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Introduction to This Thesis

“So economics is a choice
between alternatives all the
time.”1

Paul Samuelson

One of the organizing principles of modern economic theory is to understand human
behavior in terms of choice. That is, it is interpreted against the background of what
alternatives are available. For example, by writing up this thesis, the author chooses to
forego other ways of passing time; after all, he could read a book, study to get a fishing
license or apply for a private-sector job instead. In this sense, economics holds, to behave is
to choose. This paradigm is epitomized by the opportunity cost principle that is taught to
every undergraduate student in economics. According to it, every potential choice comes at
that cost which is incurred by foregoing the best available alternative.2 As no alternative
is therefore truly costless, choice involves decision making.

From a methodological point of view, economics is built on the idea that an economy
– or any single part of it, such as the market for labor, capital, consumer goods etc.
– is best understood as a system of decision-making individuals that interact (through
markets or otherwise), rather than a holistic entity governed by its own invariant laws.
Thus, the behavior and interaction of aggregate economic variables (e.g., wages, interest
rates, commodity prices) is derived from assumptions on individual behavior.3 If relying
on econometric estimates based on historic data for these relationships instead, economic
analysis is inadequate to study changes in the economic environment (e.g., an economic
policy) because it does not account for how individuals change their decisions in response
to it. Popularized by Lucas (1976), this critique gained momentous influence within eco-
nomics in the seventies and was accordingly named after him. It has lent support to the
methodological stance that economic phenomena at the macro level must be explained

1 Source: https://www.pbs.org/newshour/economy/the-basics-of-economics-with-p accessed on 16
April, 2024.
2 Note that this cost need not be pecuniary. However, in perfect and frictionless markets, opportunity
costs equal prices.
3 By ‘individual’ we do not necessarily mean that of an individuum. Instead, we use the term to refer to a
single decision-making entity. What is (and what is not) a single such entity, may depend on the context.
For example, form a market perspective, a firm may be treated as one decision maker. At the same time,
the decisions made by the firm can result from incorporating those of several decision makers within the
firm.

3
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Part I: Introduction to This Thesis

in terms of behavior at the micro level. The search for such ‘microfoundations’ (see also
Janssen, 2016) puts individual decision making center-stage. More generally speaking, if
we grant that what matters to a group (or society) as a whole is the interests of its indi-
vidual members, then collective decisions should be based in a systematic and transparent
way on individual ones.4

The present thesis compiles some novel contributions to the theoretical research on
individual and collective decision making. To facilitate putting them into the context
of their wider research agenda, we start by giving a brief introduction to choice theory
first. Every attempt is made to keep it non-technical. However, mathematical notation is
used where it helps to understand a concept or avoids ambiguity. As we feel is common
practice within economics, no attempt is being made at drawing a clear distinction between
‘choice’ and ‘decision making’. Indeed, we will treat them as synonyms. Note that we will
use ‘choice’ to refer to both the situation of having to choose (i.e. a decision problem) and
the alternative being chosen. Our presentation will focus on decisions under certainty and
abstract from strategic aspects, that is, from situations where individual decisions may
depend on the actions of others.

‘Rational’ Choice Theory

The principal object of investigation in choice theory is that of a choice function. Sup-
pose X is some universe of alternatives. Every non-empty set of alternatives A ⊆ X is
called a decision problem. For instance, a restaurant goer is faced with the problem of
deciding between dishes on the menu. (It is due to this analogy that decision problems are
also referred to as menus.) Or consider, somewhat more abstractly speaking, a consumer
who, endowed with a certain income and at given prices, faces a budget set of possible
consumption choices (over a certain period of time). A choice function c is an abstract
representation of how a decision maker chooses from all conceivable decision problems.
That is, c specifies, for every decision problem A, which alternative(s) c(A) ⊆ A are chosen
from it. In general, this allows for the case that the decision maker is unable to make a
choice (c(A) = ∅) or her choice is indeterminate (c(A) contains more than one alternative).
However, we assume that choice sets c(A) are non-empty at least for decision problems A
with finitely many alternatives.5 If choice sets contain only a single element, we say that
they are singleton-valued.6

A particularly simple and prominent class of choice functions arises when the decision
maker has stable preferences ≿ over all alternatives in X and chooses the best or maximal

4 This approach to collective decision making is also referred to as ‘methodological individualism’ (see
Janssen, 2016, and the references given there).
5 If X is finite, this implies that all c(A) are non-empty. In this case, the assumption of non-empty choice
sets is often built into the definition of a choice function (cf. Part II).
6 It is not uncommon to consider this to be a defining property of a choice function (we do so in Part II)
and refer to the more general concept as a choice correspondence.

4



ones available to her.7 In this case, the preference relation ≿ is said to rationalize the
choice function c. This concept is so fundamental that preferences are often taken as
primitives of an economic model. Indeed, we also do so in various parts of this thesis.
If preferences are complete and transitive, that is, allow to rank (or order) alternatives
from best to worst (allowing for ties or indifferences), they are sometimes referred to as
‘rational’, corresponding choice behavior as ‘rational choice’.8 ‘Rational’ preferences are
behaviorally equivalent to the maximization of a utility function.9

This use of the label ‘rational’ is somewhat unfortunate for it almost certainly paints
too narrow a picture of rationality. For example, consider an individual who likes bigger
cars better than smaller ones. However, if two cars do not differ by much in terms of
size, she is indifferent. As many small size differences can add up to a large one, there
may exist a sequence of cars such that the decision maker is always indifferent between
subsequent ones yet strictly prefers the first car to the last. This makes for intransitive
preferences (to be precise, intransitive indifferences). At the same time, there seems to be
nothing evidently irrational about them and the choices they induce.10 So, more generally,
we might wonder what types of preference can rationalize choice behavior at all, given our
assumption that some alternative must be chosen from every finite decision problem?11 As
it turns out, the answer is that there must not be any cycles of strict preference. In more
precise terms, that is: if and only if a preference relation is acyclic, it rationalizes some
choice function. Note that this fact is borne out by our example above. Indeed, if some
car x is sizably bigger than another car y and car y is sizably bigger than yet another car
z, then car x must be sizably bigger than car z. So strict preferences are in fact transitive
in our example. As matter of fact, such preferences (with a transitive strict part) are not
only acyclic but referred to as quasi-transitive.12

At a closer look, the sense of rationality that is transported by preference-induced choice
is that an invariable relation between alternatives explains choice behavior across all de-
cision problems. In turn, this imparts a stringent notion of consistency across decision

7 An alternative x is best in A if it is preferred to all other alternatives in A (∀y ∈ A : x ≿ y); it is maximal
in A if there does not exist some other alternative that is strictly preferred to it (∄y ∈ A : y ≻ x). If ≿ is
complete, the two notions coincide.
8 Preferences ≿ are said to be complete if they allow to compare every pair of alternatives. They are said
to be transitive if, for all alternatives x, y, z ∈ X, x ≿ y and y ≿ z imply x ≿ z.
9 Technically speaking, if X is uncountable, preferences additionally need to satisfy a continuity assumption
in order to be represented by some utility function. Intuitively speaking, this means that there must not
be a sudden change of preference when altering alternatives slightly.

10 Admittedly, one might point out to her: “You like bigger cars better than smaller ones. So, even if the
difference in size is marginal, you should like the marginally bigger car better. Hence the indifferences
you display are irrational.” She might reply: “That’s true. However, while I can tell straight away when
two cars are only marginally different in size, I cannot say without considerable further (cognitive) effort
which one is the (marginally) bigger one. Since this does not matter much to me anyway, it is perfectly
reasonable for me to be indifferent.”

11 Note that, when decision problems are infinite, a best alternative may not exist even when preferences
order alternatives from best to worst. For example, an individual preferring more money to less cannot
choose a best (real-valued) alternative from [$0, $10).

12 Evidently, quasi-transitive preferences are acyclic. For formal details, see also Part III.

5
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problems. To see this, note that preferences relate pairs of alternatives. Thus, in effect,
preference-induced choice requires that all choice is consistent with binary choice (in the
sense that the decision maker chooses from decision problem A exactly those alternatives
that are chosen in binary comparisons with all other alternatives in A). In general, how-
ever, whether one alternative is chosen over another may depend on the menu from which
this choice is made. As we explain in Part II, this is natural for decision makers that need
to exert self-control since the cost of self-control may depend on what other alternatives are
available. In any case, this discussion suggests to study choice behavior in terms of (inter-
nal) consistency requirements directly. The probably most well-known one such condition
is the Weak Axiom of Revealed Preference (WARP). It requires that if alternative
x is chosen from some decision problem in which alternative y is present, then y may be
chosen from any other decision problem containing x only if the latter is chosen as well.
(Sometimes this condition is also simply referred to as Choice Consistency.) It is well
known that a choice function c satisfies WARP if and only if it is rationalized by some
complete and transitive preference relation. As was first shown by Amartya Sen (1969),
WARP can be decomposed into conditions that require consistency under contraction and
expansion respectively. The former, known as (Sen’s) condition α demands that if x is
chosen from decision problem A, then so it must be from every B ⊆ A that contains it.
The latter, known as (Sen’s) condition β, requires that if x is chosen from B ⊆ A and
y was available at B, then y is chosen from A only if x is. The following example may
serve to illustrate the logic behind the two conditions: if economics is among your favorite
sciences, then it must be among your favorite social sciences (α). Moreover, if economics
is among your favorite social sciences and sociology – another social science – is among
your favorite sciences overall, then so must be economics (β).

The equivalence results described above capture ‘rational’ choice in terms of internal
consistency conditions (WARP or, respectively, conditions α and β). If we are willing to
grant that this is not the only kind of behavior that qualifies as rational, however, where
exactly do we draw the line between rational and irrational behavior? In somewhat of a
modern positivist take on it, Itzhak Gilboa (2012) suggests to throw the question back
to the decision maker herself. Behavior may count as rational as long as the decision
maker has no desire to change it even after it has been analyzed and laid out for her
(including all of its potential flaws and inconsistencies).13 On the other hand, if the
decision maker wishes to revise her decision upon further analysis, it was irrational in the
first place. The allure of this approach to rationality is that it allows to broaden the scope
of rational analysis while not rendering the term ‘irrational’ void of any empirical content.
For example, many known decision biases would likely count as irrational under this view.
Indeed, it is hard to imagine that decision makers would not be embarrassed by decisions
that are explained to them to have been biased by anchors, win-loss frames or confounded

13 Note that our defense of intransitive preference over cars of different sizes above very much is in line with
this notion of rationality (cf. Footnote 10).
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conditional probabilities. In effect, this notion captures rationality in terms of stability
of behavior. When behavior is stable, it can be meaningfully analyzed in terms of the
consistency conditions that underlie it and the optimality rationales these correspond to.
This idea informs much of the analysis carried out in this Thesis (in particular, Parts II
and III).

Contributions of this Thesis

Part II – Planning to Self-Control

As we outlined above, modern economic analysis ultimately rests on representations of
individual behavior. For this reason, it seems crucial to develop appropriate models of
it. In intertemporal decision making – that is, for decision problems composed of alter-
natives that differ along a time dimension (for example, dated streams of consumption) –
exponential discounted utility continues to be the benchmark model. At the same time,
it is irreconcilable with two robust empirical findings: present bias and the magnitude
effect. Present bias refers to the fact that individuals tend to choose a smaller, sooner
reward over a larger, later one when the former is immediate but reverse their choice when
both are delayed. This is commonly seen as evidence of preferences that are dynamically
inconsistent, that is, change over time.14 Individuals exhibit the magnitude effect if they
choose smaller, sooner rewards when payoffs are small but reverse to larger, later ones
when the stakes are increased.15 In particular, the magnitude effect can make present bias
disappear at high stakes. Part II gives a theoretical explanation of magnitude effects (in
intertemporal choice tasks and more generally) in terms of costly self-control. It provides a
behavioral characterization of decision makers who optimally (plan to) bring self-control to
bear on choices that are considered sub-optimal at the planning stage. When self-control
costs are fixed, the simplest specification consistent with our model, decision makers may
optimally forego self-control when little is at stake but exert it when the stakes are large.
For example, if decision makers are present biased in the absence of self-control, this may
explain why they choose immediate rewards when the stakes are low but choose to wait for
larger rewards as the stakes rise. In the context of an infinite-horizon consumption-savings
problem such decision makers save sufficiently only when their current wealth level is high
enough (because much is at stake) but else over-consume. This creates a poverty trap at
the individual level. That is, unless they are endowed with sufficient initial wealth, decision
makers continually run down their wealth as time progresses.

14 This assumes that individuals would choose the immediate reward again when given the chance to recon-
sider their choice in future (when the delay has passed). However, this delayed choice task is usually not
part of the experiment (cf. Halevy, 2015).

15 Standard exponential discounted utility is inconsistent with present bias. While it is not inconsistent
with the magnitude effect per se, the amount of utility curvature needed to accommodate it produces
unrealistic predictions (individuals would need to turn down opportunities to save even at astronomical
rates of interest).

7



Part I: Introduction to This Thesis

Part III – Aggregation of Choice Functions

Putting individual choices at the center of economic analysis entails a natural paradigm
for how groups or whole societies ought to make decisions. Indeed, if they are to respect
their constituting members’ interests and values, collective decisions should be based in a
systematic and predictable way on individual ones. This idea lies at the heart of modern
social choice theory as pioneered by the late Kenneth Arrow. In his path-breaking work
on ‘Social Choice and Individual Values’ (Arrow, 1951/1963), he envisions social choice
as a process of forming a collective preference order over alternatives based on individual
rankings of these.16 His famous (im-)possibility result states that if one insists that: (1)
whether society prefers one alternative over another can only depend on how individuals
rank these two alternatives (known as the Independence condition), (2) society cannot
revoke its preference for one alternative over another as support for the former increases
(Positive Responsiveness), and (3) all profiles of individual preference orders are ad-
mitted (Universal Domain); then the aggregation procedure must be either imposed
(the social preference over at least one pair of alternatives is pre-determined) or dictatorial
(the social ranking is that of one individual).17 As we discussed above, the assumption of
‘rational’ choice (that is, choice rationalized by complete and transitive preferences) can
be hard to justify in general at the individual level. At the collective level, it seems even
more debatable. After all, the methodological stance underlying social choice theory, that
collective choices be based on individual ones, makes no claim to the effect that collective
behavior resemble that of a single individual. Indeed, when weakening collective consis-
tency requirements slightly to the extent of being rationalizable by some quasi-transitive
preference, possibilities emerge; for example, by choosing, for every decision problem, all
alternatives that are not Pareto-dominated in it (Sen, 1969). More generally, every aggrega-
tion procedure that yields quasi-transitive social preferences and satisfies Independence,
Universal Domain and ranks one state strictly over another if all individuals do (Weak

Pareto), must be oligarchic (Gibbard, 1969/2014). That is, there exists a (privileged)
group of individuals, the oligarchs, such that society strictly prefers one social state over
the other if all oligarchs do, and otherwise, is indifferent.

16 Arrow proposed an all-encompassing notion of an alternative as a social state specifying everything that
is relevant to society (allocation of goods etc.). More generally speaking, alternatives should account for
everything that is relevant to the decision(s) under consideration. For example, a university admissions
committee may only need to determine a ranking of applicants.

17 In fact, Arrow’s original formulation of the Independence condition demands that what society chooses
from a given menu can only depend on how individuals rank alternatives within that menu. Given Ar-
row’s implicit assumption that collective choices are rationalized by some (collective) preference order,
this is equivalent to (1) (as all choices can be reduced to binary choices). In an updated version (1963)
of the original text (1951), Arrow gives an alternative account of his (im-)possibility result which states
that Independence, Universal Domain and the condition that society strictly prefers one alternative
over another if all individuals do (Weak Pareto; in particular, requiring that the aggregation procedure
is not imposed) imply dictatorship. As it is the stronger result (note that Independence, Positive
Responsiveness and non-imposition imply Weak Pareto), this version has gained more prominence.
However, we present the original version here as we study choice functions that satisfy Monotone Inde-
pendence, a combined version of Positive Responsiveness and Independence, in Part III.
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Building on joint work with Clemens Puppe, Part III presents a first attempt at refor-
mulating the Arrow problem in the general context of choice functions. Here, a stronger
but very natural notion of independence would demand that whether some alternative x
is collectively chosen from decision problem A can only depend on whether individuals
choose x from A. We study the (im-)possibility of positive responsive and independent
aggregation when imposing the same consistency requirements on choice at the individual
and collective level. Interestingly, even on the domain of choice functions that can be
rationalized by some acyclic relation such aggregation is necessarily dictatorial. This is in
sharp contrast to the possibilities described above for Arrow’s notion of independence. In
our framework, oligarchic rules emerge as the only consistent independent procedures for
choice functions that satisfy a condition of path-independence, which requires choice to be
invariant to how decision problems are split up by choosing from a sub-problem first and
pitting the chosen against all remaining alternatives.18 Yet these rules are not the same as
those described by Gibbard. Indeed, the latter violate both our strong notion of indepen-
dence as well as a natural weakening to a condition of ‘independence across menus’ that
allows for collective choice of alternative x from menu A to depend on individual choice be-
havior for other alternatives y ∈ A (but not on choice behavior from other menus). When
restricting attention to individual and collective choice functions that are rationalized by
some preference order, this notion is equivalent to Arrow’s independence condition. More
possibilities emerge under independence across menu; for example, in the form of approval
voting. However, collective choices under approval voting fail to satisfy the contraction
property α and cannot be rationalized by any binary relation.

Part IV – Consistent Rights

Arrow’s independence axiom is central to his approach to social choice theory, not only
from a technical perspective (for obtaining his impossibility result) but also from a method-
ological point of view. It suggests to study collective decisions in terms of how they may
(or may not) be allowed to vary when individual decisions change. This has proven to
be of great importance for guaranteeing that individual strategic motives do not interfere
with the aggregation procedure; a problem wo do not study in this Thesis. For example,
if a procedure for aggregating preferences is not independent, individuals may want to
manipulate the social preference over a given pair of alternatives by misrepresenting their
preference over another pair. Yet, for all its merits, the classical Arrow approach neglects
other aspects of collective decision making that seem of no less fundamental importance.

First, in many groups (and most societies) subgroups of individuals (or single individuals)
are granted rights to determine certain components of the collective decision. That is to
say that, if a subgroup agrees on an issue it has a right to, the group as a whole (society)
must follow their lead on that issue. Much like the Arrow axioms, this seems innocuous a

18 Such choice functions have an interesting interpretation in terms of multiple ‘selves’.
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Part I: Introduction to This Thesis

demand to make. Yet Amartya Sen (1970) has shown that a minimal amount of such rights
can conflict with even the most basic welfarist principle. To be precise, he has shown that
no procedure of aggregating individual preference orders into an acyclic social preference
that satisfies Universal Domain and Weak Pareto can let two individuals be decisive
for the social preference over at least one pair of alternatives each. This fact has become
known as the (Sen) liberal paradox.

In Part IV, we analyze the problem of rights in the more general framework of judg-
ment aggregation. This emerging field is concerned with the analysis of aggregating sets
of individual judgments into a collective one, subject to restrictions on what combination
of judgments are consistent. For example, judgments may correspond to strict preference
statements between pairs of alternatives and the consistent sets of judgments be given by
all strict rankings of alternatives. Or judgments may refer to whether some alternative x
is chosen from decision problem A. As this shows, judgment aggregation includes the ag-
gregation of (rational) choice functions as a special case but is not limited to it. We model
judgment aggregation on property spaces (Nehring and Puppe, 2007, 2010). Here, every
alternative (consistent set of judgments) corresponds to a unique combination of proper-
ties (judgments). Going beyond impossibility results, we fully characterize when a system
of rights to such properties is consistent to the effect that there exists some aggregation
rule that grants them. Indeed, we show that consistency is equivalent to the following
well known ‘Intersection Property’ of Nehring and Puppe (2007, 2010): whenever rights
are granted to a minimally inconsistent (critical) family of properties, the corresponding
rights holding (sub-)groups must intersect to at least one common member. In the Ar-
rowian spirit, we also study when rights are consistent with monotone independent (that
is, positively responsive and independent) aggregation. As it turns out, the characterizing
condition of non-empty intersection remains in tact when extended to hold for a more
general concept of criticality. We derive important impossibility results from the literature
as corollaries of our more general characterizations. Moreover, we employ our results to
relate properties of consistent rights to classes of underlying property spaces. For exam-
ple, on spaces for which there are conditional logical entailments between all properties
(totally blocked spaces), only trivial rights (all rights holding groups have at least one
common member) are consistent with monotone independent aggregation. On the other
hand, when all logical entailments are unconditional (median spaces), the consistent rights
are exactly the independent rights (no rights to logically dependent properties for disjoint
groups). This part of the present Thesis has appeared in the Journal of Economic Theory
(Kretz, 2021) under the title “Consistent Rights on Property Spaces”.19

19 The published article can be accessed at https://doi.org/10.1016/j.jet.2021.105323.
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Part V – Epistemic Judgment Aggregation with Correlated Voters

Second, traditionally, classical social choice theory is concerned with how collective deci-
sions can be made in ways that are justifiable based on, or fair to, individual views on
matters of societal concern, such as how to distribute goods or whom to elect into office.
Such questions are a matter of (individual) norms or tastes and, as such, defy an objective
framework for what is right or wrong.20 On the other hand, in many situations, groups
may need to judge a measurable quantity (the weight of an object, the sales potential
of a new product etc.) or assess the truth content of a verifiable proposition. In these
circumstances, all that may matter about the collective decision is that it be correct. For
example, suppose we are interested in ascertaining whether a certain measure is effective
in mitigating climate change. Hypothetically speaking, if we new that everyone in society
incorrectly judged the measure to be ineffective, then we should come to the conclusion
that it is effective, even though this overrules unanimous consent.21 In similar fashion,
when subgroups of individuals have expert knowledge, they may be given greater weight in
collective decisions to improve the likelihood of these decisions being correct. In contrast
to the classical concern with fairness, here the focus is on the epistemic properties of the
aggregation procedure; that is, on how likely it is to uncover the truth. This line of anal-
ysis goes back to work by the Marquis de Condorcet (1785/2014) on majority decisions
over a simple binary issue. He is credited with being the first to formulate the result, now
formally known as the Condorcet Jury Theorem, that the probability of a correct majority
decision increases in the number of voters and approaches one as the number of voters
grows infinitely large.

Yet in most real-world scenarios, the issue to be decided upon is analytical in nature in
the sense that it is the logical conclusion of a number of premises. For example, society
may want to implement a certain measure against climate change if it is feasible (the first
premise) and effective (the second premise). In such a case, two particularly simple and
intuitive ways to implement the majoritarian idea are to arrive at a collective judgment
on the conclusion (1) through direct majority voting on it (Conclusion Based Procedure,
CBP) or (2) by logically deriving it from majority decisions on the premises (the so called
Premise Based Procedure, PBP). In analogy to Condorcet’s classical version, the literature
that studies Jury Theorems in this more general judgment aggregation setting has so far
mostly assumed (the correctness of) voters’ judgments to be independent of each other.
Yet as voters usually have access to common sources of information that raise or lower
their conditional competence for correct judgments, this seems unrealistic.

20 As the saying goes, there is no accounting for tastes. For example, if I prefer yellow buses and you prefer
red ones, there is no meaningful sense in which one of us is ‘right’.

21 This assumes that there is a shared interest in identifying correct judgments (making this a purely factual
matter). However, when individual stakes in the decision are high, the distinction between taste and fact
may not be easy to draw. For example, we can imagine a person who prefers not to learn the truth about a
matter, possibly because it could call for action she dislikes (in our example: that the measure is enacted).
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In Part V we model correlated votes at the premise level by means of binary latent
random variables and study how reliable the PBP and CBP are as epistemic procedures.
Our main finding is that, for most agendas, the asymptotic performance (that is, as the
number of voters tends to infinity) of the CBP crucially depends on the objectively true
state of the world (truth scenario). As this state is unknown, the reliability of the CBP
is at times highly uncertain. On the other hand, the (asymptotic) properties of the PBP
are independent of the agenda and the truth scenario. In the benchmark case of indepen-
dent voters, the PBP yields the correct conclusion with asymptotic certainty. The CBP
performs well in truth scenarios that are ‘truth-conducive’ to the effect that competent
signals on the premises translate into a competent conclusion signal. For example, if the
conclusion is the logical conjunction of two premises, this is the case for the first three out
of the following four possible truth scenarios: no premise is true, only the first premise
is true, only the second premise is true, or both premises are true.22 In the first three
scenarios, the CBP is asymptotically infallible and grows more reliable when increasing
the number of voters in finite samples. In the last truth scenario, the exact opposite is the
case. This uncertainty in behavior is often disguised, however, when considering weighted
behavior. For example, when assigning equal prior probability to all four possible states
of the world, the CBP is superior in finite samples of moderately competent voters (cf.
Bovens and Rabinowicz, 2006; Hartmann et al., 2010). While the picture that emerges
for correlated voters is somewhat more complex and the PBP loses its status as asymp-
totically immaculate procedure, the general intuition, that the CBP is (more) sensitive to
the agenda and the truth scenario, remains intact. However, interestingly, the presence
of correlation is somewhat of a moderating force on the variance of the CBP’s reliability
(across truth scenarios). Moreover, there exist agendas for which the CBP is more reliable
in all states of the world in finite samples of moderately competent voters when correlation
is present (and for which this was not true in the absence of correlation).

22 Note that, in the last truth scenario, voters judge the conclusion correctly only if judging both premises
correctly. Even if they do so with probability p > 0.5, they reach the correct conclusion only with
probability p2: Thus, for p ∈ (0.5, 1/

√
2), voters are competent on both premises but not on the conclusion.
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Part II

Planning to Self-Control





1 Introduction

We make plans on a daily basis. Indeed, planning is predominant in thoughts about
the future.23 Recent research in psychology and human decision processes suggests that
planning acts as a form of ‘pragmatic prospection’. Individuals engage in it “so as to guide
actions to bring about desirable outcomes” (Baumeister et al., 2016, p. 3). That is, plans
play an active part in steering future own choices. For example, implementation intentions
in the form of simple plans have been found to help overcome self-regulatory problems
and lead to better self-control (Gollwitzer, 1999; Gollwitzer and Sheeran, 2006; Gollwitzer
et al., 2010; Gollwitzer and Oettingen, 2011).

To illustrate, consider an individual contemplating potential after-work activities at
lunch-time. Suppose that she may either watch a movie or go for a run. At lunch-time,
when she is still energized, she prefers to exercise. At the same time, she anticipates her
preference to change come the evening. This creates an obvious incentive to commit to the
after-work run (for example, by arranging to meet with a friend). If external commitment
is out of reach (her friend might be busy), however, she is left to her own devices. By
making a plan, she may induce herself to go for the run. That is, planning may serve as
an internal commitment device allowing to exert self-control.

Yet planning has received little explicit treatment in economics. Generally speaking,
in intertemporal decision problems, plans capture what decision makers desire or predict
about own future choices (e.g., how much to save and consume in the future) but do not
actually influence these choices. For example, a present-biased saver may plan to start
saving more tomorrow. However, this plan does not actually affect her savings decision
tomorrow. Thus, if her future self is present-bias again, she will keep under-saving.24

In contrast, we present a model in which plans serve as internal commitment devices
that enable the decision maker to exert self-control in subsequent choices.25

We characterize Planning To Self-Control in terms of three simple and intuitive Axioms
on choice between and from decision problems. Our model generalizes temptation-based
models of self-control pioneered by Gul and Pesendorfer (2001) to allow for magnitude
effects: self-control increases when upping the stakes of a decision problem. For example,

23 Baumeister et al. (2020) report that close to three quarters of thoughts about the future involve plans
and that thinking about the future is common in individuals.

24 In such cases, when subsequent choices do not conform to the plan made beforehand, the decision maker
is said to be dynamically inconsistent.

25 The fact that anticipating such a change of preference creates an incentive to commit has been well
understood since the seminal work by Strotz (1955). However, as already pointed out by Thaler and
Shefrin (1981), even in the absence of external commitment devices, decision makers typically have at
their disposal strategies short of external commitments: self-control.
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in intertemporal choice tasks, individuals are consistently found to switch from sooner,
smaller rewards to larger, later ones when rewards are scaled up.26 We show that –
given a particularly simple specification, our model produces such behavior for agents that
are present-biased unless using self-control to overcome it.27 When applied to a simple
infinite-horizon consumption-savings model, it produces a poverty trap at the individual
level: decision makers forego self-control and over-consume (running down their wealth)
unless they are endowed with sufficient initial wealth.

Preview of Main Results

Consider an individual faced with a decision problemA. At the planning stage she evaluates
alternatives in A according to some utility function u but anticipates to choose from A

according to v at the choice stage. By making a plan, the decision maker is able to restrict
subsequent choices. That is, plan P ⊆ A induces choice c(A) = max(P, v).28 For instance,
a restaurant goer may plan to ‘choose a vegetarian dish’. If, say, the restaurant offers steak,
salad and a veggie lasagna, this restricts her to choose between the salad and lasagna. At
the same time, plan P ⊆ A comes at a cost κ(P,A). When evaluating decision problem
A, the decision maker makes an optimal plan by trading off its cost against the benefit of
(increased) self-control:

U(A) = max
P⊆A

u(xP )− κ(P,A)

s.t. xP = max(P, v).
(⋆)

We show that Planning to Self-Control is equivalent to three simple and intuitive Axioms
on preferences over decision problems and subsequent choices from them: decision makers
(1) always weakly prefer to commit, (2) strictly prefer to commit only if this rids them of
a self-control problem, and (3) are made strictly better off when adding an alternative to
a decision problem A that is preferred to their choice from A both at the planning and the
choice stage.

Decision makers who evaluate decision problems according to (⋆) act as if being uncon-
strained in their ability to induce self-control: every alternative x ∈ A is choosable given
appropriate planning (e.g., consider P = {x}). The minimal planning cost to induce x ∈ A

may be interpreted as its self-control cost C(x,A). We show that Planning To Self-Control
is behaviorally equivalent to a decision maker who, at every decision problem A, acts as if
choosing the optimal level of self-control:

U(A) = max
x∈A

u(x)− C(x,A). (⋆⋆)

26 We discuss the empirical evidence in Chapter 4 below.
27 Recent research in neuroscience links intertemporal decisions in general, and the magnitude effect in
particular, to self-control (Figner et al., 2010; Ballard et al., 2017, 2018).

28 For every f : X → R and all A ∈ A, we define max(A, f) = {x ∈ A|∄y ∈ A : f(y) > f(x)}.
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The restrictions our model puts on C(x,A) allow for an interpretation in terms of self-
control costs but are weak enough to nest other axiomatic models of self-control. For
example, in Gul and Pesendorfer (2001), C(x,A) = max

A
v − v(x). Here, v is interpreted

as a measure of how much other alternatives tempt the decision maker at the choice
stage. Subsequent work (Takeoka, 2008; Noor and Takeoka, 2010, 2015) has considered
more general functional forms for the cost function but has retained convexity (in foregone
temptation utility) implying that decision makers use less self-control when more tempting
alternatives are added to A.29

This seems at odds with the intuition that self-control may become more attractive as
the stakes of a decision increase because the costs of self-control decrease relative to its
benefit. The simplest possible specification in our model, a fixed cost C(x,A) = k > 0

if v(x) < maxA v and C(x,A) = 0 else, implies such a magnitude effect for self-control.30

To see this, note that if, say x = max(A, u) and y = max(A, v), then (⋆⋆) reduces to
U(A) = max{u(x) − k, u(y)}. Thus, self-control is worthwhile if (and only if) the utility
stakes u(x)− u(y) exceed k.31

For example, reconsider our individual making plans for after-work activities at lunch-
time. To put a twist on the story, suppose now that, initially, she is not very concerned
about missing a run (r) when only faced with the alternative to watch a movie (m) and
ends up in front of the screen. As a third option, to go out for drinks (d), becomes available
to her, however, the stakes of the problem increase. While she expects to prefer the social
occasion come the evening, she is profoundly concerned about its alcohol-related health
risks in advance, so that v(d) > v(m) > v(r) but u(d) ≪ u(m) < u(r). Consequently, she
may use self-control in this situation seeing that its benefits have increased substantially.32

Indeed, a fixed cost of self-control would imply such behavior given that u(r)−u(d) > k >

u(r)− u(m).
The possibly most well-known and empirically best documented case of increasing self-

control is that of magnitude effects in intertemporal choice tasks: individuals tend to choose
a smaller immediate reward (s) when the stakes are low but self-control to a larger later

29 For details, see our discussion of temptation-driven self-control models in Appendix A.1.
30 While simple, we believe that a fixed cost of self-control is also compelling on intuitive grounds as it may
reflect the cost of engaging a ‘self-control system’ in the human brain. Findings that exertion of self-control
is linked to heightened activity in certain areas of the human pre-frontal cortex (Figner et al., 2010; Ballard
et al., 2017, 2018) provide tentative evidence in support of the existence of such a system.

31 In the finite choice setting we use for our axiomatization below, utility is identified only up to positive
monotone transformations hence may carry no cardinal information. Still u(x) − u(y), as an (ordinal)
measure of the stakes at menu A, is guaranteed to increase as more options z are added to A that present
self-control problems (in the sense that if v(z) > v(y), then u(z) < u(y)).

32 Note that this constitutes a violation of the Weak Axiom of Revealed Preference (WARP) caused by
increasing self-control: c({m, r}) = m but c({d,m, r}) = r where u(r) > u(m). How is this possible? Note
that, from a self-control perspective, watching the movie is a fundamentally different alternative in the two
choice problems. This is due to the fact that it requires no self-control when the only alternative is to go
for the run, while it does require self-control when being presented with the option to go out for drinks.
At the same time, going for the run requires self-control in both instances. Thus, the marginal cost of
self-controlling from m to r may decrease as another option d becomes available. Given a fixed cost of
self-control, for example, the marginal cost is zero when d is present.
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one (l) when the stakes are high. For example, if, say s = $30 and l = $50, you might
prefer receiving s immediately over receiving l in a year. At the same time, if s = $150 and
l = $250, you prefer to wait a year to receive the additional $100. While this behavior is
hard to square with discounted utility maximization, it may be perfectly reasonable if you
are struggling with self-control problems related to immediate rewards.33 When little is
at stake, choosing the immediate reward is of little consequence. Yet, as the stakes grow,
self-control becomes a worthwhile exercise. Indeed, we show in Chapter 4 below that this
is natural for decision makers who exhibit present-bias unless engaging in self-control at a
fixed cost to overcome it.

More generally, in a simple infinite-horizon consumption-savings problem, such decision
makers over-consume (due to present-bias) unless they are sufficiently wealthy to make
self-control attractive. This produces a poverty trap (at the individual level).

Relation to the Literature

Psychology and Human Decision Processes. Recent work in psychology and human
decision processes has identified several strategies and processes engaged by individuals to
facilitate self-control (Duckworth et al., 2014, 2016; Hennecke and Bürgler, 2020).34 This
‘process model’ of self-control distinguishes between preventive strategies (e.g., commit-
ment) seeking to avoid situations involving conflicts, and interventive, intra-psychic ones
employed to deal with self-control problems if they occur (cf. Inzlicht et al., 2021).35 While,
traditionally, goal setting has been considered central among the latter, goal achievement
has been found to improve substantially when forming implementation intentions through
making plans (Gollwitzer, 1999; Gollwitzer and Sheeran, 2006; Gollwitzer et al., 2010; Goll-
witzer and Oettingen, 2011).36 Masicampo and Baumeister (2011) argue that this might
be due to the fact that plans can effectively turn control of goal pursuit over to automatic
unconscious processes that can be called upon when the need arises. In support of the
effectiveness of plans, Sjåstad and Baumeister (2018) show that willingness to plan is as-

33 While not inconsistent with discounted utility maximization per se, such choices would imply unreasonable
curvature of the utility function (see Noor, 2011).

34 Earlier findings that individuals subjected to cognitively laborious tasks (requiring self-control to stay
focused) exhibited lower levels of self-control in subsequent experiments initially led the literature to
theorize about the existence of a limited stock of cognitive (energy) resource that gets depleted (‘ego-
depletion’) when exercising self-control (Baumeister et al., 1998, 2007). For a recent axiomatic treatment
of choice behavior given a limited stock of ‘willpower’, see Masatlioglu et al. (2020). However, it should
be noted that the term is not always used consistently. For example, Bermúdez et al. (2023) seem to
refer to any kind of internal psychological mechanisms for resolving self-control problems as ‘willpower’ (as
opposed to more externally-rooted devices such as commitment or extrinsic incentives).

35 In this sense, our model is primarily concerned with an intra-psychic/interventive strategy for self-control:
planning. Findings by Bermúdez et al. (2023) suggest that this internal psychological aspect is also more
representative of every-day notions of self-control. However, the situational/preventive aspect features
indirectly in our model to the effect that menu preferences reflect the decision maker’s desire to pre-commit
(in order to rid herself of self-control problems).

36 In a related vein, Taylor et al. (1998) report that (mental) process simulations improved exam performance
by psychology students substantially better than outcome simulations.
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1. Introduction

sociated with good self-control. Other measures of propensity to plan have been shown
to be predictive of goal achievement (Ludwig et al., 2018) and good credit scores (Lynch
et al., 2010). In an early study of self-control in children, Mischel and Patterson (1976)
find that four-year old children are better at sticking with a boring task (and resisting a
distraction) when given a simple if-then plan.

Economics. In economics, the study of conflicting self-interests as exemplified by dynam-
ically inconsistent tastes and the resulting desire to pre-commit to a course of action goes
back at least to Strotz (1955). Pointing out that focusing on pre-commitment only pro-
vides part of the story, Thaler and Shefrin (1981) develop an early theory of self-control.
Gul and Pesendorfer (2001) pioneer an axiomatic treatment based on the idea that de-
cision makers take self-control into account when ranking decision problems (menus). In
the strand of literature their work has inspired (see, e.g., Gul and Pesendorfer, 2004, 2006;
Noor and Takeoka, 2010, 2015) self-control is costly since decision makers need to resist
more tempting alternatives. While this literature considers costs that are convex (in fore-
gone temptation utility) and lead to a loss of self-control when adding more tempting
options to a menu, our model allows for more general specifications consistent with in-
creasing self-control. Moreover, this literature takes as behavioral primitive preferences
over menus of lotteries and invokes an Independence assumption. While we build on the
same general framework, our axiomatic treatment is set in a (risk-free) finite-choice en-
vironment. Prima facie, the notions of self-control and risk seem unrelated to us. Thus,
we believe it is of interest to develop an axiomatic foundation in a deterministic setting.
While, in our model, self-control is enacted by making plans, Nehring (2006b) considers
a more general approach in which decision makers optimize over preferences according to
which they choose subsequently. He characterizes this model in terms of the ‘positive’
component of the the ‘Set Betweenness’ Axiom of Gul and Pesendorfer (2001): that the
union of two menus can never be strictly preferred to both of them. While our model fails
the fully-fledged ‘Set Betweenness’ Axiom, it always satisfies the weakening considered by
Nehring (2006b). Thus, in terms of generality, our model ranks in between the two.

A natural interpretation of representation (⋆) is that of a planning-stage self gaming
a choice-stage self. The planning self is faced with selecting a self-control action P ⊆ A

(the plan) to which the choice-stage self reacts optimally (choosing xP = max(P, v)).This
connects our work to games-of-multiple-selves models in the literature. For example, Fu-
denberg and Levine (2006, 2012) capture self-control in terms of equilibria of a game played
by a long-run self (the “planner”) and multiple sequential short-run selves (the “doers”).
The “planner” can steer future selves through some costly self-control action entering their
utility functions. Thus, in their model, self-control actions affect choice-stage preferences.
Hsiaw (2013) and Koch and Nafziger (2011) study the role of goals. They show that strate-
gically setting goals can help attenuate present bias assuming that they provide reference
points for future utility. In contrast, we capture self-control actions in terms of partial (in-
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ternal) commitment devices: plans restrict the choice-stage self to choose from a sub-menu
according to stable preferences. In general, while game-of-multiple-selves models derive
their results from assumptions on utility functions and associated costs of self-control,
our axiomatic treatment takes observable choice behavior as primitives of the model and
derives the representation from testable axioms.

Like we do here, Benhabib and Bisin (2005) argue that self-control can be enacted
through internal commitment mechanisms, although they do not model them explicitly. In
analogy to our analysis of a fixed cost of self-control, they assume that decisions otherwise
made through automatic responses can be overridden through activation of controlled
processing (that is, internal commitment acts through cognitive control) at some given cost.
Interestingly, when applied to a consumption-savings problem where automatic decisions
are driven by (stochastic) temptation of immediate consumption, the optimal self-control
behavior is determined by a cut-off rule: the decision maker makes use of self-control
when enough is at stake; i.e. when the temptation is sufficiently large. In contrast, in the
simple consumption-savings model we present below, stakes are determined by the decision
maker’s wealth. That is, self-control is exerted only by the sufficiently wealthy.37

The rest of Part II is structured as follows. Chapter 2 presents the framework and
discusses our Axioms. Chapter 3 contains our two Representation Theorems (Theorem
1 for (⋆) and Theorem 2 for (⋆⋆)). Chapter 4 applies the assumption of a fixed cost of
self-control to intertemporal consumption(-savings) choices. Here, we show that the fact
that self-control increases in the stakes of a decision translates into a magnitude effect and
leads to poverty traps in infinite-horizon problems. Lastly, Chapter 5 concludes. All proofs
are contained in the Appendix.

37 Unlike us, Benhabib and Bisin assume cognitive control costs to be proportional to the wealth stakes of
the problem, thereby focusing on varying temptation.
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2 The Model

2.1 Preliminaries

We consider a simple dynamic setting with two stages: a planning stage and a choice
stage. Let X be the set of alternatives at the choice stage; we assume that |X| < ∞.
Define A = 2X\{∅} to be the collection of all non-empty decision problems (henceforth
also: menus) over X. We generically denote alternatives from X by x, y, z and menus
from A by A,B. At the planning stage, the decision maker ranks menus according to some
weak order ≿ ⊆ A × A. When restricted to singletons, ≿ reveals the decision maker’s
planning-stage (commitment) preference over alternatives. For simplicity, we assume that
it does not display any indifferences. For ease of notation, we also denote singleton sets
{x} simply by x and write x ≿ y instead of {x} ≿ {y}.

Axiom 0.1. Weak Order. ≿ is complete and transitive. Its restriction to singletons
is anti-symmetric.

At the choice stage, the decision maker chooses from menus. We model this by means of
a (non-empty and singleton-valued) choice function c : A → X, A 7→ c(A) ∈ A. Dynamic
choice behavior is captured by the tuple (≿, c(·)).

We denote by ≥ the anticipated default choice-stage preference over alternatives in the
absence of self-control. Note, however, that since the decision maker might optimally bring
self-control to bear on observed choice behavior, ≥ is not revealed by observing c(·) alone.
That is, in general, ≥ does not rationalize c(·).38 Indeed, c(·) may not be rationalized by
any preference relation as optimal planning can lead to plausible violations of the Weak
Axiom of Revealed Preference (WARP). We elaborate further below. At the same time,
≥ is revealed by observing (≿, c(·)) jointly. Consider any x ≻ y. First, note that choosing
x from the menu {x, y} may require costly planning; thus x ≿ {x, y}. Second, the default
choice (in the absence of costly planning) from {x, y} is guaranteed to be no worse than y;
thus {x, y} ≿ y. Consequently, x ≿ {x, y} ≿ y.

If x ∼ {x, y}, the decision maker anticipates to choose x from {x, y} without the need
for self-control (i.e. by default: x > y). In this case, planning-stage and choice-stage
preferences agree; we say that x dominates y:

x≫ y : ⇐⇒ x ∼ {x, y} ≻ y.

38 We say that a preference relation R rationalizes choice function c(·) if, for all menus A, c(A) = {x ∈
A|∀y ∈ A : xRy}.
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On the other hand, if x ≻ {x, y}, the decision maker anticipates that x is choosable only
under costly planning because y is preferred at the choice-stage: y > x. We denote such
anticipated preference reversals by:

x ≷ y : ⇐⇒ x ≻ {x, y} ≿ y.

If these relations are to reveal a consistent choice-stage (default) ranking of alternatives,
the decision maker must have a transitive perception of both dominance and reversals.

Axiom 0.2. Transitive Reversals and Dominance. [x ≷ y and y ≷ z] =⇒ x ≷ z.
[x≫ y and y ≫ z] =⇒ x≫ z.

In turn, this ensures that ≥= (> ∪ −), is a linear order; where, for all x ̸= y,

x > y : ⇐⇒ [x≫ y or y ≷ x]

and, for all x ∈ X: x−x.39 Indeed, vindicating the intuitions presented above, x ≷ y ⇐⇒
[x ≻ y and x < y] and x≫ y ⇐⇒ [x ≻ y and x > y].

2.2 Main Axioms

Anticipating a preference reversal x ≷ y presents the decision maker with a self-control
problem. (Henceforth, we will also simply refer to x ≷ y as a self-control problem.)
Planning allows to exert self-control but is costly. Thus, in making an optimal plan, the
decision makers weighs said costs against the benefits of (increased) self-control. Observed
choices as captured by the choice function c(·) reflect optimal resolution of this trade-off.
The intuition driving the main Axioms of our model is that the costliness of a plan is linked
to the self-control problems it helps overcome. That is, planning is the costlier the more
self-control it allows to exert. For example, when considering binary menus, this is implicit
in our definition of a self-control problem: x ≷ y ⇐⇒ x ≻ {x, y} ≿ y. Indeed, plan
P = {x, y} (which we may also think of as making no plan) does not induce self-control
(y = max({x, y}, >)) but is free of cost.40 Consequently, {x, y} ≿ y. On the other hand,
plan P = {x} allows to exert self-control (x = max({x}, >)) but is costly; thus {x, y} ≺ x.

Generally speaking, if planning costs are tied to the self-control problems it help over-
come, the decision maker cannot be left worse off by committing to a sub-menu given it
contains what is chosen from the original one. To see this, suppose we observe the deci-
sion maker choosing alternative x ∈ A from menu A ∪ B. Then, in a revealed sense, the
decision maker prefers to plan so as to induce x in menu A∪B.41 Potentially, this involves
self-controlling away from alternatives y ∈ B. The need to do so is removed, however,

39 See Lemma 3 in the Appendix.
40 For every P ⊆ X ×X and all A ∈ A, we define max(A,P ) = {x ∈ A|∄y ∈ A : yPx}.
41 We say that P ⊆ A induces x (in menu A) if x = max(P,>).
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when committing to the sub-menu A. Thus, planning to induce x in A comes at a lesser
cost. Therefore, A should be no worse to the decision maker than A∪B. This is Axiom 1.

Axiom 1. Weak Preference for Commitment. c(A ∪B) ∈ A =⇒ A ≿ A ∪B.

Moreover, if preference for commitment is strict, this must be due to the fact that it rids
the decision maker of some self-control problem that need not be overcome by planning
when committing. In other words, it is self-control problems that make planning costly.
This is Axiom 2.

Axiom 2. Costly Planning/Self-Control. A ≻ A ∪B =⇒ ∃y ∈ B : c(A) ≷ y.

Equivalently, the counter-positive of Axiom 2 states that if, for all y ∈ B, c(A) > y or
y ≻ c(A), then A ∪ B ≿ A. This reflects the intuition that additional options can never
hurt as long as the decision maker either does not need to plan to self-control away from
them or has no incentive to do so.

In contrast, when x ≫ y, there is no self-control problem. The decision maker strictly
prefers x both at the planning stage and at the choice stage. Axiom 3 states that adding x
to some menu from which y is chosen must make the decision makers better off. Roughly
speaking, this reflects the intuition that there exists some plan for menu x ∪ A inducing
x that is no more costly than the optimal plan inducing y in menu A.42 As x is strictly
preferred at the planning stage, the decision maker values the addition of x to A.

Axiom 3. Unequivocally Better Choice. x≫ c(A) =⇒ x ∪A ≻ A.

A fortiori, when {x, y} ⊆ A and x ≫ y, then y ̸= c(A). That is, alternatives that are
dominated by some other available alternative are never chosen.

As we show below our axioms are not only necessary but also sufficient for a decision
maker to be Planning to Self-Control. Before we turn to our representation, we discuss
our Axioms further.

2.3 Discussion of Main Axioms

Axiom 1 implies a weakened version of the ‘Set-Betweenness’ Axiom that is central in
the characterization of temptation-self-control preferences in Gul and Pesendorfer (2001).
‘Set-Betweenness’ requires that the union of any two menus A ≿ B rank between them:
A ≿ A ∪ B ≿ B. Indeed, Axiom 1 implies its ‘positive’ part: A ≿ A ∪ B. Nehring
(2006b) shows that it is necessary and sufficient for ≿ to be rationalized in terms of a

42 To be precise, we cannot make this inference from the fact that the decision maker strictly prefers adding
x to A. The latter only implies that, if planning to induce x in A ∪ {x} is more costly than the optimal
plan for A (inducing y), then this is dominated by the corresponding increase in planning-stage utility that
x offers over y. This fact is reflected by Property 3.b) of a planning/self-control cost function in our model
(cf. Definition 1/2).
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general model of ‘second-order preference’.43 However, the corresponding ‘negative’ part
fails. To see why A ≿ B ≻ A∪B is reasonable within our model, suppose that the decision
maker self-controls to x in menus A and B (that is x = c(A) = c(B), which requires that
x ∈ A ∩ B, of course). Planning to induce x in the menu A ∪ B is more costly, however,
seeing that the decision maker now needs to self-control away from alternatives in A and B
at the same time. In contrast, this is not possible if A ∪B contains only two alternatives.
Indeed for all x ≿ y, Axiom 2 implies that {x, y} ≿ y. Axiom 1 implies that x ≿ {x, y}.
In other words, ‘Set-Betweenness’ holds for binary menus.

Axiom 1 implies that if A ≻ y for some y ∈ A, then y ̸= c(A). For example, if
x ≿ {x, y} ≻ y, then we must have x = c({x, y}). On the other hand, if {x, y} ∼ y,
our Axioms do not put any restrictions on choice from {x, y}. Note that if {x, y} ∼ y

and x = c({x, y}), the decision maker plans to self-control to x at a cost that exactly
equals the benefit of self-control to her. Hence she is indifferent between self-control and
no self-control (y = c({x, y})).

Other than the ones discussed above, our Axioms imply only weak (consistency) re-
strictions on choice from menus. In particular, c(·) may fail to satisfy WARP known to
characterize choice behavior that is rationalized by some preference relation. In the pres-
ence of self-control problems it is natural to allow for violations of WARP. To see this,
reconsider our introductory example from above. While our decision maker self-controls to
go for the run (r) in the presence of an alternative she considers seriously detrimental to her
health (to go for drinks: d), she optimally decides to forego self-control when only ending
up watching a movie (m). This choice pattern, r = c({d,m, r}) and m = c({m, r}), consti-
tutes a violation of WARP. Seeing that r ≷ m, it is an example of increasing self-control:
the decision maker has more self-control at the menu {d,m, r} than at the sub-menu {m, r}.
To give another example of where such behavior can be plausible, consider an individual
struggling with being tempted by desserts. It may be easier to resist having a dessert al-
together when there are 10 of them available (including one that is particularly unhealthy
but tempting) as compared to when there is only one (moderately unhealthy but tempting
one).

At the same time, our Axioms are equally consistent with violations of WARP resulting
from decreasing self-control. Such choice patters are generally consistent with generaliza-
tions of Gul and Pesendorfer (2001) (see also Appendix A for more details). For instance,
suppose some product is available at different prices (e.g., because it is available from dif-
ferent brands). There is a high-price (h), medium-price (m) and low-price (l) variant. At
the planning stage, a consumer regards all variants as perfect substitutes (i.e., there are
no perceived differences in terms of quality) so that she ranks them according to price:

43 Nehring considers a second condition (‘singleton monotonicity’) on menu preferences. When adding to
some menu an alternative that is preferred to all alternatives in the menu, this never leaves the decision
makers worse off. Formally, if for all y ∈ A, x ≿ y, then x ∪ A ≿ A. Nehring calls this subclass of
preferences ‘self-command’ preferences. Our Axiom 2 implies ‘singleton monotonicity’. Thus, our model
is a special case of ‘self-command’ preference.
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l ≻ m ≻ h. However, she expects her ranking to reverse at the time of choice: h ≻ m ≻ l

(e.g., driven by product packaging and presentation or impulsive inferences about quality).
Suppose further that a corner store only offers l and m, a bigger supermarket sells all three
variants. While our consumer may optimally (plan to) self-control to the low-cost option l
in the corner store (l = c({l,m}) ), doing so in the supermarket ({l,m, h}) might require
a higher planning effort so as to exclude both m and h at the choice stage. Thus, she may
only choose to self-control to the medium-price option (m = c({l,m, h})) but optimally
forego a higher level of self-control (to l). As l ≷ m, this choice pattern constitutes a loss
of self-control when adding the high-price option h to the menu {l,m}.
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3 Representation

3.1 Planning to Self-Control

Our representation builds on the idea that plans allow the decision maker to restrict sub-
sequent choices. We model this by identifying plans with the choice restrictions (commit-
ment) they entail. That is, for every decision problem A and every non-empty P ⊆ A,
we call P a plan for A. If plan P is made, the decision maker chooses the best available
alternative that is consistent with P . Given our Axioms above, (default) preferences at
the choice stage are represented by some utility function v. Thus, plan P ⊆ A induces
xP := max(P, v) at the choice stage. At the same time, it comes at a cost κ(P,A). Our
Axioms imply restrictions on the planning-cost function κ(·, ·) (cf. Definition 1); we discuss
them in detail below. Intuitively speaking, planning incurs a cost (if and) only if it allows
to exert self-control and is the costlier the more it does so. As preferences over decision
problems ≿ are a weak order, they are representable by some utility function U . We let u
be the restriction of U to singleton menus; that is, for all x ∈ X, u(x) := U({x}). Thus, u
represents the decision maker’s planning-stage (commitment) preference over alternatives.
Our first main result shows that the tuple (≿, c(·)) satisfies our Axioms if and only if it
is Planning to Self-Control (PTSC). That is, U(A) is the indirect utility from maximizing
planning-stage utility u(xP ) net of planning costs κ(P,A) and optimal planning rationalizes
subsequent choice behavior: c(A) = xP ⋆ for some optimal P ⋆.

Theorem 1. If and only if (≿, c(·)) satisfies Axioms 0.1,0.2,1-3, there exist strictly in-
creasing44 utility functions u, v : X → R and planning-cost function κ such that:

1. ≿ is represented by

U(A) = max
P⊆A

u(xP )− κ(P,A)

s.t. xP = max(P, v).
(⋆)

2. c(A) = xP ⋆ for some P ⋆ that solves (⋆).

Definition 1. We say that κ : A × A ∋ (P ⊆ A,A) 7→ κ(P,A) ≥ 0 is a planning-cost
function if

1. κ(P,A) > 0 ⇐⇒ ∃y ∈ A\P : v(y) > v(xP )

44 That is, u, v : X → R allow only for trivial indifferences: u(x) = u(y) =⇒ x = y and v(x) = v(y) =⇒
x = y.
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2. xP ∈ A =⇒ κ(P ∩A,A) ≤ κ(P,A ∪B)

3. a) u(xP∪B) ≤ u(xP ) =⇒ κ(P ∪B,A ∪B) ≤ κ(P,A)

b) u(xP∪B) > u(xP ) =⇒ κ(P ∪B,A ∪B)− κ(P,A) < u(xP∪B)− u(xP )

The first property requires that P incurs a cost at menu A if and only if the alternative
xP it induces is not the default choice; that is, if there exists some y ∈ A\P that is chosen
over xP unless it is excluded from P (as v(y) > v(xP )). Second, plan P ⊆ A ∪ B is no
more costly when projected onto the sub-decision problem A as long as it induces the same
alternative: note that if xP ∈ A, then xP∩A = xP . In particular, this implies that some
fixed P is (weakly) less costly at smaller menus as compared to larger ones. That is, if
P ⊆ A, then κ(P,A) ≤ κ(P,A∪B) for every menu B. Equivalently put, the planning cost
associated with restricting choices to some given P (weakly) increases as more alternatives
are available at the choice stage. This reflects the intuition that P may need to exclude
additional alternatives when choosing from A ∪ B as compared to A (namely those in B;
unless P ⊆ B). On the other hand, when modifying plan P ⊆ A so as to be consistent
with all alternatives that are added to menu A, that is when considering P ∪B ⊆ A ∪B,
the associated planning cost should be no higher. The third property establishes this for
the case that xP = xP∪B or xP ≷ xP∪B (part a)). However, if xP∪B ≫ xP (i.e. if B
contains an alternative that dominates xP ), then our Axioms only allow us to ascertain
that the cost differential κ(P ∪B,A∪B)−κ(P,A) is bounded above by the planning-stage
utility differential u(xP∪B) − u(xP ) (part b)).45 Note that an immediate consequence of
Property 3a) is that if P ′ ⊆ P ⊆ A induce the same alternative, then κ(P ′, A) ≥ κ(P,A)

(let B ⊆ A\P ′).

Planning is costly. For this reason, rational decision makers use it only to the extent
necessary to induce self-control. We say that plan P ⊆ A is efficient if for all alternatives
y ∈ A\P excluded by P it holds that self-control is both necessary (v(y) > v(xP )) and
beneficial (u(y) < u(xP )), that is, xP ≷ y.46 Without loss of generality, we can restrict
a PTSC decision maker to choose among all efficient plans in representation (⋆). To see
this, note that for any P ⊆ A, we can construct an efficient plan P ′ ⊇ P such that
A\P ′ = {y ∈ A : xP ≷ y} = {y ∈ A : u(xP ) > u(y) and v(xP ) < v(y)}. If xP ′ = xP ,
the cost of plan P ′ is (weakly) less than that of P (let B = P ′\P ⊆ A and use property
3a) for planning-cost functions) but induces the same alternative. Hence P can be optimal
only if P ′ is. Else if xP ′ ̸= xP , then xP ′ must dominate xP (u(xP ′) > u(xP ) and v(xP ′) >

v(xP )). By property 3b) for planning-cost functions, the cost of plan P ′ exceeds that
of P (if at all) by less than the planning-stage utility benefit of xP ′ with respect to xP :
u(xP ′)− κ(P ′, A) < u(xP )− κ(P,A). Here, P cannot be optimal.

45 Note that, by definition, v(xP∪B) ≥ v(xP ), with equality only if v(xP∪B) = v(xP ). If u(xP∪B) > u(xP ),
then xP∪B ̸= xP ; hence xP∪B ≫ xP .

46 In other words, all y ∈ A\P present the decision maker with a self-control problem: xP ≷ y.
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3.2 Equivalent Self-Control Cost Model

In our model, plan P ⊆ A induces xP = max(P, v) at the choice stage. Prima facie, this
seems to assume that decision makers (rationally expect to) stick to the plan they made
beforehand. This seems implausible. However, it is not the only possible interpretation.
Alternatively, we can identify with P ⊆ A the plan for which P is the collection of alterna-
tives that are acceptable (deviations) given said plan. After all, what is important about a
plan in our model is to what extent it restricts subsequent choices but not how it is repre-
sented in the decision maker’s mind.47 Given this interpretation, however, it is important
to note that our concept of optimality (for plans) implicitly assumes that every non-empty
choice restriction P ⊆ A is induced by some plan the decision makers can make. In effect,
this ensures that self-control is potentially unlimited (but possibly too costly). Fudenberg
and Levine make an analogous assumption for their ‘planner-doer’ model: every action
by a future self can be elicited by the long-run self through some appropriate self-control
action (2006, Assumption 2).

As can be expected in our finite choice context, the additive form in (⋆) is not identified.
That is, while Theorem 7 shows that a representation of this from always exists, it does
not ensure that U is of the prescribed form whenever U represents ≿. In general, there
are multiple solutions to (⋆). However, the optimal efficient plan P ⋆ that solves (⋆) and
rationalizes observed choice behavior (i.e. c(A) = xP ⋆) is unique.48

3.2 Equivalent Self-Control Cost Model

Plans are instrumental in inducing self-control. That is, a PTSC decision maker plans in
order to induce alternatives that would otherwise not be chosen. Consider decision problem
A. For every alternative x ∈ A, let Px := {y ∈ A : v(y) ≤ v(x)}. Note that if P ⊆ A is
some plan inducing x, we need to have P ⊆ Px; hence κ(P,A) ≥ κ(Px, A).49 Thus, Px is
the cost-minimal plan inducing x. From an abstract point of view, we may also think of the
decision maker as optimizing directly over eventual choices x ∈ A incurring a self-control
cost C(x,A) = κ(Px, A). Then, she evaluates menus according to

U(A) = max
x∈A

u(x)− C(x,A). (⋆⋆)

Indeed, Theorem 2 shows that this is an equivalent representation of planning-stage menu
preferences. Moreover, if x⋆ solves (⋆⋆), then there exists some (efficient) plan P ⋆ solving
(⋆) such that x⋆ = xP ⋆ (hence x⋆ = c(A)). Vice versa, if P ⋆ solves (⋆), then xP ⋆ solves
(⋆⋆).

Theorem 2. Let κ be a planning-cost function, then there exists a self-control-cost function
C such that:

47 That is, we adopt an extensional definition of plans.
48 If we do not restrict ourselves to efficient plans in (⋆), there may be several equally costly plans that
induce the choice c(A). However, as noted above, restriction to efficient plans is without loss of generality.

49 To see this, let B = Px\P ⊆ A\P and use Property 3a) for κ(·, ·).
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1. max
P⊆A

u(xP )− κ(P,A) = max
x∈A

u(x)− C(x,A)

2. a) P ⋆ solves max
P⊆A

u(xP )− κ(P,A) =⇒ xP ⋆ solves max
x∈A

u(x)− C(x,A)

b) x⋆ solves max
x∈A

u(x) − C(x,A) =⇒ ∃P ⋆ ⊆ A : xP ∗ = x⋆ and P ⋆ solves

max
P⊆A

u(xP )− κ(P,A)

Vice versa, if C is a self-control-cost function, then there exists a planning-cost function κ
such that 1. and 2. hold.

Definition 2. We say that C : X × A ∋ (x ∈ A,A) 7→ C(x,A) ≥ 0 is a self-control-cost
function if

1. C(x,A) > 0 ⇐⇒ ∃y ∈ A : v(y) > v(x)

2. C(x,A) ≤ C(x,A ∪B) and C(x,A) < C(x,A ∪B) =⇒ ∃y ∈ B : v(y) > v(x)

3. if v(x) > v(y), then:

a) u(x) < u(y) =⇒ C(x, x ∪A) ≤ C(y,A)

b) u(x) > u(y) =⇒ C(x, x ∪A)− C(y,A) < u(x)− u(y)

In analogy to planning-cost functions, self-control costs increase in the number of self-
control problems that need to be overcome. First, the cost of self-controlling to x ∈ A

is strictly positive if and only if at least one alternative y ∈ A is preferred at the choice
stage. Second, self-control costs are greater at larger menus; and strictly so only if the
larger menu contains an alternative that is preferred at the choice stage. Lastly, suppose
that x is choice-stage preferred to y ∈ A. Then x incurs a smaller self-control cost when
added to menu A than y does in menu A given that x presents the decision makers with
a self-control problem vis-Ã -vis y: y ≷ x. If x dominates y, the self-control cost for x
in x ∪ A exceeds that for y in A by strictly less than the additional planning-stage utility
offered by x.

Theorem 2 is helpful as it facilitates comparison of the PTSC model with other models of
self-control by capturing those in terms of additional assumptions on the self-control-cost
function in (⋆⋆). Theorem 2 characterizes the constrained optimization problem (⋆) in
terms of an unconstrained one. This is of particular interest in applications. To simplify
both the verbal and technical exposition, we mostly suppress the planning aspect for the
rest of Part II and formulate our assumptions in terms of (generic) self-control costs. While
our definition of a self-control-cost function involves minimal criteria to be consistent with
our Axioms, it allows for a large variety of functional forms. For example, one interesting
class of functions arises when considering self-control costs driven by the need to resist
temptation. In Appendix A.1 we show how some prominent temptation-driven models of
self-control correspond to specific assumptions on self-control costs. Another particularly
simple case arises when costs are fixed; that is, do not vary by ‘how much’ self-control need
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3.2 Equivalent Self-Control Cost Model

be exerted. We turn to this case next and show that it generates well-known stylized facts
about intertemporal decision making.
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4 Fixed Costs Imply Increasing Self-Control: Magnitude Effect
and Poverty Traps in Intertemporal Choice

In general, Representation (⋆⋆) allows for self-control costs to increase in the ‘amount’
of self-control needed to follow through with a certain choice. That is, self-control may
become more costly when including alternatives that pose additional self-control problems
(cf. Definition 2, in particular, Property 2).50 In this chapter we consider the particular
case of a fixed cost of self-control; that is, when all self-control is equally costly. Intuitively
speaking, this could reflect the existence of a self-control system in the human brain that
can be activated at some given cognitive cost.51 Once engaged, this system takes over all
decision making (at no additional variable cost).

Formally speaking, we say that the cost of self-control is fixed if there exists some k > 0

such that for all A ∈ A and x ∈ A:

C(x,A) =

0 if x = max(A, v)

k else
.

A fixed cost greatly simplifies the self-control decision faced at some decision problem
A. As all self-control is equally costly, the decision maker never exhibits intermediate
levels of it. The self-control decision reduces to a binary choice between full self-control
at cost k (choosing the planning-stage optimum max(A, u)), and no self-control (choosing
max(A, v)). Let W (A) := maxx∈A u(x) be the indirect utility given (full) self-control but
net of cost k and V (A) := u(xA) = u(max(A, v)) denote the indirect utility given no
self-control. Self-control is optimal at menu A if and only if

W (A)− V (A) ≥ k. (4.1)

Importantly, note that, while v determines choices given no self-control, these are still eval-
uated according u when considering whether to self-control (or not). The overall indirect
utility at menu A – reflecting self-control behavior – can be conveniently expressed as

U(A) = max{W (A)− k, V (A)}.

50 Equivalently, planning is more costly when more self-control problems are present (cf. Definition 1, in
particular, Property 2).

51 Presumably, the latter might best be understood as an opportunity cost for not engaging those parts of
the brain involved in self-control in other cognitive activities (Boureau et al., 2015).
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Part II: Planning to Self-Control

Consequently, the decision maker gains self-control as the (utility) stakes of decision prob-
lem A, W (A)− V (A) increase.

Although a simplification, the fixed-cost model is general enough to account for a variety
of stylized facts about intertemporal choice behavior. In what follows we consider applica-
tions to typical intertemporal choice tasks in experimental settings and to consumption-
savings decisions.

4.1 The Magnitude Effect

Consider an individual faced with choosing between pairs of dated money rewards. Let the
tuple (m, t) ∈ R×N denote an alternative that pays $m at time t. In a typical experimental
setting, individuals are asked to choose between a smaller sooner (s, t) and a larger later
(l, t+ 1) reward. Individuals exhibit present bias when preferring the sooner reward when
it is immediate but choose the larger reward when all payoffs are delayed by the same
amount of time τ ≥ 1. If the decision is made at time t, that is:

(s, t) ≻t (l, t+ 1) and (s, t+ τ) ≺t (l, t+ τ + 1) (present bias)

where 0 < s < l.
For example, an individual may prefer receiving $30 immediately to receiving $50 in

a week but prefer $50 in a year and a week to $30 in a year. For an overview of the
early literature finding present bias, see, for example, Frederick et al. (2002). In more
recent studies, the status of present bias for money rewards has been somewhat contested
(see, e.g., Andreoni and Sprenger, 2012; Sutter et al., 2013; Meyer, 2015; Sun and Potters,
2022; however, cf. Meier and Sprenger, 2010; Benhabib et al., 2010; Andersen et al., 2013;
Augenblick et al., 2015). Yet present bias is consistently found in studies involving real
rewards (see, e.g., McClure et al., 2007; Augenblick and Rabin, 2019).

The possibly most well documented finding about intertemporal choice behavior, how-
ever, is that preferences between smaller, sooner and larger, later rewards change system-
atically when increasing the stakes of a decision. For example, an individual preferring $30
immediately to $50 in a week may switch to the larger, later one when the rewards are
$150 and $250 respectively (i.e. scaled up by factor 5). Such magnitude effects have been
found both for money and real rewards across a variety of settings (see, e.g., Thaler, 1981;
Green et al., 1997; Kirby, 1997; Benhabib et al., 2010; Andersen et al., 2013; Sutter et al.,
2013; Meyer, 2015; Sun and Potters, 2022).52

Formally, individuals exhibit a magnitude effect if

(s, t) ≻t (l, t+ 1) and ∃λ > 1 : (λs, t) ≺t (λl, t+ 1). (magnitude effect)

52 Studies that elicit money discount rates through indifference statements which ask subjects to specify an
amount x such that (s, t) ∼t (x, t+1), refer to the magnitude effect as an increasing money discount factor
s
x

(decreasing money discount rate x
s
− 1).
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4.1 The Magnitude Effect

While, in principle, magnitude effects can be accounted for in the standard (exponentially
discounted utility) model by curvature of the utility function, the extreme curvature this
would require creates implausible predictions (Noor, 2011). At the same time, magnitude
effects are natural in a model with self-control problems that can be overcome at a fixed
cost. For simplicity, consider a discounted value maximizer who, given self-control, is an
exponential discounter and, given no self-control, discounts quasi-hyperbolically. That is,
she evaluates dated rewards according to ut(m, t + τ) = Dδ(τ) · m and vt(m, t + τ) =

Dβ,δ(τ) ·m where

Dδ(τ) = δτ and Dβ,δ(τ) =

βδτ τ ≥ 1

1 τ = 0

for some 0 ≤ β < 1 and 0 < δ ≤ 1.

Suppose that
0 ≤ βδl < s < δl (4.2)

Then, the decision maker would prefer the later reward (l, t + 1) given self-control but
choose the immediate reward (s, t) under no self-control. If both rewards are delayed,
however, the later reward is preferred no matter what the self-control decision. Thus, the
decision maker exhibits present bias if choosing to forego self-control in the former case.
This is case if the benefit of self-control, δl − s, falls short of the self-control cost k.53

Now suppose that rewards are scaled up by some factor λ > 1. Note that this leaves
preferences regarding (λs, t) and (λl, t+1) given self-control and no self-control unaffected
(and still governed by Equation (4.2)) while making self-control worthwhile if

λ(δl − s) ≥ k. (4.3)

Thus, as the stakes rise, the decision maker will eventually find it optimal to exert self-
control (no matter what the cost of self-control k). For instance, suppose β = 0.5, δ = 1,
k = 80 and reconsider our example from above. As 0.5 · 50 < 30 < 50, Equation (4.2) is
satisfied. Moreover, since 50− 30 < k = 80 < 5 · (50− 30) = 250− 150, the decision maker
foregoes self-control in the low-stakes (λ = 1: ($30, t) ≻t (50$, t+1)) but gains self-control
in the high-stakes (λ = 5: ($150, t) ≺t (250$, t+ 1)) condition (cf. Equation (4.3)).

More generally, when choosing at time t from a menu of dated rewards Mt = {(m(i), t+

τ (i)), i ∈ I} (where I is some index set) such that an immediate reward is preferred under
no self-control: (m(i∗), t) = max(Mt, Dβ,δ(τ) ·m) for some i∗ ∈ I. Then, the choice from
M (given optimal self-control) maximizes the discounted value D(τ,m) ·m according to

53 Here, linear utility implies that the benefit of self-control is the discounted value it produces in excess
of the no-self-control option. Vice versa, we may interpret the cost of self-control k as the premium the
decision makers demands to make self-control worthwhile.
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the (magnitude-dependent) discount function

D(τ,m) =

δτ − k
m τ ≥ 1

1 τ = 0
. (4.4)

Benhabib et al. (2010) show that such a fixed component is a better fit to their experimental
data than both hyperbolic and quasi-hyperbolic discounting.54 Discounting according to
(4.4) produces a magnitude effect as the discount factor is increasing in the size of the
reward. That is, larger rewards are discounted at lower rates.

4.2 Optimal Self-Control in Consumption-Savings Decisions

In this section, we consider a decision maker with Epstein-Zin preferences and a fixed
cost of self-control k > 0 facing a simple consumption-savings problem. In each period
t, the decision maker decides how much of her wealth w (carried over from the previous
period) to consume and how much to save (at gross interest rate R ≥ 1) for the future. As
for the previous section, we assume that preferences given self-control and no self-control
differ only in terms of how they discount the future. While the decision maker discounts
exponentially at rate 0 < δ ≤ 1 given self-control, no self-control behavior is based on
quasi-hyperbolic β-δ discounting where 0 ≤ β < 1.

To build intuition, we start with the simple case of two periods. In the second period, the
decision maker simply consumes her savings carried over from the first period. Every initial
wealth level w > 0 presents the decision maker with a menu of first-period consumption
levels c ∈ [0, w]. In the second period, she consumes her savings carried over from the
first period: R(w− c). Thus, the decision maker solves a single self-control problem in the
first period. By slight abuse of notation, we write U(w) = U([0, w]) to denote the value
function of this problem. Given a fixed cost of self-control, we have

U(w) = max{W (w)− k, V (w)} (4.5)

where
W (w) = max

c∈[0,w]
[cσ + δ(R(w − c))σ]

1
σ (4.6)

and
V (w) = [cσNSC + δ(R(w − cNSC))

σ]
1
σ (4.7)

such that cNSC solves
max
c∈[0,w]

[cσ + βδ(R(w − c))σ]
1
σ . (4.8)

where δR ≤ 1.

54 The hypothesis of exponential discounting can be rejected as it does not allow for present bias which they
find in their data.
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4.2 Optimal Self-Control in Consumption-Savings Decisions

The parameter σ < 1 captures how readily optimal growth ct+1/ct responds to changes
in the interest rate R: σ = 1 − 1/γ where γ = d ln

(
ct+1

ct

)
/d lnR > 0 is the Elasticity

of Intertemporal Substitution (EIS). When σ decreases, the decision maker becomes less
inclined to readjust to a changing interest rate. In the limit, as σ tends to −∞ (i.e. γ tends
to 0) there is extreme consumption smoothing to the effect that ct+1 ≈ ct in the optimum
(irrespective of R). In the opposite case, as σ tends to 1 (i.e. γ tends to +∞) consumption
is perfectly substitutable across time.55 When β = 1, the model reduces to the standard
consumption-savings (pie-eating) problem (hence we assume β < 1).

As preferences are homothetic, the optimal solutions cSC to (4.6) and cNSC to (4.8) are to
consume a constant fraction (depending on R, σ, β, δ) out of wealth. That is, there exist
0 < µSC , µNSC < 1 such that cSC = µSC ·w and cNSC = µNSC ·w. As the decision maker is
less patient in the absence of self-control (β < 1), she over-consumes: µNSC > µSC .56 Since
utility is homogeneous of degree one, indirect utilities W (w), V (w) are affine in wealth.
That is, there exist bSC , bNSC > 0 such that W (w) = bSC ·w and V (w) = bNSC ·w. As bNSC

reflects sub-optimal resolution of the intertemporal problem (based on βδ < δ), we have
bNSC < bSC . Consequently, the (net) benefit of self-control

W (w)− V (w) = (bSC − bNSC) · w

is an increasing affine function in wealth.

As self-control is worthwhile only if its benefits exceed its cost k > 0, optimal self-control
behavior is given by a simple cut-off rule: self-control is exerted if and only if the wealth
stakes exceed the critical value w̄ = k

bSC−bNSC
:

c∗(w) =

µNSC · w w ≤ w̄

µSC · w w > w̄
.

Thus, poor decision makers over-consume (relative to the self-control benchmark enacted
by richer decision makers). As the marginal utility of an additional unit of wealth is higher
when using self-control than when not (b,SC > bNSC), the value function is kinked upwards
at w̄:

V (w) =

bNSC · w w ≤ w̄

bSC · w − k w > w̄
.

55 In this limit case, decisions are made based maximizing discounted values (of consumption streams).
Thus, our discussion of the magnitude effect in the last section is a limiting case of the model presented
here.

56 As may be easily verified by computing the First Order Conditions (FOCs): µSC = δ−γR1−γ

1+δ−γR1−γ <
(βδ)−γR1−γ

1+(βδ)−γR1−γ = µNSC .
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Infinite Horizon: Poverty Traps

Suppose now that the problem is infinitely lived. Depending on her wealth stock w, the
decision maker decides how much to consume in the current period and how much to save.
Her savings R(w− c) become the wealth endowment of the continuation problem faced in
the next period. As the decision maker faces the same problem in every period, we have

U(w) = max{W (w)− k, V (w)} (4.9)

where W,V obey the Bellman Equations

W (w) = max
c∈[0,w]

[(1− δ)cσ + δU(R(w − c))σ]
1
σ (4.10)

and
V (w) = [(1− δ)cσNSC + δU(R(w − cNSC))

σ]
1
σ (4.11)

such that cNSC solves

max
c∈[0,w]

[(1− δ)cσ + βδU(R(w − c))σ]
1
σ .57 (4.12)

Note that multiplying utility from current consumption by (1−δ) in Equations (4.10) and
(4.11) is a convenient normalization in the infinite-horizon context as it ensures that self-
control/commitment utility is measured in units of stationary consumption: U(c̄, c̄, . . . ) =

c̄.58 The term (1− δ) appears in Equation (4.12) as well to ensure that βδ is the Marginal
Rate of Intertemporal Substitution (hence may be interpreted as the rate of time prefer-
ence) in the no-self-control problem.

Under conditions we identify in the Appendix, the solution to the infinite-horizon prob-
lem is simple and mirrors the two-period case discussed above: when the decision maker is
relatively poor, little is at stake financially and she optimally decides to forego self-control.
This leads to over-consumption and under-saving, thus running down her wealth stock
more. In turn, this makes self-control even less attractive in the future and the pattern
repeats. As a consequence, wealth decreases and diminishes asymptotically. The decision
maker is stuck in a poverty trap: Insufficient wealth makes self-control unattractive and
lack of self-control leads to lower wealth (due to over-consumption). On the other hand,
when decision makers are sufficiently wealthy, the stakes are high and self-control is op-

57 That is, in every period t, preferences over consumption ct and continuation problems At+1 given self-
control (ut) and given no self-control (vt) are represented by: ut(ct, At+1) = [(1− δ)cσt + δUt+1(At+1)

σ]
1
σ

and vt(ct, At+1) = [(1− δ)cσt + βδUt+1(At+1)
σ]

1
σ .

58 By slight abuse of notation, we write U(c̄, c̄, . . . ) to denote the utility derived from being committed to
the stationary consumption stream (c̄, c̄, . . . ). More formally, let Ac̄ denote the (degenerate) menu that
commits to current consumption c̄ and continuation problem Ac̄. Then U(Ac̄) = [(1− δ)cσ + δU(Ac̄)

σ]
1
σ ;

thus, U(Ac̄) = c̄ = U(c̄, c̄, . . . ). Since there are no self-control decisions to be made, we have U(c̄, c̄, . . . ) =
V (c̄, c̄, . . . ) = W (c̄, c̄, . . . ).
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timal. In turn, this induces them to save enough to make self-control worthwhile in the
future. As a marginal dollar of wealth is used sub-optimally when not self-controlling, the
value function is kinked upwards at a critical wealth level. That is, there exist some a > 0

and bSC > bNSC > 0 such that

U(w) =

bNSC · w if w < w̄

−a+ bSC · w if w ≥ w̄
(4.13)

for w̄ = a
bSC−bNSC

.
Here, a captures the cumulative cost of exerting self-control in the current and all future

periods (a = k
1−R−1 , cf. Equation (A.3) in the Appendix). For w > w̄, the marginal utility

of wealth, bSC , is equal to that of a standard decision maker without self-control problems.59

The fact that the marginal utility of wealth is lower for poor decision makers (bNSC < bSC)
reflects the fact that they over-consume (under-save) due to a lack of self-control.

While the kink introduces a non-differentiability at w = w̄, U is differentiable every-
where else. Moreover, at w = w̄ the right and left derivatives exist and are given by
bSC and bNSC respectively. As bSC > bNSC , it is clear that R(w − c) = w̄ for no solution
c to Problems (4.10) and (4.12). Intuitively, for every c such that R(w − c) = w̄, the
fact that bSC > bNSC creates a wedge between the marginal utility of a dollar saved,[
−(1− δ)cσ−1 + δU(w̄)σ−1bSCR

]
((1− δ)cσ + δU(w̄)σ), and that of a dollar consumed,[

(1− δ)cσ−1 − δU(w̄)σ−1bNSCR
]
((1− δ)cσ + δU(w̄)σ). As at least one of them must be

positive, the decision maker is better off by consuming slightly more or less. In partic-
ular, this implies that any optimal solution c∗ to Problems (4.10) and (4.12) satisfies a
First-Order Condition (FOC). However, potentially, we may need to consider two candi-
date FOCs; one for R(w − c) > w̄ and one for R(w − c) < w̄. Thus, for current wealth
levels close to w̄, there are two candidate solutions; one for which the DM saves enough
to reach wealth levels that allow for self-control in the future and one where she saves less
and ends up with future wealth that entails optimally foregoing self-control. On the other
hand, when w is small (w ⪆ 0) or very large (w ≫ w̄), one of the FOCs does not have
a solution. Intuitively speaking, very poor decision makers never save enough to pass w̄
tomorrow while very rich decision makers never consume so much so as to fall below w̄.

To analyze this in more detail, note that the general FOC to Problems (4.10) and (4.12)
is given by

(1− β)cσ−1 = ξU(R(w − c))σ−1U ′(R(w − c))R

where ξ = δ (for Equation (4.10)) or ξ = βδ (for Equation (4.12)). Given Equation (4.13)
for U , this results in the following two candidate FOCs

cσ−1 =
ξ

1− δ
(bNSCR(w − c))σ−1bNSCR where R(w − c) < w̄ (4.14)

59 That is, the solution to the benchmark problem where k = 0 is given by V (w) = bSC · w.
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Figure 4.1: Optimal savings rate for β = 0.1, δ = 0.9, γ = 0.8, k = 0.1 and R = 1.03

and
cσ−1 =

ξ

1− δ
(−a+ bSCR(w − c))σ−1bSCR where R(w − c) > w̄. (4.15)

As the solution to (4.14) entails a future level of wealth in the No-Self-Control region of
U , we denote its solution by using the subscript NSC (and, likewise, the subscript SC for
the solution to (4.15)). Note, however that this refers to the future exertion of self-control.
The solutions depend on the current exertion of self-control only through their dependence
on the discount parameter (ξ = δ given self-control and ξ = βδ given no self-control). To
make this explicit, we denote the candidate solutions to (4.10) and (4.12) by cξ,NSC and
cξ,SC .

Solving Equations (4.14) and (4.15) for c and noting that 1/(σ − 1) = −γ, we obtain

cξ,NSC = µ(ξ, bNSC) · w and cξ,SC = µ(ξ, bSC) ·
[
− a

bSCR
+ w.

]
(4.16)

where, for all 0 < ξ ≤ 1 and all b > 0,

µ(ξ, b) :=
( ξ
1−δ )

−γ(bR)1−γ

1 + ( ξ
1−δ )

−γ(bR)1−γ
(4.17)

denotes the Marginal Propensity to Consume (MPC) depending on discount factor ξ and
marginal utility of (future) wealth b.

As we show in the Appendix, the optimal consumption policy c∗(w) is such that (i) the
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Figure 4.2: Wealth dynamics for β = 0.1, δ = 0.9, γ = 0.8, k = 0.1 and R = 1.03

decision maker exerts self-control if and only if w ≥ w̄ (ii) under self-control, the solution
is given by cδ,SC (i.e. such that R(w − c) > w̄) (iii) under no self-control, the solution is
given by cβδ,NSC (i.e. such that R(w − c) < w̄). That is,

c∗(w) =

µ(βδ, bNSC) · w if w < w̄

µ(δ, bSC) ·
(
− a

bSCR + w
)

if w ≥ w̄
.

The optimal savings rate s∗(w) = 1− c∗(w)
w is given by

s∗(w) =


1− µ(βδ, bNSC) if w < w̄

1− µ(δ, bSC)︸ ︷︷ ︸
savings rate

w/o SC problem

+µ(δ, bSC)
a

bSCR

1

w︸ ︷︷ ︸
excess savings

if w ≥ w̄ .

Note that the savings rate in the benchmark problem (k = 0) is 1
R(δR)

γ = 1− µ(δ, bSC).60

So the need to self-control creates excess savings. As the amount of additional savings is
fixed, the savings rate is decreasing for w ≥ w̄ and asymptotes to the benchmark level as
w → +∞. Figure 4.1 depicts the savings rate for our exemplary parameter combination.

60 As we show in the Appendix, we have bSC = (1− δ)
− γ

1−γ
[
1−R−1(Rδ)γ

] 1
1−γ . Consequently, 1 −

µ(δ, bSC) =
1
R
(δR)γ .
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Figure 4.3: Wealth paths for β = 0.1, δ = 0.9, γ = 0.8, k = 0.1, R = 1.03 and three initial wealth
levels w0

As 1 − µ(δ, bNSC) < 1 − µ(β, bSC) ≤ 1
R for δR ≤ 1,61 the model implies poverty traps

for the poor. Decision makers whose initial wealth is low (w < w̄) run down their wealth
exponentially at rate R(1 − µ(δ, bNSC)) < 1. On the other hand, affluent decision makers
(w ≥ w̄) are not be prone to asymptotically diminishing wealth. If δR < 1, their wealth
converges to the steady state level

wSS =
R− (δR)γ

1− (δR)γ
a

bSCR
.

For our exemplary parameter combination Figure 4.2 illustrates the optimal wealth dynam-
ics w∗

t+1(wt); Figure 4.3 depicts the optimal wealth paths for initial wealth levels below w̄

(blue), above w̄ but below wSS (orange) and above wSS (green).
In steady state, we have

cSS = c∗(wSS) =
k

bSCR

R− (δR)γ

1− (δR)γ
.62

If δR = 1, affluent decision makers keep on accumulating wealth without converging to a
61 See the derivation following Equation (A.8) in the Appendix.
62 Thus, steady state consumption is increasing in the self-control cost k. However, note that, as w̄ =

k

1− 1
R

1
bSC−bNSC

(and bSC , bNSC are independent of k), the initial wealth level required to converge to this
steady state increases as well.
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finite steady state level. However, asymptotically, their wealth grows at a diminishing rate
(i.e. the gross growth rate approaches 1 as w → +∞).
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5 Conclusion

We have shown three simple and intuitive Axioms on dynamic choice behavior in a simple
two-period setting to be equivalent to a decision maker who is strategically Planning to
Self-Control. Planning is optimal to the effect that, for every decision problem (menu),
it maximizes planning-stage utility of the choice it induces, net of a planning cost. Plan-
ning to Self-Control is behaviorally equivalent to model with self-control costs that allows
for more general specifications of the cost function that have not been consider in other
axiomatic models of self-control. Under a particularly simple and intuitive such cost spec-
ification, a fixed cost, self-control is increasing in the stakes of the problem. When applied
to intertemporal problems faced by a present-biased decision maker, this produces a mag-
nitude effect: the empirical finding that reverse their preferences for smaller sooner rewards
vs. larger later ones when both rewards are scaled up. In a simple consumption-savings
problem, increasing self-control means that self-control is exerted only by decision makers
with sufficiently high wealth. The poor forego self-control and over-consume, thus running
down their wealth even more. This results in a poverty trap.
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6 Introduction

At the heart of social choice theory lies Arrow’s preference aggregation problem. Indeed,
it is fair to say that Arrow’s (1951/63) formulation of the problem of collective choice
as one of the aggregation of individual preference orderings into a collective preference
ordering has shaped most of the social choice literature and the way researchers have
approached the problem. However, it is also widely recognized that, ultimately, preferences
are only a representation of choice behavior and that therefore choice functions are the
more fundamental object, at least from a behavioral perspective, see, for example, Wakker
(1989). And in fact, already Arrow recognized that the requirement that a group having
a collective preference is prima facie a strong assumption, and that it would be sufficient
that a group be able to make collective choices. But, famously, he also showed that if
these choices were consistent across menus in the sense of the Weak Axiom of Revealed
Preference (WARP) they could be represented by a collective preference (Arrow, 1959).
Thus, it seemed that the transition to the more fundamental and more general choice-
function framework would not gain any mileage.

But WARP is obviously a strong condition and there is a large body of literature ad-
dressing various relaxations, starting with the seminal work by Gibbard (1969/2014), Sen
(1969) and Mas-Colell and Sonnenschein (1972). Usually, the relaxations studied in the lit-
erature concern the consistency, or rationality, requirements imposed on collective choices,
since the expansion of the range of an aggregator gives hope to escape the impossibility
results by which social choice theory has been plagued. By contrast, the expansion of the
domain of an aggregator (i.e., here, the set of individual preference profiles) seems to ex-
acerbate the aggregation problem. But the interplay between the consistency (rationality)
requirements at the individual and collective level is an intricate matter, and a natural
starting point is to assume the same conditions at the individual and the collective level.
This is what we do below.

The various relaxations of rationality considered in the literature are best described by
their implications on choice behavior. Therefore, the most natural and general framework
to study them is one of the aggregation of choice functions. Assuming the same choice
consistency conditions at the individual and the collective level allows one to study the
problem within the general judgement aggregation model developed by List and Pettit
(2002), Dietrich (2007), Dietrich and List (2007), Nehring and Puppe (2002, 2010) and
Dokow and Holzman (2010), among others. Within this model, a choice function can be
described by specifying, for each menu A and each alternative x ∈ A, if x is choosable from
A or not. This formulation lends itself to a natural independence requirement inspired by
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Arrow’s condition: that the collective decision whether or not x is choosable from menu A
should depend only on the individual views about this issue. This condition is stronger than
Arrow’s original condition which (effectively) imposes independence for pairwise preference
statements. As the latter correspond to choice behavior from binary menus, our stronger
condition is even more systematic and, arguably, more natural.

Overview of Results

Evidently and unsurprisingly, the stronger independence condition cannot help escaping
the Arrow impossibility. Indeed, our first main result shows that even on the domain of
all choice functions that can be rationalized by some acyclic binary relation our choice
independence condition implies dictatorship. This is in contrast to the case of Arrow’s
binary independence condition. The result may thus suggest that the ‘non-impossibility’
results by Gibbard (1969/2014), Sen (1969) and Mas-Colell and Sonnenschein (1972) are
somewhat artificial and hinge on a particular way to formalize independent aggregation.
Of course, this is not to deny the justification of weakening independence as much as
possible in order to obtain possibility results. Our result simply hints at the fact that
a natural and systematic formulation of choice independence already rules out all non-
dictatorial aggregation rules under acyclic binary rationality (and thus a forteriori also
under quasi-transitive rationality).

On the positive side, we show that path-independent choice functions (Plott, 1973) can
be aggregated into a path-independent collective choice function under choice independence
in a non-dictatorial fashion. While all such aggregation rules are oligarchic, they admit a
very natural and simple interpretation in terms of multiple selves: It is well-known that
a choice function is path-independent if and only if can be rationalized in terms of the
union of the maximal elements of a finite collection of linear orderings (Aizerman and
Malishevski, 1981). Interpreting these orderings as representing the multiple selves of
the decision-maker, the choice independent, oligarchic aggregation rules can be simply
described as taking the collection of all individual multiple selves as the multiple ‘selves’
of the group.

We then investigate if further relaxations of the rationality requirements on the choice
functions enable possibility results and we characterize the anonymous aggregation rules
(‘quota rules’) that satisfy a weak additional neutrality condition.

Finally, we show that stronger possibilities emerge by relaxing the general choice in-
dependence condition in a natural way to a condition of independence across menus. In
particular, approval voting satisfies this condition while aggregation based on scoring rules
does not.
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Relation to the Literature

To the best of our knowledge, there is very little literature that explicitly addresses the
aggregation of choice functions. An exception is Shelah (2005) who provides a very gen-
eral impossibility result on the aggregation of singleton-valued choice functions under a
symmetry condition but without any further rationality assumptions. However, this in-
teresting and intricate result is unrelated to our present analysis since we do not assume
single-valuedness, and this assumption is crucial in Shelah (2005).
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7 The Model

Let X be a (possibly infinite) set of alternatives x, y, z ∈ X. Denote by A = 2X\{∅} the
collection of all non-empty decision problems (menus) A ∈ A. A choice function (CF) is a
mapping c : A⇒ X such that for all A ∈ A, c(A) ⊆ A. Note that, in general, this allows
for choice sets c(A) to contain multiple alternatives.63

Let C = {c : c is a CF} be the collection of all choice functions (on X) and n ∈ N, n ≥ 2,
be the number of individuals in a group/society. An aggregation function f : Cn → C maps
every profile of choice functions (c1, . . . , cn) into a social choice function c = f(c1, . . . , cn).
We say that f is consistent on domain ∅ ̸= D ⊆ C if f(Dn) ⊆ D.64 Below, we consider
aggregation on (sub-)domains D obtained by imposing (consistency) conditions on the
choice functions under consideration.

As a minimal restriction, we demand that choice sets be non-empty when choosing from
finite menus.
Finite Non-Emptiness:

|A| <∞ =⇒ c(A) ̸= ∅. (FNE)

We denote by Cfne = {c ∈ C : c satisfies (FNE)} the collection of all choice functions
satisfying finite non-emptiness.

7.1 Rationalizable Choice Functions

Of particular interest in economics are choice functions that are rationalizable as maxi-
mal elements of some relation(s) R ⊆ X × X. For any such R, call P its asymmetric
component (that is xPy ⇐⇒ (xRy&¬yRx)) and I its symmetric component (xIy ⇐⇒
(xRy&yRx)). We say that R is:

1. acyclic if P does not contain a cycle;

2. quasi-transitive if P is transitive;

3. a weak order if R is complete and transitive;

4. a linear order if R is an asymmetric weak order.

63 Some authors refer to the general concept as a ‘choice correspondence’ and reserve the name ‘choice
function’ for choice correspondences that contain (at most) a single alternative. In Part II of this Thesis,
this assumption of singleton-valuedness is built into the definition of a choice function.

64 In other words, when studying consistent aggregation functions on D, it is without loss of generality to
restrict the co-domain to D as well. Therefore, for the rest of Part III, we simply refer to D as the domain.
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Note that these properties are ordered from weak to strong. That is, every linear order is
a weak order, every weak order is quasi-transitive and every quasi-transitive R is acyclic.65

The latter is a minimal condition if R is to rationalize a choice function c ∈ Cfne in terms
of maximal elements seeing that max

A
R := {x ∈ A : yPx for no y ∈ A} is non-empty for

all finite A if and only if R is acyclic.
A by now extensive literature on choice theory has characterized notions of rational-

izability in terms of consistency requirements on choice functions. As a widely known
example of such a result, recall that a choice function is rationalized by some weak order
if and only if it satisfies the Weak Axioms of Revealed Preference (WARP). We list some
of the most important and well-known conditions on choice functions here.
Weak Axiom of Revealed Preference (WARP):

if {x, y} ⊆ A ∩B, then x ∈ c(A) =⇒ (y ∈ c(B) =⇒ x ∈ c(B)). (WARP)

Contraction (Sen’s α/Chernoff):

c(A ∪B) ∩A ⊆ c(A). (α)

Expansion (Sen’s β):

c(A ∪B) ∩A ̸= ∅ =⇒ c(A) ⊆ c(A ∪B). (β)

γ-Expansion:
c(A) ∩ c(B) ⊆ c(A ∪B). (γ)

Aizerman-Expansion:

c(A ∪B) ⊆ A =⇒ c(A) ⊆ c(A ∪B). (Aiz)

Path-Independence:
c(A ∪B) = c(c(A) ∪B). (PI)

In general, WARP is equivalent to Contraction and Expansion. An interesting
sub-case arises when c is singleton-valued (i.e., |c(A)| = 1 for all non-empty c(A) ̸= ∅).
In this case, WARP reduces to Contraction. Moreover, Expansion is stronger than
both γ-Expansion and Aizerman-Expansion. We summarize in the following Lemma.
A proof can be found, for example, in Moulin (1985).

Lemma 1. Let c ∈ Cfne.

1. c satisfies (WARP) if and only if it satisfies (α) and (β).
65 As an example of an acyclic relation that is not quasi-transitive, consider R ⊂ {x, y, z} such that
xPyPzIx. On the other hand, zIyIxPy is both acyclic and quasi-transitive (but not a weak/linear
order).
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2. c satisfies (β) only if it satisfies (γ) and (Aiz).

3. If |c(A)| ≤ 1 for all A ∈ A, then c satisfies (α) only if it satisfies (β).

4. c satisfies (PI) if and only if it satisfies (α) and (Aiz).

Based on Moulin (1985), the following Lemma summarizes important results about the
rationalizability of choice functions in the literature.

Lemma 2. Let c ∈ Cfne.

1. If and only if c satisfies (α) it is sub-rationalizable by some linear order R ⊆ X ×X:
max
A

R ⊆ c(A) for all A ∈ A.

2. If and only if c satisfies (α) and (γ) it is rationalizable by some complete and acyclic
R ⊆ X ×X: c(A) = max

A
R for all A ∈ A.

3. If and only if c satisfies (α) and (Aiz) it is pseudo-rationalizable: there exist linear
orders R1, . . . , Rk ⊆ X ×X such that c(A) =

⋃
j=1,...,k

max
A

Rj for all A ∈ A.

4. If and only if c satisfies (α), (γ) and (Aiz) it is rationalizable by some complete
and quasi-transitive R ⊆ X × X: c(A) = max

A
R for all A ∈ A. Moreover, there

exist linear order R1, . . . , Rk such that R may be written as their Pareto relation:
RPar =

⋂
j=1,...,k

Rj ∪ {(x, y) ∈ X ×X : (x, y), (y, x) /∈
⋂

j=1,...,k

Rj}.

5. If and only if c satisfies (WARP) it is rationalizable by some linear order R ⊆ X×X:
c(A) = max

A
R for all A ∈ A.

The above results inform the following definitions:

• Csub := {c ∈ Cfne : c is sub-rationalizable},

• Cacy := {c ∈ Cfne : c is rationalizable by some complete and acyclic R ⊆ X ×X},

• Cpsd := {c ∈ Cfne : c is pseudo-rationalizable},

• CPar := {c ∈ Cfne : c is Pareto-rationalizable},

• Cwo := {c ∈ Cfne : c is rationalizable by some weak order R ⊆ X ×X},

• Clo := {c ∈ Cfne : c is rationalizable by some linear order R ⊆ X ×X}.

Note that Clo ⊆ Cwo ⊆ CPar ⊆ Cpsd, Cacy ⊆ Csub ⊆ Cfne.
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7.2 Social Choice as Aggregation of x ∈ c(A) Judgments

When aggregating a profile of choice functions into a social choice function, society is faced,
for every menu A ∈ A, |A| ≥ 2 and every alternative x ∈ A, with the issue of whether it
should (collectively) choose x from A.66 More generally, both at the individual and at the
collective level, a choice function may be thought of as a set of judgments on an agenda
consisting of all such issues x ∈ c(A).

Imposing consistency conditions on choice functions then translates into restrictions on
what sets of judgments are considered feasible. For example, imposing (α) is inconsistent
with simultaneously judging x ∈ c(A) to be true and x ∈ c(B) to be false when x ∈ B ⊂
A. Thus, consistency conditions on choice functions translate into logical dependencies
(entailments) between issues. This approach allows us to employ the machinery developed
in Nehring and Puppe (2002, 2010) to study what domains D entail dictatorial aggregation
rules and when and what kind of non-dictatorial aggregation is possible.

Moreover, it suggests a natural notion of independence. Say that an aggregation rule
is independent if the collective decision on whether some x ∈ A is chosen from A may
only depend on individual judgments on this issue alone. In other words, if two profiles
of individual choice functions agree in terms of individual judgments on x ∈ ci(A), i =
1, . . . , n, then the collective decision on whether x ∈ c(A) must be the same for both
profiles.

Independence: Consider any A ∈ A and x ∈ A. Let c = f(c1, . . . , cn) and c′ =

f(c′1, . . . , c
′
n). If, for all i = 1, . . . , n, x ∈ ci(A) ⇐⇒ x ∈ c′i(A), then x ∈ c(A) ⇐⇒ x ∈

c′(A).

In the presence of independence, it is natural to demand that aggregation happen in a
monotone fashion. That is to say that increased support among all individuals in favor of
some choice x ∈ c(A) should lead to it being chosen socially if it was before. Vice versa if
more individuals reject x ∈ c(A), x must not be chosen socially if it wasn’t before. Thus,
we strengthen independence to the following condition.

Monotone Independence: Consider any A ∈ A and x ∈ A. Let c = f(c1, . . . , cn)

and c′ = f(c′1, . . . , c
′
n). (i) If, for all i = 1, . . . , n, x ∈ ci(A) =⇒ x ∈ c′i(A), then

x ∈ c(A) =⇒ x ∈ c′(A); (ii) if for all i = 1, . . . , n, x /∈ ci(A) =⇒ x /∈ c′i(A), then
x /∈ c(A) =⇒ x /∈ c′(A).

As an example of a monotone and independent aggregation rule consider the social choice
function resulting from majority voting on all issues. That is, we define fmaj : Cn → C such
that, for all A ∈ A, x ∈ fmaj(c1, . . . , cn)(A) := cmaj(A) ⇐⇒ 1

n |{i : x ∈ ci(A)}| ≥ n/2.67

However, as we show below, majority voting is inconsistent in general, even when only
imposing (FNE).

66 If A is a singleton, say A = {x}, the issue is trivial seeing that x must be chosen given (FNE).
67 Note that, given this definition, we break ties in favor of inclusion of alternatives in the collective choice
set.
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7.2 Social Choice as Aggregation of x ∈ c(A) Judgments

Our notion of independence is stronger than that of Arrow. As the latter is an assumption
on aggregation of weak orders, in order to compare the two, we must restrict attention to
the domain D = Cwo. While Arrow-Independence imposes the independence concept for
pairs of issues (x ∈ c({x, y}), y ∈ c({x, y}))68, our notion of independence applies for each
issue individually. Thus, it is stronger than Arrow Independence.

In analogy to Arrow’s weak Pareto condition, we impose a weak unanimity assumption.
Unanimity: For all c ∈ Cn, f(c, . . . , c) = c.

While unanimity only requires that if all individual choice functions are the same, this
be the collective choice function. In the presence of monotone independence it is equivalent
to the stronger notion of issue-wise unanimity. That is, for all A ∈ A and all x ∈ A, if
x ∈ ci(A) for all i = 1, . . . , n, then x ∈ c(A) = f(c1, . . . , cn)(A).

We call an aggregation function satisfying unanimity and monotone independence an
Arrowian aggregator.

68 Arrow Independence requires that for any two profiles of weak orders R, . . . , Rn and R′
1, . . . , R

′
n giving rise

to the social orders R and R′ respectively, (i) if, for all i = 1, . . . , n, xPiy ⇐⇒ xP ′
iy, then xPy ⇐⇒ xP ′y;

(ii) if, for all i = 1, . . . , n, xIiy ⇐⇒ xI ′iy, then xIy ⇐⇒ xI ′y. Note that on Cwo, for all x, y ∈ X,
xPy ⇐⇒ (x ∈ c({x, y})&y /∈ c({x, y})) and xIy ⇐⇒ (x ∈ c({x, y})&y ∈ c({x, y}))
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8 (Im)Possibility of Arrowian Aggregation

Here we address the question of whether consistent monotone independent aggregation is
possible on the different domains D ⊆ Cfne defined above. Note that as the domain D is
restricted further, aggregation needs to be consistent for a smaller set of individual choice
functions (as more requirements are imposed) but, at the same time, needs to satisfy more
stringent consistency conditions at the collective level.

From a majoritarian perspective, the space of possibilities is limited from the outset by
the observation that (x ∈ c(A)-wise) majority voting is inconsistent on D = Cfne (i.e. even
without imposing further restrictions on choice functions) except for the special cases of
three alternatives and two or four individuals.

Proposition 1. Let |X| ≥ 3. fmaj is consistent on D = Cfne if and only if |X| = 3 and
n ∈ {2, 4}.

For example, consider the case of n = 3 individuals and let A = {x, y, z} ⊆ X. Consider
a profile of choice functions c1, c2, c3 ∈ Cfne such that c1(A) = {a}, c2(A) = {b} and
c3(A) = {c}. Note that fmaj(A) = ∅. Thus, cmaj = fmaj(c1, c2, c3) does not satisfy (FNE),
i.e., fmaj(c1, c2, c3) /∈ Cfne.

When choice functions are rationalizable by some acyclic relation (satisfy contraction
property (α) and extension property (γ)) all consistent Arrowian aggregators are necessar-
ily dictatorial. The same holds when more (stringent) consistency conditions are imposed
(quasi-transitive, weak or linear order rationalizable choice functions).

Theorem 3. Every Arrowian aggregation rule f is consistent on D = Cacy if and only if it
is a dictatorship; that is there is some j ∈ {1, . . . , n} such that for all (c1, . . . , cn) ∈ Cn

acy:

f(c1, . . . , cn) = cj .

The same holds for D = CPar, Cwo, Clo.

On the other hand, when considering extension property (Aiz) instead of (γ) alongside
(α), i.e. for path-independent choice functions pseudo-rationalizable by multiple linear
orders (’selves’), possibilities emerge. While all consistent Arrowian aggregators are oli-
garchic, this allows for unanimity rule: for all A ∈ A and x ∈ A, x /∈ c(A) if and only if x
is unanimously rejected by all individuals.
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Theorem 4. Every Arrowian aggregation rule f is consistent on D = Cpsd if and only if
it is an oligarchic choice rule; that is, there exists some ∅ ≠M ⊆ {1, . . . , n} such that, for
all (c1, . . . , cn) ∈ Cn

psd and all A ∈ A:

f(c1, . . . , cn)(A) =
⋃
i∈M

ci(A).

Note that if all ci are pseudo-rationalized by Ri
1, . . . , R

i
ki

, the collection of all ‘selves’ in
society

⋃
i=1,...,n{Ri

1, . . . , R
i
ki
} allows one to define a pseudo-rationalizable collective choice

function in the obvious fashion. The contribution of Theorem 4 is to show that this choice
function can be enacted through Arrowian issue-wise aggregation; namely by letting M =

{1, . . . , n} (which yields the unanimity rule). More generally, for every M ⊆ {1, . . . , n},
the corresponding oligarchic rule yields the collective choice function pseudo-rationalized
by
⋃

i∈M{Ri
1, . . . , R

i
ki
}.

Two important remarks are in order. First, the unanimity rule (more generally, every
oligarchic rule) is Arrowian for all domains D we consider here. Yet as Theorem 3 shows,
it is not consistent on D = Cacy, CPar, Cwo, Clo. This is due to the fact that collective choice
derived from the unanimity rule violates property (γ). For example, consider X = {a, b, c}
and two individuals a ≻1 b ≻1 c and c ≻2 b ≻2 a. Unanimity rule yields c({a, b}) = {a, b}
and c({b, c}) = {b, c} hence b ∈ c({a, b}) ∩ c({b, c}). At the same time, b /∈ {a, c} =

c({a, b, c}), in violation of property (γ).69

Second, the Pareto rule, according to which all alternatives are choosable from a given
menu that are not strongly Pareto-dominated by some other alternative in it, is known to
yield acyclic collective choices on D = Cacy.70 However, it is not an Arrowian procedure in
our model as it violates independence. To see this, reconsider our example for which a ≻1

b ≻1 c and c ≻2 b ≻2 a. As no alternative is strongly Pareto-dominated in {a, b, c}, we have
b ∈ {a, b, c} = c({a, b, c}), although b /∈ c1({a, b, c}) and b /∈ c2({a, b, c}).71 Now suppose
the preference of the second individual changes so that c ≻′

2 a ≻′
2 b. As a strongly Pareto-

dominates b we have b /∈ c({a, b, c}). However, the second individual has not actually
changed her choice behavior for b in the menu {a, b, c} seeing that still b /∈ c′2({a, b, c}).
Indeed, the second individual has not changed her overall choice behavior from {a, b, c} as
{c} = c′2({a, b, c}) = c2({a, b, c}). Thus, the Pareto rule even violates the weaker notion
of ‘independence across menus’ which we introduce below and which, as we argue below,
best captures Arrow’s original notion in our framework. This shows that, while possibilities
again emerge in the form of oligarchic rules, these produce choice functions that are pseudo-
rationalizable but not guaranteed to be binary (rationalizable by some acyclic relation) in
general. On the other hand, the Pareto rule and other ‘oligarchic’ rules in the sense of

69 Similar arguments show that collective choices under any oligarchic rule violate (γ).
70 If individual preferences are quasi-transitive, the Pareto rule yields quasi-transitive social choices (that
is, it is consistent on CPar). If individual preferences are (weak or linear) orders, choosing all alternatives
that are not weakly dominated, yields acyclic collective choices as well.

71 In particular, the Pareto rule is not a unanimity rule in our more general choice function framework.
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Gibbard (1969/2014) are not independent in our choice function setting.72 These findings
cast doubt on their status in the literature as representing ‘possibilities’ for independent
aggregation (if one settles for acyclic social preferences).

We now restrict attention to finite X and consider the possibility of non-oligarchic rules
(in which no single individual posses veto power) when dropping the extension proper-
ties (γ)/(Aiz) (while keeping/dropping (α)). We focus on rules that treat all individuals
equally. Thus, the following condition is natural.
Anonymity: Let π : {1, . . . , n} → {1, . . . , n} be a permutation (of individuals). Then
f(c1, . . . , cn) = f(cπ(1), . . . , cπ(n)).

Anonymity requires that ’voter’s names do not matter’ in the sense that the collective
choice rule be invariant to permuting (re-labeling) all individuals. That is, as mentioned
above, it demands that all individuals be treated equally by the collective choice rule.
Menu-level Neutrality: Consider any A ∈ A such that A = {x1, . . . , xm} and any
permutation π : {1, . . . ,m} → {1, . . . ,m}. Let c = f(c1, . . . , cn) and c′ = f(c′1, . . . , c

′
n).

If, for all i = 1, . . . , n and all j = 1, . . . ,m, xj ∈ ci(A) ⇐⇒ xπ(j) ∈ c′i(A), then for all
j = 1, . . . ,m, xj ∈ c(A) ⇐⇒ xπ(j) ∈ c′(A).

Thus, menu-level neutrality requires that all alternatives in any given menu are treated
equal (‘neutral’) by the aggregation rule in the sense that permuting them results in choos-
ing exactly the permuted originally chosen alternatives at the collective level. In other
words, collective choice from any menu is invariant under a re-labeling of the alternatives.
Taken together with monotone independence, this assumption implies that, at a given
menu A ∈ A, the rule determining whether any x ∈ A be chosen collectively is the same
for all alternatives in A.

Taken together, unanimity, monotone independence and anonymity require that aggre-
gation, at any issue x ∈ c(A), happens by setting an acceptance quota 0 < qx∈c(A) < 1 such
that x ∈ c(A) ⇐⇒ 1

n |{i ∈ {1, . . . , n} : x ∈ ci(A)}| ≥ qx∈c(A). Whenever some coalition
W ⊆ {1, . . . , n} of individuals exceeds the quota qx∈c(A), we say that W is a winning coali-
tion (for x ∈ c(A)). Given menu-level neutrality these quotas must be ’effectively equal’
for all alternatives in some given menu in the sense that they imply the same winning
coalitions for all x ∈ A.73

Theorem 5. Every Arrowian, menu-level neutral and anonymous aggregation rule f is
consistent on Cfne if and only if it is a quota-rule such that, for all A ∈ A with |A| ≥ 2,
the quotas for collectively choosing any x from A imply the same structure of winning
coalitions and are such that (i) if n ≤ |A|, then 0 < qx∈c(A) ≤ 1/n; (ii) if n > |A|, then
0 < qx∈c(A) ≤ 1

|A|(1−
r
n) +

1
n1(r ̸= 0) where r = n mod |A|.

Theorem 5 implies that (maximal) consistent acceptance quotas at menu A approach
1/|A| for large societies (as n/|A| grows large) and need to decrease in the size of A.

72 In particular, this shows that ‘oligarchies’ in the sense of Gibbard (1969/2014) are not oligarchic in our
framework.

73 Note that - due to integer effects - a whole interval of quotas can induce the same set of winning coalitions.
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For menus |A| ≥ n, consistent quota rules reduce to unanimity rule on A for which each
individual can veto not choosing any x ∈ A collectively (i.e. rejecting x ∈ c(A) requires
unanimous consent).

When also imposing contraction consistency (α), every winning coalition at some menu
A needs to be winning at all sub-menus B ⊆ A to ensure (α) holds at the collective level.
This implies that consistent quotas need to ’effectively’74 decrease when moving to sub-
menus. As all menus are sub-menus of the universal set, maximal consistent quotas are
thus determined by |X|. Indeed, Theorem 5 implies that if qx∈c(A) = q̄ for all A ∈ A and
x ∈ A, then 0 < q̄ ≤ 1/|X| for large societies (as n→ ∞).

74 That is, bar of any integer effects.
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9 Relaxing Independence

The independence assumption imposed above is strong. It requires not only that aggrega-
tion is independent across different menus but also that it is independent across alternatives
within any given menu. While we consider the former a natural condition of informational
parsimony, the latter may be unnecessarily strong.75 Thus, we consider the following
weakening of independence.
Independence Across Menus: Consider any A ∈ A. Let c = f(c1, . . . , cn) and c′ =

f(c′1, . . . , c
′
n). If, for all i = 1, . . . , n, ci(A) = c′i(A), then c(A) = c′(A).

We would argue that independence across menus exactly captures Arrow’s original condi-
tion in our generalized framework. Indeed, on Cwo, independence across menus is equivalent
to it. While Arrow’s notion is often interpreted as stating that collective choices are not to
change when removing (or adding) irrelevant alternatives from (to) a given menu, it simply
states that collective choice from some given menu are not to change unless preferences
over the alternatives in the menu change.76 The demand that removing (adding) irrelevant
alternatives does not change the collective choice is a condition on choice across menus. In
the Arrow framework it is in fact guaranteed by WARP which Arrow implicitly imposes
on collective choices by restricting the analysis to rationalizable social choice functions.

As an example of an aggregation rule that satisfies independence across menus but not
our fully-fledged notion of independence consider ’approval voting’ which, for every menu
A, collectively chooses all alternatives with maximal approval by individuals. That is,
fAV(c1, . . . , cn)(A) = cAV(A) := argmaxx∈A |{i ∈ {1, . . . , n} : x ∈ ci(A)}|. On the other
hand, Borda rule (more generally, all scoring rules) does not satisfy independence across
menus seeing that calculating (Borda) scores at some menu A ∈ A relies on positional
information to be revealed by individual choices from any pair of alternatives x, y ∈ A.77

75 Note that, if collective choices are independent across menus, determining the collective choice set for
some menu A only involves eliciting individual choice sets for A.

76 Arrow himself defends his condition by reference to this interpretation (Arrow, 1963, p.26): “For example,
suppose that an election system has been devised whereby each individual lists all the candidates in order of
his preference and then, by a preassigned procedure, the winning candidate is derived from these lists. [. . . ]
Suppose that an election is held [. . . ] and then one of the candidates dies. Surely the social choice should
be made taking each of the individual’s preference lists, blotting out completely the dead candidate’s name,
and considering only the orderings of the remaining names in going through the procedure of determining
the winner.” However, he seems to neglect that fact that, when one of the candidates dies, the menu of
candidates to be chosen from is not the same as before. Thus, the condition that choice from some given
menu does not depend on alternatives not in it does not imply that choices cannot change when removing
(adding) irrelevant alternatives from (to) it (at least, not in the absence of WARP).

77 Note that on D = Clo, eliciting choices from all pairs of alternatives in some given A ∈ A reveals the
individual’s underlying linear order when restricted to A.
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Proposition 2. fAV satisfies Independence Across Menus. It is consistent on D = Cfne

but inconsistent on D = Csub, Cacy, Cpsd, CPar, Cwo, Clo.

Proposition 2 states that approval voting is not (sub-/pseudo-)rationalizable in any of
the ways considered here. To see this, note that it fails to satisfy the contraction property
(α) even if all individual choice functions do. Indeed, let {x, y, z} = A ⊆ X and suppose
that c1, c2, c3 are rationalized by the linear orders x ≻1 y ≻1 z, y ≻2 x ≻2 z and z ≻3

y ≻3 x respectively. Thus, c1(A) = x, c2(A) = y, c3(A) = z and c1({x, y}) = x but
c2({x, y}) = c3({x, y}) = y. Consequently, x ∈ A = cAV(A) but x /∈ {y} = cAV({x, y})
failing (α).
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Consistent Rights on Property Spaces∗
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10 Introduction

In many aggregation problems, subgroups of agents have the right to predetermine certain
properties of the aggregate. To respect rights, an aggregation rule must allow subgroups
to enforce a property to which they hold a right if all subgroup members agree on it.
In standard preference aggregation, for example, allowing individuals to fix those parts
of the social ordering that falls within their private spheres corresponds to the social
choice theoretic conception of liberal rights (Sen, 1970; Gibbard, 1974). More generally,
when groups form collective beliefs or desires through aggregating judgments on a set of
propositions, they may leave certain judgments to subgroups with vested interests or expert
knowledge (Dietrich and List, 2008). Not least, in committees, delegations from special
interest groups can often dismiss alternatives which fall short of some minimal criteria.

Yet, at least since Sen’s (1970) famous ‘liberal paradox’ (Example 1 below), it is well
understood that the rights given to different subgroups can be (jointly) inconsistent to the
effect that no appealing aggregation function grants all of them at the same time. Going
beyond impossibility results, we characterize when rights to properties are (in)consistent
given that properties correspond to subsets of alternatives. Such property spaces (Nehring
and Puppe, 2007, 2010, henceforth N&P) arise for a wide range of interesting applications.
As in the examples above, properties may correspond to preference statements over fixed
pairs of alternatives, to judgments on propositions (and their negations) or may be natu-
rally suggested by the structure of alternatives. Our results generalize N&P as we show
that their ‘intersection property’ not only characterizes monotone independent aggregators
(equivalent to a particular type of rights) but serves to characterize consistency of rights
more generally.

Before we preview our main results and discuss the relation to the existing literature on
rights, we illustrate the problem of inconsistency in three examples.

Motivating Examples

Example 1. The Sen Liberal Paradox. Ann and Bob are owners of neighboring houses
which can be painted either white (w) or yellow (y). Collectively, they are faced with four
possible states: (w,w), (w, y), (y, y) and (y, w) – where first entries refer to the color of
Ann’s house. Suppose Ann and Bob have linear preference orders78 over these states.

Liberals subscribe to the view that there be a protected private sphere within which
individuals are free from interference. Arguably, if a collective ranking ≻ is to be found

78 That is, complete, transitive and antisymmetric (preference) relations.
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Part IV: Consistent Rights on Property Spaces

(y, y) ≻ (w, y) (w, y) ≻ (w,w) (w,w) ≻ (y, y)

Ann ✓ × ✓

Bob × ✓ ✓

✓ ✓ ✓

Table 10.1: The Sen liberal paradox

on liberal grounds, Ann and Bob should be left alone to determine it over every pair of
states which differ only with respect to their own house color. To formulate a minimal
requirement, we may demand that they be free to decide ≻ over at least one such pair
of states each. However, even in such minimal form, individual rights conflict with the
equally natural requirement that ≻ respect unanimous preference statements (the Pareto
condition; a right to society as a whole).

Indeed, suppose both Ann and Bob prefer their own house to be colorful (yellow walls),
the other’s not (white walls). When in conflict, their preference for a neutral-colored neigh-
borhood prevails. That is, (y, w) ≻Ann (w,w) ≻Ann (y, y) ≻Ann (w, y) and (w, y) ≻Bob

(w,w) ≻Bob (y, y) ≻Bob (y, w). Thus, by unanimous agreement, (w,w) ≻ (y, y). By min-
imal liberal rights, (y, y) ≻Ann (w, y) =⇒ (y, y) ≻ (w, y) and (w, y) ≻Bob (w,w) =⇒
(w, y) ≻ (w,w). Consequently, every minimally liberal and Paretian ≻ is cyclic. The
‘liberal paradox’ due to Sen (1970) is the fact that such cycles occur for every minimal as-
signment of rights if individual preferences are unrestricted.79 For the present case, Table
10.1 visualizes Ann’s (Bob’s) (liberal) right by a solid (dashed) box and depicts the Pareto
condition as a right held jointly by Ann and Bob (dotted boxes).

Note that our presentation departs from the orthodox view of the paradox as a funda-
mental incompatibility of Liberalism and Welfarism (in its arguably weakest form, Pare-
tianism). Rather, we suggest to consider it in terms of an inconsistency of individual and
collective rights. ■

Example 2. The Gibbard Liberal Paradox. Reconsider Example 1. If we drop
minimality, individual rights are in fact internally inconsistent (even in the absence of
the Pareto condition). To see this, suppose now that Bob is conformist to the effect
that he always wants to match the color of his house to that of Ann’s. Ann, on the
other hand, is non-conformist. By principle, she prefers to paint her house in a different
color than Bob’s. Under full liberal rights, (y, w) ≻Ann (w,w) and (w, y) ≻Ann (y, y)

imply that (y, w) ≻ (w,w) and (w, y) ≻ (y, y). At the same time, (w,w) ≻ (w, y) and
(y, y) ≻ (y, w), seeing that (w,w) ≻Bob (w, y) and (y, y) ≻Bob (y, w). Combining, we have
(y, y) ≻ (y, w) ≻ (w,w) ≻ (w, y) ≻ (y, y). Thus, no acyclic ≻ can respect individual liberal

79 See also Corollary 1 below.
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sales experience techn. expertise comm. skills

HR ✓ ✓ × a

Sales ✓ × ✓ b

R&D × ✓ ✓ c

✓ ✓ ✓

Table 10.2: An inconsistent system of subcommittee rights

rights alone. The fact that, in general, such cycles cannot be avoided under full individual
liberties for two agents (or more) is the ‘Gibbard (liberal) paradox’ (1974).80 ■

Example 3. Departmental Rights in Hiring Committees. A company has to fill a
job opening in Technical Sales by choosing one out of three candidates (a, b, c). Candidates
differ with respect to their differential possession of three relevant qualifications: sales
experience (candidates a and b), technical expertise (a and c) and communication skills (b
and c). Each candidate uniquely corresponds to a set of qualifications (rows of Table 10.2).

Suppose the hiring committee is made up of members from Human Resources (HR),
the Sales Department (Sales) and from Research and Development (R&D).81 To each
department, two qualifications are of particular interest. That is, conversely, for every
qualification, there is a subcommittee of two groups with vested interests, say {HR∪Sales}
for sales experience (solid boxes in Table 10.2), {HR∪R&D} for technical expertise (dashed
boxes) and {Sales ∪R&D} for communication skills (dotted boxes).

If every member is to cast a vote for one candidate, is it possible to always select an
applicant while granting said subcommittees the right to insist on the respective qualifi-
cations? Suppose individual votes are homogeneous within departments and as given by
the rows of Table 10.2. That is, HR collectively vote for candidate a, Sales for b and R&D
for c. Then the rights under consideration imply that the selected candidate possess all
three qualifications. As such a candidate does not exist, these rights are inconsistent. In
contrast, no such inconsistent combination of qualifications is implied if some qualification
can only be insisted upon by the whole committee. In other words, if we change the above
system of rights to the effect that, for one of the qualifications, we only impose an ordinary
unanimity condition, then rights are consistent. ■

80 See also Proposition 3 below.
81 We assume that all committee members are affiliated to one and only one department.
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Overview of Results

What is the common feature that renders rights (in)consistent in the examples above?
We show that consistent rights can be characterized in terms of a simple and well-known
‘intersection property’ when analyzed in the framework of (abstract) aggregation on prop-
erty spaces developed by N&P. On property spaces, alternatives can be distinguished by
means of (binary) properties. Due to restrictions imposed by logical or physical feasibility,
properties are interdependent. In the preference aggregation setting of Examples 1 and
2 – where the set of alternatives is the set of linear orders, and properties correspond to
pairwise preference statements – transitivity implies logical restrictions on properties. In
the context of voting on candidates in Example 3 – where properties are qualifications –
the availability of applicants puts physical constraints on their joint feasibility.

We show that a system of rights to properties is consistent if and only if every collection
of groups holding rights over a minimally inconsistent (i.e., critical) family of properties has
at least one common member (Intersection Property over Critical Families, IPC). A family
is inconsistent if there is no alternative that possesses all properties in it. It is minimally so
if all proper subfamilies are consistent. In Example 1, the family {(y, y) ≻ (w, y), (w, y) ≻
(w,w), (w,w) ≻ (y, y)} is critical.82 Rights are inconsistent as the groups {Ann}, {Bob}
and {Ann,Bob} fail to have a common member.83 Likewise, in Example 3, sales experience,
technical expertise and communicative skills make for a critical combination of properties,
while no committee member belongs to all of the corresponding rights holding groups
simultaneously: (HR ∪ Sales) ∩ (HR ∪R&D) ∩ (Sales ∪R&D) = ∅.

We study when rights allow for a particularly natural way of aggregation that is mono-
tone within and independent across properties (voting by properties). We prove that the
characterizing condition of non-empty intersection continues to hold here under a suitably
generalized concept of criticality (Intersection Property over Almost Critical Collections,
IPAC). We derive tractable characterizations for important classes of property spaces devel-
oped in N&P, such as totally blocked spaces (trivial rights) and median spaces (independent
rights). On semi-blocked spaces (see Nehring, 2006a), which include partial order aggrega-
tion and classification problems, every voter can be granted a minimal participation right
if and only if every issue is decided independently via a unanimity rule.

Our work extends a fundamental result from N&P. They characterize monotone indepen-
dent aggregation as voting by properties induced by some ‘structure of winning coalitions’
that satisfies IPC. Thus, expressed in terms of rights, a ‘structure of winning coalitions’ is a
rights system which is exhaustive (i.e., maximally specified) to the extent that it is equiva-
lent to a monotone independent aggregation procedure respecting it. Yet most of the rights
systems one wishes to study are distinctly non-exhaustive (consider Example 1-3 above or

82 It is inconsistent by transitivity. Every proper subset can be completed to a linear order, i.e., is consistent.
83 Of course, the singletons {Ann} and {Bob} have empty intersection by themselves. However, the corre-
sponding properties do not constitute a critical family.
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any of the Examples below). Therefore, our results provide a crucial generalization. First,
the consideration of non-exhaustive rights facilitates an analysis of rights sui generis. Sec-
ond, unlike the case of exhaustive ‘structures of winning coalitions’, non-exhaustive rights
engender distinct characterizations of when rights are consistent with some aggregation
function (IPC, Theorem 6) and when they allow to be respected in monotone independent
aggregation (IPAC, Theorem 7).

Relation to the Literature on Rights

Initiating the analysis of rights in economics, Sen (1970) adopted a social choice theoretic
formulation of rights to pairwise (collective) preference statements. Drawing on this model,
a large part of the early literature analyzed the robustness of the liberal paradox(es) to
a weakening of rights (see, e.g., Gibbard, 1974; Blau, 1975; Kelly, 1976) and the Pareto
condition (Sen, 1976; Coughlin, 1986) as well as to domain restrictions (see, e.g., Blau,
1975; Fine, 1975). More recently, Sen’s paradox has been generalized to other settings. In
the emerging field of judgment aggregation, Dietrich and List (2008) show that minimal
group rights are incompatible with a unanimity condition when propositions are sufficiently
logically connected.84 Herzberg (2017) proves a version for probabilistic opinion pooling. It
is interesting to note that, while Sen’s paradox has traditionally been interpreted in terms of
a fundamental incompatibility of liberalism (rights) and welfarism (the Pareto principle),
our conceptualization allows to consider the Pareto principle – or, more generally, the
unanimity condition – as a right held by society as a whole. Thus, Sen’s paradox can also
be understood as revealing a conflict between individual and collective rights.

On the other hand, the social choice theoretic formulation has met with conceptual op-
position from several authors who have pointed out that the intuitive content of a (liberal)
right is not to make individual rankings decisive for social preference. But for rights hold-
ers to have a strategy at their disposal which allows them to restrict collective choice to a
subset of alternatives (see, e.g., Nozick, 1974; Bernholz, 1974; Gärdenfors, 1981; Sugden,
1985; Gaertner et al., 1992).85 This alternative view has converged to analyzing rights
in game forms86 (see, e.g., Deb, 1994, 2004; Deb et al., 1997; Peleg, 1998; Fleurbaey and
Van Hees, 2000; Boros et al., 2010). An important question in this literature is whether
a system of rights is representable to the effect that the effectivity function87 induced by
some game form coincides with it.

While, to our best knowledge, contributions from both the social choice theoretic liter-
ature on rights and from judgment aggregation are limited to (im)possibility results, we
provide a general characterization. As compared to the game form literature on rights –

84 See Corollary 2 below.
85 For example, following this line of argument, the right to one’s own house color consists in the fact that
one can go about painting it in every color one sees fit; thereby restricting the set of social states that can
ensue. See also the continuation of Example 2 below.

86 A game form is a game for which preferences are left unspecified.
87 On effectivity functions, see also Moulin (1983); Peleg (2002).
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where such results exist (see, e.g., Peleg, 1998) – introducing a property structure on the
set of alternatives provides for an intuitive characterization in terms of (i) semantic inter-
dependencies between the objects of rights and (ii) combinatorial characteristics of the
corresponding rights subjects. Seeing that we (extensionally) define properties as subsets
of alternatives, our model shares the basic intuition of this literature. At the same time,
it differs in two respects. First, rights are conjunctive in our model. When individuals are
part of several rights holding groups, they can exercise these rights simultaneously unless
this implies enforcing an inconsistent combination of properties at the individual level. In
particular, if the same group has rights to two properties, it can enforce their conjunction
unless this is infeasible.88 Second, our notion of representability (i.e., consistency) of rights
differs. On the one hand, it is weaker to the effect that we study whether there is some
game form that implements at least the considered rights (and potentially more). On the
other hand, we consider representation by the restricted class of voting game forms. We
show in Appendix C.1 that, given our notion of weak and conjunctive representation, this
is without loss of generality.

The rest of Part IV is structured as follows. In Section 11, we introduce property spaces
and define rights to properties. Section 12 presents our characterization of consistent rights.
In Section 13, we characterize when rights are consistent with monotone independent
aggregation (voting by properties). Section 14 concludes. Unless proofs are short and
insightful, they are relegated to the Appendix.

88 Undoubtedly, there are important rights which are non-conjunctive. For example, individuals have both
the right to ride a bike and talk on a cell phone. However, there is no right to do both at the same time.
Indeed, there is an obligation not to do it.
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11 Rights on Property Spaces

Let X be some finite set of (abstract) objects, |X| > 2, and let N = {1, . . . , n} be a group
of n ≥ 2 individuals. We refer to every x ∈ X as an alternative (or outcome) and to every
i ∈ N as a voter. If for every i ∈ N , xi ∈ X, we say that x = (x1, . . . , xn) is a profile (of
votes). Thus, every i ∈ N votes for exactly one alternative. An aggregation function is a
mapping f : Xn → X. It maps each profile (x1, . . . , xn) ∈ Xn to some feasible (collective)
alternative f(x1, . . . , xn) ∈ X.

11.1 Property Spaces

To turn the set of alternatives into a property space, we endow X with a property structure
P.

Property Space. We say that the ordered pair (X,P) is a property space if and only
if for all P ∈ P ⊆ 2X and for all y, z ∈ X, y ̸= z:

P ̸= ∅, (non-triviality)

P c := X\P ∈ P, (negation-closedness)

∃Q ∈ P : z ∈ Q, y /∈ Q. (separation)

We refer to all P,Q ∈ P as properties.89

The intuition behind the construction of P is the following: Every property P ∈ P is
identified with the subset of alternatives (note that P ⊆ X) which possess it. P is the
collection of all properties such that (i) every P ∈ P is non-empty, i.e., there is some
alternative that conforms to it. (ii) Every property in P ∈ P comes with a complement
or negation, P c = X\P ∈ P. This ensures that property membership is binary: either
x ∈ X belongs to P or to its complement P c. When P ∈ P, we refer to {P, P c} as a
property-negation pair or an issue. (iii) The property structure is exhaustive to the effect
that any two alternatives are distinguishable by at least one property.

Two comments may clarify the construction. First, properties are extensionally defined
as subsets of alternatives. Thus, the set of alternatives X is endowed with a property
structure. This roundabout way of defining properties in terms of alternatives, instead
of alternatives in terms of properties, makes it possible to consider different property
structures on the same set of underlying alternatives. While a particular property structure

89 To highlight the natural connection of the property space framework with judgment aggregation theory
(see Example 5 below), we depart from N&P’s convention of labeling properties by H ∈ H and use P,Q ∈ P
instead.
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P might be natural on X, it is important to keep in mind that others are possible. Second,
notwithstanding what we just mentioned, the above axioms can be easily seen to imply that
for all x ∈ X : {x} =

⋂
{P ∈ P : x ∈ P}. That is, every alternative is uniquely identified

by the set of its constituent properties. In other words, once a property structure on X

is fixed, we can conveniently think of any x ∈ X as the collection of all the properties it
possesses.90

We call every F ⊆ P a family (of properties) and denote the set of all non-empty
families by F = 2P\{∅}. There is a natural notion of consistency on F. Consider some
family F = {P1, . . . , Pr} ∈ F. We say that F is consistent if and only if some alternative
possesses all properties in F :

⋂
F =

⋂
k=1,...,r Pk ̸= ∅. If and only if

⋂
F = ∅, F is

inconsistent. Clearly, every subfamily of a consistent family is itself consistent. To study
dependencies between properties on (X,P) it is instructive to consider families which are
minimally inconsistent to the effect that removing any property yields a consistent family.
We call such families critical and generically denote them by G ∈ F.

Critical Family. Let G ∈ F. G is critical if and only if
⋂
G = ∅ and for all

P ∈ G :
⋂
(G\{P}) ̸= ∅.

All property-negation pairs {P, P c} ∈ F are critical. We refer to them as the trivial
critical families.

Example 4. Linear Orders and SWFs. Let A be a set. DefineXLin(A) = {>⊆ A×A :>

is a linear order}. For all distinct a, b ∈ A, let Pa>b = {>∈ XLin(A) : a > b} and note that
P c
a>b = X\Pa>b = Pb>a. Denote by PLin(A) the set of all such properties, i.e., PLin(A) =

{Pa>b}a̸=b∈A.
(
XLin(A),PLin(A)

)
defines a property space. The non-trivial critical families

are those produced by a preference cycle. That is, if r ≥ 3 and all a1, . . . , ar ∈ A are
distinct, then {Pa1>a2 , . . . , Par−1>ar , Par>a1} is critical. These are the only non-trivial
critical families. f is an aggregation function on

(
XLin(A),PLin(A)

)
if and only if it is a

social welfare function (SWF). ■

Example 5. Judgment Aggregation. Let L be a set of logical propositions such
that if p ∈ L then ¬p ∈ L, where ¬p means “not p” (i.e., L is closed under logical
negation). An agenda Y ⊆ L is a set of propositions (and their negations) on which
(collective) judgments have to be made. Every A ⊆ Y is referred to as a judgment set.
A is complete if and only if, for all p ∈ Y , p ∈ A or ¬p ∈ A . In standard propositional
logic, consistency of judgment sets can be defined in the usual way. For example, for the
agenda {u,¬u, v,¬v, u→ v,¬(u→ v)}, the judgment set {u, u→ v, v} is consistent, while
{¬u,¬(u→ v)} is inconsistent.91

90 Thus, in the presence of a property structure, individual votes xi ∈ X can also be thought of as votes on
complete and consistent combinations of properties.

91 For a general logic, consistency can be defined in terms of an entailment relation on 2L ×L (cf. Dietrich,
2007). We also assume that the agenda does not contain any tautologies and contradictions, where p ∈ L
is a contradiction if p is inconsistent and a tautology if ¬p is a contradiction.
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Let Y be an agenda and define XY = {A ⊆ Y : A complete and consistent}. For every
p ∈ Y , let Pp = {A ∈ XY : p ∈ A}. Then P c

p = XY \Pp = {A ∈ XY : p /∈ A} = {A ∈ XY :

¬p ∈ A} = P¬p. We define PY = {Pp}p∈Y and note that (XY ,PY ) is a property space. On
(XY ,PY ), every property corresponds to the judgment on some proposition and vice versa.
A family of properties is consistent if and only if the corresponding set of propositions is
consistent. ■

11.2 Rights

Rights System. A rights system is a correspondence R : P ⇒ 2N\{∅}.
For every property P ∈ P, R(P ) collects all (sub)groups92 G ⊆ N that have a right

to it.93 When group G ⊆ N has a right to property P , it can enforce this property on
aggregate. The right is exercised when all members i ∈ G vote for some alternative which
conforms to P (i.e., ∀i ∈ N : xi ∈ P ).94 An aggregation function f : Xn → X respects the
rights system R if and only if for all P ∈ P and all profiles x = (x1, . . . , xn) ∈ Xn:

G ∈ R(P ) =⇒ [G ⊆ {i ∈ N : xi ∈ P} =⇒ f(x) ∈ P ] . (R)

That is, f respects R if and only if it guarantees all properties P which are unanimously
endorsed by some group G with a right to P . For example, requiring that N ∈ R(P )

for all P ∈ P corresponds to a standard issue-wise unanimity condition on f . By (R),
every group G ∈ R(P ) can exercise its right to P irrespective of how agents i ∈ N\G
vote.95 We say that the rights system R is consistent if and only if there is some onto
aggregation function that respects it. Consequently, R is consistent if and only if every
possible scenario of joint rights exercise is compatible with some aggregate alternative.
The scope for such scenarios, however, is limited by the need to vote consistently at the
individual level (for all i ∈ N : xi ∈ X).

We observe some immediate implications of (R). For rights system R, define its
(property-wise) monotone closure R by P 7→ R(P ) = {G ⊆ N : G ⊇ G′ for some G′ ∈
R(P )}. Some f : Xn → X respects R if and only if it respects R. Intuitively, if some
G ⊆ N can force some property, then so can any group that is larger than G. Conse-
quently, it is without loss of generality to simplify notation by restricting attention to

92 Although every G ⊆ N is a subgroup of N , we will also simply refer to it as a group for the rest of Part
IV.

93 We define rights systems as mappings from properties to collections of subgroups for notational conve-
nience. Alternatively, we could model rights by means of correspondences R̂ : 2N\{∅} ⇒ P collecting,
for every group G ⊆ N , the set of properties to which G has a right. Seeing that, for every such R̂,
P 7→ R̂−1(P ) = {G ∈ 2N\{∅} : P ∈ R̂(G)} defines a rights system, our formulation is no less general.

94 One might want to object that, in many contexts, a right to group G ⊆ N refers to its ability to enforce a
property under less stringent internal support, e.g., by simple group majority. Our formulation is without
loss of generality in this regard, as such demands can be reformulated as rights to subgroups of G, e.g.,
rights to all majority subgroups of G.

95 Note the familiarity with the concept of (α-)effectivity in game forms. We elaborate in Appendix C.1.
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rights systems which are minimally specified in terms of superset inclusion. Second, note
that if R grants G a right to P , there is nothing in (R) which excludes the possibility that
an aggregation rule f respecting R effectively grants this right to a proper subgroup of
G. For example, declaring any i ∈ G a local dictator on the issue {P, P c} stays true to
granting G a right to P according to (R). In this sense, R is consistent if there exists some
aggregation function that grants at least the rights in R.

We say that a rights system R is trivial if
⋂

G∈R(P ), P∈P G ̸= ∅. Indeed, if R is trivial,
there exists some individual j ∈ N who is part of every rights holding group. Thus, making
j a dictator (∀x = (x1, . . . , xn) ∈ Xn : f(x) = xj) is (trivially) consistent with R.
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12 When Are Rights Consistent?

12.1 A Characterization

We are ready to state when some given rights system R is (in)consistent. To gain intuition,
for every profile x = (x1, . . . , xn), consider the family of properties to which rights are
exercised: PR(x) = {P ∈ P : {i ∈ N : xi ∈ P} ⊇ G for some G ∈ R(P )}.96 Unless one
of these families is inconsistent, we can define an onto aggregation function respecting R
profile-wise by x 7→ f(x) ∈

⋂
PR(x). On the other hand, if one such family is inconsistent,

there can be no f : Xn → X that respects rights.

Suppose x⋆ = (x⋆1, . . . , x
⋆
n) ∈ Xn is such that PR(x

⋆) is inconsistent and consider a
critical subfamily G.97 By definition, for each P ∈ G, there exists some group GP ∈ R(P )

that endorses P unanimously: x⋆i ∈ P for all i ∈ GP . However, there can be no i ∈ N

who is a member of all these groups at once, as this would imply voting inconsistently:
x⋆i ∈

⋂
P∈G P = ∅. On the other hand, if there exist groups with empty intersection holding

rights over G, then there is some profile x⋆ = (x⋆1, . . . , x
⋆
n) such that G ⊆ PR(x

⋆), seeing
that, for every i ∈ N , there is some P ∈ G such that i /∈ GP (hence ∃x⋆i ∈

⋂
G\{P} ̸= ∅).

Thus, the following condition due to N&P characterizes consistency.

Intersection Property over Critical Families. R : P ⇒ 2N\{∅} satisfies
the Intersection Property over Critical Families (IPC) if and only if for all critical G =

{P1, . . . , Pr}:

G1 ∈ R(P1), . . . , Gr ∈ R(Pr) =⇒
r⋂

k=1

Gk ̸= ∅. (IPC)

Theorem 6. A rights system R : P ⇒ 2N\{∅} is consistent if and only if R satisfies
(IPC).

Theorem 6 reduces the problem of consistency to an easily interpretable condition:
Whenever rights are given to a critical set of properties, the respective rights holding
groups must intersect to at least one common member. (IPC) provides a characterization
in terms of (i) semantic dependencies between rights objects (properties to which rights
are held) and (ii) the combinatorial characteristics of the corresponding rights subjects
(groups holding rights). As the set of alternatives is endowed with a particular property
structure, the exact interpretation of (IPC) hinges on the concrete application.

96 Note that PR(x) = PR(x).
97 As is easily verified, every inconsistent family contains a critical subfamily.
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Part IV: Consistent Rights on Property Spaces

Example 2 (ctd.). Using the construction in Example 4, (X1,P1) =
(
XLin(A1),PLin(A1)

)
with A1 = {(w,w), (w, y), (y, w), (y, y)} is a property space. In the social choice the-
oretic interpretation, if R2 respects full individual liberties on (X1,P1), we have, in-
ter alia, {Ann} ∈ R2

(
P(y,w)>(w,w)

)
∩ R2

(
P(w,y)>(y,y)

)
and {Bob} ∈ R2

(
P(w,w)>(w,y)

)
∩

R2

(
P(y,y)>(y,w)

)
.98 As {P(y,w)>(w,w), P(w,w)>(w,y), P(w,y)>(y,y), P(y,y)>(y,w)} is critical,

{Ann} ∩ {Bob} = ∅ yields a violation of (IPC); R2 is inconsistent. Proposition 3 be-
low contains the general statement of the Gibbard paradox.

However, as several authors have pointed out (see, e.g., Gaertner et al., 1992), the
Gibbard paradox is counter-intuitive. In a more natural interpretation, individual liberal
rights consist in the ability to paint one’s house in the color one sees fit. Such rights are
consistent. Indeed, consider the property space (A1, P̃1), where P̃1 = {PA, P

c
A, PB, P

c
B}

and PA = {(w,w), (w, y)}, PB = {(w,w), (y, w)}. Here, the properties refer directly to the
color of Ann’s (PA if white) and Bob’s (PB if white) house. On (A1, P̃1), the only critical
families are the trivial ones. Thus, the rights system R̃2(PA) = R̃2(P

c
A) = {{Ann}} and

R̃2(PB) = R̃2(P
c
B) = {{Bob}} satisfies (IPC) and is consistent. ■

Proposition 3. (cf. Gibbard, 1974, Theorem 1) Let A = A0 × A1 × · · · × An where
A0 is a set of public aspects and Ai are sets of aspects pertaining to the private sphere
of individual i ∈ N . |Ai| ≥ 2 for all i ∈ N . Consider

(
XLin(A),PLin(A)

)
. Let R be a

rights system and suppose that, for all i ∈ N and for all i-variants99 a, b ∈ A, we have
{i} ∈ R(Pa>b) ∩R(Pb>a). Then R is inconsistent for n ≥ 2.

Theorem 6 generalizes a fundamental result from N&P which is stated as Fact 2 below.100

They characterize monotone independent aggregation as voting by properties101 induced
by some so-called ‘structure of winning coalitions’ satisfying (IPC). Viewed in terms of
rights, a ‘structure of winning coalitions’ is simply a rights system which is maximally
specified or exhaustive to the effect that, for all groups G ⊆ N and properties P ∈ P, it
either affords G a right to P or else N\G a right to P c.102 If consistent, such exhaustive
rights in effect define a natural aggregation procedure that is monotone (within properties)
and independent (across properties) called voting by properties. In other words, if R is
exhaustive, the demand that some aggregation function f : Xn → X respect rights (i.e.,
condition (R)) is equivalent to f being voting by properties induced by R satisfying (IPC).

Yet the rights systems studied in the literature are generally non-exhaustive (consider
any of the Examples given this part of the Thesis). Theorem 1 shows that (IPC) continues
to characterize consistency for non-exhaustive rights systems. However, while a consistent

98 For the purpose of illustration, we denote individuals by names here instead of natural numbers.
99 We say that a, b ∈ A are i-variants if ∀j ̸= i : aj = bj , where aj is the projection of a on Aj .

100 See Proposition 2.1 in Nehring and Puppe (2010); also Proposition 3.1 in Nehring and Puppe (2007).
101 N&P refer to voting by properties as ‘voting by issues’ instead.
102 To be precise, a ‘structure of winning coalitions’ as defined in N&P is an exhaustive rights system which

is monotone: If group G has a right to P , then every superset of G does. However, as noted in Section
2.2 above, this distinction is immaterial as far as consistency is concerned: A rights system is consistent if
and only if its (property-wise) monotone closure is.
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12.2 Structural Properties and a General Impossibility Result

exhaustive rights system is a monotone independent aggregation function in the afore-
mentioned sense, Theorem 6 only ensures consistency with some aggregation function.
Indeed, as we show in Section 12.3 below, there are interesting examples of non-exhaustive
rights which are consistent yet cannot be respected in voting by properties. This raises the
question of whether we can characterize when non-exhaustive rights are consistent in this
stricter sense, i.e., when non-exhaustive rights can be consistently extended to an exhaus-
tive system. Theorem 7 below provides such a characterization of exhaustibly consistent
rights in terms of an analogous intersection property for a suitably generalized notion of
criticality.

Before we develop the necessary theory in Section 13, we use Theorem 6 to relate the
inconsistency of rights to structural properties of the underlying space and motivate Section
13 by discussing rights which are consistent but not exhaustibly so.

12.2 Structural Properties and a General Impossibility Result

Below, we present a general impossibility result (Proposition 4) for rights systems that
grant property-wise unanimity rights (i.e., N ∈

⋂
P∈P R(P )). To this end, we first intro-

duce structural characteristics of property spaces and rights systems based on entailments
between properties.

Let G ∈ F be critical and consider any P ∈ G. The properties G\{P} entail property
P c. Why? By criticality of G, G\{P} is consistent. That is, there exists some feasible
x ∈ G\{P}. As

⋂
G = ∅ and x ∈ X = P ∪ P c, we must have x ∈ P c. In other words,

every alternative consistent with G\{P} must conform to P c. Moreover, this entailment is
minimal in the sense that no proper subset G′ ⊊ G\{P} entails P c (seeing that G′∪{P} ⊊ G
is consistent by criticality of G).

Minimal Entailment I. For F ∈ F, P ∈ P we define F ⊢ P if and only if F ∪ {P c}
is critical. When F ⊢ P , we say that F minimally entails P .

While ⊢ relates some property P to families of properties, at times, we are only interested
in analyzing dependencies between P and some other property Q. Suppose P ∈ F and
F ⊢ Q. Then conditional on the properties in F\{P}, P entails Q.

Conditional Entailment. P ⊵ Q if and only if there exists some F ∈ F such that
P ∈ F and F ⊢ Q. We denote by ⊵⋆ ⊆ P ×P the transitive closure of ⊵. When P ⊵⋆ Q,
we say that P conditionally entails Q. When we need to distinguish it from ⊵⋆, we refer
to ⊵ as direct conditional entailment.

Note that P ⊵ Q if and only if there exists some critical G ∈ F such that {P,Qc} ⊆ G.
It follows that P ⊵ Q ⇐⇒ Qc ⊵ P c and P ⊵⋆ Q ⇐⇒ Qc ⊵⋆ P c. We say that P
unconditionally entails Q if and only if {P} ⊢ Q. That is, P unconditionally entails Q if
and only if {P,Qc} is critical. Thus, {P} ⊢ Q ⇐⇒ P ⊆ Q. By definition, unconditional
entailment is direct. We say that P,Q ∈ P are dependent if and only if P ⊵⋆ Qc. P,Q
are directly dependent if and only if P ⊵ Qc. That is, P,Q are directly dependent if
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Part IV: Consistent Rights on Property Spaces

and only if there exists some critical G ∈ F such that {P,Q} ⊆ G. We say that two
issues {P, P c}, {Q,Qc} are (directly) dependent if and only if we can find some (directly)
dependent P̂ , Q̂ such that P̂ ∈ {P, P c} and Q̂ ∈ {Q,Qc}.

Median, Totally Blocked, Semi-blocked, Connected Property Spaces. Let
(X,P) be a property space. We say that (X,P) is:

1. median if and only if all entailments are unconditional (cf. Nehring and Puppe, 2007,
2010),

2. totally blocked if and only if ∀P,Q ∈ P : P ⊵⋆ Q (cf. Nehring and Puppe, 2007,
2010),

3. semi-blocked if and only if (X,P) is not totally blocked and ∀P,Q ∈ P: [P ⊵⋆

Q and Q ⊵⋆ P ] or [P ⊵⋆ Qc and Qc ⊵⋆ P ] (cf. Nehring, 2006a),

4. connected if and only if all issues are directly dependent (cf. Dietrich and List, 2008).

As is easily verified, (X,P) is median if and only if all critical families G ∈ F have length
two (|G| = 2). Thus, (A1, P̃1) from Example 2 (ctd.) above is median.103 (X,P) is totally
blocked if and only if all properties are dependent. For example, (X1,P1) (Example 2, ctd.)
is totally blocked. More generally, on every finite set of alternatives, the space of linear
orders – endowed with the property structure from Example 4 – is totally blocked. When
using an analogous construction for properties, important examples of semi-blocked spaces
include the partial orders (Example 9 below) and the equivalence relations (Example 10
below).

Independent, Autonomous Rights. Let R be a rights system on a property space
(X,P).

1. R is independent (weakly independent) if and only if there do not exist two disjoint
groups G,G′ ⊆ N and two dependent (directly dependent) P,Q ∈ P such that
G ∈ R(P ) and G′ ∈ R(Q).

2. R is autonomous (weakly autonomous) if and only if there exist two disjoint groups
G,G′ ⊆ N and two distinct properties P,Q ∈ P such that G ∈ R(P ) ∩ R(P c) and
G′ ∈ R(Q) ∩R(Qc) (such that G ∈ R(P ) and G′ ∈ R(Q)).

A rights system is (weakly) independent if and only if no two disjoint groups have rights
to (directly) dependent properties. It is (weakly) autonomous if and only if two disjoint
groups can each autonomously decide some distinct issue (property). If R is autonomous
and weakly independent, disjoint groups can hold rights only over issues which are not
directly dependent. When (X,P) is connected, such issues do not exist. By consequence,
no rights system can be autonomous and weakly independent at the same time.

103 Median spaces play an important role in strategy-proof social choice. They admit strong possibility results
for rich single-peaked domains (Nehring and Puppe, 2007). See the same reference for more examples of
median spaces.
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12.3 Consistency vs. Exhaustive Consistency

Fact 1. Let (X,P) be connected. There do not exist weakly independent and autonomous
rights systems.

The following proposition shows that failure of weak independence is sufficient for in-
consistency when unanimity rights are granted to all properties. We use Fact 1 to derive
two prominent impossibility results in the literature as corollaries. Corollary 1 establishes
the ‘liberal paradox’ for group rights (cf. Example 1 above). Corollary 2 is its generaliza-
tion to judgment aggregation: no (issue-wise) unanimous aggregation function can grant
autonomous group rights on connected agendas.

Proposition 4. Let (X,P) be a property space and R be a rights system on (X,P) such
that N ∈

⋂
P∈P R(P ). Unless R is weakly independent, it is inconsistent.

Corollary 1. (cf. Sen, 1976, A3) Let A be some finite set. Consider
(
XLin(A),PLin(A)

)
.

If for all a ̸= b ∈ A : N ∈ R(Pa>b) and there exist disjoint G,G′ ⊆ N such that, for
some c, c′, d, d′ ∈ A, G ∈ R(Pc>d) ∩ R(Pd>c) and G′ ∈ R(Pc′>d′) ∩ R(Pd′>c′), then R is
inconsistent.104

Corollary 2. (cf. Dietrich and List, 2008, Theorem 2) Let Y be some agenda
(of logical propositions). Suppose (XY ,PY ) is connected. If N ∈

⋂
p∈Y R(Pp) and there

exist disjoint G,G′ ⊆ N such that, for some p, q ∈ Y , G ∈ R(Pp) ∩ R(P¬p) and G′ ∈
R(Pq) ∩R(P¬q), then R is inconsistent.105

Without property-wise unanimity, however, (weak) independence is neither necessary
nor sufficient for consistency. Indeed, when dropping the Pareto condition in Example
1 above, the remaining system of minimal liberal rights is not (weakly) independent but
consistent. In Example 3 above, on the other hand, all rights holding groups are pairwise
disjoint so that the system is trivially (weakly) independent but inconsistent. At the same
time, independence completely characterizes consistency on median spaces. As an even
stronger characterization holds for these spaces (see Proposition 5 below), we do not state
this result here.

12.3 Consistency vs. Exhaustive Consistency

Theorem 1 shows (IPC) to be necessary and sufficient for rights to be respected by some
aggregation function. A natural way to obtain an aggregation procedure is to decide each
issue independently. In the presence of independence, monotonicity is the natural re-
quirement that increased support for some property cannot lead to its complement being

104 The result proven in Sen (1976, A3) is slightly more general to the effect that it shows that there can
be no social decision function (i.e., no aggregation rule producing an acyclic social relation) that satisfies
minimal group rights and the Pareto criterion.

105 In analogy to footnote 104, Theorem 2 in Dietrich and List (2008) is slightly more general as it does not
require collective judgment sets to be complete. It is possible to derive the full force of both impossibility
results from an analogous statement of Theorem 1 for (non-empty) aggregation correspondences F : Xn ⇒
X. We do not do so here to keep the analysis focused on aggregation functions.
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accepted if it wasn’t before. Apart from its long standing tradition in social choice theory
beginning with Arrow (1963), (monotone) independence is a natural requirement in many
contexts (for instance, see Example 6 below).106 Moreover, while the very nature of rights
may imply that aggregation happens asymmetrically across subgroups and issues, necessi-
tating failures of anonymity and neutrality, monotone independence seems to stand in no
immediate contradiction to rights per se.

Consequently, it is of great interest to study whether rights are exhaustibly consistent
in the stronger sense of being respected by a monotone independent and onto aggregator.
Unlike for exhaustive rights – ‘structures of winning coalitions’ in N&P – there are im-
portant examples of rights which are consistent but not exhaustibly so. For instance, this
applies to minimal Sen rights (Example 1, ctd.) or minority rights in selecting members of
a committee (Example 6). Another example involving majority rights in truth-functional
judgment aggregation is developed alongside the theory of Section 13 (Example 7).

Example 1 (ctd.). If we drop the Pareto condition in Example 1, minimal Sen rights
are consistent. At the same time, as a corollary of Arrow’s Theorem (1963, ch. VIII), the
only onto and monotone independent social welfare functions are the dictatorships. Thus,
minimal Sen rights are not exhaustibly consistent. More generally, suppose that there are
strictly more social alternatives than individuals (|A| > n ≥ 2). Then there exists some
consistent R granting minimal Sen rights. However, R is not exhaustibly consistent.107 ■

Example 6. Committee Selection. Suppose a committee has to be elected from
a set of candidates {1, . . . ,K} subject to the constraint that at least k′ and at most
k′′ candidates are selected (where 0 < k′ ≤ k′′ < K). Thus, X(K;k′,k′′) = {C ⊆
{1, . . . ,K} : k′ ≤ |C| ≤ k′′} is the set of feasible committees. If we let, for every
k ∈ {1, . . . ,K}, Pk = {C ∈ X(K;k′,k′′) : k ∈ C} and define P(K;k′,k′′) = {Pk, P

c
k}k=1,...,K ,

then
(
X(K;k′,k′′),P(K;k′,k′′)

)
is a property space such that property k refers to whether can-

didate k is elected to the committee (Nehring and Puppe, 2010). Monotone independent
aggregation on

(
X(K;k′,k′′),P(K;k′,k′′)

)
amounts to the natural conception that a committee

can be selected by voting on each candidate separately and that additional votes can never
remove a candidate from the committee.

To safeguard their rights and interests, minority subgroups may demand representation
in the committee. That is, minorities may demand the right to elect ‘their’ candidate
to the committee.108 If G1, . . . , Gm ⊆ N are m such (possibly disjoint) minority groups
and k1, . . . , km the corresponding candidates, we consider the rights system R given by

106 From a normative point of view, Nehring and Puppe (2007) show that monotone independence is closely
linked to strategy-proofness of voting rules: on rich single-peaked domains, a social choice function is
strategy-proof if and only if it is monotone independent.

107 Since (XLin(A),PLin(A)) is totally blocked, this follows from Proposition 5 below.
108 Such rights are given in reality. The Māori, a people indigenous to New Zealand, may serve as a point in

case. New Zealand’s national parliament reserves a number of designated ‘Māori seats’ for representatives
elected by voters of Māori descent (see, e.g., Geddis, 2006).
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12.3 Consistency vs. Exhaustive Consistency

R(Pkj ) = {Gj} for j = 1, . . . ,m and R(P ) = ∅ else. As long as m ≤ k′′, R is consistent.109

Intuitively, if the number of minority candidates is less than the maximal size of the
committee, each can be granted a right to membership. At the same time, if at least two
minorities are disjoint – more generally, unless R is trivial – this requires decisions on
the other candidates to be made depending on whether said rights have been exercised.
For example, in the simple case when m = k′′ minorities elect ‘their’ candidate to the
committee, all remaining candidates have to be declined irrespective of how many votes
they receive. Thus, R is inconsistent with monotone independent aggregation, i.e., not
exhaustibly consistent.110 ■

109 This can be seen by noting that the only critical families containing only non-negated properties are those
containing exactly k′′ + 1 of them; i.e., G = {Pk1 , . . . , Pkk′′+1

} for some pairwise distinct k1, . . . , kk′′+1 ∈
{1, . . . ,K}. As R grants rights for at most m < k′′ + 1 properties, (IPC) holds trivially.

110 The non-trivial critical families are those described in footnote 109 as well as those containing exactly
K − k′ + 1 negated properties (i.e., G = {P c

k1
, . . . , P c

kK−k′+1
} for some pairwise distinct k1, . . . , kK−k′+1 ∈

{1, . . . ,K}). As a result,
(
X(K;k′,k′′),P(K;k′,k′′)

)
is totally blocked (see also Nehring and Puppe, 2010).

Inconsistency with monotone independent aggregation follows from Proposition 5 below.
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13 Consistent Rights in Voting by Properties

On property spaces, an aggregation function f : Xn → X is independent if and only
if issues are decided separately and independently of each other to the effect that the
collective decision on some issue can change only if some individual changed her vote on it.
Once independence is enacted, monotonicity corresponds to the natural requirement that
increased support for some property cannot lead to its complement being accepted when
it wasn’t before. On property spaces, imposing both independence and monotonicity is
equivalent to the following condition.

Monotone Independence. f : Xn → X is monotone independent if and only if for
all P ∈ P and all x = (x1, . . . , xn),y = (y1, . . . , yn) ∈ Xn:

[∀i ∈ N : xi ∈ P =⇒ yi ∈ P ] =⇒ [f(x) ∈ P =⇒ f(y) ∈ P ] . (MI)

Monotone independence plays a crucial role in abstract aggregation theory as it allows
for a unified characterization of all onto aggregators as voting by properties (Nehring and
Puppe, 2010).111 We recall this result as Fact 2 below.

13.1 Monotone Independent Aggregation as Voting by Properties

A rights system R : P ⇒ 2X\{∅} is exhaustive if and only if, for all P ∈ P, either
G ∈ R(P ) or N\G ∈ R(P c). If and only if R′ is some rights system such that, for all
P ∈ P, R(P ) ⊆ R′(P ), we say that R′ extends R. Thus, R′ extends R if and only if it
grants all rights in R and possibly more. R′ is monotone if and only if it is equal to its
(property-wise) monotone closure, P 7→ R′(P ) = {G ⊆ N : G ⊇ G′ for some G′ ∈ R′(P )},
i.e., if and only if R′ = R′. We note that every consistent exhaustive rights system R′ is
monotone.112

Voting by Properties. Given some exhaustive rights system R′, we define the
correspondence FR′ : Xn ⇒ X by

(x1, . . . , xn) 7→ FR′(x1, . . . , xn) =
⋂

{P ∈ P : {i ∈ N : xi ∈ P} ∈ R′(P )}.

We refer to FR′ as voting by properties (induced by the exhaustive rights system R′).
Thus, separately for each property P ∈ P, FR′ accepts P iff the groups of individu-

als voting for P have a right to it. As shown in Nehring and Puppe (2010) – who refer
111 Note that N&P refer to voting by properties as ‘voting by issues’ instead; cf. footnote 101.
112 Indeed, suppose that there exist some P ∈ P and some N ⊇ G′ ⊋ G such that G ∈ R(P ), G′ /∈ R(P ).

As R is exhaustive, R(P c) ∋ N\G′ ⊆ N\G, in violation of (IPC).
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to exhaustive rights systems as ‘structures of winning coalitions’ – FR′ is a monotone
independent aggregation function if and only if R′ satisfies (IPC). Vice versa, every mono-
tone independent aggregation function is voting by properties induced by some consistent
exhaustive R′.

Fact 2. (see Nehring & Puppe, 2010, Proposition 2.1) An onto f : Xn → X

satisfies (MI) if and only if it is voting by properties FR′ induced by some exhaustive
R′ : P ⇒ 2N\{∅} satisfying (IPC).113

13.2 Rights in Voting by Properties

Before we return to the question of whether some given (possibly non-exhaustive) rights
system R can be respected in monotone independent aggregation, we reappraise the notion
of a right in the context of voting by properties. If and only if R is respected in voting by
properties, there exists some consistent exhaustive R′ such that FR′ respects R. By (R)
and the definition of FR′ , this is the case if and only if, for all P ∈ P, G ∈ R(P ) =⇒
(∀G′ ⊆ N,G′ ⊇ G : G′ ∈ R′(P )). As R′ is necessarily monotone, this reduces to the
requirement that it extend R.

Fact 3. Let R be a rights system. There exists some onto f : Xn → X satisfying (MI)
and (R) if and only if there exists some consistent exhaustive rights system R′ such that
for all P ∈ P:

R(P ) ⊆ R′(P ). (R⋆)

Consequently, R is consistent with monotone independent aggregation if and only if it
can be consistently extended to some exhaustive rights system R′. In this case, we say that
R is exhaustibly consistent. As Theorem 7 below shows, R is exhaustibly consistent if and
only if it satisfies an intersection property in the spirit of (IPC) for a generalized concept
of criticality. To gain intuition for why (IPC) alone is insufficient to guarantee existence of
a consistent exhaustive extension, we note the following fact about consistent exhaustive
rights.

Fact 4. Let R′ be an exhaustive rights system satisfying (IPC). If P,Q1, . . . , Qr ∈ P are
such that {Q1, . . . , Qr} ⊢ P , then

G1 ∈ R′(Q1), . . . , Gr ∈ R′(Qr) =⇒
⋂

k=1,...,r

Gk ∈ R′(P ).

In words, every consistent exhaustive rights system R′ is intersection-closed under min-
imal entailment. When we ask whether rights system R can be consistently extended to
some exhaustive R′, we have to keep in mind the restrictions which are implicitly put on

113 Nehring and Puppe derive the result for monotone independent and unanimous f : Xn → X. In
general, unanimity implies ontoness but not vice versa. However, in the presence of monotonicity, both
are equivalent.
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13.2 Rights in Voting by Properties

u v u ∧ v

voter no. 1 ✓ ✓ ✓

voter no. 2 ✓ × ×

voter no. 3 × ✓ ×

✓ ✓ ×

Table 13.1: A discursive dilemma

such extensions by way of Fact 4. We illustrate this point for majority rights in judgment
aggregation.

Example 7. Discursive Dilemma. Suppose that some committee (of odd size) has
to reach collective judgments on a conjunctive agenda, where the conclusion c ↔ u ∧ v is
endorsed if and only if the premises u and v are. Here, the discursive dilemma (Pettit, 2001)
consists in the fact that majority voting on the premises is inconsistent with the majority
judgment on the conclusion in general. And, vice versa, direct voting on the conclusion is
incompatible with majority judgments on the premises. In other words, granting majority
rights both on the premises and the conclusion is inconsistent. See Table 13.1 for an
example with three voters. Boxes depict rights held by the different majorities od voters:
{1, 2} (solid), {1, 3} (dashed) and {2, 3} (dotted).114

How about majority rights on the premises alone? This is a consistent assignment of
rights seeing that the conclusion can simply be made depending on majority judgments
on the premises (premise based procedure). Yet, it is not exhaustibly consistent: majority
rights on the premises are inconsistent with any monotone independent method of voting
on the conclusion.115 Indeed, consider (XY7 ,PY7) for Y7 = {u,¬u, v,¬v, u∧v,¬(u∧v)} (cf.
Example 5). Let R7(P ) = {G ⊆ N : |G| > n/2} for P = Pu, P¬u, Pv, P¬v, and R(P ) = ∅
for P = Pu∧v, P¬(u∧v). Suppose there exists some consistent exhaustive extension R′

7. If
i ∈ N , there exist non-empty and disjoint G,G′ ⊆ N\{i} such that |G ∪ {i}|, |G′ ∪ {i}| >
n/2. By way of Fact 4, {Pu, Pv} ⊢ Pu∧v implies that (G∪{i})∩(G′∪{i}) = {i} ∈ R′

7(Pu∧v).
Thus, R′

7 violates (IPC) over the critical family {P¬u, Pu∧v} (e.g., (G ∪ G′) ∩ {i} = ∅), a
contradiction.116 ■

114 The original example known as the doctrinal paradox (Kornhauser and Sager, 1986, 1993) refers to a court
of three judges assessing individually whether a defendant owes damages to a plaintiff (the conclusion) by
evaluating whether the contract was valid and whether the defendant was in breach of it (the two premises).

115 Note that, given majority rights on the premises, an aggregation function is fully monotone independent
if and only if it is monotone independent on the conclusion.

116 Too see that such G,G′ exist, we simply split up N\{i} in two groups of equal size. For n even, every
two-member set can be obtained as the intersection of two strict majorities. A parallel argument, combined
with the fact that {Pu∧v} ⊢ Pu, Pv yields a violation of (IPC) over the critical family {Pu, Pv, P¬(u∧v)}
provided that n ≥ 4. If n = 2, majority rights are simply unanimity rights and thus respected by any
unanimity rule (see Section 13.5.2 for a definition).
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13.3 Minimal Entailment and Almost Critical Collections

As in Example 7 above, a violation of (IPC) for every consistent exhaustive extension
can be implicit in R when the intersection property fails to hold over a collection of
properties which are almost critical to the effect that they imply some critical family by
minimal entailment. However, such violations might appear only after taking into account
entailments at higher orders. Also, some properties may be simultaneously involved in
different entailments. Consequently, violations of (IPC) can be jointly implied by multisets
over P.

A multiset is a generalization of a set which allows for members to appear any finite num-
ber of times. For example, if P,Q ∈ P then {P,Q}, {P, P,Q} and {Q,Q,Q} are multisets
over P.117 We refer to any non-empty multiset over P as a collection (of properties).

Collection. We define C = {C : C is a non-empty multiset over P} and call every
C ∈ C a collection (of properties) from P.

As P is finite, every C ∈ C is finite.118 Thus, we can write C = {P1, . . . , Pr} for
some P1, . . . , Pr ∈ P, where, possibly, Pk = Pl for k ̸= l. The concept of a collection
generalizes that of a family: F ⊆ C. We define a union-operator ⊔ on C as follows. Let
C = {P1, . . . , Pr}, C′ = {Q1, . . . , Qr′} ∈ C. Then C ⊔ C′ = {P1, . . . , Pr, Q1, . . . , Qr′}. For
s ≥ 3 and C1, . . . , Cs ∈ C, we define

⊔
l=1,...,s Cl inductively based on the binary case. We

say that {C1, . . . , Cs} is a partition of C if and only if C =
⊔

l=1,...,s Cl. To formalize our
arguments from above, we introduce a generalized minimal entailment relation on C.

Minimal Entailment II. Let C, C′ = {P1, . . . , Pr} ∈ C. We define C ⊩ C′ if and only
if, for all k = 1, . . . , r, there exists some Fk ∈ F such that Fk ⊢ Pk and C =

⊔
k=1,...,r Fk.

We denote by ⊩⋆ the transitive closure of ⊩.
C ∈ C minimally entails C′ ∈ C if and only if (i) every property in C′ is minimally entailed

(in the sense of ⊢) by some family and (ii) these families form a partition of C. Note that
⊩ generalizes ⊢. Indeed, for every F ∈ F and Q ∈ P, F ⊢ Q ⇐⇒ F ⊩ {Q}. For j ≥ 2,
we write C ⊩j C′ if and only if there exist C1, . . . , Cj−1 such that C ⊩ Cj−1 ⊩ . . . ⊩ C1 ⊩ C′

and let ⊩1= ⊩. Note that C ⊩⋆ C′ ⇐⇒ (∃j ∈ N : C ⊩j C′).
Almost Critical Collections. Let j ∈ N. We say that C ∈ C is almost critical

(j-critical) if and only if C ⊩⋆ G (C ⊩j G) for some critical G ∈ F .
A collection is almost critical if and only if a critical family of properties can be deduced

by repeated minimal entailments. As ⊩ is reflexive, every critical family F ∈ F ⊆ C is
almost critical. Moreover, j-criticality implies j′-criticality for any j′ > j (see Lemma 8 in
Appendix C.3).

117 Formally, a multiset over some universe U is a mapping M : U → N0 which assigns to every member of
u ∈ U a multiplicity M(u). A multiset is non-empty if supp(M) = {u ∈ U : M(u) > 0} ̸= ∅. To facilitate
the exposition we will stick to the informal notation introduced above. For example, if U = {u, u′, u′′}
we will write M = {u, u′, u′} instead of M : U → N0, M(u) = 1,M(u′) = 2,M(u′′) = 0. Moreover, if
M,M ′ : U → N0 are such that for all u ∈ U : M(u) ≤ M ′(u), we write M ⊆ M ′.

118 A multiset M is finite if supp(M) is finite. In this case, we can define |M | =
∑

u∈supp(M) M(u). Over a
finite universe, every multiset is finite.
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13.4 A Characterization

Reconsider Example 7 from above. We have {Pu, Pv} ⊢ Pu∧v, thus {P¬u, Pu, Pv} ⊩
{P¬u, Pu∧v}. As the latter is critical, {P¬u, Pu, Pv} is 1-critical; a fortiori, almost criti-
cal. The implicit failure of (IPC) over {P¬u, Pu∧v} (for consistent exhaustive extensions)
surfaces as a violation of a corresponding intersection property over the 1-critical family
{P¬u, Pu, Pv} for R7. For example, if n = 3, we have {1, 3}∩{1, 2}∩{2, 3} = ∅. More gener-
ally, if for some i ∈ N , G,G′ are chosen as in Example 7 above, we have: G∪{i} ∈ R7(P¬u),
G′ ∪ {i} ∈ R7(Pu) and G ∪G′ ∈ R7(Pv) but (G ∪ {i}) ∩ (G′ ∪ {i}) ∩ (G ∪G′) = ∅.

The following condition excludes such implied inconsistencies at any order j ∈ N of j-
criticality. As Theorem 7 below shows, it is necessary and sufficient in order for a consistent
exhaustive extension to exist.

Intersection Property Over Almost Critical Collections. A rights system
R satisfies the Intersection Property over Almost Critical Collections (IPAC) on (X,P) if
and only if for every almost critical collection C = {P1, . . . , Pr} ∈ C:

G1 ∈ R(P1) ∪ {N}, . . . , Gr ∈ R(Pr) ∪ {N} =⇒
r⋂

k=1

Gk ̸= ∅. (IPAC)

In analogy to (IPC), (IPAC) demands that every collection of groups holding rights to
an almost critical collection of properties must intersect to at least one common member.
Note how (IPAC) takes account of the fact that every onto and monotone independent ag-
gregation function is property-wise unanimous (i.e., N ∈

⋂
P∈P R′(P ) for every consistent

exhaustive extension R′). As every critical family is almost critical, (IPAC) is stronger
than (IPC).

To vindicate the intuition that (IPAC) exactly excludes those violations of (IPC)
that are implicit by minimal entailment for consistent exhaustive extensions, we intro-
duce the minimal-entailment closure of some rights system. For R : P ⇒ 2N\{∅},
let P 7→ C1(R)(P ) = {G ⊆ N : G =

⋂
k=1,...,rGk for some G1 ∈ R(Q1), . . . , Qr ∈

R(Pr) such that {Q1, . . . , Qr} ⊢ P} and, inductively, for j ≥ 2, define P 7→ Cj(R)(P ) =

C1(Cj−1(R))(P ). C1(R) extends R so as to include groups which are implied to have
rights in consistent exhaustive extensions by Fact 4. In other words, C1(R) closes R with
respect to ⊢. In the same fashion Cj(R) closes Cj−1(R) inductively for all j ≥ 2. Lastly,
for every P ∈ P, let C⋆(R)(P ) =

⋃
j∈NC

j(R)(P ). Then C⋆(R) is the closure of R with
respect to chains of minimal entailments of any length.119 As Theorem 7 below shows,
requiring R to satisfy (IPAC) is equivalent to imposing (IPC) on C⋆(R).

Theorem 7. Let R : P ⇒ 2N\{∅}. The following are equivalent:

1. There exists some onto f : Xn → X satisfying (MI) and (R).
119 Note that for all j ∈ N, Cj(R)(P ) ⊆ Cj+1(R)(P ) ⊆ 2N ; hence limj→∞ Cj(R)(P ) =

⋃
j∈N C

j(R)(P ) =
C⋆(R)(P ).
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2. There exists some exhaustive R′ : P ⇒ 2N\{∅} satisfying (IPC) and (R⋆).

3. R satisfies (IPAC).

4. C⋆(R) satisfies (IPC).

As Theorem 7 shows (IPAC) is what characterizes consistency with monotone indepen-
dent aggregation in general. Unlike for the case of exhaustive rights – for which Fact
4 implies that C⋆(R) = R; hence (IPC) and (IPAC) coincide – the intersection property
needs to be extended to hold over all almost critical families. Generalizing N&P, our results
not only allow to consider non-exhaustive rights but also to differentiate between simple
and exhaustive consistency. While (IPC) is equivalent to (simple) consistency (Theorem
6), (IPAC) characterizes when rights can be respected in voting by properties.

13.5 Possibilities and Impossibilities on Special Domains

To check (IPAC) for some given rights system R, we need to investigate rights holding
groups over every almost critical collection. To this end, it is of considerable interest to
understand the size and structure of the class of almost critical collections. Not surprisingly,
it depends on the very structure of the property space (X,P) under consideration. We
focus on some special domains that are of particular interest.

13.5.1 Totally Blocked and Median Spaces

Generally speaking, the size of the class of almost critical collections tends to increase with
the complexity of the agenda, i.e., with the degree of inter-dependencies between properties.
At the one extreme, when (X,P) is totally blocked, for every collection of properties, there
exists some almost critical collection that contains it. Consequently, the only rights systems
consistent with voting by properties are the trivial ones (satisfying

⋂
G∈R(P ), P∈P G ̸= ∅).

On median spaces, at the other extreme, only the critical families are almost critical. Thus,
(IPAC) reduces to (IPC). Here, rights are (exhaustibly) consistent if and only if they are
independent (or weakly independent, seeing that both notions of independence coincide on
median spaces). We summarize in the following proposition.

Proposition 5. Let (X,P) be a property space.

1. If (X,P) is totally blocked, every collection of properties is contained in some almost
critical collection. A rights system R is exhaustibly consistent if and only if it is
trivial.

2. If (X,P) is median, the almost critical collections are exactly the critical families. If
R is a rights system, the following are equivalent:

a) R is consistent.
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b) R is exhaustibly consistent.

c) R is independent.

d) R is weakly independent.

Example 8. Points on the Real Line. Let a1, . . . , ar ∈ R, r ≥ 2 be such that
a1 < a2 < · · · < ar. Define X8 = {a1, . . . , ar}, and, for each k = 1, . . . , r − 1, define
Pk = {a ∈ X8 : a ≤ ak} as well as P c

k = X8\Pk = {a ∈ X8 : a > ak}. For P8 =

{Pk, P
c
k}k=1,...,r−1, (X8,P8) is a property space (cf. Nehring and Puppe, 2007, Example 1).

As G ∈ F is critical if and only if G =
{
Pk, P

c
k′
}

for some k ≤ k′, (X8,P8) is median.
Consider the rights system R8 such that, for all k = 1, . . . , r − 1, R(Pk) = R(P c

k) =

{G ⊆ N : |G| > n/2}. As all rights holding groups intersect, R8 is (weakly) independent.
Thus, by Proposition 5, it is consistent with monotone independent aggregation. Indeed,
selecting the median vote (respectively, the lower/greater of the two median votes when n
is even) defines an onto, monotone independent aggregation function that respects R8. ■

13.5.2 Semi-Blocked Spaces

On semi-blocked spaces, the conditional entailment relation, ⊵⋆, induces a distinctive
structure for the set of properties. We can partition P into two sets of properties all
mutually conditionally entailing each other, P+ and P−, such that all P ∈ P+ conditionally
entail every Q ∈ P− but not vice versa. This first part of Fact 5 below was shown in
Nehring (2006a) (to keep the exposition self-contained, we give a proof in the Appendix).
Figure 13.1 depicts the resulting dependence structure in a graph such that P ⊵⋆ Q if and
only if vertex Q can be reached from vertex P via some directed path. For the second part
of Fact 5, we show that the almost critical collections relate to this structure as follows.
Every almost critical collection contains at most one element from P−. Conversely, every
property P ∈ P− and every collection from P+ can be jointly embedded in some almost
critical collection.

Fact 5. Suppose (X,P) is semi-blocked. There exist disjoint P+,P− ⊊ P such that P+ ∪
P− = P and, for all P ∈ P:

1. P ∈ P+ ⇐⇒ P c ∈ P−

2. P ∈ P− =⇒ ∀Q ∈ P− : P ⊵⋆ Q

3. P ∈ P+ =⇒ ∀Q ∈ P : P ⊵⋆ Q.

If C̃ ∈ C is almost critical on (X,P), then it contains at most one element from P−.
Moreover, for every multiset C over P+ and every P ∈ P−, there exists some almost
critical C̃ ⊇ C ⊔ {P}.
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Figure 13.1: Conditional entailment structure on a semi-blocked space

As an immediate consequence, a rights system R is consistent with voting by properties
on a semi-blocked space (X,P) if and only if for all G′ ∈

⋃
P∈P− R(P ): ⋂

G∈R(P ), P∈P+

G

 ∩G′ ̸= ∅.120

A fortiori, R is consistent with voting by properties only if
⋂

G∈R(P ), P∈P+ G ̸= ∅. If an
exhaustibly consistent R affords rights on P+, it must be locally trivial to the effect that
there be some non-empty subgroup of individuals who belong to all rights holding groups
on P+. It follows that exhaustive consistency is impossible if rights are autonomous or if
majority rights are granted on some P ∈ P+ (see Example 7, ctd.).

Example 7 (ctd.). Note that we have Pu∧v ⊵⋆ Pu, Pv ⊵⋆ Pu∧v and P¬(u∧v) ⊵
⋆

P¬u, P¬v ⊵⋆ P¬(u∧v). Seeing that Pu ⊵⋆ P¬v, (X7,P7) is semi-blocked with P−
7 =

{P¬u, P¬v, P¬(u∧v)}. If R(P̃ ) ⊇ {G ⊆ N : |G| > n/2} for some P̃ ∈ {Pu, Pv, Pu∧v},
then

⋂
G∈R(P ), P∈P+ G ⊆

⋂
{G ⊆ N : |G| > n/2} = ∅ (provided that n > 2, cf. footnote

116). As a result, as soon as majority rights are granted on the conclusion or on either of
the premises, rights are not exhaustibly consistent. In light of this, in a more fundamental
sense, the discursive dilemma is the fact that majority rights of such kind are inconsistent
with monotone independent aggregation. ■

Thus, the room for non-trivial, exhaustibly consistent rights on semi-blocked spaces is
limited. Indeed, if voters are additionally assumed to be minimally relevant in the sense
that R guarantees that every voter is pivotal for some issue and profile of votes, then R
is consistent with voting by properties if only if it is the unanimity rule with default P−;

120 Necessity is obvious. To show sufficiency, we verify (IPAC). Let C = {P1, . . . , Pr} ∈ C be almost critical
and G1 ∈ R(P1), . . . , Gr ∈ R(Pr). If C is a multiset over P+, we have

⋂
k=1,...,r Gk ⊇

⋂
G∈R(P ), P∈P+ G ̸=

∅. If C contains exactly one element from P−, let Pk′ , k′ ∈ {1, . . . , r}, be that element. We have⋂
k=1,...,r Gk =

(⋂
k=∈{1,...,r},k ̸=k′ Gk

)
∩ Gk′ ⊇

(⋂
G∈R(P ), P∈P+ G

)
∩ Gk′ ̸= ∅. Thus, (IPAC) holds

and R is exaustibly consistent.
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that is, if and only if, for all x = (x1, . . . , xn) ∈ Xn and all P ∈ P,

f(x) ∈ P ⇐⇒

∃i ∈ N : xi ∈ P for P ∈ P−

∀i ∈ N : xi ∈ P for P ∈ P+
.

Minimal Relevance for (voter) i ∈ N . R satisfies minimal relevance for (voter)
i ∈ N if and only if

∃Pi ∈ P ∃Gi ⊆ N : i ∈ Gi ∈ R(Pi) and N\Gi ∪ {i} ∈ R(P c
i ). (MR-i)

Proposition 6. Let (X,P) be semi-blocked and suppose R satisfies (MR-i) for all i ∈ N .
If some onto f : Xn → X satisfies (MI) and (R), then f is the unanimity rule with default
P−; where P− is as defined in Fact 5.

Two interesting examples of semi-blocked spaces are the partial orders (Example 9 below)
and the equivalence relations equipped with the natural property structure of pairwise
equivalence (Example 10 below). For partial order aggregation, where it can be shown that
P−
PO(A) = {P c

a≥b}a̸=b∈A, minimal relevance rights engender widespread incomparability of
(social) alternatives (seeing that the default partial order

⋂
P−
PO(A) is the empty relation).

In the context of classification problems (i.e., of aggregation of equivalence relations),
Proposition 6 shows that the unique monotone independent operator which guarantees
that each characteristic classification is relevant is the meet operator.

Example 9. Partial Orders. For a finite set A, let XPO(A) = {≥⊆ A × A : ≥ is a
partial order121}. For all a ̸= b ∈ A, define Pa≥b = {≥∈ XPO(A) : a ≥ b}. Unlike for the
linear orders in Example 4, we do not have P c

a≥b = Pb≥a in general, seeing that a partial
order is not necessarily complete. Let PPO(A) = {Pa≥b, P

c
a≥b}a̸=b∈A.

(
XPO(A),PPO(A)

)
is

a semi-blocked property space with P−
PO(A) = {P c

a≥b}a̸=b∈A. ■

Example 10. Classification Problems. Let A be some set. XEquiv(A) = {∼ ⊆ A×A :

∼ is an equivalence relation122}. For each a ̸= b ∈ A, define Pa∼b = {∼ ∈ XEquiv(A) :

a ∼ b}. When PEquiv(A) = {Pa∼b, P
c
a∼b}a̸=b∈A,

(
XEquiv(A),PEquiv(A)

)
is a property space.

Moreover, it is semi-blocked with P+
Equiv(A) = {Pa∼b}a̸=b∈A and P−

Equiv(A) = {P c
a∼b}a̸=b∈A.

In classification problems, every i ∈ N is best understood not as a voter but as an
attribute or characteristic (respectively, a conceptual perspective) that classifies a set of
objects (cf. Fishburn and Rubinstein, 1986). For example, dogs might be classified ac-
cording to sex, breed, size etc. The problem of aggregation thus consists in merging these
characteristic classifications. By Proposition 6, the only monotone independent aggrega-
tor for which each attribute classification is relevant (as defined by (MR-i)) is the meet
operator. ■

121 That is, ≥ is reflexive, transitive and antisymmetric.
122 That is, ∼ is reflexive, transitive and symmetric.
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14 Conclusion

We have provided a novel characterization of consistent rights in terms of semantic inter-
dependencies between properties as rights objects and combinatorial characteristics of the
corresponding rights subjects. We have shown that consistent rights can be characterized
by means of a simple condition when alternatives differ in terms of properties: whenever
rights are given to a combination of properties that is critical (minimally inconsistent), the
corresponding rights holding groups must have at least one common member (Intersection
Property over Critical Families, IPC). Under property-wise unanimity, rights are consistent
only if they are weakly independent (no rights to directly dependent properties for disjoint
subgroups).

We have demonstrated that the condition of non-empty intersection must be extended
to hold over almost critical (i.e., minimally entailing some critical family) multisets (In-
tersection Property over Almost Critical Collections, IPAC) to characterize when rights
are exhaustibly consistent in the sense of being respected by some onto and monotone in-
dependent aggregation function (voting by properties). On totally blocked spaces (where
all properties are mutually dependent), rights are exhaustibly consistent if and only if
they are trivial (i.e., can be respected by some dictatorship rule); on median spaces (where
conditional entailment coincides with subsethood), if and only if they are (weakly) indepen-
dent. On semi-blocked spaces, minimal relevance rights for all voters pin down monotone
independent aggregation functions to a unanimity rule with fixed default.

Our results generalize Nehring and Puppe (2007, 2010) who characterize monotone inde-
pendent aggregators as voting by properties induced by ‘structures of winning coalitions’
satisfying IPC. In the interpretation put forth by our analysis, a ‘structure of winning
coalitions’ is a rights system which is exhaustive (maximally specified) to the effect that
it defines a (monotone independent) aggregation procedure. Thus, our work provides an
analysis of rights sui generis by allowing for non-exhaustive rights and by deriving dis-
tinct characterizations for rights being respected by some aggregation function (consistent
rights: IPC) and those being respected in onto and monotone independent aggregation
(exhaustibly consistent rights: IPAC).
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15 Introduction

Democracy as a decision-making ideal can be reasoned for on at least two grounds. First,
procedural democrats would base their argument on desirable properties of the democratic
process per se. Second, on a more outcome-based stance, epistemological democrats main-
tain that democracy is a good ideal as it tends to produce correct answers on questions
of unknown truth-value (see, e.g., List and Goodin, 2001). In this latter vein, Condorcet’s
(1785/ 2014) classical Jury Theorem states that group judgments reached on some propo-
sition by majority rule (i) are correct with probability approaching one as the number of
voters tends to infinity (asymptotic part), and (ii) become more reliable as the group size
(number of voters) is increased (finite part); given that individuals vote independently and
are more likely to be correct than not.

When collective judgments need to be made on several logically inter-connected propo-
sitions, however, invoking Condorcet’s Jury Theorem proposition-by-proposition runs into
the problem that proposition-wise majority judgments may be (jointly) inconsistent. This
fact was first observed in a jurisprudential setting where legal doctrine dictates that a
conclusion (the defendant owes damages to the plaintiff) be judged correct if and only if
two premises are (the contract is valid and the defendant was in breach of it) and has
since become known as the doctrinal paradox (Kornhauser and Sager, 1986, 1993).123 In
general, when the agenda consists of a set of premises and a conclusion, two particularly
simple procedures to remedy the consistency problem while safeguarding the majoritarian
ideal are: (1) to derive the collective conclusion judgment truth-functionally based on the
premise majority judgments (the Premise Based Procedure, PBP), (2) to consider major-
ity judgment on the conclusion directly (the Conclusion Based Procedure, CBP). From a
procedural point of view, choosing between the PBP and CBP constitutes a discursive
dilemma (Pettit, 2001). On the one hand, the collective conclusion derived from premise
majorities (i.e. the result for the PBP) may be inconsistent with how a majority of voters
judges the conclusion. On the other hand, said conclusion majority (i.e. the result for the
CBP) can generally not be consistently reasoned for based on premise majorities. In this
part of the thesis, we study how the two procedures fare on epistemological grounds by
considering their respective probability of yielding a correct conclusion judgment (which
we also refer to as their respective reliability) on general truth-functional agendas (several,
logically independent premises; one conclusion). Unlike other studies we are aware of, we
allow for (positive and homogeneous) correlation between voters. To this end, we develop

123 For more details, see also Example 7 and Footnote 114 in Part IV.
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a tractable model that has voter competence p ∈ [0, 1] and inter-voter correlation coeffi-
cient ρ ∈ [0, 1] as sole parameters. In the model, voters are correlated through their joint
dependence on some (latent) binary random variable which we interpret as representing a
state of high/good or low/bad information.

We analyze both the asymptotic (the number of voters approaches infinity) and finite-
sample properties of both procedures. When voters are competent and vote independently,
the PBP yields correct judgments with asymptotic certainty across all scenarios no matter
the agenda. In contrast, the asymptotic behavior of the CBP is uncertain. For some agen-
das, it may hinge on the concrete scenario under consideration. In some of them, the CBP
generates judgments that are wrong with asymptotic certainty unless voters’ competence is
sufficiently close to one. This uncertainty is masked by only considering weighted behavior
(across all possible scenarios). In finite samples, none of the two procedures guaranteesthat
the probability of a correct conclusion judgment increases as the number of voter rises in
general (i.e. across all agendas and scenarios). However, the outlined asymptotic properties
imply that while the reliability of the PBP must increase eventually (for large numbers
of voters), the CBP’s reliability may decrease monotonically to zero. At the same time,
for a given agenda, scenario and competence level, the CBP can outperform the PBP for
any finite number of voters. When voters are correlated, the picture that emerges is more
complex. Here, we show that the PBP is asymptotically no better (and no worse) than
a single voter for moderate levels of competence. Crucially, this result holds for every
(truth-functional) agenda (and across all scenarios). In finite samples, adding more voters
to the group may not improve the reliability of the PBP. This can be driven by correlation-
related effects or – as in the absence of correlation – by the fact that more accurate premise
majority judgments need not translate into more accurate conclusion judgments. This also
implies that the effect of correlation can itself be ambiguous. While correlation reduces
the accuracy of any premise majority judgment, this may translate – rather paradoxically
– into a higher reliability for the conclusion. Not surprisingly, the CBP both is asymptoti-
cally fallible and may grow less reliable as the number of voters grows in general. Yet – in
analogy to the uncorrelated case – there may exist scenarios in which the CBP outperforms
the PBP. Interestingly, this is not only true in finite samples but may hold asymptotically
for some levels of voter competence.

Relation to the Literature

In its basic form, the Jury Theorem due to Condorcet (1785/2014) relies on voters being
(unconditionally) independent and competent (correct with probability greater than one
half). Independence is a troubling assumption when voters influence each other, have
access to common sources of information etc. Moreover, not all voters may be competent
in all circumstances. As a consequence, an extensive body of literature has formed that
relaxes these assumptions. For a survey of alternative Jury Theorems, the reader is referred
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to Dietrich and Spiekermann (2019, 2021). Here, we only highlight some of the work that
is most closely related to our analysis.

As pointed out by Dietrich and Spiekermann (2013), judgments can only reasonably be
defended to be independent when conditioned on common causes. As some causes may
have detrimental effects on accurate judgments (e.g., misleading evidence in a court case,
cognitive biases or environmental influences known to adversely affect decisions), this makes
conditional competence a problematic assumption (which is, however, required to salvage
the asymptotic part of the Condorcet Jury Theory). Consequently, their competence-
sensitive Jury Theorem only retains the non-asymptotic part. As we show below, even the
latter is in danger when decisions are made on a truth-functional agenda of propositions.
This is due to the fact that (i) a higher majority accuracy on the premises need not
translate into an increased likelihood of a correct conclusion judgment, and (ii) their result
breaks down when the distribution of conditional voter competence does not satisfy a
(rather strong) symmetry assumption.124 Conceptually, their work is related to Ladha
(1993) who analyses exchangeable voters to employ de Finetti’s Theorem. We stick to this
exchangeable structure. While our analysis dispenses with the symmetry assumptions on
the distribution of the latent random variable used in these works, we assume instead that
the latent random variable is itself binary (reflecting either a state of high/good or low/bad
information) to keep the analysis tractable.

List (2005) extends the epistemic analysis to the emerging field of Judgment Aggregation,
which considers sets of judgments on multiple, logically interconnected, propositions (see,
e.g. Dietrich, 2007). Bovens and Rabinowicz (2006) compare the PBP and the CBP on
a simple truth-functional agenda that features two (logically independent) premises and
a conclusion that is logically equivalent to the conjunction of the premises. They show
that the Premise Based Procedure is universally superior if a correct conclusion needs to
be reached for the right reasons. When one is interested in correct conclusion judgments
for whatever reason, the CBP may be more reliable for moderately competent voters (and
smaller group sizes). Hartmann and Sprenger (2012) generalize the first result by showing
that the PBP is best at ‘tracking the truth’ (i.e., judging all propositions on the agenda
correctly) among a class of aggregators that includes the CBP on general truth-functional
agendas.125 On the other hand, Hartmann et al. (2010) extend the latter line of inquiry to
the class of distance-based procedures (which include both the PBP and CBP as special
cases) on general conjunctive agendas. While the PBP (distance parameter t = 0) remains
asymptotically infallible, procedures that put more weight on the conclusion judgment

124 To be precise, they assume that voter competence ‘tends to exceed 0.5’: for all 0 < ϵ ≤ 0.5, the probability
that individual conditional voter competence is at level 0.5 + ϵ is larger than that at level 0.5 − ϵ. This
subsumes the conditions developed by Ladha (1993). However, this assumption is inconsistent, for instance,
with the simple binary case that voter competence is, say, 0.8 and 0.4 both with probability 1/2.

125 To be precise, they consider the class of aggregators which are ‘unbiased’ to the effect that they treat
acceptance/rejection decisions symmetrically (hence there is no ‘bias’ to accept or reject). While this
condition might be reasonable on procedural grounds, it may seem less compelling for epistemic reasons.
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Part V: Premise vs. Conclusion Based Judgment Aggregation with Correlated Voters

(higher values of t > 0) are superior for small groups of moderately competent voters (the
CBP corresponds to t = ∞).

Our work extends this analysis but differs in at least two important respects. First, and
foremost, while all of the above studies assume voters to be (unconditionally) competent
and independent, we propose a simple and tractable model that features correlated voters
which are competent on average (but may be incompetent in a state of low/inadequate
information). Second, while the literature that is closest to our work (Bovens and Rabi-
nowicz, 2006; Hartmann et al., 2010) has only considered conjunctive agendas, we allow for
a general truth-functional conclusion. Moreover, we argue that it is insightful to conduct
the analysis separately for every possible true state of the world (truth scenario). Thus
allows us to uncover uncertainty that is disguised when weighting all scenarios with equal
prior probability as previous studies did. In particular, we show that in the uncorrelated
case – which parallels that of the cited literature – the reliability of the PBP and the
CBP can be decomposed into a majority function (reflecting the insights of the classic
Condorcet Jury Theorem) and a scenario function (capturing how premise competences
translate into correct conclusion judgments for a given truth-scenario and agenda). Both
approaches differ only to the extent that their respective reliability is a reverse concatena-
tion of these two functions. This facilitates the analysis both from the intuitive and the
analytical perspective.

Lastly, as first pointed out in this context by Austen-Smith and Banks (1996), even
if group members share a common interest, truth-telling need not be an equilibrium (of
an adequately defined game). That is, in general, voters cannot be relied upon to reveal
their private information. While this can be addressed in terms of a design problem
regarding the aggregation procedure to be used (for recent example, see, e.g., Bozbay
et al., 2014; de Clippel and Eliaz, 2015; Bozbay, 2019), we do not address this issue here.
We note, however, that problems with insincere voting may not be robust when voters are
motivated by expressive concerns (that is, by a desire to express their true opinion; see,
e.g., Schuessler, 2000) in addition to instrumental concerns (that is, how their votes affect
outcomes). This is due to the fact that every single voter’s probability of being pivotal (in
majority voting) is small in large groups (see, e.g., Dietrich and Spiekermann, 2019).
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16 The Model

Consider an agenda consisting of K ∈ N independent premises and one (truth-functional)
conclusion. For this purpose, let a (truth) scenario or state (of the world) x ∈ X := {0, 1}K

be an assignment of truth values xk to premises k = 1, . . . ,K, where xk = 1 if premise
k is true and xk = 0 if it is false. Then, every agenda under consideration is represented
by some function F : X → {0, 1} that maps every scenario to a truth assignment for
the conclusion.126 For example, the agenda consisting of two premises P1 and P2 and the
conclusion C ↔ (P1 ↔ P2) corresponds to F (0, 0) = F (1, 1) = 1 and F (1, 0) = F (0, 1) = 0.

We interpret states x ∈ {0, 1}K as reflecting the objective truth about the premise (and
hence conclusion) judgments under consideration. Yet this truth is unknown to voters
i ∈ N. We assume that, for every premise k = 1, . . . ,K, voter i receives a noisy (Bernoulli)
signal

ṽki = xk ⊞ ẽki ∈ {0, 1}, (16.1)

where ⊞ is addition on the set {0, 1} such that 0⊞ 0 = 1⊞ 1 = 0 and 0⊞ 1 = 1⊞ 0 = 1.127

Thus, in assessing premise k, voter i makes the random (Bernoulli) error ẽki ∈ {0, 1}. If
ẽki = 0, signal ṽki recovers the true premise state xk; that is, voter i is correct about premise
k. If ẽki = 1, on the other hand, voter i is wrong about premise k. Given voter i receives
signals ṽi = (ṽ1i , . . . , ṽ

k
i , . . . , ṽ

K
i ), she then deduces the conclusion signal F (ṽi).

16.1 Error Model

In the following, we study errors that are identically distributed and independent across
premises but may be correlated across voters (for a given premise).128 Technically, we
assume that (i) for every k = 1, · · ·K, (ẽki )i∈N is an exchangeable sequence of (identi-
cally but not necessarily independently distributed) errors;129 and that (ii) the sequences
(ẽki )i∈N, k = 1, . . . ,K are identically distributed and jointly independent.130 For any given

126 As the conclusion is truth-functionally determined by the premises, every agenda is uniquely represented
by some such function F .

127 That is, ({0, 1}.⊞) is an Abelian group.
128 Seeing that ẽki can be defined as ẽki := ṽki ⊟x

k, equation (16.1) is perfectly general. All assumptions on the
joint distribution of voter signals ṽki can thus be equivalently put as assumptions on the joint distribution
of errors ẽki .

129 A sequence of random variables ỹ1, ỹ2, . . . is exchangeable iff for every finite permutation σ, the distribu-
tion of the permuted sequence ỹσ(1), ỹσ(2), . . . is the same as that of the original sequence.

130 We say that two sequences (ỹi)i∈N and (z̃i)i∈N are independent if, for all i1, . . . , in ∈ N, the random
vectors (ỹi1 , . . . , ỹin) and (z̃i1 , . . . , z̃in) are independent. Two random vectors (ỹ1, . . . , ỹn), (z̃1, . . . , z̃n) are
said to be independent if P(ỹ1 = y1, . . . , ỹn = yn, z̃1 = z1, . . . , z̃n = zn) = P(ỹ1 = y1, . . . , ỹn = yn)P(z̃1 =
z1, . . . , z̃n = zn) for all realizations y, z. Note that this does exclude that the component random variables
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Part V: Premise vs. Conclusion Based Judgment Aggregation with Correlated Voters

premise, denote any single voter’s probability of being correct by p and let 0 ≤ ρ ≤ 1 be the
positive correlation of errors across voters.131 As any two

(
ẽki
)
i∈N,

(
ẽli
)
i∈N are identically

distributed, both p and ρ must be constant across premises. That is, for all k = 1, . . . ,K

and all i ̸= j ∈ N:
p = pki := P(ṽki = xk) = P(ẽki = 0)

and

ρ = ρki,j :=
CoV (ẽki , ẽ

k
j )

σẽki
σẽkj

=
CoV (ẽki , ẽ

k
j )

p(1− p)
.

To make the analysis tractable, we assume that voters’ errors are given by

ẽki = (1− m̃k
i )b̃

k
i + m̃k

i c̃
k, (16.2)

where b̃ki , m̃
k
i , c̃

k are Bernoulli random variables with b̃ki , c̃
k ∼ B(1 − p) and m̃k

i ∼ B(
√
ρ)

such that (b̃ki , m̃
k
i , c̃

k)i∈N,k=1,...,K are jointly independent. Thus, individual errors ẽki are
‘mixtures’ of i.i.d. errors b̃ki and an error c̃k that is common to all voters. Both errors
have the same accuracy P(bki = 0) = P(ck = 0) = p. We may interpret c̃k as a common
information source (on premise k) access to which fully explains the dependence structure
between individual signals. That is, when conditioned on c̃k, individual errors (respectively,
signals) as defined by Equation (16.2) are independent.

Seeing that

p+
√
ρ(1− p) = P(ẽki = 0|c̃k = 0) ≥ P(ẽki = 0|c̃k = 1) = p−√

ρp (16.3)

we define
pH := p+

√
ρ(1− p) and pL := p−√

ρp (16.4)

to be the individual probabilities of being correct in case of high (c̃k = 0) and low (c̃k = 1)
collective competence. Thus, c̃k moves all individual competences for premise k above or
below the average level

P(ẽki = 0) = ppH + (1− p)pL = p.

To verify that the structure prescribed by equation (16.2) is in accordance with the assump-
tions made above, note that for all k = 1, . . . ,K and all i ̸= j ∈ N, eki , e

k
j are i.i.d. Bernoulli

of ỹ depend on each other, and likewise for z̃. Joint independence refers to the generalization of these
concepts to the respective joint distributions.

131 Note that p and ρ are necessarily constant across voters for any fixed k since (ẽki )io∈N is exchangeable.
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random variables (eki , e
k
j ∼ B(1− p)) such that

CoV (ẽki , ẽ
k
j ) = E[E[ẽki ẽkj |c̃k]]− E[ẽki ]E[ẽkj ]

= pP(ẽki = ẽkj = 1|c̃k = 0) + (1− p)P(ẽki = ẽkj = 1|c̃k = 1)− (1− p)2

= p(1− p)2(1−√
ρ)2 + (1− p) ((1− p) +

√
ρp)2 − (1− p)2

= ρp(1− p).

Moreover, joint independence of all b̃ki , m̃
k
i , c̃

k implies joint independence of the error se-
quences

(
ẽ1i
)
i∈N , . . . ,

(
ẽKi
)
i∈N.

In technical terms, c̃k is referred to as a latent random variable with the help of which
the joint distribution of the exchangeable sequence (ẽki )i∈N can be expressed as a ‘mixture’
of that of i.i.d. sequences (ẽki |ck)i∈N. More generally, De Finetti’s Theorem states that
such latent random variables taking values in [0, 1] exist for any exchangeable sequence.
Consequently, equation (16.2) adds two restrictions to the general case: (i) the latent
random variables are themselves binary ; (ii) the probability of high collective competence
(P(c̃k = 0)) is equal to the average individual competence p. This is shown in Appendix
D.1.

16.2 State-Dependent Probability of Correct Conclusion Judgments

While the error model above prescribes a joint probability distribution over events spec-
ifying which individuals are correct on what premise judgments, we are ultimately inter-
ested in the probability of correct conclusion judgments. Given an agenda represented by
F : X → {0, 1} and probabilities q1, . . . , qK of correct premise-k signals, the probability of
deriving a correct conclusion judgment from independent premise signals is given by

f̂x(q1, . . . , qK) :=
∑

v∈{0,1}K :
F (v)=F (x)

K∏
k=1

q
1−|xk−vk|
k (1− qk)

|xk−vk|. (16.5)

Seeing that f̂x(q1, . . . , qK) is determined by the truth scenario x ∈ X, we refer to f̂x as
the scenario function. We note that f̂x is affine in all of its arguments.132 If all premise
accuracies are equal (if q = q1 = q2 = · · · = qK), then f̂x reduces to the one-dimensional
scenario function

fx(q) := f̂x(q, . . . , q) =
∑

v∈{0,1}K :
F (v)=F (x)

qK−||x−v||1(1− q)||x−v||1 .133 (16.6)

132 See Lemma 15 in the Appendix.
133 Where || · || is the 1-norm on {0, 1}K . That is, for all y ∈ {0, 1}K , ||y||1 =

∑K
k=1 |yk|.

105



Part V: Premise vs. Conclusion Based Judgment Aggregation with Correlated Voters

For example, consider the agenda given by two premises P1 and P2 and the conclusion
C ↔ (P1∧P2) and represented by F : {0, 1}2 → {0, 1} such that F (x) = 1 ⇐⇒ x = (1, 1).
Figure 16.1 plots fx for all states x = (0, 0), (0, 1), (1, 0), (1, 1). In state x = (0, 0) (where
F (x) = 0), a correct conclusion will be reached unless both premise signals are wrong. That
is, fx=(0,0)(q) = 1− (1− q)2. In scenario x = (1, 1) (where F (x) = 1), on the other hand, a
correct conclusion emerges only if all premises are judged correctly; hence fx=(1,1)(q) = q2.
Lastly, when x = (1, 0) or x = (0, 1) (and F (x) = 0), the correct conclusion is reached
unless the true premise is rightly judged to be correct while the false premise is wrongly
judged to be true. Thus, fx(q) = 1 − q(1 − q) for x = (1, 0), (0, 1). Note in particular
that competent premise judgments may not result in competent conclusion judgments. To
see this, reconsider state x = (1, 1). If voter i ∈ N receives independent premise signals
that are correct with probability p > 0.5, she is correct on the conclusion with probability
fx=(1,1)(p) = p2. Thus, for p ∈ (0.5, 1/

√
2), she is competent on the premises (p > 0.5) but

not on the conclusion (fx=(1,1)(p) < 0.5).

As another example consider the conclusion C ↔ (P1 ↔ P2). Here, in each of the states,
the correct conclusion is reached if and only if both premises are either judged correctly
or incorrectly. That is, fx(q) = q2 + (1− q)2 for x = (0, 0), (0, 1), (1, 0), (1, 1). Figure 16.2
depicts the scenario function for this agenda.

We note some immediate properties of f̂x(·, . . . , ·) and fx(·) that hold no matter what
the agenda and independent of the concrete state x under consideration. First, note that
all f̂x (and hence fx) are (infinitely) continuously differentiable. Second, f̂x(1, . . . , 1) =

fx(1) =
∏K

k=1 1
1−|xk−xk|0|xk−xk| = 1. Third, for all x ∈ {0, 1}K , let x̄ be such that for all

k = 1, . . . ,K, x̄k = 1 if xk = 0 and x̄k = 0 if xk = 1. Then, f̂x(0, . . . , 0) = fx(0) = 1

if F (x̄) = F (x) and f̂x(0, . . . , 0) = fx(0) = 0 else (i.e. if F (x̄) ̸= F (x)). Moreover,
f̂x(0.5, . . . , 0.5) = fx(0.5) =

∑
v∈{0,1}K :F (v)=F (x) 0.5

K = |{v∈{0,1}K :F (v)=F (x)}|
2K

.

16.3 The Premise and Conclusion Based Procedure

We study two particularly simple procedures to combine voters’ judgments into a col-
lective conclusion judgment. The Premise Based Procedure (PBP) derives the latter
truth-functionally from premise-wise majority judgments while the Conclusion Based Ap-
proach (CBP) constructs it directly from the majority of voters’ conclusion judgment.
Consider any finite amount n ≥ 1 of voters. As voters’ signals are exchangeable we
may consider the n voters first in line without any loss of generality. For i = 1, . . . , n,
let vi ∈ {0, 1}K be a realization of the random vector ṽi = (ṽ1i , . . . , ṽ

K
i ) where all ṽki

are subject to equation (16.2) for k = 1, . . . ,K. Moreover, for all k = 1, . . . ,K, let
ṽk[n] = (ṽki )i=1,...,n denote the vector containing the first n voters’ premise signals. For
judgments y1, . . . , yn ∈ {0, 1}, let m(y1, . . . , yn) denote the majority judgment (which ex-
ists and is unique for odd n). Given voters’ realizations v1, . . . , vn, the PBP determines
the truth value of the conclusion truth-functionally based on majority judgments on the

106



16.3 The Premise and Conclusion Based Procedure

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

q

f x
(q
)

x = (0, 0)

x = (1, 1)

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

q

f x
(q
)

x = (1, 0), (0, 1)

Figure 16.1: Scenario function fx for C ↔ (P1 ∧ P2)

premises: F (m(v11, . . . , v
1
n), . . . ,m(vK1 , . . . , v

K
n )). In scenario x ∈ {0, 1}K , the probability

of uncovering the true conclusion state F (x) is thus given by

P x
ρ,n(p) :=P(F (m(ṽ1[n]), . . . ,m(ṽK[n])) = F (x))

=P(ṽ1 = v1, . . . , ṽn = vn : F (m(v11, . . . , v
1
n), . . . ,m(vK1 , . . . , v

K
n )) = F (x)). (16.7)

On the other hand, the CBP reaches a judgment on the conclusion by direct majority
voting on voters’ conclusion signals F (v1), . . . , F (vn). Here, the probability of reaching the
correct conclusion F (x) in scenario x is given by

Cx
ρ,n(p) :=P(m(F (ṽ1), . . . , F (ṽn)) = F (x))

=P(ṽ1 = v1, . . . , ṽn = vn : m(F (v11, . . . , v
K
1 ), . . . , F (v1n, . . . , v

K
n )) = F (x)). (16.8)
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Figure 16.2: Scenario function fx for C ↔ (P1 ↔ P2)

We also refer to P x
ρ,n and Cx

ρ,n as the reliability of the Premise and Conclusion Based
Procedure respectively. Note that these reliabilities are inherently scenario-dependent.
Given an agenda represented by F : X → {0, 1}, scenario x ∈ X and parameters ρ and n,
they are functions in voters’ competence p.

If some a priori probability distribution over truth scenarios π ∈ ∆{0, 1}K exists, it is
possible to consider the weighted reliability functions

Pρ,n(p) =
∑

x∈{0,1}K
π(x)P x

ρ,n and Cρ,n(p) =
∑

x∈{0,1}K
π(x)Cx

ρ,n.

However, seeing that the essence of the epistemic exercise is to form judgments on proposi-
tions of unknown truth value, it is unclear where such a priori probabilities would originate
exactly. Therefore, our analysis below will not pre-suppose a prior probability distribution
over truth scenarios.
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17 Independent Voters

For every premise k = 1, . . . ,K, the probability that the majority of n independent (voter)
signals of accuracy p is correct is given by (assuming n is odd)

gn(p) :=
∑

m>n/2

(
n

m

)
pm(1− p)n−m. (17.1)

As the properties of gn depend only the group size n but are independent of the agenda and
the truth scenario, we refer to it as the majority function. Note that for every finite n ∈ N,
gn(·) is (infinitely) continuously differentiable, gn(0) = 0, gn(0.5) = 0.5 and gn(1) = 1.
Moreover, as n→ ∞ (see, e.g., Grofman et al., 1983),

gn(p) ↓ 0 for p ∈ (0, 0.5) and gn(p) ↑ 1 for p ∈ (0.5, 1). (17.2)

These properties capture the two statements of the classical Condorcet Jury Theorem: For
competent voters (p > 0.5), the probability that majority voting on a single proposition
yields the correct result is increasing in group size (finite part) and converges to 1 (asymp-
totic part) as the group grows infinitely large. Figure 17.1 plots the majority function for
n = 1, n = 5 and n = 51 voters (left) as well as the limit step function g∞(·) := lim

n→∞
gn(·)

(right).
For ρ = 0, equation (16.2) reduces to a model of i.i.d. errors ẽki . All voter signals ṽki

are i.i.d. both across premises and voters. Thus, majorities being correct on the premises
k = 1, . . . ,K are independent events, each of which occurs with probability gn(p). Con-
sequently, the PBP’s probability of reaching the correct conclusion in scenario x is given
by

P x
ρ=0,n(p) = fx(gn(p)). (17.3)

The CBP, on the other hand, relies on majority voting on voters’ conclusion signals. In sce-
nario x, voter i receives a correct such conclusion signal with probability fx(p). As voters’
conclusion signals are independent (seeing that they are functions of jointly independent
random variables), the probability that the CBP yields a correct result is given by

Cx
ρ=0,n(p) = gn(fx(p)). (17.4)

Generally speaking, aggregation happens along two dimensions: voters and propositions.
First, for a given proposition, we can aggregate dispersed voter information into a collective
(majority) signal. Second, any set of premise signals v ∈ {0, 1}K logically translates into a
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Figure 17.1: Majority function gn(·) for n = 1, n = 5 and n = 51 (left) and for n = ∞ (right)

conclusion signal F (v). The PBP and the CBP differ in that they aggregate information
along these two dimensions in opposite order. The PBP pools voter information at the
premise level before logically combining these majority premise signals into a conclusion.
The CBP has voters combine premise information into a conclusion signal at the individ-
ual level first. Then, voters’ conclusion signals are aggregated into a collective judgment
(by majority voting). Thus, formally speaking, the reliability of both approaches can be
expressed as reverse compositions of the majority function gn(·) and the scenario function
fx(·) (for an example, see Figures 17.3 and 17.4 further below).
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17.1 Asymptotic Analysis

17.1 Asymptotic Analysis

We begin by analyzing the performance of both approaches as the number of competent
(p > 0.5) voters approaches infinity. Consider the PBP first. Since, no matter the agenda
F : X → {0, 1} nor the scenario x ∈ X, the scenario function fx(·) is continuous, we have
limn→∞ P x

ρ=0,n(p) = fx(g∞(p)). As the probability of a correct majority judgment on any
premise converges to 1 (g∞(p) = 1 for p ∈ (0.5, 1], cf. Equation (17.2)), the PBP reaches
the correct conclusion with asymptotic certainty.

Generally speaking, the same is not true for the CBP, however. At every competence
level p ∈ (0.5, 1], gn(fx(p)) converges to 1 if only if fx(p) > 0.5. If, for truth scenario x ∈ X,
p > 0.5 but fx(p) < 0.5, then the CBP will reach the wrong conclusion with asymptotic
certainty even though voters are competent on the premises. As an example, consider a
conjunctive agenda with two premises: C ↔ (P1 ∧ P2); that is, F (x) = 1 ⇐⇒ x = (1, 1).
If both premises are true (x = (1, 1)), we have fx=(1,1)(p) = p2 < 0.5 < p for moderately
competent voters such that p ∈ (0.5, 1/

√
2). Consequently, limn→∞C

x=(1,1)
ρ=0,n (p) = 0 at all

such p. Generally speaking, the asymptotic part of a CJT holds for the CBP in scenario
x ∈ X if and only if it is truth-conducive to the effect that competent premise judgments
translate into competent conclusion judgments. Formally, say that scenario x ∈ X is
truth-conducive for the agenda represented by F : X → {0, 1} if and only if fx(p) > 0.5

for all p ∈ (0.5, 1). We say that the agenda (represented by F ) is truth-conducive if and
only if all x ∈ X are truth-conducive for F .

Proposition 7. For every agenda (represented by) F : X → {0, 1} and all x ∈ X:

1. lim
n→∞

P x
ρ=0,n(p) = 1 for all p ∈ (0.5, 1),

2. lim
n→∞

Cx
ρ=0,n(p) = 1 for all p ∈ (0.5, 1) iff x is truth-conducive.

As the truth scenario x ∈ X is unknown, asymptotic infallibility for groups of competent
voters is guaranteed for the CBP if and only if the agenda is truth-conducive. Such
agendas do exist. As a simple example, consider an equivalence agenda with two premises
(C ↔ (P1 ↔ P2)) as introduced above: F (x) = 1 ⇐⇒ (x = (0, 0) or x = (1, 1)). Here,
recall that, for all x ∈ {0, 1}2, fx(p) = p2 + (1 − p)2 ≥ 0.5 (cf. Figure 16.2 above); thus,
F is truth-conducive. In contrast, asymptotic infallibility is guaranteed for the PBP no
matter the agenda. Thus, premise based aggregation is asymptotically non-inferior (and
situationally strictly better, cf. our discussion above) to its conclusion-based counterpart
for competent and independent voters.134

134 At the same time, for a given agenda and scenario, the CBP may outperform the PBP when also
considering non-competent voters. For example, reconsider our conjunctive agenda with two premises.
If both premises are false (x = (0, 0)), we have fx=(0,0)(p) = 1− (1− p)2 > 0.5 ⇐⇒ p > 1− 1/

√
2. Hence,

limn→∞ C
x=(0,0)
ρ=0,n (p) = 1 > 0 = fx=(0,0)(0) = limn→∞ P

x=(0,0)
ρ=0,n (p) for p ∈ (1− 1/

√
2, 0.5).

111



Part V: Premise vs. Conclusion Based Judgment Aggregation with Correlated Voters

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

p

P
x
=
(1

,1
,0
)

ρ
=
0
,n

(p
)

n = 1
n = 5
n = 51

Figure 17.2: Reliability of the PBP in scenario x = (1, 1, 0) on the agenda C ↔ (P1 ∧ P2 ∧ P3)

17.2 The Finite Case

Does the asymptotic superiority of the PBP carry over to finite samples of voters? As we
will see, this is not the case in general. First, note that the finite part of a CJT holds for the
CBP under the exact same conditions as its asymptotic counterpart: as gn(·) is increasing
in n on (0.5, 1) and decreasing in n on (0, 0.5) (cf. Equation (17.2)), Cx

ρ=0,n(p) = gn(fx(p))

is increasing in n if and only if fx(p) > 0.5. That is, the reliability of the CBP increases
in group size for all p ∈ (0.5, 1) if and only if scenario x ∈ X is truth-conducive.

Second, consider the reliability of the PBP for competence levels p ∈ (0.5, 1) in scenario
x ∈ X. As gn(p) is increasing in n, P x

ρ=0,n(p) = fx(gn(p)) is increasing in n if fx(·) is
increasing on (0.5, 1); that is, if increased competence at evaluating premises correctly
translates into higher competence at evaluating the conclusion correctly. In this case, we
say that truth scenario x ∈ X induces increasing competence. If all truth scenarios x ∈ X

on the agenda (represented by) F : X → {0, 1} induce increasing competence, we say that
the agenda induces increasing competence.

Proposition 8. For every agenda (represented by F : X → {0, 1}) and all x ∈ X:

1. P x
ρ=0,n(p) is increasing in n for all p ∈ (0.5, 1) and all odd n ≥ 1 if x induces

increasing competence,

2. Cx
ρ=0,n(p) is increasing in n for all p ∈ (0.5, 1) and all odd n ≥ 1 iff x is truth-

conducive.

For example, consider a conjunctive agenda with three premises (C ↔ (P1 ∧ P2 ∧ P3));
that is, F (x) = 1 ⇐⇒ x = (1, 1, 1). Figure 17.2 depicts the scenario function for x =

(1, 1, 0) (solid blue) alongside the reliability of the PBP for a group size of n = 5 (dashed
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blue) and n = 51 (dotted blue). The scenario function fx=(1,1,0) is decreasing on (0.5, 2/3)

and takes on its minimum at q = 2/3. Intuitively speaking, when the first two premises
are factually correct, the probability of a false conclusion is maximal when the probability
of judging the first two premises correctly while judging the last premise incorrectly is
maximal. Here the scenario x = (1, 1, 0) does not induce increasing competence. As a
consequence, the PBP becomes less reliable when increasing the number of voters from
one to five to fifty-one for competence levels p that are above but close to one half.135 Note
that x = (1, 1, 0) is truth-conducive, however. Thus, the CBP grows more reliable as the
number of voters increases.136

As another example, consider an agenda with three premises such that F (1, 1, 1) =

F (0, 0, 0) = F (1, 0, 0) = F (0, 1, 0) = 1 and F (x) = 0 else. In state x = (1, 1, 1),
we have fx=(1,1,1)(q) = q3 + (1 − q)3 + 2q(1 − q)2. Note that fx=(1,1,1)(0.5) = 0.5,
fx=(1,1,1)(0) = fx=(1,1,1)(1) = 1, fx=(1,1,1) is decreasing on (0, (1 +

√
7)/6), takes on its

minimum fx=(1,1,1)((1 +
√
7)/6) < 0.5 at q = (1 +

√
7)/6 ≈ 0.61 and is increasing on

((1 +
√
7)/6), 1). Thus, x = (1, 1, 1) is neither truth-conducive nor does it induce in-

creasing competence. Here the finite part of a Jury Theorem fails for both procedures
(for competence levels above but close to one half). However, the PBP’s reliability in-
creases in the number of voters eventually, that is for large enough odd n ≥ np where
np = min{n ∈ N : gn(p) ≥ (1 +

√
7)/6}.137 In contrast, for competence levels above but

close to 0.5, the reliability of the CBP is decreasing in n for all n and approaches 0 in the
limit.

Lastly, as an example of an agenda that features a scenario which induces increasing
competence but is not truth-conducive, consider the state x = (1, 1) on a conjunctive
agenda with two premises (cf. Figure 16.1, left).

PBP vs. CBP

While the analysis above establishes finite-sample and asymptotic properties of the PBP
and CBP in isolation, we now turn to the question of how they fare in direct comparison.
While Proposition 7 shows that the PBP is non-inferior to the CBP in the limit, this
need not be borne out by all truth scenarios in finite samples. Consider our conjunctive
agenda with two premises from above. Here, in finite samples with n > 1, the CBP
outperforms the PBP for all p ∈ (0.5, 1) in all scenarios except x = (1, 1). Figures 17.3
and 17.4 (left) illustrate the case of n = 5 voters. Thus, it is no surprise that the CBP
emerges as the winner when weighting all scenarios with equal prior probability (cf. Bovens

135 The same is true for scenarios x = (1, 0, 1) and x = (0, 1, 1), of course.
136 It is an open question whether there exists a whole agenda that is truth-conducive but does not induce

increasing competence. Note that, in our present example, while scenario x = (1, 1, 0) is truth-conducive,
the agenda as a whole is not. For example, in scenario x = (1, 1, 1), we have fx=(1,1,1)(q) = q3.

137 Note, however, that np grows indefinitely large as p ↓ 0.5.
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Figure 17.3: The CBP (red) outperforms the PBP (blue) in scenarios x = (0, 0) (left) and x =
(1, 0), (0, 1) (right) on the agenda C ↔ (P1 ∧ P2)

and Rabinowicz, 2006).138 However, it must be stressed that weighted behavior disguises
the fact that the CBP’s reliability is much more dependent on the truth scenario when
compared to the PBP. Indeed, the CBP performs well in scenarios that feature high levels
of voter competence anyway (in scenarios x = (0, 0), (1, 0), (0, 1)), while it performs poorly
in scenarios that are not truth-conducive (in scenario x = (1, 1)). Thus, the rationality
of choosing the CBP over PBP critically relies on (i) the prior probability of the non-
truth-conducive scenario x = (1, 1) being not too high and (ii) a sufficient ‘tolerance’ for

138 Note that the states x = (0, 0) and x = (1, 1) are symmetric to the effect that when both are weighted
with equal (prior) probability, differences in reliability between the two procedures exactly cancel out.
Thus, comparisons of weighted reliability are driven entirely by the scenarios x = (1, 0), (0, 1) in both of
which the CBP outperforms the PBP.
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Figure 17.4: The PBP (blue) outperforms CBP (red) in scenario x = (1, 1) on the agenda C ↔
(P1 ∧ P2) (left) and in all scenarios on the agenda C ↔ (P1 ↔ P2) (right) for n = 5
voters

risk or uncertainty. Indeed, if both procedures are compared based on worst-case behavior
(a max-min rationale reflecting ‘infinite’ aversion to uncertainty), scenario x = (1, 1) is
pivotal: minx∈{0,1}2 P

x
ρ=0,n(p) = P

x=(1,1)
ρ=0,n (p) > C

x=(1,1)
ρ=0,n (p) = minx∈{0,1}2 C

x
ρ=0,n(p) for all

p ∈ (0.5, 1) and all odd n > 1.
At the same time there exist agendas for which the PBP is more reliable in all truth

scenarios. As a simple example, reconsider the equivalence agenda with two premises and
remember that fx(q) = q2 + (1 − q)2. Figure 17.4 (right) shows the case of n = 5 voters.
However, results are qualitatively similar for all odd n > 1.
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18 Correlated Voters

Reconsider Equation (16.2) and recall that voters’ signals on premises k = 1, . . . ,K are
correlated only due to their joint dependence on the latent random variables c̃1, . . . , c̃K .
When conditioning on them, signals are independent both across voters and premises.
That is, errors (ẽki |c̃k)i∈N are i.i.d. sequences such that (cf. Equations (16.3) and (16.4)):

P(ẽki = 0|c̃k = 0) = pH = p+
√
ρ(1− p)

and
P(ẽki = 0|c̃k = 1) = pL = p−√

ρp.

Let y = (y1, . . . , yK) ∈ {0, 1}K be a joint realization of the (latent) random variables
c̃1, . . . , c̃K . For premise k = 1, . . . ,K, a majority of voters is correct on it with probability
gn(p

1−yk
H pykL ) (that is, with probability gn(pH) if yk = 0 and gn(pL) if yk = 1).139 As these

are conditionally independent events, the PBP is correct with probability

P x
ρ,n(p) =

∑
y∈{0,1}K

P(c̃1 = y1, . . . , c̃
K = yK) · f̂x(gn(p1−y1

H py1L ), . . . , gn(p
1−yK
H pyKL )). (18.1)

At the same time, each individual voter’s conditional probability of being correct on the
conclusion (her conditional conclusion competence) is given by f̂x(p

1−y1
H py1L , . . . , p

1−yK
H pyKL ).

As all voters’ conclusion signals are conditionally independent (as functions of conditionally
independent random variables), the CBP is correct with probability

Cx
ρ,n(p) =

∑
y∈{0,1}K

P(c̃1 = y1, . . . , c̃
K = yK) · gn(f̂x(p1−y1

H py1L , . . . , p
1−yK
H pyKL )). (18.2)

Note that, conditional on the (latent) random variables c̃1, . . . , c̃K , the two procedures
differ only in terms of the order of applying the group majority gn(·) vs. the scenario
function f̂x(·, . . . , ·) – in analogy to the uncorrelated case.

As c̃1, . . . , c̃K are jointly independent, the error sequences (ẽki )i∈N are independent across
premises. For every premise k = 1, . . . ,K, with probability p (resp., 1 − p), individual
competences are raised (lowered) to pH (resp., pL). Thus, the probability of a correct
premise majority is given by pgn(pH) + (1 − p)gn(pL). As this probability is identical for
all premises and the corresponding majority events are independent, we have the following
result.

139 Note that, unless all realizations y1, . . . , yK are identical, these probabilities vary across premises.
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Figure 18.1: Majority function gρ,n for ρ = 1/9 and different population sizes n

Proposition 9. Equation (18.1) reduces to: P x
ρ,n(p) = fx(pgn(pH) + (1− p)pL).

Technically speaking, the result is due to the fact that (i) the state function f̂x(·, · · · , ·)
is linear in all of its arguments (cf. Lemma 15 in the Appendix) and (ii) joint independence
of c̃1, · · · , c̃K implies P(c̃1 = y1, . . . , c̃

K = yK) = pK−||y||1(1− p)||y||1 . In contrast, as gn(·)
is non-linear, Cx

ρ,n(p) cannot be simplified along the lines of Proposition 9.

Due to its importance to the PBP, we define

gρ,n(p) := pgn(p+
√
ρ(1− p)) + (1− p)gn((1−

√
ρ)p), (18.3)

so that P x
ρ,n(p) = fx(gρ,n(p)).

18.1 Asymptotic Analysis

We start by considering the PBP. Clearly, the asymptotic behavior of P x
ρ,n(·) is driven by

that of gρ,n(·). Now, at every p ∈ (0.5, 1], gρ,n(p) is the weighted average of gn evaluated at
pL = p−√

ρp < p and pH = p+
√
ρ(1− p) > p. As n→ ∞, gn can only take on the values

0 or 1 (except at 0.5, cf. Figure 17.1). Since 0.5 < p < pH , we always have gn(pH) → 1.
Now if 0.5 < pL, then gn(pL) → 1 hence gρ,n(p) → 1. On the other hand, if pL < 0.5, we
have gρ,n(p) → (1− p) · 0+ p · 1 = p. Lastly, if 0.5 = pL, then gn(p) → p+ (1− p)/2. Note
that we have pL = (1 − √

ρ)p ≤ 0.5 ⇐⇒ p ≤ 0.5/(1−√
ρ) = 0.5 ·

(
1 +

√
ρ/(1−√

ρ)
)
.

This case always obtains when correlation is sufficiently high; namely when 0.25 ≤ ρ ≤ 1.

The following Proposition is immediate (seeing that fx is continuous):
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18.1 Asymptotic Analysis

Proposition 10. Let p ∈ (0.5, 1]. For 0 < ρ < 1
4 , let p∗ρ := 1

2(1−√
ρ) . Then, as n→ ∞,

P x
ρ,n(p) = fx(gρ,n(p)) →


1 p∗ρ < p ≤ 1

fx
(
p∗ρ + (1− p∗ρ)/2

)
p = p∗ρ

fx(p) 0.5 < p < p∗ρ

.

For 1
4 ≤ ρ ≤ 1, we have lim

n→∞
P x
ρ,n(p) = fx(p) for all p ∈ (0.5, 1].

Unlike in the uncorrelated case, the PBP does not satisfy the asymptotic part of a Jury
Theorem. As p∗ρ = 1/(2(1−√

ρ)) > 0.5 for every ρ > 0, it fails for competence levels close
to 0.5. For all such p ∈ (0.5, p∗ρ), the asymptotic reliability of the PBP equals that of a
single voter.

Consider the CBP next. Again, in the limit n → ∞, gn(p) takes on the value 1 if
p > 0.5, the value 0.5 if p = 0.5 and the value 0 if p < 0.5. So the probability of
a correct CBP conclusion is given by the total probability that latent random variables
produce conditional voter competences above 0.5 for the conclusion (plus one half times
the total probability that they produce conditional voter competences of exactly 0.5 for
the conclusion). That is,

Cx
ρ,n(p) =

∑
y∈{0,1}K :

f̂x(p
1−y1
H p

y1
L ,...,p

1−yK
H p

yK
L )>0.5

pK−||y||1(1− p)||y||1

+ 0.5·
∑

y∈{0,1}K :

f̂x(p
1−y1
H p

y1
L ,...,p

1−yK
H p

yK
L )=0.5

pK−||y||1(1− p)||y||1 .

Note that unless p = 1, all possible realizations y1, . . . , yK of the (latent) random variables
c̃1, . . . , c̃K have strictly positive probability. Thus, Equation 18.2 implies that the CBP
is asymptotically infallible in scenario x ∈ X and for competence level p ∈ (0.5, 1] if and
only if all corresponding conditional conclusion competences of voters exceed 0.5. This is
stated in the following Proposition.

Proposition 11. Let p ∈ (0.5, 1]. Then Cx
ρ,n(p) → 1 as n→ ∞ if and only if we have:

miny∈{pL,pH}K f̂x(y1, . . . , yK) > 0.5.

As in the case of uncorrelated voters, the asymptotic part of a Jury Theorem does not
hold for the CBP.

In analogy to the case of uncorrelated voters, the CBP’s asymptotic infallibility de-
pends not only on voters’ competence p and the correlation ρ but critically also on the
concrete scenario x ∈ X under consideration (note its presence in Proposition 11); hence,
in particular, on the agenda. In contrast, Proposition 10 shows that this is not true for
PBP. Whether, at some given level of voter competence p, it produces correct conclu-
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sion judgments with asymptotic certainty depends only the correlation ρ. The PBP is
asymptotically infallible for all p such that 2p ≤ 1/(1−√

ρ) (and for no p if ρ ≥ 1/4).

While the PBP is asymptotically non-inferior to the CBP in the uncorrelated case no
matter the scenario and agenda, this is not true any more in the presence of correlation.
For example, reconsider the scenario x = (0, 0) for the agenda C ↔ (P1 ∧ P2). Here, we
have f̂x=(0,0)(q1, q2) = 1− (1− q1)(1− q2). As f̂x=(0,0) is increasing in both q1 and q2, it is
minimal when q1 and q2 are. Therefore, at every p ∈ (0.5, 1], the CBP asymptotically yields
the correct result with certainty if and only if f̂x=(0,0)(pL, pL) = fx=(0,0)(pL) = 1−(1−p(1−
√
ρ))2 > 0.5. That is, if and only if p > (1− 1/

√
2)/(1−√

ρ). For example, when ρ = 1/9,
this holds for all p ∈ (0.5, 1].140 In contrast, p∗ρ=1/9 = 3/4. Consequently, we have for all

p ∈ (0.5, 0.75): limn→∞C
x=(0,0)
ρ=1/9,n(p) = 1 > fx=(0,0)(p) = 1− (1− p)2 limn→∞ P

x=(0,0)
ρ=1/9,n(p).

On the other hand, for scenario x = (1, 1), we have f̂x=(1,1)(q1, q2) = q1q2 which is
increasing in both q1 and q2. Therefore, at every p ∈ (0.5, 1], the CBP asymptotically
yields the correct result with certainty if and only if f̂x=(1,1)(pL, pL) = fx=(1,1)(pL) =

p2(1−√
ρ)2 > 0.5. That is, if and only if p > 1/(

√
2(1−√

ρ)). Such p ∈ (0.5, 1] exist only
if ρ < (3− 2

√
2)/2 < 0.1. For example, if ρ = 1/9, we have limn→∞C

x=(1,1)
ρ=1/9,n(p) < 1 for all

p ∈ (0.5, 1]. In particular, for all p ∈ (p∗ρ=1/9, 1] = (0.75, 1], we have limn→∞C
x=(1,1)
ρ=1/9,n(p) <

1 = limn→∞ P
x=(1,1)
ρ=1/9,n(p). Moreover, note that, at every p ∈ (0.5, 1], f̂x=(1,1) is maximal

when both (latent) random variables realize to y1 = y2 = 0 so as to increase voters’
conditional competences for both premises to pH . Consequently, if f̂x=(1,1)(pH , pH) =

fx=(1,1)(pH) < 0.5, the CBP asymptotically yields the wrong result with certainty. For
0 < ρ < (

√
2 − 1)2 ≈ 0.17, this is the case if and only if p < (1/

√
2 − √

ρ)/(1 − √
ρ).141

For example, if ρ = 1/9, (1/
√
2 − √

ρ)/(1 − √
ρ) ≈ 0.56. Consequently, we have for all

p ∈ (0.5, 0.56): limn→∞C
x=(1,1)
ρ=1/9,n(p) = 0 < p2 = fx=(1,1) = limn→∞ P

x=(1,1)
ρ=1/9,n(p).

As another example, recall that on the agenda C ↔ (P1 ↔ P2), we have in all states
x ∈ {0, 1}2: f̂(q1, q2) = q1q2+(1−q1)(1−q2). For all q1 = q2 ̸= 0.5, we have f̂(q1, q2) > 0.5.
Thus, the CBP yields asymptotically infallible conclusion judgments at voters’ competence
level p ∈ (0.5, 1] if and only if pLpH + (1 − pL)(1 − pH) > 0.5. That is, if and only if
p > 0.5 +

√
ρ/(2(1−√

ρ)) = 1/(2(1−√
ρ)) = p∗ρ. Moreover, if p < p∗ρ, the CBP yields the

correct conclusion with asymptotic probability p2+(1−p)2 (the probability that y1 = y2).
As p2 + (1 − p)2 = fx(p), the CBP and the PBP are asymptotically equivalent on the
agenda C ↔ (P1 ↔ P2).142

So while the PBP’s asymptotic reliability is reduced to that of a single voter for compe-
tence levels below a threshold that only depends on the correlation ρ, the CBP’s asymptotic
behavior is uncertain to the extent that it depends on the unknown truth scenario x ∈ X

140 When ρ = 1/9, we have (1− 1/
√
2)/(1−√

ρ) ≈ 0.44.
141 For ρ ≥ (

√
2− 1)2, we have f̂x=(1,1)(pH , pH) ≥ 0.5 for all p ∈ (0.5, 1].

142 At p = p∗ρ, Cx
ρ,n(p) approaches 0.5 · (1 + p2 + (1 − p)2) while the P x

ρ,n(p) approaches 0.5 · (1 + p2).
Hence, strictly speaking, both approaches are asymptotically equivalent except at p = p∗ρ where the CBP
is superior.
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Figure 18.2: Reliability of the PBP in scenario x = (1, 1) on the agenda C ↔ (P1 ∧ P2) for
correlation ρ = 1/9

(hence, in particular, the agenda). This is familiar from our analysis for independent vot-
ers further above. However, interestingly, some of the variance in the CBP’s reliability
is reduced by correlation. Intuitively speaking, the CBP’s reliability is sensitive to the
underlying truth scenario because it depends on whether, in a given scenario, individ-
ual competences are such that voters reach the correct conclusion with probability larger
than one half. Incorporating correlation through dependence of premise signals on la-
tent random variables introduces more dispersion in terms of these conditional conclusion
competences. So in cases when the CBP is wrong on the conclusion without correlation,
there might now be some probability that it is right given correlation. The opposite holds
for situations when the CBP is correct in the absence of correlation. Here, the presence
of correlation might entail that the CBP is wrong with some probability. In this sense,
correlation is a moderating force on the CBP. In contrast, the PBP relies on aggregating
information at the premise level. Here, the presence of correlation makes premise ma-
jorities less reliable. As a consequence, individual competences have to exceed a critical
value to guarantee correct premise judgments in the limit (note that for p ∈ (0.5, p∗ρ),
limn→∞ gρ>0,n(p) = p < 1 = limn→∞ gρ=0,n(p)). Consequently, correlation tends to mod-
erate differences in asymptotic behavior between the PBP and the CBP. At the same time,
the main trade-off when considering both procedures remains the same. While the PBP
is not asymptotically infallible in the presence of correlation, its reliability at a given level
of voter competence is known. On the other hand, the CBP can produce asymptotically
more reliable judgments in some scenarios and less reliable ones in others, so choosing
it over the PBP necessitates bearing the uncertainty (or risk, in the case of known prior
probabilities on truth scenarios) this brings.
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Figure 18.3: Reliability of the CBP in scenario x = (1, 1) on the agenda C ↔ (P1 ∧ P2) for
correlation ρ = 1/9

18.2 The Finite Case

As we pointed out above, the behavior of the PBP depends largely on that of the group
majority function in the presence of correlation gρ,n(p). Interestingly, gρ,n(p) may not be
monotonically increasing with respect to voter population size n. Figure 18.1 illustrates
the probability of a correct majority (premise) judgment gρ,n(·) for correlation coefficient
ρ = 0.1 and different population sizes n = 1 (dotted), n = 5 (dashed) and n = 51 (solid).
Note how for moderately competent voters, the reliability of majority judgments increases
from n = 1 to n = 5 but decreases from n = 5 to n = 51. To see why this is the case,
note that gρ,n(p) = pgn(pH)+(1−p)gn(pL) is a convex combination of gn(pL) and gn(pH).
As pH > p > 0.5, gn(pH) is increasing in n; unless pL > 0.5 (that is, p > p∗ρ), however,
gn(pL) is decreasing in n (cf. Equation 17.2). This implies that gρ,n(p) is monotonically
increasing in n for all p ∈ (p∗ρ, 1] but ‘hump-shaped’ for all p ∈ (0.5, p∗ρ) (given that ρ ≤ 1/4;
if ρ > 1/4, it is ‘hump-shaped’ for all p ∈ (0.5, 1)).143

This non-monotonicity (for competence levels close enough to 0.5) is in contrast to
Dietrich and Spiekermann (2013) who salvage the non-asymptotic part of single-proposition
Jury Theorems. The reason is that our distribution over voters’ competence levels – pH
with probability p and pL with probability 1−p – does not have their property of ‘tendency
to exceed 0.5’ – which requires the probability mass at every 0.5+ϵ to exceed that of 0.5−ϵ.

143 For p > 0.5, pH is closer to 1 than pL is to 0 (note that 1 − pH = (1 − p)(1 − √
ρ) < p(1 − √

ρ) = pL).
As p gets closer to one of the end, more of of the increase (decrease) of gn(p) in n happens for smaller n
(that is, the rate of increase/decrease (gn+1(p)− gn(p))/(g∞(p)− g1(p)) is more strongly decaying in n as
p is closer to one of the ends; also cf. Figure 17.1). This implies that for small n, gn(pH) dominates and
gρ,n(p) is increasing in n, while for large n, gn(pH) becomes dominant and gρ,n(p) eventually decreases in
n.
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Our model fails to have that property as pL and pH are generally not symmetric around
0.5; that is, pH − 0.5 ̸= 0.5− pL.

Not surprisingly, the PBP fails to grow more reliable as the number of voters increases.
In the presence of correlation, this has two potential causes. First, analogous to the case
of uncorrelated voters, if scenario x ∈ X does not induce increasing competence (that
is, if fx(·) is not increasing on (0.5, 1]), then a higher probability of judging the premises
correctly may not translate into an increased probability of judging the conclusion correctly.
This means that P x

ρ,n(p) = fx(gρ,n(p)) may fail to increase in the number of voters n even if
gρ,n(p) does. Second, if scenario x ∈ X does induce increasing competence, then P x

ρ,n(p) is
increasing in n if and only gρ,n(p) is. As we observed above, however, gρ,n(p) fails to grow
in n (for all n) for competence levels close enough to 0.5 (or when correlation ρ ≥ 1/4).
For this reason, non-monotonicity in the number of voters is a generic property of the PBP
in our model of correlated voters. For example, Figure 18.2 plots P x

ρ=1/9,n(p) in scenario
x = (1, 1) for a conjunctive agenda with two premises and n = 1, n = 51 and n = 151

voters. Here, we have p∗ρ=1/9 = 3/4. Note how P
x=(1,1)
ρ=1/9,n(p) increases from n = 1 (solid

blue) to n = 51 (dashed blue) but decreases from n = 51 to n = 151 (dotted blue) for all
p ∈ (0.5, 0.75).

Consider the CBP next. Its reliability Cx
ρ,n(p) in scenario x ∈ X is a (probability-

)weighted average of gn(·) evaluated at all possible conditional conclusion competences
f̂x(p

1−y1
H py1L , . . . , p

1−yK
H pyKL ). Unless all of them are above (below) 0.5 at a given competence

level p, Cx
ρ,n(p) will not be monotonically increasing (decreasing) in n. In other words, the

CBP satisfies the finite part of a Jury Theorem at some p ∈ (0.5, 1] if and only if it
satisfies the asymptotic part (cf. Proposition 11). As in our discussion for the asymptotic
part above, this critically depends on the concrete scenario x ∈ X under consideration.
For example, reconsider the conjunctive agenda with two premises. Figure 18.3 plots
Cx
ρ=1/9,n(p) in scenario x = (1, 1) for n = 1 (solid red), n = 51 (dashed red) and n = 151

(dotted red) voters. Clearly, the CBP fails to grow more reliable for all p ∈ (0.5, 1] in
the scenario under consideration. On the other hand, recall that in scenario x = (0, 0)

the CBP is asymptotically correct with certainty for all p ∈ (0.5, 1] hence also grows more
reliable as n increases.

PBA vs. CBA

Table 18.1 summarizes the characterizing conditions for the finite and asymptotic part of
a Jury Theorem to hold for both the PBP and the CBP. As regards the finite part for the
PBA the stated conditions are sufficient conditions.144

144 We conjecture that these conditions are necessary as well. However, this is not immediately obvious.
Consider the case of independent voters. Intuitively, if fx(p

′′) ≤ fx(p
′) for some p′′ > p′ > 0.5 and p is

such that gn(p) = p′, then increasing n to n′ > n such that gn′(p) = p′′ would yield the desired result.
However, increasing n leads to discrete increases in gn(p) hence such n′ may not exist at a given p. On
the other hand, note that said discrete increases get arbitrarily small as n grows. Moreover, for every
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finite infinite

ρ = 0
pba:s fx increasing on (p, 1] pba: p > 0.5

cba: fx(p) > 0.5 cba: fx(p) > 0.5

ρ > 0
pba:s p > p∗ρ and fx increasing on (p, 1] pba: p > p∗ρ

cba: min
y∈{pL,pH}K

f̂x(y) > 0.5 cba: min
y∈{pL,pH}K

f̂x(y) > 0.5

Table 18.1: Characterizing (s sufficient) conditions for whether the (in)finite part of a CJT holds
at p ∈ (0.5, 1] given correlation 0 ≤ ρ ≤ 1, p∗ρ = 1/(2(1 − √

ρ)), pL = (1 − √
ρ)p and

pH =
√
ρ+ (1−√

ρ)p

As in the case of independent voters, the asymptotic properties of the PBP are indepen-
dent of the concrete scenario and agenda under consideration. However, in the presence
of correlation, the PBP fails to uncover the true conclusion with asymptotic certainty in
general. For it to hold, voters’ (average) competence needs to surpass a critical level which
increases in the extent of correlation. At competence levels below it or if correlation is too
great, the PBP is asymptotically equivalent to a single voter. For example, if correlation
ρ = 1/4 , the PBP asymptotically behaves like a single voter at all competence levels. As
in this case half of all voters’ premise signals are determined by the corresponding latent
random variable, which yields correct evidence with the same probability with which single
voters judge the premise correctly, this is hardly surprising.

Again, as for independent voters, the CBP’s asymptotic reliability critically depends on
the truth scenario x ∈ X and the agenda that is being analyzed. For some agendas, there
are scenarios for which the CBP satisfies the asymptotic part of a Jury Theorem; namely
those scenarios x ∈ X in which all possible combinations of conditional competences for the
premises lead to competent conclusion judgments (for example, see our discussion above
for ρ = 1/9 in scenario x = (0, 0) on the agenda C ↔ (P1 ∧ P2)). However, such scenarios
do not exist for every agenda. For example, reconsider the agenda C ↔ (P1 ↔ P2) when
correlation is ρ = 1/9. Recall that, here, the scenario function f̂x(q1, q2) is identical for all
scenarios x ∈ {0, 1}2 and such that the CBP yields asymptotically infallible conclusions
only for competence levels p ∈ (0.75, 1]. In this case, the same is true for the PBP. Thus,
as for the case no correlation, the two approaches exhibit the same asymptotic properties.
Interestingly, however, correlation may change how the two approaches compare in a given
finite sample of voters. Figure 18.4 plots the reliability of both procedures for n = 51

voters. While, the PBP (blue) is superior to the CBP (red) at all competence levels given
voters are uncorrelated (solid), the CBP is superior for competence levels closer to 0.5

when correlation ρ = 1/9 is present (dashed).

n ∈ N, there exists some p ∈ (0.5, 1] such that gn(p) = p′ (seeing that gn(0.5) = 0.5, gn(1) = 1 and gn is
continuous).
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Figure 18.4: PBP (blue) vs. CBP (red) on the agenda C ↔ (P1 ↔ P2) for correlation ρ = 0
(solid) and ρ = 1/9 (dashed) and n = 51 voters

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

p

fx=(1,1,1)(p)

C
x=(1,1,1)
ρ=1/4,n=51(p)

P
x=(1,1,1)
ρ=1/4,n=51(p)

Figure 18.5: PBP (blue) vs. CBP (red) in scenario x = (1, 1, 1) of the agenda C ↔ (P1 ↔ P2 ↔
P3) for correlation ρ = 1/4 and n = 51 voters

At the same time, there exist scenarios in which the PBP (remains) superior at all
competence levels. As an example, Figure 18.5 plots the reliability of both procedures in
scenario x = (1, 1, 1) on the agenda C ↔ (P1 ↔ P2 ↔ P3) for correlation ρ = 1/4 and
n = 51 voters.
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19 Conclusion

We compared the (epistemic) reliability of the Premise Based Procedure (PBP) and the
Conclusion Based Procedure (CBP) on truth-functional agendas with correlated voters.
We modeled correlation through the presence of binary latent random variables at the
premise level which were assumed to raise/lower the conditional competence (that is, the
probability of being correct) on premises above/below the average level reflecting common
access to a (binary) source of information that provides factually correct/incorrect evidence.
Conditional on the latent random variables, voters were assumed to be independent. Our
analysis was conducted separately for each possible true state of the world (truth scenario)
of a given agenda and did not (necessarily) assume a prior probability distribution on those
states.

In the absence of correlation the PBP is guaranteed to yield the correct conclusion
judgment for competent voters with asymptotic (that is, when the number of voters tends
to infinity) certainty no matter the truth scenario or the agenda under consideration.
In general, this is not true for the CBP. While it may be asymptotically infallible and
outperform the PBP for finitely many voters in a lot of truth scenarios of a given agenda,
it can lead to wrong conclusions with asymptotic certainty and be severely outperformed
by the PBP in finite samples in other truth scenarios. This makes both the finite-sample
and asymptotic properties of the CBP highly uncertain. Importantly, this uncertainty may
be disguised when considering weighted behavior that relies on assigning all truth scenarios
the same prior probability given that the CBP performs well in a majority of them.

Broadly speaking, this comparative result carries over to the case of correlated voters.
In the presence of correlation, the PBP is not guaranteed to be asymptotically infallible in
general but requires voters’ competence to be above a threshold level (strictly larger than
one half and depending on the extent of correlation). As for the uncorrelated case, this
result holds true for every truth scenario on every agenda. Likewise, the CBP’s aptness as
an epistemic procedure for correlated voters is highly sensitive to the truth scenario under
consideration. Interestingly, however, some of the variance in its reliability is moderated by
the presence of correlation. Moreover, while a choice between the CBP and the PBP pits
the CBP against an asymptotically infallible procedure in the case of independent voters,
this no longer holds for correlated voters. Ultimately, a decision between the procedures
would depend on the agenda under consideration and societal attitudes towards uncertainty
or – given a prior distribution on truth scenarios – the combined probability of scenarios
in which the CBP performs badly and societal risk attitudes.
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Our analysis relies on the simplifying assumption that latent random variables are binary
and yield correct evidence with the same probability with which voters judge premises
correctly. We believe that studying if and to what extent our findings carry over to more
general distributional assumptions would be both an interesting and important task for
future research. Our analysis suggests that the reliability of both approaches critically
hinges on the probability with which latent random variables raise voters’ competence
above one half as so to enable a classical Jury Theorem to be at work (at the premise or
conclusion level).
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A Appendix to Part II

A.1 Relation to Temptation Models of Self-Control

In the axiomatic treatment of self-control problems pioneered by Gul and Pesendorfer
(2001) self-control problems result from temptations which must be resisted at the choice
stage. When choosing some alternative x ∈ A, the decision maker incurs a self-control cost
from foregoing the most tempting alternative in A as measured in terms of a temptation
utility. Their model and two prominent generalizations thereof are special cases of our
self-control-cost representation

U(A) = max
x∈A

u(x)− C(x,A) (⋆⋆)

when (1) the choice-stage utility v is interpreted as temptation and (2) self-control costs
depend only on maximal temptations in A (and the associated shortfall in temptation
utility).

1. Gul and Pesendorfer (2001)
develop the base case in which costs are given by the temptation utility foregone by
not choosing the most tempting alternative:

C(x,A) = max
y∈A

v(y)− v(x).

2. Takeoka (2008); Noor and Takeoka (2010)
allow for marginal costs to be increasing. That is, they consider

C(x,A) = ϕ

(
max
y∈A

v(y)− v(x)

)
for some strictly increasing and convex function ϕ(·) ≥ 0 with ϕ(0) = 0.

3. Noor and Takeoka (2015)
consider menu-dependent costs

C(x,A) = ψ

(
max
y∈A

v(y)

)(
max
y∈A

v(y)− v(x)

)
for some (weakly) increasing ψ(·) ≥ 0 such that ψ(l) > 0 for all l > minx∈X v(x).
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We verify the properties of a self-control-cost function (cf. Definition 2) for C(x,A) as
defined above.

1. Gul and Pesendorfer (2001)
As

C(x,A) = max
y∈A

v(y)− v(x)

is a special case of both Takeoka (2008); Noor and Takeoka (2010) and Noor and
Takeoka (2015), the proof is included there.

2. Takeoka (2008); Noor and Takeoka (2010)
Let

C(x,A) = ϕ

(
max
y∈A

v(y)− v(x)

)
for some strictly increasing and convex function ϕ(·) ≥ 0 with ϕ(0) = 0.

a) Clearly, ϕ(maxy∈A v(y) − v(x)) > 0 only if maxy∈A v(y) − v(x) > 0; thus,
v(y) > v(x) for some y ∈ A. Vice versa, if there exists some y ∈ A such
that v(y)− v(x), then maxy∈A v(y)− v(x) > 0. As ϕ is strictly increasing and
ϕ(0) = 0, we must have C(x,A) = ϕ(maxy∈A v(y)− v(x)) > 0.

b) As ϕ is non-decreasing, we have ϕ(maxy∈A v(y) − v(x)) ≤ ϕ(maxy∈A∪B v(y) −
v(x)).

c) We show that C(x, x ∪ A) ≤ C(y,A) whenever v(x) > v(y) which is sufficient.
Consider two cases. If v(x) ≥ maxz∈A v(z), then C(x, x∪A) = ϕ(0) = 0 and the
claim is obvious. Else, maxz∈x∪A v(z) = maxz∈A v(z). As ϕ is non-decreasing,
C(x, x ∪A) = ϕ(maxz∈A v(z)− v(x)) ≤ ϕ(maxz∈A v(z)− v(y)) = C(y,A).

3. Noor and Takeoka (2015)
Let

C(x,A) = ψ

(
max
y∈A

v(y)

)(
max
y∈A

v(y)− v(x)

)
for some non-decreasing ψ(·) ≥ 0.

a) Clearly, ψ(maxy∈A v(y))(maxy∈A v(y)− v(x)) > 0 only if maxy∈A v(y)− v(x) >

0; thus, v(y) > v(x) for some y ∈ A. Vice versa, if there exists some y ∈
A such that v(y) − v(x), then maxy∈A v(y) > v(x) ≥ minz∈X v(z). Thus,
ψ(maxy∈A v(y)) > 0. Consequently, C(x,A) = ψ(maxy∈A v(y))(maxy∈A v(y)−
v(x)) > 0.

b) As ψ is non-decreasing, ψ(maxy∈A v(y))(maxy∈A v(y)−v(x)) ≤ ψ(maxy∈A∪B v(y))

(maxy∈A v(y)− v(x)) ≤ ψ(maxy∈A∪B v(y))(maxy∈A∪B v(y)− v(x)).

c) We show that C(x, x ∪ A) ≤ C(y,A) whenever v(x) > v(y) which is suf-
ficient. Consider two cases. If v(x) ≥ maxz∈A v(z), then C(x, x ∪ A) =

ψ(maxz∈A v(z)) · 0 = 0 and the claim is obvious. Else, maxz∈x∪A v(z) =
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A.1 Relation to Temptation Models of Self-Control

maxz∈A v(z). Thus, C(x, x ∪ A) = ψ(maxz∈A v(z))(maxz∈A v(z) − v(x)) ≤
ψ(maxz∈A v(z))(maxz∈A v(z)− v(y)) = C(y,A).

Noor and Takeoka (2010) consider our more general representation (⋆⋆) in their intro-
duction but give no axiomatic foundation for it. However, they do axiomatize what they
call a ‘general self-control’ model where C(x,A) = τ (x,maxy∈A v(y)) for some τ(·, ·) that is
weakly increasing in its second argument and satisfies: (i) τ(x, v(y)) > 0 =⇒ v(x) < v(y);
(ii) [u(x) > u(y) and v(x) < v(y)] =⇒ τ(x, v(y)) > 0. This does not define a self-control-
cost function in the sense of Definition 2. While, like the models presented above, it is
more specific than our model to the effect that it allows costs only to depend on the
temptation maximum (instead of all temptations in menu A), it puts less restrictions on
the structure of costs at any given menu. For example, it allows for the possibility that
τ(x,maxz∈A v(z)) < τ(z,maxz∈A v(z)) for {x, y} ∈ A even if x ≷ y (that is, if v(x) < v(y)

and u(x) > u(y)). Thus, the less tempting alternative x may incur a smaller self-control
cost (even though maxz∈A v(z)− v(x) > maxz∈A v(z)− v(y)). We would argue that this is
inconsistent with the intuition of self-control costs being caused by resisting temptation.

While sharing the axiomatic approach, the temptation models above differ from our work
as they are developed in a lottery setting and impose the Independence Axiom.145 We do
not need to invoke the expected utility assumption. A notable exception in this regard is
Gul and Pesendorfer (2006). They axiomatize a generic temptation model in a finite choice
setting. Under a regularity condition, they derive a ‘strict and generic’ representation
U(A) = ζ(maxx∈A ω(x),maxy∈A v(y)) where ζ(·, ·) is strictly increasing in the first and
strictly decreasing in the second argument. Thus, we can equivalently write U(A) =

maxx∈A ζ(ω(x),maxy∈A v(y)). Again, this may be put in the form of (⋆⋆) by letting
C(x,A) = ζ(ω(x), v(x)) − ζ (ω(x),maxy∈A v(y)) and noting that u(x) = τ(ω(x), v(x)).
As for the general model in Noor and Takeoka (2010), however, this does not define a
self-control-cost function (cf. Definition 2). Again, it is more specific than our model to
the effect that costs may depend only on maximal temptations but less demanding on the
cost structure at a given menu A such that – somewhat counter-intuitively – costs may be
smaller for a less tempting alternative.146

Our self-control-cost representation (⋆⋆) lends itself to an indirect utility interpretation
where menu A is evaluated by U(A) = maxx∈A u(x,A), the utility received from the best
alternative according to u(x,A) = u(x) − C(x,A). Gul and Pesendorfer (2001) point
out that this allows to model a desire for commitment (and the underlying problems of
self-control) without the need to invoke time-inconsistent preferences. Rather, self-control
problems are explainable in terms of preferences being menu-dependent. The experienced

145 Further examples include Dekel et al. (2009) and Stovall (2010) who generalize G&P so as to include
subjective uncertainty about temptations; Stovall (2018) additionally introduces subjective uncertainty
about commitment utility. Since we model choice-stage behavior in terms of choice functions, our model
does not incorporate uncertainty about choices.

146 Specifically, when {x, y} ⊆ A such that x ≷ y, we may have C(x,A) = ζ(ω(x), v(x)) −
ζ (ω(x),maxz∈A v(z)) < ζ(ω(y), v(y))− ζ (ω(y),maxz∈A v(z)) = C(y,A) if ω(x) < ω(y).
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utility of choosing x from some menu A (which presents the decision maker with self-
control problems) is less than that of receiving x choice-free (i.e. from the commitment
menu {x}). This creates a desire for commitment even if the decision maker’s (menu-
dependent) preferences remain unchanged as time passes.

In contrast, our PTSC representation (⋆) has a natural interpretation in terms of dy-
namic inconsistency. We may think of the decision maker as if anticipating a change of
preference from u to v. Yet, unlike for Strotz models (Strotz, 1955; Gul and Pesendorfer,
2005), PTSC agents may not just sit idly by but can constrain their own choices (made
according to v) to conform to a previously made plan. As Theorem 2 above shows, this in-
terpretation is indistinguishable from the time-consistent (indirect utility) version in terms
of the behavioral observables in our model (menu preferences and choice from menus).
Thus, temptation models of self-control are equally consistent with a dynamically incon-
sistent decision maker optimally planning to self-control. It is interesting to note, however,
that a prediction that is implicit in our PTSC representation is that observed choices
from menus should purely reflect choice-stage preferences (as represented by v) when the
planning-stage is absent. In other words, choice behavior may systematically differ when
decision makers have previously had the chance to plan (optimal self-control) as compared
to a situation when they are not (no self-control). This would be irreconcilable with the
alternative view of menu-dependent yet time-consistent preferences.

While most temptation models do not model choice from menus explicitly, the indirect
utility interpretation for preference over menus U(A) = maxx∈A u(x,A) suggests choice
according to u(x,A). For example, in Gul and Pesendorfer (2001), where u(x,A) = u(x)+

v(x)−maxy∈A v(y), the decision maker can be thought of as choosing according to u(x)+
v(x) (a compromise between commitment and temptation utility). Thus, as choice is
rationalizable by a standard (menu-independent) utility function, it satisfies WARP. The
convex (Takeoka, 2008; Noor and Takeoka, 2010) and menu-dependent (Noor and Takeoka,
2015) models allow for violations of WARP. However, both generalizations only allow for
cost specifications that feature cost differentials which are increasing in menu size. As a
consequence, these models can produce failures of WARP related to decreasing self-control
but cannot incorporate those connected to increasing self-control.

To make these statements precise, let x ≷ y. We say that choice function c(·) exhibits
decreasing self-control if there exist A,B ∈ A with {x, y} ⊆ A such that x = c(A) and
y = c(A ∪ B). While x is chosen from menu A (using costly self-control), the decision
maker loses self-control at the larger menu A∪B. Note that this constitutes a violation of
WARP (Sen’s Condition α). Analogously, we say that c(·) exhibits increasing self-control
if there exist A,B ∈ A with {x, y} ⊆ A such that y = c(A) and x = c(A ∪ B). Here, the
decision maker gains self-control as she moves from A to the larger menu A ∪ B. Again,
this violates WARP. As we argue in the main text the latter violation is of particular
behavioral interest as it reflects an exercise of self-control that is positively responsive to
the magnitude or stakes of the decision problem. Intuitively, when there is little at stake,
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the returns to self-control might be too small to put up the effort. As the stakes increase,
however, so do the benefits associated with self-control eventually making it worthwhile.
As we write in the main text above, such a magnitude effect is empirically well established
in intertemporal settings with choice between a smaller, sooner reward and a larger, later
reward, for example.

To see that the aforementioned temptation models are unable to capture this, consider
the cost differential for two alternatives such that x ≷ y; that is, u(x) > u(y) and v(x) <

v(y). For the base model in Gul and Pesendorfer (2001), it is given by maxz∈A v(z) −
v(x) − (maxz∈A v(z) − v(y)) = v(y) − v(x), a constant that is independent of the menu.
Thus, either x is the better choice globally (if u(x)−u(y) > v(y)−v(x)) or else y is (hence
no violation of WARP is possible). For the convex and menu-dependent model, the cost
differential is ϕ(maxz∈A v(z)− v(x))− ϕ(maxz∈A v(z)− v(y)) and ψ(maxz∈A v(z))(v(y)−
v(x)) respectively. Due to the convexity of ϕ and the non-decreasingness of ψ both increase
when alternatives are added to menu A. In contrast, our definition of a self-control-cost
function in representation (⋆⋆) allows for choices to exhibit increasing self-control. For
a particularly simple example, consider the case of a fixed cost k > 0. We discuss this
case in detail and consider several applications to intertemporal choice in Section 4 above.
Importantly, a fixed of self-control are inconsistent with the temptation models above.
Note that –considered as a function over foregone temptation utility– it is discontinuous
at 0. This also introduces a non-convexity.

A.2 Proof of Theorem 7

A.2.1 Sufficiency of Axioms 0.1-3

We define for all x, y ∈ X: x ≥ y : ⇐⇒ [x ≫ y or y ≷ x or x = y]. Remember that
x≫ y : ⇐⇒ x ∼ {x, y} ≻ y and y ≷ x : ⇐⇒ y ≻ {x, y} ≿ x.

Lemma 3. ≥ is a linear order on X.

Proof. By definition, ≫ and ≷ are asymmetric and irreflexive. The identity relation = is
symmetric and reflexive. Thus, x ≻ y ⇐⇒ [y ≷ x or x ≫ y] and x = y ⇐⇒ x = y

(where ≻ and = denote the asymmetric and symmetric part of ≥). By consequence, ≥ is
anti-symmetric.

As ≫, ≷ and = are transitive, so is their disjunction ≥.
Lastly, to see completeness, let x, y ∈ X. If x = y, then x ≥ y. Else, x ̸= y. As the

restriction of ≻ to singletons is a linear order, we have x ≻ y or y ≻ x. W.l.o.g. consider
the first case. By Axiom 2, {x, y} ≿ y. If x = c({x, y}), then x ≿ {x, y} by Axiom 1.
Else if y = c({x, y}), then x ≻ y ≿ {x, y} by Axiom 1. Thus, x ≿ {x, y} in both cases.
Consequently, we have x ≿ {x, y} ≿ y. As x ≻ y, we have either x ∼ {x, y} ≻ y or
x ≻ {x, y} ≿ y. Thus, x ≻ y or y ≻ x.

As ≥ is a linear order on X, there exists a utility function v : X → R representing it.
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Lemma 4. There exists a utility function U : A → R representing ≿ such that for all
x, y ∈ X and all B,C ∈ A for which y ≷ x, y = c(y ∪ C) and B ⊆ C hold, we have
U(x)− U(x ∪B) ≤ U(y)− U(y ∪ C).

Proof. As ≿ is a weak order and A is finite, there exists some Ũ : A → R representing
it.147 Defining U(A) = exp(γ · Ũ(A)), we show that the desired property holds if γ > 0 is
appropriately chosen. Note that U – it being a positive monotone transformation of Ũ –
represents ≿.

Let x, y ∈ X and B,C ∈ A be as stated above. By Axiom 1, U(y) ≥ U(y ∪ C).
Consider two cases: (1) If Ũ(x)− Ũ(x∪B) ≤ 0, we have U(x)−U(x∪B) ≤ 0 ≤ U(y)−

U(y ∪C) for every γ > 0. In this case, let γx,y,B,C = 1 > 0. (2) Else Ũ(x)− Ũ(x∪B) > 0.
By Axiom 2, x ≷ z for some z ∈ B ⊆ C; thus, y ≷ x ≷ z. By transitivity (Axiom
0.2), y ≷ z. By Axiom 1, Ũ(y ∪ C) ≤ Ũ({y, z}) < Ũ(y). Consequently, there exists
some Ū ∈ R such that Ũ(y ∪ C) < Ū < Ũ(y) and Ũ(x) < Ū . For every γ > 0, we have
U(y) − U(y ∪ C) > exp(γŨ(y)) − exp(γŪ). Moreover, strict monotonicity, convexity and
continuous differentiability of exp(γ·) imply exp(γŨ(y))−exp(γŪ) ≥ γ exp(γŪ)(Ũ(y)−Ū)

and γ exp(γŨ(x))(Ũ(x) − Ũ(x ∪ B)) ≥ U(x) − U(x ∪ B). Thus, U(y) − U(y ∪ C) >

U(x)− U(x ∪B) if

γ exp(γŪ)(Ũ(y)− Ū) ≥ γ exp(γŨ(x))(Ũ(x)− Ũ(x ∪B))

⇐⇒ γ ≥ 1

Ū − Ũ(x)
ln

(
Ũ(x)− Ũ(x ∪B)

Ũ(y)− Ū

)
.

Let γx,y,B,C = max
{

1

Ū−Ũ(x)
ln
(
Ũ(x)−Ũ(x∪B)

Ũ(y)−Ū

)
, 1
}
> 0.

Thus, the desired property holds for every γ ≥ max
x,y,B,C

γx,y,B, C > 0 where x, y,B,C are

as stated in the lemma.

For every x ∈ X, define u(x) = U(x) where U is as stated in Lemma 4. For all P ∈ A,
define xP = max(P, v) = argmaxy∈P v(y). We use Lemma 4 to define a planning-cost
function.

Lemma 5. Let ≿ be represented by U as given through Lemma 4. For all (P ⊆ A,A) ∈
A × A, let Y(P,A) = {(y, C ⊇ {z ∈ A\P : v(z) > v(xP )}) ∈ X × A : [y ≷ xP or y =

xP ] and y = c(y ∪ C)} and define

κ(P,A) =


K Y(P,A) = ∅

min
(y,C)∈Y(P,A)

(U(y)− U(y ∪ C)) Y(P,A) ̸= ∅

where K > max
A,B∈A

|U(A)− U(B)| ≥ 0.

Then, κ is a planning-cost function.
147 For example, let U(A) = |WT (A)|; where WT (A) = {B ∈ A : A ≿ B} ⊆ A.
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A.2 Proof of Theorem 7

Proof. Let ∅ ≠ P ⊆ A ∈ A. Note that for all (y, C) ∈ Y(P,A): U(y) − U(y ∪ C) ≥ 0 by
Axiom 1. Thus, κ(P,A) ≥ 0. We verify the properties of a planning-cost function:

1. First, suppose that {z ∈ A\P : v(z) > v(xP )} = ∅. As c({xP }) = xP , we have
(xP , ∅) ∈ Y(P,A). Hence κ(P,A) ≤ U(xP ) − U(xP ) = 0. Second, suppose there
exists some z ∈ A\P such that v(z) > v(xP ). If Y(P,A) = ∅, the claim is immediate.
Else, consider any (y, C) ∈ Y(P,A). Note that v(y) ≤ v(xP ) < v(z). By Axiom 3,
we cannot have u(y) < u(z). Thus, u(y) > u(z). Seeing that y ≷ z ∈ B , we have by
Axiom 1: U(y) > U({y, z}) ≥ U(y ∪ C) hence U(y) − U(y ∪ C) > 0. As this holds
for all (y, C) ∈ Y(P,A), we have κ(A,P ) = min(y,C)∈Y(P,A)(U(y)− U(y ∪ C)) > 0.

2. If xP ∈ A, then xP∩A = xP . If Y(P,A∪B) = ∅, then κ(P ∩A,A) ≤ K = κ(P,A∪B).
Else, consider any (y, C) ∈ Y(P,A ∪ B). Then, y = xP = xP∩A or y ≷ xP = xP∩A,
y = c(y ∪ C) and C ⊇ {z ∈ (A ∪ B)\P : v(z) > v(xP )} ⊇ {z ∈ A\(P ∩ A) :

v(z) > v(xP∩A)} seeing that A\(P ∩ A) = A\P ⊆ (A ∪ B)\P . Thus, (y, C) ∈
Y(P ∩ A,A). Consequently, κ(P ∩ A,A) = min(y,C)∈Y(P∩A,A)(U(y) − U(y ∪ C)) ≤
min(y,C)∈Y(P,A∪B)(U(y)− U(y ∪ C)) = κ(P,A ∪B).

3. Note that (A ∪B)\(P ∪B) = A\B.

a) If u(xP ) = u(xP∪B), then xP∪B = xP . We have Y(P ∪ B,A ∪ B) = Y(P,A);
thus, κ(P ∪ B,A ∪ B) = κ(P,A). Else, u(xP∪B) < u(xP ) implies xP∪B ̸= xP .
Thus, we must have xP ≷ xP∪B. As {z ∈ (A∪B)\(P ∪B) : v(z) > v(xP∪B)} ⊆
{z ∈ A\P : v(z) > v(xP )}, we have Y(P ∪B,A∪B) ⊇ Y(P,A). Consequently,
κ(P∪B,A∪B) = min(y,C)∈Y(P∪B,A∪B) U(y)−U(y∪B) ≤ min(y,C)∈Y(P,A) U(y)−
U(y ∪B) = κ(P,A).

b) As u(xP∪B) > u(xP ), we have xP∪B ̸= xP . Consequently, v(xP∪B) > v(xP ). If
Y(A,P ) = ∅, then κ(P ∪ B,A ∪ B) ≤ K = κ(P,A); thus, κ(P ∪ B,A ∪ B) −
κ(P,A) ≤ 0 < U(xP∪B)−U(xP ). Else, let (y∗, B∗) = argmax(y,B)∈Y(P,A) U(y)−
U(y ∪ B). We show that there exists some (y′, B′) ∈ Y(P ∪ B,A ∪ B) s.t.
U(y′)− U(y′ ∪B′)− (U(y∗)− U(y∗ ∪B∗)) ≤ U(xP∪B)− U(xP ).

Clearly, v(xP∪B) > v(xP ) ≥ v(y∗). If y∗ ≷ xP∪B, then (y∗, B∗) ∈ Y(P ∪B,A∪
B) and the claim holds trivially (noting that U(xP∪B) − U(xP ) > 0). Else,
we have xP∪B ≫ y∗. By Axiom 3, U(xP∪B ∪ y∗ ∪ B∗) > U(y∗ ∪ B∗); thus,
xP∪B = c(xP∪B ∪ y∗ ∪B∗) (by Axiom 1). U(xP∪B ∪ y∗ ∪B∗)−U(y∗ ∪B∗) > 0

implies that U(xP∪B)−U(y∗)−(U(xP∪B∪y∗∪B∗)−U(y∗∪B∗)) < U(xP∪B)−
U(y∗) ≤ U(xP∪B)− U(xP ). Finally, let y′ = xP∪B and B′ = y∗ ∪B∗.

Lastly, the claim implies that min(y,B)∈Y(P∪B,A∪B)(U(y)−U(y∪B))−(U(y∗)−
U(y∗ ∪B∗)) ≤ U(y′)−U(y′ ∪B′)− (U(y∗)−U(y∗ ∪B∗)) < U(xP∪B)−U(xP ).
That is, κ(P ∪B,A ∪B)− κ(P,A) < U(xP∪B)− U(xP ).
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Let κ be as defined in Lemma 5 and consider any A ∈ A. Let x⋆ = c(A) and define P ⋆ =

{y ∈ A : v(y) ≤ v(x⋆)}. By definition, xP ⋆ = x⋆ = c(A). As (x⋆, A\{x⋆}) ∈ Y(P ⋆, A), we
have κ(P ⋆, A) ≤ U(x⋆)−U(A). Thus, u(xP ⋆)−κ(P ⋆, A) ≥ U(A). Now consider any P ⊆ A

and any (y, C) ∈ Y(P,A). As y = c(y ∪ C) and C ⊇ {z ∈ A\P : v(z) > v(xP )}, Axiom
3 implies that {z ∈ A\P : v(z) > v(xP )} = {z ∈ A\P : v(z) > v(xP ) and u(z) < u(xP )}.
Using the fact that y = xP or y ≷ xP , y = c(y∪C) and C ⊇ {z ∈ A\P : xP ≷ z} together
with Lemma 4: U(xP )− (U(y)−U(y ∪C)) ≤ U(xP )− (U(xP )−U(xP ∪{z ∈ A\P : xP ≷

z})) = U(xP ∪{z ∈ A\P : xP ≷ z}). Now Axiom 2 implies U(xP ∪{z ∈ A\P : xP ≷ z}) ≤
U(A). We obtain u(xP ) − κ(P,A) = U(xP ) − min(y,C)∈Y(P,A) U(y) − U(y ∪ C) ≤ U(A).
Hence P ⋆ solves (⋆) and U(A) = u(xP ⋆)− κ(P ⋆, A) = maxP⊆A u(xP )− κ(P,A).

A.2.2 Necessity of Axioms 0.1–3

Suppose that ≿ is represented by U(A) = maxP⊆A u(xP )−κ(P,A) where κ is a planning-
cost function and that c(A) = xP ⋆ for some solution P ⋆ ⊆ A. Note that U({x}) = u(x)

for all x ∈ X. Thus, u represents the restriction of ≿ to singletons; that is, x ≿ y ⇐⇒
u(x) ≥ u(y). Note that the first property in the definition of a planning-cost function
implies that U(x) > U({x, y}) ≥ U(y) ⇐⇒ [u(x) > u(y) and v(x) < v(y)] as well as that
U(x) = U({x, y}) > U(y) ⇐⇒ [u(x) > u(y) and v(x) > v(y)]. Thus, x ≥ y ⇐⇒ : [x ≫
y or y ≷ x or x = y] ⇐⇒ v(x) ≥ v(y).

Axiom 0.1: ≿ is represented by some utility function, therefore a weak order. As the
restriction of ≿ to singletons is represented by some strictly increasing u : X → R, it is a
linear order.

Axiom 0.2: Let x ≷ y and y ≷ z. Then u(x) > u(y) > u(z) and v(z) > v(y) > v(x).
Hence u(x) > u(z) and v(z) > v(x); therefore, x ≷ z. Let x ≫ y and y ≫ z. Then
u(x) > u(y) > u(z) and v(x) > v(y) > v(z). Hence u(x) > u(z) and v(x) > v(z); therefore
x≫ z.

Axiom 1: Let c(A ∪ B) = x ∈ A. Suppose P ⋆ ⊆ A ∪ B solves (⋆) such that x = xP ⋆ .
Then, x = xP ⋆∩A and P ⋆ ∩ A ⊆ A. By the second property of a planning-cost function:
κ(P ⋆ ∩ A,A) = κ(P ⋆ ∩ A, (A ∪ B) ∩ A) ≤ κ(P ⋆, A ∪ B). Consequently, U(A) ≥ U(x) −
κ(P ⋆ ∩A,A) ≥ U(x)− κ(P ⋆, A ∪B) = U(A ∪B).

Axiom 2: Let P ⋆ solve (⋆) such that xP ⋆ = c(A) and assume that for all y ∈ B:
u(x) < u(y) or v(x) > v(y) (note that we may assume w.l.o.g. that x /∈ B). Define
P ′ = P ⋆ ∪ B ⊆ A ∪ B. Then xP ′ = xP ⋆ or u(xP ′) > u(xP ⋆). Using the third property of
a planning-cost function, we have U(A ∪ B) ≥ u(xP ′) − κ(P ′, A ∪ B) = u(xP ′) − κ(P ⋆ ∪
B,A ∪B) ≥ 148u(xP ⋆)− κ(P ⋆, A) = U(A).

Axiom 3: Let P ⋆ ⊆ A solve (⋆) such that xP ⋆ = c(A) and suppose x ≫ xP ⋆ , i.e.
u(x) > u(xP ⋆) and v(x) > v(xP ⋆). Seeing that x = argmaxy∈x∪P ⋆ v(y), we have U(x∪A) ≥

148 If xP ′ = xP⋆ , we use part a) of the third property of a planning-cost function; if u(xP ′) > u(xP⋆), we
employ part b).
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A.3 Proof of Theorem 2

u(x)− κ(x∪P ⋆, x∪A) > u(xP ⋆)− κ(P ⋆, A) = U(A) (where the last strict inequality uses
property 3.b) of planning-cost function κ).

A.3 Proof of Theorem 2

Let κ be a planning-cost function. For all A ∈ A and x ∈ A, let Px = {y ∈ A : v(y) ≤ v(x)}
and note that xPx = x. We define C(x,A) = κ(Px, A). We show that C is indeed a self-
control-cost function:

1. We have C(x,A) > 0 ⇐⇒ κ(Px, A) > 0 ⇐⇒ ∃y ∈ A\Px : v(y) > v(x) ⇐⇒ ∃y ∈
A : v(y) > v(x).

2. First, using {y ∈ A∪B : v(y) > v(x)} ⊆ Px∪B: C(x,A) = κ(Px, A) ≤ κ({y ∈ A∪B :

v(y) > v(x)}, A∪B) = C(x,A∪B) (seeing that Px = {y ∈ A∪B : v(y) > v(x)}∩A).
Second, suppose that for all y ∈ B : v(y) > v(x) (again, assume w.l.o.g. that y ̸= x).
Then, C(x,A) = κ(Px, A) = κ(Px∪B,A∪B) = κ({y ∈ A∪B : v(y) > v(x)}, A∪B) =

C(x,A ∪B).

3. Let y ∈ A and suppose v(x) > v(y). If u(x) < u(y), we have C(y,A) = κ(Py, A) ≥
κ(x ∪ Py, x ∪ A) ≥ κ({z ∈ x ∪ A : v(z) ≤ v(x)}, x ∪ A) = C(x, x ∪ A). Else if
u(x) > u(y), we have C(x, x ∪A)−C(y,A) = κ({z ∈ x ∪A : v(z) ≤ v(x)}, x ∪A)−
κ(Py, A) ≤ κ(x ∪ Py, x ∪A)− κ(Py, A) < u(x)− u(y).

Suppose P ⋆ solves maxP⊆A u(xP )− κ(P,A) and let x⋆ = xP ⋆ . Assume that there exists
some y ∈ A such that u(y)−C(y,A) > u(x⋆)−C(x⋆, A). Then u(y)−κ(Py, A) > u(x⋆)−
κ(P ⋆, A) contradicts optimality of P ⋆. Vice versa, if x⋆ solves maxx∈A u(x)− C(x,A), let
P ⋆ = Px⋆ . Assume that there exists some P ⊆ A such that u(xP ) − κ(P,A) > u(x⋆) −
κ(P ⋆, A). We must have P ⊆ {y ∈ A : v(y) ≤ v(xP )} = PxP . Thus, u(xP ) − C(xP , A) =

u(xP )−κ(PxP , A) ≥ u(xP )−κ(P,A) > u(x⋆)−κ(Px⋆ , A) = u(x⋆)−C(x⋆, A) contradicting
optimality of x⋆.

Lastly, if P ⋆ solves maxP⊆A u(xP ) − κ(P,A) and x⋆ = xP ⋆ , we have maxP⊆A u(xP ) −
κ(P,A) = u(x⋆)− κ(P ⋆, A) = u(x⋆)− C(x⋆, A) = maxx∈A u(x)− C(x,A).

A.4 Characterizing When The Single-Kinked Value Function (4.13) is a Solution
to Equations (4.9)–(4.12)

Below, we identify necessary and sufficient conditions for the value function to exhibit a
single kink separating a self-control and no-self-control region in the infinite-horizon case
(cf. Equation (4.13)). The kink makes it necessary to consider two candidate solutions when
optimal future wealth is close to w̄; in this case, cξ,NSC and cξ,SC simultaneously satisfy
the FOCs (4.14) and (4.15). Yet when w is small (close to zero), optimal consumption is
given by cξ,NSC ; when w is large (w ≫ w̄) it is given by cξ,SC . This follows from the fact
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that in these cases only one of the FOCs has a solution. Moreover, a (corner) solution for
which future wealth sits exactly at w̄ is never optimal (see main text).

Moreover, using (4.16), note that indirect utilities

[
(1− δ)cσξ,NSC + δ(bNSCR(w − cξ,NSC))

σ
] 1
σ

= [(1− δ)µ(ξ, bNSC)
σ + δ(bNSCR(1− µ(ξ, bNSC))

σ]
1
σ · w

and

[
(1− δ)cσξ,SC + δ(−a+ bSCR(w − cξ,SC))

σ
] 1
σ

= [(1− δ)µ(ξ, bSC)
σ + δ(RbSC(1− µ(ξ, bSC))

σ]
1
σ ·
[
− a

bSCR
+ w

]
are linearly increasing in w. At the same time, the cost of self-control is fixed at k > 0.
Thus, optimal self-control behavior is such that when w is large (tends to +∞), the (utility)
benefits of self-control are large and eventually surpass k; when w is small (tends to 0),
(utility) benefits of self-control are small and below k. Consequently, for small enough
wealth levels w, the decision maker chooses not to self-control hence U(w) = V (w). As the
solution to the no-self-control problem (4.11) for small w is given by cδ,NSC , we must have

bNSC · w = [(1− δ)µ(βδ, bNSC)
σ + δ(bNSCR(1− µ(βδ, bNSC)))

σ]
1
σ · w

⇐⇒ bNSC = [(1− δ)µ(βδ, bNSC)
σ + δ(bNSCR)

σ(1− µ(βδ, bNSC))
σ]

1
σ . (A.1)

Analogously, if w is sufficiently large, self-control is worthwhile to the decision maker
(hence U(w) + k = W (w)) and the solution to the self-control problem (4.10) is given by
cβ,SC ; hence

k − a+ bSC · w = [(1− δ)µ(δ, bSC)
σ + δ (bSCR(1− µ(δ, bSC)))

σ]
1
σ ·
[
− a

bSCR
+ w

]
.

Matching coefficients, we must have

bSC = [(1− δ)µ(δ, bSC)
σ + δ(bSCR)

σ(1− µ(δ, bSC))
σ]

1
σ (A.2)

and
k − a = − a

R
=⇒ a =

R

R− 1
k. (A.3)
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A.4 Characterizing When The Single-Kinked Value Function (4.13) is a Solution to Equations
(4.9)–(4.12)

Using Equation (4.17) above, we observe that for all 0 < ξ ≤ 1 and b > 0:

(1− β)µ(ξ, b)σ + ξ(bR(1− µ(ξ, b)))σ

=(1− β)µ(ξ, b)σ
[
1 +

ξ

1− β
(bR)σ

(
1− µ(ξ, b)

µ(ξ, b)

)σ]
=(1− β)µ(ξ, b)σ

[
1 +

(
ξ

1− β

)γ

(bR)γ−1

]
=(1− β)µ(ξ, b)σ−1. (A.4)

We use this to simplify (A.2) further. As σ−1
σ = 1

1−γ and 1
σ = − γ

1−γ , we obtain

bSC = (1− δ)
− γ

1−γ µ(δ, bSC)
1

1−γ .

Thus,

b1−γ
SC = (1− δ)−γ

(
δ

1−δ

)−γ
(bSCR)

1−γ

1 +
(

δ
1−δ

)−γ
(bSCR)1−γ

hence
βγRγ−1 = 1− µ(δ, bSC). (A.5)

Solving for bSC , we obtain

bSC =
1

R

(
δ

1− δ

) γ
1−γ [

R(Rδ)−γ − 1
] 1
1−γ

=(1− δ)
− γ

1−γ
[
1−R−1(Rδ)γ

] 1
1−γ . (A.6)

Note that as long as R > 1 and δR ≤ 1, we have bSC > 0 for all γ > 0.

In similar fashion, we can rewrite (A.1) as

bNSC = (1− δ)
− γ

1−γ µ(βδ, bNSC)

[
1 +

δ

1− δ
(bNSCR)

1− 1
γ

(
1− µ(βδ, bNSC)

µ(βδ, bNSC)

)1− 1
γ

]− γ
1−γ

= (1− δ)
− γ

1−γ µ(βδ, bNSC)

[
1 +

δ

1− δ

(
βδ

1− δ

)γ−1

(bNSCR)
γ−1

]− γ
1−γ

= (1− δ)
− γ

1−γ µ(βδ, bNSC)µ(α, bNSC)
γ

1−γ

where α is such that α := β
1− 1

γ δ. Simplifying, we obtain

1 = δ−γR1−γ 1(
1 +

(
βδ
1−δ

)−γ
(bNSCR)1−γ

)1−γ (
1 +

(
α

1−δ

)−γ
(bNSCR)1−γ

)γ ,
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thus
(1− µ(βδ, bNSC))

1−γ(1− µ(α, bNSC))
γ = δγRγ−1. (A.7)

Comparing (A.5) and (A.7), we note that

(1− µ(δ, bSC)) = (1− µ(βδ, bNSC))
1−γ(1− µ(α, bNSC))

γ . (A.8)

As α = β
− 1

γ βδ > δ, we have 1− µ(βδ, bNSC) < 1− µ(α, bNSC) (cf. Equation (4.17)). Thus,
1− µ(δ, bSC) = (1− µ(βδ, bNSC))

(
1−µ(α,bNSC)
1−µ(βδ,bNSC)

)γ
> 1− µ(βδ, bNSC).

Optimal decision under no-self-control (βδ-discounting)

Above, we identified two candidate solutions for problem (4.12): cβδ,NSC and cβδ,SC . Note
that cβδ,SC is optimal if and only if

[(1− δ)(µ(βδ, bNSC))
σ + βδ(bNSCR(1− µ(βδ, bNSC)))

σ]
1
σ · w

≤ [(1− δ)µ(βδ, bSC)
σ + βδ(bSCR(1− µ(βδ, bSC)))

σ]
1
σ ·
[
− a

bSCR
+ w

]
.

Using (A.4), we obtain

a

bSCR
µ(βδ, bSC)

1
1−γ ≤

[
µ(βδ, bSC)

1
1−γ − µ(βδ, bNSC)

1
1−γ

]
· w

⇐⇒ w ≥ a

bSCR

µ(βδ, bSC)
1

1−γ

µ(βδ, bSC)
1

1−γ − µ(βδ, bNSC)
1

1−γ

=
a

bSCR

1

1−
(
µ(βδ,bNSC)
µ(βδ,bSC)

) 1
1−γ

:= w̄βδ. (A.9)

Seeing that µ(βδ, bSC) > µ(βδ, bNSC) ⇐⇒ γ < 1, we note that w̄βδ >
a

bSCR > 0.

Thus, we have

V (w) =

bNSC · w if w < w̄βδ

(1− δ)
− γ

1−γ µ(βδ, bSC)µ(α, bSC)
1

1−γ

[
− a

bSCR + w
]

if w ≥ w̄βδ

, (A.10)

where (1 − δ)
− γ

1−γ µ(βδ, bSC)µ(α, bSC)
1

1−γ > bNSC . Note that w̄βδ is the cut-off when dis-
counting with βδ. However, V evaluates the optimal βδ-based decision by discounting with
δ. Thus, V is discontinuous at w̄βδ with V (w̄βδ) > bNSCw̄βδ.
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A.4 Characterizing When The Single-Kinked Value Function (4.13) is a Solution to Equations
(4.9)–(4.12)

Optimal decision under self-control (δ-discounting)

Analogous to the no-self-control case above, cδ,SC is optimal in (4.10) if and only if

[(1− δ)(µ(δ, bNSC))
σ + δ(bNSCR(1− µ(δ, bNSC)))

σ]
1
σ · w

≤ [(1− δ)µ(δ, bSC)
σ + δ(bSCR(1− µ(δ, bSC)))

σ]
1
σ ·
[
− a

bSCR
+ w

]
.

Using (A.4) and (A.2), we obtain

a

R
≤
[
bSC − (1− δ)

γ
γ−1µ(δ, bNSC)

1
1−γ

]
· w

⇐⇒ w ≥ a

bSCR

µ(δ, bSC)
1

1−γ

µ(δ, bSC)
1

1−γ − µ(δ, bNSC)
1

1−γ

=
a

bSCR

1

1−
(
µ(δ,bNSC)
µ(δ,bSC)

) 1
1−γ

:= w̄δ. (A.11)

Again, as µ(δ, bSC) > µ(δ, bNSC) ⇐⇒ γ < 1, we note that w̄δ >
a

bSCR > 0.

Thus, we have

W (w)− k =

−k + (1− δ)
− γ

1−γ µ(δ, bNSC)
1

1−γ · w if w ≤ w̄δ

−a+ bSC · w if w > w̄δ

, (A.12)

where a > k and (1− δ)
− γ

1−γ µ(δ, bNSC)
1

1−γ < bSC . Thus, W is kinked upwards at w̄δ.

Note that

w̄δ ≤ w̄βδ

⇐⇒
(
µ(δ, bNSC)

µ(δ, bSC)

) 1
1−γ

≤
(
µ(βδ, bNSC)

µ(βδ, bSC)

) 1
1−γ

.

Moreover, for all ξ ∈ (0, 1):

µ(ξ, bNSC)

µ(ξ, bSC)
=

(
bNSC

bSC

)1−γ 1 +
(

ξ
1−δ

)−γ
(bSCR)

1−γ

1 +
(

ξ
1−δ

)−γ
(bNSCR)1−γ

. (A.13)

As bSC > bNSC , this term is strictly decreasing in ξ when γ < 1 and strictly increasing

in ξ when γ > 1. Consequently,
(
µ(ξ,bNSC)
µ(ξ,bSC)

) 1
1−γ is strictly decreasing in ξ and we have

w̄δ < w̄βδ. Intuitively, as the decision maker places higher weight on the future when
self-controlling, she will accrue enough savings to induce self-control tomorrow at a lower
critical wealth level (w̄δ) than when having no-self-control (w̄βδ).
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Remember that α := β
1− 1

γ δ. Thus, by construction, µ(δ,b)
1−µ(δ,b) =

(
µ(α,b)

1−µ(α,b)

)γ (
µ(βδ,b)

1−µ(βδ,b)

)1−γ

for all b > 0.

Lemma 6. For all b > 0, 0 < β < 1 and γ > 0, γ ̸= 1, we have µ(δ, b)
1

1−γ >

µ(βδ, b)µ(α, b)
γ

1−γ .

Proof. To begin with, note that for all real numbers r > s > 0 and every λ ∈ (0, 1), we
have s < s1−λrλ < r.

For 0 < γ < 1, we have α > δ. By definition of α, it holds that δ = (βδ)1−γαγ .
Moreover, as ln

(
1 + x−γ(1− δ)γ(bR)1−γ

)
is a strictly convex function in ln(x),149 we have

(
1 +

(
βδ

1− δ

)−γ

(bR)1−γ

)1−γ (
1 +

(
α

1− δ

)−γ

(bR)1−γ

)γ

> 1 +

(
δ

1− δ

)−γ

(bR)1−γ .

Seeing that

µ(δ, b) =
1− µ(δ, b)

(1− µ(βδ, b))1−γ(1− µ(α, b))γ
µ(βδ, b)1−γµ(α, b)γ

and

1− µ(δ, b)

(1− µ(βδ, b))1−γ(1− µ(α, b))γ
=

(
1 +

(
βδ
1−δ

)−γ
(bR)1−γ

)1−γ (
1 +

(
α

1−δ

)−γ
(bR)1−γ

)γ

1 +
(

δ
1−δ

)−γ
(bR)1−γ

> 1,

we have µ(δ, b)
1

1−γ > µ(βδ, b)µ(α, b)
γ

1−γ .
For γ > 1, we have βδ < α = β

1− 1
γ δ < δ and

µ(α, b)

1− µ(α, b)
=

(
µ(δ, b)

1− µ(δ, b)

) 1
γ
(

µ(βδ, b)

a− µ(βδ, b)

)1− 1
γ

.

Analogous to the above case, we obtain µ(α, b) > µ(δ, b)
1
γ µ(βδ, b)

1− 1
γ . Thus, µ(δ, b)

1
1−γ >

µ(βδ, b)µ(α, b)
γ

1−γ .

Self-control vs. no self-control

U as given by Equation (4.13) is indeed a solution to the Bellman equations (4.9)-(4.11) if
the decision maker optimally chooses to forego self-control for all w < w̄ < w̄βδ while self-
controlling for all w ≥ w̄ ≥ w̄δ. Given Equations (A.10) and (A.12) we derived for V andW
above, this is the case if and only if (i) w̄δ ≤ w̄ and (ii) w̄ < w̄βδ and V (w) ≤ −a+ bSC ·w
for all w ≥ w̄βδ. To see this, note that – by definition – w̄δ ≤ w̄ < w̄βδ means that

149 Note that
d ln(1+exp(−γ ln(x))(1−δ)γ(bR)1−γ)

d ln(x)
= −γ exp(−γ ln(x))(1−δ)γ(bR)1−γ

1+exp(−γ ln(x))(1−δ)γ(bR)1−γ is strictly increasing in ln(x).
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A.4 Characterizing When The Single-Kinked Value Function (4.13) is a Solution to Equations
(4.9)–(4.12)

W (w)− k ≥ V (w) ⇐⇒ w ≥ w̄ for all w ∈ [w̄δ, w̄βδ]. As W (w)− k is linear with a single
kink at w̄δ and W (0) − k = −k < 0 = V (0), w̄δ ≤ w̄ implies that W (w) − k ≤ V (w)

for all 0 ≤ w ≤ w̄δ as well. Lastly, as (1 − δ)
− γ

1−γ µ(βδ, bSC)µ(α, bSC)
1

1−γ < bSC , we have
−a + bSC · w ≥ V (w) for all w ≥ w̄βδ if and only if −a + bSC · w̄βδ ≥ V (w̄βδ). Moreover,
the latter can hold only if w̄ < w̄βδ. Indeed, if w̄ ≥ w̄βδ, then V (w̄βδ) > bNSC · w̄βδ ≥
−a+ bSC · w̄βδ seeing that V exhibits an upward jump at w = w̄βδ, cf. Equation (A.10).

Consequently, Condition (ii) can be equivalently stated as −a + bSC · w̄βδ ≥ V (w̄βδ).
Using Equations (A.6) and (A.9), that is,

−a+ bSC · w̄βδ ≥
[
− a

bSCR
+ w̄βδ

]
[(1− δ)µ(βδ, bSC)

σ + δ(1− µ(βδ, bSC))
σ(RbSC)

σ]
1
σ

⇐⇒
(
− a

bSCR

)
(1− δ)

− γ
1−γ µ(δ, bSC)

1
1−γ

R− 1

1−
(
µ(βδ,bNSC)
µ(βδ,bSC)

) 1
1−γ



≥
(
− a

bSCR

)−

(
µ(βδ,bNSC)
µ(βδ,bSC)

) 1
1−γ

1−
(
µ(βδ,bNSC)
µ(βδ,bSC)

) 1
1−γ

 (1− δ)
− γ

1−γ µ(βδ, bSC)µ(α, bSC)
γ

1−γ

⇐⇒ R− (R− 1)

(
µ(βδ, bSC)

µ(βδ, bNSC)

) 1
1−γ

≥
(
µ(βδ, bSC)

1−γµ(α, bSC)
γ

µ(δ, bSC)

) 1
1−γ

.

Using Equation (A.13), Condition (i) can be expressed as

a

bSCR

1

1−
(
µ(δ,bNSC)
µ(δ,bSC)

) 1
1−γ

≤ a

bSC − bNSC

⇐⇒ 1

R

1

bSC − bNSC

(
1+( δ

1−δ )
−γ

(bSCR)1−γ

1+( δ
1−δ )

−γ
(bNSCR)1−γ

) 1
1−γ

≤ 1

bSC − bNSC
.

Finally, we note that both conditions are satisfied for the parameter combination β = 0.1,
δ = 0.9, γ = 0.8, k = 0.1 and R = 1.03 considered in the main text for which bSC ≈ 0.04774,
and bNSC ≈ 0.00395. Moreover, we have a ≈ 3.43333 and w̄ ≈ 78.41362 in this case.

145





B Appendix to Part III

B.1 Proofs for Chapter 8

Proof of Proposition 1

We start with the special case that |X| = 3 and n ∈ {2, 4}. Consider menus of two
alternatives first. As all individuals choose at least one alternative from them, there must
be a weak majority for at least one alternative. Now consider the universal menu X. If
n = 2, every single individual forms a weak majority by herself. If n = 4, at least one
alternative must be chosen be chosen by two (or more) individuals forming a weak majority.
Thus, all collective choice sets are non-empty.

Now let |X| ≥ 3 and consider some menu {x, y, z} := A ∈ A≥2. The case of n = 3

individuals is covered in the main text. Let n ≥ 5 and k = n mod 3. If k = 0, let
(c1, . . . , cn) ∈ Cn

fne be such that ci(A) = x, ci(A) = y and ci(A) = z for n/3 individuals
each. If k = 1, let (c1, . . . , cn) ∈ Cn

fne be such that ci(A) = x, ci(A) = y for n/3 individuals
each and ci(A) = z for (n − 1)/3 + 1 individuals. If k = 2, let (c1, . . . , cn) ∈ Cn

fne be such
that ci(A) = x for n/3 individuals and ci(A) = y and ci(A) = z for (n−2)/3+1 individuals
each. Note that the share of voters in support of each alternative in A is thus bounded by
n−1
3

+1

n = 1
3 + 2

3n ≤︸︷︷︸
n≥5

1
3 + 2

15 = 7
15 <

1
2 . Consequently, cmaj(A) = ∅.

Proof of Theorems 3, 4 and 5

We analyze the aggregation of choice functions as a judgment aggregation problem on a
property space. This methodology was developed in Nehring and Puppe (2002); Nehring
(2006a); Nehring and Puppe (2010). Our results are applications of the general character-
ization results obtained therein.

Let ∅ ≠ D ⊆ C be a domain of choice functions such that for all A ∈ A≥2 := {A ∈
A, |A| ≥ 2} and x ∈ A there exist c, c′ ∈ D such that x ∈ c(A) and x /∈ c(A).150 For
example, D = Cfne, D = Cpsd or D = Cwo. For all A ∈ A≥2 and all x ∈ A, define
Hx|A := {c ∈ D : x ∈ c(A)} and Hc

x|A := D\Hx|A (note that every issue Hx|A, H
c
x|A

partitions D). Thus, Hx|A corresponds to the property that x is chosen from A. Let
H = {Hx|A, H

c
x|A : x ∈ A ∈ A≥2} be the collection of all properties. As every choice

150 This is a minimal richness condition requiring that no issue x ∈ c(A) is pre-determined. However, this
assumption is not crucial. Alternatively, we can simply ignore issues x ∈ c(A) which all choice functions
agree on.
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function is identified with a unique combination of properties, (D,H) defines a property
space.

We say that a family (of properties) G ⊆ H is inconsistent if
⋂

G = ∅ (consistent if⋂
G ̸= ∅). G is critical if it is minimally inconsistent; that is,

⋂
G = ∅ and for all G ∈ G,⋂

(G\{G}) ̸= ∅. The critical families capture the dependency structure between properties.
If H,Gc ∈ G and G is critical, then property H conditionally entails property G (seeing
that – conditional on the other properties in the family – if x ∈ H, then x ∈ G); we write
H ≥0 G and let ≥ denote the transitive closure of ≥0 and let ≡ be the symmetric part
of ≥. We note that ≥0 (thus, ≥) is complementation-adapted; that is, if H ≥0 G, then
Gc ≥0 H

c. Moreover, as all families {H,Hc} are trivially critical, ≥0 (thus, ≥) is reflexive.

Lemma 7. Let ∅ ≠ D ⊆ C.

1. Suppose all c ∈ D satisfy (FNE) and (α). Then for all A,B ∈ A≥2, x ∈ A, y ∈ B,
x ̸= y: Hc

x|A ≥ Hy|B.

2. Suppose all c ∈ D satisfy (γ) and (α). Then for all A,B ∈ A≥2, x ∈ A, Hx|A ≥ Hc
x|A.

3. Suppose all c ∈ D satisfy (Aiz) and (α). Then for all A,B ∈ A≥2, x ∈ A and y ∈ B:
Hx|A ≥ Hy|B. Thus, Hx|A ≡ Hy|B and Hc

x|A ≡ Hc
y|B.

Proof. 1. By (α), Hc
x|A ≥0 (Hc

x|A∪B). By (FNE), Hc
x|A∪B ≥0 Hy|A∪B. Again, by (α),

Hy|A∪B ≥0 Hy|B.

2. Suppose first that A ̸= X. By (γ), Hx|A ≥0 H
c
x|X\A∪x (conditional Hc

x|X). By (α),
Hc

x|(X\A)∪{x} ≥0 H
c
x|X . Again, by (γ), Hc

x|X ≥0 H
c
x|A (conditional on Hx|(X\A)∪{x}).

Now, if A = X, let B ⊊ X. By (α) and what we just showed, Hx|X ≥0 Hx|B ≥
Hc

x|B ≥0 H
c
x|X .

3. Suppose first that y ∈ B\A. By (Aiz), Hx|A ≥0 Hy|A∪B (conditional on {Hc
y1|A∪B,

. . . , Hc
yk|A∪B, H

c
x|A∪B} for (B\A)\{y} = {y1, . . . , yk}). By (α), Hy|A∪B ≥0 Hc

y|B.
Else y ∈ A ∩ B. Then, by (α), Hx|A ≥0 Hx|A\{y} and, by (Aiz), Hx|A\{y} ≥0

Hy|A∪B (conditional on {Hc
y1|A∪B, . . . ,H

c
yk|A∪B, H

c
x|A∪B} for B\A = {y1, . . . , yk}).

Now, again by (α), Hy|A∪B ≥0 Hy|B.

Consequently, Hx|A ≥ Hy|B and Hy|B ≥ Hx|A; thus, Hx|A ≡ Hy|B. By complementa-
tion-adaptedness, Hc

x|A ≡ Hc
y|B.

Proof of Theorem 3

Consider D = Cacy. Note that all c ∈ D satisfy (FNE), (α) and (γ). Let x ∈ A ∈ A≥2,
y ∈ B ∈ A≥2. (i) Assume x ̸= y first. By Lemma 7, parts 1 and 2, Hc

x|A ≥ Hy|B ≥ Hc
y|B.

By complementation-adaptedness, Hy|b ≥ Hx|A. (ii) Now let x = y. Then pick any z ̸= x
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B.1 Proofs for Chapter 8

and some C ∈ A≥2 such that z ∈ C. By what was just shown, Hc
x|A ≥ Hc

z|C ≥ Hc
y|B. Again,

by complementation-adaptedness, Hy|B ≥ Hx|A. In total, we conclude that Hx|A ≡ Hy|B

and Hc
x|A ≡ Hy|B. Moreover, again by Lemma 7, parts 1 (and what we just showed

for the case x = y) and 2, Hc
x|A ≥ Hx|A ≥ Hc

x|A; thus, Hc
x|A ≡ Hc

x|A. Consequently,
D = Cacy is totally blocked. Note that putting additional restrictions on choice functions
introduces additional conditional entailments without removing existing one. Thus, all
D = CPar, Cwo, Clo are totally blocked. The results follows from (Nehring and Puppe, 2010,
Theorem 1).

Proof of Theorem 4

Consider D = Cpsd. Note that all c ∈ D satisfy (FNE),(α) and (Aiz). Let x ∈ A ∈ A≥2,
y ∈ B ∈ A≥2. By Lemma 7, part 3, Hx|A ≡ Hy|B and Hc

x|A ≡ Hc
y|B. Moreover, letting

z ̸= x and z ∈ C ∈ A≥2 and using the result just obtained together with part 1 of Lemma
7, we have Hc

x|A ≥ Hz|C ≥ Hy|B. At the same time, seeing that all critical families contain
at most one un-negated property, Hx|A ≱ Hc

y|B. Thus, D = Cpsd is semi-blocked. By
Nehring (2006a), an Arrowian aggregation rule is consistent on Cpsd if and only if it an
oligarchy. That is there exists some M ⊆ {1, . . . , n} such that for (c1, . . . , cn) ∈ Cn

psd

and all A ∈ A≥2, all x ∈ A: x ∈ f(c1, . . . , cn)(A) ⇐⇒ ∃i ∈ M : x ∈ ci(A). Thus,
f(c1, . . . , cn)(A) =

⋃
i∈M ci(A).

Proof of Theorem 5

The equivalence of anonymous Arrowian aggregation to the existence of quotas qx∈c(A)

is established in (Nehring and Puppe, 2010, Proposition 2.2).151 Menu-level neutrality
requires that, for some given menu A ∈ A≥2, all ‘local’ aggregation rules applied to the
issues x ∈ c(A) are identical. That is, the structure of winning coalitions must be the same
for all such issues.

Now consider any A ∈ A≥2.

(i) Suppose n ≤ |A|. If, for all x ∈ A, 0 < qx∈c(A) ≤ 1/n, then each single individual
forms a winning coalition for all x ∈ c(A). As all individual choice sets ci(A) are non-
empty, so is the collective choice set c(A). On the other hand, if qx∈c(A) > 1/n for some
x ∈ A, then qx∈c(A) > 1/n for all x ∈ A (as all winning coalitions need to be the same).
Consider some (c1, . . . , cn) ∈ Cn

fne such that each individual chooses one (and only one)
distinct alternative from A. Then c(A) = ∅.

151 Nehring and Puppe (2010) consider quotas qH , qHc such that H resp. Hc are accepted iff the fraction
of voters supporting H resp. Hc is strictly greater than qH and qHc respectively to treat both H and Hc

equally. We only demand that support in favor of accepting x as collectively choosable from A weakly
exceeds the quota qx∈c(A). On the other hand, the fraction of voters not choosing x from A needs to
strictly exceed qx/∈c(A) := 1 − qx∈c(A) to ban x from c(A). However, except for very special cases (e.g.,
when qx∈c(A) = 1/2 and n is even), these formulations are equivalent.

149



(ii) Suppose n > |A| and let r = n mod |A|. Suppose that 0 < qx∈c(A) ≤ 1
|A|(1 −

r
n) +

1
n1(r ̸= 0) for all x ∈ A. All individual choice sets ci(A) are non-empty. Thus, if r = 0,
there exists some alternative x ∈ A such that at least fraction 1/|A| of all individuals
choose x from A. If r > 0, there exists some alternative x ∈ A such that at least fraction
1
|A|(1−

r
n)+

1
n of all individuals choose x from A. Hence x ∈ c(A) in both cases and c(A) ̸= ∅.

Conversely, suppose there exists some x ∈ A such that qx∈c(A) >
1
|A|(1−

r
n) +

1
n1(r ̸= 0).

Let x1, . . . , xk ∈ X be such that A = {x1, . . . , xk}. Consider a profile (c1, . . . , cn) ∈ Cn
fne

such that ci(A) = xj , j = 1, . . . , n − r for (n − r)/|A| individuals each and ci(A) = xj ,
j = n − r + 1, . . . , n for (n − r)/|A| + 1 individuals each (note that the total sum of
individuals is thus n). Thus, the fraction of individuals voting for x ∈ c(A) is less than
1
|A|(1−

r
n)+

1
n1(r ̸= 0) for each x ∈ A. As all structures of winning coalition are the same,

this implies that c(A) = ∅.

B.2 Proof for Chapter 9

The proof of Proposition 2 is given in the main text.
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C Appendix to Part IV

C.1 Relation to Effectivity Functions and Game Forms

An effectivity function is a mapping E : 2N\{∅}⇒ 2X\{∅} such that (i) E(N) = 2X\{∅}
and (ii) X ∈ E(G) for all G ⊆ N . For every group G, E(G) lists all subsets of outcomes
for which G is effective. Given some game form Γ = (N, (Si)i∈N , g) – where N is the
set of players, Si is player i’s set of strategies and onto g :×i∈N Si → X maps profiles
of strategies to outcomes – we say that ∅ ̸= G ⊆ N is α-effective for Y ⊆ X if there
exists some sG ∈ ×i∈G Si such that for all sN\G ∈ ×i∈N\G Si: g(sG, sN\G) ∈ Y . A
game form gives rise to an (α)-effectivity function EΓ : 2N\{∅} ⇒ 2X\{∅} defined by
2N\{∅} ∋ G 7→ EΓ (G) = {Y ⊆ X : G is α-effective for Y }. An important question in the
study of effectivity functions is when an effectivity function E can be represented by some
game form Γ in the sense that EΓ = E. We state a basic result from Peleg (1998).

Fact 6. Let E : 2N\{∅} ⇒ 2X\{∅} be an effectivity function. Then E can be represented
by some game form Γ (i.e., EΓ = E) if and only if for all G,G′ ∈ 2N\{∅}:

(super-additive) (Y ∈ E(G), Y ′ ∈ E(G′) and G ∩G′ = ∅) =⇒ Y ∩ Y ′ ∈ E(G ∪G′),

(monotone) (Y ∈ E(G), X ⊇ Y ′ ⊇ Y ) =⇒ Y ′ ∈ E(G).

As any representable effectivity function E is monotone by Fact 6, it is often insightful
to consider its basis, the (⊆-)smallest effectivity function such that its monotone closure
equals E. That is, for every G ∈ 2N\{∅}, let basis(E)(G) = {Y ⊆ X : Y ∈ E(G) and Y ′ ∈
E(G) for no Y ′ ⊊ Y }. basis(E) contains the essential information about a monotone E in
the sense that E is representable if and only if basis(E) is super-additive.

There is a close connection between effectivity functions and rights systems as we defined
them in this paper. For every R : P ⇒ 2N\∅, the inverse correspondence defined by
2N\{∅} ∋ G 7→ R−1(G) = {P ∈ P : G ∈ R(P )} is a mapping R−1 : 2N\{∅} ⇒ P ⊆
2X\{∅}. Indeed, recall that properties are extensionally defined as subsets of the underlying
set X. If P ∈ R−1(G), the intuition that G can restrict the eventual choice to come from
P ⊆ X parallels that of the effectivity function approach. Due to our distinct setup,
however, R−1 is not itself an effectivity function.

There are further important differences. First, conceptionally, our model is semantic.
That is, we conceptualize rights in terms of subsets which have (respectively, are given) a
meaning as and through properties. Second, our definition of respect for rights implies a
conjunctive notion of rights. When individuals are part of several rights holding groups they
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can generally exercise these rights simultaneously unless this implies forcing an inconsistent
combination of subsets (i.e., properties) at the individual level. In particular, if the same
group G has rights to two properties P and Q, then G is effective for P ∩ Q under any
aggregation function that respects these rights unless the conjunction of these properties is
infeasible (i.e, P ∩Q = ∅).152 This is in line with the intuition that groups and individuals
have several rights which can be exercised at the same time. By contrast, for general
effectivity functions, an effectivity set should be thought of as arising from a comprehensive
exercise of rights by individuals or groups respectively.

Lastly, we analyze rights under a concept of representation that deviates from the general
case in two respects. (i) We consider representation by the restricted class of voting game
forms. That is, game forms for which each player’s set of strategies is equal to the set
of outcomes (alternatives). Indeed, R is consistent if and only if there exists some onto
f : Xn → X satisfying (R) such that (N, (Si = X)i∈N , f) defines a (voting) game form
(cf. Proposition 12 below). (ii) Our concept of respect for rights is weaker than the game
form notion of representability in the sense that if f respects R then f generally respects
rights systems R′ which extend R (i.e., such that R′(P ) ⊇ R(P ) for all P ∈ P).153

To formally explore the connection to property space rights, we define an analogous
notion for effectivity functions. We say that Γ weakly represents E if and only if, for
all G ∈ 2N\{∅}, E(G) ⊆ EΓ(G). If some Γ weakly represents E, we say that E is
weakly representable. The following Intersection Property for Effectivity Functions (IPE)
is necessary and sufficient for weak representation by some game form.

Intersection Property for Effectivity Functions. We say that an effectivity
function E : 2N\{∅}⇒ 2X\{∅} satisfies the Intersection Property for Effectivity Functions
(IPE) if and only if for all pairwise disjoint G1, . . . , Gr ∈ 2N\{∅}:

Y1 ∈ E(G1), . . . , Yr ∈ E(Gr) =⇒
r⋂

k=1

Yk ̸= ∅. (IPE)

Fact 7. Let E : 2N\{∅}⇒ 2X\{∅} be an effectivity function. The following are equivalent:

1. E is weakly representable.

2. There exists some monotone and super-additive E that extends basis(E) (such that,
for all G ∈ 2N\{∅} : basis(E)(G) ⊆ E(G) ⊆ E(G)).

3. E satisfies (IPE).

Proof. Equivalence of 1. and 2. follows immediately from Fact 6. We show equivalence of
2. and 3.

152 In our model of rights, for group G to exercise a right to P ∩Q, all of its members i ∈ G must submit a
feasible view (vote) xi ∈ P ∩Q. If P ∩Q = ∅ such a right does not exist in the sense that it can never be
exercised in an individually feasible way.

153 This is particularly obvious in Chapter 13 where we show that a rights system R is consistent with voting
by properties if and only if there exists some consistent exhaustive rights system that extends R.
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C.1 Relation to Effectivity Functions and Game Forms

First, suppose E satisfies (IPE). We show that (IPE) guarantees the existence of
a smallest monotone and super-additive extension of E which we define, for all G ∈
2N\{∅}, by G 7→ E(G) = {Y ⊆ X : Y ⊇

⋂
k=1,...,r Yk where Y1 ∈ E(G1), . . . , Yr ∈

E(Gr) for some partition
G1, . . . , Gr of G}. Clearly, for all G ∈ 2N\{∅}, basis(E)(G) ⊆ E(G) ⊆ E(G) and,
by (IPE), ∅ /∈ E(G). Moreover, for all G ∈ 2N\{∅}, E(G) ⊇ E(G) implies X ∈
E(G). In particular, E(N) = 2N\{∅}. Thus, E is an effectivity function. Mono-
tonicity of E is obvious. We verify that it is also super-additive. Consider two dis-
joint and non-empty G,G′ ⊆ N and suppose Y ∈ E(G), Y ′ ∈ E(G′). Then there
exist partitions G1, . . . , Gr of G, G′

1, . . . , G
′
r′ of G′ and Y1 ∈ E(G1), . . . , Yr ∈ E(Gr),

Y ′
1 ∈ E(G′

1), . . . , Y
′
r′ ∈ E(G′

r′) such that Y ⊇
⋂

k=1,...,r Yk and Y ′ ⊇
⋂

k=1,...,r′ Y
′
k. Clearly,

X ⊇ Y ∩ Y ′ ⊇
(⋂

k=1,...,r Yk

)
∩
(⋂

k=1,...,r′ Y
′
k

)
. As G ∩ G′ = ∅, G1, . . . , Gr, G

′
1, . . . , G

′
r′

partition G ∪G′. Consequently, we have Y ∩ Y ′ ∈ E(G ∪G′).

To prove the reverse implication, it suffices to note that the super-additivity property
defined above for pairs of disjoint subsets generalizes to countable collections of pairwise
disjoint subsets by induction. Thus, if pairwise disjoint G1, . . . , Gr give rise to a violation
of (IPE), then ∅ ∈ E(G) for G =

⋃
k=1,...rGk ⊆ N by super-additivity, contradicting the

definition of an effectivity function.

When rights are rights to (combinations of) properties (i.e., when basis(E) only contains
subsets that are combinations of properties on (X,P)), the following proposition shows that
the restriction to voting game forms is without loss of generality as long as we consider weak
and conjunctive representation of rights. In this case, checking whether some effectivity
function E is representable by some voting game form is equivalent to analyzing consistency
of RE , the rights system induced by it on (X,P). For all G ∈ 2N\{∅}, let

R−1
E (G) =

⋃
{P̂ ⊆ P :

⋂
P̂ ∈ basis(E)(G)}

and define, for each P ∈ P, RE(P ) = {G ∈ 2N\{∅} : P ∈ R−1
E (G)}.154

Conjunctive Extension. For two effectivity functions E,E, we say that E conjunc-
tively extends E if and only if E extends E and we have for all G1, . . . , Gr ∈ 2N\{∅} and
all Y1 ∈ E(G1), . . . , Yr ∈ E(Gr):∀i ∈

⋃
k=1,...r

Gk :
⋂

k:i∈Gk

Yk ̸= ∅

 =⇒
⋂

k=1,...,r

Yk ∈ E

 ⋃
k=1,...r

Gk

 .

We say that some Y ⊆ X is (P-)convex if and only if there is some PY ⊆ P such that
Y =

⋂
PY . Note that, given the convention

⋂
∅ = X, the comprehensive set X is convex.

154 Note that (RE)
−1 = R−1

E . That is, R−1
E is indeed the inverse of RE thus defined.
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E : 2N\{∅} ⇒ 2X is (P-)convex valued if and only if for every G ∈ 2N\{∅}: Y ∈ E(G)

implies that G is (P-)convex.

Proposition 12. Let (X,P) be a property space and let E : 2N\{∅} ⇒ 2X\{∅} be an
effectivity function with (P−)convex valued basis. The following are equivalent:

1. E is weakly represented by some voting game form Γ = (N, (Si = X)i∈N , f), where
f : Xn → X respects RE.

2. There exists some monotone and super-additive effectivity function E that extends
basis(E) conjunctively.

3. RE is consistent.

Proof. We prove 1. =⇒ 2. =⇒ 3. =⇒ 1.

1. =⇒ 2. Let E = EΓ. By Fact 6, E is monotone and super-additive. Clearly,
E extends E; a fortiori, it extends basis(E). We verify that it does so conjunctively.
Let G1, . . . , Gr ∈ 2N\{∅} and Y1 ∈ basis(E)(G1), . . . , Yr ∈ basis(E)(Gr). We have,
for some PY1 , . . . ,PYr ⊆ P, Y1 =

⋂
PY1 , . . . , Yr = PYr . Thus, for all k = 1, . . . , r,

PYk
⊆ R−1

E (Gk) ⇐⇒ (∀P ∈ PYk
: Gk ∈ RE(P )). Suppose that, for all i ∈

⋃
k=1,...,rGk,⋂

k:i∈Gk
Yk ̸= ∅, i.e., there exist x⋆i ∈

⋂
k:i∈Gk

⋂
PYk

. Then, for all (x⋆i )i∈N\G ∈ X(n−|G|),
all k = 1, . . . , r and all P ∈ PYk

, {i ∈ N : x⋆i ∈ P} ⊇ Gk. As f respects RE , we have
f(x⋆1, . . . , x

⋆
r) ∈

⋂
k=1,...,r

⋂
PYk

=
⋂

k=1,...,r Yk. Thus,
⋂

k=1,...,r Yk ∈ EΓ

(⋃
k=1,...,rGk

)
=

E
(⋃

k=1,...,rGk

)
.

2. =⇒ 3. We prove the contraposition. Suppose RE is inconsistent. By The-
orem 6, (IPC) is violated. That is, there exist some critical {P1, . . . , Pr} ⊆ P and
G1 ∈ RE(P1), . . . , Gr ∈ RE(Pr) such that

⋂
k=1,...,rGk = ∅. Thus, for all i ∈

⋃
k=1,...,rGk,⋂

k:i∈Gk
Pk ̸= ∅. Moreover, for k = 1, . . . , r, there exist Pk ⊆ P such that Pk ∈ Pk

and
⋂

Pk ∈ basis(E)(Gk). Seeing that, for every effectivity function E,
⋂

k=1,...,r

⋂
Pk ⊆⋂

k=1,...,r Pk = ∅ /∈ E
(⋃

k=1,...,rGk

)
, a conjunctive extension does not exist.

3. =⇒ 1. There exists some onto f : Xn → X that respects RE . Clearly, Γ =

(N, (Si = X)i∈N , f) defines a game form. We show that it weakly represents E. Let
G ∈ 2N\{∅} and Y ∈ E(G). There exists some Y ′ ⊆ Y with Y ′ ∈ basis(E)(G). Thus,
Y ′ =

⋂
PY ′ for some PY ′ ⊆ P. By definition, we have PY ′ ⊆ R−1

E (G); i.e., for all P ∈ PY ′ ,
G ∈ RE(P ). For all i ∈ G, let x⋆i ∈

⋂
PY ′ . We have for all (x⋆i )i∈N\G ∈ X(n−|G|) and all

P ∈ PY ′ : {i ∈ N : x⋆i ∈ P} ⊇ G. Thus, as f respects RE , f(x⋆1, . . . , x⋆r) ∈ P . This is,
for all (x⋆i )i∈N\G ∈ X(n−|G|), f(x⋆1, . . . , x⋆r) ∈

⋂
PY ′ = Y ′. Hence Y ′ ∈ EΓ(G). As EΓ is

monotone (cf. Fact 6), we have Y ⊇ Y ′ ∈ EΓ(G).

Finally, we note that for every effectivity function on X, there is some property structure
P such that basis(E) is convex-valued on (X,P). Indeed, for every x ∈ X, let Px = {x}.
Define PX = {Px, P

c
x}x∈X and call (X,PX) the discrete property space. On (X,PX),

every subset Y ⊆ X is convex, seeing that Y =
⋂

x/∈Y Px.

154



C.2 Proofs for Chapter 12

C.2 Proofs for Chapter 12

C.2.1 Proof of Theorem 6

⇐= : Let (IPC) hold. For each x(x1, . . . , xn) ∈ Xn, define PR(x) = {P ∈ P : {i ∈ N :

xi ∈ P} ⊇ G for some G ∈ R(P )}. If, for every x ∈ Xn, we can define f(x) = yx for some
yx ∈

⋂
PR(x), f is an aggregation function and respects R by construction. (By conven-

tion, we let for PR(x) = ∅,
⋂
PR(x) = X.) Since, for all x̃ ∈ X, x̃ ∈

⋂
PR((x̃, . . . , x̃)), we

can also find a unanimous (a fortiori, onto) f that respects rights in this case.

Assume the aforementioned is not possible, that is, suppose there exists some x =

(x1, . . . , xn) ∈ Xn s.t. PR(x) is inconsistent (
⋂
PR(x) = ∅ and PR(x) ̸= ∅). Then there

exists some critical G ⊆ PR(x). Let P1, . . . , Pr ∈ P be such that G = {P1, . . . , Pr}. By
definition of PR(x), for each k = 1, . . . , r, there exists some Gk ∈ R(Pk) s.t. Gk ⊆ {i ∈
N : xi ∈ Pk}. By (IPC),

⋂
k=1,...,rGk ̸= ∅. Hence there exists some i ∈ N such that, for

all k = 1, . . . , r, xi ∈ Pk. Consequently, xi ∈ ∩G = ∅, a contradiction.

=⇒ : Suppose (IPC) does not hold. That is, suppose there exist some critical family
G = {P1, . . . , Pk} and groups G1 ∈ R(P1), . . . , Gk ∈ R(Pk) such that

⋂
k=1,...,rGk = ∅.

For all i ∈
⋃

k=1,...,rGk, consider PG
i = {Pk ∈ G : i ∈ Gk}, the family of all properties Pk

in G for which i is part of group Gk. Evidently, PG
i ⊆ G. As

⋂
k=1,...,rGk = ∅, for each

i ∈
⋃

k=1,...,rGk, there exists some ki ∈ {1, . . . , r} such that Pki /∈ PG
i . Thus, by criticality

of G, all PG
i are consistent. That is, for all i ∈

⋃
k=1,...,rGk, there exist x⋆i ∈

⋂
PG
i . For

all i ∈ N\(
⋃

k=1,...,rGk), let x⋆i ∈ X be arbitrary. Now suppose some f : Xn → X

respects R. By construction, for all k = 1, . . . , r, {i ∈ N : x⋆i ∈ Pk} ⊇ Gk. By (R),
f(x⋆) ∈

⋂
k=1,...,r Pk = ∅, a contradiction.

C.2.2 Proof of Proposition 3

There exist distinct a, b, c, d ∈ A such that a and b, c and d are 1-variants; b and c, a
and d are 2−variants. To see this, note that n ≥ 2 and, for all i = 1, . . . , n, |Ai| ≥
2. Consequently, there exist distinct a1, a′1 ∈ A1 and distinct a2, a′2 ∈ A2. For all i ∈
{0, 1, . . . , n}\{1, 2}, fix ai ∈ Ai. Then a = (a0, a1, a2, . . . , an), b = (a0, a

′
1, a2, . . . , an),

c = (a0, a
′
1, a

′
2, . . . , an) and d = (a0, a1, a

′
2, . . . , an) is a possible choice.

By assumption, {1} ∈ R(Pa>b)∩R(Pc>d) and {2} ∈ R(Pb>c)∩R(Pd>a). As {Pa>b, Pb>c,

Pc>d, Pd>a} is critical, {1} ∩ {2} = ∅ implies a violation of (IPC). By Theorem 6, R is
inconsistent.

C.2.3 Proof of Fact 1

Assume that R is weakly independent. Suppose there exist distinct P,Q ∈ P and disjoint
G,G′ ⊆ N such that G ∈ R(P )∩R(P c) and G′ ∈ R(Q)∩R(Qc). As (X,P) is connected,
the issues {P, P c} and {Q,Qc} are directly dependent. Thus, there exist directly dependent
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P̂ ∈ {P, P c}, Q̂ ∈ {Q,Qc}, contradicting weak independence. Consequently, R is not
autonomous.

C.2.4 Proof of Proposition 4, Corollaries 1 and 2

Proposition 4

If R is not weakly independent, there exist disjoint G,G′ ⊆ N and directly dependent
P,Q ∈ P such that G ∈ R(P ) and G′ ∈ R(Q). By direct dependence, {P,Q} ⊆ G
for some critical G ⊆ P. Letting, for all P̂ ∈ G\{P,Q}, G

P̂
= N ∈ R(P̂ ), we have

G ∩ G′ ∩
(⋂

P̂∈G\{P,Q}GP̂

)
= G ∩ G′ ∩ N = ∅, in violation of (IPC). Thus, R is not

consistent.

Corollary 1

We have {Pc>d, Pd>c} = {Pc>d, P
c
c>d} and {Pc′>d′ , Pd′>c′} = {Pc′>d′ , P

c
c′>d′}. Thus, R is

autonomous. If (XLin(A),PLin(A)) is connected, we can use Fact 1 and Proposition 4 to
prove the claim.

We show that (XLin(A),PLin(A)) is connected. Let {Pa>b, Pb>a}, {Pc>d, Pd>c} ⊆ P be
any pair of issues. We have a ̸= b and c ̸= d. If the issues are identical, they are trivially
directly dependent. Suppose the issues are distinct. Then there are two possible cases:
either all a, b, c, d are distinct or exactly one pair of elements are equal (if two pairs of
elements are equal we have identical issues again).

Case 1: a, b, c, d are distinct. The family {Pa>b, Pb>c, Pc>d, Pd>a} is critical; hence
{Pa>b, Pb>a} and {Pc>d, Pd>c} are directly dependent.

Case 2: One pair of elements is equal. W.l.o.g., assume that b = c (the proof for b = d,
a = c and a = d is analogous). Then the family {Pa>b, Pb>d, Pd>a} = {Pa>b, Pc>d, Pd>a}
is critical, and thus, {Pa>b, Pb>a} and {Pc>d, Pd>c} are directly dependent.

Corollary 2

Seeing that {Pp, P¬p} = {Pp, P
c
p} and {Pq, P¬q} = {Pq, P

c
q }, R is autonomous. The claim

follows by Fact 1 and Proposition 4.

C.3 Some Lemmas

We establish some basic properties of ⊩j and ⊩⋆.

Lemma 8. Let C, C′, C′′ ∈ C and j, j′ ∈ N.

1. ⊩j and ⊩⋆ are reflexive.

2. (C ⊩j C′, C′ ⊩j′ C′′) =⇒ C ⊩(j+j′) C′′.

3. If j′ > j, then C ⊩j C′ =⇒ C ⊩j′ C′. Thus, if C is j-critical, it is j′-critical.
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C.3 Some Lemmas

4. C ⊩j C′ = {P1, . . . , Pr} ⇐⇒ (∀k = 1, . . . , r ∃Ck ∈ C : Ck ⊩j {Pk} and C =⊔
k=1,...,r Ck),

C ⊩⋆ C′ = {P1, . . . , Pr} ⇐⇒ (∀k = 1, . . . , r ∃Ck ∈ C : Ck ⊩⋆ {Pk} and C =⊔
k=1,...,r Ck)

Proof. 1. Let C = {P1, . . . , Pr} ∈ C. As {P, P c} is critical for all P ∈ P, for k = 1, . . . , r,
F ∋ {Pk} ⊢ Pk and ⊔k=1,...,r{Pk} = C. Consequently, C ⊩ C. A fortiori, C ⊩⋆ C.
Consider j ≥ 2. For l = 1, . . . , j − 1, set Cl = C. We have: C ⊩ Cj−1 ⊩ . . . ⊩ C1 ⊩ C,
i.e., C ⊩j C. As C was chosen arbitrarily, the assertions follow.

2. Suppose j, j′ ≥ 2. There exist C1, . . . , Cj−1 ∈ C such that C ⊩ Cj−1 ⊩ . . . ⊩ C1 ⊩ C′

and C′
1, . . . , C′

j′−1 ∈ C such that C′ ⊩ C′
j′−1 ⊩ . . . ⊩ C′

1 ⊩ C′′. Letting C′
j′ = C′, C′

j′+1 =

C1, . . . , C′
j′+j−1 = Cj−1 we have C ⊩ C′

j+j′−1 ⊩ . . . ⊩ C′
1 ⊩ C′′. Hence C ⊩(j+j′) C′′.

The proof is analogous when j = 1 or j′ = 1.

3. Note that j′− j ∈ N. By part 1, C ⊩(j′−j) C. By part 2, C ⊩(j′−j) C, C ⊩j =⇒ C ⊩j′ C.

4. For ⊩j, we prove the claim by induction over j ∈ N.

Induction basis: j = 1. The claim holds by definition of ⊩1=⊩.

Induction step: j ⇝ j + 1. Assume the assertion holds for ⊩j and consider C, C′ ∈ C
such that C ⊩(j+1) C′. There exist C1, . . . , Cj ∈ C such that C ⊩ Cj ⊩ . . . ⊩ C1 ⊩ C′.
That is, C ⊩j C1 ⊩ C′ = {P1, . . . , Pr}. By definition of ⊩, there exist F1, . . . ,Fr ∈ F
such that, for all k = 1, . . . , r, Fk ⊩ {Pk} and

⊔
k=1,...,r Fk = C1. Let s1, . . . , sr ∈ N

and P 1
1 , . . . , P

1
s1 , . . . , P

r
1 , . . . , P

r
sr ∈ P be such that F1 = {P 1

1 , . . . , P
1
s1}, . . . ,Fr =

{P r
1 , . . . , P

r
sr}. By (the inductive) assumption, there are C1

1 , . . . , C1
s1 , . . . , C

r
1 , . . . , Cr

sr ∈
C such that, for k = 1, . . . , r, l = 1, . . . , sk, Ck

l ⊩
j {P k

l } and C =
⊔

k=1,...,r,l=1,...,sk
Ck
l .

Letting C1 =
⊔

l=1,...,s1
C1
l , . . . , Cr =

⊔
l=1,...,sr

Cr
l , we have C =

⊔
k=1,...,r,l=1,...,sk

Ck
l =⊔

k=1,...,r

⊔
l=1,...,sk

Ck
l =

⊔
k=1,...,r Ck. Additionally, for k = 1, . . . , r, Ck ⊩j Fk ⊩ {Pk}

(by Lemma 9, part 3 below); hence Ck ⊩(j+1) {Pk} (by part 2).

If C ⊩⋆ C′ we have C ⊩j⋆ C′ for some j⋆ ∈ N. There exist C1, . . . , Cr ∈ C such that
C = ⊔k=1,...,rCk and, for all k = 1, . . . , r, Ck ⊩j⋆ {Pk}; hence Ck ⊩⋆ {Pk}.

Lemma 9. Let j, r ∈ N, r ≥ 2 and C1, . . . , Cr, C′
1, . . . , C′

r ∈ C.

1. If C1 ⊩j C′
1 and C2 ⊩j C′

2, then (C1 ⊔ C2) ⊩j (C′
1 ⊔ C′

2).

2. If C1 ⊩⋆ C′
1 and C2 ⊩⋆ C′

2, then (C1 ⊔ C2) ⊩⋆ (C′
1 ⊔ C′

2).

3. If C1 ⊩j C′
1, . . . , Cr ⊩j C′

r, then
⊔

k=1,...,r Ck ⊩j
⊔

k=1,...,r C′
k.

4. If C1 ⊩⋆ C′
1, . . . , Cr ⊩⋆ C′

r, then
⊔

k=1,...,r Ck ⊩⋆
⊔

k=1,...,r C′
k.
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Proof. 1. We show the claim by induction over j ∈ N .

Induction basis: j = 1. Let C′
1 = {P 1

1 , . . . , P
1
r1}, C

′
2 = {P 2

1 , . . . , P
2
r2}. As C1 ⊩ C′

1, C2 ⊩
C′
2, there are C1

1 , . . . , C1
r1 , C

2
1 , . . . , C2

r2 ∈ C such that: for k = 1, . . . , r1, C1
k ⊩ {P 1

k }
and C1 =

⊔
k=1,...,r1

C1
k ; for k = 1, . . . , r2, C2

k ⊩ {P 2
k } and C2 =

⊔
k=1,...,r2

C2
k . As

(
⊔

k=1,...,r1
C1
k) ⊔ (

⊔
k=1,...,r2

C2
k) = C1 ⊔ C2, we have (C1 ⊔ C2) ⊩ (C′

1 ⊔ C′
2).

Induction step: j ⇝ j + 1. Assume the claim holds for ⊩j. As C1 ⊩(j+1) C′
1, C2 ⊩(j+1)

C′
2, there are C1

1 , . . . , C1
j , C2

1 , . . . , C2
j ∈ C such that C1 ⊩ C1

j ⊩ . . . ⊩ C1
1 ⊩ C′

1 and
C2 ⊩ C2

j ⊩ . . . ⊩ C2
1 ⊩ C′

2. We have C1
j ⊩

j C′
1 and C2

j ⊩
j C′

2. By (the inductive)
assumption and the induction basis: C1 ⊔ C2 ⊩ C1

j ⊔ C2
j ⊩

j C′
1 ⊔ C′

2. Thus, by Lemma
8, part 2, C1 ⊔ C2 ⊩(j+1) C′

1 ⊔ C′
2.

2. There exist j, j′ ∈ N such that C1 ⊩j C′
1, C2 ⊩j′ C′

2. W.l.o.g., let j ≥ j′. If j = j′,
C2 ⊩j C′

2. By Lemma 8, part 3, the same holds when j > j′. By part 1, we have
(C1 ⊔ C2) ⊩j (C′

1 ⊔ C′
2). A fortiori, (C1 ⊔ C2) ⊩⋆ (C′

1 ⊔ C′
2).

3. By induction over r ∈ N.

Induction basis: r = 2. See part 1.

Induction step: r ⇝ r + 1. Assume the the claim holds r ∈ N, r ≥ 2. We have⊔
k=1,...,r+1 Ck = (

⊔
k=1,...,r Ck)⊔Cr+1. By (the inductive) assumption,

⊔
k=1,...,r Ck ⊩j⊔

k=1,...,r C′
k. Thus, by part 1,

⊔
k=1,...,r+1 Ck = (

⊔
k=1,...,r Ck)⊔Cr+1 ⊩j (

⊔
k=1,...,r C′

k)⊔
C′
r+1 =

⊔
k=1,...,r+1 C′

k.

4. By induction over r ∈ N.

Induction basis: r = 2. See part 2.

Induction step: r ⇝ r + 1. Assume the claim holds for r ∈ N, r ≥ 2. We have⊔
k=1,...,r+1 Ck = (

⊔
k=1,...,r Ck)⊔Cr+1. By (the inductive) assumption,

⊔
k=1,...,r Ck ⊩⋆⊔

k=1,...,r C′
k. Thus, by part 2,

⊔
k=1,...,r+1 Ck = (

⊔
k=1,...,r Ck)⊔Cr+1 ⊩⋆ (

⊔
k=1,...,r C′

k)⊔
C′
r+1 =

⊔
k=1,...,r+1 C′

k.

If ∅ ≠ C ⊆ C′ ∈ C, w.l.o.g., there exist P1, . . . , Pr, . . . , Ps ∈ P (with 1 ≤ r ≤ s) such that
C = {P1, . . . , Pr} and C′ = {P1, . . . , Pr, . . . , Ps}. We define C′\C = {Pr+1, . . . , Ps} (hence
C\C = ∅). Now for arbitrary C, C′ ∈ C, we define C′\∅ = C′ and C′\C = C′\(C′⊓C), where ⊓
is the natural intersection operator on C (such that, e.g., {u, u′, u′} ⊓ {u′, u′, u′′} = {u′, u′}
on the universe U = {u, u′, u′′}).

Lemma 10. Let j ∈ N, and C = {P1, . . . , Pr} ∈ C be j-critical. Then, for k =

1, . . . , r, C\{Pk} = {P1, . . . , Pk−1, Pk+1, . . . , Pr} ⊩(2j+1) {P c
k}. Thus, if C is almost critical,

C\{Pk} ⊩⋆ {P c
k}.
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C.3 Some Lemmas

Proof. We prove the assertion by induction over j ∈ N.

Induction basis: j = 1. Note that, if G = {Q1, . . . , Qs} ∈ F is critical, we have, for
l = 1, . . . , s, G\{Ql} ⊢ Qc

l or, equivalently, G\{Ql} ⊩ {Qc
l }. Now, as C is 1-critical, C ⊩ G

for some critical G ∈ F. Let Q1, . . . , Qs ∈ P be such that G = {Q1, . . . , Qs}. There exist
F1, . . . ,Fs ∈ F such that: (i) for l = 1, . . . , s, Fl ⊢ Ql and (ii)

⊔
l=1,...,sFl = C. By (ii),

for every k = 1, . . . , r, there exists some 1 ≤ lk ≤ s such that Pk ∈ Flk . By Lemma
9, part 3, we have C\Flk =

⊔
l∈{1,...,s}\{lk}Fl ⊩ G\{Qlk}. By reflexivity (Lemma 8, part

1), Flk\{Pk} ⊩ Flk\{Pk}. Flk ⊢ Qlk implies that Flk ∪ {Qc
lk
} is critical. Thus, using

Lemma 9, part 1, we obtain C\{Pk} = (C\Flk) ⊔ (Flk\{Pk}) ⊩ (G\{Qlk}) ⊔ (Flk\{Pk}) ⊩
{Qc

lk
} ⊔ (Flk\{Pk}) = (Flk ∪ {Qc

lk
})\{Pk} ⊩ {P c

k}. By Lemma 8, part 2, C\{Pk} ⊩3 {P c
k}.

Induction step: j ⇝ j + 1. Assume the claim holds for j ∈ N. If C is (j + 1)-critical,
there exist C1, . . . , Cj ∈ C and some critical G ∈ F such that C ⊩ Cj ⊩ . . . ⊩ C1 ⊩
G. Clearly, Cj is j-critical. Let Q1, . . . , Qs ∈ P be such that Cj = {Q1, . . . , Qs}. As
C ⊩ Cj , there exist F1, . . . ,Fs ∈ F such that: (i) for all l = 1, . . . , s, Fl ⊢ Ql and
(ii)

⊔
l=1,...,sFl = C. By (ii), there exists some 1 ≤ lk ≤ s such that Pk ∈ Flk . By

Lemma 9, part 3, we have C\Flk =
⊔

l∈{1,...,s}\{lk}Fl ⊩ Cj\{Qlk}. By (the inductive)
assumption Cj\{Qlk} ⊩2j+1 {Qc

lk
}. By reflexivity (Lemma 8, part 1), Flk\{Pk} ⊩ Flk\{Pk}

and Flk\{Pk} ⊩j Flk\{Pk}. As Flk ⊢ Qlk , Flk ∪ {Qc
lk
} is critical. Thus, using Lemma

9, part 1, we obtain C\{Pk} = (C\Flk) ⊔ (Flk\{Pk}) ⊩ (Cj\{Qlk}) ⊔ (Flk\{Pk}) ⊩2j+1

{Qc
lk
} ⊔ (Flk\{Pk}) = (Flk ∪ {Qc

lk
})\{Pk} ⊩ {P c

k}. By Lemma 8, part 2, C\{Pk} ⊩2j+1+2

{P c
k} = C\{Pk} ⊩2(j+1)+1 {P c

k}.
Lastly, C is almost critical if and only if it is j′-critical for some j′ ∈ N. Thus,

C\{Pk} ⊩(2j′+1) {P c
k}. A fortiori, C\{Pk} ⊩⋆ {P c

k}.

We recall the definition of minimal entailment closure. For R : P ⇒ 2N\{∅}, define
P 7→ C1(R)(P ) = {G ⊆ N : G =

⋂
k=1,...,rGk for some G1 ∈ R(Q1), . . . , Gr ∈ R(Qr)

such that {Q1, . . . , Qr} ⊢ P}. For j ≥ 2, we define Cj(R) inductively by P 7→ Cj(R)(P ) =

C1(Cj−1(R))(P ). Lastly, for every P ∈ P, C⋆(R)(P ) =
⋃

j∈NC
j(R)(P ).

Lemma 11. Let R : P ⇒ 2N\{∅}, P ∈ P and j ∈ N.

1. G ∈ Cj(R)(P ) if and only if there exist r ∈ N, Q1, . . . , Qr ∈ P and G1 ∈
R(Q1), . . . , Gr ∈ R(Qr) such that {Q1, . . . , Qr} ⊩j {P} and

⋂
k=1,...,rGk = G.

2. G ∈ C⋆(R)(P ) if and only if there exist r ∈ N, Q1, . . . , Qr ∈ P and G1 ∈
R(Q1), . . . , Gr ∈ R(Qr) such that {Q1, . . . , Qr} ⊩⋆ {P} and

⋂
k=1,...,rGk = G.

Proof. 1. We show the claim by induction over j ∈ N.

Induction basis: j = 1. The claim holds by definition of C1(R).

Induction step: j ⇝ j + 1. Assume the claim holds for j ∈ N. We have
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G ∈ C(j+1)(R)(P ) ⇐⇒
(
G ∈ C1(Cj(R))(P )

)
IB⇐⇒ (∃r ∈ N∃Q1, . . . , Qr ∈ P∃G1 ∈ Cj(R)(Q1), . . . ,

Gr ∈ Cj(R)(Qr) : G =
⋂

k=1,...,r

Gk and {Q1, . . . , Qr} ⊩ {P})

IA⇐⇒ (∃r ∈ N∃Q1, . . . , Qr ∈ P∃G1, . . . , Gr ∈ 2N\{∅} :

G =
⋂

k=1,...,r

Gk, {Q1, . . . , Qr} ⊩ {P} and ∀k = 1, . . . , r

∃s1, . . . , sk ∈ N∃Qk
1, . . . , Q

k
sk

∈ P∃Gk
1 ∈ R(Qk

1), . . . ,

Gk
sk

∈ R(Qk
sk
) : Gk =

⋂
l=1,...,sk

Gk
l and {Qk

1, . . . , Q
k
sk
} ⊩j {Qk})

⇐⇒ (∃r ∈ N∃s1, . . . , sr ∈ N∃Q1
1, . . . , Q

1
s1 , . . . , Q

r
1, . . . , Q

r
sr ∈ P

∃G1
1 ∈ R(Q1

1), . . . , G
1
s1 ∈ R(Q1

s1), . . . , G
r
1 ∈ R(Qr

1), . . . ,

Gr
sr ∈ R(Qr

sr) : G =
⋂

k=1,...,r
l=1,...,sk

Gk
l and {Q1

1, . . . , Q
r
sr} ⊩

j+1 {P});

where the last equivalence uses Lemma 9, part 3.

2. We have, for all P ∈ P:

G ∈ C⋆(R)(P ) ⇐⇒
(
∃j⋆ ∈ N : G ∈ Cj⋆(R)(P )

)
1.⇐⇒ (∃j⋆ ∈ N ∃r ∈ N ∃Q1, . . . , Qr ∈ P ∃G1 ∈ R(Q1), . . . ,

Gk ∈ R(Qk) : {Q1, . . . , Qr} ⊩j⋆ {P} and
⋂

k=1,...,r

Gk = G)

⇐⇒ (∃r ∈ N ∃Q1, . . . , Qr ∈ P ∃G1 ∈ R(Q1), . . . , Gk ∈ R(Qk) :

{Q1, . . . , Qr} ⊩⋆ {P} and
⋂

k=1,...,r

Gk = G).

Lemma 12. Let R : P ⇒ 2N\{∅} be exhaustive and satisfy (IPC) (i.e., be a consistent
exhaustive rights system). For all j ∈ N, Q1, . . . , Qr, P ∈ P and G1 ∈ R(Q1), . . . , Gr ∈
R(Qr):

1. {Q1, . . . , Qr} ⊩j {P} =⇒
⋂

k=1,...,rGk ∈ R(P ),

2. {Q1, . . . , Qr} ⊩⋆ {P} =⇒
⋂

k=1,...,rGk ∈ R(P ).

Proof. 1. By induction over j ∈ N.

Induction basis: j = 1. We have {Q1, . . . , Qr} ⊩ {P} ⇐⇒ {Q1, . . . , Qr} ⊢
P ⇐⇒ {Q1, . . . , Qr, P

c} is critical. If
⋂

k=1,...,rGk = N , N\
(⋂

k=1,...,rGk

)
= ∅ /∈
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C.3 Some Lemmas

R(P c) =⇒
⋂

k=1,...,rGk = N ∈ R(P ) as R is exhaustive. If
⋂

k=1,...,rGk ̸= N , sup-
pose for a contradiction that

⋂
k=1,...,rGk /∈ R(P ). As R is exhaustive,

⋂
k=1,...,rGk /∈

R(P ) =⇒ N\
(⋂

k=1,...,rGk

)
∈ R(P c) yielding a violation of (IPC) over critical

{Q1, . . . , Qr, P
c}.

Induction step: j ⇝ j + 1. Assume the claim holds for j ∈ N. If {Q1, . . . , Qr} ⊩(j+1)

{P}, there exist C1, . . . , Cj ∈ C such that {Q1, . . . , Qr} ⊩ Cj ⊩ . . . ⊩ C1 ⊩ {P}.
Hence {Q1, . . . , Qr} ⊩j C1 ⊩ {P}. Let P1, . . . , Ps ∈ P be such that C1 = {P1, . . . , Ps}.
By Lemma 8, part 4, there exist C1, . . . , Cs ∈ C such that

⊔
l=1,...,s Cl = {Q1, . . . , Qr}

and, for l = 1, . . . , s, Cl ⊩j {Pl}. W.l.o.g., for l = 1, . . . , s, Cl = {Qrl−1+1, . . . , Qrl} for
some r0 = 0 < r1 < r2 < · · · < rs−1 < r = rs. By (the inductive) assumption, for all
l = 1, . . . , s,

⋂
k=rl−1+1,...,rl

Gk ∈ R(Pl). Thus, by the induction basis,
⋂

k=1,...,rGk =⋂
l=1,...,s

(⋂
k=rl−1+1,...,rl

Gk

)
∈ R(P ).

2. {Q1, . . . , Qr} ⊩⋆ {P} ⇐⇒
(
{Q1, . . . , Qr} ⊩j⋆ {P} for some j⋆ ∈ N

)
. Hence the

claim follows from part 1.

Lemma 13. Let R : P ⇒ 2N\{∅} satisfy (IPAC). For all P ∈ P, G ∈ 2N\{∅}, define

P ∋ P̂ 7→ R(G,P )(P̂ ) =

R(P̂ ) if P̂ ̸= P

R(P̂ ) ∪ {G} if P̂ = P
.

If G ∈ 2N\{∅}, P ∈ P are such that G /∈ R(P ) and N\G /∈ R(P c) then R(G,P ) or
R(N\G,P c) satisfies (IPAC).

Proof. Suppose that both R(G,P ) and R(N\G,P c) violate (IPAC). That is, there exist
almost critical C1 = {Q1

1, . . . , Q
1
r} ∈ C and C2 = {Q2

1, . . . , Q
2
s} ∈ C as well as G1

1 ∈
R(G,P )(Q

1
1), . . . , G

1
r ∈ R(G,P )(Q

1
r) and G2

1 ∈ R(N\G,P c)(Q
2
1), . . . , G

2
s ∈ R(N\G,P c)(Q

2
s) such

that (i)
⋂

k=1,...,rG
1
k = ∅ and (ii)

⋂
l=1,...,sG

2
l = ∅. Unless, for some 1 ≤ k′ ≤ r, Q1

k′ = P

and G1
k′ = G, R violates (IPAC), in contradiction with our assumption. Analogously, for

some 1 ≤ l′ ≤ s, we must have Q2
l′ = P c and G2

l′ = N\G. For all k ∈ {1, . . . , r}\{k′} and
all l ∈ {1, . . . , s}\{l′}, define:

Ĝ1
k =

G1
k if G1

k ∈ W(Q1
k)

N if G1
k = G and Q1

k = P
and Ĝ2

l =

G2
l if G2

l ∈ W(Q2
l )

N if G2
l = N\G and Q2

l = P c
.

Thus, for all k ̸= k′, Ĝ1
k ∈ R(Q1

k) ∪ {N} and, for all l ̸= l′, Ĝ2
l ∈ R(Q2

l ) ∪ {N}. By (i),⋂
k=1,...,r,k ̸=k′ Ĝ

1
k ⊆ N\G. By (ii),

⋂
l=1,...,s,l ̸=l′ Ĝ

2
l ⊆ G. If we show that C1\{Q1

k′}⊔C2\{Q2
l′}

is almost critical, we deduce that R violates (IPAC), a contradiction.
To complete the proof, we show that C1\{Q1

k′} ⊔ C2\{Q2
l′} is indeed almost critical. As

C1, C2 are almost critical, we can use Lemma 10 to conclude that C1\{Q1
k′} ⊩⋆ {(Q1

k′)
c} =
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{P c} and C2\{Q2
l′} ⊩⋆ {(Q2

l′)
c} = {(P c)c} = {P}. By Lemma 9, part 2, (C1\{Q1

k′}) ⊔
(C2\{Q2

l′}) ⊩⋆ {P c}⊔ {P} = {P, P c}. As {P, P c} is critical, C1\{Q1
k′}⊔ C2\{Q2

l′} is almost
critical.

Lemma 14. Let P,Q ∈ P.

1. P ⊵⋆ Q ⇐⇒ (∃C ∈ C : P ∈ C ⊩⋆ {Q}). Moreover, {P} ⊩⋆ {Q} only if P ⊆ Q.

2. If P ⊵⋆ Q, Q ⊵⋆ P and P ̸= Q, then there exists some collection C′ ∈ C such that
|C′| ≥ 2 and P ∈ C′ ⊩⋆ {Q}.

Proof. 1. We have

P ⊵⋆ Q ⇐⇒ ∃r ∈ N∃Q1, . . . , Qr ∈ P : P ⊵ Q1 ⊵ · · · ⊵ Qr ⊵ Q

⇐⇒ ∃r ∈ N∃Q1, . . . , Qr ∈ P∃F ,F1, . . . ,Fr ∈ F :

P ∈ F ⊢ Q1, Q1 ∈ F1 ⊢ Q2, . . . , Qr ∈ Fr ⊢ Q

⇐⇒ ∃r ∈ N∃Q1, . . . , Qr ∈ P∃F ,F1, . . . ,Fr ∈ F :

P ∈ F ⊔

 ⊔
k=1,...r

Fk\{Qk}

 ⊩⋆ {Q}

⇐⇒ ∃C ∈ C : P ∈ C ⊩⋆ {Q}.

By non-triviality of P, all properties are individually consistent. Thus, for every
P̂ , Q̂ ∈ P, it holds P̂ ⊆ Q̂ ⇐⇒

({
P̂ , Q̂c

}
is critical

)
⇐⇒

{
P̂
}
⊢ Q̂ ⇐⇒

{
P̂
}
⊩{

Q̂
}

. Now suppose that {P} ⊩⋆ {Q}. We must have {P} ⊩ {Q1} ⊩ . . . ⊩ {Qr} ⊩
{Q} for some Q1, . . . , Qr ∈ P. Thus, P ⊆ Q1 ⊆ · · · ⊆ Qr ⊆ Q.

2. By part 1, there exist C1, C2 ∈ C such that Q ∈ C1 ⊩⋆ P and P ∈ C2 ⊩⋆ Q. As
P ̸= Q, we have |C1| ≥ 2 or |C2| ≥ 2. If |C2| ≥ 2, take C′ = C2. Otherwise, {P} ⊩⋆ Q.
Then, by Lemma 9, part 4, {P} ⊔ (C1\{Q}) ⊩⋆ C1 ⊩⋆ {P} ⊩⋆ {Q}. Thus, take
C′ = {P} ⊔ (C1\{Q}).

C.4 Proofs for Chapter 13

C.4.1 Proof of Fact 3

The proof is contained in the main text.

C.4.2 Proof of Fact 4

We have {Q1, . . . , Qr} ⊢ P ⇐⇒ {Q1, . . . , Qr} ⊩ {P}. The claim follows by Lemma 12.
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C.4 Proofs for Chapter 13

C.4.3 Proof of Theorem 7

Fact 3 and Theorem 6 imply equivalence of 1 and 2. We complete the proof by showing
3 =⇒ 2 =⇒ 4 =⇒ 3.

Proof of 3 =⇒ 2

If R is exhaustive, take R′ = R. Suppose R is not exhaustive. That is, there exist some
G ∈ 2N\{∅} and some P ∈ P such that G /∈ R(P ) and N\G /∈ R(P c). By Lemma
13, there exists some rights system R(1) satisfying (IPAC) which extends R such that
G ∈ R(1)(P ) or N\G ∈ R(1)(P c). If R(1) is exhaustive, take R′ = R(1). Otherwise use
Lemma 13 again to extend R(1) to some R(2) satisfying (IPAC) such that G′ ∈ R(2)(Q) or
N\G′ ∈ R(2)(Qc) for some G′ ∈ 2N\{∅} and Q ∈ P such that G′ /∈ R(1)(Q) and N\G /∈
R(1)(Qc). When continued, this procedure will produce some exhaustive R′ satisfying
(IPAC) after a finite amount of steps. This is true because there are only finitely many
pairs (G,H) ∈ 2N\{∅} × P; seeing that both N and P ⊆ 2X are finite.

Proof of 2 =⇒ 4

Let R′ be some exhaustive rights system satisfying (IPC) and (R⋆). Assume for a
contradiction that C⋆(R) does not satisfy (IPC). That is, there exist some critical
{P1, . . . , Pr} ∈ F and G1 ∈ C⋆(R)(P1), . . . , Pr ∈ C⋆(R)(Pr) such that

⋂
k=1,...,rGk = ∅.

By Lemma 11, part 2, for k = 1, . . . , r, there exist sk ∈ N, {Qk
1, . . . , Q

k
sk
} ∈ C and

Gk
1 ∈ R(Qk

1) ⊆ R′(Qk
1), . . . , G

k
sk

∈ R(Qk
sk
) ⊆ R′(Qk

sk
) such that {Qk

1, . . . , Q
k
sk
} ⊩⋆ Pk and

Gk =
⋂

l=1,...,sk
Gk

l . By Lemma 12, part 2, for all k = 1, . . . , r, Gk =
⋂

l=1,...,sk
Gk

l ∈ R′(Pk).
Thus, R′ violates (IPC), a contradiction.

Proof of 4 =⇒ 3

Let C⋆(R) satisfy (IPC). Assume for a contradiction that R does not satisfy (IPAC).
There exist some almost critical {P1, . . . , Pr} ∈ C and G1 ∈ R(P1), . . . , Gr ∈ R(Pr)

such that
⋂

k=1,...,rGk = ∅. As {P1, . . . , Pr} is almost critical, there exists some critical
G = {Q1, . . . , Qs} ∈ F such that {P1, . . . , Pr} ⊩⋆ G. By Lemma 8, part 4, there exist
C1 ⊩⋆ Q1, . . . , Cs ⊩⋆ Qs with {P1, . . . , Pr} = ⊔l=1,...,sCl. W.l.o.g., for l = 1, . . . , s, Cl =
{Prl−1+1, . . . , Prl} for some r0 = 0 < r1 < r2 < · · · < rs−1 < r = rs ∈ N. For l = 1, . . . , s,
let Gl =

⋂
k=rl−1+1,...,rl

Gk. By Lemma 11, part 2, we have Gl =
⋂

k=rl−1+1,...,rl
Gk ∈

C⋆(R)(Ql). Seeing that
⋂

l=1,...,sG
l =

⋂
l=1,...,s

(⋂
k=rl−1+1,...,rl

Gk

)
=
⋂

k=1,...,rGk = ∅,
C⋆(R) violates (IPC), a contradiction.
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C.4.4 Proof of Proposition 5

Proof of part 1

Let C̃ ∈ C. We show that there exists some almost critical CC̃ ∈ C such that C̃ ⊆ CC̃ . Let
C ∈ F be some arbitrary almost critical collection. Let P ∈ C̃, P /∈ C (if no such P exists,
we have C̃ ⊆ C; thus, letting CC̃ = C completes the proof) and Q ∈ C. By Lemma 14, part
2, there exists some C′ ∈ C such that |C′| ≥ 2 and P ∈ C′ ⊩⋆ {Q}. Let Q′ ∈ C′\{Q} ̸= ∅.
By Lemma 14, part 1, there exists some C′′ ∈ C such that Q ∈ C′′ ⊩⋆ {Q′}. Note that
C ⊔{P} ⊆ C′′ ⊔ (C′\{Q′})⊔ (C\{Q}). Using Lemma 9, part 4, C′′ ⊔ (C′\{Q′})⊔ (C\{Q}) ⊩⋆

C′⊔(C\{Q}) ⊩⋆ C. As C is almost critical, so is C′′⊔(C′\{Q′})⊔(C\{Q}). Thus, there exists
an almost critical collection containing C⊔{Q}. In the same fashion, if P ′ ∈ C̃, P ′ /∈ C⊔{P},
we can find an almost critical collection containing C⊔{P}⊔{P ′}. Consequently, in finitely
many steps, we can construct some almost critical collection CC̃ such that C̃ ⊆ CC̃ .

Let P2n be the collection that contains every property from P exactly 2n times. As
a consequence of what we just showed, there is some almost critical CP2n

⊇ P2n . If R
is trivial, let Xn ∋ x = (x1, . . . , xn) 7→ fi⋆(x) = xi⋆ for some i⋆ ∈

⋂
G∈R(P ), P∈P G.

Then fi⋆ respects rights and is onto and monotone independent. Conversely, suppose R
is consistent with voting by properties. Note that, for every P ∈ P, R(P ) ⊆ 2N . Thus,
|R(P )| ≤ 2n. By Theorem 7, R satisfies (IPAC). When evaluated over CP2n

, this yields
that

⋂
G∈R(P ), P∈P G ̸= ∅.

Proof of part 2

As every critical family is almost critical, we only need to show the converse. We establish
an auxiliary result first. By the definition of ⊢, on a median space (X,P), we have that
for all F ∈ F, P ∈ P: F ⊢ P ⇐⇒ (∃Q ∈ P : F = {Q} ⊢ P ) ⇐⇒ (∃Q ∈ P : F =

{Q} and {Q,P c} is critical) ⇐⇒ (∃Q ∈ P : F = {Q} and Q ⊆ P ). Consequently, for
all C ∈ C, P ∈ P: C ⊩ {P} ⇐⇒ (∃Q ∈ P : C = {Q} ⊩ P ) ⇐⇒ (∃Q ∈ P : C =

{Q} and Q ⊆ P ). By transitivity of ⊆, the same statements carry over to ⊩⋆.

Let C ∈ C be almost critical. That is, there exists some critical G ∈ F such that C ⊩⋆ G.
As (X,P) is median, G = {P1, P2} for some P1, P2 ∈ P. By Lemma 8, part 4, there exist
C1, C2 ∈ C, C = C1 ⊔ C2 such that C1 ⊩⋆ {P1} and C2 ⊩⋆ {P2}. By what we just showed,
there exist Q1, Q2 ∈ P such that C1 = {Q1}, C2 = {Q2} and Q1 ⊆ P1, Q2 ⊆ P2. We have
Q1 ⊆ P1 ⊆ P c

2 ⊆ Qc
2. Thus, {Q1, (Q

c
2)

c} = {Q1, Q2} = C is critical.

As the almost critical collections are exactly the critical families (all of length two), it
is without loss of generality to choose R(P ) ∋ GP ̸= N for both properties P ∈ G when
checking (IPAC) over critical G (otherwise, the intersection is trivially non-empty). Thus,
(IPAC) is equivalent to (IPC). Equivalence of (a) and (b) follows (from Theorems 6 and
7). To prove equivalence of (c) and (d), note that on median spaces all entailments are
unconditional (hence direct). Thus, two properties are dependent if and only if they are
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C.4 Proofs for Chapter 13

directly dependent. It follows that weak independence and independence are equivalent
concepts on median spaces. Lastly, to show equivalence of (a) and (d), we note that, as all
critical fragments have length two on median spaces, R is weakly independent if and only
if it satisfies (IPC) (i.e., is consistent).

C.4.5 Proof of Fact 5

For all P,Q ∈ P define P ≡ Q ⇐⇒ (P ⊵⋆ Q and Q ⊵⋆ P ). Note that ≡ is an equivalence
relation on P.

We show that ≡ induces exactly two distinct and non-empty equivalence classes. As
(X,P) is not totally blocked, there must be at least two equivalence classes. Let [≡]1, [≡]2

be two such classes and consider some P ∈ [≡]1, Q ∈ [≡]2. We have P ̸≡ Q. Thus, by
semi-blockedness of (X,P), Q ≡ P c; i.e., P c ∈ [≡]2. Now, for every P̂ ∈ P\{P, P c}, P̂ ≡ P

or P̂ ≡ P c. Thus, there are at most two distinct and non-empty equivalence classes.

As [≡]1 ̸= [≡]2, we must have [≡]1 ⋭⋆ [≡]2 or [≡]2 ⋭⋆ [≡]1. W.l.o.g., assume the former.
Define P− = [≡]1 and P+ = [≡]2. Then 2. holds by construction. To verify 1., suppose for
a contradiction that Q ≡ Qc for some Q ∈ P. Then, for all P, P ′ ∈ P, P ≡ Q or P ≡ Qc

and P ′ ≡ Q or P ′ ≡ Qc. As Q ≡ Qc, P ≡ P ′ and (X,P) is totally blocked.

To verify 3., we still need to show that P+ ⊵⋆ P−. We first show that, when |X| > 2,
there exists some critical family G such that |G| ≥ 3. Indeed, suppose for a contradiction
that |G| = 2 for all critical G ⊆ P. Then we have for all P̂ , Q̂ ∈ P: P̂ ⊵⋆ Q̂ ⇐⇒ P̂ ⊆ Q̂;
i.e., P̂ ≡ Q̂ ⇐⇒ P̂ = Q̂. Consequently, |P| = 2. It follows that, when |X| > 2, there are
x ̸= y ∈ X such that, for all P ∈ P, x ∈ P ⇐⇒ y ∈ P , in contradiction to (X,P) being
a property space. Thus, there must exist some critical G ∈ F with |G| ≥ 3. Let G ⊆ P be
critical, |G| ≥ 3. From part 1 and the fact that P− ⋭⋆ P+, we have |G ∩ P−| ≤ 1. Thus,
|G ∩ P+| ≥ 2 and there exist {P,Q} ⊆ G ∩ P+. We have P ⊵⋆ Qc. By part 1, Qc ∈ P−.
Hence for all P̂ ∈ P+, Q̂ ∈ P−: P̂ ⊵⋆ P ⊵⋆ Qc ⊵⋆ Q̂.

Let C̃ = {P1, . . . , Pr} be almost critical and suppose there exist k′, k′′ ∈ {1, . . . , r}, k′ ̸=
k′′ such that Pk′ , Pk′′ ∈ P−. By Lemma 10, Pk′′ ∈ C̃\{Pk′} ⊩⋆ {P c

k′}. Thus, by Lemma
14, part 1 and part 1 from above, P− ∋ Pk′′ ⊵⋆ P c

k′ ∈ P+ contradicting P− ̸⊵⋆ P+. Thus,
every almost critical C̃ can contain at most one element from P−.

Let C be some multiset over P+ and P ∈ P−. We show that there exists some almost
critical collection that contains C ⊔ {P}. By part 1, P c ∈ P+. Additionally, {P, P c} is
critical; a fortiori, almost critical. Let Q ∈ C. By Lemma 14, part 1 and part 3 above,
there exists some C′ ∈ C, |C′| ≥ 2 such that Q ∈ C′ ⊩⋆ {P c}. Thus, {P,Q} ⊆ {P} ⊔ C′ and
{P} ⊔ C′ is almost critical (seeing that {P} ⊔ C′ ⊩⋆ {P, P c}). As |({P} ⊔ C′)\{P,Q}| ≥ 1

and ({P} ⊔ C′)\{P,Q} ⊆ P+, we can use Lemma 14, part 2 repeatedly until we have
constructed an almost critical family containing C ⊔ {P} after finitely many steps.
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C.4.6 Proof of Proposition 6

Suppose some monotone independent and onto f : Xn → X respects R. By Fact 2 and
the discussion in the main text, f = FR′ for some consistent exhaustive R′ that extends R.
Thus, for all i ∈ N , R′ satisfies (MR-i). That is, for all i ∈ N , there exist Pi ∈ P, Gi ⊆ N

such that i ∈ Gi ∈ R′(Pi) and (N\Gi) ∪ {i} ∈ R′(P c
i ).

Consider any P ∈ P−. For all Q ∈ P−, Fact 5 establishes that there exists some almost
critical C ∈ C such that {P c, Qc, Q} ⊆ C. Thus, by Lemma 10, {Qc, Q} ⊆ C\{P c} ⊩⋆ {P}.
Using this with Q = Pi as well as Lemma 12, part 2, we have for all i ∈ N : {i} =

Gi ∩ ((N\Gi) ∪ {i}) ∈ R′(P ) (note that N ∈
⋂

P∈P R(P )). As R′ is monotone, we have
R′(P ) = 2N\{∅} and, consequently, R′(P c) = {N}. As P ∈ P− was arbitrary, f = FR′ is
a unanimity rule with default

⋂
P−.
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D Appendix to Part V

D.1 Relation of Equation (16.2) and the General Case of Exchangeable Errors.

How general is equation (16.2)? Instead of equation (16.2) we may simply assume that(
eki
)
i∈N are exchangeable for all k = 1, . . . ,K (with homogeneous positive pairwise corre-

lation ρ ≥ 0) and independent (across k). By De Finetti’s Theorem, there exist (latent)
random variables c̃k taking on values in [0, 1] such that for all k = 1, . . . ,K:

1.
(
ẽki
)
i∈N are independent (for given k) when conditioned on c̃k.

2. E[ẽki |c̃k] = c̃k

3. c̃k = lim
n→∞

1
n

∑n
i=1 ẽ

k
i

If the ck are themselves binary r.v.s (say taking on values a, b ∈ [0, 1]), then specifying
P(c̃k = a) pins down P(ẽki = 0|c̃k = a) and P(ẽki = 0|c̃k = b) (where, w.l.o.g., P(ẽki = 0|c̃k =

a) ≥ P(ẽki = 0|c̃k = b))155 and hence the joint distribution of
(
ẽki
)
i∈N. This is the case

since we must have that

1. 1 − p = E[ẽki ] = E[E[ẽki |c̃k]] = P(c̃k = a)(1 − P(ẽki = 0|c̃k = a)) + (1 − P(c̃k =

a))(1− P(ẽki = 0|c̃k = b)) and

2. p(1 − p)ρ = CoV (ẽki , ẽ
k
j ) = E[ẽki ẽkj ] − E[ẽki ]2 = P(c̃k = a)(1 − P(ẽki = 0|c̃k = a))2 +

(1− P(c̃k = a))(1− P(ẽki = 0|c̃k = b))2 − (1− p)2;

a system of two equations in two unknown with a unique solution. Letting pa := P(ẽki =

0|c̃k = a) and pb := P(ẽki = 0|c̃k = b), this system reduces to

p = P(c̃k = a)pa + (1− P(c̃k = a))pb (D.1)

p(1− p)ρ = P(c̃k = a)(1− pa)
2 + (1− P(c̃k = a))(1− pb)

2. (D.2)

Solving (D.1) for pa delivers pa = p
P(c̃k=a)

− 1−P(c̃k=a)
P(c̃k=a)

pb. Plugging into (D.2) and solving
for pb, we have

pb = p±

√
P(c̃k = a)

1− P(c̃k = a)
(1− p)pρ.

155 Thus, ck = a is the “good” state in which latent variable ck delivers valuable information in the sense of
increasing individual competence above the average level p.
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Thus, using (D.1) again,

pa = p∓

√
1− P(c̃k = a)

P(c̃k = a)
(1− p)pρ.

The unique solution such that pa ≥ pb is pa = p +
√

1−P(c̃k=a)
P(c̃k=a)

(1− p)pρ and pb = p −√
P(c̃k=a)

1−P(c̃k=a)
(1− p)pρ. For P(c̃k = a) = p, we obtain pa = p+

√
ρ(1− p) and pb = p−√

ρp

(cf. Equation (16.4)).

D.2 Auxiliary Results

Lemma 15. For all α, q, q′ ∈ [0, 1], all k = 1, . . . ,K: f̂x(q1, . . . , qk−1, αq+(1−α)q′, qk+1,

. . . , qK) = αf̂x(q1, . . . , qk−1, q, qk+1, . . . , qK) + (1− α)f̂x(q1, . . . , qk−1, q
′, qk+1, . . . , qK).

Proof. We show the case k = 1. The cases k = 2, . . . ,K are analogous. We have f̂x(αq +
(1− α)q′, q2, . . . , qK) =

∑
v∈{0,1}K :
F (v)=F (x)

v1=x1

(αq + (1− α)q′)
K∏
k=2

q
1−|xk−vk|
k (1− qk)

|xk−vk|

+
∑

v∈{0,1}K :
F (v)=F (x)

v1 ̸=x1

(α(1− q) + (1− α)(1− q′))
K∏
k=2

q
1−|xk−vk|
k (1− qk)

|xk−vk|

=α
∑

v∈{0,1}K :
F (v)=F (x)

q1−|x1−v1|(1− q)|x1−v1|
K∏
k=2

q
1−|xk−vk|
k (1− qk)

|xk−vk|

+ (1− α)
∑

v∈{0,1}K :
F (v)=F (x)

q′1−|x1−v1|(1− q′)|x1−v1|
K∏
k=2

q
1−|xk−vk|
k (1− qk)

|xk−vk|

=αf̂x(q, q2, . . . , qK) + (1− α)f̂x(q
′, q2, . . . , qK)

D.3 Proofs for the Main Text

Proof of Proposition 8

Let the agenda be given by F : X → {0, 1} and consider any x ∈ X.

1. Suppose that x induces increasing competence and consider any p ∈ (0.5, 1). As
gn(p) > 0.5 is increasing in n and fx(·) is increasing on (0.5, 1), we have for any two
odd n′ > n: fx(gn′(p)) > fx(gn(p)).
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D.3 Proofs for the Main Text

2. Suppose x is truth-conducive and consider any p ∈ (0.5, 1). As fx(p) > 0.5, gn(fx(p))
is increasing in n. Else suppose there exists some p′ ∈ (0.5, 1) such that fx(p′) ≤ 0.5.
If fx(p′) = 0.5, then gn(fx(p

′)) = 0.5 for all odd n. Else if fx(p′) < 0.5, then
gn(fx(p

′)) is decreasing in n.

Proof of Proposition 9

Using Lemma 15, we have P x
ρ,n(p) =∑

y∈{0,1}K
pK−||y||1(1− p)||y||1 f̂x(gn((1− y1)pH + y1pL), . . . , gn((1− yK)pH + yKpL))

=
∑

z∈{0,1}K−1

p · pK−1−||z||1(1− p)||z||1 f̂x(gn(pH), g2((1− y2)pH + y2pL), . . . )

+
∑

z∈{0,1}K−1

(1− p) · pK−1−||z||1(1− p)||z||1 f̂x(gn(pL), g2((1− y2)pH + y2pL), . . . )

=
∑

z∈{0,1}K−1

pK−1−||z||1(1− p)||z||1 f̂x(pgn(pH) + (1− p)gn(pL), g2((1− y2)pH + y2pL), . . . )

=
∑

w∈{0,1}K−2

p · pK−2−||w||1(1− p)||w||1 f̂x(pgn(pH) + (1− p)gn(pL), gn(pH), . . . )

+
∑

w∈{0,1}K−2

(1− p) · pK−2−||w||1(1− p)||w||1 f̂x(pgn(pL) + (1− p)gn(pL), gn(pL), . . . )

= . . .

= f̂(pgn(pH) + (1− p)gn(pL), . . . , pgn(pH) + (1− p)gn(pL))

= f(pgn(pH) + (1− p)gn(pL))
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