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ABSTRACT In recent times, both geopolitical challenges and the need to counteract climate change have
led to an increase in generated renewable energy as well as an increased demand for clean electrical energy.
The resulting variability of electricity production and demand as well as an overall demand increase,
put additional stress on the existing grid infrastructure. This leads to strongly increased maintenance
demands for distribution system operators (DSOs). Today, condition monitoring is used to address these
challenges. Researchers have already explored solutions for monitoring critical assets like switchgear and
circuit breakers. However, with a shrinking knowledgeable technical workforce and increasing maintenance
requirements, mere monitoring is insufficient. Already today, DSOs ask for actionable recommendations,
optimization strategies, and prioritization methods to manage the growing task backlog effectively. In this
paper we propose a vision of a grid-level cognitive assistance system that translates the outcome of diagnosis
and prognosis systems into actionablework tasks for the grid operator. The solution is highly interdisciplinary
and based on empirical studies of real-world requirements. We also describe the related work relevant to the
multi-disciplinary aspects and summarize the research gaps that need to be closed over the next years.

INDEX TERMS Renewable energy, electrical grid infrastructure, maintenance planning, condition moni-
toring, AI, explainable AI, large language models, cognitive assistance system, service engineering.

I. INTRODUCTION
Without a doubt, the climate crisis is chief among the most
pressing problems of our time. Recently, additional geopolit-
ical crises have imposed further difficulties. Both challenges
imply that it is in the interest of nations like Germany to
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react by decoupling from fossil fuels. However, replacing
fossils like coal, gas, and oil results in massive changes in
the electrical grid (see Figure 1).

On the demand side, both the quantity and the volatility are
changing. Electrical vehicles add new peaks when they are
loaded in the evening. Industries (e.g. chemical) that switch
from fossil fuels to electricity increase demand. On the supply
side, the steady input from coal and gas plants is replaced
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by often weather-dependent renewable energies like solar and
wind. One consequence is a high level of additional stress
on the assets in the electrical distribution grid, resulting in
additional efforts of service and maintenance for distribution
system operators (DSOs).

FIGURE 1. The near-future challenges in the electrical grid.

The current approach to solve this problem is condi-
tion monitoring. Suitable solutions to monitor assets like
switchgear have been explored by the authors in recent years
(cf. [37], [98]). In this context, they developed sensor systems
for medium-voltage switchgear that detect technical prob-
lems at the component level. However, with shrinking tech-
nical work forces and increased maintenance demand, it is
necessary to provide action recommendations and optimiza-
tion and prioritization of the generated task backlog. In this
paper we describe a vision of a grid-level cognitive assistance
and prognosis system supporting maintenance activities of
DSOs that we plan to develop in the context of the Ger-
man public-funded project AProSys. The assistance system
is based on both existing and to-be-developed elements as
shown in Figure 2.

FIGURE 2. Journey from component-level to an intelligent system on the
grid level.

Sensor-based condition monitoring is a solid foundation
for the further system elements. The data generated by these
systems can be used as input for a lifetime prognosis that
goes beyond an analysis of the current condition. Sensors
on the line-up level augment the asset-level sensors and with
intelligent sensor fusion allow the discovery of problems such

as partial discharge or worker safety problems. A lifetime
prognosis on the asset level can be used for an intelligent pri-
oritization and explanation of maintenance tasks. The results
can be presented to field technicians by an assistant system
that is designed along principles from the field of smart
service engineering.

The rest of this paper explains our interdisciplinary vision
in detail and has the following structure. In section II,
we show related work that forms the foundation of our
next steps. In section III, we discuss the requirements of a
grid-level assistance system that we will address in this paper.
In that section we also examine how to best embed the system
into service processes. The actual vision for the system is
discussed in section IV. In section V, we explain our piloting
concepts. We end with a conclusion.

The purpose of this paper is to provide a holistic vision for
an intelligent grid-wide maintenance assistance system and
to identify the research gaps that need to be addressed. It is
of interest for readers who are looking for an industry-driven
problem description and concepts to solve this issue devel-
oped by an interdisciplinary team of researchers.

II. RELATED WORK
In this section, we examine the related work that is relevant
to our vision. First, we examine literature, which can serve
as a foundation of the envisioned assistance system. Works
from several academic disciplines are of interest: Assistance
and prognosis systems including digital twins, the state of
the art in the field of smart service engineering, approaches
to lifetime prognosis, techniques for prioritization and rec-
ommendation, as well as a series of enabling technologies.
The other category of related work are projects with a similar
scope. We will discuss them in the last subsection and explain
their difference to the vision proposed in this paper. The key
findings related to research gaps and useful foundations from
all subsections are shown in Figure 3.

FIGURE 3. Related work overview.
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A. ASSISTANCE AND PROGNOSIS SYSTEMS
Assistance systems for interventions in the technical envi-
ronment (e.g. maintenance work) are already the subject of
current research ([61], [87]). Such assistance systems can
be classified as mobile systems with a high level of sup-
port (decision making and recommendation) and cognitive-
sensory support [61]. Cognitive assistance systems support
people in decision-making by providing predictive and adap-
tive recommendations for action or planning based on con-
dition assessment ([61], [87]). Similar concepts can be found
under the names Smart Management System or Smart Protec-
tion System (cf. [24]) or as an idea for distribution network
automation [2], which are to be distinguished here from
cognitive assistance systems.

Some of these systems share a focus on managing the
electrical grid’s increasing load under scenarios similar to
those described in section I (e.g. [2], [24], and [43]). However,
unlike our proposed solution, these approaches focus onmon-
itoring and planning energy flows (network management)
and not on improving the condition of the network at the
component or resource level.

Even existing work focusing on evaluating condition data
favors bypassing defective components ([18], [22]) or main-
tenance of ‘‘smart’’ components instead of the timely repair
of the physical distribution network ([101], [102]). In other
industries, such as oil production, there are approaches to
solve problems at the equipment or component level [6]
but they are not directly transferable due to the technical
differences.

However, there are useful aspects to be found in the pre-
liminary work. Especially the aspect of distribution network
digitalization (e.g. [24]) provides an important basis for cog-
nitive assistance systems. In a position paper, Bitcom explic-
itly calls for the digitalization of the distribution network
to enable reliability without further increasing redundan-
cies [10]. Many of the visions described (e.g. decisions based
on the overall status of the network) are not yet implemented
by DSOs ([10], [86]).
The rise of highly capable user assistance system such as

ChatGPT [76], driven by large language models (LLMs) as
a specific type of generative AI, possibly revolutionizes the
way we work [25]. These systems have potential to decrease
costs and increase efficiency ([4], [59]). LLMs such as GPT3
[16], GPT4 [77] or Codex [19] powering text-based assis-
tants such as ChatGPT [76] or GitHub Copilot [27] raised
a special interest in LLM-driven assistance systems [94].
LLMs contain billions of parameters and are trained on bil-
lions of tokens ([16], [94]). These generative models aim
to generate meaningful text based on an input sequence
of tokens (context) and are trained to autoregressively pre-
dict the next token tn+1 based on the conditional probabil-
ity distribution P(tn+1|t1 . . . tn) [89]. Such pre-trained LLMs
can be adapted to various downstream tasks and domains
([12], [25]). Therefore, they are often called foundation mod-
els. Foundation models can be adapted for domain-specific
downstream tasks using various techniques. For example,

prompt engineering approaches can be used to adapt LLMs
to the downstream tasks, providing unambiguous instruc-
tions, called prompts, to the model [56]. Also, the mod-
els can be trained further (so-called fine-tuning) to solve
downstream tasks based on human demonstrations and
feedback [78].
Although modern LLMs are highly capable, they can

generate incorrect, discriminating, or harmful content under
certain circumstances [94]. These are examples of the AI
alignment problem, occurring when an AI agent’s actual
behavior differs from that intended by its relevant stakehold-
ers [34]. Many approaches to LLM alignment exist, ensuring
more factually correct and unbiased LLM-based assistance
systems [91]. However, especially the mitigation of factual
incorrectness in LLMs in form of hallucinations remain as
challenge [45]. While the first LLM-driven assistance sys-
tem attempts exist regarding maintenance in the energy sec-
tor [22], they are usually in a prototypical state and often do
not provide production ready attempts.

Besides classical assistance systems, digital twins can
advance the monitoring and prognosis of part failures. The
purpose of digital twins is to provide a virtual representation
of a physical instance, such as a switchgear or a complex net-
worked system. Digital twins themselves usually do not pro-
vide additional value, however, they provide the base data for
value-generating digital applications. Physical asset, digital
twin, and digital application form a so-called cyber-physical
system [37]. The components of the cyber-physical system
can also be cut differently, as e.g. described by the triad of
digital / hybrid / cognitive twins [1]. All digital twin concepts
have in common that in the digital twin the information is
managed. For the industrial usage this requires standardized
information models and interfaces, e.g. the Asset Adminis-
tration Shell (AAS) [17] and the Digital Twins Definition
Language (DTDL) [72].
Industrial applications of digital twins span all phases of a

product lifecycle: from the design phase, over manufacturing
to service and asset retirement [56]. In the context of this
paper the service phase, and especially fault detection and
diagnosis as well as predictive maintenance and state mon-
itoring are most relevant. A review of such applications is
given by Liu et al. [56], and an example for predictive mainte-
nance of medium-voltage switchgear is provided in [37] and
shown in Figure 4. Digital twins also build a key compo-
nent to enable autonomy of industrial systems [28]. Digital-
twin-based AI-functionalities can enable the ability to react
autonomously to predicted but also unexpected situations
with adapted recommendations [1]. In this case, the auton-
omy is not based on the automated action or control logic,
but in the situationally adapted prioritization of recommen-
dations for action.

The development and operation of value-generating cyber-
physical systems requires the collaboration of multiple dis-
ciplines, covering its various technological aspects such as
sensors, digital services, modeling, data management, cyber
security and not least artificial intelligence [37].
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FIGURE 4. Cyber-physical system of a medium voltage switchgear
enabling predictive maintenance to increase the availability of of the
switchgear. Figure adapted from [37].

B. SMART SERVICE ENGINEERING
The development of novel business solutions as service sys-
tems is described in the literature as service systems engineer-
ing ([8], [11]).

FIGURE 5. Reference process for the development of digital service
systems according to DIN SPEC 33453.

In service systems engineering, knowledge about the
design of service systems is particularly relevant to deal with
the disruptive influence of new technologies, new types of
collaboration, and peculiarities of a certain context [11]. New
technologies, e.g., high precision sensor systems, can open up
new collaboration opportunities between actors, e.g., com-
ponent manufactures and DSOs. This constellation enables
smart services, a special form of service that is focused on

digitalized objects, functioning as boundary objects between
different actors [9]. In the case of a high precision sensor
system acting as a smart object, any communication and
interaction between component manufacturers and DSOs is
streamlined through the smart object and related IT systems.
Thus, the smart service system (comprising the smart objects,
actors, and IT systems) is putting an emphasis on an entire
value creation system instead of a marketable service, lead-
ing to an accessible interactive and collaborative innovations
through digital technologies [37].

The DIN SPEC 33453 for the development of digital ser-
vice systems [21] details a coherent process for the devel-
opment of digital service systems. Figure 5 shows the basic
model, highlighting the three phases of analysis, design, and
implementation. During the digital service system develop-
ment process, these phases can occur in any order to ulti-
mately establish a digital service system, allowing for an agile
development approach.

C. LIFETIME PROGNOSIS
In the context of medium-voltage substations, the majority
of faults/failures occur in grid components. 85% of these
faults can be attributed to material fatigue of mechanical
components (cf. [65], [66], [67]). In comparison, electrical
faults/failures in grid components generally play aminor role.
In this section, we examine both the prior work on models
as well as the role of explainability in understanding the
predictions.

1) PROGNOSIS FOR GRID COMPONENTS
The reliable sensor-based and network-adaptive monitoring
of critical grid components is a basic requirement for the
future power grid. However, AI-supported lifetime prognosis
systems for grid components mostly focus on the precise
prediction of the remaining electrical service life during con-
tinuous operation [3], which can only make conditionally
valid predictions on a long-term time scale when there are
significant load changes at the grid level. Although there is
some preliminary work on the subject of mechanical remain-
ing lifetime estimation ([40] and [92]), the physically-based
analysis of the cause of the error, taking into account material
fatigue effects, and the AI supported generation of prioritized
action recommendations remain widely ignored. In addition,
according to current knowledge, there is also a lack of sus-
tainable approaches to designing sensor systems that can
simultaneously monitor several components, including their
function, or directly networked systems.

For electrical grid components, there are hardly any
approaches to model simulation-based digital twins with
the possibility of synchronizing them with the underly-
ing sensor-based monitoring system. Here, approaches from
other technical applications can possibly be modified so
that they can be applied to the problem at hand. In these
approaches, the synchronization with the real object is car-
ried out using Kalman filters. The main benefit is that the

107930 VOLUME 12, 2024



R. Gitzel et al.: Toward Cognitive Assistance and Prognosis Systems in Power Distribution Grids

synchronization is not only used for the non-parametric com-
parison of the system states [47], but it can be also applied to
estimate further key performance indicators from a parameter
identification based on a physical model. Practical exam-
ples, successfully validated for other technical applications,
are given for model-based mechanical diagnosis [48] and
hydraulic components of vehicle transmissions [50]. A pos-
sible extension of this approach is to use several models in
parallel for the monitoring where the procedure is described
in various publications (cf. [35], [63], [64], [73], [74]) and
successfully applied for the development of active vibration-
reducing systems [5].
When applying the methods described above to grid com-

ponents, however, it must be considered that the circuit
breakers are closed in the normal state and are only oper-
ated relatively rarely and at irregular times. Monitoring and
diagnostics represent a particular challenge because in the
closed state there are no or only insufficient measurement
signals available for systemmonitoring. This problem has not
yet been addressed in the literature for electrical grid com-
ponents. However, research and methods from other tech-
nical applications can possibly be transferred, for instance
from the workflow developed for screw connections with the
design of the (especially pulse-like) excitation signals and
the signal analysis of the system response measured [14].
The methods developed can be referred to as active condition
monitoring and can in principle be transferred to switches and
circuit actuation systems. This also applies if there are several
components to be monitored in a mechanical structure (e.g.
a housing) [15].

With active condition monitoring, a small, negligible
change in condition or fault is deliberately caused by an addi-
tional or system-specific actuator. The effect of this process is
recorded and analyzed in the same way as with conventional
condition monitoring. A key advantage of this method is that
active condition monitoring is also possible for systems that
are not continuously operated. When actively monitoring the
condition, particular care must be taken to ensure that the
normal functionality of the system is not disrupted.

Active condition monitoring has so far only been used
very sporadically in grid components. One example is elec-
tromagnetically driven circuit breakers, in which the driving
motors can be actively monitored for each pole individually.
In mechanically driven systems, active condition monitoring
is usually more difficult because the additional functionality
cannot be easily implemented due to the complex mecha-
nisms for the actuation of the switching operations.

2) INTELLIGENT PRIORIZATION AND EXPLANATION
Many AI algorithms, especially in deep learning, are inher-
ently black boxes. However, for a cognitive assistance system
it is essential to provide some justification for recommen-
dations, e.g. to understand the root cause of the problem
and therefore the severity. This will increase the trust in AI
algorithms by industrial users, which is a major requirement
of the adaption of AI in industry [38].

The field of Explainable AI (XAI) covers research on how
to explain the decisions of black box models (e.g., [51], [52],
[55], [62], and [105]). There are two general directions. One
explains the mechanisms of the model itself (e.g., [32]). The
other provides tools to understand the solution to a particular
set of inputs (e.g., [53] and [83]). A cognitive assistance sys-
tem can profit from the latter, especially if the solutions assess
the importance of individual features ([53], [83]), which can
be mapped to physical components in many cases. A related
concept is the assessment of uncertainties to understand the
robustness of results ([46], [88], [103], and [105]).

It is important to note that the XAI methods mentioned
above are domain-independent and often quite abstract.
Enhancing XAI with domain knowledge (cf. [44]) would
greatly benefit a system specific to a problem such as main-
tenance management. There is some work on explaining
maintenance activities (e.g., [93]) that might be adaptable to
our problem domain.

The logical next step from explanations is to allow the user
to give feedback to the system if they are in disagreement.
Concepts from active learning [41] could be combined with
explainability tools. Another solution from the literature is
interactiveML (cf. [41] and [84]), which explore human input
that affects the learning of models.

D. ENABLING TECHNOLOGIES
In addition to the main fields, there are several adjacent
technologies relevant to our work.

1) PARTIAL DISCHARGE
Partial discharge (PD) diagnostics is an essential part of the
evaluation of electrical insulating materials. It is also possible
to use PD diagnostics for condition monitoring. PD diagnos-
tics are used in practice for many power engineering compo-
nents, such as transformers, gas-insulated switchgear (GIS)
or power cables [7]. In the past, the focus of PD diagnostics
was predominantly on components at the high-voltage level.
However, partial discharges also occur at the medium-voltage
level. At the high voltage level PD diagnostics are not carried
out during operation but in the laboratory or directly on the
disconnected component. Only in individual cases, PD diag-
nostics is carried out as an online measurement over a longer
period of time.

At the MV level, online measurements are less complex
and can certainly be considered. However, despite its utility
in condition monitoring, PD diagnostics for the monitoring
of medium-voltage switchgears has been only rarely investi-
gated at this time [106]. PD detection provides several bene-
fits:

• Preventive measures avoid further damage and can
reduce impending efficiency losses of electrical equip-
ment through early PD detection.

• It can potentially also be used to monitor neighboring
components at the line-up level.

The challenge is to develop cost-effective methods for
online PD measurement. In addition, a meaningful and
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easy-to-understand signal for users is desirable. For this,
several points must be taken into consideration:

• It must be investigated whether already installed sensors
can be used for PD detection.

• The sensors usedmust be highly reliable, as the monitor-
ing systems are intended to increase system availability.

• An evaluation of the sensor functionality in a monitoring
system should be included to detect sensor failures and
prevent associated damage.

A PDmonitoring system usually consists of two components:
a unit for the physical detection of PD signals and a unit
for data analysis. The PD signal detection module comprises
various sensors that are designed and used to detect these
diverse signal transmission paths. The data analysis unit is
often equipped with advanced pattern recognition techniques
that can distinguish PD from ambient (industrial) noise and
possibly detect and localize the specific PD source.

It is generally known that PD emits signals in a very broad
spectrum. Electrical or acoustic methods, for example ([42]
and [60]), are suitable for diagnostics on medium-voltage
switchgear. The detection of ozone can also be considered in
indoor areas. The simultaneous acquisition of acoustic sensor
signals also enables the localization of partial discharge by
means of triangulation. Nowadays, advanced sensor technol-
ogy and data analysis techniques enable automatic detection
of PD activity.

2) PERSON DETECTION
In the context of switchgear and breaker maintenance, worker
safety is of key importance and automated person detection
is a key feature of our proposed system.

In the last decades, impressive advancements have been
made in the field of Computer Vision (CV), especially in
object detection and tracking. Object detectors can fun-
damentally be distinguished in one-stage detectors and
two-stage detectors: Two-stage detectors are provided with
Regions of Interest (RoI) by an algorithm denoted proposal
generator. The detector then evaluates whether an instance of
the object of interest exists in that region or not. A classical
algorithm used in this context is a Histogram of Oriented
Gradients (HOG) [75].

Among the first two-state detectors based onConvolutional
Neural Networks (CNN) is the Region-based Convolutional
Neural Network (R-CNN) [30], which suffers from long
training time and slow inference. Pooling regions of interest
together, like SPP-Net [58] and Fast R-CNN [29], and incor-
porating the proposal generator into the network, like Faster
R-CNN [82] and Mask R-CNN [36], significantly sped-up
training and inference times.

A further speed-up in inference was enabled by one-stage
detectors. These detectors do not rely upon region proposals
but work on a grid and formulate the object detection problem
as a regression problem rather than a classification problem as
usual. This enables one-stage detectors to process the whole
image in a single pass. However, the speed-up in inference is
usually at the expense of localization precision. Well-known

one-stage detectors are You Only Look Once (YOLO) [80]
[81], [95] and the Single Shot Detector (SSD) [57].

In conclusion, these more complex models were the major
driver of progress in the field of Computer Vision. These
models are only trainable and inferable in reasonable time due
of the development of never seen before high-performance
graphics processing units (GPUs). In addition to that, all the
models and methods mentioned above were only developed
and tested on visual images with at least moderate resolution
(e.g. 256 × 256 pixels). These requirements imply that envi-
ronments with low computational resources cannot use these
solutions. Furthermore, not all environments have enough
light for regular cameras to work and require infrared images,
which are often low resolution (e.g. 32 × 32 pixels). This
requires the use of algorithms that work with low-resolution
infrared images ([49], [90], [104]).

E. RELATED RESEARCH ACTIVITIES AND NOVELTY
The project envisioned in this paper addresses the increased
strain of distribution network assets through an AI-based
forecasting and assistance system. It is based on residual
life forecasts that are used for prioritized maintenance action
recommendations. It also touches on aspects of knowledge
and workforce management. Given the high relevance of the
topic, there is a series of related projects, which we discuss
below.

As the changes caused by the energy transition and
e-mobility are not yet understood in detail, activities are
taken to model the effects to understand their impact (project
extremOS [71]). Other public funded projects do not go into
this level of detail but focus on concepts to support the transi-
tion instead. Some examples are smart grid integration [20], i-
Automate [85], and Green Access [69]. The typical approach
to deal with the problem is load management, which is com-
plementary to our focus on maintenance.

Currently, there are no other projects that focus on an
AI-generated maintenance strategy as part of an assistance
system for the distribution network. However, for related
areas such as wind farms (SmartWind [23]) similar concepts
exist. There are also projects that address high-voltage assets
but focus on the condition monitoring part instead of the
recommendations (iMonet [100] and Monalisa [99]). Mon-
alisa focuses on offshore systems or on systems from the oil
and gas industry. Somewhat close to our vision is the Relia-
bility Design project [97], which deals with the service life
prediction aspect of switching devices. However, it focuses
on devices specially developed for PV and battery storage
systems, which can only with difficulty be transferred to the
much more highly stressed control and protection compo-
nents of the medium voltage level.

One other project of relevance, DARE [96], uses rein-
forcement learning and simulation with synthetic data. Their
focus ismicrogrids. Despite some common keywords, it is not
comparable to AProSys in terms of both its objectives and its
methodology.
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Sensors are an important fundament of this work that have
been explored in the Fleming project ([39], [98]). Key sensor
technologies explored in the context of Fleming are ther-
mal monitors for switchgear [31] and vibration-based circuit
breaker drive monitoring [13]. Other related sensing projects
are FONA, which avoids local sensors by drawing conclu-
sions from the high-frequency properties of the network [68]
or INTEGRIS, which develops new sensors [70]. What all
these projects have in common is that they do not have the
holistic, decision-centric nature of the vision described in this
paper.

III. CONTEXTUAL PROBLEM MOTIVATION
A cognitive assistance and prognosis system is a new, addi-
tional element in the context of distribution grids and DSOs
that needs to fit in with the existing ecosystem. This section
describes the context consisting of actors, the relevant pro-
cesses for DSOs concerning the introduction of assistance
and prognosis systems, their IT systems, and problems that
DSOs are facing. We have interviewed six DSOs in a series
of workshops, focusing on identifying their value co-creation
network and their pains and gains. We also identified the key
pain points to be addressed by a new system.

A. CONTEXT OF THE DISTRIBUTION GRID
On the distribution grid, the deployment of assistance and
prognosis systems is influenced by a myriad of stakeholders
within the DSOs’ operational sphere. A critical assessment
of the internal and external agents reveals a landscape where
influence is bidirectional, and the stakes are significant. The
following actors are the main stakeholders either influencing
or influenced by an assistance and prognosis system:

• Service providers: Internal and external operational part-
ners provide services such as maintenance, inspec-
tion, disposal, commissioning, and telecommunications.
They contribute to the value co-creation of stake-
holders through upkeeping functionalities and systems,
thus, directly affecting their reliability and performance.
Especially maintenance service providers (both internal
or external) will be the main users of the assistance and
prognosis systems.

• Project managers and department heads: These actors
execute and lead the projects of implementing, evaluat-
ing, and establishing assistance and prognosis systems.

• Decision makers: Executive board, management, and
controlling departments orchestrate the integration of
advanced systems to meet corporate visions and ensure
that the systems align with the strategies of the DSOs
and their long-term goals.

• End-users: Consumers of electricity and up- or
down-stream network operators demand a continuous
energy supply. Accordingly, they favor maintenance
activities as long as they do not interfere with a steady
power supply.

• Regulatory entities: In Germany, the Federal Net-
work Agency alongside state regulatory authorities and

pivotal industry associations like the Federal Associ-
ation of Energy and Water Industries (BDEW), wield
regulatory power in the form of policies and compliance
directives that constrain and shape the operational envi-
ronment of the DSOs.

• Research institutions: By enabling (digital) innovation
of DSOs, research institutions contribute to the devel-
opment of innovative systems through rigorous research
and the piloting of emerging technologies.

There are several business processes that will be sustain-
ably influenced by establishing an assistance and prognosis
system. The first is fault management, which encompasses
activities for the rapid identification, analysis, and rectifica-
tion of grid problems, and serves to ensure the security and
quality of the electricity supply for end-users [110]. Main-
tenance management focuses on activities associated with
the maintenance of grid equipment. This includes the com-
missioning and work preparation of maintenance measures
as well as their implementation and processing. An assis-
tance and forecasting system can also have implications for
procurement and accounting processes [109]. This includes
processes associated with ordering materials or the commis-
sioning of specialized service personnel. Processes and tasks
in qualitymanagement will also become relevant.While these
processes will have to be adapted, they also offer enormous
potential to be supported by assistance and forecasting sys-
tems as well as to be automated or simplified [110].
The implied business processes provide information on

users and beneficiaries of an assistance and prognosis system,
i.e., end-users. Asset managers are the ones responsible for
managing operating resources and optimizing their service
life [26]. Distribution grid technicians can benefit fromwork-
ing directly on the equipment. In addition, such a system can
also have implications for employees in work preparation,
logistics or network planning & control. This means that they
can be the central providers of requirements and designers of
such an assistance and forecasting system.

Various IT systems, applications or technologies support
the maintenance of components in the distribution grid and
must be considered during the development of an assistance
and forecasting system. These include geographic informa-
tion systems (GIS) from various providers, which are used
to record, manage, analyze, and visually display geographic
data of the distribution grid and its components [109]. Fur-
thermore, enterprise resource planning (ERP) systems are
used to integrate and manage all business processes, such
as finance, human resources, procurement and asset man-
agement. ERP systems mostly store master and transaction
data of all relevant components [108]. DSOs use ERP sys-
tems from various providers as on-premise software or as
cloud-based software-as-a-service systems. Other important
systems include reporting and results systems, which are
used particularly in fault management. The implications of
supervisory control and data acquisition (SCADA) systems
must also be considered. These systems are directly related
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to the operating processes and equipment on the distribution
grid.

B. CURRENT CHALLENGES OF DSOs
In the context of analyzing theworkshopswith sixDSOs from
Germany, five primary challenges have emerged, which will
be described below in prioritized order, starting with the most
urgent challenge for all DSOs.

The most urgent problem is a shortage of trained staff (C1).
Currently available specialists such as network technicians
are retiring in large numbers (due to demographic change
and the high age structure in the field). This is compounded
by declining numbers in newly-trained technicians, chang-
ing employee expectations such as home office, and higher
rates of employee fluctuation. Additionally, new employees
require significant time for training. Distribution network
operators infer from this problem the risk of knowledge loss
due to departing employees, including local, partially implicit
experiential knowledge. Furthermore, staff shortages lead to
long-term neglect of maintenance and repair issues.

Another problem identified as urgent by all DSOs is a
lack of comprehensive knowledge management and asso-
ciated information systems (C2). In many cases, informa-
tion on maintenance and repair is only implicitly available
to distribution network operators, for example, in Excel
sheets, as individual employees experience, or in local oper-
ating facilities. Due to the lack of company-wide knowledge
databases and outdated system documentation, there is a lack
of knowledge, especially about non-routine tasks, such as
maintenance of components that are used in small numbers
in the network. Additionally, gaps in data collection arise
from media breaks, different templates, and insufficiently
standardized data entry. All these factors lead to a lack of
systematic capture of local knowledge and experience, ulti-
mately also due to the absence of knowledge management
systems.

The increasing complexity of the network was identified
by DSOs as an increasing challenge (C3). It was particularly
lamented that the components in the networks consist of a
multitude of different products from various manufacturers.
Thus, responsibilities are unclear about which facilities and
components are worthwhile to exchange or modernize, with
the need to balance economic benefits against the current and
foreseeable condition. This increasing network complexity
also has negative effects on knowledge within the company,
as more knowledge about more components, products, and
types would need to be available.

The fourth identified problem describes the lack of infor-
mation about the condition of the network (C4). Components
and facilities do not fail as frequently, and primary technology
lasts a long time, but secondary technology and associated
sensor systems are significantly more susceptible, so deploy-
ing them is often not worthwhile. Thus, the installation of sen-
sors often competes with network expansion. Here too, there
are effects on knowledge management, as information from
the network would be needed currently so that maintenance

and repair measures can be carried out with precisely tailored
preparation.

As a perceivable but not strongly prioritized problem, risks
for network (partial) failures could also be identified (C5).
Due to staff shortages (cf. C1) and insufficiently documented
peculiarities of individual components and facilities, there are
delays in maintenance and repair measures. Consequently,
components may fail, which can ultimately result in a com-
plete network failure.

IV. BUILDING BLOCKS OF A COGNITIVE ASSISTANCE
SYSTEM FOR THE GRID
At a conceptual level, there are several building blocks to
address the challenges identified in the previous section. The
overall concept shown in Figure 6 helps us to understand the
research gaps we need to fill.

The concept of cognitive assistance systems (CAS), which
has not yet been researched in the context of distribution net-
work technology, represents the next logical step in the dig-
italization of energy technology systems. Based on the first
box (fault detection) which represents the state of the art,
a CAS will actively forecast the development of faults (pre-
diction of fault severity development) and understand the root
causes of the fault to make useful recommendations (diagno-
sis and recommendation). This information enables a priori-
tized list of actions that will leverage the limited workforce
of the network provider. Combined with classical scheduling
software, the list can be turned into a work assignment plan
for the technicians.

FIGURE 6. Overall concept of a cognitive assistance system at grid level.

On the other hand, long-term predictions can help avoid
unscheduled downtime even if the task is not critical yet.
Inherent to our concept is the safety of the maintenance tech-
nicians (via person detection) which needs to be integrated
with the work order management.

Tomake all relevant information accessible to service tech-
nicians, a conversational intelligent support agent aggregates
the information from all the modules and presents them in a
form accessible to humans. Due to the conversational nature
of the agent, it is also possible to collect feedback and con-
tinually improve the system.
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Figure 7 shows how the solution elements address the
challenges identified in the interviews in section III. The
intelligent support agent will assist less experienced staff (C1)
to deal with the highly complex network of today (C3). The
person detection feature will ensure safety even for less expe-
rienced people who are less familiar with safety protocols
(C1).

FIGURE 7. Proposed solutions to the challenges identified.

The diagnostics feature will provide structured access to
answers for even complex situations (C2, C3) and a feedback
loop will ensure that any learnings are retained (C2).

Sensors and fault detection provide more insights into
the current state of the network (C4) and predictions of
fault severity developments allow improved risk management
(C5).Most of the elements in Figure 6 require further research
at this stage. We will discuss these items in the following
subsections.

A. NOVEL FAULT DETECTION CONCEPTS
To understand the current state and health of the grid (C4),
a well-designed real-time sensor network is needed. The
data generated by the sensors can be interpreted by AI/ML
algorithms and passed on to a user via an intelligent support
agent. Pivotal for the grid’s health are its key components in
substations such as MV switchgear and the circuit breakers
installed in them. We have explained the central role of
such mechanical components for the reliability of the grid in
section II-C. Therefore, we focus on this type of asset in this
paper.

FIGURE 8. Fault detection sensors.

Novel fault detection concepts should comprise a sen-
sor system that is capable of simultaneously monitoring

various switchgear components and functions. An overview
of monitoring challenges and suitable sensors is given in
Figure 8.

1) MONITORING OF THE MECHANICAL OPERATION
The opening and closing operations of a breaker imply a
movement of parts that can be measured with different sen-
sors. One option is to measure the resulting vibrations. For
this purpose, an accelerometer is used. It is usually placed
on the circuit breaker housing to monitor several components
of the circuit breakers such as the operation mechanism, the
spring charging motor or external environmental conditions
(e.g. vibrations induced by earthquakes). Linear potentiome-
ters can be used to monitor the co-called travel curve, which
can show problems in the correct motion.

These sensors represent the state of the art of breaker
monitoring. One of their drawbacks is that they can only
detect faults as the breaker operates. Substantial time can pass
between breaker operations, so faults might remain unde-
tected for quite some time. Also, the fault is detected at a time
when it might be too late (i.e. at the critical point when the cir-
cuit needs to be interrupted quickly). Even though the energy
transition withmore renewables and the e-mobility revolution
will lead to more switching operations, it is expected that
the number of operations will not be high enough to allow
continuous monitoring.

2) STATIC MECHANICAL MONITORING
To address this drawback, novel methods have to be pro-
posed and to be further developed in research to permit
the assessment of the health status for the grid components
during electrical operation without the need for a switching
operation. One approach to static mechanical monitoring is
to introduce a negligible excitation of the grid components
that does not affect the electrical operation but enables the
prediction of the health status by sensing the response of the
system.

This novel type of fault detection concept can be referred to
as an active monitoring and diagnostics system since it does
not only rely on passive sensor information but also excites
the system in an active way without the need for a switching
operation. In addition to the sensor, the active monitoring
system requires an actuator allowing the excitation of the
system. One typical example for such an active monitoring
and diagnostics system is the micromotion concept for circuit
breakers.

3) THERMAL MONITORING
Many electrical faults in a switchgear such as lose contacts or
damaged conductors result in overheating scenarios. A good
technique to monitor heat problems are infrared thermo-
graphic (IRT) cameras. In addition to their original purpose
of measuring the temperature inside the switchgear, IRT cam-
eras can be further enabled to perform person and animal
detection for providing more safety as described below in
section IV-D.
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4) ELECTRICAL MONITORING
Partial discharge (PD) is a common problem in electrical
grid components. It is a localized dielectric breakdown in
the electrical insulation system. These discharges can erode
the insulation over time, eventually leading to its failure.
Some existing sensors could be used to detect the problem,
but new sensor types are needed to achieve greater detec-
tion accuracy. Promising candidates are acoustic and optical
sensors as well as sensors for the detection of ozone. The
complex phenomenon of PD has to be translated into an
easy-to-understand signal that is routed to the users/network
operators.

B. PREDICTION AND FORECASTING
Using the monitoring solutions from the previous section,
it is possible to detect problems as they occur. Many of
these faults do not lead to immediate failure but worsen over
time and it is possible to act before major problems occur.
Network operators are interested in understanding which of
these problems to prioritize and how much time remains to
fix them (C5).

For the sensors and data preprocessing discussed so far,
there is a series of machine learning algorithms (classification
and/or anomaly detection) that can detect the presence of
faults that will eventually cause failures. However, with this
information represents only a snapshot in time. It is non-
trivial to compute the remaining useful lifetime based on the
mere presence or absence of a fault. Other models are needed
to predict the further development of such faults.

1) STATISTICAL PREDICTION MODELS
Traditional statistical predictive models like Reliability func-
tions use historical data to predict the probability and time
of failure. There are two weak points in such approaches.
First, it is hard or even impossible to obtain representative
data for expensive industrial assets. However, such data is
needed to determine the model parameters. Second, while
a time-dependent probability of failure is useful for larger
fleets, they have little meaning for individual units. In other
words, the models can predict how many of circuit breakers
of a certain condition will fail. They cannot provide the
identity of those that will fail, though, so it is hard to derive
meaningful maintenance instructions from this information.

We need to develop a way to turn the fault detection
snapshots into a health index that can be tracked over time and
extrapolated to find a possible end of life. Anomaly detection
algorithms represent the degree of degradation through the
anomaly score. However, any solution in this area will most
likely be tied closely to the particular type of asset it is devel-
oped for. A significant challenge we anticipate is defining
meaningful thresholds, given that many anomaly scores are
normally not directly linked to physical properties.

2) DIGITAL TWINS
Digital twins of electrical grid components are another major
branch for prediction and prognostics of the future health

status. Digital twins represent a model of a key component
(switchgear and/or breaker) that can be used to simulate and
predict its behavior. While some data is needed to create the
model in the digital twin, it does not need as much data as
statistical models. Also, a digital twin can be used for pre-
diction even in the long dormant phases between successive
operations. However, digital twins are expensive and difficult
to build, so care needs to be taken to invest in the best solution
for a particular problem.

The most important type of digital twins consists of one
or more physics-based simulation models, in our case of the
embedded kinematic chain within switchgears and circuit
breakers. The physics-based mechanical model of the sys-
tem can be supplemented with physics-based and/or data-
based statistical ageingmodels (see previous subsection). The
models enable simulations of the underlying mechanism to
capture changes in mechanical behavior due to degradation
of components and joints. For spring-action based circuit-
breakers, mechanism failure can be attributed to one or a
combination of the factors shown in Figure 9.

FIGURE 9. Key defect mechanisms in breakers.

Physical models which describe the evolution of mechan-
ical system parameters with time and cycles of operation
could be verified offline with experimentation using test-rigs.
Initialization of these models for circuit-breakers in the field
would require calibration using sensor-data.

An alternative to this concept based on forward-simulation
of the physical model is given by online parameter identifi-
cation. In this case a starkly simplified model of the entire
mechanical system is used as a digital twin. This model is
capable of reproducing the behavior of the mechanism in
terms of time evolution of a physical quantity of interest. The
significantly reduced parameter space is suitable for real-time
parameter identification using filtered sensor data. In an
enhanced monitoring and diagnostics system, the parameter
identification from the physical model can be used to extract
key performance indicators for the health assessment of the
electrical grid components.

C. INTERPRETATION, AND RECOMMENDATIONS
The methods of XAI have been discussed in the related
work section. In the context of a cognitive assistant system,
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algorithms that explain a particular decision based on the
input data are of great interest. In an ideal world, maintenance
decision support would be a white-box model built bottom up
where all details and physical interpretations are available.
However, the creation of such a model might be prohibitively
expensive. It is much easier to train a data-driven model in
particular if it is an anomaly detection model.

When an XAI model is applied to a result produced by a
black-box ML model, typically the values that were the most
influential for the final decision are identified. If the phys-
ical meaning of these elements as well as their relationship
to components of the underlying asset is well-understood,
a model/process can be created that is able to trace fault
warnings back to the components that caused them. This
effort (as shown in Figure 10) is not trivial and requires the
support of domain experts.

FIGURE 10. Interpretation and recommendations.

D. PERSON DETECTION
Despite the overall high safety standards in electricity dis-
tribution networks in general and the numerous safety fea-
tures implemented in switch gears especially, serious injuries
and fatal accidents still do occur. Identifying persons in the
vicinity of a switchgear via person detection adds an addi-
tional safety layer in preventing or detecting potentially life-
threatening events.

Today’s state of the art would suggest using a visual
light camera to capture the scene and a deep learning-based
algorithm to detect humans in that image. However, for sev-
eral reasons, we propose the use of low-resolution infrared
thermographic (IRT) cameras and classical computer vision
(CV) algorithms instead.

First, in the context of an employer-worker relationship,
privacy is a major concern. A low-resolution infrared sen-
sor instead which makes identifying an individual nearly
impossible, preventing a violation of privacy [104]. Privacy is
preserved by design. Second, infrared is less prone of changes
in illumination and will work equally well in a wide range of
scenarios, e.g. nighttime or bright day ([49], [90]).
Finally, a strong computational platform is not a given

in the context of a substation for various reasons such as
technological legacy as well as cost. Low-resolution images
induce a low computational burden on the image processing
hardware, thereby reducing costs [104]. Using strong deep

learning image processing algorithms requires large amounts
of memory and CPU/GPU to function. Classical CVmethods
on the other hand are not end-to-end but modular: In contrast
to a two-stage detector, where the CNN itself first performs
feature extraction on the given RoI and then classification,
CV methods employ a dedicated feature extraction method.
I.e. the engineer chooses an appropriate feature extraction
method rather than relying upon the CNN to find useful
features itself. While this may hamper performance a bit,
it also greatly increases interpretability, maintainability, and
computational efficiency. For example, the Histogram of Ori-
ented Gradients (HOG) [75] divides an image into a grid of
cells and calculates a normalized histogram of the orientation
and magnitude of the local gradients. It is therefore a repre-
sentation of edges in an image.While developed for the visual
spectrum, it can be expected to perform even better in the
infrared spectrum for the following reason: In visual images
HOG is only useful because persons have a distinct contour
by means of which they can be identified. Their clothing and
therefore the edges on their body will be very different and
not useful for detection. In the infrared spectrum however,
the temperature distribution over the human body becomes
visible, which is very useful information for classification.

E. COMMUNICATION OF RECOMMENDATIONS
The intelligent support agent, as the main communication
module of the cognitive assistance system shall communicate
the recommendations generated by the fault detection to ser-
vice technicians, answer their questions, and provide (didac-
tically prepared) information from the DSO’s documents or
knowledge bases. It can help both inexperienced technicians
(C1) as well as veterans who have to work on new or unusual
parts of the network infrastructure (C3).

While some organizations or individuals might have con-
cerns about them, existing research suggests Large Language
Model (LLM)-based user assistance systems as an appro-
priate technology for communication with users via chat or
speech (see Section II-A). LLM-based assistance systems
with human-level capabilities in processing and generating
textual and speech inputs can address multiple recipients
with different knowledge levels of maintenance, while they
are able to process and integrate the feedback provided by
users [78]. As mentioned, an important challenge is the
mitigation of LLM hallucinations. LLM hallucinations are
factually incorrect or off-topic generations by LLMs [45].
These random statements can cause damage to the assets or
potentially even lead to harm for technicians, if they provide
wrong recommendations that cause them to ignore safety
procedures. Additionally wrong recommendations can lead
to additional technical problems up to system failures.

While addressing these challenges remains complex, there
are various approaches to mitigate hallucinations [91], that
will be considered during the LLM-training and implemen-
tation of the LLM-based assistance system. As the assistance
system will use the DSO’s documents to answer questions
and use recommendations provided by the fault detection and
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analysis, the retrieval augmented generation (RAG) [54] or
retrieval augmented fine-tuning (RAFT) [107] are possible
candidates for the implementation. Additionally supervised
fine-tuning (SFT) [78], where high quality human demonstra-
tions are used to fine-tune LLMs and methods of incorporat-
ing human preferences such as reinforcement learning from
human feedback (RLHF) [78], or direct preference optimiza-
tion (DPO) [79] can incorporate human feedback to improve
the LLMs outputs.

F. KNOWLEDGE HARVESTING
The integration of human feedback addresses the lack of
knowledge management by the DSOs (C2). Classical imple-
mentations of knowledge management are mostly rejected by
experienced workers. They are perceived as useful mainly to
new or unexperiencedworkers while causing additional effort
for experienced workers. Conversely, LLM-based assistants
are more widely accepted due to their public availability [94].
The assistance system enables the technicians to process
additional information during maintenance. This information
includes possible annotations and changelogs for existing
manuals, internal documents, or assets that enable other tech-
nicians to improve the maintenance efficiency. LLMs enable
the didactical preparation and language improvement of tech-
nician feedback and annotation to the documents and assets
due to their high language understanding and restructuring
capabilities [94]. As human knowledge is mostly expressed in
an unstructured manner through language, LLMs can process
and structure this knowledge. The LLM-based assistant can
process the technician’s feedback on a specific document,
restructure it as an annotation to the document and store it
as an annotation text file, to prevent AI-interventions on the
documents. While this annotation process can also include
the problem of hallucinations, an additional approval-loop
can ensure that the LLM-annotation contains the technician’s
intended knowledge.

Besides the alignment problem, the acceptance of the
human-in-the-loop architecture for the LLM-based assistance
system is an additional challenge. Like most user technolo-
gies, the acceptance of users is very important for assistance
systems. This can be addressed by an early inclusion of the
knowledge workers and mechanics that will use the system.
They decide on the features to in- or exclude and decide on
the assistance system from an initial prototype to the pilot
version.

V. PILOT SCENARIO
The technology concepts for the forecast-based assistance
systems developed in the previous work packages are to
be tested and demonstrated under real operating conditions.
Based on the feedback of service personnel, the system will
be adapted and improved further.

The pilot scenarios are to be tested in cooperation with
the network operator Westfalen Weser Netz GmbH (WWN).
WWN is a municipal company servicing the German regions
of Ostwestfalen-Lippe, Südniedersachsen, and Sauerland and

is involved in various research projects to address future
energy supply requirements and to create an intelligent and
sustainable electricity grid. The distribution grid operated by
the company covers a cable length of around 30,000 km.

At the time of writing, the pilot phase is being carried out
at a substation in the WWN grid area. A substation is a facil-
ity that acts as an interface with transformers to enable the
transmission and distribution of electricity between different
voltage levels (110 kV high voltage to 10 kV low voltage in
this case).

In the first step of the pilot project, circuit-breakers are
equipped with a sensor system and monitored in order to
generate real data from the switching operations carried out.
The various solution elements described in section IV will be
tested with this data. In particular, diagnosis, prognostics, and
digital twins can be tested using the recorded data and service
technicians can provide feedback to the assistant system.

Following successful integration in this area, the assistance
and forecasting systemwill then be extended to other systems
and equipment. Due to the high IT requirements of a distri-
bution grid operator, the conceptual assistance system will be
implemented as an isolated edge system and designed for a
retrofit to enable simple integration into existing systems.

VI. CONCLUSION
In this paper, we have presented a comprehensive and inter-
disciplinary vision for an intelligent grid-wide maintenance
assistance system.We have provided a comprehensive review
of the various technologies needed to realize our concept as
well as its need in the context of other scientific activities that
are currently underway.

We have conducted empirical studies to determine the
current pain points of electrical grid operators. Our proposed
vision addresses all these points and describes amulti-layered
system that can make fault prognoses and safety assessments
and communicate those to service technicians in a didactic
and understandable way. The algorithms and sensors can deal
with a series of fault types both electrical and mechanical.
Based on our initial prototypes and the pilot installation at
WWN, we will continue to refine the algorithms, digital
twins, and sensors to show the feasibility of our vision.
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