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A B S T R A C T

Background and objective: Recent studies point out that the dynamics and interaction of cell populations
within their environment are related to several biological processes in immunology. Hence, single-cell analysis
in immunology now relies on spatial omics. Moreover, recent literature suggests that immunology scenarios
are hierarchically organized, including unknown cell behaviors appearing in different proportions across some
observable control and therapy groups. These dynamic behaviors play a crucial role in identifying the causes
of processes such as inflammation, aging, and fighting off pathogens or cancerous cells. In this work, we use a
self-supervised learning approach to discover these behaviors associated with cell dynamics in an immunology
scenario.
Materials and methods: Specifically, we study the different responses of control group and therapy groups in
a scenario involving inflammation due to infarct, with a focus on neutrophil migration within blood vessels.
Starting from a set of hand-crafted spatio-temporal features, we use a recurrent neural network to generate
embeddings that properly describe the dynamics of the migration processes. The network is trained using
a novel multi-task contrastive loss that, on the one hand, models the hierarchical structure of our scenario
(groups-behaviors-samples) and, on the other, ensures temporal consistency within the embedding, enforcing
that subsequent temporal samples obtained from a given cell stay close in the latent space.
Results: Our experimental results demonstrate that the resulting embeddings improve the separability of cell
behaviors and log-likelihood of the therapies, when compared to the hand-crafted feature extraction and recent
methods from the state of the art, even with dimensionality reduction (16 vs. 21 hand-crafted features).
Conclusions: Our approach enables single-cell analyses at a population level, being able to automatically
discover shared behaviors among different groups. This, in turn, enables the prediction of the therapy
effectiveness based on their proportions within a study group.
1. Introduction

Spatial omics, which studies the cell dynamics and interaction with
their environment, has become an essential tool in immunology. This
technique allows for the discovery and description of cell behaviors in
scenarios of inflammation, aging or cancer [1,2]. In these scenarios,
a cell behavior is defined as a way of conduct of a group of cells
that share some morpho-kinetic properties, e.g., small ellipsoid cells
that do not move with the blood flow, or large sessile cells that
move close to the blood vessel wall. In this way, cell behaviors are
related to cells’ phenotypes and migration patterns, including volume
and shape changes (cells have the ability to change their phenotypes
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to migrate [1]), trajectories (velocity and type of motion can also
represent a specific behavior), and their interaction with external cues
(such as blood vessels, dendritic cells, etc.) [2].

Specifically, this work focuses on recent biological studies that
have pointed out the existence of shared cell behaviors in application
scenarios within the field of in vivo microscopy. For example, immune
cells that migrate within a blood vessel in the presence of inflamma-
tion (or within a tumor area in the case of cancer) show behavior
proportions that depend on the group which they belong to (e.g. wild-
type group, a gene knockout treatment or a drug treatment) [3]. This
particular setup occurs in many biological processes [4], and many
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fields of science, such as: topic modeling in document analysis, where
word frequencies depend on the topic of the document [5]; or image
retrieval, where visual word frequencies play a similar role [6]. In
our target scenario, we consider that each video capture (3D+time)
belongs to a given group of biological interest (control groups, or
groups receiving a specific treatment), and contains a population of
samples (cells) exhibiting different behaviors in proportions that are
particular and representative of its group. Our goal is to discover these
unknown behaviors and enable a subsequent analysis with the aim of
supporting the development and assessment of novel therapies.

In the last years, biologists have generally addressed this task of
cell behavior analysis by using commercial software, such as Imaris
(Bitplane, South Windsor, CT, USA) or Fiji [7], for assisted hand-crafted
feature extraction, and algorithms such as t-SNE [8] or UMAP [9]
to subsequently obtain a low-dimensional representation of the data
that can be easily analyzed with visual supporting tools. The identifi-
cation or discovery of latent behaviors is performed either manually,
by observing the data distributions, or automatically, using clustering
algorithms that discover groups within the data according to a given
similarity measure. However, this approach has several limitations:

1. It usually requires manual supervision at some stages of the
process, thus limiting the number of samples (cells) that can be
analyzed in the studies.

2. The manually-designed feature set may contain irrelevant and
redundant features, which can affect the results of the clustering
process. Although these features may be common features for
comparison of research among different laboratories and exper-
iments, this may lead to a biased analysis, unless the set of
hand-crafted features is carefully designed and curated for each
specific application. Furthermore, usual dimensionality reduc-
tion algorithms (e.g. UMAP or t-SNE) may hide some important
data relationships for single-cell analysis [10].

3. Due to potential flaws in the segmentation and tracking pro-
cesses (which can also happen with automatic approaches) there
are cells whose features do not show temporal consistency,
i.e., samples coming from the same cell in consecutive instants
can exhibit significantly different feature values. Furthermore,
although adjacent temporal instants from the same cell are
typically similar and correspond to the same behavior, in many
biological scenarios, behavior transitions are also frequent in
cells (during the time span of the capture a cell can change its
behavior, especially with large temporal sequences) [3].

To overcome these limitations, improved data representations should
be developed to disentangle and reveal the latent factors that explain
the dynamic properties of the data. In particular, the discipline of
representation learning proposes the use of reduced-dimensionality
data embeddings [11], with the aim of providing more appropriate
features to describe the input [12–14].

This paper proposes a self-supervised learning approach over cell popu-
lations that, starting from an initial set of hand-crafted spatio-temporal
features, learns to generate embeddings that encode the dynamics of
the cell migration process. To the best of our knowledge, this is the first
time that a self-supervised deep architecture has been applied to the
discovery of shared cell behaviors across control and therapy groups.
Specifically, the main contributions of this work can be summarized as
follows:

• Dynamic representation of cell behaviors. Our approach integrates
a bidirectional Long Short-Term Memory (LSTM) network to en-
code sequences of low-level features representing the behavior of
a cell within a temporal window. As shown in the experiments,
the resulting embedding successfully identifies redundant and
irrelevant features in the initial set of features, achieving a signif-
icant dimensionality reduction, while keeping or even improving
the performance of the behavior discovery task and preserving
the explainability of the discovered behaviors.
2

• Modeling of the hierarchical scenario (groups-cells-samples). We pro-
pose a multi-task contrastive loss that allows us to train the
model in a self-supervised mode and aligns with the hierarchical
nature of the data, comparing samples according to the per-group
proportions of cell behaviors. In this manner, sample similarity
is considered at population level (biological group), rather than
cell level, in accordance with the fact that captures from different
groups contain cells belonging to a shared set of behaviors. Our
proposed multi-task contrastive loss is related to the well-known
supervised contrastive loss [15], but it differs in that it does
not analyze sample-to-sample similarities. Instead, it focuses on
sample-to-population similarities, drawing inspiration from very
recent advances in bag-based losses designed for weakly super-
vised or noisy scenarios [16]. In this way, our approach can
adapt to a hierarchical arrangement of groups, behaviors and
cells. Furthermore, it can also serves as a means of regularizing
the embedding generation, a task that has been traditionally
posed as a prediction problem (given one part of a sequence,
learning to predict the subsequent one) [17], which does not suit
prone-to-outliers scenarios, as the one presented in this paper.

• Attainment of stable but transitory behaviors. Moreover, the multi-
task loss includes a second term that imposes temporal coherence
to the behaviors in the cell trajectories. It does so by enforcing
that subsequent temporal instances of a cell remain close in the
latent space, while still allowing for cell behavior transitions
during the time span of the captures.

The rest of this paper is organized as follows. Section 2 reviews the
related literature. In Section 3 we first provide a description of our
scenario and employed dataset, then a description of our method, and,
lastly, detailed descriptions of each of its main components in the subse-
quent subsections. Section 4 describes performance metrics, discusses
the influence of the hyperparameters of the method and presents the
experimental results that support our method in comparison with the
state of the art, in terms of: performance in dimensionality reduction,
separability and model fitting. Then, Section 5 discusses our results
from a biological point of view, putting emphasis on the validity of
transitions, explainability and error analysis. And finally, Section 6
summarizes our conclusions and outlines future lines of research.

2. Related work

In this section, we discuss the most relevant previous works on
unsupervised sequence modeling and self-supervised learning methods.

2.1. Unsupervised sequence modeling on biological data

Heterogeneity, complexity, dynamics and relationships among fea-
tures can affect the performance of spatio-temporal data representation
tasks [18], but deep learning techniques have proved their effectiveness
in modeling different types of time-series, such as event data, trajectory
data, audio data or video data [19]. Specifically, Recurrent Neural Net-
works (RNNs), like LSTMs [20] and Transformers [21], are nowadays
widely used for modeling sequences of audio, video and text data.

Regarding unsupervised deep sequence modeling methods, the lit-
erature mostly tackles text-related problems, in the context of: transla-
tion [22], spelling [23], or text-to-speech/handwriting synthesis [24]
tasks. Speech-related applications are also popular, autoencoders are
used to summarize the temporal dependencies between observations in
automatic speech recognition [25].

On the other hand, with respect to biological data, the literature is
mainly focused on the modeling of DNA sequences and protein chains.
Moreover, their sequence modeling is usually based on Natural Lan-
guage Processing (NLP) proposals such as word2vec [26–28]. However,
some methods propose their own modeling approaches, such as that
of Hill et al. [29], which proposes a gated recurrent neural network
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that can learn complex and long-range patterns in full-length human
transcripts; or that of Kou et al. [30], which proposes a variational
auto-encoder with a 4-dimensional latent space that produces patterns
consistent with clinical impressions of esophageal manometry.

Finally, regarding cell behavior profiling, a 2D approach [31] char-
acterizes two cell behaviors in live microglia using a Vector Quantized
variational autoencoder (VQ-VAE), which also enforces temporal con-
tinuity in a 16-dimensional latent space. However, in this work the
behaviors are not shared across groups. A very recent approach [32]
proposes a 3D imaging-transcriptomics platform, based on dynamic
time warping of cell temporal sequences to obtain a 2D representation
with UMAP. The resulting 2D map can be used to identify different
behaviors within the data. Neither of these approaches allows for
explicit behavior transitions. Hence, they cannot model highly dynamic
scenarios of immunology.

2.2. Self-supervised learning

Self-supervised learning is an emerging field in machine learning,
that enables to use a supervised loss in tasks lacking of manually
annotated data. Instead, algorithms learn from information intrinsi-
cally available within the data, but not directly related to the task
at hand. These techniques have proven to be particularly effective
in the fields of NLP and computer vision. In the field of NLP, many
self-supervised tasks have been proposed, mainly involving predicting
missing words from a sequence [33]. In image- and video-related
problems, domain-specific Convolutional Neural Networks (CNN) are
trained with unlabeled data by designing tasks in which supervisory
variables can be automatically computed from the data, learning the
spatial and temporal structures of the visual content. For example,
authors in [34] extract multiple patches from a single image and ask
the model to predict the spatial relationship between these patches,
whereas the work in [35] validates frame order in video (useful for
action recognition).

However, the application of self-supervised learning to the field
of life sciences is very recent. Some approaches focus on cell-type
identification [36,37] using prior biological information, such as the
signaling pathways in genes. Another example combines unsupervised
deep sequence modeling and self-supervised learning, using a Trans-
former to predict a missing fraction of amino acids sequences and
protein sequences [38]. The resulting embedding is then analyzed
using dimensionality reduction algorithms as t-SNE and PCA [39]
to gain insight into the properties of the sequences. In another ap-
proach [40], an unsupervised adversarial autoencoder is combined with
a self-supervised Latent Dirichlet Allocation (LDA), with the cell type
acting as a regularizer. Then, the time-averaged cell descriptors in the
56-dimensional latent space are used as features to distinguish highly
metastatic melanoma cells.

In comparison to all these approaches, in our scenario, behaviors are
complex and migration mechanisms are related to a heterogeneous set
of morpho-kinetic features, such as shape variation, relative position
of the cell with respect to the vessel, cell trajectory, etc. Based on
the expert knowledge of biologists, we have designed an initial set of
spatio-temporal hand-crafted features that describes the dynamics of
migration processes. Our proposal, relying on a LSTM-based architec-
ture and a self-supervised method, accomplishes two key objectives: (1)
it is capable of generating an embedding which models the short-term
behaviors of the cells, improves the behavior separability even with
dimensionality reduction, and detects potential irrelevant or redundant
features in the initial set; and (2) it considers the temporal consistency
in behavior assignment for each cell at the same time that it allows
meaningful behavior transitions.

3. Materials and methods

The overview of our approach is shown in Fig. 1. Each 4D capture
(3D space +time) containing neutrophils migrating within blood vessels
3

is processed using the ACME software [41], available through [42].
This software performs individual cell segmentation and tracking,
yielding a sequence of morpho-kinetic features per neutrophil. These
features serve as input to our deep sequence modeling system, which
generates the embedding representation. During the training phase, the
embedding is optimized using our self-supervised method.

3.1. Materials

In this subsection we first describe our application scenario. While
specific to our target task, it has attributes that make it easily extensible
to other domains. Our scenario consists of four populations or groups,
namely:

1. wild-type/control: mice without treatment.
2. anti-Plt/control: mice with platelet depletion.
3. FGR-KO/therapy: mice transplanted with bone marrow of a

knockout mutant for FGR gene.
4. FGR-INH/therapy: mice treated with an inhibitor of the FGR

protein.

Neutrophils in every group share the same set of behaviors, but in
different and unknown proportions. Our objective during the training
phase is to learn the set of behaviors over the control groups, assuming
that they are applicable to the therapies as well. From a biological
perspective, our final goal is to anticipate the effectiveness of a therapy
by comparing its proportions of behaviors with those of the control
groups.

Biological hypotheses suggest that the behavior proportions in the
control groups must be maximally different. In the wild-type group,
there must be a large proportion of larger neutrophils, which change
their shapes and migrate over the blood vessel surface (pathogenic mi-
gration). In contrast, in the anti-Plt group, smaller, spherical and non-
migratory neutrophils predominate (non-migratory). Successful thera-
pies must have an intermediate composition between those of wild-type
and anti-Plt groups, reducing pathogenic migration in favor of non-
pathogenic ways of migration. For a deeper biological analysis, the
reader is referred to [3].

Each capture consists of a 4D (3D spatial +time) video containing
a set of moving neutrophils within blood vessels. Each cell is first
segmented, tracked and parametrized over time using the technical
solution described in [41] (which will be briefly described in Sec-
tion 3.2). This process leads to a final dataset of in vivo microscopy
that contains 147 4D captures composed of 2334 3D volumes of neu-
trophils migrating within venules in the cremaster muscles of mice,
denoted as 𝐗, belonging to the four different groups: wild-type/control,
anti-Plt/control, FGR-KO/therapy and FGR-INH/therapy.

3.2. Baseline cell parameterization for behavior characterization

As mentioned, the ACME software segments, tracks, and describes
each cell using a hand-crafted set of features (a more detailed descrip-
tion can be found in [41]):

1. First, from an input 3D+time volume, a 3D joint segmenta-
tion module generates three outcomes: (1) a mask defining
the 3D volume corresponding to the blood vessel; (2) a set of
binary masks containing the 3D regions susceptible to be cells;
and (3) for each candidate region, its probability of being a
well-segmented cell. All these outcomes are provided for every
temporal index of the 3D+time volume.

2. Next, the cell masks are fed to the three-pass 3D tracking mod-
ule. This system analyzes the time sequence of segmented re-

gions and generates individual trajectories.
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Fig. 1. Overview of the proposed approach. The 4D (3D space +time) captures are segmented, tracked and parametrized, yielding the feature 3D matrix 𝐗 ∈ R𝐼×𝑇×𝐹 . The deep
sequence modeling system, trained with the multi-task contrastive loss, produces the latent space representation 𝐳𝑖 ∈ R𝑁𝑒𝑚𝑏 . The automatic behavior discovery system subsequently
generates the set of behaviors.
Table 1
Cell morpho-kinetic features used for cell behavioral description.

Index Feature

1 Volume
2 Superficial area
3–5 Height, maximum width and height/width rate
6–8 Sphericity, prolate and oblate ellipticity
9–11 Principal axes length
12–13 Extent and solidity
14 Equivalent diameter
15–17 Cell X/Y/Z axis orientation respect to the bloodstream
18–19 Cell polar position (radius/angle)
20 Distance from cell center to blood vessel surface
21 Minimum distance from cell to blood vessel surface

3. Then, the feature extraction module characterizes each temporal
instance of a cell through 21 instantaneous features, related to
the position and shape of the cells at each time instant. The result
for each trajectory is a sequence of morpho-kinetic features
for each cell. Our set of features is more comprehensive than
those from other state-of-the-art tools for dynamic cell behavior
description [43,44].

4. Finally, the cell selection module chooses the final set of valid
trajectories discarding:

• incomplete tracks with less than 21 temporal instants, at-
tributed to cells that are not suitable for behavior profiling
(considering that recent literature establishes a minimum
time span for considering a stable behavior [2–4]);

• regions for which a valid position with respect to the blood
vessel cannot be obtained (those located at the edges of the
volume);

• regions with a size far from the typical size of neutrophils;

and classifies the remaining cells depending on their sequences
of features and their previously computed probabilities of being
correctly segmented. The precision at the end of this pipeline
reaches a value of 95%.

Hence, the short-term spatio-temporal behavior of a cell 𝑖 is de-
scribed using a set of 𝐹 = 21 morpho-kinetic features, computed at
each instant 𝑡 over 𝑇 = 21 instants. It should be noted that every 𝐱𝑖 is
the time evolution of an individual cell from the set of 𝐼 cells, yielding
a 3D matrix 𝐗 ∈ R𝐼×𝑇×𝐹 where 𝑖 = 0,… , 𝐼 − 1 represents the cell track
identifiers.

The sequence 𝐱𝑖 ∈ R𝑇×𝐹 then becomes an input sample to our
system. Table 1 enumerates the features used to parametrize the cell
dynamics. It is worth noticing that each tracked cell in a capture may
4

Fig. 2. Deep Sequence Modeling system (see Fig. 1). The input 𝐱𝑡 consists of 𝐹 features
over 𝑇 time instants. The LSTM produces a representation of size 𝑁𝐿𝑆𝑇𝑀 , which is
compressed to the final 𝑁𝑒𝑚𝑏 dimension.

lead to several samples 𝑖, each one associated with a short temporal
window centered at a different instant. We consider temporal windows
with strong overlapping, by shifting the center by one temporal instant
and consider cells that change their behavior over time [3].

3.3. Deep sequence modeling

The Deep Sequence Modeling block generates a latent represen-
tation, the embedding, from the original features. Its architecture is
depicted in Fig. 2. Each temporal sequence 𝐱𝑖 =

[

𝐱𝑖,𝑡
]

, 𝑡 = 0,… , 𝑇 − 1,
representing the short-term behavior of a cell, is fed to a bidirectional
LSTM, which produces a unique representation 𝐡𝑖 ∈ R𝑁𝐿𝑆𝑇𝑀 by taking
the output computed at the central instant of the sequence. Next, a
Layer Norm and a fully-connected layer transform the output of the LSTM
into the final sequence embedding 𝐳𝑖 ∈ R𝑁𝑒𝑚𝑏 .

The goal of our Deep Sequence Modeling system is to obtain a latent
representation from the original features that removes redundancies
and irrelevant features, exploits inter-feature relationships, and enables
behavior discovery in a scenario with two requisites: (1) it has to
allow for discriminating different groups at a population level through
their behavior proportions; and (2) although allowing for behavior
transitions, it must strengthen temporal consistency of the embedding.
Both conditions are integrated into a novel multi-task loss function  =
𝐵𝐷 + 𝑇𝐶 , where 𝐵𝐷 in the first term stands for Behavior Discovery
(described in Section 3.3.2), and 𝑇𝐶 in the second stands for Temporal
Consistency (described in Section 3.3.3). Furthermore, since we aim at
discriminating among groups at population level, we have designed a
loss which involves bags of samples, instead of individual samples, as
described in Section 3.3.1.

3.3.1. From samples to bags
Our proposal for behavior discovery relies on the hypothesis that,

although any behavior may appear on any capture, the group to which
each capture belong (control group or different therapies) strongly
determines the proportions of behaviors. In consequence, our training
process should be aware of these proportions. To that end, inspired by
the approach in [16], we arrange cell samples into bags, and use them
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Fig. 3. Overview of the bag composition (example for two control groups, number of samples 𝑁𝐵 = 4, and number of cell temporal instances 𝑁𝐶 = 5). First, 𝑁𝐵 cell temporal
instances are selected through a balanced sampling (the same number for each group). Then, a random temporal instance is selected for every one of the cells. Finally, for each
selected cell and temporal instance, 𝑁𝐶 neighboring temporal instances are included in the bag. Thus, the number of elements in the bag is 𝑁𝐵 ⋅𝑁𝐶 .
as batches in our training process. Each bag is composed of 𝑁𝐵 samples,
and should contain enough cells from each considered group 𝐺 in an
attempt to provide a statistically suitable representation of the behavior
proportions.

Moreover, even though two consecutive inputs 𝐱𝑖,𝑡 and 𝐱𝑖,𝑡+1 from
the same cell 𝑖 differ by just one time instant, nothing explicitly ensures
that our model will provide similar representations in the latent space
for the both samples (i.e. temporal consistency). In order to ensure
temporal consistency in the embedding, our bag must contain several
consecutive samples of the cells to calculate the similarities among
them.

Fig. 3 shows the way the bags are built. The process consists of two
steps:

1. First, we perform a random selection of some cells from each of
the groups. It is noteworthy that our approach will work as long
as the batch is statistically representative of the real population
of cell behaviors. For that end, we need to ensure that the batch
size 𝑁𝐵 is large enough and that the samples are evenly balanced
among the groups. We will discuss this point in the experimental
section.

2. Second, from the sequence representation of a given cell, we
randomly choose a set of {𝐶𝑖} consecutive instants. Hence, each
bag of 𝑁𝐵 samples includes {𝐶𝑖} neighboring temporal instances
for each selected cell 𝑖. In our case |{𝐶𝑖}| = 𝑁𝐶 ∀𝑖. It should
be noticed that using only 𝑁𝐶 neighboring temporal instances
(with 𝑁𝐶 < 𝑇 ) allows for behavior transitions in our scenario,
since the temporal consistency is guaranteed only in an specific
range around the selected temporal instance for each cell. The
optimal value of 𝑁𝐶 will be also discussed in the experimental
section.

3.3.2. A bag-based contrastive loss for behavior discovery
In our scenario, any behavior might appear in any of the groups,

but the behavior proportions define the nature of the group. Given
this assumption, instead of enforcing that a sample 𝑖 is more similar
to samples within its group, which will not be always true (especially
when a cell exhibits a behavior underrepresented in its group), we
define a contrastive loss that measures this similarity at the population
level. Therefore, we define a novel bag-based Behavior-Discovery (BD)
loss that, within a bag of size 𝑁𝐵 , computes the ratio between 𝑆−, the
aggregated distances between negative cell pairs (i.e. cells belonging
5

to different groups), and 𝑆+, the aggregated distance between positive
cell pairs within the bag (i.e. cells that belong to the same group):

𝐵𝐷 = 𝑆−

𝑆+ =
∑𝑁𝐵

𝑖=1
∑

𝑗∉𝐺(𝑖) 𝑒
−𝛾𝐵𝐷‖𝐳𝑖−𝐳𝑗‖

∑𝑁𝐵
𝑖=1

∑

𝑗∈𝐺(𝑖) 𝑒
−𝛾𝐵𝐷‖𝐳𝑖−𝐳𝑗‖

(1)

where 𝐺(𝑖) represents the group associated with the capture that con-
tains the sample 𝑖 (i.e. an instant of a cell within the capture). The
parameter 𝛾𝐵𝐷 plays a fundamental role in our framework and is
inversely proportional to the temperature parameter 𝜏 in the original
supervised contrastive loss [15], In particular, it allows us to control
whether the aggregated distances for each anchor sample 𝑖 rely on
only a few samples (large value of 𝛾𝐵𝐷) or many (low value of 𝛾𝐵𝐷).
This means that 𝛾𝐵𝐷 sets the relative importance of the most similar
elements in the population (i.e. those cells exhibiting behaviors similar
to that of 𝑖) with respect to that of the entire population (including
cells with similar and different behaviors). In our hierarchical scenario
in which samples of different groups may exhibit similar behaviors and
differences are expected at the population level, we are more inclined
to use a small value of 𝛾𝐵𝐷.

Furthermore, the value of 𝛾𝐵𝐷 will have an impact on the separa-
bility of the learned embedded representations and the final number
of discovered behaviors. In practice, we expect that large values of
𝛾𝐵𝐷 will lead to data more sparsely distributed in the embedding space
and result in a larger set of identifiable behaviors. Conversely, smaller
values will organize data in a more compact way, generating a smaller
set of behaviors. A qualitative analysis of the results under different
values of 𝛾𝐵𝐷 can be observed in Fig. 4. We will thoroughly analyze
this point in the experimental section.

3.3.3. A bag-based contrastive loss for temporal consistency
Traditionally, to impose temporal coherence in recurrent embed-

dings, other authors have resorted to the prediction of the sample as
a target task in the learning process [29], forcing the network to learn
and predict the data dynamics. Instead of combining a supervised task
(prediction) with an unsupervised one (behavior discovery), we rather
propose to use the same sort of bag-based contrastive loss defined
in Section 3.3.2, adapted to deal with temporal consistency. With
our aggregation mechanism, which takes into account the different
contributions to the aggregated similarity, the resulting embedding
is robust to outliers (where outliers are the instant samples that are
different to their temporal neighbors, for example, due to segmentation
or tracking errors). From our point of view, this approach reduces the
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Fig. 4. 2-dimensional embeddings for 𝛾𝐵𝐷 = 0.01 (left), 𝛾𝐵𝐷 = 0.6 (center) and 𝛾𝐵𝐷 = 10 (right).
influence of the outliers compared to a standard approach, where they
would have a great impact on the learning process.

Therefore, we propose the use of a bag-based loss so that, within a
bag of size 𝑁𝐵 , we can enforce that the similarity between temporal
instances of the same cell (taken in a temporal window of 𝑇 = 21
instants), 𝑆𝑖𝑛𝑡𝑟𝑎, is larger than the similarity between temporal instances
of other cells and the cell under study, 𝑆𝑖𝑛𝑡𝑒𝑟:

𝑇𝐶 =
𝑆𝑖𝑛𝑡𝑒𝑟
𝑆𝑖𝑛𝑡𝑟𝑎

=

∑𝑁𝐵
𝑖=1

1
|{𝐶𝑗∣𝑖}|

∑

𝑗∈{𝐶𝑗∣𝑖} 𝑒
−𝛾𝑇𝐶‖𝐳𝑖−𝐳𝑗‖

∑𝑁𝐵
𝑖=1

1
|{𝐶𝑖}|−1

∑

𝑗∈{𝐶𝑖}
𝑗≠𝑖

𝑒−𝛾𝑇𝐶‖𝐳𝑗−𝐳𝑖‖
(2)

where {𝐶𝑖} are the neighboring temporal instances of each cell 𝑖 that
are considered, and {𝐶𝑗∣𝑖} represents the set of the bag elements not be-
longing to the trajectory of the cell instance 𝑖. In our scenario, |{𝐶𝑖}| =
𝐶 ∀𝑖, and, correspondingly, |{𝐶𝑗∣𝑖}| = 𝑁𝐵 ⋅𝑁𝐶 −𝑁𝐶 . The parameter 𝛾𝑇𝐶
plays a slightly different role in ensuring temporal consistency than in
behavior discovery. In this case, 𝛾𝑇𝐶 can be considered as an indicator
of the percentage of outliers in the dataset: focusing on the aggregated
intra-cell similarity 𝑆𝑖𝑛𝑡𝑟𝑎, small values give a similar importance to any
time instance of a cell (appropriate for a scenario with low number of
outliers), whereas large values make the loss focus on the most similar
instances to the cell under consideration (suitable for scenarios with a
high percentage of outliers). We will analyze its influence on the results
in the experimental section.

This loss 𝑇𝐶 can also be interpreted as a regularization term for
𝐵𝐷, which is the primary loss.

3.4. Automatic behavior discovery

This section describes the process that, starting from either the
original features or the embeddings, leads to the discovered behaviors.
We have followed the next experimental protocol:

1. We have divided our dataset into training and test sets. The
training set contains samples that belong to the control groups
(wild-type and anti-Plt), whereas the test set contains samples
from the therapy groups (FGR-KO and FGR-INH).
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2. We have trained our Deep Sequence model using the train-
ing dataset, producing embeddings that separate wild-type and
anti-Plt groups.

3. We have fitted a probabilistic clustering approach, a Gaussian
Mixture Model (GMM) [45], over the training set after standard
normalization. Each component in the mixture represents a
data cluster, associated with a prominent behavior found in
the control data. As the GMM requires to set the number of
elements (behaviors), 𝐾, a priori, we chose 𝐾𝑜𝑝𝑡 as the value that
maximizes the separability between the control groups (wild-
type and anti-Plt) in terms of their distributions of behaviors.
This is done as follows: first, for different values of 𝐾 ∈ [2, 𝐾𝑚𝑎𝑥]
(i.e., for different numbers of potential clusters/behaviors), a
normalized histogram 𝐪𝐾𝑔𝑚 =

[

𝑞1𝑔𝑚 𝑞2𝑔𝑚 … 𝑞𝐾𝑔𝑚

]

is computed
for each group 𝑔𝑚 = {𝑔1, 𝑔2}, measuring the proportion of
cells 𝑞𝑘𝑔𝑚 belonging to each discovered behavior 𝑘. Then, the
optimal number of behaviors 𝐾𝑜𝑝𝑡 is the one which minimizes
the histogram intersection [46] between the two control groups:

𝐾𝑜𝑝𝑡 = arg min
𝐾∈[2,𝐾𝑚𝑎𝑥]

𝐻𝐼
(

𝐪𝐾𝑔1 ,𝐪
𝐾
𝑔2

)

(3)

4. Once we have learned the Deep Sequence Model and the GMM
parameters, we pass the test samples (FGR-KO and FGR-INH)
through the model to generate their embeddings, and subse-
quently test how well the GMM fits the new data. To assess
the quality of the fit, we will use several performance metrics
described in the next section.

4. Results

Our approach has been implemented using Python and Pytorch. Z-
score normalization by each feature is applied to the original data.
We use a random train-validation split ratio of 90/10. The network
is trained during 60 epochs using gradient descent with an Adam
optimizer and takes around 12 h in an Intel(R) Core(TM) i7-7700 CPU
equipped with a NVIDIA Geforce GTX 1080 Ti GPU. The inference
process takes only a few minutes.
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Fig. 5. Exploration of the influence of the 𝛾𝐵𝐷 parameter. Test Log-likelihood (left), entropy in behavior assignment (center) and BIC (right).
During this Section, we will refer to the preliminary version of our
approach using only the behavior discovery loss as Ours (BD), and our
complete approach with the multi-task loss as Ours (BD+TC).

4.1. Performance metrics

In order to assess how our model trained on control groups fits the
therapy groups (test data), we have used the following metrics:

• Test Log-likelihood. It evaluates how well the model trained in
the control groups fits the new data (therapy groups):

𝑡𝑒𝑠𝑡
(

𝜃 ∣ 𝐳𝑖
)

=
∑

𝑖∈𝐺(𝑖)𝑡𝑒𝑠𝑡

log
⎛

⎜

⎜

⎝

𝐾𝑜𝑝𝑡
∑

𝑘=1
𝛼𝑘𝜙

(

𝐳𝑖 ∣ 𝜇𝑘, 𝛴𝑘
)

⎞

⎟

⎟

⎠

(4)

where 𝜃 =
{

𝛼1,… , 𝛼𝐾𝑜𝑝𝑡
, 𝜇1,… , 𝜇𝐾𝑜𝑝𝑡

, 𝛴1,… , 𝛴𝐾𝑜𝑝𝑡

}

are the pa-
rameters of the GMM (obtained with data from control groups)
and 𝜙 is the Gaussian kernel. Higher values mean better fitting.
In biological terms, it indicates if the behaviors discovered in
the control groups are representative and fit well the cells in the
therapy groups, i.e., if the behaviors are the same and shared
between control and therapy groups.

• Bayesian Information Criterion (BIC). It simultaneously consid-
ers model complexity and statistical fitting and evaluates how a
model fits the new set of samples for a given complexity value.
It considers the samples’ likelihood along with the model’s com-
plexity (the number of learned parameters) and the total number
of samples used to build the model [47]. Lower BIC values mean
better model’s performance and a less complex model.

• Entropy in behavior assignment. The GMM is a generative
model that provides probabilistic assignments between samples
and behaviors. We measure model’s confidence in these assign-
ments using the entropy of the assignments in the test set. Here,
lower values mean better performance. From the biological point
of view, it measures how well a model fitted in the control groups
discriminates behaviors in the therapy groups i.e., how separable
they are.

To carry out a fair comparison between the different alternatives
and baselines, unless otherwise stated, we set the number of behaviors
at 𝐾𝑜𝑝𝑡 = 6, which was determined as the optimal value using the
original feature space.

4.2. Selection of hyperparameters

In the hyperparameter selection process for our dataset we con-
sider a range of interest for the target embedding of 𝑁𝑒𝑚𝑏 ∈ [12, 24]
(surrounding the dimension of the original space, 21 features). We use
60-sample balanced bags (𝑁𝐵 = 60, with 30 samples per group), en-
suring that each batch is statistically representative of the populations
while keeping the computational complexity bounded. The number
of temporal instants per cell varies across experiments. Finally, the
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dimension of the output representation of the bilateral LSTM is set to
𝑁𝐿𝑆𝑇𝑀 = 256, which matches the maximum 𝑁𝑒𝑚𝑏 value considered in
our experiments, avoiding a bottleneck in the architecture). However,
significant changes in this value, e.g. 𝑁𝐿𝑆𝑇𝑀 = 128, 𝑁𝐿𝑆𝑇𝑀 = 512,
led to similar performance. Experiments in other datasets have yielded
similar hyperparameters similar to the ones obtained in this paper.
Furthermore, we propose these optimal search ranges for the hyper-
parameter validation process: 𝛾𝐵𝐷 ∈ [0.1, 1.0], 𝛾𝑇𝐶 around 0.1 and
𝑁𝐶 ∈ [5, 11], and we provide the validation curves as Supplementary
Material.

4.2.1. 𝛾𝐵𝐷: Tuning behavior discovery
First, we have focused on the behavior discovery loss, without the

regularization term (temporal consistency) and using one sample per
cell, i.e. 𝑁𝐶 = 1. Fig. 4, which illustrates 2-dimensional embeddings
(𝑁𝑒𝑚𝑏 = 2) for three contrasting values of 𝛾𝐵𝐷, provides a deeper insight
into the role of 𝛾𝐵𝐷 in the sample distribution within the latent space.
For 𝛾𝐵𝐷 = 0.1, the embedding space shows a trivial solution, with
samples perfectly separated in groups. While solution provides the best
log-likelihood and BIC (as show on the left and right sides of Fig. 5),
it is not suitable for our scenario as it challenges the assumption of
shared behaviors across groups. Back to Fig. 4, for 𝛾𝐵𝐷 = 0.6, the
embedding space shows a more compact organization, where samples
from each group are organized into a few big clusters (behaviors). In
contrast, 𝛾𝐵𝐷 = 10 yields a sparser data distribution, forming smaller
clusters for each group. The characteristics of the data distribution
in the embedding space have a direct impact on the number of cell
behaviors (𝐾𝑜𝑝𝑡 in our system). As 𝛾𝐵𝐷 increases, the optimal number
of behaviors also increases due to the sparser data distribution in the
latent space. Specifically, for 𝛾𝐵𝐷 = 0.1 the optimal number of clusters
is 𝐾𝑜𝑝𝑡 = 5, for 𝛾𝐵𝐷 = 0.6 it increases to 𝐾𝑜𝑝𝑡 = 9, and for 𝛾𝐵𝐷 = 10.0 it
further raises to 𝐾𝑜𝑝𝑡 = 15. It should be noticed that the experiment
generating Fig. 4 is for visualization purposes, with a very reduced
embedding dimensionality (𝑁𝑒𝑚𝑏 = 2), and these values may change
for different dimensionalities.

Fig. 5 shows the performance of our approach for different values
of 𝛾𝐵𝐷, comparing it with the baseline working on the original feature
space (blue point). The results reveal that our approach outperforms
the baseline and allows us to select a value of 𝛾𝐵𝐷 = 0.8 (the one with
the best entropy in behavior assignment in the range of interest).

4.2.2. 𝛾𝑇𝐶 : Tuning temporal consistency
Once the hyperparameter of the behavior discovery loss has been

fixed, we can search for the optimal hyperparameter of the temporal
consistency loss. First, we have validated 𝛾𝑇𝐶 in an interval around
the dimension of the original space. Furthermore, we have considered
values for 𝑁𝐶 in the range [3, 13]. Fig. 6 collects the performance
measurements of the complete approach for different values of 𝛾𝑇𝐶 ,
compared to the baseline. In this case, the value for 𝛾𝑇𝐶 = 0.01 also
yields a trivial solution, so we select as the optimal value 𝛾𝑇𝐶 = 0.1,
smaller than the optimal value of 𝛾𝐵𝐷 = 0.8 for behavior discovery.
This difference, as mentioned in Section 3.3.3, can be attributed to the
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Fig. 6. Exploration of the influence of the 𝛾𝑇𝐶 parameter. Test Log-likelihood (left), Entropy in behavior assignment (center) and BIC (right).
Fig. 7. Exploration of the influence of the 𝑁𝐶 parameter. Test Log-likelihood (left), Entropy in behavior assignment (center) and BIC (right).
Fig. 8. Test Log-likelihood (left), Entropy in behavior assignment (center) and BIC (right) for 𝑁𝐵 = 60, 𝛾𝐵𝐷 = 0.8, 𝛾𝑇𝐶 = 0.1, 𝑁𝐶 = 11.
fact that the optimal hyperparameter is closely related to the number
of outliers in the dataset. In our case, where the segmentation and
tracking methods are robust, and outliers are few, lower values of
𝛾𝑇𝐶 are favored, resulting in a more uniform weighting of the samples
within.

4.2.3. Number of temporal instances per bag
We have also analyzed the influence of 𝑁𝐶 , the number of temporal

instances included in the bag for ensuring temporal consistency. Fig. 7
illustrates the performance of our approach for different values of 𝑁𝐶
in comparison with the baseline. The results show that the optimal
performance is obtained when considering the 𝑁𝐶 = 11 temporal in-
stances of a cell. This configuration minimizes the entropy in behavior
assignment, and results in negligible differences in test log-likelihood
and BIC within the range of interest (𝑁𝑒𝑚𝑏 ∈ [12, 24]). This observation
reinforces our hypothesis in two senses: (1) the limited number of
outliers justifies the use of a relatively large value of 𝑁𝐶 for our
purpose; and (2) since behavior transitions occur in our scenario, 𝑁𝐶
values approaching the size of the considered temporal window (𝑁𝐶 =
21) are suboptimal. An increase in the time lapse (𝑁𝐶 ) elevates the
probability of a sample changing its behavior. Consequently, we cannot
constrain the different time instances of a cell to remain within the
same region of the latent space.
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4.2.4. Size of the embedding
Once the values of 𝛾𝐵𝐷 = 0.8, 𝛾𝑇𝐶 = 0.1 and 𝑁𝐶 = 11 have

been selected through the previous experiments, Fig. 8 shows how
our performance metrics evolve with the dimension of the embedding
(𝑁𝑒𝑚𝑏). Several conclusions can be drawn from these results:

• First, the proposed embeddings outperforms the baseline, not
only for the same dimensionality of the original data (𝑁𝑒𝑚𝑏 =
21) but even for smaller sizes (e.g., 𝑁𝑒𝑚𝑏 = 16). Hence, our
proposed system serves as a dual purpose: it re-arranges data
in a latent space where behaviors can be better discriminated
and accomplishes dimensionality reduction. Our intuition is that
the initial set contains redundant features and, in some cases,
irrelevant features, which are effectively removed in the trans-
formed embedding space. We will present some examples of these
features in Section 5.2.

• Second, the dimension of the embedding cannot be increased
steadily. Whereas the test log-likelihood and entropy consistently
improve with the dimension of the embedding, the BIC, which
also considers the complexity of the system, worsens for very
large sizes of the embedding (e.g. 𝑁𝑒𝑚𝑏 = 256). This indicates that
the improvement in log-likelihood does not compensate for the
increase in complexity.
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Fig. 9. Behavior proportion: instantaneous behaviors in the original feature space (left, with 𝐾𝑜𝑝𝑡 = 6) and dynamic behaviors in the proposed latent space (right, with 𝐾𝑜𝑝𝑡 = 6),
for 𝑁𝐵 = 60, 𝑁𝑒𝑚𝑏 = 16, 𝛾𝐵𝐷 = 0.8, 𝛾𝑇𝐶 = 0.1 and 𝑁𝐶 = 11. *Please note that behaviors with the same numbering are not equivalent, and how the dynamic description of the
scenario helps to strengthen the differences among the groups.
Fig. 10. Comparison of the performance measurements of the baseline and two state-of-the-art methods with two versions of our approach. Test Log-likelihood (left), Entropy in
behavior assignment (center) and BIC (right).
Table 2
Number of detected cell behavior transitions, meaningful percentage and average duration of behaviors, for all the considered
approaches.
Approach # features Transitions (%) Meaningful

transitions (%)
Average duration
(time steps)

Baseline 21 36.00 48.12 7.27
ACME [41] 74 𝟕.𝟎𝟑 4.70 𝟏𝟑.𝟎𝟔
Ours (BD) 16 10.60 79.22 9.67
Ours (BD+TC) 16 𝟕.𝟎𝟔 𝟖𝟑.𝟑𝟎 𝟏𝟎.𝟖𝟐
Finally, in Fig. 9 the behavior proportions (𝐾𝑜𝑝𝑡 = 6) are compared
between the different groups in the original feature space and in the
latent space with reduced dimensionality (𝑁𝑒𝑚𝑏 = 16). As shown in
the Figure, if cells’ dynamics is not considered (left histogram), the
behavior proportions in the group are more similar (differences among
the behaviors lie in instantaneous cells’ size, shape and positions,
which can be stable across groups). However, when the cells’ dynamics
are considered, differences between groups are maximized (without
breaking the requirement for shared behaviors between groups) and
the resulting behaviors are biologically meaningful [3]. Moreover, our
embedding holds the assumption that behaviors discovered in the
control groups are also present in the therapy groups. However, in the
embedding space, a non-shared behavior appears between the control
groups (behaviors 1 and 2), which was not observed in the original fea-
ture space. The explainability procedure, described in Section 5.2, will
provide some insight into the plausible biological hypotheses behind
that.

4.3. Comparison with the state-of-the-art

Fig. 10 compares the two versions of our proposed approach with a
baseline and two recent state-of-the-art method. Specifically:
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• Ours (BD): a preliminary version of our approach using only the
behavior discovery loss.

• Ours (BD+TC): our approach with the multi-task loss, which
includes both behavior discovery and temporal consistency losses.

• Baseline: the baseline approach, describing each temporal in-
stance of the cells through their original features (see Table 1).

• ACME [41]: a simple dynamic approach from the state of the
art, where the instantaneous features are further processed to
generate additional features aimed at modeling the temporal
dynamics of the original ones, including basically their means,
variances and some statistics over the trajectory of the cell. This
results in a set of 74 instantaneous and dynamic features (for
more information, refer to [41]).

• BEHAV3D: a very recent method in the literature [32]. The
standard approach to perform sequence modeling over cell time
series involves a dimensionality reduction algorithm prior to
behavior identification [36,38]. In the case of BEHAV3D, a dis-
tance matrix between the cell temporal sequences 𝐱𝑖 is computed
using a dynamic time warping algorithm, which feeds UMAP to
create 2D representations. Henceforth, BEHAV3D relies on a 2-
dimensional representation of the data for behavior discovery.
The behaviors, then, are discovered using clustering algorithm
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Fig. 11. 2-dimensional embeddings for our non-regularized approach (BD), our regularized version (BD+TC) and BEHAV3D [32]. Samples of group 1 are drawn with ‘o’ and
samples of group 2 with ‘x’.
(the authors suggest K-Means with outlier detection, but indicate
that other methods could be used) over this 2D representation.

For our experiments, we have used the implementation of BEHAV3D
available in [48]. To perform a fair comparison, we have used the
same number of behaviors 𝐾𝑜𝑝𝑡 = 6 in the GMM algorithm for all
the approaches. As observed in Fig. 10, our regularized approach
outperforms the baseline approach, ACME, and BEHAV3D, in terms of
BIC, entropy in behavior assignment and test log-likelihood. Hence, our
sequence modeling approach with temporal consistency demonstrates
superior performance in terms of separability and dimensionality re-
duction when compared to more standard approaches, including: (1)
simple dynamic modeling through statistics extracted from the original
features, such as the ACME approach; and (2) dimensionality reduction
(2D-3D) and clustering, such as BEHAV3D.

Finally, Fig. 11 illustrates the 2-dimensional embeddings for our
proposed approach, the regularized one (with temporal consistency)
and BEHAV3D. As observed, samples are better organized in clusters
by the proposed approach. It is also worth noting that in the case of
the BEHAV3D representation, samples from the same cell are always in
the same region of the feature space (aligned), not allowing behavior
transitions.

5. Discussion

In order to provide more insight into the capabilities and limitations
of the proposed system, we first analyze the stability of behavior
transitions and provide explainability to the results in Sections 5.1
and 5.2, respectively. Lastly, we examine the coherence of behavior
transitions in Section 5.3.

5.1. Behavior transitions

This subsection is devoted to analyze the behavior transitions in
our approach in comparison with: (1) the baseline approach, working
with the initial set of 21 instantaneous features, and (2) the ACME
approach, working with 74 instantaneous and dynamic features. Note
that BEHAV3D is not included in the comparison, due to the fact that it
does not allow behavior transitions explicitly (it analyzes the complete
sequence of temporal features and transform it in a single 2D point
representing its behavior).

Table 2 shows the number of detected behavior transitions for each
of the described alternatives in comparison with our behavior discovery
(BD) approach, with and without temporal consistency (TC). Here, the
number of transitions are expressed as a percentage, indicating the
proportion of cell behavior changes relative to the total number of time
steps. According to the biologists’ hypotheses, transitions are possible
in our scenario, but they are considered meaningful only if cells remain
in the new behavior for at least three temporal instants [3]. Some
conclusions can be drawn from these results:
10
Fig. 12. Explainability of the discovered behaviors: medium values of the latent
features for each behavior.

• First, the instantaneous modeling detects a share of 36% of be-
havior transitions. If we do not consider the temporal evolution
of the features, the obtained behaviors are not descriptive enough
of the conduct of the cells, and the resulting model lacks temporal
consistency.

• Second, the dynamic modeling detects the smallest number of
transitions (7%), but most of them are not meaningful. Even when
we are considering a 21 time-step window to compute them and
the features from adjacent time instances of the same cell should
be very similar, the changes in cell behaviors are not temporally
consistent.

• Our approach reduces considerably the number of transitions
compared to the instantaneous modeling, and most of the tran-
sitions are meaningful. Even only considering the behavior dis-
covery loss, the percentage of meaningful transitions reaches
79%.

• When considering temporal consistency as a regularizer for our
behavior discovery approach, the number of transitions is reduced
to 7%, approximately, and more than 83% are meaningful. The
error analysis in Section 5.3 will examine the nature of these
remaining non-meaningful behavior transitions.

• Finally, the mean duration of the behavior assignment is very sim-
ilar with our approach (11 time steps) and the dynamic modeling
(13 time steps).

As a conclusion, our approach provides meaningful and stable tran-
sitions.
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Fig. 13. Explainability of the discovered behaviors: correlation between the hand-crafted features and the latent features (color indicates absolute value of correlation).
Table 3
Textual description of the discovered behaviors.
Behavior Relevant latent features Description

1 4−, 14−, 16−, 7+, 8+, 15+ This behavior contains big neutrophils, slightly
spherical and they move erratically close to the
blood vessel wall. Hence, they are polarized and
this behavior is a pathogenic migration.

2 12+, 8−, 9−, 10−, 15− The neutrophils that present this behavior are
small, spherical and stay practically still far from
the blood vessel wall. Hence, it is a non-migratory
behavior.

3 2+, 3+, 6+, 9+ Cells in this behavior are big, have an erratic
movement and their positions are distant from the
blood vessel wall. This behavior is very similar to
the first behavior but less migratory, composed of
cells starting to migrate pathogenically.

4 12+, 13− The fourth behavior is composed of neutrophils of
medium size, moving with linear trajectories and
high velocity along the blood flow. Thus, it is a
non-pathogenic migration.

5 5+, 13+, 12− Neutrophils in this behavior are of medium size,
close to the blood vessel wall but moving along
the blood flow with low velocity. Hence, this
behavior is a non-pathogenic migration.

6 1+, 4+, 16+, 6− Cells in this behavior are of medium size,
spherical and their positions are distant from the
blood vessel wall. Therefore, this is a
non-migratory behavior.
5.2. Explainability and agreement with biological hypotheses

Explainability is a fundamental requisite in cell behavior analysis:
it is necessary to understand the mechanisms behind cell migration to
obtain more effective therapies. Although our system is based on self-
supervised learning, explainability is preserved through the proportion
of behaviors in each group, the specific values of each latent feature
for each behavior, and the correlation between the latent features and
the original ones.

Let us focus now on Figs. 12, 13 and 9(a), all of them obtained using
our complete approach with the selected hyperparameters (𝛾𝐵𝐷 = 0.8,
𝛾𝑇𝐶 = 0.1, 𝑁𝐶 = 11 and 𝑁𝑒𝑚𝑏 = 16). Fig. 9(a) shows the histogram
of discovered behaviors for each group, Fig. 12 shows a spider graph
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with the mean values of the features for each behavior and Fig. 13
presents the correlation matrix between the original features and the
latent features. The combination of the last two allows us to obtain
textual descriptions that are meaningful for the biologists. These textual
descriptions are gathered in Table 3. The analysis of this information
enables us to draw several conclusions of interest:

1. The histogram of behaviors demonstrates that our method suc-
cessfully fulfills our hypothesis of shared behaviors across groups,
even for those therapy groups that remained unseen during the
learning of embeddings and the clustering steps. This graph is
crucial for studying the effect of the therapies, by comparing
their proportions with those of control groups (WT and anti-Plt).
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Fig. 14. Illustrative cases of discovered behaviors (Z-stack) in consecutive time instants (from left to right). Cells marked red, blood vessel in green and cell of interest in blue or
magenta, depending on the red level of the capture. As an example, observe the different dynamics between a pathogenic migration (behavior 1) and a non-migratory behavior
(behavior 2). Changes in shape and motion of the cells are quite noticeable in this case.
2. The spider graph allows biologists to quickly compare behaviors
and identify which dimensions of the latent embedding are more
relevant to identify a cell behavior.

3. Furthermore, by combining the previous information with the
correlation between the latent embedding and the original fea-
tures, we can obtain a textual description of each behavior,
expressed in terms that are meaningful for the biologists. In
particular, Table 3 enumerates the most relevant features for
each behavior, with an indicator of the mean value of the
features: ‘‘+’’ for a high value and ‘‘−’’ for a low value (second
column). Additionally, the table includes a description for each
behavior derived from the relevant features and the correlation
(third column). Indeed, this allows to identify the features from
the original set that are redundant (contributing similarly to
every embedding feature) or irrelevant (having low correlation
with all the embedding features).

The obtained conclusions are totally consistent with the biologists’s
hypotheses [3]. All the groups can be modeled using the same set of
behaviors, but in different proportions. The wild-type group contains
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more neutrophils exhibiting migratory behaviors, 1 and 3, and the
anti-Plt group has more cells of behaviors 2 and 6, which are non-
migratory. The therapy groups show intermediate results in comparison
with the control groups, which is what is intended with the therapies.
Apart from that, the most migratory behavior (the first one) is only
present in the wild-type group and FGR-INH group, which can be seen
as an indicator of the effectiveness of the therapies (as this behavior
is the most harmful). Finally, it is worth noting that, in our scenario,
cell size and shape are correlated with migration (platelet recruitment
for neutrophil migration implies a grow in the volume of cells [49]).
Hence, differences in these features can constitute a behavior transition
(changes in cell phenotypes in this scenario imply changes in their
dynamics).

Regarding the identification of irrelevant or redundant features,
the correlation between the original features and embedding features
shown in Fig. 13 reveals that features like Z-orientation or solidity are
practically irrelevant. In addition, as observed, all the features closely
related to the cell size (volume, surface area, equivalent diameter, etc.)
show similar contributions to the embedding features; thus, they are
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Fig. 15. Illustrative examples of the most abrupt behavior transitions with a t-SNE plot of their trajectory (left) and consecutive time instants (Z-stacks, right). Cells marked in
red, blood vessel in green and cell of interest in blue or magenta, depending on the red level of the capture. The transition occurs between the central time instants. Note that
the disposition in the t-SNE is coherent: the fastest migration (blue, behavior 1) is top-right and the non-migratory behaviors are left (behavior 2) and bottom (behavior 6).
redundant features, and some of them could be removed from the
analysis.

Finally, Fig. 14 shows one illustrative example of each discovered
behavior in our scenario. The differences between the pathogenic mi-
grations (involving shape changes and erratic trajectories along the
blood vessel wall) and the non-migratory ones (involving practically
immobile spherical cells) are easily noticeable. The non-pathogenic
migrations show an intermediate conduct.

5.3. Error analysis and discussion

In this subsection, we aim to gain more insight into our latent space
representation by analyzing cases that break the temporal consistency
and may be attributed to errors in some steps of the processing pipeline.
First, we will identify the most abrupt changes in the latent represen-
tations of consecutive temporal instants to evaluate if they are caused
by segmentation or tracking errors. Second, we will discuss some non-
meaningful behavior transitions, in which the cell remains less than
three temporal instants in the destination behavior.

Fig. 15 shows the most abrupt displacements in our final embedding
through the t-SNE trajectories and the Z-stacks of the cells in the time
instants when the transition occurs. As observed, the abrupt transitions
are related to: (a) abrupt changes of position in one time instant due to
a notable acceleration of the migrating cell; (b) significant changes in
cell shape due to migration dynamics, and (c) some segmentation and
tracking errors, particularly, unusual difficulties of the collision man-
agement system to split the agglomerations of neutrophils. However,
we found that, in general, the segmentation and tracking errors neither
lead to abrupt transitions nor produce changes in behavior assignment.
This means that they are not a significant proportion of the database,
something expected as the segmentation and tracking systems include
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some filtering steps that remove low-confidence cells and provide a
final 95% precision [41].

Fig. 16 shows some examples of the non-meaningful behavior tran-
sitions in our database. In these cases, some of the behavior transitions
are related to exceptional changes in cell behaviors due to migration
dynamics or slight segmentation inaccuracies in cell boundaries. Addi-
tionally, some transitions are linked to more challenging errors in cell
segmentation and tracking. Hence, our latent space can be used as an
outlier detection module.

6. Conclusions

In this paper, we have proposed a self-supervised method that,
starting from a set of hand-crafted cell migration features, achieves
three main goals: (1) it creates embedded spaces where undesired
effects, such as feature redundancy or irrelevance, are mitigated, and
cell behaviors are better discriminated, facilitating their discovery;
(2) it provides temporal consistency to the cell dynamics represen-
tation, while still allowing for behavior transitions; and (3) it aligns
with our hierarchical scenario in which cells adopt behaviors that are
shared across different groups, although in different proportions. To
accomplish these objectives, we have proposed a multi-task bag-based
contrastive loss that not only aims to separate populations of cells in the
embedded space but also enforces temporal consistency in the obtained
representations.

Our experiments have shown that our embeddings provide notable
improvements with respect to the original features, even with reduced
dimensionality. Furthermore, the proposed loss function is parametric:
including a parameter 𝛾𝐵𝐷 to adapt the behavior discovery to scenarios
where biologists have intuitions about the expected number of behav-
iors; and a parameter 𝛾𝑇𝐶 , which allows for adaptation to different
levels of outliers in the dataset.
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Fig. 16. Illustrative examples of the remaining non-meaningful behavior transitions with a t-SNE plot of their trajectory (left) and consecutive timestamps (Z-stacks, right). The
transition occurs between the central time instants (third and four column). Cells marked in red, blood vessel in green and cell of interest in blue or magenta, depending on the
red level of the capture.
Moreover, these improvements do not compromise interpretability.
By analyzing relationships between the original feature set and our
embeddings, we have shown that our results are explainable, offering
textual descriptions of the discovered behaviors in meaningful terms to
biologists.

Regarding the robustness of the system, the errors in the segmen-
tation and tracking step did not have a critical influence on our latent
embedding. They neither lead to changes in the behavior assignment
nor cause of the most abrupt behavior transitions in the embedding.
Furthermore, the non-meaningful transitions (around 15%) could be
removed from the analysis.

The main limitation of the proposed algorithm relates to its gen-
eralization ability: new therapies can generate completely new cell
behaviors that cannot be assigned to those existing in the control
groups. They may be identified in the embedding, but they cannot be
explained. The recent field of open vocabulary learning [50] provides
a solution: by providing the original handcrafted features as auxiliary
supervision in training, it could identify new behaviors during inference
and relate them to these interpretable feature. Other directions for
further research involve exploring the use of autoencoders and other
types of generative models to ensure that the latent representation
contains all the information about the original feature space, and the
inclusion of clustering constraints in the same network to improve
behavior discovery and separability.
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