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ABSTRACT
The energy system is undergoing rapid changes to integrate a grow-
ing number of intermittent renewable generators and facilitate the
broader transition toward sustainability. This increases the com-
plexity of the energy system in many aspects, including the power
grid and its dynamics. As millions of consumers and thousands of
(volatile) generators are connected to the same synchronous grid,
no straightforward bottom-up models describing the dynamics are
available on a continental scale comprising all of these necessary
details. Hence, to identify this unknown power grid dynamics, we
propose to leverage the Sparse Identification of Nonlinear Dynam-
ics (SINDy) method. Thereby, we unveil the governing equations
underlying the dynamical system directly from data measurements.
Investigating the power grids of Iceland, Ireland and the Balearic
islands as sample systems, we observe structurally similar dynamics
with remarkable differences in both quantitative and qualitative be-
havior. Overall, we demonstrate how complex, i.e. non-linear, noisy,
and time-dependent, dynamics can be identified straightforwardly.
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1 INTRODUCTION
Energy systems are presently experiencing a swift shift toward a
more environmentally sustainable future. The stable functioning of
our society relies heavily on the electrical power system and the
maintenance of a stable power grid, transporting power from dis-
tributed generators to consumers. The power grid frequency, which
indicates the number of oscillations per second on alternating cur-
rent, is a crucial indicator of the equilibrium between electricity
supply and demand, serving as a vital factor in the reliability of en-
ergy systems [21]. The single value of frequency is used throughout
the grid and represents the center-of-inertia (COI) frequency[31].
Power grid frequency typically remains within a few percentage
points of its reference value of 50Hz or 60Hz, respectively [6, 26].
Deviations from these respective standard frequencies indicate an
imbalance of the system and can cause additional costs for grid
operators as control systems need to be activated. For example,
frequency values below the reference indicate an abundance of
demand and hence require additional generation to be deployed.
Furthermore, frequency deviations can impact the performance of
electronic devices, industrial processes, and other critical power sys-
tem components. Hence, understanding, modeling, and forecasting
power grid frequency dynamics and statistics is crucial [26].

To transition towards a more sustainable energy system, flexi-
ble dispatchable fossil generators are being replaced by renewable
sources, such as wind and solar power. In contrast to traditional
power sources, renewables introduce a fluctuating and uncertain
(non-deterministic) power supply, and are often coupled via power
electronics, lowering the overall inertia in the power grid. The non-
deterministic generation and the reduced inertia increase volatility
in the power system and raise the need for additional control and
balancing capacity. However, the interplay of the numerous dif-
ferent actors in the same cyber-physical system makes the overall
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dynamics intransparent and almost impossible to estimate using de-
tailed models of all components (bottom-up), especially since access
to all these devices and their data is rarely possible [14, 23, 32].

Power grids are complex systems: They are driven by both sto-
chastic and deterministic influences, i.e. we have to cope with po-
tentially time-dependent and noisy dynamics. Furthermore, while
many control laws are linear by design [21], their interplay might
lead to non-linear effective equations [24, 36]. The interplay be-
tween stochastic (random) and deterministic influences creates a
challenging environment where traditional linear models fall short.
Therefore, we require an accessible, flexible, and data-driven ap-
proach, to derive linear and nonlinear differential models of the
power-grid frequency. Accurate modeling of these governing equa-
tions is crucial for optimizing grid stability, e.g. to identify and
potentially adjust the amplitude of power imbalances and control.
Neural-network-based approaches can process high-dimensional
data and enhance data utility. However, they are often regarded
as black-box methods due to their complex internal workings and
lack of interpretability [11, 19].

In the current study, we propose to identify the complex dynam-
ics of the power grid frequency by utilizing the Sparse Identification
of Nonlinear Dynamics (SINDy) method [2]. The key approach of
SINDy is using sparse regression to estimate the most relevant
parameters of the governing equations for dynamical systems. This
technique offers a systematic and efficient means of uncovering the
underlying dynamics and relationships within the power grid fre-
quency, allowing for a more nuanced understanding and improved
parameter estimation within the data-driven framework.

Since the first publication of Brunton et al. [2] the concept of
SINDy has been applied and adapted on application in various
areas of research. In [1] and [4] SINDy has been applied for sto-
chastic dynamics, in [5] a sparse framework is implemented for
creating data-driven physics-informed models. Other examples,
where SINDy is successfully used to describe nonlinear dynamics
can be seen in [22] for biological networks as well as for nonlin-
ear dynamics with control [3]. In the field of power systems, only
few studies explored SINDy, e.g. for state estimation in [17, 18, 30].
However, many previously considered (power) systems are com-
paratively simple dynamic systems. The main contribution of the
present paper is the focus on uniquely complex time series from
power systems, both synthetic and empirical. In contrast to dynamic
systems such as the Lorenz attractor investigated in [2], the time
series investigated in the present paper are characterized not only
by non-linearity but also include strong noise and time-dependent
dynamics [24]. While previous studies [20, 29] only considered
time-dependent coefficients for SINDy, we advance the state of the
art by including time as an explicit variable in the model.

This article is structured as follows. We first introduce a math-
ematical model that we use as a description of the frequency dy-
namics and to generate validation data sets, Sec. 2. Subsequently,
in Sec. 3, as well as in App. A.1, we validate the SINDy model on
these synthetic time series. In Sec. 4, we analyze data from three
different power grids, noting distinct differences in the inferred
dynamics, additionally, in App. A.2, we present an evaluation of the
performance of our models. We close with a discussion and outlook
in Sec. 5.

2 DATA-DRIVEN MODEL
The basis for modeling the grid frequency is the aggregated swing
equation [37]. It is given as a linear stochastic differential equation:

𝑑𝜃

𝑑𝑡
= 𝜔,

𝑑𝜔

𝑑𝑡
= −𝑐𝜔𝜔 − 𝑐𝜃𝜃 + Δ𝑃 (𝑡) + 𝜖𝜉 (𝑡) . (1)

The expression 𝜃 represents the bulk angle of the voltage sig-
nal which in the following we abbreviate as angle, and its bulk
angular velocity 𝜔 is given by 𝜔 = 2𝜋 (𝑓 − 𝑓ref), with the reference
frequency 𝑓ref = 50 Hz. The power mismatch, i.e. the imbalance
between generation and demand, is given as Δ𝑃 . In order to de-
scribe the mismatch between continuous demand and step-wise
constant generation, Δ𝑃 is often denoted as Δ𝑃 (𝑡) = 𝑃0 + 𝑃1𝑡 [34].
The symbols 𝜖 , and 𝜉 represent the noise amplitude and Gaussian
white noise function, respectively, which models the unforeseen
influences, such as demand or generation fluctuations. The terms
−𝑐𝜔𝜔 and −𝑐𝜃𝜃 combine the effects of damping and control. Specif-
ically, −𝑐𝜃𝜃 models an integral component, as often included in
secondary control, while −𝑐𝜔𝜔 includes any proportional control
effects (from either primary or secondary control). For simplicity,
we refer to these parameters as primary control parameter 𝑐𝜔 and
secondary control parameter 𝑐𝜃 . Typically, the magnitude of the pri-
mary control parameter is much larger than the secondary control
parameter, i.e., 𝑐𝜔 ≫ 𝑐𝜃 . Detailed properties and explanations of
the swing equation and its approximations, parameters, and model-
ing methods are extensively explained in [25] and [24]. We remark
that it is a useful model for high-voltage transmission systems.

In the present paper, we investigate empirical data that has been
recorded with electrical data recorders spanning three synchronous
areas [15, 26]. In particular, we consider approximately 90 days of
Balearic frequency data from 2019, along with several weeks of data
from Ireland and Iceland obtained at the end of 2021. To conduct
a precise analysis, we eliminate any gaps in the data, utilizing
a continuous dataset. For the implementation of the models we
use the Python implementation of SINDy [9, 16]. Code for the
reproducibility of the models is available on GitHub [35].

In contrast to the model-based approach presented so far, SINDy
is a procedure for extracting interpretable and generalizable dynam-
ical systems models from time series data. The SINDy algorithm
works by constructing a library of potential functions of the state
variables, such as polynomials, trigonometric functions, or any
functions that might be appropriate for the system. It then uses
sparse regression to determine the smallest subset of these functions
that most accurately predicts the time derivatives of the state data.
The resulting model is a system of ordinary differential equations
(ODEs) that approximates the dynamics of the system, see [2, 10]
for details, thus the stochastic elements in equation 1 cannot be
directly assessed.

The optimization problem is formulated as:

Ξ = argmin
Ξ̂





Θ(𝑋 )Ξ̂ − 𝑑𝑋

𝑑𝑡





2
2
+ 𝜆



Ξ̂

2 . (2)

The termΞ represents the matrix of coefficients to be determined,
Θ(𝑋 ) is a library of functions applied to the state variables 𝑋 , 𝑑𝑋

𝑑𝑡

is the time derivative of the state variables, and we state 𝑑𝑋
𝑑𝑡

=

𝑓 (𝑋 ) ≈ Θ(𝑋 )Ξ. The term 𝜆


Ξ̂

2 denotes the L2 regularization [12],
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controlled by the parameter 𝜆, which promotes sparsity in the
coefficients Ξ. In our model, we use 𝜆 = 0.05 and set the threshold
for the coefficients as 1·10−10.

3 VALIDATING SINDY ON SYNTHETIC
POWER GRID DYNAMICS

Before we infer unknown dynamics, we first demonstrate that
SINDy correctly infers complex power grid dynamics by utilizing
synthetic datasets based on realistic parameters, effectively validat-
ing the method. For this purpose, we use a stochastic data-driven
model for equation (1), which is created using parameter estimation
of a Fokker-Planck equation. This model, denoted as 1D-L-KM (1-
dimensional linear Kramers-Moyal model), is extensively detailed
in [25] and [24]. In these studies, an aggregated swing equation
is modeled, see equation (1), which is used to generate synthetic
time series with the help of the Euler-Maruyama algorithm. For the
validation of SINDy for power frequency dynamics, we consider
three different adaptions of the 1D-L-KM model.

The three synthetic data sets are characterized as follows:
(1) Base case: linear parameters 𝑐𝜔 and 𝑐𝜃 , step function as

power mismatch Δ𝑃 , no noise (𝜖 = 0), see Sec. 3,
(2) Added noise: linear parameters 𝑐𝜔 and 𝑐𝜃 , step function

as power mismatch Δ𝑃 , with Gaussian noise added to the
dynamics (𝜖 > 0), see Appendix A.1 for details.

(3) Added time-dependency: linear parameters 𝑐𝜔 and 𝑐𝜃 , Gauss-
ian noise (𝜖 > 0), and time-dependent power mismatch
Δ𝑃 (𝑡), see Appendix 3 for details.

The mean frequency exhibits jumps every hour due to market
dispatch [28]. These jumps arise from a mismatch between step-
wise generation and a continuous load curve against the step-wise
generation schedules, ensuring system stability and efficiency [33,
34]. Hence, we systematically partition our dataset into discrete
chunks, each spanning a time scale of one hour.

To include this external driving, we introduce time, denoted as
𝑇 , as an additional variable in our model. This addition transforms
a non-autonomous system into an autonomous one. The power
mismatch Δ𝑃 ramps upwards for some hours and downwards for
other hours, i.e. the time-dependent features will have different
signs at different hours of the day. To accommodate this variability
and capture the overall magnitude of time’s influence, we report
the mean of the absolute values of these coefficients.

Linear noise-free validation model
To validate the SINDy approach for complex power grid data, we
initially generate one noise-less dataset from the 1D-L-KM model.
The equation is shown below:

𝑑𝜃

𝑑𝑡
= 𝜔,

𝑑𝜔

𝑑𝑡
= 𝑐𝜔𝜔 + 𝑐𝜃𝜃 + 𝑃0,

𝑑𝑇

𝑑𝑡
= 1 (3)

where 𝑃0 is a piece-wise constant step function for 1-hour intervals.
For creating synthetic time series we use values that are calculated
in [24] by estimation of the Kramers-Moyal coefficients [27] of em-
pirical time series from the Balearic grid. Specifically, the estimated
values that are used as ground truth in our validation of SINDy for
frequency data for 𝑐𝜔 and 𝑐𝜃 are −2.95·10−2s−1 and −4.52·10−5s−2
respectively. For reasons of clarity, we omit the physical units of

all variables and parameters used in the equations of the present
paper.

We consider a function library that consists of polynomials up
to a degree of 2. Terms proportional to 𝑇 , 𝑇 2, 𝜃𝑇 , and 𝜔𝑇 fluctuate
between positive and negative values, likely due to fluctuations in
generation and demand. Thus, we represent these with a ± and
indicate their magnitude, which is small to the other polynomials.
The governing equations from SINDy are obtained as follows:

𝑑𝜃

𝑑𝑡
= −5.17·10−3s−1 + 2.35·10−5s−1 · 𝜃

+ 9.34·10−1 · 𝜔 ± 9.67·10−5s−2 ·𝑇
− 2.57·10−8s−1 · 𝜃2 − 1.69·10−5 · 𝜃𝜔
± 3.97·10−7s−2 · 𝜃𝑇 − 5.33·10−4s · 𝜔2

± 2.46·10−4s−1 · 𝜔𝑇 ± 7.63·10−13s−3 ·𝑇 2 (4)
𝑑𝜔

𝑑𝑡
= 1.11·10−2s−2 − 4.59·10−5s−2 · 𝜃

− 2.79·10−2s−1 · 𝜔 ± 2.46·10−6s−3 ·𝑇
+ 7.23·10−10s−2 · 𝜃2 + 4.75·10−7s−1 · 𝜃𝜔
± 1.02·10−8s−3 · 𝜃𝑇 + 1.50·10−5 · 𝜔2

± 6.32·10−6s−2 · 𝜔𝑇 ± 1.98·10−15s−4 ·𝑇 2 (5)
𝑑𝑇

𝑑𝑡
= 1.00 − 9.77·10−12 · 𝜃

− 3.17·10−9s · 𝜔 ± 5.70·10−13s−1 ·𝑇
+ 2.03·10−14 · 𝜃2 + 1.32·10−11s · 𝜃𝜔
± 2.37·10−15s−1 · 𝜃𝑇 + 3.77·10−10s2 · 𝜔2

± 1.46·10−12 · 𝜔𝑇 ± 1.35·10−20s−2 ·𝑇 2 (6)

The system of equations derived from the SINDy method reveals
a notable correlation between the variables 𝜃 and 𝜔 . Specifically,
in the equation for 𝑑𝜃

𝑑𝑡
, approximates as 𝑑𝜃

𝑑𝑡
≈ 𝜔 , as expected. The

coefficients 𝑐𝜔 and 𝑐𝜃 closely approximate the true values, with
𝑐𝜔 being approximately −2.79·10−2s−1 and 𝑐𝜃 as −5.19·10−5s−2.
In addition, the constant term in the equation for 𝑑𝜔

𝑑𝑡
, specifically

1.11·10−2s−2, corresponds to the mean value of 𝑃0 as defined in our
equation (3).

Moreover, the SINDy algorithm identifies additional terms in the
equation, and coefficients associated with these discovered terms
are comparatively small. Importantly, these coefficients exhibit mag-
nitudes at least one order of magnitude smaller than the coefficients
related to the principal terms in the equations. Note that the typ-
ical range for |𝜔 | is smaller than 1, while for |𝜃 | it is < 100. This
suggests that while these terms contribute to the overall model,
their influence is relatively subtle compared to the dominant effects
represented by 𝑐𝜔 and 𝑐𝜃 .

Therefore, we conclude that the derived governing equations
from SINDy successfully capture the system dynamics in the ab-
sence of noise within the framework of a one-dimensional linear
model. Unfortunately, we cannot easily derive "sparse" models as
some of the relevant terms (𝑐𝜃 in particular) are small.

We also validate our SINDy algorithm on noisy and time-de-
pendent systems. The case including noise and time-dependency is
shown in the following, for the method where only noise is added
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Gaussian
filtering

SINDy

Figure 1: Schematic of the process for discovering the dynamics of power grid frequency: Data collection is followed by
applying Gaussian filtering as the SINDy algorithm primarily focuses on deterministic dynamics and is sensitive to noise, then
using our SINDy algorithm to derive the governing equation.

to the system see Appendix A.1. The noisy data is first smoothed
with a Gaussian filter [13] to ensure stable results, the concept is
demonstrated in Figure 1. Overall, we show that SINDy is applicable
for identifying the relevant parameters of noise-less time series.

Linear validation model with noise and
time-dependent driving
In order to increase the complexity of the validation, we examine
the performance of SINDy on the linear model including noise and
time-dependent driving. This evaluation allows us to assess how
well SINDy performs in capturing the dynamics of a nonlinear
system subjected to stochastic elements. The following equation is
presented:

𝑑𝜔

𝑑𝑡
= 𝑐𝜔𝜔 + 𝑐𝜃𝜃 + 𝑃0 + 𝑃1𝑡 + 𝜖𝜉 (𝑡) . (7)

Before applying SINDy, a critical denoising step is undertaken to
enhance the accuracy and stability of the algorithm. In this context,
the Gaussian filter method is employed for denoising.

The kernel width parameter 𝜎 adjusts the smoothness of the
filtered signal, with lower values resulting in less smoothing and
higher values producing more smoothing. To ascertain the most
appropriate 𝜎 value for the Gaussian filter, We calculate the Mean
Squared Error (MSE) between the original𝜔 and the simulated𝜔 for
various 𝜎 values. The MSE indicates the accuracy of the simulations,
with lower values suggesting a closer match to the original data.
This analysis aids in determining the optimal parameter for the
Gaussian filter, ensuring an effective denoising process and, conse-
quently, a more accurate and stable SINDy model, especially for the
analysis of the empirical data in Sec. 4. Figure 3 in the Appendix
presents that the MSE value is the smallest for 𝜎 = 60. Therefore,
𝜎 = 60 is used for denoising the synthetic data and empirical data.

The expression capturing the governing equation within the
SINDy framework is given by (𝑑𝜃

𝑑𝑡
≈ 𝜔 , 𝑑𝑇

𝑑𝑡
≈ 1):

𝑑𝜔

𝑑𝑡
= −4.06·10−5s−2 − 3.05·10−5s−2 · 𝜃

− 1.02·10−3s−1 · 𝜔 ± O(10−6)s−3 ·𝑇
+ O(10−8)s−2 · 𝜃2 + O(10−6)s−1 · 𝜃𝜔
± O(10−8)s−3 · 𝜃𝑇 − 1.72·10−3 · 𝜔2

± O(10−6)s−2 · 𝜔𝑇 ± O(10−10)s−4 ·𝑇 2

Again, we mostly reproduce the expected dynamics: The coef-
ficient for 𝜔 in 𝑑𝜃

𝑑𝑡
and the correct sign of 𝑐𝜔 and 𝑐𝜃 in 𝑑𝜔

𝑑𝑡
are

accurately captured. Further, the coefficient 𝑐𝜔 is estimated to be
−1.02·10−3s−1, and 𝑐𝜃 is estimated as −3.05·10−5s−2.

Additionally, we show the presence and significance of the 𝜔2

term in the 𝑑𝜔
𝑑𝑡

equation. In the linear model with time-dependent
data, the coefficient associated with 𝜔2 is specifically identified as
−1.72·10−3. The fact that this coefficient is of the same order as
the coefficient associated with the linear term (𝜔) indicates that
the quadratic term is not negligible and plays a substantial role in
influencing the dynamics of 𝑑𝜔

𝑑𝑡
. This may be indicative of more

complex, possibly nonlinear behaviors in energy systems.

4 SINDY ON EMPIRICAL DATASET
Now that we have demonstrated that our SINDy approach is in
principle capable of inferring complex power grid dynamics, includ-
ing noise and explicit time-dependency within our linear stochastic
differential equation, see 3 and Appendix A.1, we utilize it to infer
the dynamics of empirical data from the Balearic islands, Ireland
and Iceland with a one-second resolution. We analyze the model’s
predictive performance across various model complexities by eval-
uating the root mean square error (RMSE) and the proportion of
non-convergent intervals of the model simulation. We select the
second-order polynomial model due to its lowest RMSE and less
unstable intervals. Hence, we apply the second-order model to all
empirical datasets, see Appendix A.2 for details.

The mean value of the 𝜔 term in the 𝑑𝜃
𝑑𝑡

equation consistently
converges close to 1 across all three regions, with a relatively narrow
standard deviation. Conversely, the mean coefficients associated
with other terms within the equation are relatively small, signifi-
cantly less than 10−4, which indicates that the contribution of these
terms is weaker than the 𝜔-term. This aligns with our stochastic
differential equation, i.e. the inferred dynamics is coherent with
the underlying mathematical model, i.e. we again obtain 𝑑𝜃

𝑑𝑡
≈ 𝜔 .

Therefore, we focus on the 𝑑𝜔
𝑑𝑡

equation. In figure 2, we present
a comparison of mean coefficients derived from the SINDy models
applied to the Balearic, Iceland and Ireland regions. This reflects the
variability of each coefficient, with longer bars (standard deviation)
indicating greater uncertainty or variability in the model across
different datasets. We can see that the coefficient for 𝜃 ranges from
10−4s−2 to 10−5s−2 and the coefficient for 𝜔 falls within the inter-
val of 10−2s−1 to 10−3s−1, aligning notably well with the values
obtained during our validation process. Hence, if we were simply
interested in estimating primary (𝑐𝜔 ) and secondary control (𝑐𝜃 )
amplitudes, we would not have needed SINDy.
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Figure 2: The empirical data, presented in a one-hour example, exhibits power grid frequency dynamics observed in the real
world, whereas the simulations generated by our SINDy model are shown on the left-hand side. On the right-hand side, it shows
that the Balearic islands, Iceland and Ireland display structurally similar models with substantial quantitative differences. We
display the coefficients on a logarithmic scale with mean values (large symbol) and standard deviation (bar).

More interesting is the analysis of the remaining terms: The
coefficients of 𝜃𝜔 and 𝜔2 stand out due to their relatively high
magnitude and significant standard deviation across the Balearic,
Iceland and Ireland regions. This indicates that non-linear rela-
tionships could play a critical role in the dynamics of the power
grid. These are not included in previous models [24, 25]. In ad-
dition, we note substantial impacts of time-dependency: Within
a one-hour interval, the contribution of the 𝑇 -coefficient reaches
an amplitude ranging from 10−3s−3 to 10−2s−3 compared to the
10−5s−2 to 10−4s−2 range of the 1-coefficient. The constant value
in the governing equations represents 𝑃0, the range of 𝑃0 spans
from 10−9s−2 to 10−2s−2. This means that the power mismatch
Δ𝑃 should be modeled as a time-dependent function, potentially
including non-linear or mixed (𝜔𝑇 ) terms as well.

5 DISCUSSION AND CONCLUSION
In this study, we demonstrate the enhanced capability of a Sparse
Identification of Nonlinear Dynamics (SINDy) algorithm to accu-
rately capture the complex behaviors of power grid frequency dy-
namics in energy systems. To validate this method we use the
1D-L-KM model across three different synthetic datasets.

Each dataset is generated with different conditions to test the
robustness of SINDy and partitioned into chunks corresponding to
hourly intervals. Time 𝑇 is introduced as an explicit variable in the
modeling process, and the focus on absolute values of time-related
coefficients underlines the algorithm’s sensitivity. Upon the suc-
cessful validation against synthetic datasets, the SINDy algorithm
is applied to real-world datasets obtained from Balearic, Ireland
and Iceland. This study identifies key dynamic relationships and
potential weaknesses in the face of real-world data complexity.

The derived system of equations from SINDy reproduces some
of the expected relationships between the variables angle 𝜃 and
angular velocity 𝜔 . In particular, we closely approximate the coeffi-
cients 𝑐𝜔 and 𝑐𝜃 , particularly in the noise-free datasets. When noise

and time dependence are introduced, SINDy’s estimation exhibits
slight deviations from the exact coefficient values but maintains
the correct sign and order of magnitude. SINDy also reproduces
the observed dynamics for the empirical data sets, allowing us to
interpret the estimated coefficients in further detail. SINDy identi-
fies several nonlinear terms included in 𝜔2 and 𝜃𝜔 . Since 𝜔2 also
emerges in the validation set with noise, it is likely not based on
a physical process, while 𝜃𝜔 might be a nonlinearity present in
the empirical system. Note that these are potential non-linear term
to reproduce the observed dynamics, while the actual underlying
equations might differ.

Concluding, we present a version of SINDy that can infer com-
plex (noisy, non-linear, time-dependent) dynamics in power sys-
tems. Thereby, we offer a perspective to refine existing mathemati-
cal models. The data-driven approach allows flexibility to update
models during the energy transition or to infer models for previ-
ously unmodelled systems.

Having established the feasibility of symbolic approaches for
power systems, we open up the research field for numerous future
activities. On the one hand, we could consider different optimiza-
tion algorithms or further modify the available basis functions in
the symbolic regression (library of functions of SINDy). Addition-
ally, incorporating stochastic elements into the SINDy framework
could significantly improve its applicability, especially in scenarios
where randomness and uncertainty are present. Bayesian inference
techniques could prove helpful for this [7]. Furthermore, we can ex-
tend the SINDy algorithm across to other data sets, including other
power grids, higher time resolutions of power grid frequency data
or different power systems such as new power hardware [8]. In fu-
ture work, we plan to address the limitations of assuming Gaussian
white noise in our models, especially given the complex, corre-
lated, and non-Gaussian nature of disturbances in power systems,
such as those introduced by renewable energy sources. In addition,
our future work will focus on incorporating more sophisticated
noise-robust techniques or inferring the full stochastic dynamics.
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A APPENDIX
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Figure 3: As the smoothing parameter 𝜎 increases in the
Gaussian filtering process, an upward trend in Mean Squared
Error (MSE) is observed. This suggests a potential divergence
in simulation accuracy with a higher degree of smoothing.

A.1 Linear validation model including noise
To assess the impact of stochastic elements on the performance of
SINDy, we generate a dataset that includes noise from the 1D-L-
KM model. The equation governing this noise-inclusive dataset is
expressed as follows:

𝑑𝜔

𝑑𝑡
= 𝑐𝜔𝜔 + 𝑐𝜃𝜃 + 𝑃0 + 𝜖𝜉 (𝑡). (8)

For denoising the data, the same filtering method is used as in 3,
the evaluation of the kernel width parameter is shown in Figure 3.
The expression for the governing equation derived from the SINDy
method is as follows:

𝑑𝜃

𝑑𝑡
= 1.64·10−5s−1 − 1.65·10−5s−1 · 𝜃

+ 9.99·10−1 · 𝜔 ± O(10−6)s−2 ·𝑇
+ O(10−9)s−1 · 𝜃2 + O(10−6) · 𝜃𝜔
± O(10−8)s−2 · 𝜃𝑇 − 1.54·10−4s · 𝜔2

± O(10−6)s−1 · 𝜔𝑇 ± O(10−10)s−3 ·𝑇 2

𝑑𝜔

𝑑𝑡
= 3.21·10−5s−2 − 3.36·10−5s−2 · 𝜃

− 1.28·10−3s−1 · 𝜔 ± O(10−6)s−3 ·𝑇
+ O(10−9)s−2 · 𝜃2 + O(10−6)s−1 · 𝜃𝜔
± O(10−8)s−3 · 𝜃𝑇 − 2.28·10−4 · 𝜔2

± O(10−6)s−2 · 𝜔𝑇 ± O(10−10)s−4 ·𝑇 2

𝑑𝑇

𝑑𝑡
= 1.00

In the presence of noise, while the coefficient of 𝜔 in 𝑑𝜃
𝑑𝑡

is
accurately estimated, there is a slight deviation in the estimated
values of 𝑐𝜔 and 𝑐𝜃 in 𝑑𝜔

𝑑𝑡
from their true coefficients. Specifically, in

the noisy data, the coefficient 𝑐𝜔 is estimated to be −1.28·10−3s−1,
and 𝑐𝜃 is estimated as −3.36·10−5s−2.

The sign of both 𝑐𝜔 and 𝑐𝜃 aligns with their true coefficients,
indicating the correct direction of influence. However, both magni-
tudes are smaller, particularly for 𝑐𝜃 . This suggests that noise and
followed filtering leads to an underestimation of the deterministic

Figure 4: Compared to the RMSE value of 1D-L-KM model,
the higher-order polynomial models show increased mean
RMSE. The combined Order 2 polynomial and trigonometric
model exhibits the highest mean of RMSE.

dynamics and hence less precise determination of the coefficients’
true values.

A.2 Evaluation of model performance
To choose the best library functions and polynomial order for our
model, we calculate the root mean square error (RMSE) between
the simulated and empirical angular velocity from the Balearic grid
across various model complexities, using the 1D-L-KM model as a
reference. We use all full-hour intervals available, each comprising
one hour of data points with a resolution of one second. We notice
that for certain intervals, the simulated 𝜔 fails to converge, indi-
cating instability. In addition, we only consider the RMSE values
below 0.5 due to the values of 𝜔 . Consequently, we also calculate
the share of unstable intervals.

Model Complexity Unstable Intervals Share Mean of RMSE
1D-L-KM 0 0.292
Poly(2) 0.399 0.142
Poly(3) 0.463 0.153
Poly(2) + Trig(1) 0.332 0.155

Table 1: Comparison of Models Performance

Figure 4 and Table 1 present a comparison of the mean of RMSE
values and share of unstable intervals respectively, illustrating the
predictive accuracy of different model complexities. The SINDy
model with second-order polynomials (Poly(2)) demonstrates the
smallest mean of RMSE, indicating a strong predictive performance
close to the reference. In contrast, the second-order model aug-
mented with first-order trigonometric functions (Poly(2)+Trig(1))
exhibits the highest mean of RMSE, indicating a potential decrease
in predictive performance possibly due to overfitting. However, it
also demonstrates the least share of unstable intervals. This may
suggest that the inclusion of trigonometric functions could help in
capturing periodic patterns.

Considering the balance of complexity and precision, the second-
order model is selected for its superior RMSE and share of unstable
intervals.
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