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Abstract

LetX be an n-element point set in the k-dimensional unit cube [0, 1]k where k ≥ 2. According
to an old result of Bollobás and Meir (1992), there exists a cycle (tour) x1, x2, . . . , xn through

the n points, such that
(∑n

i=1 |xi − xi+1|k
)1/k ≤ ck, where |x − y| is the Euclidean distance

between x and y, and ck is an absolute constant that depends only on k, where xn+1 ≡ x1.
From the other direction, for every k ≥ 2 and n ≥ 2, there exist n points in [0, 1]k, such that

their shortest tour satisfies
(∑n

i=1 |xi − xi+1|k
)1/k

= 21/k ·
√
k. For the plane, the best constant

is c2 = 2 and this is the only exact value known. Bollobás and Meir showed that one can take

ck = 9
(
2
3

)1/k ·
√
k for every k ≥ 3 and conjectured that the best constant is ck = 21/k ·

√
k,

for every k ≥ 2. Here we significantly improve the upper bound and show that one can take

ck = 3
√
5
(
2
3

)1/k ·
√
k or ck = 2.91

√
k (1 + ok(1)). Our bounds are constructive. We also show

that c3 ≥ 27/6, which disproves the conjecture for k = 3.
Connections to matching problems, power assignment problems, related problems, includ-

ing algorithms, are discussed in this context. A slightly revised version of the Bollobás–Meir
conjecture is proposed.

Keywords: traveling salesman problem, minimum spanning tree, binary code, relaxed tri-
angle inequality.

1 Introduction

Given n points in the unit square, Newman [20, Problem 57] proved that there is a closed polygonal
Hamiltonian cycle (tour)H through the n points such that the sum of the squares of its edge-lengths
is at most 4. The upper bound of 4 cannot be improved: Figure 1 shows three different point sets
whose optimal tours yield exact equality. More importantly, the above upper bound is independent
of n. Meir [19] considered the extension of this problem to higher dimensions. For a point x ∈ Rk,
let |x| denote the Euclidean length of x; namely, if x = (ξ1, ξ2, . . . , ξk), then

|x| =

(
k∑

i=1

ξ2i

)1/2

.

For two points x, y ∈ Rk, let the weight of the edge e = xy, be |e| := |x − y|, i.e., the Euclidean
distance between x and y.
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Figure 1: Tight examples with 4, 2, and 5 points: 1 + 1 + 1 + 1 = 2 + 2 = 1 + 1 + 1 + 1/2 + 1/2.

Let X be an n-element point set in the unit cube [0, 1]k. For a graph G on vertex set X, set

Sk(G) =
∑
e∈G

|e|k and sk(G) =

(∑
e∈G

|e|k
)1/k

. (1)

We refer to Sk(G) and sk(G) as the unscaled and scaled costs, respectively. Denote by SHC
k (X),

SST
k (X) and SHP

k (X) (sHCk (X), sSTk (X) and sHPk (X)) the minimum over Sk(G) (sk(G)) where G is a
Hamiltonian cycle, respectively a spanning tree or Hamiltonian Path with vertex set X. Further,
let

sHCk (n) = sup{sHCk (X) : X ⊆ [0, 1]k, |X| = n}, sSTk (n) = sup{sSTk (X) : X ⊆ [0, 1]k, |X| = n},
sHPk (n) = sup{sHPk (X) : X ⊆ [0, 1]k, |X| = n},

sHCk = sup
n≥2

sHCk (n), sSTk = sup
n≥2

sSTk (n) and sHPk = sup
n≥2

sHPk (n).

It is clear that sHCk (n) ≥ sHCk (m), whenever n ≥ m (by clustering points and taking the limit).
In this notation, Newman’s result mentioned earlier reads sHC2 (n) = 2 for every n ≥ 2. A more
recent reference to this result can be found in [6, Problem 124]. Currently this is the only exact
value known. Meir [19] asked whether sk(n) is bounded from above by a constant ck > 0 for every
k. Soon after, Bollobás and Meir [7] answered Meir’s question in the positive by proving that

sHCk (n) ≤ 9
(
2
3

)1/k ·√k for every k ≥ 3 and n ≥ 2 (and recall that c2 = 2). From the other direction,

the 2-point example consisting of two opposite vertices of {0, 1}k shows that sHCk (n) ≥ 21/k ·
√
k for

every k ≥ 2 and n ≥ 2; see Figure 1 (center). We record their result below.

Theorem 1.1. (Bollobás and Meir [7]). Let k ≥ 3 and n ≥ 2. Then,

21/k
√
k ≤ sHCk (n) ≤ 32−

1
k 21/k

√
k.

In the conclusion of their paper [7], the authors conjectured that sHCk (n) = 21/k ·
√
k for every

k ≥ 2 and n ≥ 2. Meir [19] also asked for an algorithm that computes a tour whose cost is bounded
by a constant depending on k. As we will see in more detail in Section 2, Bollobás and Meir’s proof
implicitly gives a positive answer to this latter question. Similarly, our new bounds in Theorem 1.3
and Corollary 5.1 are constructive too.

Background and related work. The traveling salesman problem (TSP) is perhaps the most
studied problem in the theory of combinatorial optimization. Its approximability depends on the
particular version of the problem. Specifically, TSP with Euclidean distances admits a polynomial-
time approximation scheme [3, 16]. If the distances form a metric, then the problem is MaxSNP-
hard [21] and the best approximation ratio known is essentially 3/2 [8, 13].
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Estimating the length of a shortest tour of n points in the unit square with respect to Eu-
clidean distances has been studied as early as 1940s and 1950s by Fejes Tóth [10], Few [11], and
Verblunsky [30], respectively. Few [11] proved that the (Euclidean) length of a shortest cycle (tour)
through n points in the unit square [0, 1]2 is at most

√
2n + 7/4. The same upper bound holds

for the minimum spanning tree [11]. Few’s bound was rediscovered in 1983 by Supowit, Reingold,
and Plaisted [26]. A slightly better upper bound for the shortest cycle, 1.392

√
n + 7/4, has been

derived by Karloff [14], who also emphasized the difficulty of the problem. The current best lower

bound for the length of such a cycle is due to Fejes Tóth [10] and Few [11]: it is
(
4
3

)1/4√
n−o(

√
n),

where (4/3)1/4 = 1.075 . . .. For every dimension k ≥ 3, Few showed that the maximum length of a
shortest tour through n points in the unit cube is Θ(n1−1/k). Moran [18] studied the length of the
shortest traveling salesman tour through a set of n points of unit diameter in Rk.

The length of a shortest tour through a random sample {X1, . . . , Xn} of n points in the unit
cube [0, 1]k was determined by Beardwood, Halton, and Hammersley. Let this length be denoted by
L(X1, . . . , Xn). If {Xi} is a sequence of independent random variables with the uniform distribution
on [0, 1]k, then there is a constant β(k) > 0 such that

L(X1, . . . , Xn)/n
1−1/k → β(k)

with probability one [4]. Later, Rhee [22] proved that β(k)/
√
k → 1/

√
2πe, see also [25]. The

relevance of the cube diagonal,
√
k, in the above formulas, can be also observed in our estimates

for sk(n); see Theorem 1.3 (ii) and Conjecture 5.5.
Expressions for the cost of a Hamiltonian cycle of the kind in (1) have been considered in the

context of power assignment problems in wireless networks. Let X be an n-element point set in the
unit cube [0, 1]k and α ≥ 1 be a real number. For a Hamiltonian cycle H as above, one is interested
in minimizing a cost of the form

cost(H) =

n∑
i=1

|xi − xi+1|α. (2)

Such costs typically reflect the energy costs along the edges that make the cycle [9, 15] in wire-
less network transmission. An illustrative example is that of a virtual token floating through the
network, where sensor nodes can attach or read data from the token before sending it to the next
node on the cycle. One can speak about finding a traveling salesman tour (TSP tour) of minimum
energy cost [12]. The fact that k is the smallest value of α for which the cost in (2) is bounded
from above by a constant (depending on k but independent on n) should be noted [7, 15]; a fine
grid section in the cube proves this point.

As pointed out in several places in the literature [2, 5, 9, 12], simply computing a short (even
optimal) tour for the underlying Euclidean instance does not work, i.e., does not provide a good
approximation with respect to the power costs in (2). Funke, Laue, Lotker and Naujoks [12] showed
that the cost of an optimal tour for the Euclidean instance can be a factor of Ω(n) larger than that
of optimal tour for the power costs (a simple example can be constructed with equidistant points
on a line or on a circle of large radius).

In [12] a recursive algorithm was also presented, that given n points in R2, it constructs a TSP
tour for edge costs |pq|α = |e|α, whose cost is at most 2 · 3α−1 times that of a minimum spanning
tree (MST) of the point set. Since the cost of an MST does not exceed that of an optimal Euclidean
TSP tour, their algorithm is 2 · 3α−1-factor approximation for the TSP with power costs as in (2).
The authors further show that the approach extends to Rk with the same ratio:

Theorem 1.2. (Funke, Laue, Lotker, and Naujoks [12]). There exists a 2 · 3α−1-approximation
algorithm for the TSP in Rk if the edge weights are Euclidean distances to the power α.

3



If for some τ > 1 distances of a TSP instance satisfy

dist(x, z) ≤ τ (dist(x, y) + dist(y, z)) ,

for any three vertices x, y, z, we say that they satisfy the relaxed triangle inequality, see [2, 5, 17]. It
is important to note that the metric with Euclidean distances to the power α satisfies the relaxed
triangle inequality with τ = 2α−1; see [9, 12]. For α = 2 (i.e., TSP with squared distances),
Theorem 1.2 yields a 6-approximation. De Berg, van Nijnatten, Sitters, Woeginger and Wolff [9]
obtained a 5-approximation.

Our results. The upper bound sHCk (n) ≤ 9
(
2
3

)1/k · √k, where k ≥ 3, has stood unchanged for 30
years [7]. Here we obtain several improvements.

Theorem 1.3. The following bounds are in effect:

(i) There exists a 4-element point set in [0, 1]3 such that the cost of the shortest tour is at least
27/6 = 2.24 . . .. Consequently, sHC3 (n) ≥ 27/6 = 2.24 . . ., for every n ≥ 4.

(ii) Let X be an n-element point set in the k-dimensional unit cube [0, 1]k, k ≥ 3. Then there

exists a tour H = x1, x2, . . . , xn through the n points, such that
(∑n

i=1 |xi − xi+1|k
)1/k ≤

3
√
5
(
2
3

)1/k · √k. Consequently, sHCk (n) ≤ 3
√
5
(
2
3

)1/k · √k = 6.708 . . . ·
(
2
3

)1/k · √k.

(iii) H can be computed in time proportional to that needed for computing a MST of the points,
in particular, in subquadratic time.

Several sharper bounds are obtained for sufficiently large k. We note that the conjectured opti-
mal configuration consisting of a diameter pair of the cube as well as the lower bound construction
we will present for k = 3 in Theorem 1.3 (i) are subsets of {0, 1}k. This raises the natural question
if one can determine the maximum of sHCk (X) if the point set X is in {0, 1}k. We answer this
question.

Theorem 1.4. There exists an integer k0 such that for all k ≥ k0 the following holds. If X is an
arbitrary subset of vertices of {0, 1}k, then there exists a Hamiltonian cycle H through X such that
sk(H) ≤ 21/k

√
k.

The “sufficiently large” requirement for Theorem 1.4 is in fact quite modest. The threshold k0
is below 30. Note that the bound in Theorem 1.4 is attained for |X| = 2.

Theorem 1.5. For the family of minimum spanning trees, we have

sSTk ≤
√
k (1 + ok(1)).

Apart from the error term, this bound is best possible.

By transforming a minimum spanning tree into a Hamiltonian cycle by using the method of
Sekanina [23] and Bollobás and Meir [7], we obtain sHCk ≤ 3

√
k (1 + ok(1)). A further refinement

based on a two-phase algorithm and a new greedy algorithm that maintains a collection of spanning
paths allows us to obtain the following sharper bound.

Theorem 1.6. For the family of Hamiltonian cycles, we have

sHCk ≤ 2.91
√
k (1 + ok(1)).
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When the number of points n is bounded by a constant (independent of k), we can obtain a
better asymptotic bound, close to the conjectured value 21/k

√
k.

Theorem 1.7. Let n ≥ 2 be fixed. For the family of Hamiltonian cycles, we have

sHCk (n) = 21/k
√
k (1 + ok(1)).

Note however, that in Theorem 1.7 we require n to be constant; it does not imply sHCk =
21/k

√
k (1 + ok(1)).

The improved upper bounds in Theorem 1.3 and 1.6, have implications for the existence of
Hamiltonian paths and perfect matchings whose costs are bounded from above by constants de-
pending on k. These are discussed in Section 5.

2 Hamiltonian cycles: exact upper and lower bounds

2.1 An improved lower bound for k = 3

In this subsection we prove Theorem 1.3(i). Consider the four-element point set

X = {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)} ⊂ [0, 1]3.

X is in fact a binary code of length 3 with minimum Hamming distance 2; see, e.g., [29, Ch. 5]. As
such, the corresponding Euclidean pairwise distances are at least

√
2. Consequently, the unscaled

cost of any TSP tour H is at least Sk(H) ≥ 4 · (
√
2)3 = 11.31 . . .. On the other hand, the

conjectured [7] optimal unscaled cost was 2 · (
√
3)3 = 10.39 . . ..

It is possible that the new lower bound gives the right value of sHC3 (n) for n ≥ 4, see Conjec-
ture 5.5 in Section 5.

Remark. Interestingly enough, for k = 4, there exist (at least) two different point sets, one with
n = 2 and the other with n = 8, whose shortest tours have the same cost SHC

4 (X) as the conjectured
value, SHC

4 (n) = 2 · (
√
4)4 = 32. The former set consists of a pair of diagonally opposite vertices,

say, {(0, 0, 0, 0), (1, 1, 1, 1)}. This is in fact the point set that is behind the conjectured maximum
cost for every k. The latter set is a binary code of length 4 with minimum distance 2; for example,
one can take the eight binary vectors with an even number of ones:

X = {(0, 0, 0, 0), (0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 0), (1, 0, 0, 1), (1, 0, 1, 0), (1, 1, 0, 0), (1, 1, 1, 1)}.

Then SHC
4 (X) ≥ 8(

√
2)4 = 32 and this value can be attained; equivalently, sHC4 (X) ≥ 25/4. We were

not able to find two different sets X with sHCk (X) ≥ 21/k ·
√
k for any other k ≥ 5.

2.2 An improved upper bound for every k ≥ 3

In this section we prove the last two items in Theorem 1.3. Our proof is modeled by that in [7].
It uses a ball packing argument based on the following lemma. (A similar lemma, however, with
smaller ball radii, can be found in [15].)

Lemma 2.1. (Bollobás and Meir [7]). Let T = (V,E) be a minimum spanning tree for a finite
point set X ⊂ Rk. For each edge e = xy ∈ E let Be be the open ball of radius 1

4 |x− y| centered at
1
2(x+ y). Then Be ∩Be′ = ∅ whenever e and e′ are edges of T . The factor 1

4 is as large as possible.
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In addition, a suitable order of traversing the vertices of a minimum spanning tree first developed
by Sekanina [23, 24] is needed. The algorithm can be made to run in linear time. A proof of this
traversal result — in slightly different terms — also appears in [7]. A few definitions and notations
(from [7]) are as follows. The h’th power Gh of a graph G = (V,E) is the graph with vertex set V
and edge set E(Gh) = {xy : x, y ∈ V, 1 ≤ d(x, y) ≤ h}. Here d(x, y) is the distance between x and
y in the graph. Let T be a tree and xy ∈ E(T h). An edge uv ∈ E(T ) is said to be used by xy if
the edge uv is on the unique path in T (of length at most h) from x to y. If H is a subgraph of
T h, then an edge of T is used t times by H if it is used by t edges of H.

Lemma 2.2. (Sekanina [23], Bollobás and Meir [7]). Let x be a vertex of a tree T with at least
3 vertices. Then T 3, the cube of T , contains a Hamiltonian cycle H such that every edge of T is
used exactly twice by H, and one of the edges of H incident to x is an edge of T .

It implies the following lemma which is not stated explicitly in [7] but is used in the proof of
their Theorem 3. For completeness, we include their proof here.

Lemma 2.3. (Bollobás and Meir [7]). Let T be a spanning tree for a finite point set X ⊂ Rk.
Then there exists a Hamiltonian cycle H on X such that

Sk(H) ≤ 2

3
· 3k · Sk(T ).

Proof. Let e1, . . . , en be the edges of a Hamiltonian cycle H in T 3 guaranteed by Lemma 2.2.
Suppose that the edges of T used by ei have lengths di1 , . . . , diℓ , where ℓ ≤ 3. Set fi = di1 + . . .+diℓ
and f = (fi)i∈[n] ∈ Rn. Then |ei| ≤ fi for every i, each fi is a sum of at most three dj ’s and each
dj occurs in the representations of two fi’s.

Now, we can form three vectors v1, v2, v3 ∈ Rn such that f = v1 + v2 + v3, every coordinate
of vi is a dj or 0, and every dj occurs exactly twice as a coordinate in the three vi’s. Therefore,∑3

i=1∥vi∥kk = 2
∑n−1

j=1 d
k
j . Hence, by the triangle-inequality and Jensen’s inequality,

∥f∥k = ∥v1 + v2 + v3∥k ≤
3∑

i=1

∥vi∥k ≤ 3

(
1

3

3∑
i=1

∥vi∥kk

)1/k

= 3

2

3

n−1∑
j=1

dkj

1/k

= 3

(
2

3

)1/k

· sk(T ),

and thus

Sk(H) =
n∑

i=1

|ei|k ≤ ∥f∥kk ≤ 2

3
· 3k · Sk(T ).

For convenience, here we work with the unit cube U = [−1/2, 1/2]k centered at the origin
o = (0, . . . , 0). Assume that n ≥ 3, since it is clear otherwise that sk(H) ≤ 21/k ·

√
k. It was shown

in [7] that ∪e∈TBe is contained in the ball of radius 0.75
√
k centered at the origin o. We next show

that ∪e∈TBe is contained in the ball of radius
√
5
4

√
k = 0.559 . . . ·

√
k centered at o. The idea for

the improvement is that centers of balls corresponding to long edges of T cannot be too far from
the center of the cube. The key step is the following.

Lemma 2.4. Let U = [−1/2, 1/2]k and u, v ∈ U . Then

|u+ v|
2

+
|u− v|

4
≤

√
5

4

√
k. (3)

This inequality is the best possible.

6



Proof. To start with, note that

|u|2 ≤
k∑
1

1

4
=

k

4
, |v|2 ≤

k∑
1

1

4
=

k

4
and |u− v| ≤

√
k.

The first two relations immediately yield

|u|2 + |v|2 ≤ k

2
. (4)

Recall the identities

|u+ v|2 = |u|2 + |v|2 + 2uv, |u− v|2 = |u|2 + |v|2 − 2uv. (5)

Here uv is the dot product of u and v. We deduce that

|u− v|2 = 2(|u|2 + |v|2)− |u+ v|2 ≤ 2(|u|2 + |v|2).

We can thus write |u− v| = λ
√

|u|2 + |v|2, where 0 ≤ λ ≤
√
2, whence

|u− v|2 = λ2(|u|2 + |v|2).

From the two equations in (5) we also obtain

|u+ v| =
√
2(|u|2 + |v|2)− |u− v|2 =

√
(2− λ2)(|u|2 + |v|2).

Substituting the expressions of |u+ v| and |u− v| and using (4) yields

|u+ v|
2

+
|u− v|

4
=

√
(2− λ2)(|u|2 + |v|2)

2
+

λ
√
|u|2 + |v|2

4
=

(√
2− λ2

2
+

λ

4

)√
|u|2 + |v|2

≤ 1

4

(
λ+ 2

√
2− λ2

)√k

2
.

A standard calculation shows that the function f(λ) = λ+2
√
2− λ2, where 0 ≤ λ ≤

√
2, attains

its maximum,
√
10, at λ =

√
2
5 . Consequently,

|u+ v|
2

+
|u− v|

4
≤ 1

4

√
10

√
k

2
=

√
5

4

√
k.

This concludes the proof of the upper bound.

For a tight example, assume that k is a multiple of 5 and let u = u1, . . . , uk, and v = v1, . . . , vk,
where

ui =

{
+1

2 , for i = 1, . . . , 4k5 ,

−1
2 , for i = 4k

5 + 1, . . . , k.

vi = +
1

2
, for i = 1, . . . , k.

It is now easily verified that

|u+ v|
2

=

√
4k

5
· 1
4
,

|u− v|
4

=

√
k

5
· 1

16
, and

|u+ v|
2

+
|u− v|

4
=

5

4
·
√

k

5
=

√
5

4

√
k,

as required.
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Final argument in the proof of Theorem 1.3. Let u, v ∈ U such that e = uv is an edge of
the MST T . By the triangle inequality, the distance from the center of the cube to any point in

the ball Be is at most 1
2 |u + v| + 1

4 |u − v|. By Lemma 2.4 this distance is at most
√
5
4

√
k, thus

∪e∈TBe ⊂ B, where B is the ball of radius
√
5
4

√
k = 0.559 . . . ·

√
k centered at o.

The ball packing argument in [7] yields Sk(T ) ≤ (3
√
k)k. Using Lemma 2.4 instead improves

this bound to Sk(T ) ≤ (
√
5k)k. By Lemma 2.3 we obtain a Hamiltonian cycle H through P

satisfying

Sk(H) ≤ 2

3
· 3k · Sk(T ) ≤

2

3
· 3k · (5k)k/2. (6)

Taking the k-th root completes the proof of item (ii). Note that the only change in the calculation
is replacing a multiplicative factor of 3 by

√
5 (in Inequality (2) from [7]). The improvement carries

on proportionally and is reflected in the final bound.
Recall that the traversal of the MST T using the algorithm of Sekanina [23, 24] takes linear

time. As such, the running time for computing the TSP tour is determined by the time to compute
T . This proves item (iii) and completes the proof of Theorem 1.3.

An alternative way to verify the upper bound in (6) is by using Theorem 1.2. The details are
left to the reader.

3 Hamiltonian cycles for subsets of cube vertices

In this section we consider our problem (the study of extremal values for Hamiltonian cycles and
paths in [0, 1]k) when the input is restricted to subsets of cube vertices. Note that this restriction
is quite natural, since all known best constructions are attained or matched by such subsets. We
will use some results on binary codes.

3.1 Preparation: binary codes

First we prove an optimization result which will be used multiple times throughout this paper.

Lemma 3.1. Let q1, q2, . . . , qm ∈ [0, 1]. Then,∑
i<j

|qi − qj |2 ≤
⌊m
2

⌋
·
⌈m
2

⌉
.

Proof. We prove this result by induction on m. The statement holds trivially for m = 1 and m = 2.
Let q1, q2, . . . , qm ∈ [0, 1] for some m ≥ 3. We can assume 0 = q1 ≤ q2 ≤ . . . ≤ qm = 1. By the
induction assumption, ∑

1<i<j<m

|qi − qj |2 ≤
⌊
m− 2

2

⌋
·
⌈
m− 2

2

⌉
.

Observe that the maximum of the quadratic function f(x) = x2+(1−x)2 over the interval [0, 1] is
obtained at x = 0 or x = 1. Thus, |q1− qj |2+ |qm− qj |2 = q2j +(1− qj)

2 ≤ 1 for j ∈ {2, . . . ,m− 1}.
Therefore,∑

i<j

|qi − qj |2 = |q1 − qm|2 +
∑

1<j<m

(|q1 − qj |2 + |qm − qj |2) +
∑

1<i<j<m

|qi − qj |2

≤ 1 + (m− 2) +

⌊
m− 2

2

⌋
·
⌈
m− 2

2

⌉
=
⌊m
2

⌋
·
⌈m
2

⌉
,
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completing the proof of this lemma.

Lemma 3.2. Let δ, γ > 0, and k1, k2 be non-negative integers. Let X ⊆ [0, δ]k1 × [0, γ]k2 be a finite
set of size |X| ≥ m ≥ 2. Then there exists two distinct points p, q ∈ X such that

|p− q|2 ≤
⌊m2 ⌋⌈

m
2 ⌉(

m
2

) (δ2k1 + γ2k2).

Proof. Let p1, p2, . . . , pm be any m points from X. Given integers i and j, we denote by pij the
j-th coordinate of pi. By applying Lemma 3.1 and scaling we obtain∑

i<i′

|pij − pi′j |
2 ≤

⌊m
2

⌋
·
⌈m
2

⌉
· δ2 for every j ∈ [k1], and (7)

∑
i<i′

|pij − pi′j |
2 ≤

⌊m
2

⌋
·
⌈m
2

⌉
· γ2 for every j ∈ [k1 + k2] \ [k1]. (8)

By summing up the inequalities (7) and (8), we obtain∑
i<i′

|pi − pi′ |2 ≤
⌊m
2

⌋
·
⌈m
2

⌉
· (δ2k1 + γ2k2).

Thus, by averaging over all pairs of points, the minimizing pair satisfies the claimed inequality.

Applying Lemma 3.2 with δ = γ = 1, k1 = k and k2 = 0, immediately yields the following
symmetric version.

Lemma 3.3. Let X ⊆ [0, 1]k of size |X| ≥ m ≥ 3. Then there exist two distinct points p, q ∈ X
such that

|p− q|2 ≤
⌊m2 ⌋ · ⌈

m
2 ⌉(

m
2

) · k.

Let A(k, d) denote the maximum cardinality of a binary code of length k with minimum dis-
tance d. We recall the following fact [28]:

Lemma 3.4. (Singleton bound). A(k, d) ≤ 2k−d+1.

We need the following improvement.

Lemma 3.5. If d < 2
3k, then A(k, d) ≤ 2k−

3
2
d+2.

Proof. Towards contradiction, assume that there exists X ⊆ {0, 1}k of size |X| > 2 · 2k−
3
2
d+1 such

that |p − q|2 ≥ d for every p, q ∈ X. By the pigeonhole principle, there exists p, q, r ∈ X which
coincide on the first ⌊k − 3

2d + 1⌋ coordinates. By Lemma 3.3, applied with m = 3 to the last
⌈32d⌉ − 1 coordinates, we get that

min{|p− q|2, |p− r|2, |r − q|2} ≤ 2

3

(⌈
3

2
d

⌉
− 1

)
< d,

a contradiction.
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3.2 Building a path greedily

In the proofs of some of our results we will analyze a greedy algorithm which takes a discrete point
set X ⊆ [0, 1]k of size |X| = n as an input and creates a Hamiltonian path F through X. It
processes the point pairs in nondecreasing order of distance and maintains a collection of paths.

Algorithm 1: Initially, set F0 to be the empty graph on X. For i ∈ [n − 1], let ei be an edge of
smallest weight among all edges e ̸∈ Fi−1 which satisfy that Fi−1 + e is a vertex-disjoint union of
paths. Set Fi := Fi−1 + ei. Then, F := Fn−1 is a Hamiltonian path.

Lemma 3.6. Let j ∈ [k]. The number of edges e ∈ F satisfying |e|2 ≥ j is less than A(k, j).

Proof. Let ℓ be the smallest integer such that |eℓ|2 ≥ j. The number of edges e ∈ F satisfying
|e|2 ≥ j is less than the number of components in Fℓ, which is n−ℓ. Let Pℓ ⊆ X be a set containing
one endpoint of each path in Fℓ. The set Pℓ is a binary code of length k with minimum distance j.
Thus, the number of edges e ∈ F satisfying |e|2 ≥ j is less than A(k, j).

Proof of Theorem 1.4. If |X| = 2, the statement holds trivially. Assume n := |X| ≥ 3. Let F
be the Hamiltonian path created by Algorithm 1. We partition the edges e ∈ F into four classes.

1. short edges: |e|2 ≤ k
5 .

2. medium edges: k
5 < |e|2 ≤ 3k

5 .

3. long edges: 3k
5 < |e|2 ≤ 2k

3 .

4. very long edges: 2k
3 < |e|2.

Denote by F s, Fm, F l, fvl the subgraphs of F containing all short, medium, long and very long
edges, respectively. They partition F and thus Sk(F ) = Sk(F

s) + Sk(F
m) + Sk(F

l) + Sk(F
vl). We

will provide upper bounds for the four contributions separately.
Since n ≤ 2k, the number of short edges is trivially at most 2k. Thus,

Sk(F
s) ≤ 2k

(√
k

5

)k

.

Now, we estimate Sk(F
m). Let j be an integer satisfying k

5 < j ≤ 3k
5 . The number of edges e ∈ F

satisfying |e|2 ≥ j is less than A(k, j) ≤ 2k−
3
2
j+2 by Lemmas 3.5 and 3.6. Therefore,

Sk(F
m) ≤

⌊ 3k
5 ⌋∑

j=⌈ k
5⌉

2k−
3
2
j+2
(√

j
)k

≤ 4 ·
(⌊

3k

5

⌋
−
⌈
k

5

⌉)
·
(
0.842

√
k
)k

≤ 8k

5
·
(
0.842

√
k
)k

.

Here we used that the function f(x) = 21−3x/2√x, where x ≥ 0, is maximized for x = 1
log(8) and

thus 21−3x/2√x ≤ 0.842.
Next, we estimate Sk(F

l). The number of edges e ∈ F satisfying |e|2 > 3k
5 is less than

A(k, ⌊3k5 ⌋+ 1) ≤ 4 by Lemma 3.3, applied with m = 5 and by Lemma 3.6. Therefore,

Sk(F
l) ≤ 3 ·

(√
2

3
k

)k

.
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Last, we estimate Sk(F
vl). The number of edges e ∈ F satisfying |e|2 > 2k

3 is less than

A(k, ⌊2k3 ⌋ + 1) ≤ 2 by Lemma 3.3, applied with m = 3 and Lemma 3.6. Thus, there is at most
one very long edge e in F . This very long edge has length at most |e| ≤

√
k − 1 by the following

argument. Consider the last step of the greedy algorithm, when the last two paths, call them P1

and P2, are being joined. Since |X| ≥ 3, one of them, say P1, contains at least two vertices. An
endpoint of the path P2 has distance at most

√
k − 1 to one of the endpoints of P1, since not both

endpoints can be opposite on the cube. Thus, |e| ≤
√
k − 1. We get Sk(F

vl) ≤
√
k − 1

k
.

Adding up the four contributions to Sk(F ) yields

Sk(F ) = Sk(F
s) + Sk(F

m) + Sk(F
l) + Sk(F

vl)

≤ 2k

(√
k

5

)k

+
8k

5
·
(
0.842

√
k
)k

+ 3 ·

(√
2

3
k

)k

+
(√

k − 1
)k

=
(√

k
)k( 2√

5

)k

+
8k

5
· 0.842k + 3 ·

(√
2

3

)k

+

(√
k − 1

k

)k


<
(√

k
)k

, (9)

where the last inequality holds for k sufficiently large. We used the fact that

(√
k−1
k

)k

converges

to e−1/2. Let H be the Hamiltonian cycle obtained from F by connecting the two endpoints. Then

Sk(H) ≤ Sk(F ) +
(√

k
)k

≤ 2
(√

k
)k

.

We remark that the proof of Theorem 1.4 works for k0 = 29. The last inequality in (9) is strict.
Thus, Theorem 1.4 is tight only for |X| = 2.

4 Hamiltonian cycles: asymptotic upper bounds

In this section we prove Theorems 1.5, 1.6 and 1.7.

4.1 Preparation

Lemma 4.1. Let 0 < α < 1 and Y ⊆ [0, 1]k such that |u− v| > α
√
k for every two distinct points

u, v ∈ Y . Let m ∈ N. Then,

|Y | ≤ 2m ·

⌈√
1

2

(
1 +

1

2m− 1

)
α−1

⌉k
.

Proof. Let β =

⌈√
1
2

(
1 + 1

2m−1

)
α−1

⌉
. Assume that |Y | > 2m · βk. Partition the unit box [0, 1]k

into βk boxes B1, B2, . . . , Bβk as follows: We split up [0, 1] into β disjoint consecutive intervals of

length β−1 each. This gives βk boxes in total.
Since |Y | > 2m · βk, there exists a box Bj such that at least 2m points from Y are contained

in it. By Lemma 3.2, applied with γ = δ = β−1, k1 = k and k2 = 0, there exist p, q ∈ Bj ∩ Y such

11



that |p− q|2 ≤ 1
2

(
1 + 1

2m−1

)
β−2k. We conclude

α2k < |p− q|2 ≤ 1

2

(
1 +

1

2m− 1

)
β−2k, implying α <

√
1

2

(
1 +

1

2m− 1

)
β−1.

However, by the choice of β, we have α <

√
1
2

(
1 + 1

2m−1

)
β−1 ≤ α, a contradiction.

The following lemma is a version of Lemma 4.1 which improves the bound in a certain range
of α.

Lemma 4.2. Let
√

100
1791 < α <

√
100
199 and Y ⊆ [0, 1]k such that |u − v| > α

√
k for every two

distinct points u, v ∈ Y . Then,

|Y | ≤ 600 · 3
9
8(1−

199
100

α2)k.

Proof. Let a = 9
8(1 −

199
100α

2). Note that 0 < a < 1. Partition the unit box [0, 1]k into 3⌈ak⌉ boxes
B1, B2, . . . , B3⌈ak⌉ as follows: Let I = {1, 2, . . . , ⌈ak⌉} ⊆ [k]. For the coordinates in I, we split
up [0, 1] into 3 disjoint consecutive [0, 1] = [0, 13) ∪ [13 ,

2
3) ∪ [23 , 1] intervals of length 1

3 each. If

|Y | > 200 · 3⌈ak⌉, then there exists a box Bj such that at least 200 points from Y are contained in
it. By Lemma 3.2, applied with m = 200, δ = 1

3 , γ = 1, k1 = ⌈ak⌉ and k2 = k − k1, there exist
p, q ∈ Bj ∩ Y such that

|p− q|2

k
≤ 100

199

(
1

3

)2 ⌈ak⌉
k

+
100

199

k − ⌈ak⌉
k

≤ 100

199
− 8

9

100

199
a = α2,

contradicting α2k < |p− q|2. We conclude that

|Y | ≤ 200 · 3⌈ak⌉ ≤ 600 · 3ak = 600 · 3
9
8(1−

199
100

α2)k.

Lemma 4.3. There exists k0 such that for all integers k ≥ k0 the following holds. Let 0 < α < 0.99
and let Y ⊆ [0, 1]k such that |u − v| > α

√
k for every two distinct points u, v ∈ Y . Then |Y |αk ≤

0.999k.

Proof. Let k0 be sufficiently large for the following proof to hold. First, assume
√

100
199 < α < 0.99.

Then |Y | ≤ 200 by Lemma 3.3, applied with m = 200. Thus,

|Y |αk ≤ 200αk ≤ 0.999k.

Next, assume 0.29 ≤ α ≤
√

100
199 . Then by Lemma 4.2,

|Y |αk ≤ 600 ·
(
3

9
8(1−

199
100

α2)α
)k

≤ 0.999k.

Finally, assume 0 < α ≤ 0.29. Then by Lemma 4.1, applied with m = 100,

|Y |αk ≤ 200


√

1
2

(
1 + 1

199

)
α

α

k

≤ 200

(√
100

199
+ α

)k

≤ 0.999k.
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4.2 Proofs of Theorems 1.5, 1.6, and 1.7

First, we quickly demonstrate how Lemma 3.3 implies Theorem 1.7.

Proof of Theorem 1.7. Let X ⊆ [0, 1]k be a point set of size n. We run Algorithm 1 from
Section 3.2. Let Fi be the collection of paths at the i-th step, let ei be the edge added in the i-th
step, and let F = Fn−1 be the final Hamiltonian path.

We claim that |ei| ≤
√

2
3k for i ≤ n− 2. Let ei = xy. The vertices x and y are endpoints of two

different paths in Fi−1. Since Fi−1 has at least n− (i− 1) ≥ n− (n− 2− 1) = 3 components, there
exists a component containing neither x, nor y. Let z ∈ X be an endpoint of the path forming this
component. Since ei = xy was chosen in step i, but xz and yz were not, we have |xy| ≤ |xz| and
|xy| ≤ |yz|. By applying Lemma 3.3 to the set {x, y, z}, we get that |ei| = |xy| ≤

√
2
3k. Note that

|en−1| ≤
√
k trivially.

Now, let f = ab be the edge where a and b are the two endpoints of the final path F . Set
H = F + f to be the Hamiltonian cycle when f is added to F . Since |f | ≤

√
k trivially, we get

Sk(H) =
∑
e∈H

|e|k = |f |k + |en−1|k +
n−2∑
i=1

|ei|k ≤ 2
(√

k
)k

+ (n− 2)

(√
2

3
k

)k

.

Consequently,
sHCk (n) ≤ sk(H) ≤ 21/k

√
k (1 + ok(1)).

Proof of Theorem 1.5. Let k be sufficiently large and let X ⊆ [0, 1]k be a finite point set. Set

ℓ :=
⌈
log1+ 1

k

(
0.9k

3
4

)⌉
= O(k log k) and ai :=

(1 + 1
k )

i

k
3
4

for integers i, 0 ≤ i ≤ ℓ. Note that

ai+1

ai
= 1 +

1

k
for i ∈ {0, 1, . . . , ℓ− 1}, and a0 < a1 < a2 < · · · < aℓ−1 ≤ 0.9 ≤ aℓ.

Construct a minimum spanning tree T on vertex set X by successively joining points from X at
minimal distance from each other, given the new edge does not create a cycle. For 0 ≤ i ≤ ℓ, let
Fi be the forest with vertex set X and edges e ∈ T such that |e| ≤ ai

√
k. Then, F0 ⊆ F1 ⊆ · · · ⊆

Fℓ ⊆ T since the sequence (ai) is increasing. If x, y ∈ X are in different components of Fi, then
|x− y| > ai

√
k.

We have a0 = k−3/4. For an edge e = xy ∈ F0, let Be be the open ball of radius |e|/4 and center
1
2(x+ y). Since F0 ⊆ T , by Lemma 2.1, the balls Be, e ∈ F0 are disjoint. Also, |e| ≤ a0

√
k = k−1/4.

Denote by Vk for the volume of the k-dimensional unit ball. It is well-known that

Vk =


πk/2

(k/2)!
if k is even,

2k · π(k−1)/2 ((k − 1)/2)!

k!
if k is odd.

By Stirling’s approximation, Vk ∼ 1√
kπ

(2πek )k/2. Since
⋃

e∈F0
Be ⊆ [−k−1/4, 1 + k−1/4], we have

∑
e∈F0

(
|e|
4

)k

Vk ≤ ((1 + 2k−1/4))k, and thus
∑
e∈F0

|e|k ≤ 4k(1 + 2k−1/4)k

Vk
≤ (0.97

√
k)k,
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for k sufficiently large. Now, let i ∈ {0, 1, . . . , ℓ − 1}. Let Y ⊆ X be a set of vertices containing
exactly one vertex from every component of Fi. Then |y − y′| > ai

√
k for every pair y ̸= y′ ∈ Y ,

and |Fi+1 \ Fi| ≤ |Y | − 1. By Lemma 4.3 we have aki |Y | ≤ 0.999k for i ≤ ℓ. Thus,

∑
e∈Fi+1\Fi

|e|k ≤ (ai+1

√
k)k|Y | = (ai

√
k)k|Y |

(
1 +

1

k

)k

≤ 3 · (0.999
√
k)k,

for i ≤ ℓ. Therefore,

∑
e∈Fℓ

|e|k =
∑
e∈F0

|e|k +
ℓ−1∑
i=0

∑
e∈Fi+1\Fi

|e|k ≤
(
0.97

√
k
)k

+ 3ℓ · (0.999
√
k)k,

for k sufficiently large. If the forest Fℓ consist of at least three components then three points

p, q, r ∈ X, from different components each, have pairwise distance at least 0.9
√
k ≥

√
2
3k. This

contradicts Lemma 3.3. Therefore, Fℓ has at most 2 components and thus there is at most one
edge f in T which is not in Fℓ. We conclude∑

e∈T
|e|k =

∑
e∈Fℓ

|e|k + |f |k ≤
(√

k
)k

(1 + ok(k
−1)),

which implies that for the family of minimum spanning trees, we have sSTk ≤
√
k (1 + ok(1)),

completing the proof of Theorem 1.5.

We remark that by applying Lemma 2.3 to T , there exists a Hamiltonian cycle H on vertex set
X satisfying ∑

e∈H
|e|k ≤ 2

3
· 3k

∑
e∈T

|e|k ≤
(
3
√
k
)k

(1 + ok(k
−1)),

implying that for the family of Hamiltonian cycles, we have sHCk ≤ 3
√
k (1 + ok(1)).

Proof of Theorem 1.6. Create a forest F by successively joining points from X at minimal
distance from each other, given the new edge e does not create a cycle and satisfies |e| ≤ k−1/4.
This process stops when there is no such edge left. Let the trees T1, . . . , TN be the components
of F . Every two vertices from different Ti’s have pairwise distance at least k−1/4.

For an edge e = xy ∈ F , let Be be the open ball of radius |e|/4 and center 1
2(x + y). By

Lemma 2.1, the balls Be, e ∈ F are disjoint. Also, |e| ≤ k−
1
4 . We have

⋃
e∈F Be ⊆ [−k−1/4, 1 +

k−1/4]. Writing Vk for the volume of the k-dimensional unit ball, we have

∑
e∈F

(
|e|
4

)k

Vk ≤ ((1 + 2k−1/4))k and thus
∑
e∈F

|e|k ≤ 4k(1 + 2k−1/4)k

Vk
≤ (0.97

√
k)k,

for k sufficiently large. Since the trees T1, . . . , TN decompose the edge set of the forest F , we have

N∑
i=1

∑
e∈Ti

|e|k =
∑
e∈F

|e|k ≤ (0.97
√
k)k. (10)
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By Lemma 2.3, for each i ∈ [N ], there exists a Hamiltonian cycle Hi on V (Ti) such that∑
e∈Hi

|e|k ≤ 3k
∑
e∈Ti

|e|k. (11)

Let F0 be the collection of paths obtained by taking the union of all Hi, and removing an edge
from each cycle. Then, by using (10) and (11), we obtain

∑
e∈F0

|e|k ≤
N∑
i=1

∑
e∈Hi

|e|k ≤ 3k
N∑
i=1

∑
e∈Ti

|e|k ≤ (2.91
√
k)k. (12)

Now, run Algorithm 1 from Section 3.2 initialized with F0 (instead of the empty graph). Recall
that this algorithm adds edges of minimum weight such that in each step we maintain a collection
of paths. Denote by Q the final path which is created by this algorithm. Set

ℓ :=
⌈
log1+ 1

k

(
0.9k

3
4

)⌉
= O(k log k) and ai :=

(1 + 1
k )

i

k
3
4

for integers i, 0 ≤ i ≤ ℓ. For 0 ≤ i ≤ ℓ, let Fi be the collection of paths with vertex set X and edges
e ∈ Q such that |e| ≤ ai

√
k. Then, F0 ⊆ F1 ⊆ · · · ⊆ Fℓ ⊆ Q since the sequence (ai) is increasing. If

x, y ∈ X are in different components of Fi, then |x− y| > ai
√
k. Now, let i ∈ {0, 1, . . . , ℓ− 1}. Let

Y ⊆ X be a set of vertices containing exactly one endpoint of each path of Fi. Then |y−y′| > ai
√
k

for every pair y ̸= y′ ∈ Y , and |Fi+1 \Fi| ≤ |Y | − 1. By Lemma 4.3 we have aki |Y | ≤ 0.999k ≤ 1 for
i ≤ ℓ. Thus,

∑
e∈Fi+1\Fi

|e|k ≤ (ai+1

√
k)k|Y | = (ai

√
k)k|Y |

(
1 +

1

k

)k

≤ 3 ·
√
k
k
, (13)

for i ≤ ℓ. Therefore, by combining (12) with (13), we obtain

∑
e∈Fℓ

|e|k =
∑
e∈F0

|e|k +
ℓ−1∑
i=0

∑
e∈Fi+1\Fi

|e|k ≤
(
2.91

√
k
)k

+ 3ℓ ·
√
k
k
, (14)

for k sufficiently large. Similarly, as in the proof of Theorem 1.5, Fℓ has at most 2 components.
Thus, using (14), the path Q satisfies∑

e∈Q
|e|k ≤

∑
e∈Fℓ

|e|k +
√
k
k
≤ (2.91

√
k)k(1 + ok(1)).

Adding one final edge f of weight at most |f | ≤
√
k to Q we obtain a Hamiltonian cycle with the

desired properties.

5 Concluding Remarks

The upper bounds we obtained on the lengths of Hamiltonian cycles have the following implications
for the existence of perfect matchings whose cost is bounded from above by a constant (depending on
k). For example, Theorems 1.3 and 1.4 have the following implications. The proofs of Corollary 5.1
and that of Corollary 5.2 are analogous to the proof of Corollary 5.4 below.
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Corollary 5.1. Given n points in [0, 1]k, where k ≥ 3, and n is even, there exists a perfect matching

M of the n points such that
(∑

e∈M |e|k
)1/k ≤ 3

√
5
(
1
3

)1/k ·√k. The matching M can be computed in
time proportional to that needed for computing a MST of the points, in particular, in subquadratic
time.

Corollary 5.2. There exists an integer k0 such that for all k ≥ k0 the following holds. If X is
any even-size subset of vertices of {0, 1}k, then there exists a perfect matching M of X such that
sk(M) ≤

√
k. This bound is best possible.

Recall that a MST of n points in Rk (with respect to Euclidean distances) can be computed in

O
(
n
2− 2

⌈k/2⌉+1
+ε
)
time, for any ε > 0 [1]. We also deduce the following related results (formulated

here for the planar case, k = 2.)

Corollary 5.3. Let x1, . . . , xn be n ≥ 2 points in the unit square. Let di be the distance between
xi and its nearest point (other than xi). Then the following inequality holds:

∑n
i=1 d

2
i ≤ 4.

Proof. Consider a Hamiltonian cycle, say x1, . . . , xn, whose cost S2(H) is at most 4. The distance
from xi to its nearest point is at most |xi − xi+1|, for i = 1, . . . , n. By squaring the n inequalities
and adding them up, the claimed inequality follows.

An alternative proof of Corollary 5.3 can be found in [27, Problem G.27].

Corollary 5.4. Let x1, . . . , xn be n ≥ 2 points in the unit square, where n is even. Then there
exists a perfect matching M such that

∑
e∈M |e|2 ≤ 2. This bound is the best possible.

Proof. Consider a Hamiltonian cycle, say H = x1, . . . , xn, whose cost S2(H) is at most 4. H can
be decomposed into two perfect matchings, one of which has a cost at most 2, as required.

The lower bounds for n = 2 and n = 4 are immediate (see Figure 1). For every even n ≥ 6
and ε > 0, there are n points (in the neighborhoods of the four corners of the square) such that∑

e∈M |e|2 ≥ 2− ε.

We have improved the upper bound of Bollobás and Meir [7] by more than 25 percent in the
exact formulation and by more than 67 percent in the asymptotic formulation. Apart from some
doubt concerning the values of sHC3 (n) and sHC4 (n), we think that their lower bound gives the right
answer for every higher dimension. In view of Theorem 1.3 (i) we adjust their conjecture as follows:

Conjecture 5.5. For Hamiltonian cycles, the following equalities hold:

sHCk =

{
27/6, for k = 3,

21/k ·
√
k, for k ≥ 4.

Hamiltonian path. If one was looking for a Hamiltonian path, instead of a Hamiltonian cycle,
then the 2-point extremal lower bound example (given by a cube diagonal) loses a factor of 2 (or
with scaling 21/k); and so the question arises: is it still the best example, or maybe only for large
k? Analogous to the situation for Hamiltonian cycles, we think that there is a threshold value for
k after which the extremal examples stabilizes at the 2-point example. The threshold values for
cycles and paths seem to differ, see Conjecture 5.6 below.

The current upper bound proofs essentially remain the same as for Hamiltonian cycles, with
the change that the last edge is not needed. Some upper bounds remain unchanged, and others do
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improve. In particular, sHP2 ≤ sHC2 = 2 remains unchanged, whereas sHP2 ≥
√
3 is implied by the two

extremal examples in Figure 1 (left and right).
From the other direction, for small values of k consider once again a binary code of length k

with minimum distance 2 given by the set of all x ∈ {0, 1}k with an even number of 1’s. It yields
the values specified below.

Conjecture 5.6. For Hamiltonian paths, the following equalities hold:

sHPk =


√
3, for k = 2,(
2k−1 − 1

)1/k · √2, for k = 3, 4, 5, 6,√
k, for k ≥ 7.

Further improvement. One might wonder where the next possible improvement is? We feel
that it is in Lemma 2.2: It states that there is a Hamiltonian cycle such that each edge of the cycle
is using at most 3 tree edges, yet the average usage is slightly less than 2. If it was true that every
tree edge is used at most twice, then we would get a 2/3 factor improvement in the upper bound.
However, the example of a tree with edges ab, bc, cd, de, cf, fg shows that this is not the case. Still,
it is likely that there is a way to gain more in a tree to cycle or path conversion.

A different version. We conclude with yet another version of the problem. Instead of the unit
cube [0, 1]k ⊂ Rk, let the diameter of the point set be at most 1: That is, diam(X) ≤ 1, where
X ⊂ Rk and |X| = n. What are the extremal values of the (say, unscaled) costs of a shortest
Hamiltonian cycle (and path) for n points in Rk under this constraint? Are they given by the
vertices of a unit simplex in Rk (k + 1 and k, respectively)?
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[7] Béla Bollobás and Amram Meir, A travelling salesman problem in the k-dimensional unit cube,
Operations Research Letters 11(1) (1992), 19–21.

[8] Nicos Christofides, Worst-case analysis of a new heuristic for the Traveling Salesman Prob-
lem, Technical Report 388, Graduate School of Industrial Administration, Carnegie Mellon
University, Pittsburgh, PA, 1976.
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6 Appendix

Container shapes with a tight bound when k = 2

A key fact in deriving the tight bound, when k = 2, for the cycle of n points in the unit square is
the following tight bound in a right triangle [20]; see also [6].

Lemma 6.1. [20] Let X be a set of n ≥ 2 points in a right triangle ∆ whose sides are a ≤ b ≤ c.
Then there is an extended path connecting the endpoints of c that visits all points in X and for
which

∑
|e|2 ≤ c2. In particular, X admits a Hamiltonian path P for which

∑
e∈P |e|2 ≤ c2. This

bound is the best possible.

This result relies on a repeated application of the following simple corollary of the Cosine Law.
It allows one to make shortcuts in a path or cycle at vertices where the two adjacent edges make
an acute angle.

Lemma 6.2. [20] Let ∆ be an triangle whose sides are a ≤ b ≤ c, and let γ be the interior angle
opposite to c. If γ ≤ 90◦, then c2 ≤ a2 + b2.

We now exhibit two other container shapes for which we can deduce a tight bound. Lemma 6.3
below is an extension of Lemma 6.1.
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Figure 2: Left: Lemma 6.3. Right: Lemma 6.6.

Lemma 6.3. Let X be a set of n ≥ 2 points in a non-obtuse triangle ∆ whose sides are a ≤ b ≤ c.
Then there is an extended path connecting the endpoints of c that visits all points in ∆ and for which∑

|e|2 ≤ a2 + b2. In particular, X admits a Hamiltonian path P for which
∑

e∈P |e|2 ≤ a2 + b2.
This bound is the best possible.

Proof. Let the altitude corresponding to c divide ∆ into two right triangles. Consider the path
obtained by concatenating the extended paths for the two right triangles. Further shortcut the
path at the concatenation vertex by using Lemma 6.2 to obtain a Hamiltonian path P for which∑

e∈P |e|2 ≤ a2 + b2, see Figure 2 (left). The three vertices of ∆ provide a tight example.

Lemma 6.4. Let X be a set of n ≥ 2 points in a non-obtuse triangle ∆ whose sides are a ≤ b ≤ c.
Then X admits a Hamiltonian cycle H for which

∑
e∈H |e|2 ≤ a2 + b2 + c2. This bound is the best

possible.

Proof. By Lemma 6.3, X admits a Hamiltonian path P for which
∑

e∈P |e|2 ≤ a2+ b2. Connecting
the endpoints of this path (via an edge of length at most c) yields a Hamiltonian cycle H for which∑

e∈H |e|2 ≤ a2 + b2 + c2.

By Lemma 6.3 and 6.4, we obtain the following corollary.

Corollary 6.5. Let X be a finite point set in in a non-obtuse triangle ∆ whose sides are a ≤ b ≤
c ≤ 1. Then

1. X admits a Hamiltonian path P for which
∑

e∈P |e|2 ≤ 2.

2. X admits a Hamiltonian cycle H for which
∑

e∈H |e|2 ≤ 3.

Lemma 6.6. Let U be a unit square centered at o and let ab be one of its four sides. Let X be a
set of n ≥ 2 points in V := U \∆oab (V as a closed set). Then X admits a Hamiltonian path P
for which

∑
e∈P |e|2 ≤ 3. This bound is the best possible.

Proof. Subdivide V into two right triangles as shown in Figure 2 (right). Consider the path obtained
by concatenating the extended paths for the two right triangles. Further shortcut the path by using
Lemma 6.2 to obtain a Hamiltonian path P for which

∑
e∈P |e|2 ≤ 12 + (

√
2)2 = 3. The 4- and

5-point examples in Figure 1 show that this bound is tight.

A different version of Theorem 1.7

We remark that the proof of Theorem 1.7 can be extended for point sets of size n, when n is slowly
growing in k, to obtain an upper bound sharper than that in Theorem 1.6.

Theorem 6.7. The following bounds are in effect:
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(i) If n ≤ 2k + 2, then there exists a Hamiltonian cycle H such that

Sk(H) ≤

(
2 +

(
8

3

)k/2
)
kk/2.

Consequently, sHCk (n) ≤ 1.64
√
k, for k sufficiently large.

(ii) If n ≤ 2k, then there exists a Hamiltonian cycle H such that

Sk(H) ≤
(
200 + 2.01k/2

)
kk/2.

Consequently, sHCk (n) ≤ 1.42
√
k, for k sufficiently large.

Proof. Let X ⊆ [0, 1]k be a point set of size n. We run Algorithm 1 from Section 3.2. Let Fi be
the collection of paths at the i-th step, let ei be the edge added in the i-th step, and let F = Fn−1

be the final Hamiltonian path.

(i) We know that |ei| ≤
√

2
3k for i ≤ n − 2. Note that |en−1| ≤

√
k trivially. Now, let f = ab

be the edge where a and b are the two endpoints of the final path F . Set H = F + f to be the
Hamiltonian cycle when f is added to F . Since |f | ≤

√
k trivially, we get

Sk(H) =
∑
e∈H

|e|k = |f |k + |en−1|k +
n−2∑
i=1

|ei|k ≤ 2
(√

k
)k

+ (n− 2)

(√
2

3
k

)k

≤

(
2 + 2k ·

(
2

3

)k/2
)

· kk/2 =

(
2 +

(
8

3

)k/2
)
kk/2.

Consequently, sHCk (n) ≤ sk(H) ≤ 1.64
√
k, for k sufficiently large.

(ii) We classify the edges e ∈ F into two types.

1. short edges: |e|2 ≤ 100k
199 .

2. long edges: 100k
199 < |e|2.

The number of short edges e ∈ F is at most n ≤ 2k, trivially. The number of long edges e ∈ F is at
most 199 by Lemma 3.3 applied with m = 200. Now, let f = ab be the edge where a and b are the
two endpoints of the final path F . Set H = F + f to be the Hamiltonian cycle when f is added to
F . Since |f | ≤

√
k trivially, we get

Sk(H) ≤

(
200 + 2k ·

(
100

199

)k/2
)

· kk/2 ≤
(
200 + 2.01k/2

)
kk/2.

Consequently, sHCk (n) ≤ sk(H) ≤ 1.42
√
k, for k sufficiently large.
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