around 11mm for the given detector-to-mask distance), which allows for the
capture of sources that may fall outside the FOV of stereoscopic cameras. Theoretically other reconstruction
methods exist, e.g. 3D-MLEM (Mu and Liu 2006), however the runtime reported is in the range of multiple
minutes which renders it unsuitable for the real-time usage in RGS.

5. Conclusion & outlook

In this paper, we investigated the question of how accurately a single gamma camera with a coded aperture
collimator is able to localize in 3D single point-like sources in its nearfield. Our proposed algorithm
iteratively searches for the source position based on a rough initial estimate. Mean localization errors below
3mm based on experimental data and even below 1mm based on data obtained by MC simulation were
achieved. We showed that when localizing point-like sources, it is important to consider the decreasing axial
resolution which manifests in a positively-skewed CNR profile. Incorporating this behavior in form of an
EMG fitting increases localization accuracy by an average factor of 4 compared to using a standard Gaussian
fitting. The occurrence of systematic localization errors in the experimental data emphasizes the importance
of a thorough assembly and calibration process in the measurement setup.

For future research the following issues need to be addressed in order to leverage the full potential of CAI
in RGS: The most used radiotracer in nuclear medicine is 99mTc which emits gamma photons of higher
energy than was investigated in this paper (Peterson and Furenlid 2011). A larger and thicker mask (1mm
thick with 0.25mm pinholes) for 99mTc imaging has already been designed and is currently being tested by
the authors; further phantom studies will also be conducted in the near future. Furthermore, it is conceivable
to train a machine learning algorithm to estimate the source position and potentially together with the
source size. A better understanding and a solution to the problem of imaging extended sources poses an
important milestone on the way to a fast and high-resolution gamma camera.
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