KIT | KIT-Bibliothek | Impressum | Datenschutz

Temperature stability and enhanced transport properties by surface modifications of silica nanoparticle tracers for geo-reservoir exploration

Spitzmüller, Laura ORCID iD icon 1,2,3; Berson, Jonathan 1,3,4,5; Schimmel, Thomas 1,3,4,5; Kohl, Thomas 2; Nitschke, Fabian 2
1 Institut für Angewandte Physik (APH), Karlsruher Institut für Technologie (KIT)
2 Institut für Angewandte Geowissenschaften (AGW), Karlsruher Institut für Technologie (KIT)
3 Materialwissenschaftliches Zentrum für Energiesysteme (MZE), Karlsruher Institut für Technologie (KIT)
4 Fakultät für Physik (PHYSIK), Karlsruher Institut für Technologie (KIT)
5 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract:

Tracer tests are an important tool for characterizing and monitoring subsurface reservoir properties. However, they are limited both because of the tracer molecules constraining factors such as irreversible adsorption, retention, and degradations, i.e. interaction processes of fluorophore molecule with surrounding media resulting in a large variation in transport properties. Elaborate tests utilizing more than one tracer to distinguish time or location of injection are complex and interpretation is ambiguous because each tracer interacts differently. In this study, we present an approach to increase tracer stability and enhance the transport uniformity of different tracers, thus making tests utilizing multiple tracers simpler and more feasible. We present this concept of tracer multiplicity by encapsulating an anionic, cationic or amphoteric fluorophore inside mesoporous silica nanoparticle carriers coated with a protective titania layer. Upon encapsulation, increased thermal resistance and drastically lowered sorption affinity towards quartz sand was detected in batch and flow-through experiments. An additional advantage of the presented nanoparticle tracers over molecular tracers is their modularity, which is demonstrated by surface modifications and application of additives that greatly reduce sorption and increase recovery rates in the flow experiments. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000173574
Veröffentlicht am 20.08.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Geowissenschaften (AGW)
Institut für Angewandte Physik (APH)
Institut für Nanotechnologie (INT)
Materialwissenschaftliches Zentrum für Energiesysteme (MZE)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2024
Sprache Englisch
Identifikator ISSN: 2045-2322
KITopen-ID: 1000173574
HGF-Programm 38.04.04 (POF IV, LK 01) Geoenergy
Erschienen in Scientific Reports
Verlag Nature Research
Band 14
Heft 1
Seiten Art.-Nr.: 19222
Vorab online veröffentlicht am 19.08.2024
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page