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Abstract: Recently, extensive research has been conducted to explore the utilization of machine
learning (ML) algorithms in various direct-detected and (self)-coherent short-reach communication
applications. These applications encompass a wide range of tasks, including bandwidth request
prediction, signal quality monitoring, fault detection, traffic prediction, and digital signal processing
(DSP)-based equalization. As a versatile approach, ML demonstrates the ability to address stochastic
phenomena in optical systems networks where deterministic methods may fall short. However,
when it comes to DSP equalization algorithms such as feed-forward/decision-feedback equalizers
(FFEs/DFEs) and Volterra-based nonlinear equalizers, their performance improvements are often
marginal, and their complexity is prohibitively high, especially in cost-sensitive short-reach commu-
nications scenarios such as passive optical networks (PONs). Time-series ML models offer distinct
advantages over frequency-domain models in specific contexts. They excel in capturing temporal
dependencies, handling irregular or nonlinear patterns effectively, and accommodating variable time
intervals. Within this survey, we outline the application of ML techniques in short-reach communica-
tions, specifically emphasizing their utilization in high-bandwidth demanding PONs. We introduce a
novel taxonomy for time-series methods employed in ML signal processing, providing a structured
classification framework. Our taxonomy categorizes current time-series methods into four distinct
groups: traditional methods, Fourier convolution-based methods, transformer-based models, and
time-series convolutional networks. Finally, we highlight prospective research directions within
this rapidly evolving field and outline specific solutions to mitigate the complexity associated with
hardware implementations. We aim to pave the way for more practical and efficient deployment of
ML approaches in short-reach optical communication systems by addressing complexity concerns.

Keywords: machine learning; optical communications; passive optical network; equalization; optical
performance monitoring; modulation format identification; bit-error ratio; optical signal-to-noise
ratio; nonlinearities

1. Introduction

Short-reach optical transmission systems have gained substantial attraction owing
to their remarkable attributes of high bandwidth and low latency [1]. In the evolving
landscape of communication technologies, short-reach optical communication has emerged
as an essential domain, driven by the increasing demand for high-speed data transfer
in applications such as inter-data centers [2], access/local area networks, and industrial
automation [3]. This increasing demand requires efficient, low-latency communication
systems tailored to short-reach scenarios, typically up to 100 km. While long-haul, optical
communication has been immersive in data transmission, its applicability encounters
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challenges when adapting to the constraints of shorter distances. This is mainly due
to physical and technical limitations that prevent its seamless integration into existing
networking environments characterized by the need for energy-efficient and cost-effective
data transmission over limited distances. Passive optical networks (PONs) utilize passive
optical splitters and combiners, which are less expensive than the active components
required in traditional point-to-point fiber networks. This makes PONs a cost-effective
fiber-optic solution.

Since PONs rely on passive optical splitters, they inherently introduce power losses,
limiting the overall power budget and the number of users that can be supported on a
single PON. In addition, effects caused by the fiber, such as chromatic dispersion (CD)
and nonlinearity can limit the PON-reach [4], especially when intensity-modulated and
direct-detected (IMDD) high baud-rate signals are considered [5].

Ongoing research endeavors are dedicated to advancing optical detection schemes to
overcome these limitations and increase the signal bit rate in both short-reach and long-haul
optical communication networks [6]. For instance, the regeneration of coherent optical
systems in the last decade has been a major breakthrough, as they have gone beyond just
using intensity-only modulation [7]. Coherent systems employ external modulators to em-
ploy complex baseband signals to the optical field. The optical coherent receiver, equipped
with phase diversity, linearly recovers signals and compensates for fiber impairments
through digital signal processing (DSP) [8]. Coherent technology enables the transmission
of advanced modulation formats and polarization multiplexing to increase the signal bit
rate significantly. Additionally, coherent optical systems enable dense wavelength division
multiplexing (DWDM) and super-channels, which push long-distance optical networks
into the multi-terabit per second capacity range [9].

Except for traditional homodyne-coherent technology, coherent communication strate-
gies include diverse techniques, such as phase detection through heterodyne detection.
While this approach has its merits [10], a notably favored incoherent approach such as
IMDD is practically preferred due to its inherent simplicity and cost-effectiveness in short-
reach communications [11,12].

In contrast to coherent transmission, IMDD operates by encoding information into
the intensity of the optical signal, with the modulation signal being real-valued and posi-
tive [12]. The implementation of IMDD eliminates the need for complex optical components
and local oscillators, reducing hardware complexity. Additionally, IMDD systems are less
susceptible to phase noise and polarization-related issues, making them robust and prac-
tical for scenarios where cost efficiency and simplicity are paramount [12]. Furthermore,
practical considerations like operation and safety can limit the highest and average val-
ues of the modulated signal in IMDD systems. These restrictions give IMDD systems
specific characteristics in how they function [13]. Various models, such as the Poisson
channel, square-root Gaussian channel, and Gaussian channel with input-dependent noise,
among others, exist to rapidly assess and characterize IMDD systems [14–16]. In contrast
to conventional methodologies that depend on analog components and processing [17],
IMDD can potentially integrate machine learning (ML) algorithms at the receiver DSP if
required [18], providing a flexible and adaptable solution for enhancing the transmission
performance. According to [19], the combination of ML and DSP techniques allows IMDD
systems to dynamically adapt and optimize signal parameters. This addresses impairments
and variations in real time without needing complex hardware adjustments. This approach
represents a significant benefit, as it not only reduces the costs associated with complex
hardware setups in short-reach systems, but also highlights the effectiveness of intelligent
signal processing [18,20,21].

In this survey, we examine the significant progress made in short-distance optical com-
munications research over the past decade. First, we summarize several key research areas
(Section 2). Afterwards, we focus on the equalization problem, introducing benchmark DSP
methods (Section 3) and ML algorithms (Section 4). Then, we categorize recent sequence
models in the ML field (Section 5), dividing them into convolution-based, transformer-
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based, and Fourier-based neural networks. We explore the advantages, disadvantages,
and complexities of each method in addressing the equalization problem. In the final sec-
tion, we provide an overview of the model compression field, outlining two approaches to
compress models. We see these approaches as potential solutions for addressing hardware
complexity concerns.

The primary contribution of this survey is to summarize the existing research on ML
implementations for short-reach optical communications across a range of applications.
Specifically, our contributions are the following:

1. We review existing deep learning (DL) models, providing a comprehensive under-
standing of their principles, characteristics, and hypothesis classes. This facilitates an
in-depth exploration for researchers seeking supervised neural-network-based ML
models suitable for their specific applications.

2. We highlight the features and complexities of these models, elucidating recent devel-
opments in the field of DL. This information is valuable for researchers interested in
delving deeper into research and staying abreast of current advancements.

3. We discuss the current limitations and research gaps in the ongoing development
of DL, addressing the challenges posed by these factors in real-world applications.
Furthermore, we provide constructive insights regarding the selection of models and
potential future directions.

4. Given the challenge of high hardware complexity, we introduce model compression
as a potential solution from the DL field. We present existing works that employ this
approach within the optical communication field, aiming to inspire more researchers
to pursue research in this domain.

2. Applications in Short-Reach Systems

After systematically organizing recent literature in the past few years, we have cat-
egorized ML-based research for short-reach optical systems into four classes based on
application tasks: Bandwidth Request and Prediction, Subcarrier Allocation, Equalization,
and Fault Detection. We clarify the physical and mathematical aspects of their respective
tasks, enumerate several recent works, and provide a summary of current advancements.

Bandwidth Request and Prediction: It aims to leverage network information to
predict future bandwidth availability and enable its utilization by related applications.
In mathematical terms, the real-time bandwidth forecast at a specific time (t) involves esti-
mating the available bandwidth that will be accessible in the immediate future (t + τ) [22].
One proposed method, known as predictive-dynamic bandwidth allocation (P-DBA), uti-
lizes this concept to predict high-priority traffic during waiting periods, resulting in reduced
latency and packet loss rates within a Gigabit PON (GPON) [22]. Another approach demon-
strated in [23] leverages the k-nearest neighbor algorithm to predict additional bandwidth
requirements for each optical network unit (ONU) in a PON. This adaptive learning-based
approach dynamically adjusts the k value based on real-time traffic conditions, showcasing
the adaptability of ML in optimizing bandwidth allocation [23]. Artificial neural networks
(ANNs) have also shown promise in achieving flexible bandwidth allocations across various
application scenarios, particularly emphasizing low-latency objectives [24,25]. For example,
feed-forward-based ANNs, explored in [26], are utilized to predict packet arrivals in time-
division multiple access (TDMA) ONUs, effectively reducing additional DBA processing
delays [26]. Furthermore, Xgboost [27] is employed to predict bandwidth requests for
ONUs in Ethernet PON (EPON), optimizing bandwidth utilization across polling periods.
This study introduced a dynamic wavelength and bandwidth assignment scheme for time
and WDM (TWDM) PONs, incorporating regression techniques for efficient resource allo-
cation [28]. Recent studies show that ML approaches are versatile in addressing challenges
related to predicting and managing bandwidth needs. This paves the way for develop-
ing more adaptive and efficient short-reach optical communication systems in the near
future [22–26,28].
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Subcarrier Allocation: The optimization of bandwidth allocation for enhanced spec-
tral efficiency has led to increased interest in subcarrier allocation for PONs. This approach
involves mathematically formulating the allocation problem as an integer linear program-
ming (ILP) task, which includes tasks such as optimizing wavelength configurations,
assigning subcarriers to transmitters, and minimizing lost traffic and energy costs. To ad-
dress this challenge, deep reinforcement learning has emerged as a promising technique
that enables dynamic subcarrier sharing among ONUs, facilitating efficient DBA. At the
medium access control (MAC) layer, the dynamic subcarrier allocation (DSA) algorithm
schedules ONU upstream transmissions by considering instantaneous bandwidth require-
ments and existing traffic conditions [29]. This showcases the adaptability of ML in resource
scheduling. Several studies focus on algorithm-level cost reduction and two-dimensional
resource scheduling for orthogonal frequency-division multiplexing (OFDM)-PONs in-
cluding [29–31]. These DSA algorithms address challenges related to latency, throughput,
and energy efficiency, highlighting the versatility of ML in enhancing subcarrier allocation
strategies [32]. Moreover, the integration of traffic prediction technology and fair-aware
DSA algorithms, as proposed in [32,33], further enhances the performance of subcarrier
allocation in short-reach optical communication systems. These advancements improve the
efficiency and adaptability of subcarrier allocation by applying ML methodologies [34].

Power Budget Limitations: The electric power budgeting issue is about predicting
future energy consumption using historical data on power usage and related environmental
factors like weather, user behavior, and equipment efficiency. The goal is to forecast
power consumption for upcoming time periods. However, the development of large-scale,
systematic ML models for this task is limited by the lack of publicly available datasets.
Recent research has provided a basic process for constructing the necessary data and has
also presented baseline ML models as a starting point. Specifically, the data construction
process involves compiling and organizing relevant datasets, including time-series power
consumption data, weather information, occupancy patterns, and equipment performance
metrics. This standardized data can then be used to develop and test ML models for power
consumption forecasting. For instance, the recent work in [35] has introduced baseline ML
models that demonstrate the feasibility of using these techniques to predict future power
consumption, despite the constraints posed by the scarcity of publicly accessible datasets.

Equalization: The objective of this task is to minimize fiber-induced distortions by
employing post-processing techniques that compensate for linear effects, such as CD.
Mathematically, the equalizer optimizes the function f (x) to ensure that the equalized
output sequence y closely approximates the input signal. Performance evaluation primarily
relies on the bit-error ratio (BER). In PON systems, using shallow-based DL models for
post-equalizers has shown potential in addressing nonlinear distortions for both IMDD and
coherent signals. This is especially useful in scenarios with modulator nonlinearities or high-
launched optical power to meet tight power budgets [7]. As the fiber-induced nonlinear
effects are increasing in the latter case, in single-channel coherent PONs, this results in
self-phase modulation (SPM). In multi-channel PONs, the increased nonlinear effects
result in cross-phase modulation (XPM) and four-wave mixing (FWM). In IMDD PONs,
low-complexity artificial neural network (ANN)-based equalizers have demonstrated
performance comparable to Volterra-based equalizers in pulse amplitude modulation with
four levels (PAM4) systems [36]. While post-equalization techniques have proven effective,
the computational complexity at the ONU receiver is a challenge. To address this, strategies
for centralized pre-equalization at the transmitter side have been proposed. Examples
include memory polynomial-based pre-equalizers [36] and trained neural-network-based
pre-equalizers [37]. These methods enhance equalization effectiveness while keeping the
ONU receiver simple.

Fault Detection: Short-reach optical communication systems, including PONs, are
susceptible to failures such as fiber cuts, equipment failures, power outages, natural disas-
ters, and ONU transceiver malfunctions [38]. Service disruptions can result in significant
financial losses for service providers. Identifying faulty ONUs presents challenges, espe-
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cially when nearly equidistant branch terminations lead to overlapping reflections, making
it difficult to pinpoint the exact defective branch [38]. Conventional monitoring approaches
become less reliable as PON systems grow in complexity. Recent advancements in ML-
enabled proactive fault monitoring offer promising solutions to ensure stable network
operation. ML-based fault prediction algorithms utilize past network fault data to discover
underlying patterns and similarities. By doing so, these algorithms enhance the detection
of optical network problems and facilitate proactive repairs, thereby preventing potential
issues from occurring. Several research papers propose using ML algorithms for monitor-
ing management in optical networks. Notably, technologies like random forest and ANN
algorithms have been employed to continuously monitor the BER, predict network compo-
nent failures, and assess fault severity [39]. Wang et al. [40] introduced a hybrid approach
combining double exponential smoothing and support vector machines for equipment fail-
ure prediction in software-defined metropolitan area networks. Bayesian-network-based
models have also been developed for diagnosing PON faults [40].

3. DSP for Signal Equalization in Communication Systems

In this section, we provide an overview of conventional signal equalization tech-
niques, ranging from basic zero-forcing equalization to more advanced approaches such as
feed-forward equalizers (FFEs), decision-feedback equalizers (DFEs), Viterbi and Volterra
equalizers, and adaptive equalizers. We discuss the advantages and limitations of these
techniques, comparing the performance of ML models. Table 1 provides the complexity
analysis for each method.

Zero Forcing: It is a linear equalizer (LE) derived by minimizing inter-symbol interfer-
ence (ISI). A study in [41] has established the analytical foundation for optimal zero-forcing
and minimum mean-squared error (MSE) equalization in channels with additive white
noise and specified frequency response. The study demonstrates that an optimal LE can be
implemented as a cascade of filters, with taps spaced at symbol intervals. However, when
the channel effect exhibits deep frequency response “valleys”, equalization will yield poor
performance due to noise enhancement.

Feed-Forward Equalizer: The FFE [42] mitigates ISI in communication channels by
processing the received signal forwardly without feedback. Its simplicity makes it suitable
for systems where feedback is unstable or challenging for implementation.

Decision-Feedback Equalizer: Due to the noise enhancement, the DFE is designed to
reduce ISI by subtracting already-known symbols. In this way, ISI from already detected
symbols is eliminated. Adaptation of the forward and feedback filters of DFEs follow
the same pattern as for LEs [43]. The disadvantage is that it could potentially lead to
accumulated errors from feeding back incorrect detection decisions

Viterbi Equalizer: The Viterbi equalizer seeks to estimate the most likely sequence
of transmitted symbols, given the received sequence. By constructing a trellis diagram
where nodes represent possible transmitted symbols and transitions denote potential
channel transitions, the Viterbi algorithm dynamically optimizes path metrics to identify
the most probable sequence. This process involves state transition probabilities and precise
calculations to mitigate the impact of channel impairments. Mathematically, the Viterbi
equalizer applies the Viterbi algorithm, which belongs to the dynamic programming
algorithm for finding the most likely sequence of hidden states in a hidden Markov model.
The time complexity of the Viterbi equalizer is determined by the Viterbi algorithm, which
depends on the length of the input sequence and the number of states, making it O(T · N2),
where T denotes the length of the sequence and N refers to the number of hidden states [44].

Volterra Equalizer: This is a nonlinear equalizer used in optical communication sys-
tems to compensate for nonlinear distortions introduced by the fiber channel [45]. In PAM4
systems, severe ISI can be introduced due to the imperfect bandwidth of optical and elec-
trical components. The main bandwidth bottleneck in IMDD systems comes from the
transmitter side, as the achievable bandwidth of receiver-side devices is typically twice as
high as the bandwidth of transmitter-side devices. In such scenarios, the Volterra equalizer
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can be effectively employed to address both a potential nonlinearity from the transmitter
and the bandwidth limitations of the optical components. The higher-order Volterra ker-
nels can model the frequency-dependent distortion and nonlinear effects caused by the
limited transmitter bandwidth and nonlinear devices, such as Mach-Zehnder modulators.
The Volterra equalizer is based on the Volterra series expansion, which allows for the model-
ing of nonlinear systems. The key idea is to use a set of nonlinear filters, known as Volterra
kernels, to capture the nonlinear characteristics of the channel. The structure of a Volterra
equalizer consists of multiple stages, each representing a different order of nonlinearity.
The first stage corresponds to the linear equalizer, which performs initial equalization
to address linear distortions. Subsequent stages of the Volterra equalizer capture and
compensate for higher-order nonlinear distortions. These stages involve nonlinear filters
that take multiple past symbols as inputs and produce outputs based on their interaction.
The number of stages and the complexity of the Volterra equalizer depend on the specific
system requirements and the level of nonlinear distortions present. The coefficients of the
Volterra kernels are typically adapted or optimized using algorithms such as the least mean
squares (LMS) or recursive least squares (RLS) algorithms. These algorithms iteratively
adjust the coefficients based on the error between the equalized signal and the desired
signal, aiming to minimize the distortion and improve the overall system performance.

Adaptive Filtering: Adaptive filtering [46] is used in communication systems where
channel characteristics vary over time. The mathematical interpretation involves using
an adaptive algorithm that iteratively modifies the filter parameters to minimize the error
signal between the desired output and the actual output, enabling the filter to adapt to
changing input conditions. The actual convergence time and the total time complexity over
multiple iterations depend on the convergence behavior of the specific algorithm and its
sensitivity to the input data. Assuming t taps, the total time complexity for updating all
coefficients is O(t). FFEs and DFEs are regarded as adaptive filtering versions designed
explicitly for short-reach communications.

Table 1. Complexity analysis for DFE, FFE, LE, Adaptive Filtering, and Viterbi algorithms. t refers to
the number of the taps. N in Viterbi denotes the number of the hidden states.

Models DFE FFE LE Adaptive Filtering Viterbi

Train O(t) O(t) O(t) O(t) O(t · N2)

Inference O(t) O(t) O(t) O(t) O(t · N2)

4. Traditional Sequential ML Methods

With the increasing demand for higher data transmission rates and the limitations of
traditional prediction methods reaching their practical limits in terms of accuracy, the need
for algorithms with high precision, reliability, and low complexity has become urgent.
In this section, we introduce new DL-based models to address this challenge. We overview
relevant research studies, providing a chronological exploration of key sequential models,
namely, recurrent neural networks (RNN), long short-term memory (LSTM), gated recurrent
unit (GRU), and convolutional neural networks (CNN). The key architectural parts of DL
models are explained, with clear examples showing how they work, how they are used,
and how complex they are.

In 2018, Karanov et al. [47] introduced an end-to-end deep neural network system for
optical communications, encompassing the entire chain of a transmitter, receiver, and chan-
nel model. This research showed that transceiver optimization can be achieved in a
complete, end-to-end way. Owing to the sequential structure of communication systems,
sequential models, including LSTM networks [48], RNNs [49], and GRUs [50] have been
extensively employed. They are considered as baseline algorithms in order to generate
more advanced and efficient algorithms.

RNN: Originally designed for machine translation in natural language processing,
this model is based on the Markov assumption about the hidden state and output sequence:
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the output sequence depends only on the current potential state ht. The potential state
depends on the previous moment’s latent ht−1 and input variables xt−1 rather than on the
historical data x(t−1,...,0), h(t−1,...,0). Renowned for their adaptability in handling variable-
length sequences and preserving state information across elements, these models find
valuable applications in diverse communication fields [3]. In recent work, they have shown
promising results in equalization compared to benchmark methods based on Volterra and
Viterbi equalizers in two-dimensional eight-level PAM (2D-PAM8) links [51].

Despite its great equalization performance, this model suffers from exploding gra-
dient issues caused by the direct gradient flow of multiple layers [52]. In such networks,
the backpropagation of the gradient is performed by accumulating the gradient matrix.
This can cause the gradient to grow exponentially if the eigenvalues of the gradient matrix
are greater than 1, making the training process very difficult to converge. Conversely, when
the eigenvalues of the gradient matrix are less than 1, the gradient will decrease over time
until it vanishes completely, causing the parameters to stop updating [53].

LSTM: The LSTM architecture can assist in overcoming this issue by extending the
hidden state to a cell state, which is built using a gating mechanism. This mechanism
has input, forget, and output gates that help control the flow of information [54]. LSTM
models have additional internal states beyond just the hidden state. This allows them
to learn a weight matrix that can better preserve useful information in the hidden state.
The input gate decides what new information from the current input to be stored in the
cell state. The forget gate decides what memories from the previous cell state to keep
or discard. The output gate controls what information gets passed to the next cell state.
This gating mechanism provides the ability to effectively hold onto relevant details from
long sequences while filtering out irrelevant information. This makes it easier to learn
dependencies between distant parts of the input. As a result, LSTMs have been widely used
in short-range communication tasks that require capturing complex long-term relationships
in the data [55].

GRU: This architecture simplifies the gating mechanism used in LSTM models. It
has an update gate and a reset gate, instead of the three gates in LSTM [56]. The up-
date gate determines what relevant information to retain from the previous state and
the current input. The reset gate controls what data to discard. It is useful in scenarios
where the temporal dependencies and relationships between adjacent symbols in a se-
quence are important. For example, in short-range communication systems, GRUs can
help mitigate signal distortions caused by CD and nonlinearities [57]. Recent research in
120 Gb/s coherent 64-quadrature amplitude-modulated optical systems for transmission
at 375 km has shown that using a bi-directional GRU as a nonlinear equalizer can help
improve the quality factor (Q-factor) beyond the 8.52 dB limit (8.52 dB estimated from
Q = 20 log10(

√
2erfc−1(2BER))) [58], typically required for hard-decision forward error

correction (HD-FEC).
CNN: CNNs are not technically considered sequential models. However, they are

widely used across many different domains. This is because of its important advantages,
such as high parameter efficiency, weight-sharing mechanism, and plug-and-play char-
acteristics [59]. CNNs use a convolutional kernel to scan the input signal in a specific
dimension, capturing temporal features that are important for the task at hand. This
convolutional layer is typically followed by a pooling layer and a nonlinear activation
function. The pooling layer reduces redundancy, while the activation function introduces
nonlinearity. The convolutional kernel is designed to extract features that closely match the
input signal. Afterwards, backpropagation is used to optimize the weights of the network.
This allows the CNN to learn and enhance the features that are most relevant for the target
task. The weights in the network’s weight matrix are updated through backpropagation to
amplify the important features needed for effective performance on the given ML problem.
Furthermore, it has been observed that using multiple layers of small convolutional kernels
is often more efficient than using large kernels. This approach, known as the inception
architecture, was first introduced in the GoogleNet model [60]. Two commonly used blocks
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in CNN are the inception module and the inception reduction module, which extract
temporal dependencies of different scales by employing a concatenation of 1 × 1, 3 × 3,
and 5 × 5 convolutional kernels. In addition, It also uses a special type of convolutional
kernel with a size of 1 × 1. This 1 × 1 convolution serves a unique purpose: it helps to
reduce the number of feature map channels or dimensions. It is commonly used between
two regular convolution layers or at the output layer of the network.

Summary: In this section, we have introduced the most common building blocks
used in ML models for short-reach optical communication systems. These fundamental
components are still widely used in current approaches. To summarize the complexity
of the models discussed earlier, we have provided a table (Table 2) that outlines the
complexity analysis for each of the models. In this complexity analysis, we have focused
solely on the computation required per batched sample, without considering the choice
of hyperparameters like the number of epochs or batch size. This provides a compact
overview of the computational demands of each model on a per-sample basis.

Table 2. Complexity of DNN, GRU, LSTM, RNN, and CNN. t refers to the number of taps. ns, no, nh,
and d denote input, output, hidden neuron, and depth of the DNN, respectively.

Models DNN GRU LSTM RNN CNN

Train O(d− 1)n2) O((3n2
h + 6nh)ns) O(4n2

h + 7nh)ns O(n2
hns) O(no)

Inference O(d− 1)n2) O((3n2
h + 6nh)ns) O(4n2

h + 7nh)ns O(n2
hns) O(no)

5. Advanced Sequential ML Methods

In Section 4, we introduced traditional sequential models, such as RNN, LSTM, GRU,
and CNN. The key question we aim to answer in this section is how to effectively incorpo-
rate the unique characteristics of time-series data into the modeling process and leverage
the temporal convolution model to mitigate channel distortion. Compared to other DL
models like transformers and Fourier-based neural networks, convolutional models exhibit
better generalization performance. Convolutional models are also more robust to changes
in their parameter values when applied to new datasets, unlike the other models that
require careful parameter initialization and hyperparameter tuning when used on new
data [61].

This section starts with channel modeling, encompassing four distinct noise models.
We derive the characteristics and capabilities required for the algorithm based on these
models. Subsequently, we provide a detailed exposition of the architectures and funda-
mental assumptions underlying three models: Frequency-Calibrated Sampled-Interaction
Neural Network (FC-SCINet) [62], Light Time-Series (LightTS) [63], and DLinear [64].

5.1. Distortion Model

The main limiting factor for the equalization task in a short-reach/PON system is
ISI as a result of CD, sampling error (jitter), frequency shift (chirp), and Kerr-induced
nonlinearity [47]. In this section, we will focus on the effects of CD, jitter, and chirp, as these
are the dominant distortion mechanisms in short-reach PAM-based systems. The impact
of Kerr-nonlinearities is limited in single-channel PONs due to the relatively short fiber
lengths and low optical powers involved.

CD in an optical communication system is caused by different phase velocities with
respect to frequency. It fundamentally constitutes a linear transformation, and its mathe-
matical representation involves a differential equation that considers spatial position and
time, which can be presented as

∂A
∂z

= −j
β2

2
∂2 A
∂t2 (1)
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where A denotes the amplitude of the complex signal; t denotes time; z is the spatial
position along the fiber, where the pulse pattern propagates [47]; and β2 is the dispersion
coefficient. Following the Fourier transformation, we have

D(z, w) = exp(j
β2

2
ω2z) (2)

w is the angular frequency. In the time domain, it is primarily manifested by significant
attenuation in the high-frequency components and rapidly changing components.

Jitter is caused by fluctuations in sampling time. It presents itself as signal distortion,
exhibiting a comparable impact to superimposed interference signals that adhere to the
Gaussian distribution. Timing jitter can be described as

y∗(t) = y(t)
+∞

∑
n=−∞

δ(t − n ∗ tA − τ)

= y(n ∗ tA + τ)

(3)

where τ is the timing sampling error, where the correctly sampled value is y(n ∗ tA). This
sampling error can be quantitively estimated as follows:

|y(n ∗ tA + τ)− y(n ∗ tA)| ≤ M1|τ| (4)

where M1 is the first moment of the band-limited spectrum of Fourier transformation of
original signal Y( f ), can be simply written as:

|∂y(t)
∂t

| ≤
fg

∑
− fg

|2π f ||Y( f )| = M1 (5)

Jitter refers to high-frequency fluctuations in the amplitude of a signal. This high-frequency
perturbation can have a significant impact on neural networks that rely on low-frequency
signals.

In conclusion, the error can be estimated as |y(tn)− y(nτa)| ≤ M1|tn − nτa| = M1|τn|.
The error |en| is bounded by M1 · |τn| for a given n. The value of en depends solely
on τn. Assuming that the timing error τn follows a statistical nature with E{τn} = 0
and E{τ2

n} = σ2
τ , it follows that the amplitude errors en are statistically independent.

Consequently, the error variance is then given by E{e2
n} ≤ M2

1σ2
τ . For more details, please

refer to [65].
Chirp is a signal whose frequency varies with time. Mathematically, it can be described

as follows,
s(t) = a(t) · exp[j(ω0 · t + θ(t))] (6)

The frequency spectrum of this waveform is obtained as

S(ω) =
∫ ∞

−∞
a(t) · exp[j(ω0t + θ(t))] · exp(−jωt) dt (7)

Simplifying further:

S(ω) =
∫ ∞

−∞
a(t) · exp[j{(ω0 − ω)t + θ(t)}] dt (8)

In summary, all types of effects encountered in equalization issues, except for jitter, involve
concurrent alterations in both the time and frequency domains. It is noteworthy that such
changes are not statistically independent. Consequently, no single effect can be eliminated
through straightforward nonlinear operations in a single domain.



Photonics 2024, 11, 613 10 of 22

5.2. Temporal Convolution Neural Network

DL-based equalizers fundamentally capture domain-specific nonlinear disturbances by
employing linear transformations and nonlinear activation functions. Within the temporal
CNN, the core modules comprise interval, continuous, and interaction sampling modules,
alongside convolutional neurons and linear layers, as depicted in Figure 1. Each of these
modules offers practical flexibility for hardware implementation, due to their computational
efficiency. Subsequently, we delve into three of the most efficient convolution-based
sampling networks.

Figure 1. The overview of all sampling modules in temporal convolution networks is modified
from [62,63], namely, interval sampling and continuous sampling in LightTS [63], and interactive
sampling in [61,62].

FC-SCINet: This novel approach introduces an improved series decomposition tech-
nique as a spectrum correction module. In conjunction with the interaction sampling
module, it has proven to be a robust tool for mitigating CD and addressing various real-
world channel effects [62].

Decomp: In the case of FC-SCINet, it utilizes a moving averaging filter with kernel size
w1 to extract low-frequency signals from the input. Additionally, high-frequency signals
are obtained by calculating the residuals between the original and low-frequency signals.
The final output signal is generated through a weighted linear combination of these two
components, which is x̂ defined as Equation (9).

x̂ = WT
s xs + WT

f x f (9)

The complexity of this module is O(k), where k is the size of the kernel and is independent
of the input sequence length.

However, as demonstrated in the empirical study in [62], the performance of FC-
SCINet in mitigating CD remains strong. Moreover, the plug-and-play nature, low com-
plexity, and interpretability of FC-SCINet make it highly flexible for seamless integration
with various other algorithms. The DLinear architecture is another impressively low-
complexity yet high-performance design.

SCIBlock: The SCIBlock, is a key component of FC-SCINet, because it can iteratively
decompose a signal into sub-sequences at various scales while incorporating nonlinear
transformations between adjacent layers. In contrast, the decomp block is restricted to
enhancing fixed signal components and is limited to a single scale. From a mathematical
perspective, the SCIBlock applies a hierarchical structure by systematically downsampling
the input sequence into even-positioned and odd-positioned samples, denoted as xeven
and xodd. Following the convolutional layer, the sub-sequences in adjacent layers are itera-
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tively multiplied together utilizing exponential and multiplication operations, as shown in
Equations (10) and (11).

xs
even = xeven ⊙ exp(ψ(xodd)), xs

odd = xodd ⊙ exp(ϕ(xeven)) (10)

x′odd = xs
even + exp(η(xs

odd)) x′even = xs
odd − exp(ρ(xs

even)) (11)

Here, ⊙ represents an element-wise product, and ψ, ϕ, η, and ρ are independent 1D con-
volutional layers. The intermediate outputs can be presented as xs

even, xs
odd, x′even, and x′odd.

Upon completion of the processing, the resulting sub-sequences are then reassembled
and aligned back to their original positions within the original signal. Ultimately, all the
sub-series are concatenated based on their original index in the raw sequence, as illus-
trated in Figure 1. To sum up, FC-SCINet is a framework capable of efficiently learning
local-dependent patterns. Its distinctive feature lies in performing interactive learning on
sub-sequences with odd-even positions after odd-even sampling, allowing for a larger
receptive field under the premise of using the same convolutional kernel.

DLinear: As previously mentioned in FC-SCINet, while the concatenation of the
decomp module may not offer optimal equalization, it has exhibited great performance in
real-world datasets. Therefore, we will provide a brief introduction to this module: It first
decomposes a raw data input into a low xs and high-frequency xf signal. xs is extracted
by a moving average kernel. It is equivalent to filtering the signal using a sinc function
in the frequency domain. These two components are added in a linear combination form,
expressed by Ws, W f . The operation above is presented in Equation (12).

xs = AvgPool(x) xf = x − xs x′ = Wsx + W f xf (12)

By iterative decomposition with different kernel sizes, DLinear can be extended to a deeper
network. The complexity is O(kns), where k is the number of the layer, and ns is the length
of the model input. To simplify the complexity, the weight matrix W could be replaced by
the convolutional kernel.

LightTS: Both FC-SCINet and DLinear utilize only convolution and different sampling
modules to capture the local and global dependencies. The LightTS architecture, detailed
in [63], employs a multi-layer perceptron (MLP) structure to enhance predictive abilities.

Sampling: In contrast to SCIBlock, which samples the raw sequence using odd and even
indices, LightTS introduces two generic sampling strategies: Interval Sampling and Contin-
uous Sampling, as shown in Figure 1. Interval sampling partitions time-series data into
non-overlapping sub-sequences based on fixed time intervals, as shown in Figure 1. This
approach helps identify periodic patterns or regularities within the data while minimizing
information loss. On the other hand, continuous sampling divides sequences into corre-
sponding sub-sequences, extracting data points continuously throughout the time series
and preserving temporal continuity. This sampling method enables the capture of patterns
within the period, ensuring a more comprehensive representation of the underlying dynam-
ics. The subsequent section presents an MLP-based architecture to extract useful features
from both the downsampled sub-sequences and continuously sampled sub-sequences.

Information Exchange Block (IEBlock): The IEBlock serves as the central module in
LightTS, designed to effectively process the 2D matrix resulting from continuous sampling
and interval sampling. This block comprises three essential components: (1) temporal
projection, which identifies temporal features following continuous sampling; (2) channel
projection, which captures inter-channel information following interval sampling; and
(3) the exchange block, which integrates the information from the outputs mentioned
above, facilitating information fusion. All of them utilize MLP as the nonlinear behavior
learning module. The design of LightTS is notably concise, employing only two sampling
modules and an MLP. On certain datasets, it surpasses the performance of FC-SCINet [64].

Compared to the models mentioned earlier, the FC-SCINet model requires less struc-
tural adaptation and pre-processing when applied in practical PON applications. The FC-
SCINet has been successful in recent PON-related work [62]. Different from LSTM, which
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offers the advantage of ensuring information flow strictly from past to future, temporal
CNN goes beyond this by modeling the global dependency between input and output,
while also leveraging stacked causal convolution layers. Additionally, the FC-SCINet intro-
duces interaction modeling, enabling the explicit capture of interactions between elements
within a sequence, making it a more advanced alternative to LSTM. In addition to these
benefits, CNNs and SCINet offer several advantages over LSTM:

• CNNs can identify patterns regardless of their position within the input sequence. This
property makes them well-suited for tasks where the position or timing of relevant
features is not fixed, providing greater flexibility compared to LSTM.

• CNNs excel at capturing local patterns and extracting relevant features from the input
sequence. This ability is particularly useful for tasks that require identifying and
recognizing specific patterns or motifs within the data.

• Both CNNs and SCINet architectures typically have fewer parameters compared to
LSTM models. This reduced parameter count can make training and inference more
efficient, especially when working with limited computational resources or when
dealing with large datasets.

Recent Progress: CNNs play a crucial role in current time-series prediction research
and applications. This is due to their high parameter efficiency, model stability, and strong
theoretical foundation (Multiscale Decomposition). The complexity of these convolutional
networks mostly depends on the number of layers and the size of the convolutional
kernels. Nowadays, more advanced designs like dilated convolution and inception are
often combined with other modules to create complex DL models, but they are rarely used
on their own. Even so, temporal CNNs still have a distinct advantage in terms of the
performance-to-complexity ratio. They are also straightforward to implement in hardware.

5.3. Transformer-Based Network

Attention: The scaled dot-product attention mechanism is the key component aiming
to aggregate information across different parts of the input sequence. Each input vector is
transformed into three distinct vectors: Queries (Q), Keys (K), and Values (V). The process
involves calculating the dot products of the queries with all keys, scaling them by the
square root of the dimension, and applying a softmax function to obtain weights on the
values [66].

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (13)

The resulting matrix of outputs is obtained through a weighted sum of the values,
where the weights are determined by the softmax-processed dot products of queries and
keys. This attention module allows the model to focus on relevant parts of the input
sequence, capturing local dependencies during the training process. A residual connection
is applied around the two sub-layers, followed by layer normalization to maintain the
information flow.

Transformers use multiple attention heads to look at the input sequence from different
perspectives. This allows the model to simultaneously learn and consider various views
of the input data. Equations (14) and (15) represent the functionality of the multi-head
attention step. headi represents the single attention head. The final result of the multi-head
attention is concatenating all the attention heads.

MultiHead(Q, K, V) = Concat(head1, . . . , headh)Wo (14)

headi = Attention(QWQ
i , KWK

i , VWV
i ) (15)

While the standard (“vanilla”) transformer model has shown great performance on
time-series data, the computational complexity of its attention mechanism makes it strug-
gle to handle long sequences effectively. To overcome this limitation, researchers have
developed various attention mechanism variants. An example is the locality-sensitive
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gashing (LSH) attention mechanism, which was introduced as part of the Reformer archi-
tecture [67]. The LSH attention mechanism utilizes specialized hash functions to transform
queries and keys, thereby facilitating the categorization of similar items into shared hash
buckets. Through sorting tokens based on their hash codes, items with similarities are
grouped together, enabling the aggregation of relevant information. To enable parallel
processing, the sorted sequence is divided into chunks. Subsequently, attention mecha-
nisms are selectively applied to these chunks and their neighboring segments, allowing
for focused examination of localized portions. The LSH attention mechanism uses hash
coding to greatly improve the computational efficiency of the transformer compared to the
original version. This helps address the challenge of processing long sequences by reducing
complexity without sacrificing performance.

Decoder: The decoder consists of several stacked sub-decoders. The ground truth
follows a process similar to that of the encoder, being transformed into Query Q, Key
K, and Value V representations. The attention weights are calculated by comparing the
Queries Q from the decoder with every value V in the encoder. This process is repeated in
parallel across N sub-decoders, resulting in a final attention matrix. The attention matrix
then undergoes a softmax operation, yielding probabilities for each value. In addition to the
two sub-layers in each encoder layer, the decoder introduces a third sub-layer, performing
multi-head attention over the encoder stack’s output.

During the decoding process, the model is auto-regressive, using the previously
generated outputs as additional input to generate the next output. Residual connections
and layer normalization are used around each sub-layer. The self-attention sub-layer is
modified to prevent positions from attending to future positions. This, along with the offset
output embedding, ensures that the predictions for a position only depend on the known
outputs at earlier positions in the sequence.

Attention Variants: The purpose of the attention layer is to identify connections and
dependencies among the various input embeddings. This allows the model to evaluate the
importance of each element in relation to the others. The attention mechanism explicitly
computes the relationships between different elements in the sequence, providing insights
into how information flows through the model. However, except for the computational
complexity issue, the mechanism in the vanilla transformer [66] needs to be improved in
terms of processing inter-dependencies and periodicity of signal data. The Autoformer
model [68] introduces a new type of encoder that replaces the original encoder. This
new encoder applies series decomposition and autocorrelation to detect dependencies
between different parts of the input sequence, and then combines the representations of
the sub-series. The series decomposition component divides the original signal into two
distinct parts: the seasonal component, which captures short-term patterns, and the trend
component, which captures long-term behavior. This partitioning allows for identifying
and representing both the short-term and long-term characteristics present in the time-series
data. Additionally, the auto-correlation mechanism utilizes the fast Fourier transform (FFT)
to compute correlations between the time series and its delayed version, providing insights
into how the series relates to its past values at different time lags. The combination of series
decomposition and autocorrelation effectively captures and represents the underlying trend
and seasonality in the time-series data.

Recent Progress: In this section, we provide a comprehensive overview of the vanilla
transformer and its architecture, particularly within the domain of time series and traffic
prediction. Over the years, substantial improvements have been made to enhance the
transformer for accurate time-series prediction. Notably, advancements have been achieved
in reducing computational complexity while improving the effectiveness of the attention
mechanism [69,70]. However, recent research has introduced compact models based on
multi-scale transformation [71], which surprisingly outperforms benchmark-designed
models. This new development has sparked an important debate on the fundamental
structure of sequence models. In the following sections, we summarize and explore this
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particular model in depth, providing insights into its implications. For the latest work,
please refer to Table 3.

Table 3. Benchmark models.

Models Efficient Techniques Literature

Transformer

Attention

Sparsity inductive
bias

Ref. [69] LogTrans leverages convolutional self-attention for
improved accuracy with O(L(log L)2) lower memory costs.

Low-rank property Ref. [70] Informer selects dominant queries based on queries and
key similarities.

Learned rotate
attention (LRA)

Ref. [72] Quatformer introduces learnable period and phase
information to depict intricate periodical patterns.

Hierarchical
pyramidal attention

Ref. [73] Pyraformer proposed one hierarchial attention
mechanism with a binary tree following the path with linear time
and memory complexity

Frequency attention Ref. [74] FEDformer: proposed the attention operation with
Fourier transform and wavelet transform.

Correlation attention
Ref. [68] Autoformer: the Auto-Correlation mechanism to capture
sub-series similarity based on auto-correlation and seires
decomposition

Cross-dimension
dependency

Ref. [75] Crossformer utilizes multiple attention matrices to
capture cross-dimension dependency

Architecture

triangular patch
attention

Ref. [76] Triformer features a triangular, variable-specific patch
attention with a lightweight and linear complexity

Multi-scale
framework

Ref. [71] Scaleformer iteratively refines a forecasted time series at
multiple scales with shared weights

Positional rncoding

Vallina Position Ref. [66] cos and sin functions with a sampling rate-relevant
period.

Relative positional
encoding

Ref. [77] Introduces an embedding layer that learns embedding
vectors for each position index.

Model-based learned Ref. [69] LogSparse utilize one LSTM to learn relative position
between series tokens

Fourier-NN
Time Domain

Series Decomposition Ref. [64] DLinear performs one linear series decomposition with
multiple layers

Frequency Attention Ref. [78] TimesNet proposes the attention mechanism related to
the amplitude of the signal

Frequency Domain Frequency MLP Ref. [79] FreqMLP performs MLP in frequency domain by
leveraging the global view and energy compaction characteristic

TConv-NN

Sampling

Continous Refs. [63,78] both utilize continous sampling to split original signal
into windowed subseries similar to short time transformation

Interval Ref. [63] Interval sampling with fixed step to extract periodic
feature

Even-
Odd/Multiscale

Ref. [62] proposes one iterative multiscale framework where even
and odd series are interacted between layers

Frequency Continous
Ref. [64] leverages series decomposition module in a iterative
manner to decompose signal in frequency domain with sinc
function.

Negative sampling
Ref. [80] custom loss function is employed in an unsupervised
manner, wherein distant or non-stationary subseries maximize the
loss, while similar subseries minimize the loss.

Feature module

MLP
Ref. [63] applies an MLP-based structure to both interval sampling
and continuous sampling for extracting trend and detail
information.

Dilated convolutions Ref. [81] leverages stacked dilated casual convolutions to handle
spatial-temporal graph data with long-range temporal sequences
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5.4. Fourier Convolution Neural Network

In the previous section, we introduced models based on convolutional kernels and sub-
sampling as fundamental modules. Their core principle involves decomposing signals into
different scales in the time domain and subsequently applying nonlinear transformations to
learn salient features. However, for the majority of real-world signals, transforming them
into the Fourier domain is often more efficient. This efficiency is attributed to the following
factors: (1) The majority of real-world signals are bandpass or lowpass, and in the Fourier
domain, their dynamic range decreases from n to exp(−n); (2) The Fourier transformation is
a bijective (one-to-one) transformation, which ensures energy conservation and controllable
error in both the forward and inverse transformations; (3) The computational complexity
of existing (fast) Fourier transform algorithms, after improvements, is O(nlog(n)), making
it convenient for hardware implementation.

In this section, we introduce TimesNet [78], which utilizes a frequency-attention
mechanism, and FreTS [79], which explicitly performs non-linear transformations in the
frequency domain. For extensive models please refer to Table 3. The fundamental concept
of TimesNet involves transforming the initial signal into k distinct 2D tensors instead of
directly processing the original sequence. This approach empowers the model to effectively
capture both intra-periodic and inter-periodic variations within these fixed windows.
A variant of this model has been recently reported in [82].

TimesNet: An attention mechanism based on spectral amplitude is employed to
determine the significance of signal segments at various frequencies. Simultaneously, across
different temporal resolution scales, a shared convolution module is utilized to reconstruct
nonlinear distortions introduced by the channel. It does not explicitly perform nonlinear
transformations in the frequency domain; instead, it combines reconstructed signals at
different window lengths through a linear combination. The FConvNet primarily comprises
four key blocks: Component Detection, Alignment, ConvNet, and Reconstruction.

Component Detection: The identification of the k most crucial frequencies is based on the
amplitude of the Fourier coefficients. Then, using only the selected components within the
k frequency range, the signal is sampled using a continuous sampling method, and these
sub-series are arranged into a two-dimensional tensor.

Alignment: The aligned sub-series are then fed into a convolution-based module, specif-
ically an Inception network, to mitigate distortion caused by channel effects. The Fourier
coefficients pass through a softmax function to generate attention weights, which are then
multiplied by the output of each convolution module to produce the final output.

Fourier Attention: The Fourier transformation is a global operation, meaning that any
changes in the signal’s amplitude will cause periodic oscillations throughout the entire
signal. Significant variations in the amplitude of the primary components lead to substantial
fluctuations. TimesNet leverages this characteristic by using the Fourier spectrum of the
nonlinearly transformed signal to determine the attention value for each component.

Reconstruction: Finally, employing a residual form, we obtain the reconstructed in-
dividual sub-components multiplied by their respective attention values, denoted as y′,
and add them to the input signal x to yield y.

FreTS: Time-domain-based processing is limited by information bottlenecks, as the
local characteristics vary. FreTS explicitly uses frequency-domain features in its model
architecture to directly mitigate distortion without manipulating the time-domain. FreTS is
essentially an MLP-based network that is able to effectively learn patterns of time-series data
in the frequency domain. As presented in [79], FreTS consists of two learners: a Frequency
Channel Learner and a Frequency Temporal Learner. In the equalization problem, there is
no actual channel dimension, but rather a stack of independent experiments. Therefore,
FreTS only introduces a frequency-domain MLP.

Frequency MLP: The frequency temporal learner aims to capture temporal patterns
in the frequency domain. Specifically, for a complex number input H ∈ Cm×d, the MLP
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aims to optimize the weight matrix W ∈ Cd×d and bias B ∈ Cd so that the final output
Y ∈ Cm×d could approximately reconstruct the ground truth.

Yℓ = σ(Yℓ−1Wℓ + Bℓ) (16)

Y0 = H (17)

The MLP in the frequency domain is equivalent to global convolutions in the time domain
as detailed in [79]. An increasing number of studies have demonstrated the feasibility
of DL models operating in the frequency domain. Simultaneously, the corresponding
computational complexity of frequency-domain processing has decreased from O(n) to
O(nlogn) due to the reduction in the signal’s dynamic range. However, the advantages
and disadvantages of networks in both the frequency and time domains remain inade-
quately explored. Due to space limitations, we offer a detailed categorization, along with
corresponding references and keywords, in Table 3 for researchers with specific interests.

6. Model Compression

In recent years, the proliferation of large-scale ML models has significantly advanced
state-of-the-art technology across various domains, ranging from natural language process-
ing to computer vision. The surge in model complexity, often characterized by sophisticated
architectures and many parameters, has driven the need for efficient hardware implementa-
tions to harness their full potential. The advent of single graphics processing units (GPUs)
as a critical computational resource has been pivotal, offering a parallelized architecture
suitable for accelerating the training and inference processes [83]. The significance of
deploying large ML models on a single GPU lies in optimizing computational efficiency
and reducing latency. Single GPU implementations facilitate parallel processing, enabling
the simultaneous execution of multiple tasks and handling extensive model parameters.
This enhances the speed of model training and facilitates real-time inference, a critical
requirement in applications such as autonomous systems and edge computing. How-
ever, the hardware implementation of large ML models on a single GPU is challenging.
The complexity of these models often exceeds the computational capacity and memory
constraints of a single GPU, necessitating innovative solutions for efficient utilization [84].
Techniques such as model pruning, quantization, vector quantization, and knowledge
distillation have emerged as strategies to mitigate these challenges, ensuring that even
formidable models can be accommodated within the limitations of a single GPU without
compromising performance. The authors in [84] examine how to use a single GPU effec-
tively for implementing large ML models. They discuss methods that balance complexity
and computational efficiency to maximize hardware utilization [84].

In addition, conducting a comprehensive performance-versus-complexity analysis is
necessary to evaluate the suitability of various ANNs in short-reach optical communication
systems. DL models, including CNNs, RNNs, and LSTMs, find applications in critical
tasks such as equalization, fault detection, subcarrier allocation, nonlinearity compensation,
and bandwidth request and allocation. The complexity of these models is a significant
factor affecting their feasibility. For instance, CNNs may introduce convolutional and
pooling layers, increasing model complexity. Similarly, RNNs and LSTMs, designed for se-
quential data, introduce recurrent connections that enhance their ability to capture temporal
dependencies and contribute to increased complexity [85]. Analyzing the neural network
architectures in detail, including their depth, the number of parameters, and computational
demands, is crucial for understanding the trade-offs between performance and complexity.
DL models often exhibit enhanced capabilities in capturing complex patterns and relation-
ships in optical communication data. Still, their complexity may pose challenges regarding
training time, computational resources, and practical implementation [86]. A thorough
examination of these complexities is essential for identifying optimal models, such as
choosing between a CNN for image-based tasks or an LSTM for sequential data, that bal-
ance high performance and manageable complexity, facilitating their efficient integration
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into short-reach optical communication systems [85]. Four prominent types, namely, the
feed-forward neural network (FFNN), the radial basis function neural network (RBF-NNs),
the auto-regressive RNN (AR-RNN), and the layer-RNN (L-RNN), offer distinct trade-
offs in complexity and performance. Among nonlinear neural-network-based equalizers
with equivalent numbers of inputs and hidden neurons, FFNN-based equalizers have the
lowest computational complexity; however, AR-RNN demonstrates superior transmission
performance in 50 Gb/s PAM4 systems [87].

Distillation model: Knowledge distillation, a model compression technique, transfers
knowledge from complex, large-scale models or groups to more compact, feasible models
suitable for real-world applications. Pioneered by Bucilua et al. in 2006 [88], knowledge dis-
tillation primarily operates on neural network architectures characterized by multifaceted
structures comprising multiple layers and parameters. Knowledge distillation has been
recently considered an important technique for practical DL applications such as speech
recognition, image recognition, and natural language processing [89]. Deploying large deep
neural network models can be especially challenging for edge devices, which are limited in
memory and computational power. To address this challenge, an innovative model com-
pression method was developed in [89], allowing transferring knowledge from larger, more
complex models to train smaller, more efficient models without significant performance
loss. This process, where a smaller model learns from a larger one, was formalized into
the “Knowledge Distillation” framework by Hinton et al. [90]. This framework has become
crucial for deploying the essential knowledge from sophisticated, large-scale models on
computationally constrained edge devices.

Optimizing DL models through knowledge distillation shows great potential for
advancing short-range optical communication systems. RNNs have been particularly
effective at addressing nonlinear distortions [57,85]. However, the feedback loop inherent
in RNN structures makes it difficult to parallelize them, preventing their use in low-
complexity hardware designed for high-speed processing in optical networks [91]. Using
knowledge distillation is a promising approach to enable parallelization of RNNs [85,92].
This application of knowledge distillation is set to revolutionize the implementation of
RNNs, ensuring compatibility with low-complexity hardware and meeting the stringent
processing requirements of high-speed optical networks [93].

Beyond just RNNs, knowledge distillation can be applied to many different ML
models important for optical communications, such as CNNs, LSTMs, FFNNs, RBF-NNs,
AR-RNNs, and L-RNNs [92]. These models each have their own challenges regarding
complexity, adaptability, and real-time implementation. For example, using knowledge
distillation in LSTMs for optical communication systems, can reduce model complexity
without losing the ability to handle time-dependent patterns [92].

Another promising application of knowledge distillation is when facing challenges
with limited time-series data. As “big data” impacts various fields, the scarcity of target
events or high data acquisition costs can hinder ML in certain scenarios. A proposed
method uses “privileged information” from partial time-series data during training to
enhance long-term predictions for small datasets. Applied to optical communications, this
distillation approach offers a solution to data constraints, demonstrating effectiveness on
both synthetic and real-world data [94].

Vector quantization: Vector quantization (VQ) is a model compression technique
targeting large-scale ML models. VQ represents complex data with a small set of prototype
vectors, significantly cutting the computational load during inference. This makes VQ
useful for applications that require balanced model efficiency and performance, such as
when resources are limited. The VQ process involves partitioning the input space into
regions, each with a representative prototype vector. During encoding, input vectors are
assigned to the nearest prototype, quantizing the data. In the decoding or reconstruction
phase, these prototype vectors are used to rebuild the original data.

The effectiveness of VQ relies on carefully selecting and updating the prototype vec-
tors. The goal is to optimize the prototypes so they can effectively capture the essential
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information in the dataset [95]. By clustering and quantizing input vectors into a repre-
sentative codebook, VQ enables encoding information in a more compact form. This is
particularly beneficial in scenarios with limited data availability or high computational
demands [96]. For example, VQ can be useful when applying knowledge distillation to
RNNs. RNNs face challenges with parallelization due to their feedback loop structure.
Using VQ in the distillation process for RNNs can help address the parallelization issue.
VQ can represent the essential information from the RNN using a smaller set of prototype
vectors [87,97,98]. This compression not only aids in overcoming hardware complexity but
also contributes to faster processing in high-speed optical networks.

VQ uses an iterative process to improve the prototype vectors and enhance their ability
to represent the data. Commonly, algorithms like k-means clustering are used for this.
The prototypes are adjusted to minimize the difference between the original data and the
quantized representation. This iterative refinement allows VQ to adapt to the patterns
and structures in the data. This optimizes the compression capabilities of VQ while still
preserving the critical information needed for training tasks [95].

Finally, VQ can be beneficial in optimizing other DL models, such as CNNs or LSTMs,
by efficiently capturing essential features with a minimal set of representative vectors [99].
Exploring the use of VQ together with these models provides a promising way to improve
the performance and scalability of ML applications in short-reach optical communica-
tion systems.

7. Conclusions

In this survey, we have undertaken a comprehensive examination of powerful machine
learning models that exhibit the potential to achieve robust equalization in cost-sensitive
short-reach optical systems, with a particular focus on PONs. Our objective has been to
explore these models’ capacity to operate efficiently and deliver effective computational
performance. For the first time, we have classified the current models into three distinct
types and conducted an extensive analysis of their core concepts, highlighting their dif-
ferences, similarities, and the underlying insights they provide. Additionally, we have
presented a simplified complexity analysis considering various input sizes. In the final
stages of our survey, we have also investigated the potential of machine learning solutions
in addressing the challenges associated with hardware implementation and complexity. We
firmly believe that this survey will serve as a valuable resource, inspiring future research
endeavors to develop efficient models explicitly tailored for short-reach and PON systems.
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