KIT | KIT-Bibliothek | Impressum | Datenschutz

Inverse electromagnetic scattering problems for long tubular objects

Arens, Tilo 1; Knöller, Marvin 1; Schurr, Raphael 1
1 Institut für Angewandte und Numerische Mathematik (IANM), Karlsruher Institut für Technologie (KIT)

Abstract:

We consider the inverse time-harmonic electromagnetic scattering problem of reconstructing an object from knowledge of the generated far field pattern for one incident field in the case of a long tubular object. Both perfectly conducting and penetrable objects are considered. The inverse scattering problem can be formulated as a non-linear, ill-posed operator equation, where the operator is the far field map that maps the boundary of the scatterer to the far field pattern of the scattered field. The shape of the scatterer is reconstructed using a Gauss– Newton minimization procedure for the regularized relative residual of this equation. Our main theoretical result is a characterization of the domain derivative of the far field map for the class of tubular objects considered. Numerical examples are provided in which the computation of the electromagnetic scattered fields and their domain derivatives are carried out using boundary element methods. Even for noisy data we obtain very accurate reconstructions of scatterers with rather complicated shapes.


Volltext §
DOI: 10.5445/IR/1000173646
Veröffentlicht am 23.08.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 08.2024
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000173646
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 21 S.
Serie CRC 1173 Preprint ; 2024/17
Projektinformation SFB 1173/3 (DFG, DFG KOORD, SFB 1173/3)
Externe Relationen Siehe auch
Schlagwörter inverse scattering, Maxwell's equations, shape derivative, tubular objects
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page