Designs, Codes and Cryptography
https://doi.org/10.1007/510623-024-01432-8

®

Check for
updates

Compact FE for unbounded attribute-weighted sums
for logspace from SXDH

Pratish Datta’ - Tapas Pal?(® - Katsuyuki Takashima3

Received: 10 August 2023 / Revised: 27 February 2024 / Accepted: 20 May 2024
© The Author(s) 2024

Abstract

This paper presents the first functional encryption (FE) scheme for the attribute-weighted
sum functionality that supports the uniform model of computation. In such an FE scheme,
encryption takes as input a pair of attributes (x, z) where x is public and z is private. A
secret key corresponds to some weight function f, and decryption recovers the weighted
sum f(x)z. In our scheme, both the public and private attributes can be of arbitrary poly-
nomial lengths that are not fixed at system setup. The weight functions are modelled as
Logspace Turing machines. Prior schemes could only support non-uniform Logspace. The
proposed scheme is proven adaptively simulation secure under the well-studied symmet-
ric external Diffie-Hellman assumption against an arbitrary polynomial number of secret
key queries both before and after the challenge ciphertext. This is the best possible security
notion that could be achieved for FE. On the technical side, our contributions lie in extending
the techniques of Lin and Luo [EUROCRYPT 2020] devised for indistinguishability-based
payload hiding attribute-based encryption for uniform Logspace access policies and the
“three-slot reduction” technique for simulation-secure attribute-hiding FE for non-uniform
Logspace devised by Datta and Pal [ASIACRYPT 2021] to the context of simulation-secure
attribute-hiding FE for uniform Logspace.

Keywords Functional encryption - Attribute-weighted sums - Logspace - Turing machines

Communicated by C. Weinert.

This is the full version of an extended abstract that has appeared in ASIACRYPT 2022.

T. Pal: This work was done when the author was a postdoctoral researcher at NTT Social Informatics
Laboratories, Japan.

B Tapas Pal
tapas.pal @kit.edu

Pratish Datta
pratish.datta@ntt-research.com

Katsuyuki Takashima

ktakashima@waseda.jp
I NTT Research, Sunnyvale, CA 94085, USA
Karlsruhe Institute of Technology, KASTEL Security Research Labs, Karlsruhe 76131, Germany
3 Waseda University, Shinjuku-ku, Tokyo 169-8050, Japan

Published online: 27 July 2024 9\ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10623-024-01432-8&domain=pdf
http://orcid.org/0000-0001-6278-0418

P.Datta et al.

Mathematics Subject Classification 94A60

1 Introduction

Functional encryption (FE), formally introduced by Boneh et al. [24] and O’Neill [69], rede-
fines the classical encryption procedure with the motivation to overcome the limitation of the
“all-or-nothing” paradigm of decryption. In a traditional encryption system, there is a single
secret key such that a user given a ciphertext can either recover the whole message or learns
nothing about it, depending on the availability of the secret key. FE in contrast provides fine
grained access control over encrypted data by generating artistic secret keys according to the
desired functions of the encrypted data to be disclosed. More specifically, in a public-key FE
scheme for a function class F, there is a setup authority which produces a master secret key
and publishes a master public key. Using the master secret key, the setup authority can derive
secret keys or functional decryption keys SK y associated with functions f € F. Anyone can
encrypt messages msg belonging to a specified message space msg € M using the master
public key to produce a ciphertext CT. The ciphertext CT along with a secret key SK s recov-
ers the function of the message f(msg) at the time of decryption, while unable to extract
any other information about msg. More specifically, the security of FE requires collusion
resistance meaning that any polynomial number of secret keys together cannot gather more
information about an encrypted message except the union of what each of the secret keys
can learn individually.

By this time, we have a plethora of exciting works on FE. These works can be broadly
classified in two categories. The first line of works attempted to build FE for general function-
alities [12-17, 20, 23, 25-28, 34, 41-50, 52, 53, 55, 60, 74]. However, those constructions
were either only secure against bounded collusion and/or extremely inefficient. With the moti-
vation to overcome these limitations, a second line of work attempted to design efficient FE
schemes supporting arbitrary collusion of users for practically relevant functionalities, e.g.,
linear/quadratic functions [1-11, 21, 29, 32, 33, 35, 36, 38, 40, 54, 56, 61, 63-66, 70-72, 76,
77]. In this work, we advance the state of the art along the latter research direction.

FE for Attribute-Weighted Sum Recently, Abdalla et al. [8] and Datta and Pal [38] studied
FE schemes for a new class of functionalities termed as “attribute-weighted sums” (AWS).
This is a generalization of the inner product functional encryption (IPFE) [3, 11]. In such
a scheme, an attribute pair (x, z) is encrypted using the master public key of the scheme,
where x is a public attribute (e.g., demographic data) and z is a private attribute containing
sensitive information (e.g., salary, medical condition, loans, college admission outcomes). A
recipient having a secret key corresponding to a weight function f can learn the attribute-
weighted sum f(x)z. The attribute-weighted sum functionality appears naturally in several
real life applications. For instance, as discussed by Abdalla et al. [8] if we consider the weight
function f as a Boolean predicate, then the attribute-weighted sum functionality f (x) would
correspond to the average z over all users whose attribute x satisfies the predicate f. Important
practical scenarios include average salaries of minority groups holding a particular job (z =
salary) and approval ratings of an election candidate amongst specific demographic groups
in a particular state (z = rating).

The works of [8, 38] considered a more general case of the notion where the domain and
range of the weight functions are vectors, in particular, the attribute pair of public/private
attribute vectors (x, z), which is encrypted to a ciphertext CT. A secret key SK; generated

@ Springer

Compact FE for unbounded attribute-weighted sums

for a weight function f allows a recipient to learn f(x) 'z from CT without leaking any
information about the private attribute z.

The FE schemes of [8, 38] support an expressive function class of arithmetic branching
programs (ABPs) which captures non-uniform Logspace computations. Both schemes were
built in asymmetric bilinear groups of prime order and are proven secure in the simulation-
based security model, which is known to be the desirable security model for FE [24, 69], under
the (bilateral) k-Linear (k-Lin)/(bilateral) Matrix Diffie—Hellman (MDDH) assumption. The
FE scheme of [8] achieves semi-adaptive security, where the adversary is restricted to making
secret key queries only after making the ciphertext queries, whereas the FE scheme of [38]
achieves adaptive security, where the adversary is allowed to make secret key queries both
before and after the ciphertext queries.

However, as mentioned above, ABP is a non-uniform computational model. As such, in
both the FE schemes [8, 38], the length of the public and private attribute vectors must
be fixed at system setup. This is clearly a bottleneck in several applications of this prim-
itive especially when the computation is done over attributes whose lengths vary widely
among ciphertexts and are not fixed at system setup. For instance, suppose a govern-
ment hires an external audit service to perform a survey on average salary of employees
working under different job categories in various companies to resolve salary discrep-
ancy. The companies create salary databases (X, Z) where X = (x;); contains public
attributes x; = (job title, department, company name) and Z = (z;); includes private
attribute z; = salary. To facilitate this auditing process without revealing individual salaries
(private attribute) to the auditor, the companies encrypt their own database (X, Z) using an
FE scheme for AWS. The government provides the auditor a functional secret key SK ¢ for a
function f that takes input a public attribute X and outputs 1 for x;’s for which the “job title”
matches with a particular job, say manager. The auditor decrypts ciphertexts of the various
companies using SK ¢ and calculates the average salaries of employees working under that
job category in those companies. Now, if the existing FE schemes for AWS [8, 38] supporting
non-uniform computations are employed then to make the system sustainable the govern-
ment would have to fix a probable size (an upper bound) of the number of employees in all
the companies. Also, the size of all ciphertexts ever generated would scale with that upper
bound even if the number of employees in some companies, at the time of encryption, are
much smaller than that upper bound. This motivates us to consider the following problem.

Open problem Can we construct an FE scheme for AWSin some uniform computational
model capable of handling public/private attributes of arbitrary length?

Our results This work resolves the above open problem. For the first time in the literature,
we formally define and construct an FE scheme for unbounded AWS (UAWS) functional-
ity where the setup only depends on the security parameter of the system and the weight
functions are modeled as Turing machines. The proposed FE scheme supports both public
and private attributes of arbitrary lengths. In particular, the public parameters of the system
are completely independent of the lengths of attribute pairs. Moreover, the ciphertext size is
compact meaning that it does not grow with the number of occurrences of a specific attribute
in the weight functions which are represented as Logspace Turing machines. As a special
case, we also obtain a FE scheme for attribute-weighted sums where the weight functions
are modelled as deterministic finite automata (DFA). The schemes are adaptively simulation
secure against the release of an unbounded (polynomial) number of secret keys both before
and after the challenge ciphertext. As noted in [24, 69], simulation security is the best possi-
ble and the most desirable model for FE. Moreover, simulation-based security also captures
indistinguishability-based security but the converse does not hold in general.

@ Springer

P.Datta et al.

Our FE for UAWS is proven secure in the standard model based on the symmetric external
Diffie-Hellman (SXDH) assumption in the asymmetric prime-order pairing groups. Our main
result in the paper is summarized as follows.

Theorem 1 (Informal) Assuming the SXDH assumption holds in asymmetric pairing groups of
prime-order, there exists an adaptively simulation secure FE scheme for the attribute weighted
sum functionality with the weight functions modeled as Logspace Turing machines such that
the lengths of public and private attributes are unbounded and can be chosen at the time of
encryption, the ciphertexts are compact with respect to the multiple occurrences of attributes
in the weight functions.

Viewing IPFE as a special case of FE for AWS, we also obtain the first adaptively simulation
secure IPFE scheme for unbounded length vectors (UIPFE), i.e., the length of the vectors is
not fixed in setup. Observe that all prior simulation secure IPFE [8, 10, 38, 76] could only
support bounded length vectors, i.e., the lengths must be fixed in the setup. On the other hand,
the only known construction of UIPFE [71] is proven secure in the indistinguishability-based
model.

The proposed FE construction is semi-generic and extends the frameworks of the works
of Lin and Luo [62] and Datta and Pal [38]. Lin and Luo [62] develop an adaptively secure
attribute-based encryption (ABE) scheme for Logspace Turing machines proven secure in the
indistinguishability-based model. Although the input length of their ABE is unbounded, but
an ABE is an “all-or-nothing” type primitive which fully discloses the message to a secret
key generated for accepting policies. Further, the ABE of [62] is only payload hiding secure
meaning that the ciphertexts themselves can leak sensitive information about the associated
attributes. In contrast, our FE for UAWS provides more fine grained encryption methodologies
where the ciphertexts reveal nothing about the private part of associated attributes but their
weighted sums. Our FE construction depends on two building blocks, an arithmetic key
garbling scheme (AKGS) for Logspace Turing machines which is an information-theoretic
tool and a function hiding (bounded) slotted IPFE scheme which is a computational primitive.
An important motivation of [62] is to achieve compact ciphertexts for ABEs. In other words,
they get rid of the so-called one-use restriction from prior adaptively secure ABEs [19, 30, 31,
57-59, 67, 68, 75] by replacing the core information-theoretic step with the computational
primitive of function hiding slotted IPFE. The FE of [38] is able to accomplish this property
for non-uniform computations by developing a three-slot encryption technique. Specifically,
three slots are utilized to simulate the label functions obtained from the underlying AKGS
garbling for pre-ciphertext secret keys. Note that, the three-slot encryption technique is an
extension of dual system encryption methodologies [57, 58, 73]. In this work, we extend
their frameworks [38, 62] to avoid the one-use restriction in the case of FE for UAWS that
computes weights via Logspace Turing machines. It is non-trivial to implement such three-
slot techniques in the uniform model. The main reason behind this fact is that in case of
ABPs [38] the garbling randomness can be sampled knowing the size of ABPs, and hence
the garbling algorithm is possible to run while generating secret keys. However, in the case
of AKGS for Logspace Turing machines, the garbling randomness depends on the size of the
Turing machine as well as its input lengths. Consequently, it is not possible to execute the
garbling in the key generation or encryption algorithms as the information about the garbling
randomness is distributed between these two algorithms. We tackle this by developing a more
advanced three-slot encryption technique with distributed randomness which enables us to

carry out such a sophisticated procedure for Logspace Turing machines.
Our FE for UAWS is a one-slot scheme. This means one pair of public—private attribute
can be processed in a single encryption. An unbounded-slot FE for UAWS [8] enables us to

@ Springer

Compact FE for unbounded attribute-weighted sums

encrypt unbounded many such pairs in a single encryption. Abdalla et al. [8] devise a generic
transformation for bootstrapping from one-slot to unbounded-slot scheme. However, this
transformation only works if the underlying one-slot scheme is semi-adaptively secure [38].
Thus, if we restrict our scheme to semi-adaptive security then using such transformations [8,
38] our one-slot FE scheme can be bootstrapped to support unbounded slots.

Current vs. preliminary versions A preliminary version [39] of this work has appeared
in Asiacrypt 2022. This paper includes a significant and considerable amount of technical
contributions compared to the preliminary version [39]. The previous version contains only
the constructions of our single key, single ciphertext secure one-slot FE scheme and the one-
slot FE scheme for Logspace without providing any formal treatment to the security analysis
of these protocols. The preliminary version presents a very high level idea about the security
analysis. Therefore, most of our technical contributions are not formalized in that version.
We emphasize that representing and formalizing a proper sequence of hybrid experiments for
the security analysis are crucial for understanding the technical challenges and their solutions
which we provide in the current version. Especially, we not only describe a proof sketch (for
each security analysis) but also depict the hybrid experiment in several tables (see Sects. 5 and
6) that clearly gives a concrete idea about the steps to prove the adaptive simulation security
of our schemes. For example, the three-slot reduction mechanism devised in this paper for
handling the pre-ciphertext keys of the one-slot FE scheme for Logspace Turing machines
are described in Tables 14, 15 and 16. Moreover, in Sect. 7 of the current version, we build
a simpler FE scheme for attribute-weighted sums for deterministic finite automata or DFA.
Note that, weight functions realized by DFA captures many real-life applications involving
computation on unbounded data (or attributes) such as network logging, tax returns and
virus scanners. Hence, our FE for DFA becomes more effective compared to the FE for
Logspace Turing machines for such potential applications.

Organization We discuss a detailed technical overview of our results in Sect. 2. We pro-
vide useful notations, related definitions, and complexity assumptions in Sect. 3. We give a
description of AKGS construction for evaluating Turing machines via a sequence of matrix
multiplications in Sect. 4. Our construction of a single key and single ciphertext secure FE
scheme for UAWS can be found in Sect. 5. We provide the complete security analysis of the
scheme in Sect. 5.2. Next, we build our full fledge 1-slot FE scheme for UAWS and prove its
security in Sect. 6. We present our FE scheme for attribute-weighted sums for DFA in Sect.
7.

2 Technical overview

We now present an overview of our techniques for achieving an FE scheme for AWS function-
ality which supports the uniform model of computations. We consider prime-order bilinear
pairing groups (G, G2, Gr, g1, g2, ¢) with a generator g7 = e(g1, g2) of Gt and denote
[a]; by an element g € G; for i € {1, 2, T}. For any vector z, the k-th entry is denoted by
z[k] and [n] denotes the set {1, ..., n}.

The unbounded AWS functionality In this work, we consider an unbounded FE scheme
for the AWS functionality for Logspace Turing machines (or the class of L), in shorthand it
is written as UAWS". More specifically, the setup only takes as input the security parameter
of the system and is independent of any other parameter, e.g., the lengths of the public and
private attributes. UAWSt generates secret keys SK(y z,,) for a tuple of Turing machines

@ Springer

P.Datta et al.

denoted by M = {Mj}kez,, such that the index set Zps contains any arbitrary number of
Turing machines My € L. The ciphertexts are computed for a pair of public—private attributes
(x, z) whose lengths are arbitrary and are decided at the time of encryption. Precisely, the
public attribute x of length N comes with a polynomial time bound T = poly(N) and a
logarithmic space bound S, and the private attribute z is an integer vector of length n. At the
time of decryption, if Zyy C [n] then it reveals an integer value > keI M (x)z[k]. Since
M (x) is binary, we observe that the summation selects and adds the entries of z for which
the corresponding Turing machine accepts the public attribute x. On the other hand, if Zys]
is not contained in [n] then the decryption cannot recover a meaningful information. An
appealing feature of the functionality is that the secret key SK(y,7,,) can decrypt ciphertexts
of unbounded length attributes in unbounded time/(logarithmic) space bounds. In contrast,
existing FE for AWSs [8, 38] are designed to handle non-uniform computations that can
only handle attributes of bounded lengths and the public parameters grows linearly with the
lengths. Next, we describe the formulation of Turing machines in L considered in UAWS".

Turing machines formulation We introduce the notations for Logspace Turing machines
(TM) over binary alphabets. A Turing machine M = (Q, y,.c, 6) consists of Q states with
the initial state being 1 and a characteristic vector y,.. € {0, 1}9 of accepting states and
a transition function §. When an input (x, N, T, S) with length N and time, space bounds
T, S is provided, the computation of M|y 7 s(x) is performed in T steps passing through
configurations (x, (i, j, W, q)) where i € [N] is the input tape pointer, j € [S] is the
work tape pointer, W € {0, 1} the content of work tape, and ¢ € [Q] the state under
consideration. The initial internal configuration is (1, 1, 0g, 1) and the transition function
8 determines whether, on input x, it is possible to move from one internal configuration
(@i, j, W, q) to the next ((i’, j', W, q’)), namely if 8 (g, x[i], W[j]) = (¢/, w’, Ai, Aj).In
other words, the transition function § on input state ¢, an input bit x[i/] and an work tape
bit W[j], outputs the next state ¢’, the new bit w’ overwriting w = W[j] by w’ = W’[j]
(keeping W[;"] = W'[j”]forall j # j”), and the directions Ai, Aj € {0, =1} to move the
input and work tape pointers.

Our construction of adaptively simulation secure UAWSt depends on two building blocks:
AKGS for Logspace Turing machines, an information-theoretic tool and slotted IPFE, a com-
putationally secure tool. We only need a bounded slotted IPFE, meaning that the length
of vectors of the slotted IPFE is fixed in the setup, and we only require the primitive to
satisfy adaptive indistinguishability based security. Hence, our work shows how to (semi-
)generically bootstrap a bounded IPFE to an unbounded FE scheme beyond the inner product
functionality. Before going to describe the UAWS', we briefly discuss these two building
blocks.

AKGS for Logspace Turing machines In [62], the authors present an ABE scheme for
Logspace Turing machines by constructing an efficient AKGS for sequence of matrix mul-
tiplications over Z,. Thus, their core idea was to represent a Turing machine computation
through a sequence of matrix multiplications. An internal configuration (i, j, W, q) is rep-
resented as a basis vector e ;. w.4) of dimension NS25Q with a single 1 at the position
@i, j, W, q). We define a transition matrix given by

1, if 8(q, x[il, WLiD = (¢', WLjL.i" =i, j' =)
M@x)[GE, j, W,q), (", j, W, q)]l= and W'[j"] = W[j"] forall j” # j;
0, otherwise;

@ Springer

Compact FE for unbounded attribute-weighted sums

suchthate(TiijW!q)M(x) :eg, i W/.q,).Thisholdsbecausethe (G, 7, W,q), 0, j,W.,q")-
th entry of M(x) is 1 if and oynlyy if there is a valid transition from (g, x[i], W[j]) to
(q¢', W'[j1,i" — i, j' — j). Therefore, one can write the Turing machine computation by
right multiplying the matrix M(x) for 7 times with the initial configuration e(Tl,l,Os.l) to
reach of one of the final configurations 1y}, (s1x0,1}5 @ Yacc- In other words, the function

M|n,T,s(x) is written as

M|y s(x) = ea,1,05.1)(MN,S(x))T(I[N]x[S]x{o,l}S ® Yace) ey

Thus, [62] constructs an AKGS for the sequence of matrix multiplications as in Eq. (1). Their
AKGS is inspired from the randomized encoding scheme of [18] and homomorphic evaluation
procedure of [22]. Given the function M|y, 1 s over Z, and two secrets z, B, the garbling
procedure computes the label functions

Linit(x) = B + ea,l,os,l)ro’
forr € [T1: (Lig)o(x) = —ri—1 + My s(O)rs,
(L7116)6() = =17 + 2liy s 0.1)5 @ Yace-

and outputs the coefficients of these label functions Zinit, €; = (4;.9)g where 6 = (i, j, W, q)
[N]x[S]x{0,1}
andr; < Z,

procedure adds £ini; with a telescoping sum e(TLLOSyl) . Z,TZI(MN,S(x))”llt and outputs
ZM|n,1.s(x) + B. More precisely, it uses the fact that

N
S) compute the functional value for an input x, the evaluation

T
eir+1_|,jr+1 Woertigrn i1

r:+e.

lx,jt,Wx,Ch(_rt + M(x)rH—l)

- ei,,j[,W,,q,

(78]

A crucial and essential property that the AKGS have is the linearity of evaluation procedure,
meaning that the procedure is linear in the label function values €s and, hence can be performed
even if the s are available in the exponent of a group. Lin and Luo identify two important
security notions of AKGS, jointly called piecewise security. Firstly, £init can be reversely
sampled given a functional value and all other label values, which is known as the reverse
sampleability. Secondly, ¢; is random with respect to the subsequent label functions L, g for
all t' > t and z, which is called the marginal randomness.

Function hiding slotted IPFE A normal IPFE computes inner product between two vectors
v and u using a secret key IPFE.SK,, and a ciphertext IPFE.CT,,. The IPFE is said to satisfy
indistinguishability-based security if an adversary having received many functional secret
keys {IPFE.SK,} remains incapable to extract any information about the message vector u
except the inner products {v - u}. It is easy to observe that if encryption is done publicly
then no security can be ensured about v from the secret key IPFE.SK;, [36] due to the linear
functionality. However, if the encryption algorithm is private then IPFE.SK, can be produced
in a fashion to hide sensitive information about v. This is termed as function hiding security
notion for private key IPFE. Slotted IPFE [64] is a hybrid of public and private IPFE where
vectors are divided into public and private slots, and function hiding is only guaranteed
for the entries in the private slots. Further, Slotted IPFEs of [62, 64] generate secret keys
and ciphertexts even when the vectors are given in the exponent of source groups whereas
decryption recovers the inner product in the target group.

@ Springer

P.Datta et al.

2.1 From all-or-nothing to functional encryption

We are all set to describe our approach to extend the framework of [62] from all-or-nothing to
Sfunctional encryption for the uniform model of computations. In a previous work of Datta and
Pal [38], an adaptively secure FE for AWS functionality was built for a non-uniform model of
computation, ABPs to be precise. Their idea was to garble a function fi(x)z[k] + Bx during
key generation (keeping z[k] and x as variables) and compute IPFE secret keys to encode
the m labels, and a ciphertext associated to a tuple (x, z) consists of a collection of IPFE
ciphertexts which encode the attributes:

SK s = {IPFE.SKy, ,_,,, IPFE.SK5, , Jim :
Vir<m = Lkt Vi.m = Lk m Where
(€.0)r < Garble(fu(x)zlk] + Bi) st 3oy B =0
CT, = (IPFE.CT,. {IPFE.CTz, }x) :
u=(1,x), up = (1, z[k])

Therefore, using the inner product functionality, decryption computes the actual label values
with x, z[k] as inputs and recovers fx (x)z[k]+ Bk for each k, and hence finally) ", fi(x)z[k].
However, this approach fails to build UAWS" because we can not execute the AKGS garbling
for the function M|y r.s(x)z[k] + Bk at the time of generating keys. More specifically,
the garbling randomness depends on parameters N, T, S, n that are unknown to the key
generator. Note that, in contrast to the ABE of [62] where z can be viewed as a payload (hence
n = 1), the UAWS functionality has an additional parameter n (length of z) the value of
which is chosen at the time of encryption. Moreover, the compactness of UAWS' necessitates
the secret key size |SK(y,7,,)| = O(|Zp| Q) to be linear in the number of states Q and the
ciphertext size |CT(x.7.5)| = O(nT N525) be linear in T N S25.

The obstacle is circumvented by the randomness distribution technique used in [62].
Instead of computing the AKGS garblings in key generation or encryption phase, the label
values are produced by a joint effort of both the secret key and ciphertext. To do so, the garbling
is executed under the hood of IPFE using pseudorandomness, instead of true randomness. That
is, some part of the garbling randomness is sampled in key generation whereas the rest is
sampled in encryption. More specifically, every true random value r,[(i, j, W, ¢)] is written
as a product ry[(¢,i, j, W)lri rlq] where ry[(t,i, j, W)] is used in the ciphertext and
r, flq] is utilized to encode the transition blocks of M in the secret key. To enable this, the
transition matrix associated to My is represented as follows:

M@)[G, j, W, q), (", j', W, g)]
9
=89, J, W), (' W' a) x My wiwijri—i j—ild. 4']

where 8 (i, j, W, q), (i, j', W, ¢)) is | if there is a valid transition from the configuration
@i, j,W,q) to (', j', W,q’), otherwise 0. Therefore, every block of M(x)[(i, j, W, q),
@i’, j', W, g")]is either a Q x Q zero matrix or a transition block that belongs to a small set

T ={M;| 7= (x,w,w, Ai, Aj) € {0, 1}? x {0, £1}*}
The (i, j, W, gq)-th block row My = M,y aia; appears at My s(O[(i, j, W,).
G, j W,)lif x = x[il,w = W[jl,Ai =i —i,Aj = j — j, and W' is W with

Jj-th entry changed to w’. Thus, every label £ [i, ¢] with i = (i, j, W) can be decomposed
as inner product v 4 - ug ;. j, w. More precisely,

@ Springer

Compact FE for unbounded attribute-weighted sums

ek,t[i, ql
= —r—1li, gl + Mgy s0[G, @),) o, o Dy
=—ri1li,q] + Z My xi), wijnw', ai, a5 [, DIg]
W', Ai, A
('=(G+A4i,j+Aj,W)
relt = Lilr flgl+ Y relt V1M i, wijnw ai, a7k, £)14]

w' Ai,Aj

=relt = Lilrislgl+ Y relt 1Maeri)lg] = kg - ticrijw
w',Ai,Aj

so that one can set the vectors

Vg = (—rrrlgl, 0, Mycre,p)lgl || 0),
i =(relt —1,i, 0, c(xiry) |1 0)

where c¢; (x; ry) (a shorthand of the notation c; (x, t, i, j, W; ry) [62]) is given by

relt, V], ifx =x[i], w = W[j];
0, otherwise.

cr(x;ry) = i

Similarly, the other labels can be decomposed: £y init = (r, r[1], Br, 0)- (rx[(0, 1, 1, 05)], 1

0) = Bi+e 1.05.1)70 and e 711G)1 = Br g -Tr 1410, j,w = =7 @)1 +2[K] Yk acclg]
where

Vg = (=T rlql Yiacclgl 1| 0),
ﬁT+1.i = (rx[T»i]’ z[k] ” 0)

A first attempt Armed with this, we now present the first candidate UAWS' construction in
the secret key setting which supports a single key. We consider two independent master keys
imsk and imsk of IPFE. For simplicity, we assume the length of the private attribute z is the
same as the number of Turing machines present in M = (M)rez,,, 1.6., 1 = [Zy|. We also
assume that each Turing machine in the secret key shares the same set of states.

SKa. 73y = {IPFE.SKy, 10, IPFE.SKy, ,, IPFE.SKg, , beezy °

Vi, init ?

[vk,initlle = [C —rg, #[1], Br, 0, I 0)I2,
[viql2 = [C —rrrlgl. 0, Mycri,p)lgl I 0)]2,
[Wi,ql2 = [C =7k £[q], Yiaccld] 0

CT = (IPFE.CT,, . IPFE.CT,. (IPFE.CTz, }i) :

[winitllh = [(rx[0, 1,1,09)], 1, 0, I 0O,
Mwierili =0C relt =14, 0, cc(xs5ry) || 0],
Mg r41:0 =0C relT, 1], z[k] I 0)I

Observe that the inner products between the ciphertext and secret key vectors yield the label
values [4x initIT, [€k.: 1T = [k 1,0)0]T for& = (i, j, W, q). Now, the evaluation procedure
of AKGS is applied to obtain the partial values [z[k] M|y, 7, s(x) 4 Br]lT. Combining all this
values gives the required attribute weighted sum), My|n 7 s(x)z[k] Since) ; Bx = 0.
However, this scheme is not fully unbounded, in particular, the setup needs to know the
length of the private attribute. To realise this, let us try to prove the security of the scheme.
The main idea of the proof would be to make all the label values (£x,9)p truly random and

@ Springer

P.Datta et al.

simulated except the initial labels £ jnir so that one can reversely sample £ inir hardcoded with
a desired functional value. Suppose, for instance, the single secret key is queried before the
challenge ciphertext. In this case, the honest label values are first hardwired in the ciphertext
vectors and then the labels are transformed into their simulated version. This is because the
ciphertext vectors are computed after the secret key. So, the first step is to hardwire the initial
label values £y init into the ciphertext vector uinit, which indicates that the length of u;nj must
grow with respect to the number of £ init’s. The same situation arises while simulating the
other label values through u; ;. In other words, we need to know the size of Zps or the length
of z in setup, which is against our desired functionality.

To tackle this, we increase the number of uj,it and u, .7 ; in the above system. More
specifically, each of these vectors are now computed for all k € [n], just like &g 741 i.
Although this fixes the requirement of unboundedness of the system, there is another issue
related to the security that must be solved. Note that, in the current structure, there is a
possibility of mix-and-match attacks since, for example, ik, 741,; can be paired with vy, 4
and this results in some unwanted attribute weighted sum of the form), 21 s My (x)z[k]+
My, (x)z[ka]+ My, (x)z[k1]. We employ the index encoding technique used in previous works
achieving unbounded ABE or IPFE [68, 71] to overcome the attack. In particular, we add two
extra dimensions px(—k, 1) in the ciphertext and 7 (1, k) in the secret key for encoding the
index k in each of the vectors of the system. Observe that for each Turing machine M} an
independent randomness 7t is sampled. It ensures that an adversary can only recover the
desired attribute weighted sum and whenever vectors from different indices are paired only
a garbage value is obtained.

Combining the ideas After combining the above ideas, we describe our UAWS supporting
a single key as follows.

SKa, 73y = {IPFE.SKuy 10 IPFE.SKy, ,, IPFE.SKg, , beezy ©

Vi init *

[vk,initle = [C 7 (1, k), —rg f[1], B, 0, I 0)]12,
[vigll2 = [C (1, k), —ri, flgl, 0, (Mgri p)lg] | 0)]2,
[Wiql2 = [(1, k), —ri £lq], Vi accld] I 0)I2

CTy = {IPFE.CTyy 0 IPFE.CToy ,_y o IPFE.CTa 1y i ¢
[urinitlt = [C pe(—=k, 1), re[(0, 1, 1,05)], 1, 0, I 0)I1,
Mwr <7ilh = LCok(=k, 1), relt —1,il, 0, cc(x;re) || 0O,
[k, 741,11 = [C pr(—k, 1), ry[T, 1], z[k] I 0)

Although the above construction satisfies our desired functionality, preserves the compactness
of ciphertexts and resists the aforementioned attack, we face multiple challenges in adapting
the proof ideas of previous works [38, 62, 71].

Security challenges and solutions Next, we discuss the challenges in proving the adap-
tive simulation security of the scheme. Firstly, the unbounded IPFE scheme of Tomida and
Takashima [71] is proved in the indistinguishability-based model whereas we aim to prove
simulation security which is much more challenging. The work closer to ours is the FE for
AWS of Datta and Pal [38], but it only supports a non-uniform model of computation and
the inner product functionality is bounded. Moreover, since the garbling randomness is dis-
tributed in the secret key and ciphertext vectors, we can not adapt their proof techniques [38,
71] in a straightforward manner. Although the ABE scheme of Lin and Luo [62] handles a uni-
form model of computation, they only consider all-or-nothing type encryptions and hence
the adversary is allowed to query secret keys which always fail to decrypt the challenge

@ Springer

Compact FE for unbounded attribute-weighted sums

ciphertext. In contrast, we construct a more advanced encryption mechanism which over-
comes all the above constraints of prior works, i.e., our UAWS' is an adaptively simulation
secure functional encryption scheme that supports unbounded inner product functionality
with a uniform model of computations over the public attributes.

Our proof technique is inspired by that of [38, 62]. One of the core technical challenges is
involved in the case where the secret key is queried before the challenge ciphertext. Thus, we
focus more on “sk queried before ct” in this overview. As noted above, in the security analysis
of [62] the adversary A is not allowed to decrypt the challenge ciphertext and hence they com-
pletely randomize the ciphertext in the final game. However, since we are building a FE scheme
any secret key queried by A should be able to decrypt the challenge ciphertext. For this, we use
the pre-image sampleability technique from prior works [37, 38]. In particular, the reduction
samples a dummy vector d € Z, satisfying Do Miln,1,s(@)z[k] = ") Mi|n,T,5(x)d[K]
where M = (My)y is a pre-challenge secret key. To plant the dummy vector into the cipher-
text, we first need to make all label values {¢ ;i } truly random depending on the terms
ri, flglryx[t — 1,1]’s and then turn them into their simulated forms, and finally traverse in
the reverse path to get back the original form of the ciphertext with d taking place of the
private attribute z. In order to make all these labels truly random, the honest label values are
needed to be hardwired into the ciphertext vectors (since these are computed later) so that we
can apply the DDH assumption in G to randomize the term ry r[g]ry[t — 1,] (hence the
label values). However, this step is much more complicated than in [62] since there are two
independent IPFE systems in our construction and ry, r[¢] appears in both v; , and '17k,q (.e.,
in both IPFE systems). We design a two-level nested loop running over ¢ and ¢ for relocating
ri, flg] fromv’s and '17;(,,] tou’s and #y 71,1 To this end, we note that the case of ““sk queried
after ct” is simpler where we embed the reversely sampled initial label values into the secret
key. Before going to discuss the hybrids, we first present the simulator of the ideal world.

SKat, 2y = (IPFE.SKy, 11, IPFE.SKy, , IPFE.SKg;, brez, ¢ (sk queried before ct)

VU init?

[vkinitl2 = [C 7w (1, k), —ri f[1], Br, 0 I 0)]a.

[vi gl = [C 7 (1, k), —rirlgl, O, (Miore,p)lg]l | 0)]o,

[Vk,ql2 = [((1, k), —rk,quUk,acc[Q] I 0)I2

T, = {IPFE‘CTuk,init’ IPFE'CTuk,x<T.w |PFE'CT'IZ;<,T+1,;}I< :

Mok inielh = [C px(=k, 1), rx[(0,1,1,05)], 1, 0, Il L 0)]1,
[[uk,f<T,i]]1 = [[(pk(_k, 1)5 rx[t_ 1ai]7 07 Cl’(x;rx) ” sx[taiL 0)]]ls
[z, 741,01 = [px(—k, 1), relT, i, d[k] | selT+1,il, 0)]y

SKm. 7y = {IPFE.SKy, ;> IPFE.SKy, . IPFE.SK3, }kez), @ (sk queried after ct)
[ve,initll2 = [(1, k), 0, 0, 0 || Liinit, 0)12,
[viqllz = [(7k (1, k), 0, 0, 0 || sk rlgl, 0)12,
[Vk,gl2 = [(mx(1,k), 0, 0 || sk r[g], 0)12
where £y jnit <— RevSamp((My, x, Mi[x]z[k] + Bi, {Lr,r,i,q}) St
ZkeIM Br = 0if Ijy C [n]; otherwise By < Z,.

Security analysis We use a three-step approach and each step consists of a group of hybrid
sequence. At a very high level, we discuss the case of “sk queried before ct”. In this overview,
for simplicity, we assume that the challenger knows the length of z while it generates the
secret key.

First group of hybrids The reduction starts with the real scheme. In the first step, the label
function £y init is reversely sampled with the value Mj[x]z[k] + Bi which is hardwired in
UL, init-

@ Springer

P.Datta et al.

venie =+, [1] [0] 0 I 0, 0),
Vg =, —rerlgl, 0, (Meori,plgl || | sk rlgl), 0),
ik,q = (] —"k,f[q], yk,acc[‘]] ” 07 0)

weine = (- [eme] [0} 00000y,

Wiperi = (-, relt —=1,i], 0, ce(x;ry) | 0, 0),

= (oo, relT il zlk] I [s<IT + 1,1}, 0)

where £y init <— RevSamp((My, x, Mi[x1z[k]+ Bk, {€k,1,i,4}) and £ ; i 4’s are computed
honestly. Note that, the secret values {f;} are sampled depending on whether the queried key
is eligible for decryption. More specifically, if Zyy < [n], then Bi’s are sampled as in the
original key generation algorithm, i.e., D", B = 0. On the other hand, if maxZa > n then
Bi’s are sampled uniformly at random, i.e., they do not necessarily be secret shares of zero.
This can be done by the function hiding property of IPFE which ensures that the distributions
{{IPFE.SKv](cm}kE[n+1,|IM|J, {IPFE.CTy,, }iefn} for b € {0, 1} are indistinguishable where

o") Ty kom0, B+ borg, 0) fork € [n+ 1, [Zull, re < Zp

= (
=(—=k'-pp, pr. O, 1, 0) fork’ €[n]

ujp

Thus, the indistinguishability between the group of hybrids can be guaranteed by the piece-
wise security of AKGS and the function hiding security of IPFE.

Second group of hybrids The second step is a loop. The purpose of the loop is to change all
the honest label values ¢ ; ; , to simulated ones that take the form £y ; i o = Sx[t, 15, r[q]
where s, [z,] is hardwired in wuy ; ; or @y 741,i and s¢, r[q] is hardwired in vg 4 or Vg 4.
The whole procedure is executed in via a two-level loop with outer loop running over ¢ and
inner loop running over ¢ (both in increasing order). In each iteration of the loop, we move
all occurrences of ry r[q] into the #’s in one shot and hardwire the honest labels £ ; ; 4 into
uy ;i for all i. Below we present two crucial intermediate hybrids of the loop when? < T'.

veg = (oo~ Kriglgl |- 1 [0) [1] 0),
Teg=C--, [0} 1 o [1]0),

; honest £ ; ;
weper = Coos = raglglj= 1 saleit | 200 O,

honest £ 711,14
= —rylT,ilrg rlgl +--- |

Upr+1i = (oo, relT,] z[k] I selT + 1,1, 0)

where Xr r[q] and V7 r[q] indicate the presence of ry ¢[q] in their respective positions.
The indistinguishability can be argued using the function hiding security of IPFE. Next, by
invoking DDHin G, we firstmake r [t — 1, i]r«, r[¢] truly random for all i and then transform
the label values into their simulated form £y ; , = sx[t, i]s, r[¢] again by using DDH in G
for all i. We emphasize that the labels £ 74 1,i,4 are kept as honest and hardwired when the
loop runs for + < T. Finally, the terms sy, r[g] are shifted back to vy 4 or ’ﬁk,q.

@ Springer

Compact FE for unbounded attribute-weighted sums

veg = (oo [—reglall 0 [Mieriplal] I [seslql] [0) 0.

g = (oo =rislal || Yeaceld] | I o [o] o).

wpieri= (-, 0] I sl [0]0),
Berari= (-, rel T, 2kl || s<lT + 1,11, [0], 0)

After the two-label loop finishes, the reduction run an additional loop over ¢ with ¢ fixed at
T + 1 to make the last few label values £ 71,4 simulated. The indistinguishability between
the hybrids follows from a similar argument as in the two-level loop.

Vg =C, =rerlgl, 0, Mgcriplgl 1| sk rlgl, 0,0),
g = (o0 —rislal Yraccld] I [sk.slq1} 0. 0),
Ugreri =, =0— || sglt,il, 0,0),
Beriti= (o —[0]= |l sx[T+1,il,0,0)

Third group of hybrids After all the label values £, ; , are simulated, the third step uses
a few more hybrids to reversely sample €1 init and £ initlk~1 with the hardcoded values
Mx)"z + B1 and Bi|r>1 respectively. This can be achieved through a statistical transfor-
mation on {B¢| Y, Bx = 0}. Finally, we are all set to insert the dummy vector d in place of
z keeping A’s view identical.

vk,init:("'v 13 070 ” 07 0»0)3

Veg = (- [0~ Il skrlgl. 0,0),

Vig =, —[0]= Il si/[g),0,0),

uk,init - (] 7 Os 07 ” 07 Oa 0)7
Upr<T,i = (", —0— I sxlt,il, 0,0),
Uprs1i=(, —0— | s<[T+1,i],0,0)

where all the label values {{; ;i 4} are simulated and the initial label values are computed as
follows

£1.nit < RevSamp (M, x, M(x)"d + B, {€x.riq)s
Li,init < RevSamp(My, x, Bi, {€k1,i,q}), forallk > 1

From this hybrid we can traverse in the reverse direction all the way to the very first hybrid
while keeping the private attribute as d. We also rearrange the elements using the security
of IPFE so that the distribution of the ciphertext does not change with the occurrence of the
secret key whether it comes before or after the ciphertext. This is important for the public
key UAWSL. The formal security is discussed in Theorem 3.

From single key to full-fledge UAWS" The next and final goal is to bootstrap the single key,
single ciphertext secure UAWS! to a public key UAWS! scheme that supports releasing many
secret keys and ciphertexts. Observe that our secret key UAWS' already supports multiple
keys and single ciphertext. However, it fails to remain secure if two ciphertexts are published.
This is because the piecewise security of AKGS can not be guaranteed if the label functions

@ Springer

P.Datta et al.

are reused. Our bootstrapping procedure takes inspiration from prior works [38, 62], that is
to sample a random multiplier s < Z, at the time of encryption, which will randomize the
label values in the exponent of G;. In particular, using IPFE security the random multiplier
s is moved to the secret key vectors where the DDH assumption ensures that s€ ;i ,’s are
pseudorandom in the exponent of G». To upgrade the scheme into the public key setting, we
employ the Slotted IPFE that enables encrypting into the public slots using the public key
whereas the function hiding security still holds in the private slots. We describe below our
public key UAWS" scheme.

SKat, 7y = {IPFE.SKy o IPFE.SKy, 1. IPFE.SKy, . IPFESK, Jeezy, © @ < Z,

[vi,initlo =0C 0, «, 0, 0, 0, I 0)I-,
[vk,initlle = [(7 (1, k), O, —rg f[1], Bk, 0, I 0)]2,
[orgllz = [(m (1K), O, —rpflgl, 0, (Mgeridlgl 1| 0)la,
gl = [C (1, K), 0, —re flq), @y accld] I 0T
CTy = {IPFE.CT,y 0, PFECToy 1, IPFECTa 1, Ji i 5 < 2
[upaalli = [I(0, s, 0, 0, 0, I L),
[uk initlh = [C px(=k, 1), 0, 5 - re[(0, 1, 1,05)], s, 0, I L),
Mui <7l = 0Cor(=k, 1), 0, s-rylt—1,1], 0, s-ce(x;ry) | L),
[z, 741,101 = [(px(—k, 1), O, sore[T,i], s-z[k] I L)

The slots at the left/right of *“ || ” are public/private. The ciphertexts are computed using
only the public slots and the private slots are utilized only in the security analysis. At a
very high level, we utilize the triple-slot encryption technique devised in [38] to simulate
the pre-challenge secret keys with a dummy vector encoded into the ciphertext and hardwire
the functional value into the post-challenge secret keys. As mentioned earlier, the triple-slot
encryption technique [38] was devised for the non-uniform model which crucially uses the
fact that the garbling randomness can be (fully) sampled in the key generation process. This
does not hold in our setting. Thus, we design a more advanced three-slot encryption technique
that is compatible with distributed randomness of AKGS garbling procedure. More specifi-
cally, we add one additional hidden subspace in order to realize such sophisticated mechanism
for Logspace Turing machines. This additional subspace enables us to simulate the post-
ciphertext secret keys with distributed randomness. However, shuttle technical challenges
still remain to be overcome due to the structure of AKGS for Logspace Turing machines. We
prove the security of the scheme in Theorem 4.

3 Preliminaries

In this section, we provide the necessary definitions and backgrounds that will be used in the
sequence.

Notations We denote by A the security parameter that belongs to the set of natural number
N and 1* denotes its unary representation. We use the notation s < S to indicate the fact
that s is sampled uniformly at random from the finite set S. For a distribution X, we write
x < X to denote that x is sampled at random according to the distribution X'. A function
negl : N — Ris said to be a negligible function of 1, if for every ¢ € N there existsaA, € N
such that for all A > A., [negl(A)| < A7¢.

Let Expt be an interactive security experiment played between a challenger and an adver-
sary, which always outputs a single bit. We assume that Exptf4 is a function of A and it is

@ Springer

Compact FE for unbounded attribute-weighted sums

parametrized by an adversary A and a cryptographic protocol C. Let Expti{o and Expti{1 be

two such experiment. The experiments are computationally/statistically indistinguishable if
for any PPT/computationally unbounded adversary A there exists a negligible function negl|
such that for all A € N,

AdvG () = |Pr[1 < Expt5°(1%)] — Pr[1 < ExptG' (1M)]] < negl(n)

We write Expti{o A Exptii1 if they are computationally indistinguishable (or simply
indistinguishable). Similarly, Exptiio A Exptiil means statistically indistinguishable and
Expti{0 = Expti{1 means they are identically distributed.

Sets and indexing For n € N, we denote [r] the set {1,2,...,n} and for n,m € N with
n < m, we denote [n, m] be the set {n,n+ 1, ..., m}. We use lowercase boldface, e.g., v, to
denote column vectors in Z;‘, and uppercase boldface, e.g., M, to denote matrices in Z7*" for
p,n,m € N.Thei-thcomponent of a vectorv € Z';, is written as v[i] and the (i, j)-thelement
of a matrix M € Z}*™ is denoted by M[7, j]. The transpose of a matrix M is denoted by M’
such that M " [i, j1=M][j, i]. To write a vector of length n with all zero elements, we write
0, or simply 0 when the length is clear from the context. Let u, v € Z7,, then the inner product
between the vectors is denoted asu-v = u v = > ey ulilvlil € Z,. We define generalized

inner product between two vectors # € Z~', v € Z5 by u - v = > ier,nT, wlilvli].

Tensor products Let u € Z,I,‘ and v € Z%z be two vectors, their Kronecker product w =

u ® v is a vector in Zgl *22 Wwith entries defined by w([(i, j)] = u[i]v[j]. For two matrices

T/ xT) | . . .
M, € Zg‘ *2 and M € Zy' “*2 their Kronecker product M = M = M| ® M is a matrix

in Z NP i entries defined by MU (i1, 7]), (iz. i))] = My i1, i2]Mali]., i}].

Currying Currying is the product of partially applying a function or specifying part of the
indices of a vector/matrices, which yields another function with fewer arguments or another
vector/matrix with fewer indices. We use the usual syntax for evaluating a function or indexing
into a vector/matrix, except that unspecified variables are represented by “.”. For example,
let M e Z{FPPARDXATIARD 4nq iy € 71, jo € T, then M[(i1,), (-, j2)] is a matrix

N e ZFU72) guch that Nia, ji] = M1, i2), (i1, jo)] forall iy € To, j1 € J1.

Coefficient vector Let f : Zg — Z be an affine function with coefficient vector f € Zf
for S = {const} U {coef;| i € Z}. Then for any x € ZL, we have f(x) = flconst] +
> ier flcoefi1x[i].

3.1 Bilinear groups and hardness assumptions

We use a pairing group generator G that takes as input 1* and outputs a tuple G =
(G1, Go, G, g1, 82, €) where G, Gy, Gt are groups of prime order p = p(1) and g; is
a generator of the group G; for i € {1,2}. The map ¢ : G; x G — Gr satisfies the
following properties:

— bilinear: e(g{, gé’) =e(g1, gz)“h foralla,b € Zj.
— non-degenerate: e(g1, g2) generates Gr.

The group operations in G; for i € {1, 2, T} and the map e are efficiently computable in
deterministic polynomial time in the security parameter A. For a matrix A and each i €

@ Springer

P.Datta et al.

{1, 2, T}, we use the notation [A]]; to denote glA where the exponentiation is element-wise.
The group operation is written additively while using the bracket notation, i.e. [A 4+ BJ|; =
[[A]; +[B]; for matrices A and B. Observe that, given A and [B]];, we can efficiently compute
[AB]; = A - [B]l;. We write the pairing operation multiplicatively, i.e. e([All;, [Bl») =
[AT(BI. = [ABI]r.

Assumption 1 (Symmetric external Diffie—Hellman assumption) We say that the SXDH
assumption holds in a pairing group G = (G1, Gy, Gr, g1, &2, €) of order p, if the DDH
assumption holds in G;, i.e., {[all;, [P1i, [ablli} = {[lal;, [P1;, [c];} fori € {1, 2, T} and
a,b,c < 7Zp.

3.2 Turing machine formulation

In this subsection, we describe the main computational model of this work, which is Turing
machines with a read-only input and a read-write work tape. This type of Turing machines
are used to handle decision problems belonging to space-bounded complexity classes such as
Logspace predicates. We define below Turing machines with time complexity 7" and space
complexity S. The Turing machine can either accept or reject an input string within this
time/space bound. We also stick to the binary alphabet for the shake of simplicity.

Definition 1 (Turing machine with time/space bound computation) [62] A (deterministic)
Turing machine over {0, 1}isatuple M = (Q, Y,cc, 8), where Q > 1 is the number of states
(we use [Q] as the set of states and 1 as the initial state), y,. € {0, 1}€ indicates whether
each state is accepting, and

8:[0]1x{0,1} x {0,1} — [Q] x {0, 1} x {0, £1} x {0, 1},
(q,x,w) — (qg',w', Ai, Aj)

is the state transition function, which, given the current state ¢, the symbol x on the input
tape under scan, and the symbol w on the work tape under scan, specifies the new state ¢/,
the symbol w’ overwriting w, the direction Ai to which the input tape pointer moves, and the
direction Aj to which the work tape pointer moves. The machine is required to hang (instead
of halting) once it reaches on the accepting state, i.e., for all g € [Q] such that y,.[¢] =1
and all x, w € {0, 1}, it holds that § (¢, x, w) = (¢, w, 0, 0).

For input length N > 1 and space complexity bound S > 1, the set of internal configura-
tions of M is

Cu.n.s =[NTx[S]x{0,1}5 x [Q],

where (i, j, W, q) € Cy, N, s specifies the input tape pointer i € [N], the work tape pointer
j € [S], the content of the work tape W € {0, 1}$ and the machine state q €0l

For any bit-string x € {0, 1}" for N > 1 and time/space complexity bounds T, § > 1,
the machine M accepts x within time 7 and space S if there exists a sequence of internal
configurations (computation path of T steps) co, ..., cr € Cy,n.s With¢; = (i, ji, Wr, q1)
such that

io =1, jo=1, Wo = 0s, go = 1(initial configuration)

forO0<t<T 8(qs, x[is], Wz[jz].) = (%-H.» Wt—H[J'{], l.z-'i-l - if.7 Jt+1 —]t),
W:s1ljl = W [jlforall j # j; (valid transitions);

Yacclgr] =1 (accepting).

@ Springer

Compact FE for unbounded attribute-weighted sums

Denote by M|y.7.s the function {0, 1}V — {0, 1} mapping x to whether M accepts x in time
T and space S. Define TM = {M| M is a Turing machine} to be the set of all Turing machines.

Note that, the above definition does not allow the Turing machines moving off the
input/work tape. For instance, if § specifies moving the input pointer to the left/right when
it is already at the leftmost/rightmost position, there is no valid next internal configuration.
This type of situation can be handled by encoding the input string described in [62]. The
problem of moving off the work tape to the left can be managed similarly, however, moving
off the work tape to the right is undetectable by the machine, and this is intended due to the
space bound. That is, when the space bound is violated, the input is silently rejected.

3.3 Functional encryption for unbounded attribute-weighted sum for Turing
machines

We formally present the syntax of FE for unbounded attribute-weighted sum (AWS) and define
adaptive simulation security of the primitive. We consider the set of all Turing machines
TM = {M| M is a Turing machine} with time bound 7 and space bound S.

Definition 2 (The AWS functionality for Turing machines) For any n, N € N, the class of
attribute-weighted sum functionalities is defined as

((x € {0. 3V, 17,1%"), 2 € Z) > M(x)Tz where
N.T,S>1,
Mx)'z =37, 2kl Mi(x)| My € TMVk € [n],
Im C [n] with |Zy| > 1

Definition 3 (Functional encryption for attribute-weighted sum) An unbounded-slot FE for
unbounded attribute-weighted sum associated to the set of Turing machines TM and the
message space M consists of four PPT algorithms defined as follows:

Setup(1*) The setup algorithm takes as input a security parameter and outputs the master
secret-key MSK and the master public-key MPK.

KeyGen(MSK, (M, Zs)) The key generation algorithm takes as input MSK and a tuple
of Turing machines M = (My)kez,, - It outputs a secret-key SK(yr,7,,) and makes (M, Zpy)
available publicly.

Enc(MPK, ((x;, 17, 12%), zi)ieln]) The encryption algorithm takes as input MPK and a
message consisting of A/ number of public—private pair of attributes (x;, z;) € M such that
the public attribute x; € {0, 1} for some N; > 1 with time and space bounds given by
T;, S; > 1, and the private attribute z; € Z),. It outputs a ciphertext CTy, 7;.5,) and makes
(x;, T;, Si)iepN) available publicly.

Dec((SK(MVIM), (M, Zy)), (CT(x,',Ti,Si)7 (x;i, T;, Si)ie[/\f])) The decryption algorithm
takes as input SK(y,7,,) along with the tuple of Turing machines and index sets (M, Zy),
and a ciphertext CT(y, 1;,5;,) along with a collection of associated public attributes
(x;, T;, Si)ierny- It outputs a value in Z, or L.

Correctness The unbounded-slot FE for unbounded attribute-weighted sum is said to be
correctif forall ((x; € {0, 1}"i, 17, 125;)’ Zi € Z’;i)ie[_/\f] and forall (M = (Mi)kezy > Im),
we get

Dec((SK,zyy), (M, Zpp)), (CT(x, 73,57)0 (%0, Tis Siievy) = Z Z My (x;)zi[k]
ieN keIy
(MSK, MPK) <« Setup(1%), SKm,zy) < KeyGen(MSK, (M, Zy)),

a8 .
CT;. 1.5 < Enc(MPK, ((xi, 17,127), 20)icia), Im S [mi1 Vi e N

Pr =1

@ Springer

P.Datta et al.

We now define the adaptively simulation-based security of FE for unbounded attribute-
weighted sum for Turing machines.

Definition 4 (Adaptive simulation security) Let (Setup, KeyGen, Enc, Dec) be an unbounded-
slot FE for unbounded attribute-weighted sum for TM and message space M. The scheme is

said to be (Ppre, Pct, Ppost)-adaptively simulation secure if for any PPT adversary .A making

at most ®cr ciphertext queries and ®pre, Ppost secret key queries before and after the cipher-

text queries respectively, we have Expt%yggl(l)‘) ~ Expt%i‘/ggal(lk), where the experiments

are defined as follows. Also, an unbounded-slot FE for attribute-weighted sums is said to be

(poly, ®ct, poly)-adaptively simulation secure if it is (®pre, PcT, Ppost)-adaptively simu-

lation secure as well as ®pre and Ppost are unbounded polynomials in the security parameter

A

OKeyGen(MsK,)

UAWS (12 1. input: (M, Zpr)
w 2. output: SKa1,7,0)
LY Aaty; OkeyGenf; (MSK*,)
. (MSK, MPK) < Setup(1%); Jacmie)
(e 1715, 2 € Zp)ievy) < AOkeyGenisk.) (MPK); 1. input: (M, Tyr,) for ¢ € [Pprel

- Ty 15 < EnCMPK, ((xi, 177, 127, 2y e 2. output: SKanty 7y,

. return A9KeyGen(Msk,) (MPK, CT)

[N T

Enc* (MPK, MSK*, (x;, 17, 127 np)icia), ©)

EXthAWS I(]).)

Aidea 1. input: ¥V = {(M¢,IM¢),Z,-G[N]MMJ‘[)TZA‘ :
11V« A%, 2 fuf Lf')'z?l']}
2. (MSK*, MPK) < Setup* (1%, 1V); P oM T
(@ * *
3. (((x, 17,15, z; € Zyieiny) < A IS (MPK) O * (MSK* . (x*
4. e, 17,5 < Enct(MPK, MSK*, (xi, 17, 157, mp)epvy, V); —HeYGen M e)
5. return A KeyGen MK (511 - "(MPK, CT(x;,7;,5))) L input: (M. Zu,), ZfNMMx")TZ" for ¢ €

[q’post]
2. output: SK(MWIMQ,)

3.4 Function-hiding slotted inner product functional encryption

Definition 5 (Slotted inner product functional encryption) [62] Let G = (G, G2, G, g1, &2,
e) be a tuple of pairing groups of prime order p. A slotted inner product functional encryption
(IPFE) scheme based on G consists of 5 efficient algorithms:

IPFE.Setup(1*, Spub- Spriv) The setup algorithm takes as input a security parameter A and
two disjoint index sets, the public slots Sy, and the private slots Spyiy. It outputs the master
secret-key IPFE.MSK and the master public-key IPFE.MPK. Let S = Spup U Spriv be the whole
index setand | S/, |Spup|, | Spriv| denote the number of indices in S, Spyp and Spriv respectively.

IPFE.KeyGen(IPFE.MSK, [v]l2) The key generation algorithm takes as input IPFE.MSK and
avector [v]; € Glzs‘. It outputs a secret-key IPFE.SK for v € Z‘,;gl.

IPFE.Enc(IPFE.MSK, [[u]1) The encryption algorithm takes as input IPFE.MSK and a vector
[uli € G\ It outputs a ciphertext IPFE.CT for u € ZJy .

IPFE.Dec(IPFE.SK, IPFE.CT) The decryption algorithm takes as input a secret-key IPFE.SK
and a ciphertext IPFE.CT. It outputs an element from Gr.

IPFE.SlotEnc(IPFE.MPK, [[u]]1) The slot encryption algorithm takes as input IPFE.MPK and

a vector [ull; € G| ™. It outputs a ciphertext IPFE.CT for (u[|0)s,,,)) € Z}.

Correctness The correctness of a slotted IPFE scheme requires the following two properties.

@ Springer

Compact FE for unbounded attribute-weighted sums

— Decryption Correctness: The slotted IPFE is said to satisfy decryption correctness if for
allu, v € Z‘psl, we have

Dec(IPFE.SK, IPFE.CT) = [v - u]lr :
(IPFE.MSK, IPFE.MPK) < Setup(1%, Spub, Spriv)»
IPFE.SK < KeyGen(IPFE.MSK, [[v])),

IPFE.CT < Enc(IPFE.MSK, [[u];)

Pr

— Slot-Mode Correctness: The slotted IPFE is said to satisfy the slot-mode correctness if
|Spub|

for all vectorsu € Z)," ", we have
(IPFE.MSK, IPFE.MPK, IPFE.CT) :
{ (IPFE.MSK, IPFE.MPK) < Setup(1*, Soubs Spriv) }
IPFE.CT <« Enc(IPFE.MSK, [[u||0|spriv|]]1)

(IPFE.MSK, IPFE.MPK, IPFE.CT) :
= : (IPFE.MSK, IPFE.MPK) < Setup(1*, Spubs Spriv) }
IPFE.CT <« SlotEnc(IPFE.MPK, [[u11)

Security Let (IPFE.Setup, IPFE.KeyGen, IPFE.Enc, IPFE.Dec, IPFE.SIotEnc) be aslotted IPFE.
The scheme is said to be adaptively function-hiding secure if for all PPT adversary A, we

have Expt’fPFE(1%, 0) ~ Expt’fPFE(1%, 1), where the experiment Expt's"PFE(1* b) for
b € {0, 1} is defined as follows:

OKeyGenb(‘q)

ExptHPFE (1
ExptiHPPE(1%, b) 1. input: [v9], [v} 1 € G

1y. 2. output
1. (Spubv Spriv) <~ A(1%); ;
2. (IPFEMSK, IPFEMPK) < Setup(1*, Spup. Spriv): IPFE.SK; < KeyGen(IPFE.MSK, [[v7]l2)
3. return APKerGen; () Ong, () (IPFE. MPK) if

Okne, (-,)t

V15506 =)15, and 09 - u) = 0! -] LA A
for all {ﬂv(}ﬂz, ﬂv}ﬂz}j, ([edT. T} T i queried 1. input: [0, [u!1 € leld

by A t0 OkeyGen, (+, -) and Ogn, (-, -) respectively. 2. output

IPFE.CT; < Enc(IPFE.MSK, /1))

where v s, represents the elements of v; sitting at the indices in Spyp.

Lemma1 [61, 62] Let G = (G, Go, G, g1, g2, €) be a tuple of pairing groups of prime
order p and k > 1 an integer constant. If MDDHy holds in both groups Gy, Gy, then there is
an adaptively function-hiding secure IPFE scheme based on G.

3.5 Arithmetic key garbling scheme for Turing machines

Lin and Luo [62] introduced arithmetic key garbling scheme (AKGS). The notion of AKGS
is an information theoretic primitive, inspired by randomized encodings [18] and partial
garbling schemes [51]. It garbles a function f : ZZ — Z, (possibly of size (m + 1)) along
with two secrets z, 8 € Z, and produces affine label functions Ly, ..., Ly41 : Z’I‘, — Zp.
Given f,aninputx € Z’;, and the values L1(x), ..., L;+1(x), there is an efficient algorithm
which computes zf (x) 4+ 8 without revealing any information about z and §. Lin and Luo
[62] additionally design AKGS for Turing machines with time/space bounds. Many parts of
this section are taken from the Sections 5 and 7.1 of [62]. Thus, the reader familiar with the

@ Springer

P.Datta et al.

notion of AKGS for Turing machines can skip this section. We define AKGS for the function
class

F={Mlyrs:Z) — Z, N.T.S > 1, p prime}

for the set of all time/space bounded Turing machine computations. We refer to [62] for a
detailed discussion on the computation of Turing machines as a sequence of matrix multi-
plications, and the construction of AKGS for matrix multiplication.

Definition 6 (Arithmetic key garbling scheme (AKGS)) [62] An arithmetic garbling scheme
(AKGS) for the function class F, consists of two efficient algorithms:

Garble((M, NV T, 12S, P), 2, B) The garbling is a randomized algorithm that takes as
input a tuple of a function M|y 7 s over Z, from F, an input length N, a time bound T, a
space bound S with N, T', § > 1, a prime p, and two secret integers z, 8 € Z,,. It outputs a set
of affine functions Linit, (Lz,6)re[T+1],6eChrn.s - Zg — 7, which are called label functions
that specifies how an input of length N is encoded as labels. Pragmatically, it outputs the
coefficient vectors Linit, (€r,0)re[T+11.6€Cyr v s

Eval(M, 1N, 17,12 p), x, Cinit, (€r.9)se[T+11.6cCy v s) The evaluation is a determinis-
tic algorithm that takes as input a function M|y 1 s over Z, from F, an input vector x € ley
and the integers Cinit, (£1,0)re[T+11,0eCy v s € Zp Which are supposed to be the values of the
label functions at x € Zg . It outputs a value in Z .

Correctness The AKGS is said to be correct if for all tuple (M, V1T, 125, p), integers
z,B €Zyandx € ZY, we have

S
Eval(M, 1V, 17, 12", p), x, linit, (€r.0)1e[T+11,0€Ch x.5)
pel = M|y T s(x)+B: 1
r N (T 128 =
(Linit, (1.0 re[T+11,0eCy v.s) < Garble(M, 1%, 17,17, p), z, B),

where £ < L(x)

The scheme have deterministic shape, meaning that the number of label functions, m =
14 (T + 1)NS250, is determined solely by the tuple (M, VT, 125, p), independent of
z, B and the randomness in Garble. The number of label functions m is called the garbling
size of M|y 1. s under this scheme. For the sake of simpler representation, let us number the
label values (or functions) as 1, ..., m in the lexicographical order where the first two label
values are £init, £(1,1,1,05,1) and the last label value is E(T_,'_I,NYSJS’Q).

Linearity The AKGS is said to be linear if the following conditions hold:

— Garble((M, 1V, 17T, 125, P), z, B) uses a uniformly random vector r <« Z’;} as its ran-

domness, where m is determined solely by (M, N7, 125, p), independent of z, 8.

— The coefficient vectors £1, ..., £, produced by Garble((M, 1V, 17, lzs, D), z, B) are
linear in (z, B, r).
~ Eval((M, IV, 17,12° p), %, €1, ..., £y) is linear in €1, ..., £p.

For our UAWS, we consider the piecewise security notion of AKGS defined by Lin and
Luo [62]'.

! The usual simulation-based security considered in previous works [38, 51] follows from the piecewise
security of AKGS.

@ Springer

Compact FE for unbounded attribute-weighted sums

Definition 7 (Piecewise security of AKGS) [62] An AKGS = (Garble, Eval) for the function
class F is piecewise secure if the following conditions hold:

— The first label value is reversely sampleable from the other labels together with

(M, V1T, 125, p) and x. This reconstruction is perfect even given all the other
label functions. Formally, there exists an efficient algorithm RevSamp such that for all
M\nrs€eF,z,p€Zyandx € ZN | the following distributions are identical:

Ot .. 4y 1o) = Garble(M IV 1T 17,). 2,), |
01 < Li(x)

(@1, ... 4y) < Garble(M, 1V, 17, 12° p), z,),
:Zj<—Lj(x)f0rje[2,m], S
€1 < RevSamp((M, IV, 17,1%° p), x, zM|y 1.5 (%) +
ﬂ7£25"'3£m)
— For the other labels, each is marginally random even given all the label functions after

it. Formally, this means for all M|y 7. s € F,z,B € Zp,x € Z’I‘, and all j € [2, m], the
following distributions are identical:

1,42, ..., &)

L@, ..., 4y) < Garble(M, 1V, 1712, p), 2, B),
E',‘e' ,...,lm . ’
{(f i+l) € < Lj(x)

o, ..., 4y) < Garble(M, 1V, 17,12, p), z, B),
{(Z]7£j+la"~a‘em) . zj <—Zp

We now define special structural properties of AKGS as given in [62], related to the piecewise
security of it.

Definition 8 (Special piecewise security of AKGS, [62]) An AKGS = (Garble, Eval) for a
function class F is special piecewise secure if for any (M, IV 1T, 125, p)EF,z,BEL

andx € ZQ’ , it has the following special form:

— The first label value ¢; is always non-zero, i.e., Eval(M, 1V, 17,12° | p), x,1,0, ..., 0)
0 where we take £; =l and £; =0 for 1 < j <m.
— Letr < Z be the randomness used in Garble((M, IV, 17,12, p),z,B). Forall j e

[2, m], the label function L; produced by Garble ((M, 1V, 17,15, p), z, B; r) can be
written as

Lj(x) =kjrl[j — 114 Lz, B, e[l rlj + 11, ..., r[m])

where k; € Z,, is a non-zero constant (not depending on x, z, 8, r) and L’j is an affine
function of x whose coefficient vector is linear in (z, 8, r[j1, r[j + 11, ..., r[m]). The
component r[j — 1] is called the randomizer of L and ¢;.

Lemma 2 [62] A special piecewise secure AKGS = (Garble, Eval) for a function class F
is also piecewise secure. The RevSamp algorithm (required in piecewise security) obtained
for a special piecewise secure AKGS is linear in y, {3, ..., Ly+1 and perfectly recovers £

@ Springer

P.Datta et al.

even if the randomness of Garble is not uniformly sampled. More specifically, we have the
following:

Eval(M, 1V, 17,12 p),x, 01, ...,)

= gBval(M, 1V, 17 1% p), x, 1,0, ..., 0) + Eval(M, 1V, 17,12 p), x,0, £, ..., €m)
RevSamp((M, 1V 17,12° p), x, v, o, .., €m)

= (Bval(M, 1V, 17,12 p) %, 1,0, ..., 0) " (y — Eval(M, 1V, 17 ,12°), %, 0, £, ..., £))

Note that, Eq. (2) follows from the linearity of Eval and Eq. (2) ensures that RevSamp
perfectly computes £ (which can be verified by Eq. (2) with y = zM |y 7, 5(x) + B).

Lemma 3 [62] A piecewise secure AKGS = (Garble, Eval) is also special piecewise secure
after an appropriate change of variable for the randomness used by Garble.

4 Construction of AKGS for the class F

We now describe the AKGS construction for the function class F given by Lin and Luo [62].
Before going to the actual construction, we first represent the computation of Turing machines
as a sequence of matrix multiplications.

Transition matrix Given a Turing machine M = (Q, yac.), upper bounds of time
and space 7, S > 1 and an input x € {0, 1}N for some N > 1, we consider the
length-T computation path of M with input x and space bound S. Recall that the set of
internal configuration is Cpy v, = [N] x [S] x {0, l}S X [Q]. An internal configuration
0 = (@, j,W,q) € Cy,n,s specifies that the input and work tape pointers are at position i
and j respectively, the work tape has content W, an the current state is ¢. In particular, the
initial configuration is (1, 1, 0g, 1): the input/work tape pointers point to the first cell, the
work tape is all-0, and the state is the initial state 1. An accepting configuration satisfies that

Yacclgl = 1.

We construct a transition matrix My s(x) € {0, I}CM-N-SXCM~N~S such that My g(x)[6, 0']
= 1 if and only if the internal configuration of M is 6’ after 1 step of computation starting
from internal configuration 8. According to how the Turing machine operates in each step
depending on the transition function &, the entries of My s(x) are defined as follows:

My s(O)[G, j, W, q), (', j', W, g)]
1, if8(q, x[il, W[jD = (¢". W'[j1.i" =i, j = J)
= and W'[j"] = W[j"]forall j” # j;
0, otherwise;
1, ifd(q, L, WD = (" WIjli" =i, j =))
=x[i] x and W'[j"] = W[j"] for all j” # j;
0, otherwise;
1, if8(q.0, W[jD = (¢". W'[j1.i" =i, j = J)
+ (1 —x[i]) x and W'[j"]1 = W[j"]forall j” # j;
0, otherwise;

With the transition matrix, we can now write the computation of Turing machines as
a sequence of matrix multiplication. We represent initial configurations using one-hot

@ Springer

Compact FE for unbounded attribute-weighted sums

encoding—the internal configuration 6 is represented by the basis vector eg € {0, 1}°M.N.
whose 6-entry is 1 and the other entries are 0. Observe that multiplying e;— on the right
by the transition matrix My s(x) produces exactly the next internal configuration: if
there is no valid internal configuration of M after 1 step of computation starting from
6, we have e(;rMN,s(x) = 0; otherwise, the next internal configuration 6’ is unique and
e(;rMN,S(x) = e;—,. The function M|y 7,s(x) can be written as

My 1,s(x) = ea’1,05,1)(MN,S(X))T(l[N]x[S]x{o,1}5 ® Yacc)

where e(1,1,0,,1) represents the initial internal configuration. The sequence of multiplication
advances the computation by 7 steps and test whether the final internal configuration is an
accepting state. We elaborate on the last step: The tensor product 1y, (570, 1} ® Yacc IS @
vector in {0, 1}°M.V.s such thatits (i, j, W, g)-the entry is 1 if and only if y,..[q] = 1,i.e..q
is an accepting state. Therefore, taking the inner product of ea,l,os,l)(MN»S(x))T = e;—, ©’
is the final internal configuration) or O with the tensor product indicates whether M accepts
x within time 7" and space S.

Transition blocks We observe that the transition matrix has the following two useful prop-
erties:

— My, s(x) is affine in x when regarded as an integer matrix.

— My, s(x) has the following block structure. There is a finite set {M;}; of O x Q
matrices defined by the transition function §, called transition blocks, such that for
every (i, j, W,q) and (i’, j/, W,q’) in [N] x [S] x {0,1}5 x Q, the submatrix
My s(x)[(, j, W,.), (@, j', W,)]is either some M; or 0.

Below we define the transition blocks.

Definition 9 Let M = (Q, y,cc. 8) be a Turing machine and 7 = {0, 1} x {0, £1}? the set of
transition types. The transition blocks of M consists of 72 transition matrices M, € {0, 1}¢*2
for T = (x,w,w’, Ai, Aj) € T, each encoding the possible transitions among the states
given the following information: the input tape symbol x under scan, the work tape symbol
w under scan, the symbol w’ overwriting w, the direction Di to which the input tape pointer
moves, and the direction Dj to which the work tape pointer moves. Formally,

1, ifé(g, x, w) = (¢', w', Ai, Aj);

M ! i i 5 / =
xwai.ajl4 4’1 {O, otherwise
In My s(x), each Q x Q block is either one of the transition blocks or 0:

My, s(OLG, j, W, o), @, j', W',)]

Mx[i],W[j],W’[j],i/fi,j/fj’ lfl/ — i, j/ — j S {0, :I:l} and
= W{(;j”1 = W'[j"] forall j” # j;
0, otherwise

Observe further that in My s(x)[(i, j, W, .), (., =, =,)], €ach transition block appears at
most once.

AKGS for Turing machines. Above, we have represented the Turing machine computation
as a sequence of matrix multiplication over the integers:

MlA_fr,T,s(x)
= e(l.l,os,l)(MN’S(x))T(l[N]X[S]X{O,I}S ® yacc) forx € {0, I}N

@ Springer

P.Datta et al.

We can formally extend M|y r.s : {0, 1}¥ — {0,1} to a ZIZY — Z, function using
the same matrix multiplication formula, preserving its behavior when the input comes from
{0, 1}¥. When p is clear from the context, we use M| N,T,s to represent its extension over
Z,. We now describe the construction of AKGS [62] for the Turing machine computations.

We consider the function class

F={Mlyrs:Z) — 7, N,T,S > 1, p prime}

which is the set of time/space bounded Turing machine computations. The AKGS =
(Garble, Eval) for the function class works as follows:

Garble((M, 1V, 17,12, p), z, B) It takes a function M|y.1.s over Z, from F and two
secrets z, B € Z, as input. Suppose M = (0, Y¥ac,), the algorithm samples r as the
randomness by

fort € [0,T]: r, < ZG"NS (Cwm.vs = [N x [S]x {0, 1}5 x [Q]),
0,T]xC .. P
)Xo, rlt,i, j. W, gl =rdG. j, W.q)].

It computes the transition matrix My _s(x) as a function of x and defines the label functions
by

Linit(x) = B + e(Tl,l,os,l)’O’
fort € [T]: (Lyp)oecy ys(x) = —ri—1 +Mp s(x)r,,
(Lry10)oecuns = =T + 2l yixqsixo.1)5 © Yace:

It collects the coefficients of these label functions and returns them as
(Linits (€r,0)re[T+11,0€Cp 5.5)-

Note: We show that Garble satisfies the required properties of a linear AKGS:

— The label functions are affine in x : Linjt and L7119 for all 6 € Cy n,s are constant
with respect to x. The rest are L; g (x) = (—r;—1 + My s(x)r;)[0]. Since My s(x) is
affine in x and r;_1, r; are constant with respect to x, these label functions are also affine
inx.

— Shape determinism holds: The garbling size of M|y r.sis 1 + (T + HNS25Q.

— Garble islinearin z, B, x : The coefficients of the label functions are linear in
(z, B, x). Observe that My s(x), €(1,1,05,1) and y,. are constant withrespectto (z, B, r),
and z, B and r, for all ¢+ € [0, T'] are linear in (z, 8, x). By the definition of the label
functions, their coefficients are linear in (z, 8, x).

Eval(M, 1V, 17, 1%, p),x, €1, ..., Ly) Ittakes a function M|y s over Z, from F, an
input string x € Zg and the labels as input. It first computes the transition matrix My, s(x)
with x substituted into itand sets £; = (¢;,0)9ec,, v s fort € [T +1]. The algorithm computes
and returns

T+1
Cinit + €)1 051y D My s(x)' ™',

t=1

Correctness Plugging ¢, 9 = L; ¢(x) and the formula for M|y, 7, s into the simulation, we
find that it is a telescoping sum:

@ Springer

Compact FE for unbounded attribute-weighted sums

T+1
el 1os. O My s(x) '8,

t=1

T+1
=el 1051y > My s(x)' " (=11 + My s(x)r;)
t=1

+ 95,1,03,1)(MN,S("))T(_’T + 21N xs1x10.115 @ Yacc)

T
=el 1051 2 (~(Mys(x)'"'r 1+ My 5(x)'r0)
t=1

—e(1 1.05.1)My s rr +2M|y 7. 5(x)
= _e;rlql,()syl)r() +zM|yN,1,5(x)

The value returned by Eval is

T+1
Cinit + €11 051 D My s(x) ¢,
=1

= (B+e(i 105170 + (—€(| | g 1yF0 + 2M|y.1.5(x))
=B+ zM|n1,5(x).

Therefore, the scheme is correct. Moreover, Eval is linear in the labels, as seen from the
formula of Eval.

Theorem 2 [62] The above construction of AKGS is piecewise secure. More precisely, the
label functions are ordered as Linit, (L1,0)geCy v.s» (L2,0)0eCy n.s> -+ » (LT+1,0)0eCy x>
the randomness is ordered asro, r1, . .., rr, and the randomizer of L; g is r;_1[0]. For each
t € [T + 1], the ordering of the components in (L; 9)oeccy y.s @nd ri—1 can be arbitrary, as
long as the two are consistent.

An exercise of algebra We note that the above construction of AKGS for the function class

. 0,T]xC Y . n »
F requires to sample r < ZE, XCMN.S e will use “structured” element r = ry ®ry for

N
ry < ZE?’T]X[N]X[S]X{O‘” and ry < Zg as the randomness for the AKGS garbling. We

show that My s(x)r; (a central part of the label functions) can be expressed as a bilinear
function of x, ry, x ® ry (known at encryption time) and M r ¢, r ¢’s (known at key gener-
ation time), and hence can be computed as the inner products of vectors depending on these
two groups of variables separately.

By our choice of randomness, r; = r[t, ., -, -, -] is a block vector with each block being
a multiple of r y. More precisely, r,[i, j, W,.] = r¢[(k,t,1, j, W)]r . We compute each
block of the product My s(x)r;:

My, s(x)rol(, j, W,)]

 of AB is [
(PR L) = My sQOLG, o W, (oo
block i
(mu?fipn"éiil‘n) =) Mus@IG . W0 @ WO W)
i’e[N].j€[S]
W' e{0,1}S

= > Mys®IG,j, W0, G, j W, el i, j', WHir

i'e[N],j €lS]
We{0,1}5

@ Springer

P.Datta et al.

Recall that in My s(x)[(, j, W,.), (o, o, o, »)], each transition block appears at most
once, and the other O x Q blocks are 0. More specifically, M, ,, u ai a;j appears at
My s(x)[G, j, W,0), G, j, W, 0)lifx =x[i],w=W[j]l, Ai =i’ —i, Aj = j'— j,and
W’ is W with j-th entry changed to w’. Therefore, we have

My, s()rol(, j, W,)]

= > Mot wijlwai,aiTe (0 + A, j+ Aj, W)r g
w'ef0,1}
Ai,Aje{0,£1)
i+Ai€[N], j+AjelS]
= Z M, w,w', 40, AT £ X

x,w,w'€{0,1}

Ai,Aje{0,£1)
rel(t, i+ Ai, j+ Aj, WHI, ifx = x[il,i + Ai € [N],
w=WI[jl,j+ A4j €[S]; 2)
0, otherwise

Here, W/[j] = w’ and W'[j”] = W[;”] for all j” # j. Note that in the last summa-
tion formula, there are exactly 72 summands. Moreover, each summand is My, w, Ai AT £
(depending only on r ¢ and the transition blocks) multiplied by an entry in 7, or O (depending
only on x, r,). To simplify notations, we define transition coefficients:

Definition 10 Let 7 = {0, 1}® x {0, £1}2 be the set of transition types. For all T =
(x,w,w’, Ai, Aj) € T,N,T,S > l,and x € {0,1}¥,t € [T],i € [N],j € [SLW €

S
{0,1}5,ry € ZEUO’T]X[N]X[S]X{O‘I} , define the transition coefficient as

Cx,wow', i, A (X5 1,0, j, Wiry)
rel(t i+ AL, j+Aj, W), ifx =x[i],i + Ai € [N],
= w=W[jl,j+ A4j € [S];
0, otherwise

where W’ € {0, 1}5, W/[j]1 = w’, and W'[j”] = W[j"] for all j" # j.

With the above definition, Eq. (2) can be restated as

(MN,S(x)rl)[(i7j7 W7 H)] = th(xvt’i7j’ W7 rx)Mfrf~ (3)
teT

5 (1-SK, 1-CT, 1-slot)-FE for unbounded AWS in L

In this section, we build a secret-key, 1-slot FE scheme for the unbounded attribute-weighted
sum functionality in L. At a high level, the scheme satisfies the following properties:

— The setup is independent of any parameters, other than the security parameter A. Specif-
ically, the length of vectors and attributes, number of Turing machines and their sizes are
not fixed a-priori during setup. These parameters are flexible and can be chosen at the
time of key generation or encryption.

@ Springer

Compact FE for unbounded attribute-weighted sums

— A secret key is associated with a tuple (M, Zps), where M = (Mj)kez,, is a tuple of
Turing machines with indices k from an index set Zps. Foreach k € Zyr, My € L,i.e., My
is represented by a deterministic log-space bounded Turing machine (with an arbitrary
number of states).

— Each ciphertext encodes a tuple of public—private attributes (x, z) of lengths N and n
respectively. The runtime T and space bound S for all the machines in M are associated
with x which is the input of each machine M.

— Finally, decrypting a ciphertext CT, that encodes (x, z) with a secret key SKys 7,, that is
tied to (M, Zyy) reveals the value ZkeIM z[k] - My (x) whenever Zy; C [n].

We build an FE scheme for the functionality sketched above (also described in Definition 2)
and prove it to be simulation secure against a single ciphertext and secret key query, where the
key can be asked either before or after the ciphertext query. Accordingly, we denote the scheme
as SK-UAWS(LL Ly = (Setup, KeyGen, Enc, Dec), where the index (1, 1, 1) represents in
order the number of secret keys, ciphertexts and slots supported. Below, we list the ingredients
for our scheme.

1. IPFE = (IPFE.Setup, IPFE.KeyGen, IPFE.Enc, IPFE.Dec): a secret-key, function-hiding
IPFE based on G, where G = (G1, Gy, Gr, g1, &2, €) is pairing group tuple of prime
order p. We can instantiate this from [62].

2. AKGS = (Garble, Eval): a special piecewise-secure AKGS for the function class M =
{(Mly1s5:2) > Z,|MeTM,N,T,S > 1, p prime}
describing the set of time/space bounded Turing machines. In our construction, the Garble
algorithm would run implicitly under the hood of IPFE and thus, it is not invoked directly
in the scheme.

5.1 The construction

We are now ready to describe the SK—UAWS'(‘LM) = (Setup, KeyGen, Enc, Dec).

Setup(1*): On input the security parameter, fix a prime integer p € N and define the slots
for two IPFE master secret keys as follows:
Sr-uaws ={index;, index,, init, rand, rand®™P rand°™P_rand®mP-OMP acc, sim, sim™P, sim®©mP}
U {tb, th™P, thS°™P tb®™P<™P | 7 ¢ T}, (7 is defined in Definition 10)

S1.uaws ={index;, indexa, init, rand, rand™™P, rand"™>*™ acc, acc™™P, sim, sim'*™P}.

Finally, it returns MSK = (IPFE.MSK, IPFE.MSK).

rlapKeyGen(MSK, (M, Zy)): On input the master secret key MSK = (IPFE.MSK, IPFE.MSK)
and a function tuple M = (My)kez,, indexed w.r.t. an index set Zyy C N of arbitrary
size , parse My = (Qk, Yi, 6x) € TM Vk € Zjs and sample the set of elements

{5k<_z,,| > B=0 modp}
k

keZy
For all k € Zyy, do the following:

1. For My = (Qk, ¥, 6k), compute its transition blocks My ; € {0, 1}9%9% VY1 e T.

2. Sample independent random vectors r, f < Zg" and a random element 7y € Z,.

3. For the following vector vy init, compute a secret key IPFE.SKy init <— IPFE.KeyGen(IPFE.
MSK, v, init]l2):

@ Springer

P.Datta et al.

i i ini the other
vector | index; index; init rand acc th, | fepmhe
Vi, init Tk k-me rg 1] 0 B 0 0

4. For each g € [Qf], compute the following secret keys
IPFE.SKy , < IPFE.KeyGen(IPFE.MSK, [[vi 4]2) and
IPFE.SK., < IPFE.KeyGen(IPFE.MSK, [#.I12).

where the vectors Vigs
V4 are defined as follows:
vector | index; index, init rand acc th, the other
Vig Tk k- my 0 —reslgl 0 (Mgerey)lgl 0
vector | index; index, rand acc | theother
Vi g Tk k-mp —rirlgl yilql 0

Finally, it returns the secret key as

SK .20y = ((M,IM), [IPFE.SKk,init, {IPFE.SKy ., IPFE.SKk,q}qE[Qk]}kEI) .
M

Enc(MSK, (x, 17, 123), z): On input the master secret key MSK = (IPFE.MSK, IPFE.K/ER), a
public attribute x € {0, 1}"V for some arbitrary N > 1 with time and space complexity
bounds given by 7, § > 1 (as 17, 125) respectively, and the private attribute z € Z’,; for
some arbitrary n > 1, it does the following:

N
1. Sample a random vector r, <« ZE?‘T]X[N]X[SJX{O‘“ .

2. For each k € [n], do the following:

(a) Sample a random element pg < Z).
(b) Compute a ciphertext IPFE.CTy jnit < IPFE.Enc(IPFE.MSK, [[u¢4 init]l1) for the vector

Uk, init:
vector | index; index; init rand acc th, | theother
Uiinit | —k - ok Pk re[(0,1,1,05)] 0O 1 0 0

(c) Forallt € [T],i € [N], j € [S], W € {0, 1}5, do the following:
(i) Compute the transition coefficients c; (x; t, i, j, W;ry),Vt € T using ry.
(ii) Compute the ciphertext IPFE.CTy ;; j w < IPFE.Enc(IPFE.MSK, [[u,r i, j, wl1)
for the vector uy 1 ; j w:

vector index; indexy init rand acc tb, ‘f‘rfd‘l’g;gf

Uk W | =k pk P 0 relt—1i,j,WM] 0 ce(xit,i, j,Wiry) 0
(d) Fort =T + 1, compute the ciphertext IPFE.CTy 741, j w < IPFE.Enc(IPFE.MSK,
[%x,7+1,i,j,wlh) for the vector Wy 741,i,j,w:

i i the other
vector index; index, rand acc | Qephe

Ur,r+1,i,j,w | —k- pr Pk re[(T,i, j,W)] z[k] 0

@ Springer

Compact FE for unbounded attribute-weighted sums

3. Finally, it returns the ciphertext as

CTx,1,5 = ((x, T,5), {'PFE.CTk,init, {IPFE.CTy 1i,j,whtelT

IPFE.CTy 7411 ; } :
kT+HLi W ke[n],ie[N],je[S],We{0,1}5>

Dec(SKam,741)> CT(x,7.5)): On input a secret key SK(a,7,,) and a ciphertext CTx 7_s), do
the following:

1. Parse SK(as,7,,) and CT(x 7 5) as follows:

SKm,zu) = (((Mk)kGIMs Iu), {lPFESKk,inih {IPFE.SKi.q. 'PFESKk.q}qeleJ}kd) ,
M

My = (Qk, Yk, 8),

CTx,1.5) =< x,T,9), {lPFE-CTk,initv {IPFE.CTx.r.i,j. wlre[r1

IPFECTi, 741,05 >,x e (0. V.

kelnlie[N],jelS],We{0,1}S

2. Output L, if Ty, Q [n]. Else, select the sequence of ciphertexts for the indices k € Zyy
as

CTw,1,5 = ((x, T,S), [|PFE-CTk,init, {IPFE.CTy 1i,j, W }telT1>

—

IPFE.CTh 7411,/ }

kT+LiJW keIM.iE[N],je[S],We{O,1}5)

3. Recall that Yk € Zp1, Cypp v, s = [N] x [ST x {0, 1}% x [Qk], and that we denote any
element in it as 6, = (i, j, W, q) € Cum, n,s where the only component in the tuple 6
depending on k is ¢ € [Q]*. Invoke the IPFE decryption to compute all label values as:

Vk € IM : [Izk,init]]T = |PFE.DEC(|PFE.SKk’init, |PFE.CTk’init)

VkeIm,telT],0k=(,j,W,q) € CMk,N,S :
[€x 6,7 = IPFE.Dec(IPFE.SK 4, IPFE.CTy ;i ;. w)

VkEIM,QkZ(i,j,W,q)ECMkyNys/:_\/ o
[x, 741,611 = IPFE.Dec(IPFE.SKk,q, IPFE.CTk,TH,,-,j,W)
4. Next, invoke the AKGS evaluation and obtain the combined value

fE[TJrl],(‘)kGCMkAN-S)

Lutr = J7 Eval ((Mk, 712 p) ki, { Ltk I

kely

5. Finally, it returns u = DLoggT([[,u]]T), where g1 = e(g1, g2). Similar to [8], we assume
that the desired attribute-weighted sum lies within a specified polynomial-sized domain
so that discrete logarithm can be solved via brute-force.

Correctness Correctness follows from that of IPFE and AKGS. The first step is to observe that
all the AKGS label values are correctly computed as functions of the input x. This holds by the

2 For simplicity of notations, we enumerate the states of each My as 1, ..., q, i.e.,, [Qr] = [Q] for some
QeN

@ Springer

P.Datta et al.

correctness of IPFE and AKGS encoding of the iterated matrix-vector product representing any
TM computation. The next (and final) correctness follows from the linearity of AKGS.Eval.

In more detail, forall k € Ty, 6 = (i, j, W, q) € Cyy N, s, 1€t Li init, Lk 1,6, be the label
functions corresponding to the AKGS garbling of My = (Qk, Y4, 8x). By the definitions of
VeCtors Vg init, Winit and the correctness of IPFE, we have

L init = (—kprmg + kmppr) +rxl(0,1,1,08) g r[1]+ Bk
=rol(1, 1,05, D1+ B = e(; 1 o510 + B = L.init (X).

Next, Vk € Zp1,t € [T], g € [Qk], the structures of vy g4, u;,;, j, w and the correctness of

IPFE yields

Lit,ij W
= (=kprmi + kmepr) —rel — 1,1, j, W)rg, rlq]

+) erxitiin j Wire) My ori, p)lg]
teT

=—r 1[G, j, W1+ Y cr(xit,iy j, Wi re) My eri pIg] = Lisi j.w.g(x)
teT o
Finally, Vk € Ty, q € [Qk], the vectors Vg 4, Wk, 7+1,i, j,w and the IPFE correctness again
yields
L rv1,i,j,Ww,q = (kpemy +kmgpp) —re[(T, 0, j, W)Irg, rlg] + z[k]yilq]

=—rr[@d,j. W, q)]+ z[k] (1[N]><[5]X{0,1}S ® yk) [G,j, W, q)]
= Lk, 1+41,i,j,W,q(%).

The above label values are computed in the exponent of the target group Gr. Once all

these are generated correctly, the linearity of Eval implies that the garbling can be evaluated
in the exponent of Gt. Thus, this yields

S
[ulr = [T Eval ((Mk, YT, p) x Wil {1cadr)

te[T+1],6,eC)
keTy [T+1],6c€Cpy ,N.s

N
=1 Eval((Mi, 1V, 17, 1%, p), x, Licinits (€k.1.6)rer711.00eCh, v 5)IT

kely
=1) @k Milw,7,s6) +Blr = 1) zlk]- Meln,7,s() Tt = [M(x) " zlir
keIm keIy

5.2 Security analysis

We describe the simulator of our (1-SK, 1-CT, 1-Slot)-FE for UAWS. The simulated setup
Setup™ operates exactly the same way as the honest setup works. The simulated master secret
key is MSK* = (IPFE.MSK,I/F;FE.MSK). The simulated key generation algorithm KeyGen;
also works in the same fashion as the honest key generation proceeds. We now describe the
simulated encryption Enc* and the simulated key generation KeyGen7 below.

Enc*(MSK*, (x, 17, lzs), (M, Iy, M(x)Tz), n): On input the simulated master secret key
MSK*, the challenge public attribute x with associated parameters 7', 2% in unary, (if there is
a secret key query before the challenge ciphertext is generated then) the secret key-functional
value tuple (M = (M)kezy Im, Mx) 'z = ZkeIM M (x)z[k]) with Z; C [n] and the
length of the private attribute n, the encryption proceeds as follows:

@ Springer

Compact FE for unbounded attribute-weighted sums

1. It samples a dummy vector d <« Z/, such that

M) z=Mx)'d= Z M, (x)d[k].
ke[n]

Note that, it can always set My (x) = 0 for k ¢ [n] \ Zy. If there is no secret key query
before the challenge ciphertext then it chooses a random vector v € Z, in place of d.

- ZES),T]X[N]X[S]X{O,I}S Z%T+1]><[N]><[S]><{O,1}S.

2. Sample a random vector 7 and s, <«

3. For each k € [n], do the following:

(a) Sample a random element pg < Z),.
(b) Compute a ciphertext IPFE.CTy jnit < IPFE.Enc(IPFE.MSK, [[s¢x init]l1) for the vector

U, init:
vector | index; indexp init acc sim | theother
Upinit | —k - pk Pk re[(0,1,1,05)] 1 1 0

(c) Forallt € [T],i € [N],j € [S], W € {0, 1}S, do the following:
(i) Compute the coefficients ¢, (x; ¢, i, j, W;ry), VT € 7 using ry.
(ii) Compute the ciphertext IPFE.CT; ; ; j w < IPFE.ENc(IPFE.MSK, [y ;i j wl1)
for the vector uy i j w:

. R B the other
vector index; indexy rand th, sim indices

Ui j W | —k-pk Pk rel(0 =10, j, W] ce(xst i, juWiry) sxl@,d, j, W) 0

(d) Fort = T+1,computeIIDT:Eka,T+1,i,j,W <« |PFE,Enc(IPFE.M\S/K, [tk 1.0, .wl)
for the vector @, 741,i,j,w:

. . - the other
vector index; index, rand acc sim indices

Ui, r+1i,5,w | —k - pr Pk rel(T,i,j, W] vlklord[k] s:[(T+1,i,j, W)] 0

4. Finally, it returns the ciphertext as

CTx,1.5)

= ((x, 7). {IPFE.CTy i, (PFE.CTivi,j.whierr), PFECTi 1, ,-,w]kemie[N”EmWE(QHs).

KeyGen](MSK*, (M, I, M (x)"z)): On input the master secret key MSK* and the secret
key-functional value tuple (M = (M)kezy, IM., M)z = ZkeIM M (x)z[k]) w.r.t. an
index set Zys C N, the key generation process works as follows:

1. It parses My = (Qk, Y, 8k) € TM Vk € Ips and sample elements ﬂ,/(€ Zpyfork € Iy
as follows:

if Zyy S [n]: By < Zpand), B =0 mod p
if (max Ty > n) A(minZy <n): f; < Z,

2. For My = (Qk, Yy, 6k), compute transition blocks My . € {0, 1}2x % Y1 e Tp.

@ Springer

P.Datta et al.

3. It reversely sample the label function values as

N
€1,init < Revsamp((M1, 1V, 17, 1%), x, M(x) "z + B, (Cx..00)reiT+11.6eCuy v 5)

N
Crinit < Revsamp((My, 1V, 17, 1%), x, By, (ks 6)err+11,00eCh, v) forallk > 1

where all the other label values ¢ ;i j w4 = sx[(t, i, j, W)lsg, rlq] are simulated (and
known to the simulator).

4. For the following vector vy jnit, compute a secret key IPFE.SKy jnit < IPFE.KeyGen(IPFE.
MSK, v, init]l2):

. . H the other
vector | index; index; sim o s

Vg, init Tk k-me L init 0

5. For each g € [Qk], compute the following secret keys
IPFE.SK 4 < IPFE.KeyGen(IPFE.MSK, [[v 412), and
IPFE.SK;., < IPFE.KeyGen(IPFE.MSK, [¥.4I12).

where the vectors vy 4, Vx4 are defined as follows:

. . : the other
vector | index; index; sim indices
Vi g Tk k -y sxl(t, i, j, W)] 0
. . : the other
vector | index; index; sim indices
Vig k keme sx[(T+1,i,j, W)l | O

Note that, the random vector s has already been sampled during encryption.

Finally, it returns the simulated secret key as

SK1.zyy) = ((M,IM), {IPFE.SKk,init, [IPFE.SK; 4, IPFE.SKkyq}qE[Qk]}kEI) .
M

We will use the following lemmas in our security analysis.

Lemma4 Let IPFE = (Setup, KeyGen, Enc, Dec) be a function hiding inner product encryp-
tion scheme. For any polynomial m = m(A) and n = n(A) with m > n, define the following
vectors
Tk, Pk, Ths Tk <= Zp; b < {0, 1}
ve=(m, k-my, 0, 0, 0) forke|[n]
v =(m, kom0, +b-7%,0) forkeln+1,m]
up = (—k - Pr's Pk 05 17 0) fork/ € [I’l]

Then, for any IPFEIMSK <« IPFE.Setup(1*,1%), the distributions {{IPFE.SK¢ }ke[n]»
{IPFE.SK,(Cb)}kE[n_‘_],m], {IPFE.CT }xe[n)} for b € {0, 1} are indistinguishable where

IPFE.SK; <— IPFE.KeyGen(IPFE.MSK, vi) for k € [n]

IPFE.SK") < IPFE.KeyGen(IPFE.MSK, v\")) fork € [n + 1, m]
IPFE.CT; < IPFE.Enc(IPFE.MSK, 1) fork € [n]

@ Springer

Compact FE for unbounded attribute-weighted sums

Proof We prove this lemma by the transformation 7y = 7 — ﬁ for k # k'. Note that

7y is uniform over Z, since 7y < Z,. The lemma follows from the function hiding security
of IPFE since

v up =meop - (k=K + 1t

o~

~ Tk /

= nk+7>ﬁ)k/'(k_k)+rk
< pir(k — k')

=pow - (k—K)+re +7 = 00wy

Firstly, we note that the distributions of 7 and 7y are statistically close. Secondly, we note
that the inner product value v® .y remains the same for b € {0, 1}. Therefore, in the
first step, we switch 7y to 7, where the two distributions are statistically close. Then, in the
second step, we utilize the function hiding property to switch the vector from v to vV, 0

Theorem 3 Assuming the SXDH assumption holds in G and the |\PFE is function hiding secure,
the above construction of (1-SK, 1-CT, 1-Slot)-FE for UAWS is adaptively simulation secure.

Proof idea Before going for a formal proof, we discuss a high level overview of the proof.
We use a three-step approach and each step consists of a group of hybrid sequence.

— Inthefirststep, the label function £y inir is reversely sampled with the value z[k] My [x]+ Bx
and it is hardwired in either u jnjt OF vy init, Whichever is computed later.

— The second step is a loop. The purpose of the loop is to change all the honest label values
Li,1,i,j,w,q to simulated ones that take the form £, ; ; w.q = sx[(t, 1, j, W)]sk rlq]
where sy [(¢, i, j, W)]is hardwired in uy ; ; j w or iik,TH,i’j,W and sy, r[g]is hardwired
in vy 4 or Uy 4. The procedure depends on the order of adversary’s queries.

— Afterallthelabel values £y ; ; j w4 are simulated, the third step uses a few more hybrids to
reversely sample £1 jnit and £ init|k>1 With the hardcoded values M(x) T z+B1 and By k1
respectively. We also rearrange the elements so that the distribution of the ciphertext does
not change with the occurrence of the secret key whether it comes before or after the
ciphertext.

Recall that the adversary is allowed to query only a single secret key either before (SK before
CT) or after (CT before SK) the challenge ciphertext. Accordingly, we consider two different
cases depending on the occurrence of the single secret key query.

Case 1 (CT before SK) : In this case, we place the reversely sampled £ init in the vy jnjt in
the exponent of Gy. The loop of the second step runs over (k, , i, j, W) in lexicographi-
cal order. In each iteration, we clean uy ;; ; w and shift everything to vy , in one step and
truly randomize the label values using DDH in G; and then change these to their simulated
form £y ;i jowq = sk, i, j, W)lsk, r[q] by again using DDH in G,. Finally, the terms
{sxl(t,1, J, W)]}IE[T+1] are shifted back to Uk, j,W Or ﬁk,T+l,i,j,W~

Case 2 (SK before CT) : In this case, we place the reversely sampled £y injt in the uy jnjt in
the exponent of G . The second step involves a two-level loop with outer loop running over
t in increasing order and inner loop running over ¢ in increasing order. In each iteration of
the loop, we move all occurrences of ri, r[g] and s, s[g] into all uy ;v ;s ;s y in one shot
and hardwire the honest labels £ ; ; j w4 into uy ,; j w forall i, j, W. Next, by invoking
DDH in Gy, we first make the honest labels £ ;; ; w4 truly random for all i, j, W and

@ Springer

P.Datta et al.

then transform these into their simulated form £ ; j w,q = sx[(t,1, j, W)]sk rlg] again
by using DDH in G for all i, j, W. Finally, the terms si_r[q] are shifted back to vy 4 or '17k7q.
We start the formal proof with the first step where both the cases can be handled together.
The next two steps are managed separately according to the occurrence of the secret key. We
also note that the advantage of the adversary A in distinguishing any two consecutive hybrids
depends on either the computational hardness of the function hiding security of IPFE or the
harness of the DDH assumption in source groups. Moreover, there are a few hybrids that
are either identically distributed with each other or the indistinguishability follows from the
security of AKGS which is an information-theoretic tool. Since there are only a polynomial
number of hybrids the total advantage of the adversary in breaking the security of UAWS
is bounded by a polynomial (poly(nmax, T, N, S, 25, Q)) multiplied with the advantage of
an adversary in breaking function hiding security of IPFE and the hardness of the DDH
assumptions in the source groups. We observe that the term 25 remains polynomial in the
security parameter for logspace Turing machines. Therefore, the security of our UAWS can
be reduced to the (polynomial) security of IPFE and the hardness of the SXDH assumption.

Proof Let Abe aPPT adversary in the security experiment of UAWS. We show that the advan-
tage of A in distinguishing between the experiments Expt;er’gZYS(lk) and Expt ;ﬂggf(l") is
negligible. In this security analysis, we additionally assume that the adversary can query
only a single secret key for (M, Zys) either before or after the challenge ciphertext. Let
((x,17, 12S), Z) be the challenge message and z € Z’;,. We also assume that the single key
queried by the adversary cover all the indices of the ciphertexts, i.e., Zps 2 [r] which is nat-
ural as the adversary gets maximum information about the ciphertext in such case. Without
loss of generality and for the simplicity of exposition, we assume that the number of states
in all Turing machines is the same and it is Q.

The first few hybrids are the same for both the cases: CT before SK and SK before CT. The
indistinguishability arguments remain unchanged in such hybrids. In Table 3, we represent
the first/last few hybrids. Let nmax be the maximum value of n, the length of z, i.e., A can
choose the private attribute whose maximum length can be nmax.

Hybrid Hy. This is the real experiment EXptLiUrézYS (1) (= Hyeq) in Table 3) where the cipher-

text vectors contains the challenge message (x, z) and the secret key vectors are computed
using (M, Zyr).

Hybrid Hp ;. At the beginning of the experiment, the challenger samples an integer
n’ < [nmax] as a guess of n. This hybrid is exactly the real experiment except the chal-
lenger aborts the experiment immediately if the vector length of z is not n’, i.e., n # n'.
Suppose A outputs L when the experiment is aborted. Thus, it is easy to see that the advan-
tage of A in Hpj is n,rl.ﬁ times the advantage in Hg. Thus, if the advantage of A is negligible
in Hy, then it is so in Hg ;. Hence, in the remaining hybrids we simply write n’ = n.

Hybrid Hg . It proceeds exactly the same as Hp ; except that if the queried key (M, Zyy) is
such that (max Zpy; > n) A (min Zys < n), then Br = v init[acc] is replaced with /’3\1{ <~ Zyp
for each k € Zp. Thus, with high probability it holds that ZkeIM Ek # 0. The hybrids
Ho.1 and Ho» are indistinguishable by the function hiding security of IPFE via the Lemma
4. Note that in this hybrid, we crucially use the randomness of the positions vy jnit[index;]
and vy jnit[index;] (encoding the indices which are not available in the ciphertext vectors) to

@ Springer

Compact FE for unbounded attribute-weighted sums

sample B\k independently from other indices of the secret key.

Hybrid H;. It proceeds exactly the same as Hp, except £ init is hardwired in vy jnit or

T+1 1)S . ~
Up init, and s, < Zg,sx « ZEH HIXINIASDAO I e embedded in Vg Uk, T+1,0,j,W

respectively. The first change sets the stage for £ init to be reversely sampled in the next
hybrid and the second change prepares the £k ; i, j W, gli<T, €k, T+1,i,j,W,q to be simulated as
pseudorandom values in the loop hybrids. More specifically, the changes are implemented
as follows:

— For CT before SK, uy init is set to 1 during encryption and vy jnit is set to rx[(0, 1, 1,
0s)]r«, r[1] during key generation.

— For SKbefore CT, wvg init is set to 1 during key generation and ug init is set to
re[(0,1,1,05)]rk, s[1] during encryption. Note that, ry r[1]s are known only for
k € Zpy. Thus, uy inic[init] is unchanged in this and in the rest of the hybrids for
kenl\ZIum.

— Also, vy 4[sim] is set to s, r[¢] and 'ﬁk,TH,i,j,W[sim] issettosy[(T + 1,1, j, W)].

Note that, the inner products between v’s and #’s remain unchanged. Therefore, the function
hiding property of IPFE ensures that Hy and H; are indistinguishable.

Hybrid H,. It proceeds identically to H; except that £; iyt is reversely sampled from the
other labels. By the piecewise security of AKGS, the hybrids H; and H; are indistinguishable
(Tables 1, 2).]

Hybrid Hy. It proceeds identically to H, except the inner products uy ;; j w - vx4 and
ﬁk,TJrl,i,j,W . 51“1 change from the honest to simulated labels s [(z,, j, W)]sk, r[q] and
sx[(T + 1,4, j, W)lsk, rlg] respectively. This is implemented by clearing the values at
rand, acc, th; of the vectors uy ; ; j w, Uk, 7+1,i, j,w and embedding s, r[g], sx[(z,, j, W)]
at Vg 4[sim], ug i, j, wlsim] respectively. We show the indistinguishability between the
hybrids H, and Hs in two separate claims:

Claim 1 In the case of CT before SK, Hy = Hj.

Claim 2 [n the case of SK before CT, Hy &~ Ha.

Hybrid Hs. It proceeds exactly the same as Hyq except the values at rand, acc, tb; of the
vectors v 4, Vx4 are cleared and uy jni[sim] is set to 1. Also, for the case of CT before SK,
Lk init 1s shifted from vy jnic[init] to v inic[sim]. While the former change is common for both
cases, the later prepares the ideal game for the case of CT before SK. Note that, the inner
products between v’s and u’s remain unchanged. Therefore, the function hiding property of
IPFE ensures that H4 and Hs are indistinguishable.

Hybrid He. It is the same as Hs except the hardcoded values used in the reverse sampling
procedure while computing £ init (for both cases). It computes £ init as follows:

N
€1inic < RevSamp((Mi, 1N, 17,127), x, M(x) Tz + B1, (L 1.6)re(T+11.60eCh, n5)
S
Crinit < RevSamp((My, 1V, 17,12, x, Br, (Ck1.6)re[T+11,6ceCh, v s)» forallk > 1

where all the other label values £ ;i j w.q4 = sx[(t, i, j, W)lsg rlq] are already simulated.
If the queried key satisfies the permissiveness, i.e., Zyy < [n], then this is accomplished by

@ Springer

P.Datta et al.

0 [BULION My

0 000 I 57 (g 10)1g + (x)Ipy[y]2)dwesrsy — E_,S Wi n

0 e ION w,v\h—.\

[B]/ s [ewIoN byg
0 0°0°0 (0 300 + (x) (Y] dwiesray — W1y o | i Yq H

(M T+ DIYs [eULION ML

0 [EULION MLy

: (00 (oo [Og0 7 (7G0T O]

0 [eWION bag

[b]4 s [RULION by
0 [0°0°0] Tv@sz? [11/74[(S0 1“1 “0)] TOH nar IH

0 [eWION ML,

0 [EULION MLy

0 [EULION [((S0°T 1 0%« wiryn

0 TewION v,v\m

0 [eWION by
0 [eWION [1]1/ 4 uuryg TOY
wis Q1 ooe ‘puel uul J0JOOA pLUqAH

SMVN-T Jo Jooxd A1ndas auy ur SpUqAY may [enmur ay, | 3jqeL

il
[
50
=)
g
o
)
Sl

Compact FE for unbounded attribute-weighted sums

pringer

Qs

[b]/ s
[b]/ 7

(g 10)7d + (x)Ypy[y]2)dwesasy — MWy To 0

[(M LT+ D1

(M L2 n]*s
0

(] 2s

[b]/ s

0

[((M LT+ D]*s

@Sﬁ

110 (% 10)%d + (2) Iy [¥]2)dwesasy — ¥y

(g 10)%d + () W [¥]2)dwesnsy — M7y 10 |

w;\a
wd\a

Uy m_n_

M T+HIp

narypy
w,«b
byq
NIy YH
doo
\s,.fh?ﬁ«m

wis

11 ‘ooe ‘puel

nu

I0)09A pPUQAH

penunuod | 3jqel

P.Datta et al.

[L+ D% —-0°0 ML

[(M L1 n]*s 00°0 MLy

I 000 1 10| (Yg)dwesaay — Wy nrT<yp

I 0°0°0 110] (Id +2 | (x) p)dwesasy — W'y Wiy

IER —0°0 big

[b]4 s 0‘0‘0 byq

(Ig)dwesnsy — #9710 0 00 0101 R ES
(I + 2 (x) w)dwesasy — M1y 10 () 000 010 [iy N

(ML T+ D)]*s -0°0 ML

[(M L1 n]*s 00°0 My

0°0°0 [10 (g 10)¥g + (x) Y [y]2)dwesasy — MWy iy
wis Q3 2oe ‘puel Ul J0JOA PUQAH

ponunuod | ajqeL

il
[
50
=)
g
o
)
Sl

Compact FE for unbounded attribute-weighted sums

Table 2 The last few hybrids in the security proof of 1-UAWS

hybrid vector init rand, acc, tb sim
V1, init 0 0,0,0 £1,init < RevSamp(M () "z + 1)
Vke>1,init 0 0,0,0 Lk init < RevSamp(8;)
Vk,q 0,0,0 sk, flal
Higeal Brg 0,0, — sk, flal
Uk init rz[(0,1,1,0g)] 1
Ui, W sal(t,i,, W)]
Uk, T41,i,j,W sz[(T +1,4,5, W)]
for CT before SK the sequence of hybrids ends here, i.e., Hijea is the ideal world
Vk,init 1 0,0,0 0
Vk,q 0,0,0 sk, rla]
Uk q 0,0, — sk, rlal
Hz U init 1 init < RevSamp(M (z) "d + B}) 0,0,0 1
Wk>1,init Lk init < RevSamp(8;,) 0,0,0 1
Uk, t,i,5,W 0,0,0 saz((t, 1,5, W)
Uk T+1,i,j,W 0,0,— sa((T +1,4,5, W))
for SK before CT traverse in reverse direction until Ho with d in place of z
o
Moy | e o
Uk, init r2((0,1,1,05)] @
Uk, T41,i,5,W normal(d) @
Uk, init 7k, £[1] normal 0
Vk,q normal 0
H Vg, q normal 0
fdea! Uk init rz[(0,1,1,09)] normal
Uk 1,5, W normal sz((t, 1,5, W)]
U, T+1,i,5,W normal(d) s2((T+1,4,5,W)]
for SK before CT, Higea is the ideal world
The "normal® in rand acc th,
Vk,init 0 Br 0
Vhyq : —7k,sld] 0 (My,77x,1)la]
Vhyq : —r,¢ld] Yrld] -
Uk,init 0 1 0
t<T, upijw: rel(t—145W) 0 cr(zt,i,5,W;re)
if normal, @y, 741,i,5,wW* rz((T, 1,5, W)] z[k] -
if normal(w), @k r41,0,5,w: T2[(T,4,5,W)] w[k] -

a statistical transformation on {8y : Br < Zp, ZkeIM Br = 0}. We replace i by newly
sampled By:

Bi =B —z[1IM(x) + M(x) "z
Bk = B — zlkIM(x) forallk > 1

@ Springer

P.Datta et al.

Table 3 The remaining note of the first/last few hybrids in the security proof of 1-UAWS.

In Hy, [SK before CT] [CT before SK| 1 InHa,Ha, [SK before CT] [CT before SK|
Vit [iNit] = 1 72[(0,1,1,08)]ry, £ [1] : Vg init[init] = 1 RevSamp(«)
wp inie[init] = 72[(0,1,1, Os)]’!‘k)f[l] 1 | Up,init[init] = RevSamp(a) 1

In Hs, [SK before CT] [CT before SK| | InHs, [SK before CT] [CT before SK]
Vs init [iNit] = 1 0 | Vk,init[sim] = 0 RevSamp(a)
up init[init] = RevSamp(a) 1 1 W it [SIM] = 1 1

The “RevSamp(a)” means: £y iyt < RevSamp((My, 1V, 17, 12S). T, a, (zk-fﬂk)16['l'+l],9k€CMk,N.s)

In Ha, Higeal, Lk,t,i,5,w.,q = Li,t,i,j,w,q(2) are computed honestly using IPFE.

In Hy, Hs, He, Hideal, Lr,t,i,5,w,q = Sa[(t, 4,5, W)]sk, f[q] are simulated and computed using IPFE.

In Higeal, the positions rand, acc, tbr of wp init; Wk, t,6,5,W > Uk, T+1,i,5,w are kept either normal or normal(v),

for an arbitrary vector v, due to security proof of PK-UAWS. These entries have no effect in this simulation.

In Higeal, the position sim of wg init, Uk, ¢,i,j, W, Wk, T+1,i,j,w are kept 1, sz[(t,,5, W)], se[(T + 1,14, 5, W)] respectively
due to security proof of PK-UAWS. These entries have no effect in this simulation.

where B, < Z,. Observe that it still holds that) ;.7 = Bx = 0. On the other hand, if the key
under con51derat10n does not satisfy the permissiveness, i.e., (max Z, M > n)/\(mln Iym < n),
then we know that ﬁk are uniform over Zj. Thus, we can replace ,Bk by new ,Bk

Bi =B — 2[1IM1(x) + M(x) 2
B = B, — zlkIMy(x) forallk > 1

where f; < Zjp. Note that, the distributions of new g or ﬁk are statistically close to their
old versions and hence the two hybrids Hs and Hg are indistinguishable.

Hybrid Higea . This hybrid is equivalent to the ideal experiment ExptLY Al d ool WS (1%) for the case
of CT before SK. Thus, one should omit this hybrid in the case of SK before CT. In Hjgeal,
the positions init, rand, acc, th; of the vectors u init, #k,1,i, j,w, Wk, T+1,i,j,w are changed
back to their normal form as they were in Hy except we use an arbitrary vector v <« Z
in place of z (for Uy 741, j,w). This change has no effect in the inner products between
u’s and v’s since the corresponding terms in v’s are zero. The purpose of this change is to
maintain the distribution of the ciphertext vectors consistent with the case of SK before CT.
Finally, H |dea| is indistinguishable from Hg by the function hiding property of IPFE, and hence
Ho ExptA rea|s(1)h) ~ Higeal-

The sequence of hybrids for the case of CT before SK ends here and the rest of the hybrids
are required only to handle the case of SK before CT.

Hybrid H7. It proceeds exactly the same as Hg except it samples a dummy vector d <« Z'I‘,
such that

Mx) z=Mx)"d= Z M, (x)d[k].
ke[n]

and reversely sample £1 jnt with the hardcoded value M (x)Td + B instead of M (x)Tz + B1.
Note that, this is statistical change to the computation of £; jnit, and hence the hybrids He and
H5 are indistinguishable to the adversary.

Hybrid H7_.¢). Next, for the case of SK before CT, we traverse in the reverse direction from
Hy to all the way to Hg with the dummy vector d in place of z. This step is inspired from the
proof technique used by Datta and Pal [38]. We skip the descriptions of these hybrids as the
indistinguishability arguments would be exactly similar to what we used for reaching Hy7 from

@ Springer

Compact FE for unbounded attribute-weighted sums

Ho. We denote the new Hy as H(7_.0) and the hybrids H7 and H(7_, ¢y are indistinguishable by
the function hiding security of IPFE and the piecewise security of AKGS. After this hybrid,
observe that the reduction do not need to guess n which enables the final simulator to generate
the pre-ciphertext secret key without any information about the length of private attribute z.

Hybrid Higeal. It is exactly the same as H(7_, ¢y except the position sim of the vectors uy init,
Upyi,j,wand ﬁk,T+1,i,j,W aresetas 1, s,[(¢,7, j, W)land sy [(T+1, i, j, W)] respectively.
Observe that this change has no effect in the inner product computation of these vectors with
their corresponding vectors in the secret key as the positions in the secret key vectors are
zero. This, however, keeps the ciphertext distribution consistent with the case of CT before SK.
Therefore, Higea) and H(7_, o) are indistinguishable by the function hiding security of the IPFE.

We also note that Higeq is the ideal experiment Expt;%\e’\’als(lk) for the case of SK before CT,
and hence Hy = Exptzurég‘l's(l)‘) ~ Higeal- This completes the proof. O m}

Proof of Claim 1 For the case of CT before SK, we prove H, & Hj using a sequence of hybrids
H3 i jwis.-.,H3zijowstor(t,i, j, W) e[T]x[N]x[S] x {0, l}S in lexicographical
order. These hybrids are described in Table 4. Then, we use another sequence of hybrids
(dedicated for the second IPFE) H3, H3 ; j w1, ..., H3; jwsfor(z,i, j, W) e [T]x[N]x
[S] x {0, 1}% in lexicographical order. These hybrids are illustrated in Table 5. We denote by
(t,1, j, W) + 1 the next tuple of indices in increasing order. We observe that ’s are listed
before v’s since in the case of CT before SK the ciphertext appears before the secret key.

Hybrid H3,; jw.i. It proceeds identically to Hy except that for all (+',i’, j/, W) <
@, i, j, W), Wi g it 1 W has its values in rand and tb;’s cleared, and that a random value
sx[(¢',i', j', W')] is embedded in uy ;s w[sim]. This means that all the labels for
@,i’,j', W) < (t,i, j, W) are simulated, the first label £ injt is reversely sampled and
the rest are honestly computed.

Hybrid H3 ;; j w 2. It proceeds exactly the same way as H3 ; ; ; w,1 except that the values
inug,; ;,w are set to zero and its inner product with v ;’s, i.e. the labels £ ; ; ; w4 for all
k, g, are hardcoded into vy 4’s as follows:

— The positions rand and tb; of uy ;; ; w are set to 0.

— The value at ug, ; j w[sim™™P] is set to 1.

— The honest labels €x;; jwy = —rxl(t — 1,i,j, W)lrg rlg] + --- are embed-
ded in vy 4[sim™™P] for each ¢ € [Q] and k € Ty where *“-.” represents
Doer et i, j, Wiro) My cri, plgl.

As one can verify that the inner products between the vectors are unchanged, the indistin-
guishability between the hybrids H3 ;; ; w 1 and H3,; ; w2 is guaranteed by the function
hiding security of IPFE.

Hybrid H3;; j w 3. It proceeds similar to H3;; ;j w2 except that the labels £x;; ;j w4
are changed to truly randomized values. We can invoke DDH assumption in G7 between
the hybrids since the random values r,[(t — 1,i, j, W)] and ry_¢[q]’s only appear in the
exponent of G;: for each k € Ty, given an MDDH; , challenge

[re, p[10, ..., re f[O); Arts .-, Ag ol :
=ry[(t —1,i, j, W)lri rlgl, if DDH tuple

Aa) g if
P if truly random tuple

@ Springer

P.Datta et al.

Table4 The loop hybrids for# < T in the security proof of 1-UAWS for the case where the ciphertext challenge
comes before the secret key query

hybrid vector rand th, sim sim'™P
Uy W 0 0 sz[(t',i, 5", W’)] 0
H < (t,i,5, W)
SELIWL W rol(t = 1,0, W) cr(a,t.i,j, Wirs) 0 0
Uy | el = LG WO e (et W) 0 0
> (41,5, W)
Vk,q —7k,sld) (M, -5, 1)[d] sk,1a] 0
: 1
[T Uk, t,i,j,W 0
honest Cx,y i w.q =
Vi,q —Tk,sla] (M, 7k, 5)la] sk.rla] —ral(t — 10,5, W)lry sl +- -
Uk t,i,j, W 0 0 0 1
H3 i jw.s
s
Vi 7k, fla] (Mg, -7k, 5)la] sk, fla] Cit,i 5, Woq < Lp
Uk, t,i,j5, 0 0 0
Hatigw.a kot W F—;
simulated €54 j,w g
Vk,q =7, la] (M, -7k £)a] sk, rld] :Sm[(t‘t,J.V’V)]Jsk,fl[q]
Hatigws Yk o i i w’ 0 0 sal(t, 8,57, W) 0

= < (tyi, 5, W)

Wk, ti), W 0 0 sa((t, 1,5, W)]

Hg il G W1

for
W35 W) Ny g | Tl = L85 W] en(@ i W ira) 0 0
i > (i g, W)
(ti, g W) +1| 7
Vg —7k, s[4 (My, -7k, 5)[d) sk, sldl

For brevity, Winit, Vinit; Uk,q: Yk, T+1.1,5,W Vk,glacc] = 0, up,t<r,i j,w[acc] = 0 are suppressed.

The reverse!

sampled £y oy is hardwired in wy e, and is only needed (and can only be computed so by
the reduction) in the exponent of Ga:

[€k,init]2 < RevSamp((Mj., 1N, 17,

@, [z[F My (@) + Bilz, ([n.t.0,]2) et 11,0, ccpr, N s)-
In the intermediate hybrids, w /1 ;1 w/’s are suppressed. They remain unchanged in this iteration.
23y Wire)(My -, 5)[d].
In this iteration, the labels €y v ;s ;v wr , With (¢',4', 5", W) are computed as:
t' i, W) < (t,i,§, W) : simulated as s5[(t',i, i, W')]sy, s[g] and computed using IPFE
i
(t',i',§',W') = (t,i,5, W) : computed honestly using IPFE in Hg . ¢i.j.w 1

The omitted term “ -7 at vy 4[sim'®™P] is 35 __ - c; (@;t

computed honestly and hardwired in SK in Hz 1,¢.i.j, w2
simulated as random and hardwired in SK in Ha k0.1, w3
simulated as sg[(t, 4, j, W)]sk, f[q] and hardwired in SK in Hz ki j w4
simulated as sq[(t, 4, j, W)]sy,r[q] and computed using IPFE in Hs 00, w5
(t',4',j',W') > (t,i, j, W) : computed honestly using IPFE
The net effect is that £4,,<7; j,w,q’s change from honest to simulated.
Note that, in this iteration, £y 741,i,j,w,q¢’s are honestly computed for all (k, T + 1,4, j, W, q).

we compute the labels as €y ;i jwgy = —Arq +---. If a DDH tuple is received, the
labels use pseudorandom randomizers r;—1[(i, j, W,)] = rx[(t — 1,1, j, W)Iry rlq] as
in H3; ; j w,2. If a truly random tuple is received, these label values are truly random ran-
domizersr;—1[(i, j, W,)] < Zg asinHs,; j w3 due to the special piecewise security of
AKGS. Note that, the values [£ initll2 <— RevSamp(: - -) can be efficiently computed in the
exponent of Gy.

Hybrid H3;; j w 4. It proceeds identical to H3;; j w3 except the truly random labels
L.1i,j,w.qforallg € [Q], k € Ty arereplaced by pseudorandom values sy [(¢, i, j, W)]sk, rlq]
with sx[(¢,1, j, W)] <= Z,. The hybrids H3 ; ; j w 3 and H3; ; ; w 4 are indistinguishable
due to the DDH assumption in G (the argument is similar to that of in the previous hybrid).

Hybrid Hs,; j w 5. It proceeds exactly the same way as H3,; j w4 except the pseu-
dorandom labels ¢ ;i jw.q = sxl(t,i, j, W)lsk rlg] hardwired in vy 4[sim'™P]’s are
split into uy ; ; j wlsim] (embedding the factor sy[(z,7, j, W)]) and v 4[sim]’s (embed-
ding the factor sy r[g]). The inner products in the hybrids H3 ;; j w4 and H3;; ; w5 are
unchanged and hence the these two hybrids are indistinguishable due to the function hid-

@ Springer

Compact FE for unbounded attribute-weighted sums

Table 5 The hybrid ﬁ3 followed by the loop hybrids in the security proof of 1-UAWS for the case where the
ciphertext challenge comes before the secret key query

hybrid vector rand acc sim simtemP
i Uk, T+1,i,),W rz(T,i, j, W)] z[k] @ 0
3
Uk,q —7, f[d] Ykld] s, flal 0
U o, w 0 0 so[(T+1,4,5 W) 0
. < (i,5. W)
Hoisw | e ragw | rel@i g W) 2K 0 0
Ui gow | T2l(Td 5, W] z[k] 0 0
> (i,, W)
Uk, —7k,7[4] yila] sk, fla] 0
~ Wk, T41,i,,W 0 1
o i [o] [o]
~ honest £i, 741,i5,w,
Tk,q 7k, fla] yrla] Sk, rlal = —ro[(T)4, 7, ;;;J/)]T:f[q] b
~ ﬁk”l‘*,]ﬂiTj’W 0 0 0 1
Hzijw.3
Uk,q ~7, ¢[d] yrld] sk.f10]
= Uk, T41,i,j,W 0 0 0 1
Ha,ij,w 4 -
B —resldl [d se.sldl simulated £g ¢, 5, W ,q
o k1T Ykl ksl = 5o[(T+ 1,15, W)]sy sla]
Haijw.s % ren e 5w 0 0 s2((T+1,4,5,W')] 0
_ = < (i,3, W)
Hsirjrwra| e ri1,ij,w 0 0 |sa[(T+1,4,5,W)] @
for - o
@, W'y | Yk w ro[(T,7,5',W")] z[k] 0 0
_ > (.5, W)
(1,5, W) +1 Uk,q —ry,la] yrla] sk, fla] [0]

For brevity, Winit, Vinits Vk,q> Wk, T+1,i,j,w are suppressed.
The reversely sampled £ jnie is hardwired in wp jnit, and is only needed (and can only be computed so by
the reduction) in the exponent of Ga:
[k initl2 — RevSamp((My, 1N 17, 12%), @, [2[k] My, () + Bi2, ([ek.t.00]2)teim+11,0, €001, ns)-
In the intermediate hybrids, @y py1 4 ;7 w+’s are suppressed. They remain unchanged in this iteration.
The omitted term “--” at Dy q[sim™™P] is yy[q]z[k].
In this iteration, the labels £ 1y ;s js wr g With (¢/, 5", W') are computed as:
(i',5",W') < (i,4, W) : simulated as sz[(T + 1,7, ', W')]s, r[q] and computed using IPFE
(i',3',W') = (i,4, W) : computed honestly using IPFE in ﬁgyw-yw,l
computed honestly and hardwired in SK in ﬁg,ivjvaz
simulated as random and hardwired in SK in Hz ; j w3
simulated as so[(T + 1,1, j, W)]s, ¢[q] and hardwired in the SK in Hg; j w4
simulated as so[(T + 1,4, j, W)]s, ¢[q] and computed using IPFE in Hs; j w5
(#',3',W’) > (i,4, W) : computed honestly using IPFE
The net effect is that £y 741 j,w,¢’s change from honest to simulated.
Note that, in this iteration, £x ;<7 ; ;W ¢’s are unchanged for all (k,t,i,7,W,q) and are already simulated.
The hybrid Hs starts after the loop of Table 4 finishes, i.e. after the hybrid H3 7 n s,14,5 and the hybrid
’HgyNysyls_ys is identical to the hybrid Hy (c.f. Table 3).

ing security of IPFE. Moreover, it can be observed that H3;; jws = Hz v v w3 for
@, i',j,W)=(t,i,j, W)+ 1.

Therefore, in this sequence of hybrids for t < T, we have H3 1.1,1,05,1 & H3,7,n§,5.15.5-
Now, we move to the next sequence of hybrids for t = T + 1 as depicted in Table 5.

Hybrid Hs. It is identical to H3,7 n,5,15,5 except the position sim of Wy 741,;,j,w is zeroed
out and 'ik,q [sim] is set to 5%, s[g] for all k € Zps. The inner products between the vectors are

@ Springer

P.Datta et al.

Table 6 The outer loop hybrids running from # = 1 to T in the security proof of 1-UAWS for the case where
the ciphertext challenge comes after the secret key query

hybrid vector rand, tb; rand®™P tb"mP sim simtempP
Vi, q normal 0,0 sk, rldl 0
Hs 11 U ¢/ <t,i,5,W 0,0 0,0 sa[(t',4,5, W)] 0
” Uk t,i,5,W normal 0,0 0 0
U 4/>¢ 4 5,w | normal 0,0 0 0
Vi, q normal Sk, £ldl 0
Hs,t,2 wewrctigw | 0,0 0,0 sal(t'i,5, W) 0
Hat31.1 Uk t,i,5, W 0,0 normal 0 sz|(t, 1,7, W)]
U ¢/>¢4,5,w | normal 0,0 0 0
Hs.t,3,1~Q,1~5
’ Vi q normal s, rldl
3,t,4 .
= Ut/ <t,i,j, W 0,0 0,0 sz|(t',4,5, W)] 0
H3 13,05 Uk t.4,5,W 0,0 normal 0 sz((t, 1,5, W)]
U ¢/>¢4,5,w | normal 0,0 0 0
Vi, q normal 0,0 sk, £ldl @
Hs,t.5 wercrizw | 0,0 0,0 s2l(t',i, 5, W) 0
Ha.ot11 weigw | 0.0 0,0 sal(t,i, 4, W) [0]
U ¢/ >¢,4,5,w | normal 0,0 0 0

For brevity, Winit, Vinit; Uk, T+1,i,j,W > Ok,q» Vk,qlacc] = 0, ug s<7 i 5,wlacc] = 0 are suppressed.
The reversely sampled £, jnit is hardwired in wp jnit:
L init < RevSamp((My,, 1V, 17 125)7 x, z[k| My (x) + Br, (k. ¢,0,)tG[TH]ﬂkECMk,N,S)
The "normal“ in rand, rand®tmP th,, thte™P
Vgq —7,rlq] (Mg -7, 5)a]
t<T, ugyijw: ro[(t — 1,4, 5, W)] cr(z,t,4,5, W;rs)
In this iteration, the labels £y ; ; j w4 With t are computed as:
t<t': simulated as sg[(t',%,j, W)]sy, r[g] and computed using the slot sim
t=1t": computed honestly using IPFE in ﬁg,t’l
computed honestly via temporary slots rand®™P, tb*™ in ﬁg,t’z
simulated and computed using the slot sim*™P in Hs3 ¢4
simulated and computed using the slot sim in H3 ;5

t' > t: computed honestly using IPFE

unchanged in H3 7 n s 15,5 and Hs. Thus, the indistinguishability between these two hybrids
is ensured by the function security of IPFE.

Hybrld H3 i,j,w,1. It proceeds identically to H3 except that for all (i’, j/, W) < (i, j, W),
78 THLi W has its values in rand and acc’s cleared, and that a random value s,[(7T +
L', j', W)]is embedded in & 7.4 ; jr we[sim].

Hybrid ’IZ|'3,,-,~,<,W,2. It proceeds exactly the same way as ﬁ3,l~,j,w,1 except that the values in
Uy,;i,j,w are set to zero and its inner product with vy 4’s, i.e. the labels £ 741; j, w4 for all
k, g, are hardcoded into ’ik,q ’s as follows:

@ Springer

Compact FE for unbounded attribute-weighted sums

— The positions rand and acc of @, 7+1,;,j,w are set to 0.

— The value at @, 7+1,;,j,w[sim*®™P] is set to 1.

— The honest labels £g 741, j,w,q = —rx[(T,i, j, W)lri slg] +--- are embedded in
Vg 4[sim™®™P] for each ¢ € [Q] and k € Ty where ™ - - represents the term y; [¢]z[k].

The inner products between the vectors are unchanged, and hence the indistinguishability
between the hybrids H3 i,j,w,1 and H3 i,j,w,2 is guaranteed by the function hiding security
of IPFE.

Hybrid |-|J3,i,j,w,3. It proceeds similar to ﬁg,,-,j,w,z except that the labels € 741,:,j,w, 4 are
changed to truly randomized values. We can invoke DDH assumption in G, as before to
show the indistinguishability between the hybrids ﬁ3,,~, j,w,2 and ﬁ3,,~. j,w,3 since the random
values ry[(T, i, j, W)] and ry ¢[q]’s only appear in the exponent of G; and hence the label
functions can be truly randomized due to the special piecewise security of AKGS. Note that,
the values [[£ initll2 <— RevSamp(- - -) can be efficiently computed in the exponent of G».

Hybrid ﬁg,,-, j,w.4. It proceeds identical to ﬁ3,i, j.w,3 except the truly random labels
Ly, 1+1,i,j,w,q Tor all g € [Q],k € Iy are replaced by pseudorandom values s, [(T +
1,i, j, W)lsk, rlg]. The hybrids ﬁ3,,’,l~,w,3 and ﬁ3,,',‘,-yw,4 are indistinguishable due to the
DDH assumption in G.

Hybrid ﬁ3,i, j,w,s. It proceeds exactly the same way as ﬁ3,,-, j,w.4 except the pseudoran-
dom labels €k 7410 j,w.q = s<[(T + 1,i, j, W)lsk f[g] hardwired in Ty 4[sim™P]’s are
split into Wy 741, j,wlsim] (embedding the factor s [(T + 1,1, j, W)]) and Ty ,[sim]’s
(embedding the factor s¢, ¢[q]). The inner products in the hybrids ﬁ3 i,j,w,4 and ﬁ3 ij,W,5
are unchanged and hence the these two hybrids are indistinguishable due to the function
h1dmg security of IPFE. Moreover, it can be observed that H'; ij, W5 H37, jrw 3 for
@, j W) =G j W) +1

Therefore, in this sequence of hybrids for t = T + 1, we have H3 1,1,05,1 & H3 N,S,15.5-
Lastly, we observe that H3 N,S,15,5 = Hq and hence Hy ~ Hy for the case of CT before SK. O

Proof of Claim 2 The case of SK before CT for showing H &~ H,4 is more involved and further
difficulties arises since we have two independent IPFEs for each Turing machine in contrast
to the security analysis of [62] where only a single IPFE was sufficient.

The overall goal of the claim is to make all the label values € ;; j w 4 simulated by
invoking DDH similar to the case of CT before SK. However, since the secret key comes
before the challenge ciphertext and £ init <— RevSamp(- - -) is computed while encryption,
we can only apply DDH into the ciphertext vectors which are computed in the exponent of
G1. Thus, we have to move ry, ¢[q] into the ciphertext vectors (Table 7). But, in this case,
ri, rlg] of vg 4 may appear in (Mk,frk,f)[q/] of any vy . depending on the transition block.
Moreover, ry, r[q] also presents in 5k.q which are associated to second IPFE. Hence, in the
security analysis, we must take care of the following facts:

— The special piecewise security can only be applied in the increasing order of # for changing
Li.1,i,j,W.,q s to their simulated form.

— More importantly, to simulate ¢ ; ; j w 4 fort < T, all occurrence of r¢, r[¢] must be in
the ciphertext of both the IPFE. Also, we can not simulate £ 71,;, j w,q (in the second
IPFE) while simulating £ ; ; w4 (in the first IPFE).

— There is not enough space in the ciphertext to embed all the r; r[g]’s at the same time
foreach k € Zy.

— The values r¢, r[q] must not go away until all £ ; ; j w,,’s are simulated. Indeed, ry r[q]
still resides in vy 4/’s in Hy, the end hybrid of the claim.

@ Springer

P.Datta et al.

Table 7 The inner loop hybrids in the security proof of 1-UAWS for the case where the ciphertext challenge
comes after the secret key query

rand, rand®™P rand™™P randemP.comp

hybrid vector : si simtemp simeomp
Y th, tb™ thiEmP gptemp.comp im im im
Vk,g'<q normal 0,0,0,0 sk, rld'] s, rld'] 0
Vk,q normal normal s, flal 0 0
Vi,q'>q normal normal sk, fld’] 0 0
wpvcnigw | 0,0,0,0 0,0,0,0 sal(t'i,5, W) 0 0
Wk i W 0,0,0,0 normal 0 sel(t i, W) 0
Hs.t.3,0,1 Uk, t! >t,i,5,W normal 0,0,0,0 0 0 0
rand, acc sim simtemP
Uk g <q normal 0 0
Vg normal 0 0
5}”'[,>q normal 0 0
U, T41,i,5,W normal sz[(T+ 1,4, j, W)] 0
Vg’ <q 0,0,0,0 skyf[q/] Sk,j[q/] 0
Vg 0,0,0,0] 0
Vk,q'>q ‘XT‘k-,.f[(I] ‘ si,rld] 0 0
Wt/ <t,i,5,W 0,0,0,0 sa[(t',1,5, W)] 0 sz((t',i, 5, W)]sk, rla]
Hs.t,3,9,2
o . honest € ¢ 5w .q
Uk, t,i,§,W 0,0,0,0 . 0 sa[(t 1,5, W) = —rg[(t= 1,4, 5, W) sla +---
U stigw || Ve sldl 0,0,0,0 0 0 0
rand, acc sim simtemP
kg <q normal 0 0
Vg g/ >q normal 0 0
~ . honest £ 7414 5w,
Uk, T41,1,5,W normal sz[(T+ 1,4,5,W)] | _ —ra[(T ,+]1 W)]T:Af[q] e
Vkq'<q X, sla] 0,0,0,0 sk, rld'] s, rld’] 0
Vig Xry ¢la) 0,0,0,0 0 0 1
Vk,q'>q Xry, rlal Xri,rla] sk, fld'] 0 0
W crigw | 0,0,0,0 0,0,0,0 sa (1,5, W)] 0 sal(t' 4,5, W)lsw. rld]
H3 13,3 | “htidW 0,0,0,0 Vi, sld] 0 sa[(t,4,5, W)] Cerijow.qg & Ty
Up v stigw | VTr sl 0,0,0,0 0 0 0
rand, acc sim simtemP
Uk g/ <q normal 0 0
Tk.q 0,0 0 1
Vg, q'>q normal 0 0
o . honest £ 7414 5,w,
U, T41,i,5,W normal sz[(T+1,4,5,W)] _ —ral(T, z*/ W)]r:_f[q] .

To deal with all these facts, we employ a strategy inspired from the proof technique of [62]
where they use a two-level loop over ¢, g with t < T and switch, in the increasing order
of 1, ¢, batches of N S25 label functions. That is, for fixed ¢, q and all i, j, W and for all
k € Iy, the batches of label values £ ; ; j w4 are simulated by moving rg, r[g]’s back and
forth in each iteration. More precisely, in each iteration of #, g, when moving ry, r[¢] into the
ciphertext vectors, we erase all its occurrence in the secret key vectors of both the IPFE and
must compensate some € ; ; w. 4’s for their loss of 7, [q] using the indices with superscript
comp in the case of # < T'. Observe that, r¢, r[¢] only appears in the position rand of vy 4
of the second IPFE. Thus, it is not required to compensate the loss of ry ¢[q] in any other
Lry1i,j,w.q s However, ry rlq] is still required to shift into the ciphertext vectors of the
second IPFE. We use the indices with superscript temp to hardcode the honest label values
of £741,i,j,w,q While running the loop over ¢, g with ¢ < T'. Finally, after the two-level loop
running over ¢, g with t < T ends, we erase ry, r[q] from vy 4 and run a separate loop over g

@ Springer

Compact FE for unbounded attribute-weighted sums

Table 8 The inner loop hybrids in the security proof of 1-UAWS for the case where the ciphertext challenge
comes after the secret key query

rand, rand“®™ rand®MP_ randtemp-comP

hybrid vector th,, tho™ £h{EmP_ {ptemp comp sim simtemP simeomP
Vi, <q Xr rla] 0,0,0,0 skfld'] sk rla’] 0
Vk,q Xri rlq) 0,0,0,0 0 0 1
Vk,a'>q Xri. 5ld] Xry,5ld] sk, sld'] 0 0
Up t/<ti, W 0,0,0,0 0,0,0,0 sz((t, 1,5, W)] 0 sz[(t',i,5, W)]sk flq]
Haisga | @enisw | 0.0,0,0 /7 pla) 0 sel(t,isj, W) in:il[?zefl f,k&v")‘f,if;’[q]
Uk, 1/ >1,i,5,W Vi rld) 0,0,0,0 0 0
rand, acc sim simtemP
Vk,q'<q normal 0 0
g 0,0 0 1
Vkq'>q normal 0 0
Up, T41,i,,W normal se[(T +1,i,5,W)] };mie:; [f%Terth’,)]“;‘: g+
Vkq'<q 0,0,0,0 si.ld'] sk '] 0
kg 0,0,0,0 [sk,lal | [se.rlal] [0]
Vk,q'>q ‘ normal ‘ ‘ normal ‘ sk, rld’] 0 0
wpcrigw | 0,0,0,0 0,0,0,0 sel(t i, 5, W) 0 [o]
Hats.a5 | wp,,iw 0,0,0,0 normal 0 s2l(t,i, 4, W)]
Ha.tagst | Wk tr>eigw | |[normal 0,0,0,0 0 0 0
rand, acc sim sim®mP
ik~q’<q 0 0
Dk q 0
Vk,q/>q normal 0 0
Uk, T41,i,5,W normal sz[(T + 1,4,5, W)] @

For brevity, init, Vinit, Vk,q[acc] = 0,ur t<7,i,j,w[acc] = 0 are suppressed.
For brevity, winit, Vinit, Vk,q[acc] = 0, up 1<, j,w [acc] = 0 are suppressed. The reversely sampled £, init is
hardwired in wy jnit, and is only needed (and can only be computed so by the reduction) in the

exponent of G1:
[xjnec]n < RevSamp((Mye, 1N, 17, 127), &, [2[k] M (@) + BiJr, (0, J0) e im0 0,001,)

The omitted term “--7: ug ;i ; w[sim®™] = (My 7, f)lg] and Ug, 11,6, w [SIM™™P] = yy[q]2[k].
The "normal® in rand, randtmP th,, tb™P 'a"g::p’ 'éﬂ‘gf:::;omp’
theOMP thte
Vg, © —7, fld] (My,r7k,7)[a] 0
VST, upy i yw: ral(t’ —1,4,5, W) cr(z,t',4,5,W;rs) 0
The "normal“ in ¥y g[rand] = =74 r[q], Ur,741,i,5,w[rand] = rz[(T,i,j, W)]
Uk,qglacc] = yklq], Uk, 741,i,5,w [acc] = z[k]

in the increasing order to simulate the labels £71,;, j, w4 ’s using the indices with superscript
temp in the second IPFE.

We define modes of a label £ ; ; w , for ease of understanding the loops used in this
claim (Table 9). The definitions of modes are similar to what used by [62]. There are three
orthogonal group of nodes:

— The first group is about the value of the label. A label is honest if its value Ly ; j w 4(X)
is computed using the garbling randomness r = ry ® r . It is random if its value is
sampled uniformly at random. It is simulated if its value is s [(¢', i, j, W)1sk, r[q'].

— The second group is about where the terms r ¢ and s ; are placed while computing the
labels using the IPFEs. A label is normal (this is the default) if r ¢, s s are placed in the
secret key. It is compensated if r ¢[q], s r[q] are placed in the ciphertext while the other
components of r s, s 7 are still in the secret key (for simplicity, we note that this mode
only appears in the first IPFE). It is hardwired if the value (in its entirety) is hardwired

@ Springer

P.Datta et al.

Table9 Table 5: the remaining notes

The compensation (Xr, f[q],v,flg]) components in ...

rand’ rand?comp tb? thlomP
q #q vy —ri,slq'] 0 (M, (rge g = o, flaleq)la’] (M req)la’]
Vk,q 0 -1 (M 7 (ri 5 — 7k, flaleq))la) (M, req)la]
V<t uppigw i e[t =145 W) re[(t! = 1,4, 5, W)lrk,¢[d] er(x,t',,5, Wira) cr (b4, 5, Wira)ri, sla]
t<T, uprijw: vzt —1,i,5,W)] 0 cr(z, t,i,j, Wire) cr(@,t,4, 5, Wira)rk, £[4]

In the above table, “?” is either nothing or “temp”, i.e., if the values are set in both non-temporary and
temporary slots, they are the same. Note that, 7 5 — 7k f[gleq is simply ry ; with its ¢'" entry changed
to 0, whence 7, ¢[q] does not appear. The compensation is governed by the following identity for ¢/ < T
tijwe =ralt! =155, W)k pld] + X eqer(@ 0,5, Wire) My, (rk,p — 7k, laeq + 7k, rlaleq))ld]
=ral(t = 10,5, W)lre gla'] + X crer(@t',i,5, Wira) (M, (Th, 5 — 7, rlaleq)[d]

+ > er(@ i g, Wira)re slal - (Mireq)ld] (4)

reT
In this iteration, the labels €y 4 ; ; w o with (#,q’) are computed as:

7 <q 7=q 7 >q
t<t<T: S S—=SC—S S
t=t<T: ST ‘ HT - HW — RW — SW — ST ‘ HT — HCT — HT
T>t>t: H-HC—H H— HC - H H—HC—H
t=T+1: H [H— HW - HW —» HW — H]| H

The shorthands are Honest, Random, Simulated, Compensated, hardWired, Temporary.
The net effect is that £y ;<74 j,w,¢’s change from honest and temporary to simulated and temporary.
Note that, in this iteration, £y 741 i j w,q s are unchanged for all ¢'.

The value £y, 741, w,q'=q 18 honest and hard wired in the intermediate hybrids Hs ¢ 3,9,2~4-

in the ciphertext (for simplicity, we note that this mode only appears to the labels with
t'=t,q =q).

— In the last group, a label is normal (default) if it is computed without indices with super-
script temp. It is temporary if it is computed with indices having superscript temp.

As discussed above, the first loop of this claim is a two-level loop with outer loop running
overt = 1,...,T (provided in Table 6) and the inner loop running overg = 1,..., Q
(given in Table 8). We call this part 1 of the proof. The second loop runs overg =1, ..., O
(described in Table 10) and it is dedicated for simulating the label values £ 711, j w4 for
all k € Zpy.We call this part 2 of the proof. In this hybrids, the secret key vectors v’s appear
before the ciphertext vectors u’s.

[m}

Part 1 The sequence of hybrids in the two-level loop (with t < T,q < Q) and their
indistinguishability arguments (Table 11).

Hybrid Hs ; ;. It proceeds identically to H, except that for all ¢’ < ¢ < T and all i, j, W,
the vectors uy , ; ; w have their values at rand and th;’s cleared, and that a random value
sx[(',i, j, W)]is embedded in ui ;i j,wlsim]. This means that all the labels for (< t <
T,i,j, W) are simulated, the first label £y init is reversely sampled and the rest are honestly
computed.

Hybrid Hs3 ;. It proceeds exactly the same way as Hs,j except that the modes of
Liiijw,g's (for all i, j, W, q with t < T) are changed to honest and temporary, and
that a random value s[(z, i, j, W)] is embedded in uy ; j w[sim**™P] for all i, j, W. The
change is implemented as follows:

— The positions rand and tb, of uy ; jw are copied to the positions rand"™ and tb!*™P
respectively, and then the positions rand and tb, are set to 0.

@ Springer

Compact FE for unbounded attribute-weighted sums

e [0 (L)] K= =

b a1+ L 5000y LM F 11+ D1%s [EULION] 0°0 ML+
0 0 [ewIoU wﬁ?ﬁ
I 0 b
0 [,b1/ s 0°0 [EULION = “hey
0 LML+ D1 [eUWION 0°‘0 ML
0 0 [euLION [euLION b</b"1q
0 0 [BULION [ewIou bta
0 [,b1# s 0°0 [BULION b= 1hey
dus WIS wis dwo22® * guueyPUB J0e ‘puel
0 [0 1T+ D% [TeusioN | E ML
0 0 | rewsoN | [ewLIoN e
duaWIs wis dw?2® ‘g, PUE Joe ‘puel
0 (ML D]*s 0°0 0°0 R
0 (6] 7s 0°0 [0°0] " y
dwa WIS wis Qshe ‘ qusPued g3 ‘puel J0J09A PLUQAH

A1onb £y 101095 A} Jo)Je SAUW0D AFU[[BYd 1x011aydIo Y} AI9YM 9seD) J0J SAMYN-T Jo Jooid Amoas oy ur ¥H pue sprqhy doof ayy £q pamo[[oj €H prIqAy YL, 0L d|qel

pringer

Qs

P.Datta et al.

duey WIS wis dwad? ‘duwsPue 101 ‘puel 101097 PUQAH
@ [F o1+ D1 [BULION 0°0 MLTIHL R
0 0 [ewIoN [ewION b<b1q
o s oo [mEe]
I+Hbey
0 [,b14 s 0°0 [PULION b= g ="
$'hey
61 st * *1°1 + D1 Xs = , .
e N . e
I+ 17 payernuars e o [eULION 0°0 ML AR
0 0 [BULION [BWLION] b<p"q
I 0 0°0 0°0 g
0 [,b]/ s 00 [PWLION] b> bt rbey
Iz = PWLITLY (4t 021 + 01 [eULION] 0°0 ML
0 0 AN [eWwION b</b1q
1 0 0°0 0°0 a
0 [,b)/ s 0°0 [EULION b= €Pey
dwsy M!S wis dum® * dusPUes ‘o ‘pued 10199A PUAAH
penunuod (| ajqeL

pringer

Ns

Compact FE for unbounded attribute-weighted sums

0 [(M LT+ D]%s E 0°0 E,.:;Jrs.«m

0 [b)/ s 0°0 [EULION e
dus M!S wis dwor??® ‘gumPue Jde ‘pueld

0 [(M L1 D1*s 0°0 0°0 MEIZ1n

0 [b]/ s 0°0 | rewsioN | P H
dway WIS wis QE%QH ‘ qusyPued 11 ‘pueds JOJO9A PLUQAH

penunuod Q| djqeL

pringer

Qs

P.Datta et al.

Table 11 The notes of Table 10

For brevity, Winit, Vinit, Vk,q» Uk,t<T,i,j,w are suppressed.
The reversely sampled £y, jniy is hardwired in wy jnit, and is only needed (and can only be computed
so by the reduction) in the exponent of G1:
[€k,init]1 < RevSamp((Mj,, 1V, 17, 12%), 2, [2[k] My, (@) + Bel1, (k0]0)term+11.00€Chr, v

The omitted term “ --7: ﬁkyqurl,i’j,w[simte"‘p] = yilq)z[k].
The "normal® in rand, rand®®™ acc, accte™P
Tp,q —ry,rld] yrla]
uk,r+1,,5w 0 Te[(T,4,5, W)) z[k]
In this iteration, the labels ¢; 741 ; j w ¢ With q' are computed as:
B ¢ <q ¢ =q q >q
Hs : HT HT HT
Higis: S HT — HW — RW — SW —» S| HT
Ha : S S S

The shorthands are Honest, Random, Simulated, hardWired, Temporary.

The net effect is that £x 715 ;,w,q’s change from honest and temporary to simulated.

Note that, iri this iteration, £y ;<7 i j,w,q's are unchanged for all ¢ and are already simulated.
The hybrid H3 starts after the outer loop of Table 6 finishes, i.e. after the hybrid H3 7 5 and the
hybrid Hy is identical to the hybrid Hy (c.f. Table 3).

— The value at ug;;,j, w[sim*™P] is set to s, [(t, i, j, W)]. It sets the stage for the inner
loop which will make the label values i ; ; j w,q’s as simulated and temporary.

— The positions rand and tb, of v, are copied to the positions rand®™ and th!*™P
respectively.

As one can verify that the inner products between the vectors are unchanged, the indis-
tinguishability between the hybrids H3 ;1 and Hs ;> is guaranteed by the function hiding
security of IPFE.

Hybrid H3; 4. It proceeds identical to ﬁ3,,,2 except that the modes of £ ; ; ; w,4’s (for all
i, j, W,q witht < T) are changed from honest and temporary to simulated and temporary.
This is implemented by vy ,’s have their values cleared at rand™™P, tb!*™P_and vy ,[sim'™P]
is set to 5%, r[g]. We show that H3 ;o ~ H3 ;4 by a sequence of hybrids used by the inner
loop.

Hybrid H3 ;5. It proceeds identical to ﬁ3,,,4 except that the modes of £ ; ; ; w,4’s (for all
i, j, W,q with t < T) are changed from simulated and temporary to simulated. Moreover,
some clean-up work is done in preparation of the next iteration. The change is implemented
as follows:

— The positions rand™™, tb®*™ and sim™™ of uy , ; ; w are set to 0.
— The value at uy ; ; j w[sim] is changed from O to s [(z, 7, j, W)].
— The positions sim*™P of vy , is set to 0.

Since the inner products between the vectors u’s and v’s are unchanged, the indistinguisha-
bility between the hybrids H3 ; 4 and H3 ; 4 is ensured by the function hiding security of IPFE.
We observe that H3 1 1 = Hy and H3 ; 5 = H3 ;41.1.

Now, we discuss the hybrids of the inner loop running overg = 1, ..., Q, which switches
the mode of ¢ ; ;, j w,q from honest and temporary to simulated and temporary.

@ Springer

Compact FE for unbounded attribute-weighted sums

Hybrid H3 ; 3 4, 1. It proceeds identical to H3 ; », except that for ¢” < ¢, all the vy, have their
values at rand"™™P, tb!*™P’s cleared, and the value s, 7[¢'] is embedded at Vg, g [SIM™EP].
This means that the labels €y ;; ;j w4 forall i, j, W witht < T and q' < g have been
changed from honest and temporary to simulated and temporary.

Hybrid H3 ; 3 4 2. It proceeds identical to H3 ; 3 4,1 except that all occurrence of ry r[q] and
sk, rlq] are moved from vy ’s to uy 1 ; j w,4’s using the compensation identity (Notes of
Tables 4, 8), for all ¢’ # q. Further, to make v 4 free of r¢, s[g], it’s positions rand, acc are
set to zero and sim™™P is set to 1, and the labels €k 741,;,j,w,qs are hardwired at sim*™P of
Uy 7+1,,j,w (hence they are in honest and hardwired mode). Thus, the labels with ¢" = ¢
or (T >) > t or ¢ > q are computed using the compensation identity on top of their
existing mode, and the labels £ ; ; j w4 foralli, j, W become honest and hardwired (more
specifically, hardwired in uy ¢ ; j, w[sim“°™P]). The inner products between u, #’s and v, V’s
are unchanged due to these modifications. Hence, the indistinguishability between the hybrids
H3 13,41 and H3 ; 3 4 2 follows from the function hiding security of IPFE.

Hybrid Hs; 3, 3. It proceeds identical to H3; 3,2 except the labels €, ; j w4 (for all
i, j, Wwith ¢ < T) hardwired in uy ; ;_j, w[sim“™P] become random and hardwired. The
hybrids H3; 3 4,2 and H3; 3 4,3 are indistinguishable by the DDH assumption in G.

Hybrid H3; 3 4.4. It proceeds identical to H3; 34 3 except the labels £, ; ; w,, (for all
i, j, W with ¢t < T) hardwired in uy ; j w[sim“™P] become simulated and hardwired,
ie i jowg = Sx[(t, i, j, W)lsg rlgl. The hybrids H3 ;343 and H3 ;344 are again
indistinguishable by the DDH assumption in Gj.

Hybrid H3 ; 3 4 5. It proceeds identical to H3 ; 3 4,4 except that all occurrences of ry ¢[q] and
sk, rlq] are moved back to vx 4’s, and in the second IPFE, all the vectors are restored back to
their initial form, i.e. ¢, r[q] is moved back to ?)'k,q. Further, some clean-up work is done in
order to prepare the vectors for the next iteration. The values at the position sim“™P of the
vectors vy 4 and uy ;. j w are cleared, which means that the labels lose their compensation
mode and the labels £ ; ;. j w,q (foralli, j, W witht < T)become simulated and temporary.
Also, the values at the position sim™™P of v , and %, 71,;,j,w are cleared, which in turn
ensures that the labels £ 741,i, j, w4 ’s are changed from honest hardwired to honest mode.
It is easy to see that inner products between u, &’s and v, 7’s are unchanged, and hence the
indistinguishability between the hybrids H3 ;34,4 and H3; 3 4 5 follows from the function
hiding security of IPFE. We observe that H3 ;3 4 5 = H3 ;3 4+1,1, and hence H3 ; > ~ H3; 4
in the outer loop hybrids of Table 6.

Note that, the two-level loop ends with the hybrid H3 7 5 where the labels £ ; ; ; w 4 for
allt < T and for all i, j, W are simulated. We now go to the part 2 of the proof.

Part 2 The sequence of hybrids in the second loop running overg = 1, ..., Q (for simulating
the labels associated to t = T + 1) with two additional hybrids and their indistinguishability
arguments.

Hybrid Hs. It is identical to Hs,7 5 except the positions rand, th; of vy, are set to zero
(in the first IPFE), and the positions rand, acc of the vectors Uy ,’s and g 741, j,w’s are
copied to their counterparts with superscript temp. Moreover, the positions rand, acc of
iik,TH,i,j,W’s are cleared, which means that the labels £x 711 j w,4’s are in honest and
temporary mode. The inner products between u, #’s and v, v’s are unchanged, and hence the
indistinguishability between the hybrids H3 r 5 and H3 is guaranteed by the function hiding
security of IPFE.

@ Springer

P.Datta et al.

Hybrid ﬁ_g,q,]. It proceeds identical to Hs except that for ¢’ < ¢, all the vy , have their
values at rand™™P, acc®™P’s cleared, and the value sy, £[¢'] is embedded at Uy, o [sim]. This
means that the labels £ 741, j w o forall i, j, W and q' < q have been changed from
honest and temporary to simulated.

Hybrid ﬁ3,q,2. It proceeds identical to ﬁ3,q,1 except that the positions rand, acc, rand®™P,
acc'®™P of vy , are cleared and ¥y 4 [sim™™P] is set to 1. Further, the labels ¢k 711,;.j, w4 (for
all i, j, W) are hardwired at sim**™P of %y 741 ; j, w, which means the labels are in honest
and hardwired mode. The inner products between #’s and 7’s are unchanged due to these
modifications. Hence, the indistinguishability between the hybrids ’I:|3.q’1 and ’I:|3,q.2 follows
from the function hiding security of IPFE.

Hybrid H3 .¢,3- It proceeds identical to H3 .q,2 except the labels £ 711, j, w,q (for all i,j,W)
hardwired in %y 741, . wIsim®®™P] become random and hardwired. The hybrids Hs .¢,2 and
H3 ¢,3 are indistinguishable by the DDH assumption in G.

Hybrid H3 .¢,4- It proceeds identical to H3 .q,3 €xcept the labels ¢ 711,;,j, w4 (foralli, j, W)
hardwired in g 741, j, w[sim'™P] become simulated and hardwired, i.e. Lk, 7+1.i,j.W.q =
sx[(T+1,i, j, W)ls, rlg]. The hybrids H3 .¢,3 and H3 ¢,4 are again indistinguishable by the
DDH assumption in Gj.

Hybrid ﬁ3,q,5. It proceeds identical to ﬁ3,q,4 except that all occurrences of ry ¢[g] and
sk, r[q] are moved back to Uy 4’s, and some clean-up work is done in order to prepare the
vectors for the next iteration. The values at the position sim*™P of the vectors ¥ , and
Uk, T+1.i, j,w are cleared, which means that the labels & 741,;, j, w4 (foralli, j, W) become
simulated. It is easy to see that inner products between u’s and v’s are unchanged, and hence
the indistinguishability between the hybrlds H3 4 and H3 .q,5 follows from the function
hiding security of IPFE. We observe that H3,q,5 =Hs3 4411

Hybrid ﬁ4 It is identical to ﬁ3 0,5 €xcept ry, r[q]’s are put back to vy 4’s and the positions
rand™™P, acc®®™P of %y 741, j,w are set to zero. The inner products between u, %’s and
v, 7’s are unchanged, and hence the indistinguishability between the hybrids H3 0,5 and Hg
is guaranteed by the function hiding security of IPFE.

Lastly, we note that H3 1 1 = H; and H4 = Hy (cf. Table 3). Therefore, Hy ~ Hy in the
case of SK before CT. O

6 1-Slot FE for unbounded AWS for L

In this section, we construct a public key 1-slot FE scheme for the unbounded attribute-
weighted sum functionality for L. The scheme satisfies the same properties as of
the SK-UAWS%M,I). However, the public key scheme supports releasing polynomially
many secret keys and a single challenge ciphertext, hence we denote the scheme as
PK-UAWSE 1 -

Along with the AKGS for Logspace Turing machines we require a function-hiding slotted
IPFE = (IPFE.Setup, IPFE.KeyGen, IPFE.Enc, IPFE.SlotEnc, IPFE.Dec) based on G, where

= (Gy, Gy, G, g1, &2, e) is pairing group tuple of prime order p.

6.1 The construction

We now describe the PK- UAWSL

(poly, 1,1) = = (Setup, KeyGen, Enc, Dec).

@ Springer

Compact FE for unbounded attribute-weighted sums

Setup(1*): On input the security parameter, fix a prime integer p € N and define the slots
for generating two pair of IPFE master keys as follows:

Spub = {indexl, index,, pad, initP“?, randP, accp“b} U {tbﬁ’”b|r e T},
Scopy = {initP, rand“P’} U {tb°P |t € T},
Spriv = Scopy U Si-uaws U {pad“°®, padtemp, accP®™M, sim“©PY},
gpub ={index;, index,, randP"?, accPub},

=~ CO| CO! I~ CO| CO!

S1,copy ={rand; Y. acc Py, 82,copy = {rand, P ace, P,

~ ~ ~ ~ o
Spriv = Sl,copy U S2,copy U Si-uaws U {sim“PY}

Tt generates (IPFE.MPK, IPFE.MSK) < IPFE.Setup(Spub, Spriv) and (IPFE.MPK, IPFE.MSK)
— IPFE.Setup(Spub, Spriv) and returns MSK = (IPFE.MSK, IPFE.MSK) and MPK =

(IPFE.MPK, IPFE.MPK).

KeyGen(MSK, (M, Zpr)): On input the master secret key MSK = (IPFE.MSK,
IPFE.M\S/K) and a function tuple M = (Mj)iez,, indexed w.r.t. an index set Zyy C N
of arbitrary size , it parses My = (Qk, Y, 0k) € TM Vk € Zp and samples the set of
elements

:a,ﬁk <—Zp|k€IM,Z/3k=O mod p}.
X

It computes a secret key IPFE.SKp;q < IPFE.KeyGen(IPFE.MSK, [[vpa4]l2) for the following
VeCtor Vpag:

vector | index; index, pad initP"® randP'P accPub tb?Ub in Spriv
Vpad 0 0 « 0 0 0 0 0

For all k € Zyy, it proceeds as follows:

1. For My = (Q«k, Y, 6k), compute transition blocks My ; € {0, 119 Ck vt e T
2. Sample independent random vector rg, f < ng and a random element 7y € Z.

3. For the following vector vy jnit, compute a secret key IPFE.SKy init <— IPFE.KeyGen(
IPFE.MSK, [[vg init]l2):

vector | index; index, pad initP® randP'® accPub tbfUb in Spriv
Vi, init Tk k - Ty 0 rerll] 0 Bk 0 0

4. For each g € [Qk], compute the following secret keys
IPFE.SKy 4, < IPFE.KeyGen(IPFE.MSK, [[vi 4]2) and
IPFE.SK;., < IPFE.KeyGen(IPFE.MSK, [¥¢.,)

where the vectors vy g, 'Ek,q are defined as follows:

vector | index; index; pad init**® randP®® accPub tb?”b in Spriv

Vi g Tk k- g 0 0 —rr.rlq] 0 (M,cri,£)lq] 0

@ Springer

P.Datta et al.

vector | index; index, randP'? accPub in Spriv

Vkq k k-me —riflgl - ylql 0

Finally, it returns the secret key as

Kt 2yy) = ((M,IM), IPFE.SKpad, {IPFE.SKk‘init, {IPFE.SK 4. IPFE.SKk,q}qE[Qk]}kEI))
M

Enc(MPK, (x, 17, 12%), z): On input the master public key MPK = (IPFE.MPK, IPFE.MPK),

a public attribute x € {0, 1}V for some arbitrary N > 1 with time and space complexity
bounds given by T, S > 1 (as 17, 128) respectively, and the private attribute z € Z’[;
for some arbitrary n > 1, it samples s < Z, and compute a ciphertext IPFE.CTpaq <

IPFE.Enc(IPFE.MPK, [[#paq]l1) for the vector upaq :

vector | index; index, pad initP'® randP¥® accPub tbﬂJUb in Spriv
Upad 0 0 s 0 0 0 0 0

Next, it does the following:

1. Sample a random vector r
2. For each k € [n], do the following:

N
(_ZBS),TIX[N]X[SJX{O,I})

(a) Sample a random element pg < Z).
(b) Compute a ciphertext IPFE.CTy jnit <— IPFE.SlotEnc(IPFE.MPK, [z init]l1) for the
vector Uy int:

vector | index; index, pad initPuP randP¥® accPub tb?“b in Spriv
Uinit | —k - pk Pk 0 s-rel(0,1,1,05)] 0 s 0 i

(c) Forallt € [T],i € [N],j € [S], W € {0, 1}5, do the following:
(i) Compute the transition coefficients c; (x; ¢, i, j, W;ry),Vt € T using ry.
(ii) Compute IPFE.CTy;; j w < IPFE.SIotEnc(IPFE.MPK, [[lux ;. ;, wll1) for the
Vector Uy ;i j,w:

vector index; index; pad initPu randP!® accPub tb?“b in Spriv

i jw | =k pk Pk 0 0 serelt=1,i, 7, W)] 0 seco(xst, i, j, Wiry) 1

(d Fort = T + 1, and for all i € [N],j € [S],W € {0,1}5, compute
IPFE.CTk 741,i,j,w < IPFE.SIOtEnc(IPFE.MPK, [[#x,7+1,;,;, wll1) for the vector
Uk T41,i,j,W:

vector index; index, randP!® accP™® | in Spriy

Uit w | —k- ok Pk s re[(T,i, j,W)] s-z[k] i

3. Finally, it returns the ciphertext as
CTx,r,5) = <(x, T,S8),n,IPFE.CTpaqg, {lPFE-CTk,initv {IPFE.CT 1.i,j,wielr)

IPFE.CTy. 7410, } .
kI+LLLW ks[nj,ie[NJ,js[SJ.We{o,1}S>

@ Springer

Compact FE for unbounded attribute-weighted sums

Dec(SK(m,zy), CT(x,7,5)): On input a secret key SK(ps,7,,) and a ciphertext CT(x 7 5), do
the following:

1. Parse SK(as,7,,) and CT(x 7,5 as follows:
SKm.zy) = (((Mk)keIM, Im) , IPFE.SKpad, {IPFESKk,inih

{IPFE.SKy 4, |PFE.SKk,q}qE[Qk]}MM>, My = (Ok, yi. 0.

15 = ((x, T,S),n, IPFE.CTpqq, {lPFE-CTk,inita {IPFE.CTk i, j,whielT],

IPFE.CTe, 71,7, } .

kT+LLSW ke[nJA,ie[NJ,jE[SJ,We{O.1}5>

2. Output L, if Zpy ¢ [n]. Else, select the sequence of ciphertexts for the indices k € Zys
as

CT,1,5 = ((x, T,S), {|PFE-CTk,init, {IPFE.CTy 1,i,j,w}ielT1>

IPFE.CTy 7411 } .

kT+LijW keIM,ie[N],je[S],We[O,1]S>

3. Use IPFE decryption to obtain [pagllr < IPFE.Dec(IPFE.SKpaq, IPFE.CTpaq).

4. Recall that Vk € Ty, Cyp v.s = [N] x [S] x {0, 1}% x [Qk], and that we denote any
element in it as 6y = (i, j, W, q) € Cum,, ~,s where the only component in the tuple 6
depending on k is ¢ € [Qk]. Invoke the IPFE decryption to compute all label values as:

Vk € Iy @ [€k,init]lT = IPFE.Dec(IPFE.SKg init, IPFE.CTg init)
VkeZIpm,t €[T],0k =(@,j,W,q) €CmyN,s:

[¢k.r,6, T = IPFE.Dec(IPFE.SKy ,, IPFE.CTy ;i i w)
Vk eIy, =0, j,W,q) €Cuy,nN.s:

[€c.7+1.6, T = IPFE.Dec(IPFE.SKy. . IPFE.CTy 74 1.7..w)

5. Next, invoke the AKGS evaluation procedure and obtain the combined value

et = T Eval((Mk, AT 02 p) s x kil {100]r])

te[T+1],6reC)
keZu [T+1],6k€Crry N5

6. Finally, it returns p’ such that [u]lt = ([[Mpad]]T)M/, where g1 = e(g1, g2). Similar to
[8], we assume that the desired attribute-weighted sum lies within a specified polynomial-
sized domain so that ' can be searched via brute-force.

The correctness of our PK-UAWS(L can be shown similarly to our secret key scheme

. . poly,1,1)
of the previous section.

Correctness The first step is to observe that all the AKGS label values are correctly computed
for the Turing machines M} with the fixed input x. This holds by the correctness of IPFE and
AKGS encoding of the iterated matrix-vector product representing any TM computation. The
next (and final) correctness follows from the linearity of AKGS.Eval.

First, by the correctness of IPFE, the decryption recovers [upagllt = [sallt from
IPFE.SKpag and IPFE.CTpag. Next, for all k € Zy.,6 = (0,j.W.q) € Cu.n.s,

@ Springer

P.Datta et al.

let Ly init, Lk, be the label functions corresponding to the AKGS garbling of M; =
(Qk, Yk, 6k). By the definitions of vectors vy init, #init and the correctness of IPFE, we have

Li,init = (—korme + kmppr) + 5 - re[(0, 1,1, 09)]re ¢ [1]1 + 5 - B
=s5-(rol(1,1,0s, D]+ Bi)
=5 (e(Tl,l’()S’l)rO +B)=s- Lk,init(x)-

Next, Yk € Ty, t € [T], g € [Qk], the structures of vy 4, u;; j, w and the correctness of
IPFE yields

Litij Wy
= (—kogm + kmppr) — s -rel(t = 1,1, j, W)re rlq]
+ cers et i, j, Wiry) My ori, £)lg]
=—s -1l j, W,)l +5 - (Xrerccxit i, j, Wir)Miore s) [q]
=5 Liz,i,j,w,q)

When t = T + 1, Vk € Iy,q € [Q«l, the vectors Uy 4, U 741,i,j,w and the IPFE
correctness again yields

Lk, T+1,i,j,W.q

= (—kprm + kmppr) — s - re[(T, 0, j, W)lrk rlgl + as - z[k]y[q]
=—s-(rrlG. j. W. @)1+ azlk] (1} y)xsix 0.5 @ Yi) [Go j. W. @)D
=5 Li,741,i,j,W,q(X).

The above label values are computed in the exponent of the target group Gt. Once all
these are generated correctly, the linearity of Eval implies that the garbling can be evaluated
in the exponent of Gt. Thus, this yields

N
Iulr = J] Eval((Mk, (RIS L E p) %, [k inicllT,

keZy

{1ekr00r]))

1€[T+1],0k€Cpy N, s g
=1 Z Eval(My, 1Y, 17,17, p), x, Lk jnit, (k.0 elT+11.00eCh, ns)IT

keZy
=ls-) (azlkl- Miln,7.5(6) + Bl
kEIM
=lsa- Y zlkl- Mily.7.s(O)Tr = [so - M(x) z]lr
kely

Finally, since M (x) "z is in polynomial range the decryption recovers it by solving the
equation [ullt = ([ipadliT)* for w’ through exhaustive search over the specified range.

6.2 Security analysis

We first describe the simulator of our public key 1-slot UAWS scheme. The Setup® works
exactly the same as honest Setup in the original scheme. Let the simulated master keys are
MSK* = (IPFE.MSK*, IPFE.MSK) and MPK* = (IPFE.MPK*, IPFE.MPK). We assume that
there are total ® number of secret key queries and ®pre be the number of secret keys appears
before the challenge ciphertext is computed. Without loss of generality, we assume that the
number of states is the same for all the Turing machine in a particular secret key. Let nmax
be the maximum length of z allowed to the adversary .A. We assume nmax = polyi as A

@ Springer

Compact FE for unbounded attribute-weighted sums

is a polynomial time algorithm. The simulator guesses n which is the length of the private
attribute z. The remaining algorithms are as follows:

KeyGeng(MSK*, (M, Iy ,)): Oninput the simulated master secretkey MSK* = (IPFE.MSK*, IPFE.M\S/K*I
and a function tuple My = (M¢,k)keIM¢ indexed w.r.t. an index set Zys s C N of arbitrary

size , it parses My x = (Q¢p, ¥, 6x) € TM Vk € I and proceeds as follows:

1. Sample the set of elements
{a¢,a¢, Bok-Pok < Zp |k €Ipr. Y Ppk =0 mod p. Y By =0 mod p}
k k

2. Compute IPFE.SKy pag < IPFE.KeyGen(IPFE.MSK, [[vpaqll2) for the vector vy pad

defined as
ther
ector ad adeopy | Y
v P P indices
VUpad g &¢ 0

3. For each k € Zyy, do the following:

3.1 ForMy i = (Q¢, Yk, 6k), compute its transition blocks My « » € {0, 1}Q¢XQ¢, VT e
Tk
3.2 Sample independent random vector r¢ k5 < Zg“’ and a random element 7 € Z.
3.3 Compute IPFE.SKy ¢ init < IPFE.KeyGen(IPFE.MSK, [[v init]l2) for the vector
vy k,init defined as
vector | index; index; initPt accPUb | init«PY acccopy .Ott.ler
indices
vt | ok ke-mer rexslll Bex | Teasl Bok 0
34

For each ¢ € [Qy], compute IPFE.SKy, i , < IPFE.KeyGen(IPFE.MSK, [[vy £ 412)

and IPFE.SKg ¢ g < IPFE.KeyGen(IPFE.KA\S_K [Vg.x,q]l2) where the vectors vy kg,
Vg k,q are defined as

vector | index; index, randPUP tb?“b rand“°PY thSoPY . Oﬂ.ler
indices
V4 kg Tk k-mprx rorslagl Mprorpr gl | Toxrlal My i Tor gl 0
. . other
vector | index; index, rand?*® accPub rand;”™ accy™ | UL
indices
Vp.hg ko kempx —renglal ey yilql | —Fouslgl @y - yilg] 0

Finally, it returns the secret key as

SKay. 2y, = ((M¢’IM¢)» IPFE.SK. pad> {lPFESKq),k,initv {IPFE.SK k.4 'PFE~5K¢.k.q}qE[Q¢1}k€I) :
My

Enc* (MPK*, MSK*, (x, 17, 12S), V, n): On input the master public key MPK = (IPFE.MPK,
IPFE./M—I\DR), a public attribute x € {0, I}N for some arbitrary N > 1 with time and
space complexity bounds given by T,S > 1 (as 17,1%") respectively, a set V
{(My,Zpm,), Md,(x)Tz}(,,gpprE and the length of the private arbitrary n € N, it proceeds
as follows:

@ Springer

P.Datta et al.

1. sampless < Zj, and compute a ciphertext IPFE.CTpag < IPFE.ENc(IPFE.MPK, [[#paq]l1)
for the vector upaq :

other
vector | inS ad<® |
pub P indices
Upad 0 1 0

- ZE?,T]X[N]X[S]X[O,I}S - ZE)T+1]><[N]><[S]><{0,1}S.

2. Sample vectors r and sy

3. For each k € [n], do the following:

(a) Sample a random element pg < Z),.
(b) Compute a ciphertext IPFE.CTy init <— IPFE.SlotEnc(IPFE.MPK, [z initll1) for the
vector Uy injt:

. . . . th
vector | index; indexp init<°PY acc<oPy simeopy | Oter
indices

Upinit | —k - pk Pk rx[(0,1,1,04)] 1 1 0

(c) Forallt € [T],i € [N],j € [S], W € {0, 1}5, do the following:
(i) Compute the transition coefficients c; (x; ¢, i, j, W;ry),Vt € T using ry.
(ii) Compute the ciphertextIPFE.CTy ;; j w < IPFE.SIOtEnc(IPFE.MPK, [[u ;i j wi1)
for the vector uy 4 ; j w:

other

CO| 11 CO|
thSoPY simePY L
indices

vector index; indexs rand<°PY

Wi jwo | —k-pk P rel(t— 1,0, j, W) ce(xit,i, j, Wiry) sel(t,i, j, W)] 0
(d) It finds a dummy vector d € ZZ such that

My)Tz=)" Myp)zlkl=My(x)'d =Y My i(x)dlk]
kEIM¢ kEIM¢

holds for all ¢ € [Ppre].
() Fort = T + 1, and for all i € [N],j € [S], W € {0, 1}5, compute the cipher-

text IPFE.CT¢. 741 j.w < IPFE.SIOtEnc(IPFE.MPK, [[#i;. 7 1.i.;.w 1) for the vector
Uk, T41,i,j,W:

other

SoPY sl sim“PY L
indices

vector index; indexy rand, acc,

U, r+1i,5,w | =k px Pr rel(T,i,), W] dlk] sx[(T+ 1,4,), W)] 0

4. Finally, it returns the ciphertext as
1,5 = ((x, T,S),n, IPFE.CTpaq, {IPFE-CTk,inib {IPFE.CTi.1,i,j,whee[T1s

IPFE'CTk’T+1’i’j‘W}ke[n],ie[N],je[S],We(o,1}5)'
KeyGen](MSK*, (M, Tyu,, My (x) T z)): On input the simulated master secret key MSK* =
(IPFE.MSK*, IPFEMSK) and a function tuple My = (M x)kcTy, indexed w.rt. an index

set Iy, C N of arbitrary size and it’s functional value M x) Tz, it parses My =
(Q¢s Y, k) € TMVk € Ty and proceeds as follows:

@ Springer

Compact FE for unbounded attribute-weighted sums

1. Sample the set of elements

{a¢,a¢, ﬂ¢,k, B\(p’k <~ Zp | k € Iy, Z'B‘f”k =0 mod p, B:zb,k satisfies (*)}
k

where the condition () is given by
if Iy, Snl: Y4 Bpa =0 mod p
if(maxIM¢ >n)/\(minIM¢ <n): Bpir < Zp

2. Compute IPFE.SKy pag < IPFE.KeyGen(IPFE.MSK, [[vpagll2) for the vector vy pad
defined as

other
vector ad adPy |
P P indices
VUpad ag Ty 0

3. For all k € Zypy, do the following:

3.1 ForMy ;. = (Q¢, Y, 0k), compute its transition blocks My « - € {0, 1}90%9 V1 ¢
k.

3.2 Sample independent random Vectors r¢ i, S¢ k,f < Z%’ and a random element
7k € Lp.

3.3 Compute IPFE.SKy ¢ init < IPFE.KeyGen(IPFE.MSK, [[v init]l2) for the vector
vy k,init defined as

. . . . other
vector | index; index; initPU accPuP | simepy | U7
indices
Vo kinit | Tok K-Tok Tok 1] Bok L k,init 0

3.4 For each q € [Qg], compute IPFE.SKy ¢ kg < IPFE.KeyGen(IPFE.MSK, [[vg x,4112)

and IPFE SKg.k,q < IPFE.KeyGen(IPFE. MSK [[v¢ k,q1l2) where the vectors vy « 4, v¢, k.q
are defined as

other

vector | index; index randP'® tb?Ub sim©PY |
indices

Vg kg Tk k- rokrlal Myreror gl | s¢.x rlgl 0

vector | index; index; randPuP accPub sim©Py | | otl.ler
indices
Vg kg k k-mopr —rexrlal og-yilgl | spx rlq] 0

where £ i init for ¢ > Ppre are computed as

s A ~
4. Linit < RevSamp((My, 1V, 17,1%), x, @My (x) "z + By 1, (g k,1,00)1€lT+11.0¢€Chy v, 5)

s —~
£ kinit < Revsamp (M, 1V, 17, 12), x, By &, (€p k.16 €17+ 11.60eChs v)

and the other label values (Kk,t,ek)ze[T+1],9kech,N,s are given by fli;9 =
sx[(t, 1, j, W)sg.k, rlq]-
Finally, it returns the secret key as

SKMy.Zu,) = <(M¢,IM¢)» IPFE.SKy_pad> {'PFE-SK¢.k,init, {IPFE.SK kg 'PFE~SK¢,k.q}q€[Q¢1}kez >
< A’W‘»

@ Springer

P.Datta et al.

Theorem 4 Assuming the SXDH assumption holds in G and the \PFE is function hiding secure,
the above construction of 1-Slot FE for UAWS is adaptively simulation secure.

Proof idea We discuss a high level idea of the proof. We use a two-step approach to show
the indistinguishability between the real and the ideal world. Let ® be the total number of
secret keys queried by the adversary.

— In the first step, we move everything from the ciphertext vectors from Spyp, §pub to the
private slots Spriv, Spriv- Specifically, we use the Scopy to compute the inner products
between the secret key and ciphertext vectors. To enable this computation, the entries
of secret key vectors are copied to Scopy. Note that, the slots of Spyp, §pub of the secret
key vectors must be kept as it is as this will facilitate the decryption of adversarially
computed ciphertexts.

— The second step is more technically involved and challenging. We go through a loop
of & iteration similar to the proof technique of [62], however, unlike their work we
can not fully randomize the ciphertext since it should lead to a successful decryption
by all the queried keys. We crucially apply the three slot encryption technique used by
[38, 62]. To handle all the pre-ciphertext secret key queries, we first embed a dummy
vector into the ciphertext and then restore it to its original form (copied in §2,copy) with
the dummy vector in place of the challenge (private) attribute. Additionally, we use the
private slot sim“°®Y to handle the post-ciphertext secret key queries where we embed the
functional values directly into the secret keys. In a nutshell, each iteration of the loop
takes care of one particular key and uses two independent randomness—F; in S1-yaws,
which interacts with that particular key and ry in Scopy, S 1,copy §2,copy, which interacts
with all other keys—so that the security of (1-SK, 1-CT, 1-Slot)-FE can be invoked for
each key one-by-one in the loop.

We now illustrate the formal indistinguishability arguments of all the hybrids in the proof
below.

Proof Let A be a PPT adversary in the security experiment of UAWS. We show that
the advantage of A in distinguishing between the experiments Exptl'S'Ot'UAWS(lk) and

A,real
Exptfi'ggf’\ws(l)‘) is negligible by a sequence of hybrid games played between A and the

challenger. Let ((x, 17, 125), z) be the challenge message and z € Z7,. Suppose A makes ®
number of secret key queries and out of which the first ®pre are the pre-ciphertext queries.
Let nmax be the maximum value of n, the length of z, i.e., A can choose the private attribute
whose maximum length can be nmax. We assume that Upelo1Zm, 2 [nl, i.e., the union of all
the index sets associated to the secret key queries of A covers the indices of the ciphertext
vectors. This is natural to assume since .A would always want to have maximum information
about the encoded message.

In the reduction, we use the shorthand “oc @” to indicate that such components are linear
in a and efficiently computable given a in the exponent, and that there is only one natural
way of computing them. We now proceed to describe the hybrids. O

Hybrid Ho. It is identical to the real experiment Expt [SI9UUAWS (14) of 1-Slot—UAWS scheme
where the ciphertexts are generated using SlotEnc of IPFE.

Hybrid Hy ;. This is exactly the real experiment except the challenger aborts the experiment
immediately if the vector length of z is not n’, i.e., n # n’. Suppose A outputs | when the
experiment is aborted. Thus, it is easy to see that the advantage of A in Ho ; is ﬁ times the

@ Springer

Compact FE for unbounded attribute-weighted sums

advantage in Hg. Thus, if the advantage of A is negligible in Ho, then it is so in Hg 1. Hence,
in the remaining hybrids we simply write n’ = n.

Hybrid H;. It is identical to Hy 1 except the vectors of ciphertext are encrypted using normal
Enc of IPFE, i.e. using the master secret key and the positions u|s,,, . 4|3 3, , of the vectors u’s,
u’s are changed from L to zero. More specifically, all slots of Spyiy for upad, Wi init, Uk,t,i,j, W
and all slots of Spm, for . r41.i, .j,w are changed from _L to zero. The hybrids Hy and H are
indistinguishable by slot-mode correctness of the slotted IPFE.

Hybrid H,. It is identical to H; except the way we compute the inner products between the
secret key and ciphertext vectors. Specifically, the ciphertext randomness s is moved to the
secret key, and 1 is placed into the ciphertext vectors in the positions of s. We implement this
as follows:

— The ciphertext and secret key vector elements are first copied to pad“®® and the indices
init“°PY, rand“°PY, th°P, acc“PY of Scopy and Sj,copy-

— Then, the randomness s is shifted from the ciphertext to the secret key vectors. In partic-
ular, the position pad“®® of vy paq and upaq are set to sag and 1 respectively. Similarly,
the randomness s is moved to all the indices such as init“PY, thS°Y rand“P¥, accoPY
of the secret key vectors.

The hybrids are depicted in Table 13. Since the inner product between the secret key and
ciphertext vectors are unchanged, the indistinguishability between the hybrids H; and H»
follows from the function hiding security of IPFE. This change prepares the secret key ran-
domness to randomized in the next hybrid.

Hybrid Hs. It proceeds identical to Hy except that the private slots of the secret key vectors
are generated with an independent set of randomnesses random pad &, garbling randomness
Tk, f[#, k,] and random secret shares ,3¢ x of zero.

The main difference is that in Hp, the randomnesses used in the secret key vectors at Spup
and Spriy are the same, but in Hs, the slots of Spyp and Spyiy are filled with independent sets
of randomnesses. We can invoke the DDH assumption in G:

(g, Bpk> Tk, f3 S0y, $By i ~W¢,k,f']]2}¢e[<l>],keIM¢

DDH tuple

~ llotg, Bp.ks ook, f3 U, ﬂq&,k,?¢,k,f]]2}¢e[d>],keIM¢

random tuple

If the DDH tuples is used to compute the secret key vectors, then H; is simulated, and if the
random tuples are used to compute the secret key vectors then H3 is simulated. Therefore,
the indistinguishability between the hybrids H; and Hs is ensured by the DDH assumption in
G, (Table 12).

Hybrid Hy. It is identical to the hybrid H3 except we change the ciphertext vectors to prepare
for the second step of the loop. More specifically, the changes are implemented using the
following steps:

N
— Sample a random vector 5, <« Z[,,TH]X[N]X[S]X{O’I} and set the sim“°PY position of the

VECtOrs Uy init, Uk,r,i,j,w as 1, sx[(z, i, j, W)] respectively.

— The position sim® of @y 711, jwis setas sx[(T + 1,i, j, W)].

— The reduction finds a dummy vector d € ZZ such that M x)z = M¢,(x)Td =
Zke[n] My 1 (x)d[k] Yo € [Pprel.

@ Springer

P.Datta et al.

Table 12 The first few hybrids in the proof of IND-CPA security of our 1-slot UAWS scheme for L

. initP"® randPuP . .
hybri T ’ ad“oPY in S sim“PY
hybrid vecto pad acepib tpr“b p copy

V¢, pad X 0
Ve, k,init> Vo, kg < (Tg k. f> B k) 0 0
Upad s 1
Ho.1 Wi inits Wk, t,i,j, W o (8,57z) L L
randPU_accPub in S1,copy in 82 copy sim©oPY
Vg koq X (T k5 0tp) 0 0 0
Uk, T41,i,5,W o (srg, 52) 1 € 1
Vo, pad Qg 0
Vs, kinits Vg k,q o (Tg.k, 1+ Bok) 0 0
Upad s
Hi Uk inits Wk t,i,5,W o (s, 8Ta)
randPU_accPub in S1,copy in 52 copy sim©oPY
Ug,k,q o (T k,f5) 0 0 0
Uk, T 41,5, W o (8T, 52) @ @ @
Vg, pad Qg s
Vg, kinits Vb k,q o< (Tg k. f> Bo,k) X (8T k558 k) 0
Upad
Hz P
Uk inits Uk, t,i,5,W 0
rand"”",acc"”b in S1 copy in 82 copy sim©oPY
Vg kg X (T k,fr08) || < (57K, 5 Xgs) 0 0
Uk, T41,i,,W [0] 0 0
Vg, pad Qg
Vs, kinits Vg k,q o< (T, k, 1+ Bok) o< (P, £+ Bo,k) 0
Ha Upad 0 1
Uk inits Wk, t,i,5,W 0 o (1,7z) 0
randP"® accPub in S1,copy in 82, copy sim<oPY
T kg o< (P, f5 Q) o< (Tg,k,f,0gp) 0 0
Uk, T41,i,5,W 0 x (T2, 2) 0 0
Vo, pad Qg Qg
Vs, kinits Vg kg o< (P, £+ Bo,k) < (To,h.f5 Bo k) 0
Upad 0 1
Hi=Hs | g inie, ke w 0 o (1,72) 1 or sa[(t4, 5, W]
randP® accPub in gl,copy in gz_mpy sim<oPY
Vg kg o (Tg.k,fr Q) o< (Tg,k, £, 0gp) 0 0
Uk 7415, 0 x (rz,2) [x e d)] [s=lT+1,i4,W)]
Hs1i~e1~15

Then, in U, 741, j,w, all the elements of S 1,copy are copied to §2,copy with d in place of
zZ.

We will change all the pre-ciphertext secret keys (in the second step) in such a way that
they only interact with §2,c0py of ﬁk,TH,i,j,W, instead of gl,copy.

Observe that, the inner products of the vectors u’s, #’s with the vectors v’s, 7’s are
unchanged due to these changes because the corresponding positions of v’s and Vs are zero.
Therefore, the indistinguishability between the hybrids H3 and Hy is ensured by the function
hiding security of IPFE.

@ Springer

Compact FE for unbounded attribute-weighted sums

Table 13 The last few hybrids in the proof of IND-CPA security of our 1-slot UAWS scheme for L

initP"® randPub

hybrid vector ad ad“oPY in S simPY
y p acchib. g2t | P copy
L S o e .z
Vb ke inits Vo kg o< (T, £+ Be,k) o< (P ke, 5 B, k) 0
Upad 0 1
Uk init> Uk, t,i,j,W 0 o (1,7z) 1 or sg[(t,i,5, W)]
He =Hs5 01 v ay ay
5,Q 6> ‘Ppre{ ¢ ,pad ¢ ¢
Vg, kinits Vo k,q o< (T, £+ Be,k) Lo ke jinit OF Sg.k,7[d]
rand"“bA, accP® | in S1,copy in 82 copy sim“PY
¢ < Dpre T kg o< (T k) o (Pg,k, £ 0g) 0
Uk, T41,i,j,W 0 (rz,z) o (re, d) sa[(T +1,4,5, W)]
¢ > Ppre Vg k,q < (T, f> Xg) 0 So.k,fld]
L S o o .z
Vep, ke inits Vo kg o (T, k. f> B, k) o (T ke, f > B, k) 0
Upad 0 1
Uk init> Uk, t,i,j,W 0 o (1,7z) 1 or sg[(t,i,5, W)]
Hz7 v, g ay
6> @pre ¢,pad @ @
Ve, k,inits Vb kq o< (T¢, k. frBep,k) 0 L .init OF S k. rlq]
rand®® accPb | in S1,copy in 82, copy simeoPY
¢ < Dpre Vg,kq o< (P, fr Q) 0 o (Po k£, 00) 0
U T4 1,0 W 0 [o] o (ra,d) sal(T+1,4,5,W)]
¢ > Ppre Vg kg X (T, f>) 0 0 s¢.k,flal

For brevity, the vectors for computing the labels are not spelled out. The shorthand "o a@“ means that the
components there are linear in a and efficiently computable given a in the exponent, and that there is only
one natural way of computing them (cf. construction of 1-slot UAWS described in the Section 6).
In He and H7, wy init[sim®P] = 1, up ¢ i j w[sim®P] = sz [(t, 4,5, W)] and v k. init[SImP] = €5 1 inits Ve k,q = So,k, 7 1d]
where £ i init for ¢ > ®pre are computed as follows:

25,1t < RevSamp((Mi, 1V,17,12%) &, G5 My (2) Tz + By 1, (Crt,00)teT+1).00€Chr, v, 5)

£4,1inie RevSamp((Mj, 1V, 17,12%) 2, By 1, (00)te[T41] 00 €Chry v,5)

and the other label values (/Kk,i.sk)te[T+1],9kech ~ g are all simulated such that €y 40, = sa[(t, 4,5, W)]sg k rla]-

We have completed the first step of the security analysis. Now, we move toward the second
step with the hybrids Hs j~¢,1~15 Which is a loop (running over all secret keys) where we
handle each secret key in each iteration. Before going to the description of the loop, we
present the last hybrid of the loop and the hybrid that is equivalent to the ideal world.

Hybrid Hg. It is identical to Hs except the pre-ciphertext secret keys now interacts with
S2,copy and in the post-ciphertext secret keys, the functional values are hardwired. These
changes are implemented as follows:

— In the pre-ciphertext secret keys everything from the posmons inS copy Of Vg k4 (for
¢ € [Ppre]) are copied to 82 copy» and then the positions in 81 ,copy are set zero.

— In the post-ciphertext secret keys, the positions in Scopy 0f v . init> Vg, k,q are set to zero,
and the positions vy kinit[SIM Y] is set as £y y init and both of vy k4 [SIMPY], Ty 1 4
[sim“PY] are set as 54, r[¢]. The label values £ i init’s are computed as follows:

s A ~
o 1init < RevSamp((M, 1V, 17 1%), x, @My (x) "z + By 1, (g k,1,00)1€lT+11.0¢€Chy v, 5)

S o~
g kinit < RevSamp(My, 1V, 17, 1%), x, By . (g .k.1.00)1€[T+11.0¢Crsy v.5)

@ Springer

P.Datta et al.

where ¢ > ®pre and the other label values (Zk,,,gk),E[TJF]],@,(GCMk_N_S are given by
Liro = sx[(, i, J, W)lsg k, rlq].
Also, the reduction ignores the guessing step of all previous hybrids, meaning that it is not
required to guess the length of z. We show the indistinguishability between the hybrids in
the Claim 3 given below.

Hybrid H7. It is identical to He except it clears the positions in gl,copy of ﬁk,TH,i,j,W. Since

the corresponding terms in U 4 are already zero, the inner products are unaffected. There-

fore, the indistinguishability between the hybrids Hg and H7 is guaranteed by the function
hiding security of IPFE. We observe that H7 is the ideal experiment Expt'; A IdealAWS(lk)

The remaining is the proof of the above claim which will complete the proof of the theorem.

O

Claim 3 The hybrids Hy and Hg are indistinguishable, i.e., Hy ~ Hg.

Proof We prove the claim through a loop of hybrids Hs 1~ 1~15 running over all secret keys.

Hybrid Hs 4 ;. Itis identical to Hy4 except the first ¢ — 1 secret keys are modified so that they
either interact with the dummy vector d (if they are pre-ciphertext keys) or the functional
values are hardwired into them (if they are post-ciphertext keys). In other words, the first
¢ — 1 secret keys are changed as in Hg. The hybrid is shown in Table 14.

Hybrid Hs ¢ ». Itis identical to Hs ¢ 1 except that a random multiplier s <— Z, is multiplied
w1th the values in pad“°®” , Scopy> S 1,copy- Since is uniform over Z p» the probability that

= 0 is negligible. Therefore, the hybrids Hs 4 1 and Hs g o> are identically distributed
(including the case of 5 = 0).

Hybrid Hs 4 3. It is identical to Hs 4 > except that the inner product between the ¢-th secret
key vectors and the ciphertext vectors are now computed via the slots in {pad®™P}US;_yaws.
This change is implemented as follows:

— The position pad“® of v paq set to zero and pad™™ is set to @g. Also, upaq[pad™™P]
is set to’s.

— The positions in Scopy of the vectors vy g init, Vg k,q are first copied to Sq-yaws without
the random multiplier s and then Scopy is set to zero. Similarly, 81 ,copy_ of the vectors
Vg kg are copied to S1 uaws without the random multiplier 5 and then S; ,copy 18 set to
Zero.

— The positions Scopy of the vectors uy init, Ux,s,i, j,w are copied to Sy-yaws and thg random
multiplier 5 is multiplied with the newly copied terms. Similarly, the positions S copy of
the vectors @y 7+1,;,j,w are copied to Si-yaws and the random multiplier § is multiplied
with the newly copied terms.

We can verify from the Table 15 that the inner products between the vectors are unchanged,
hence the indistinguishability between the hybrids holds due to the function hiding security
of IPFE.

Hybrid Hs 4 4. It is identical to Hs 4 3 except that in the ciphertext vectors, the term 57 in
S1-uaws» S1-uaws is replaced by an independent and uniformly chosen random vector s. We
can invoke the DDH assumption in G:

N
- Z[pO,T],><[N]><[S]><{0,l} ?<_Zp

’

[re,s,5rel = [ry, 5,51 fors, ry
S——— S——r

DDH tuple random tuple

@ Springer

Compact FE for unbounded attribute-weighted sums

Table 14 The first two hybrids of the loop Hs 1~¢,1~15 Which continues to the next page...

hybrid vector in Spub pad<oP N Scopy SimeoPY pad® ™ in S, uaws
o< ¢, Vg pad Gy 0
‘/ _ =
S Pore | vy kit Vo kg o (P k, 15 Ber k) 0 0
¢ < @, V! pad Gy 0
,
@ > Ppre V! k,init> V! kg 0 Lo ke init OF Sg k. fla] 0
Vg,pad Qg Tk, fS Ay R 0
Vg kinits Vo k,q | (independent X (T, k,f5Bo.k) 0 0
of G, T,k f)
Upad 1 0
W inits Wk ,t,i,5,W o (1,72) 1 or sg(t,i,5, W)] 0
Hs0.1 -
¢ >0, V! pad Qg 0
4 ~ o
= Pore | vy inits Vg kg < (Tt ke, 1 Byt) 0 0
¢ > o, Vg pad Qg 0
¢ > Ppre V! kjinits V! kg o< (Pg/ k.13 Byt k) 0 0
in Spub in S1 copy in 82 copy simeoPY in SLuaws
¢ < p< Dpre Bt kg 0 o (Pt o, 2 Q) 0 0
Dpre < ¢ < ¢ T kg 0 0 S0k, £ la) 0
Vg kg Qi Tk, 'S o (T k,f50g) 0 0 0

(independent
= of g, Ty k,f)

Uk, T41,i,j,W o (rz, z) o< (ra,d) sa[(T + 1,4, 5, W) 0
Bpre > ¢ > 6 o (Pyr ke, fAgr) 0 0 0
¢ > P> Dpre o (Pt ke pr Q) 0 0 0

. 0
Qg Tk 'S

Vg, k,inits Vb k,q 0 0

Hsooa Upad 1 0
Wit Wk t,1,5,W o (1,72) 1 or sa((t, 1,5, W)] 0

in gpub in gl.copy in gz.copy sim“PY in S1.uaws

D kg Ay, Tk f'S 0 0 0
Uk, T41,i5,W x (e, 2) o (ra,d) se((T+1,4,5, W)] 0

to show the indistinguishability between the hybrids Hs ¢ 3 and Hs 4 4.

Hybrid Hs 4 5. It is identical to Hs 4 4 except that in the ciphertext vectors, the term § in
S1-uaws» S1-uaws is replaced by 7y where we note that r, of Scopy 1s independent of this
newly sampled 7. We invoke the DDH assumption in G:

[N]x[S]x{0,1}5

e —~ [0,T7, % o~
[rx,s, 5T ~ [ry,s, 51y 11 fors, 7y < Z, , S <7y
——— ——— —

random tuple DDH tuple

to show the indistinguishability between the hybrids Hs ¢ 4 and Hs 4 5.

Hybrid Hs 4 6. It is identical to Hs ¢ 5 except that the random multiplier 5 is moved back to
the secret key vectors vy’s from the ciphertext vectors u’s. The indistinguishability between
Hs .6 and Hs 4 5 follows from the function hiding property of IPFE.

Hybrid Hs 4 7. It is identical to Hs 4 ¢ except that the random multiplier § is removed from
the secret key vectors. The hybrids Hs ¢ ¢ and Hs 4 7 are identically distributed.

Hybrid Hs 4 g. It is identical to Hs 4 7 except the ¢-th secret key (if it is a pre-ciphertext
query, i.e. ¢ € [Ppre]) now interacts with the dummy vector d or the functional value is
hardwired into it (if it is a post-challenge query, i.e. ¢ > ®pye). This change is implemented
as follows:

— If ¢ € [Dprel, then there is no change required in the secret key, but z is replaced by d
in the ciphertext vector u’s.

@ Springer

P.Datta et al.

' ¢ Ly cuul
(69 0] (L 1Dlfs0] (4w P
s I pedy
(X'¢g i;\é&v o) 0 0 by'dq cuury‘d,
- [0 m,,\,«éh 7Y ped ¢, wreme
E [Cad 711+ DI (p 1) % (2°%4) ML
o e By
A@N@rxxﬁbvo 0 0 @ mh\«@k () v\s\m—\
SMVN-1 ur AdooWIS \as,mmu ur \ES;M ur o_:nM ur
N ¢ ¢ L Y UL
] T e T —
I pedy
(o S ¢.4) 0 @ Y'dq Ny P,
@ s Sy dp ped‘py €9'sH
=]
SMYrrlgur g, ,ped Adoo WIS Ado>g ur AdooPed andg uy 101094 puaky £

SI~I'd~1'SY dooy ayp Jo L'P'SH 0y €'P°SY spLiqAy ajerpawraiur oy, S| djqel

As

Compact FE for unbounded attribute-weighted sums

P05 0 s/ Yu 90 ped‘dg 9'¢'SH
(28°%48) ML+ D1 (p 1) (24%1) % ML
A?o J\..«,sb Do) 0 0 0 wh\.w\,sk “Pp wd\ém
SMYN-1Q Ut £doo WIS Eo@d% ur Eo@.-% ur n:a% ur
(*45°8) % (ML 1 n]¥s o] (*a°p) % ML g
s 1 pedn
(1'eg LAPa) 0 0 0 by'¢q MUy ¢q
7 0 AKX ped‘¢q $hoy
E [T+ D%s (p*a) (2%a) M LTI,
Aezxw,,&p«»e&\u o) 0 0 0 s frou %0 wn«é\m
SMVN-1¢ ur £dosWIS \Eo%m.m, ur ES;% ur o_sam, ur
SMV0-lg ut dwsyPed Ados IS Ado>g ur AdooPed andg ur 103594 pLqAy

penunuod G| djqel

pringer

Qs

P.Datta et al.

(2% % [t f 11+ D1%s (p*a) x (2 ¥a) 0 ML,
m>><3.mmv ur £dooWIS \ES,N\M ur \EoU;)m\u ur o_sanm, ur
(*a°1) (M L1 D]¥s o (*a°1) 0 My Ty
I I pedy
Q,@m L,J\é& o) 0 0 b'y‘dq uur'y‘9q
0 s fros %0 ped‘dy L'éey
E LAt f 11+ D1%s (p*a) x (2 %0 0 M LTI+
(Pos S Pus) 0 0 0 0 s froud0 byeq
m>><3;M ur £doo WIS éou,NM ur éoUn_M ur O_JQM u
E [(M L 1D]*s10 7 (X4 1) © My Nty
- I pedy,
7 (1'egs S Pus) 7 0 0 by'gq auIy'dq
SMVlg ur dwayPed Ados IS Ado>g ur £dooPed andg ur 10359A puqky

penunuod G| djqel

il
[
50
=)
g
o
)
Sl

Compact FE for unbounded attribute-weighted sums

Table 16 The intermediate hybrids Hs 4 g and Hs 4 9 of the loop Hs 1~¢,1~15

hybrid vector in Scopy simeopy n Sruws
rand, acc, tb, sim
< Bpre Vo kinits Vo kg 0 0 o (Fgoters Booie) 0
it e gw | o€ (1,7a) Lor saf(t,i,.W)] < (1.72)
- 0 0 Lo imt RevSamp(@pM () = + By.1) ‘
6> Bpe Vi k> 1init 0 0 4. 1init < RevSamp(Byx)
Hs g8 Voka 0 0 Sg.k.fla)
0 5 cony simeorr B St
rand, acc sim
6 < Dot Bokg 0 0 o (Fg.pr85) 0
eririgw | (re,d) s2l(T+1,1,5,W)] [x (e] [s2lT+ 1,15, W)]
&> Dpre : Tpkng 0 0 8o.k,s1a]
< Dot Vo kinits Vo kyq 0 0 o (Fgoheofs Booie) 0
W jnits Wk ti,5,W | < (1,72) 1 or sg[(t,i,5, W)] o (1,72)
v 0 [t Revsamp(@,M(@) = + Bu)| 0
&> Ppre Vep, o> 1,init 0 £4,1inie RevSamp(By 1,) 0 @
Hs.s0 V.kq 0 So.k.£14] 0 [0]
in 52, copy simeoPy 1o Sruaws
rand, acc sim
¢ < Bpre : Bk 0 0 « Fonpr@s) o
Uririgw | o (re,d) s2l(T+1,4,5,W)] o (7, d)
6> Dpre Tpoka 0 So.k.rla] 0

— Also, in the ciphertext, the position sim of the vectors uy init, Ux,¢,i, j,w and ﬁk,TJr],,-,j,W
aresetto 1, s, [(¢,1, j, W)l and s, [(T + 1,1, j, W)] respectively.

— If ¢ > Dpre, then everything in Sy.yaws and §1_UAW5 of the secret key vectors are cleared
except the sim position. More specifically, the positions rand, acc, tb; of Sy.yaws and
§1_UAW5 are set to zero for v’s and ¥’s, and vy init[SiM] is set as the label values £ g init,
and both of vy k 4[SIM], Vg & 4[sim] are as s4 «, r[q].

To make the change as shown in Table 16, we invoke the security of the (1-SK, 1-CT, 1-Slot)-FE
scheme. In particular, Theorem 3 is applied for the ¢-th key and the single challenge cipher-
text. Observe that the guessing step is already done in this security proof (i.e., Ho.1), hence this
step is skipped while we apply the security of (1-SK, 1-CT, 1-Slot)-FE scheme. This makes
the reduction more efficient and reduces the security loss incurred due to guessing. Also,
we emphasize that in this hybrid we utilize the slots index; and index; of Si-yaws, §1_UAW5
through the security reduction of (1-SK, 1-CT, 1-Slot)-FE scheme, which indeed depends on
the Lemma 4. Thus, the hybrids Hs 4 7 and Hs 4 g are indistinguishable.

Hybrid Hs 4 9. It is identical to the hybrid Hs 4 g except that everything is copied from the
position sim of S7.yaws to the corresponding position sim“®®, and then the position sim is
cleared from all u’s, @’s and v4’s, U4’s. The hybrid is described in Table 16. The purpose of
this change is to compute the label values for post-ciphertext secret keys utilizing the position
sim“PY instead of using the slots of S1-yaws and prepare it for handling the next key. Note
that, if ¢-th key is a pre-ciphertext secret key then there no change takes place in vy’s and
V4’s, however, the sim position of u’s and #’s are cleared. We observe that the inner products
are unchanged and, hence the indistinguishability between the hybrids Hs 4 g and Hs 4 ¢ is
ensured by the function hiding property of IPFE.

@ Springer

P.Datta et al.

Table 17 The intermediate hybrids Hs 4 10 to Hs ¢ 13 of the loop Hs 1~¢, 1~15

hybrid vector in Spub pad“°PY in Scopy sim°PY padtmP in S1uaws
Ve, pad N 0
¢ < q)pre{ P Qg Tk 1S
Vs kinits Vo, kg 0 0 o< (37g,k, 1+ 5Bg,k)
Upad 1 1
U inits Uk, t,i,5,W o (1,72) 1 or sz((t,i,7, W)]
Hs .10
Ve ay
I @
Vg, ke inits Vb kg 0 Lo kinit OF 8¢ k. £1d] 0
in gpub in gl,capy in gg_mpy sim°PY in gl-UAWS
& < Ppre : Bp,kq 4Tk 'S 0 0 0 o (5T k,f,500)
Uk, T41,i,5,W o (re,2z) o (re,d) sz((T+1,4,5,W)] x (T2, d)
&> Ppre : Vg kg Qg Tk fS 0 0 Sk, £14) 0
Vg pad R 0
¢ < ‘vae{ P2 Qg Tk f'S
Vg, k,inits Vb, kg 0 0 X (P ke, fs Bop,k)
Hs 6,11 Upad 1
Uk inits Wk, t.i,§,W o (1,rz) 1 or sa[(t,i,5, W)]
in gpub in glympy in gz_capy sim°PY in gl—UAWS

6<Oei Bama | cmrenss| 0 0 0
Tk 0,5, W o (re2) o (re,d) sal(T+ 1,5, W)

Vg 0 a
¢ < Ppre #,pad g, T ke, f'S ¢ ~ R
Vg, k,inits Ve kg 0 0 < (Pg k.1 B k)
Upad 1 s
Hs, 6,12 Uk inits Uk, t,,5, W o (1,72) 1 or sz((t,i,7, W)]
in §pub in 'SN'l,Copy in gg,mpy sim®PY
¢ < Ppre : Vg kg Qg Tk f'S 0 0 0
Uk, T41,i,5,W & (re,z) < (re,d) sz[(T+1,4,5,W)]
v, 0 Q,
¢ < Dpre @,pad Qg T ke fS e
Vo, k,inits Vb, k,q 0 0
Upad 1 B
Hs..13 Uk inits Wk, t.i,5,W o (1,rz) 1 or sa[(t,i,j, W)]
in gpub in glympy in ggycopy simeoPY in §1—UAWS
¢ < Dpre : Vg kg Qg Tk f'S 0 0 0 o (P ke, Ogp)
1FIIc,T+1‘z,;/.W X (rz,2) X (rz,d) sa[(T+1,i,5,W)]

Hybrid Hs ¢ 10. It is identical to Hs 4 ¢ except that a random element s < Z,, is multiplied
to the secret key vectors vy’s and '17¢,’s if @ < Ppre, i.e. the ¢-th key under consideration
is a pre-challenge secret key. On the other hand, if ¢ > ®pre then the position pad*™® of
Vs pad is first copied to pad“® and then pad™™ is cleared. Since ¥ is uniform over Z,,
the probability that 5 = 0 is negligible. The hybrid is described in Table 17. Therefore,
the hybrids Hs 4 ¢ and Hs ¢ 19 are identically distributed (including the case of 5 = 0) if
¢ < ®pre. On the other hand, if @ > Ppre then the hybrids are indistinguishable due to
function security of IPFE.

Hybrid Hs ¢ 11. It is identical to Hs ¢ 19 except that the random multiplier § is moved to the
ciphertext vectors u’s, #’s from the secret key vectors v4’s, Tg’s. The indistinguishability
between Hs 4, 10 and Hs 4 11 follows from the function hiding property of IPFE.

@ Springer

Compact FE for unbounded attribute-weighted sums

Table 18 The final two hybrids Hs ¢ 14 and Hs 15 of the loop Hs 1~¢, 1~15

hybrid vector in Spup padoPY in Scopy simPY pad®™®™ in S;_yaws
¢ < @pre{ é:pa gy T ke f'S i @
Ve kinits Vb k. q o (874 k, 1> 5B .k) 0
Hs.6,14 Upad L o
Wk inits Uk, t,1,5,W x (1,7g) 1 or sg|(t,i,j, W)]
in §pub in §l‘copy in §2,C0py sim©oPY in «§17qu5
U 741,00, x(re,z) oc(rad) sal(T+ 105 W)
v, 0
¢ < <I>p,e{ @-pad Ay, Tk S
Ve, k. inits Vo k,q o (P k.15 Bop,k) 0 0
Upad 1 0
Uk inits Uk, t,i,5,W o (1,72) 1 or sz((t, 4,7, W)] 0
Hs 6,15
= v, Qg 0
Hsg+1,1 | @ > Ppre #opad ?
Ve, kinits Vo k,q 0 Lo,k init OF 8¢k, £[q] 0
in §pub in gl_mpy in 52,copy sim®PY in S_uaws
¢ < Ppre : Vg kg Qg Tk, fS 0 o< (P k, 5 Q) 0 0
Up, T41,0,5,W x (1, 2) x (rg,d) sz[(T +1,1,5, W)] 0
¢ > Ppre : Vg k,q Qg Tk, 'S 0 0 Eraril 0

Hybrid Hs 4 12. It is identical to Hs 4 11 except that in the ciphertext vectors, the term STy
in S1.yuaws, S1-uaws is replaced by an independent and uniformly chosen random vector .
We can invoke the DDH assumption in G:

LX[NIx[S1x{0,1}5 ~

PO _ o~ -~ 0,T
[7%,s, 571 = [ry,s, 5] fors,ry <—Z£, , S <7y
~————— — ——

DDH tuple random tuple

to show the indistinguishability between Hs ¢ 11 and Hs 4 12.

Hybrid Hs 4 13. It is identical to Hs 4 12 except that in the ciphertext vectors, the term’s in
S1-uaws, S1-uaws is replaced by 57y where we note that the ry is the same as that of used in
the other slots such as Scopy. We invoke the DDH assumption in Gy:

~aq ~ ~ [0,T], x[N]x[S]x{0,1}5 ~
[rx,s, 5T = [ry,s,sry]ly fors, ry < 7Z, , S <7y
N —’ N—— e’
random tuple DDH tuple

to show the indistinguishability between the hybrids Hs ¢ 12 and Hs 4 13.

Hybrid Hs 4 14. Itis identical to Hs 4 13 except that the inner product between the ¢-th secret
key vectors and the ciphertext vectors are now computed via the slots in {pad“®} U Scopy U
&2, copy- This change is implemented as follows:

— The random multiplier 5 is moved back to the secret key vectors, i.e. v4’s and V4’s. The
positions in Sy.yaws of the vectors vy init, Vg kg are first copied to Scopy, and then
S1-uaws is set to zero. Similarly, the positions in S1-yaws of the vectors '17¢,k,q are first
copied to gz,copy, and then §1_UAW5 is set to zero.

@ Springer

P.Datta et al.

— The position pad™™ of v pag is copied to pad“®, and then pad™™ is cleared.
— The positions pad®™™P, S1.uaws and S1.uaws of the ciphertext vectors u’s and #’s are
cleared.

We can verify from the Table 18 that the inner products between the vectors are unchanged,
hence the indistinguishability between the hybrids holds due to the function hiding security
of IPFE.

Hybrid Hs 4 15. It is identical to Hs ¢ 14 except that the random multiplier § is removed from
the secret key vectors. The hybrids Hs 4 ¢ and Hs o 7 are identically distributed.

We observe that Hs ¢ 15 &~ Hs 441,1. Also, the guessing of the length of z is not required
from the hybrid H5,d>pre+1,15. This is because the reduction knows the length of z while
simulating all the post-challenge secret keys. Thus, Hs ¢ 15 = He. Therefore, by a hybrid
argument we can show that H4 = Hs 115 & Hs ¢,15 = He. This completes the proof of the
claim. m]

7 FE for UAWS for DFA/NFA

In this section, we present the construction of FE for UAWS for deterministic finite automata
(DFA). We know that a DFA can be viewed as a Turing machine with space complexity 1 and
time complexity N which is the input length. Thus, our FE for UAWS for DFA is a special
case of the UAWS for L and NL. We first describe the AKGS construction for DFA from [62]
and then present a simplified construction of FE for UAWS for DFA.

Definition 11 A deterministic finite automata is a tuple (Q, y,cc, 8), where Q > 1 is the
number of states (we use [Q] as the set of states and 1 the initial state), y,.. € {0, l}Q indicates
whether each state is accepting, and § is a (state transition) function between [Q] x {0, 1} and
[O]. For x € {0, 1}V for some N > 1, the DFA accepts x if there exits qo, ..., gn € [Q]
(called an accepting path) such that

go=1, ((gi-1,x[i]),qi) €3, Yaclan]l=1.

Transition matrix and blocks We use ¢, € {0, 1}€ to represent the current state of a DFA.
For a DFA M = (Q, yacc,), its transition matrix is

1, if((g,x),q") €8
0, otherwise.

M(x)lg.q'] = {

Forallg € [Q]and x € {0, 1}, consider ¢ "e] M(x) — we have ¢ € {0, 1} and ¢[¢'] = 1 if
and only if ¢’ is a valid state after the DFA reads x in state ¢. Inductively, e;M(xl) - Mi(xy,)
is a vector that counts the number of computation paths reaching each state starting from
state ¢ after reading x1, ..., x,. Let the transition blocks be M, = M(x) for x € {0, 1}, the
M(x) = (1 — x)Mg 4+ xM;. We arithmetize the computation of DFA by defining
N
M|n(x) = eir l_[((l —x[iDMo + x[i]My) - y, over Z, for x € Zg.

i=1

AKGS for DFA Similar to the AKGS construction used in our FE scheme for Turing machines,
the recursive mechanism for garbling the matrix multiplication yields a piecewise secure

@ Springer

Compact FE for unbounded attribute-weighted sums

AKGS for DFA. Let us consider the function class 7 = {(M, 1V, p)|M is an DFA, p is prime},
i.e., M|y is a function over Z, and is represented as (M, 1V, p). The AKGS = (Garble, Eval)
for F works as follows:

Garble((M, 1V, p), z, B) Tt takes input the DFA (M, 1V, p) and two secret integers z, 8 €
Zp. It computes the transition blocks My and M for M, sample rq, ..., ry < Zg, and
defines the label functions:

Linit(x) = B+ €] ro,
fori € [N]: (Lig)gero1(x) = —ri—1 + ((1 — x[i)Mo + x[i [M)r;
(LN+1,¢)ge[Q] = —T'N F Z¥acc-

It collects the coefficients of these label functions and returns them as (€init, (4i,¢)ie[N+1]1,q€[0])-

Eval((M, 1V, D), X, Linit, (¢i ¢)ie[N+1],4e[01) The evaluation procedure takes input string
X € Zg and the labels as input. It computes the transition blocks Mg, M; of M, sets £; =
(£i,g)geroy fori € [N + 1], and outputs the value

N+1i—-1
nic +e] Y (1= x[i(DMo + x[i]M)) - £;

i=1 j=1

We can similarly verify the correctness of the evaluation process and easily verify that the
AKGS construction described above satisfies the linearity property and piecewise security as
required.

Theorem 5 [62] The AKGS construction for DFA described above is special piecewise secure
with Linit being the first label function, the other label functions sorted in increasing order
i, and the randomness sorted in the same order as the label functions.

7.1 The construction

In this section, we only present the construction of our public key FE scheme for DFA that
supports polynomial number of secret keys. We omit the description of the 1-key 1-ciphertext
secure version of the scheme since it is a simpler variant of the public key counter part.

‘We now describe the construction of public key FE for UAWS for DFA PK- UAWSDF;\I Ly =
(Setup, KeyGen, Enc, Dec). The Setup works similar to that of FE for UAWS for L (see Sect.
6.1). For the security analysis, we require some extra hidden subspaces the number of which
can be determined while proving the security of the scheme similar to our public key FE for

UAWS for L (see Sect. 6.2).

KeyGen(MSK, (M, Zpr)): On input the master secret key MSK = (IPFE.MSK, IPFE.K/_\SR)
and a function tuple M = (My)kez,, indexed w.r.t. an index set Zyy C N of arbitrary
size , it parses My = (Qk, Y4, k) Yk € Iy and samples the set of elements

{Ol,ﬂk —Zp IkEIM,Z,BkZO mod p}.
k

It computes a secret key IPFE.SKpag <— IPFE.KeyGen(IPFE.MSK, [vpaq]l2) for the fol-
lowing vector vpaq:

. . cepub pub ub pub pub the other
vector | index; index; pad init rand accP tby tb} e eae

Vpad 0 0 o 0 0 0 0 0 0

@ Springer

P.Datta et al.

For all k € Zyy, do the following:
For My = (Qk, Yy, 6k), compute transition blocks My o, My, 1 € {0, I}Q"XQ".

1.
2. Sample independent random vector rg, ¢ < ZPQ" and a random element 7y € Z.
3. For the following vector vy init, compute a secret key IPFE.SKy init < IPFE.KeyGen(
IPFE.MSK, [[vg init]l2):
vector | index; index, pad initP* randP® accPub thUb tb’fU|D the other
Vg init T k - 7y 0 rrrll] 0 Bk 0 0 0
4. For each g € [Qf], compute the following secret keys
IPFE.SKy , < IPFE.KeyGen(IPFE.MSK, [vi 4]2) and
IPFE.SK;, < IPFE.KeyGen(IPFE.MSK, 3 ,12)
where the vectors vy 4, Vx4 are defined as follows:
vector | index; index, pad initP* rand®®® accPub tbgUb tb‘]>le the other
Vi g Tk k- 1 0 0 —ri. rlql 0 (Myore,p)lgl (Mg 17k r)lq] 0
vector | index; index, randP'P accPub the other
Vi g k k-me —rirlgl o ylql 0

Finally, it returns the secret key as

K. zy) = ((M,IM), IPFE.SK pag» {IPFE.SKk‘init, {IPFE.SKy. 4, IPFE.SKk4q}qE|Qk1}kEI) .
M

Enc(MPK, x, z): On input the master public key MPK = (IPFE.MPK, IPFE.K/FP?), a public
attribute x € {0, l}N for some arbitrary N > 1, and the private attribute z € ZZ for
some arbitrary n > 1, it samples s < Z, and compute a ciphertext IPFE.CTpag <«
IPFE.Enc(IPFE.MPK, [#paq]l1) for the vector upaq :

vector | index; index, pad initP® randP®® accPub tb(";Ub tb'f'Ub the other
Upad 0 0 s 0 0 0 0 0 0

Next, it does the following:

1. Sample a random vector ry < ZE?’N].
2. For each k € [n], do the following:

(a) Sample a random element oy < Z,.
(b) Compute a ciphertext IPFE.CTy init <— IPFE.SlotEnc(IPFE.MPK, [z init]l1) for the

vector Uy init:

the other

f f i niepub pub ub pub pub
vector | index; indexp pad init rand accP tby tb] he othe

Uf init

—k - px

Pk

0

s - ry[0]

0

s

0 0 1

(c) Foralli € [N], do the following:
(i) Compute IPFE.CTy ; < IPFE.SlotEnc(IPFE.MPK, [z ;11) for the vector uy ;:
randPtP tbp™° PP

sereli—1] sorelil(—x[i]) s -relilxli]

the other
indices

€L

accPub
0

initPu®

0

index, pad

0

vector | index;

Ui —k - pk P

@ Springer

Compact FE for unbounded attribute-weighted sums

(d) Fori = N + 1, compute IPFE.CT¢ y+1 < IPFE.SIotEnc(IPFE.MPK, [[# 111 for
the vector &y n41:

vector | index; indexy randP"® accPub | the other

U Nyl | —k- ok Pk s-ry[N] s -z[k] 1

3. Finally, it returns the ciphertext as

T, = (x,n, IPFE.CTpaq {lPFE.CTk,m, {IPFE.CTe. i Yiciv]s IﬁEETk,NH}k :]>4
€ln

Dec(SK(am,z,), CTx): Oninputasecretkey SKy,7,,) and a ciphertext CTy, do the following:

1. Parse SK(as,7,,) and CT(x 7,5 as follows:
SKm, zy) = (((Mk)de, Zwm) . IPFE.SKpad, [IPFE.SKk_imt,
{IPFE-SKk,qv IﬁgKk.q}qe[Qk] }kEIM)’ My = (Qk Yis 1),
T, = (x, n, IPFE.CTpad, {IPFE.CTk.imt, {IPFE.CT¢ Vreqny IPFE.CTe v-1 }kew)

2. Output L, if Tpy ¢ [n]. Else, it proceeds to the next step.
Use the IPFE decryption to obtain [ptpagllT < IPFE.Dec(IPFE.SKpaq, IPFE.CTpaq).
4. For k € Zy, i € [N], invoke the IPFE decryption to compute all label values as:

Vk € IM : [[ek,]nit]]”[‘ = |PFE.DeC(|PFE.SKk,]nit, |PFE.CTk,]nit)
Vk € Iy,i € [N]: [4x,; It = IPFE.Dec(IPFE.SK 4, IPFE.CTy ;)
Vk € Iy, i = N+ 1: [y+1]lr = IPFE.Dec(IPFE.SKy 4, IPFE.CT¢ v-+1)

w

5. Next, invoke the AKGS evaluation procedure and obtain the combined value

[ulr = 1_[Eval ((Mk, 1V, p) » %, [k init]lTs {IIZk,i]]T}iE[N+1]>

keZy

6. Finally, it returns i such that [u]lt = ([[Mpad]]T)“,, where gt = e(g1, g2). Similar to
[8], we assume that the desired attribute-weighted sum lies within a specified polynomial-
sized domain so that i’ can be searched via brute-force.

The correctness of our PK—UAWS'(DpF(ﬁy 1.1y can be shown similarly to our public key FE

scheme for L. We state the following corollary about the adaptive simulation security of the
scheme. The corollary can be proved similar to the proof of the Theorem 4.

Corollary 1 Assuming the SXDH assumption holds in G and the |\PFE is function hiding secure,
the above construction of 1-Slot FE for UAWS for DFA is adaptively simulation secure.

Funding Open Access funding enabled and organized by Projekt DEAL.

Data availability Data Deposition Information: Data sharing not applicable to this article as no datasets were
generated or analyzed during the current study.

Declarations
Conflict of interest The authors have no relevant financial or non-financial conflict of interests to disclose.

@ Springer

P.Datta et al.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

20.

21.

Abdalla M., Benhamouda F., Gay R.: From single-input to multi-client inner-product functional encryp-
tion. In: International Conference on the Theory and Application of Cryptology and Information Security,
pp. 552-582. Springer (2019).

Abdalla M., Benhamouda F., Kohlweiss M., Waldner H.: Decentralizing inner-product functional encryp-
tion. In: IACR International Workshop on Public Key Cryptography, pp. 128—157. Springer (2019).
Abdalla M., Bourse F., De Caro A., Pointcheval D.: Simple functional encryption schemes for inner
products. In: PKC 2015, pp. 733-751. Springer (2015).

Abdalla M., Bourse F., Marival H., Pointcheval D., Soleimanian A., Waldner H.: Multi-client inner-
product functional encryption in the random-oracle model. In: International Conference on Security and
Cryptography for Networks, pp. 525-545. Springer (2020).

Abdalla M., Catalano D., Fiore D., Gay R., Ursu B.: Multi-input functional encryption for inner products:
function-hiding realizations and constructions without pairings. In: CRYPTO 2018, pp. 597-627. Springer
(2018).

Abdalla M., Catalano D., Gay R., Ursu B.: Inner-product functional encryption with fine-grained access
control. IACR Cryptology ePrint Archive, Report 2020/577 (2020).

Abdalla M., Gay R., Raykova M., Wee H.: Multi-input inner-product functional encryption from pairings.
In: CRYPTO 2017, pp. 601-626. Springer (2017).

Abdalla M., Gong J., Wee H.: Functional encryption for attribute-weighted sums from k-Lin. In: CRYPTO
2020, pp. 685-716. Springer (2020).

Agrawal S., Goyal R., Tomida J.: Multi-input quadratic functional encryption from pairings. In: Annual
International Cryptology Conference, pp. 208—-238. Springer (2021).

Agrawal S., Libert B., Maitra M., Titiu R.: Adaptive simulation security for inner product functional
encryption. In: PKC 2020, pp. 34-64. Springer (2020).

. Agrawal S., Libert B., Stehlé D.: Fully secure functional encryption for inner products, from standard

assumptions. In: CRYPTO 2016, pp. 333-362. Springer (2016).

Agrawal S., Maitra M.: Fe and io for turing machines from minimal assumptions. In: Theory of Cryp-
tography: 16th International Conference, TCC 2018, Panaji, India, November 11-14, 2018, Proceedings,
Part II, pp. 473-512. Springer-Verlag (2018).

Agrawal S., Maitra M., Vempati N.S., Yamada S.: Functional encryption for turing machines with dynamic
bounded collusion from LWE. In: CRYPTO 2021, pp. 239-269. Springer (2021).

Agrawal S., Rosen A.: Functional encryption for bounded collusions, revisited. In: Theory of Cryptogra-
phy Conference, pp. 173-205. Springer (2017).

Ananth P, Brakerski Z., Segev G., Vaikuntanathan V.: From selective to adaptive security in functional
encryption. In: Annual Cryptology Conference, pp. 657-677. Springer (2015).

Ananth P., Sahai A.: Functional encryption for turing machines. In: TCC 2016, pp. 125-153. Springer
(2016).

Ananth P., Vaikuntanathan V.: Optimal bounded-collusion secure functional encryption. In: Theory of
Cryptography Conference, pp. 174—198. Springer (2019).

Applebaum B., Ishai Y., Kushilevitz E.: How to garble arithmetic circuits. In: FOCS 2011, pp. 120-129.
IEEE Computer Society (2011).

Attrapadung N.: Dual system encryption framework in prime-order groups via computational pair encod-
ings. In: ASTACRYPT 2016, pp. 591-623. Springer (2016).

Badrinarayanan S., Goyal V., Jain A., Sahai A.: Verifiable functional encryption. In: International Con-
ference on the Theory and Application of Cryptology and Information Security, pp. 557-587. Springer
(2016).

Baltico C.E.Z., Catalano D., Fiore D., Gay R.: Practical functional encryption for quadratic functions
with applications to predicate encryption. In: CRYPTO 2017, pp. 67-98. Springer (2017).

@ Springer

http://creativecommons.org/licenses/by/4.0/

Compact FE for unbounded attribute-weighted sums

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Boneh D., Gentry C., Gorbunov S., Halevi S., Nikolaenko V., Segev G., Vaikuntanathan V., Vinayaga-
murthy D.: Fully key-homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In:
EUROCRYPT 2014, pp. 533-556. Springer (2014).

Boneh D., Lewi K., Raykova M., Sahai A., Zhandry M., Zimmerman J.: Semantically secure order-
revealing encryption: multi-input functional encryption without obfuscation. In: Annual International
Conference on the Theory and Applications of Cryptographic Techniques, pp. 563-594. Springer (2015).
Boneh D., Sahai A., Waters B.: Functional encryption: definitions and challenges. In: TCC 2011, pp.
253-273. Springer (2011).

Brakerski Z., Chandran N., Goyal V., Jain A., Sahai A., Segev G.: Hierarchical functional encryption. In:
8th Innovations in Theoretical Computer Science Conference (ITCS 2017). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik (2017).

Brakerski Z., Komargodski I., Segev G.: Multi-input functional encryption in the private-key setting:
stronger security from weaker assumptions. In: Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pp. 852—880. Springer (2016).

Brakerski Z., Segev G.: Function-private functional encryption in the private-key setting. J. Cryptol. 31(1),
202-225 (2018).

Caro A.D., Iovino V., O’Neill A.: Deniable functional encryption. In: Public-Key Cryptography—PKC
2016, pp. 196-222. Springer (2016).

Castagnos G., Laguillaumie F., Tucker L.: Practical fully secure unrestricted inner product functional
encryption modulo p. In: International Conference on the Theory and Application of Cryptology and
Information Security, pp. 733-764. Springer (2018).

Chen J., Gay R., Wee H.: Improved dual system ABE in prime-order groups via predicate encodings. In:
EUROCRYPT 2015, pp. 595-624. Springer (2015).

Chen J., Gong J., Kowalczyk L., Wee H.: Unbounded ABE via bilinear entropy expansion, revisited. In:
EUROCRYPT 2018, pp. 503-534. Springer (2018).

Chotard J., Dufour Sans E., Gay R., Phan D.H., Pointcheval D.: Decentralized multi-client functional
encryption for inner product. In: International Conference on the Theory and Application of Cryptology
and Information Security, pp. 703—732. Springer (2018).

ChotardJ., Dufour-Sans E., Gay R., Phan D.H., Pointcheval D.: Dynamic decentralized functional encryp-
tion. In: Annual International Cryptology Conference, pp. 747-775. Springer (2020).

Chung K.M., Katz J., Zhou H.S.: Functional encryption from (small) hardware tokens. In: International
Conference on the Theory and Application of Cryptology and Information Security, pp. 120-139. Springer
(2013).

Ciampi M., Siniscalchi L., Waldner H.: Multi-client functional encryption for separable functions. In:
TACR International Conference on Public-Key Cryptography, pp. 724-753. Springer (2021).

Datta P., Dutta R., Mukhopadhyay S.: Functional encryption for inner product with full function privacy.
In: PKC 2016, pp. 164-195. Springer (2016).

Datta P., Okamoto T., Takashima K.: Adaptively simulation-secure attribute-hiding predicate encryption.
In: ASIACRYPT 2018, pp. 640-672. Springer (2018).

Datta P., Pal T.: (Compact) adaptively secure FE for attribute-weighted sums from k-Lin. In: International
Conference on the Theory and Application of Cryptology and Information Security, pp. 434-467. Springer
(2021).

Datta P., Pal T., Takashima K.: Compact FE for unbounded attribute-weighted sums for Logspace from
SXDH. In: Advances in Cryptology—ASIACRYPT 2022: 28th International Conference on the Theory
and Application of Cryptology and Information Security, Taipei, Taiwan, December 5-9, 2022, Proceed-
ings, Part I, pp. 126-159. Springer (2023).

Dufour-Sans E., Pointcheval D.: Unbounded inner-product functional encryption with succinct keys. In:
ACNS 2019, pp. 426-441. Springer (2019).

Garg R., Goyal R., Lu G., Waters B.: Dynamic collusion bounded functional encryption from identity-
based encryption. In: Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pp. 736-763. Springer (2022).

Garg S., Gentry C., Halevi S., Raykova M., Sahai A., Waters B.: Candidate indistinguishability obfuscation
and functional encryption for all circuits. SIAM J. Comput. 45(3), 882-929 (2016).

Garg S., Gentry C., Halevi S., Zhandry M.: Functional encryption without obfuscation. In: Theory of
Cryptography Conference, pp. 480-511. Springer (2016).

Garg S., Srinivasan A.: Single-key to multi-key functional encryption with polynomial loss. In: Hirt M.,
Smith A.D. (eds.) Theory of Cryptography—14th International Conference, TCC 2016-B, Beijing, China,
October 31-November 3, 2016, Proceedings, Part II, Lecture Notes in Computer Science, vol. 9986, pp.
419-442 (2016). https://doi.org/10.1007/978-3-662-53644-5_16.

@ Springer

https://doi.org/10.1007/978-3-662-53644-5_16

P.Datta et al.

45.

46.

47.

48.

49.

50.

51

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

Goldwasser S., Gordon S.D., Goyal V., Jain A., Katz J., Liu EH., Sahai A., Shi E., Zhou H.S.: Multi-
input functional encryption. In: Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pp. 578-602. Springer (2014).

Goldwasser S., Kalai Y., Popa R.A., Vaikuntanathan V., Zeldovich N.: Reusable garbled circuits and
succinct functional encryption. In: STOC 2013, pp. 555-564. ACM (2013).

Goldwasser S., Kalai Y.T., Popa R.A., Vaikuntanathan V., Zeldovich N.: How to run turing machines on
encrypted data. In: Annual Cryptology Conference, pp. 536-553. Springer (2013).

Gorbunov S., Vaikuntanathan V., Wee H.: Functional encryption with bounded collusions via multi-party
computation. In: CRYPTO 2012, pp. 162-179. Springer (2012).

Goyal V., Jain A., Koppula V., Sahai A.: Functional encryption for randomized functionalities. In: Theory
of Cryptography Conference, pp. 325-351. Springer (2015).

Iovino V., Zebroski K.: Simulation-based secure functional encryption in the random oracle model. In:
International Conference on Cryptology and Information Security in Latin America, pp. 21-39. Springer
(2015).

Ishai Y., Wee H.: Partial garbling schemes and their applications. In: ICALP 2014, pp. 650-662. Springer
(2014).

Jain A.,Lin H., Sahai A.: Indistinguishability obfuscation from well-founded assumptions. In: Proceedings
of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pp. 60-73 (2021).

Jain A., Lin H., Sahai A.: Indistinguishability obfuscation from LPN over, DLIN, and PRGS in NC.
In: Annual International Conference on the Theory and Applications of Cryptographic Techniques, pp.
670-699. Springer (2022).

Kim S., Lewi K., Mandal A., Montgomery H., Roy A., Wu D.J.: Function-hiding inner product encryption
is practical. In: SCN 2018, pp. 544-562. Springer (2018).

Komargodski I., Segev G., Yogev E.: Functional encryption for randomized functionalities in the private-
key setting from minimal assumptions. J. Cryptol. 31(1), 60-100 (2018).

Lai Q., Liu EH., Wang Z.: New lattice two-stage sampling technique and its applications to functional
encryption—stronger security and smaller ciphertexts. In: Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pp. 498-527. Springer (2021).

Lewko A., Okamoto T., Sahai A., Takashima K., Waters B.: Fully secure functional encryption: attribute-
based encryption and (hierarchical) inner product encryption. In: EUROCRYPT 2010, pp. 62-91. Springer
(2010).

Lewko A.B., Waters B.: New techniques for dual system encryption and fully secure HIBE with short
ciphertexts. In: TCC 2010, pp. 455-479. Springer (2010).

Lewko A.B., Waters B.: Unbounded HIBE and attribute-based encryption. In: EUROCRYPT 2011, pp.
547-567. Springer (2011).

LibertB., Titiu R.: Multi-client functional encryption for linear functions in the standard model from LWE.
In: International Conference on the Theory and Application of Cryptology and Information Security, pp.
520-551. Springer (2019).

Lin H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5 PRGS. In: CRYPTO
2017, pp. 599-629. Springer (2017).

Lin H., Luo J.: Compact adaptively secure ABE from k-Lin: beyond NC! and towards NL. In: EURO-
CRYPT 2020, pp. 247-277. Springer (2020).

Lin H., Tessaro S.: Indistinguishability obfuscation from trilinear maps and block-wise local PRGs. In:
Annual International Cryptology Conference, pp. 630-660. Springer (2017).

Lin H., Vaikuntanathan V.: Indistinguishability obfuscation from DDH-like assumptions on constant-
degree graded encodings. In: FOCS 2016, pp. 11-20. IEEE (2016).

Liu X., Liu S., Han S., Gu D.: Tightly CCA-secure inner product functional encryption scheme. Theor.
Comput. Sci. 898, 1-19 (2022).

Mera J.M.B., Karmakar A., Marc T., Soleimanian A.: Efficient lattice-based inner-product functional
encryption. In: IACR International Conference on Public-Key Cryptography, pp. 163-193. Springer
(2022).

Okamoto T., Takashima K.: Fully secure functional encryption with general relations from the decisional
linear assumption. In: CRYPTO 2010, pp. 191-208. Springer (2010).

Okamoto T., Takashima K.: Fully secure unbounded inner-product and attribute-based encryption. In:
ASIACRYPT 2012, pp. 349-366. Springer (2012).

O’Neill A.: Definitional issues in functional encryption. IACR Cryptology ePrint Archive, Report
2010/556 (2010).

Tomida J., Abe M., Okamoto T.: Efficient functional encryption for inner-product values with full-hiding
security. In: ICS 2016, pp. 408—425. Springer (2016).

@ Springer

Compact FE for unbounded attribute-weighted sums

71.

72.

73.

74.

75.
76.

7.

Tomida J., Takashima K.: Unbounded inner product functional encryption from bilinear maps. Jpn. J. Ind.
Appl. Math. 37(3), 723-779 (2020).

Wang Z., Fan X., Liu FH.: FE for inner products and its application to decentralized ABE. In: PKC 2019,
pp. 97-127. Springer (2019).

Waters B.: Dual system encryption: realizing fully secure IBE and HIBE under simple assumptions. In:
CRYPTO 2009, pp. 619-636. Springer (2009).

Waters B.: A punctured programming approach to adaptively secure functional encryption. In: Annual
Cryptology Conference, pp. 678-697. Springer (2015).

Wee H.: Dual system encryption via predicate encodings. In: TCC 2014, pp. 616—637. Springer (2014).
Wee H.: Attribute-hiding predicate encryption in bilinear groups, revisited. In: TCC 2017, pp. 206-233.
Springer (2017).

Wee H.: Functional encryption for quadratic functions from k-Lin, revisited. In: TCC 2020, pp. 210-228.
Springer (2020).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer

	Compact FE for unbounded attribute-weighted sums for logspace from SXDH
	Abstract
	1 Introduction
	2 Technical overview
	2.1 From all-or-nothing to functional encryption

	3 Preliminaries
	3.1 Bilinear groups and hardness assumptions
	3.2 Turing machine formulation
	3.3 Functional encryption for unbounded attribute-weighted sum for Turing machines
	3.4 Function-hiding slotted inner product functional encryption
	3.5 Arithmetic key garbling scheme for Turing machines

	4 Construction of AKGS for the class mathcalF
	5 (1-SK, 1-CT, 1-slot)-FE for unbounded AWS in L
	5.1 The construction
	5.2 Security analysis

	6 1-Slot FE for unbounded AWS for L
	6.1 The construction
	6.2 Security analysis

	7 FE for UAWS for DFA/NFA
	7.1 The construction

	References

