KIT | KIT-Bibliothek | Impressum | Datenschutz

Managing product-inherent constraints with artificial intelligence: production control for time constraints in semiconductor manufacturing

May, Marvin Carl ORCID iD icon 1; Oberst, Jan 1; Lanza, Gisela 1
1 Institut für Produktionstechnik (WBK), Karlsruher Institut für Technologie (KIT)

Abstract:

Continuous product individualization and customization led to the advent of lot size one in production and ultimately to product-inherent uniqueness. As complexities in individualization and processes grow, production systems need to adapt to unique, product-inherent constraints by advancing production control beyond predictive, rigid schedules. While complex processes, production systems and production constraints are not a novelty per se, modern production control approaches fall short of simultaneously regarding the flexibility of complex job shops and product unique constraints imposed on production control. To close this gap, this paper develops a novel, data driven, artificial intelligence based production control approach for complex job shops. For this purpose, product-inherent constraints are resolved by restricting the solution space of the production control according to a prediction based decision model. The approach validation is performed in a real semiconductor fab as a job shop that includes transitional time constraints as product-inherent constraints. Not violating these time constraints is essential to avoid scrap and similarly increase quality-based yield. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000173567
Veröffentlicht am 29.08.2024
Originalveröffentlichung
DOI: 10.1007/s10845-024-02472-6
Scopus
Zitationen: 1
Web of Science
Zitationen: 1
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Produktionstechnik (WBK)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2024
Sprache Englisch
Identifikator ISSN: 0956-5515, 1572-8145
KITopen-ID: 1000173567
Erschienen in Journal of Intelligent Manufacturing
Verlag Springer
Vorab online veröffentlicht am 03.08.2024
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page