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Abstract
This paper presents the first functional encryption (FE) scheme for the attribute-weighted
sum functionality that supports the uniform model of computation. In such an FE scheme,
encryption takes as input a pair of attributes (x, z) where x is public and z is private. A
secret key corresponds to some weight function f , and decryption recovers the weighted
sum f (x)z. In our scheme, both the public and private attributes can be of arbitrary poly-
nomial lengths that are not fixed at system setup. The weight functions are modelled as
Logspace Turing machines. Prior schemes could only support non-uniform Logspace. The
proposed scheme is proven adaptively simulation secure under the well-studied symmet-
ric external Diffie–Hellman assumption against an arbitrary polynomial number of secret
key queries both before and after the challenge ciphertext. This is the best possible security
notion that could be achieved for FE. On the technical side, our contributions lie in extending
the techniques of Lin and Luo [EUROCRYPT 2020] devised for indistinguishability-based
payload hiding attribute-based encryption for uniform Logspace access policies and the
“three-slot reduction” technique for simulation-secure attribute-hiding FE for non-uniform
Logspace devised by Datta and Pal [ASIACRYPT 2021] to the context of simulation-secure
attribute-hiding FE for uniform Logspace.
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1 Introduction

Functional encryption (FE), formally introduced by Boneh et al. [24] and O’Neill [69], rede-
fines the classical encryption procedure with the motivation to overcome the limitation of the
“all-or-nothing” paradigm of decryption. In a traditional encryption system, there is a single
secret key such that a user given a ciphertext can either recover the whole message or learns
nothing about it, depending on the availability of the secret key. FE in contrast provides fine
grained access control over encrypted data by generating artistic secret keys according to the
desired functions of the encrypted data to be disclosed. More specifically, in a public-key FE
scheme for a function class F , there is a setup authority which produces a master secret key
and publishes a master public key. Using the master secret key, the setup authority can derive
secret keys or functional decryption keys SK f associated with functions f ∈ F . Anyone can
encrypt messages msg belonging to a specified message space msg ∈ M using the master
public key to produce a ciphertext CT. The ciphertext CT along with a secret key SK f recov-
ers the function of the message f (msg) at the time of decryption, while unable to extract
any other information about msg. More specifically, the security of FE requires collusion
resistance meaning that any polynomial number of secret keys together cannot gather more
information about an encrypted message except the union of what each of the secret keys
can learn individually.

By this time, we have a plethora of exciting works on FE. These works can be broadly
classified in two categories. The first line of works attempted to build FE for general function-
alities [12–17, 20, 23, 25–28, 34, 41–50, 52, 53, 55, 60, 74]. However, those constructions
were either only secure against bounded collusion and/or extremely inefficient.With themoti-
vation to overcome these limitations, a second line of work attempted to design efficient FE
schemes supporting arbitrary collusion of users for practically relevant functionalities, e.g.,
linear/quadratic functions [1–11, 21, 29, 32, 33, 35, 36, 38, 40, 54, 56, 61, 63–66, 70–72, 76,
77]. In this work, we advance the state of the art along the latter research direction.

FE for Attribute-Weighted Sum Recently, Abdalla et al. [8] and Datta and Pal [38] studied
FE schemes for a new class of functionalities termed as “attribute-weighted sums” (AWS).
This is a generalization of the inner product functional encryption (IPFE) [3, 11]. In such
a scheme, an attribute pair (x, z) is encrypted using the master public key of the scheme,
where x is a public attribute (e.g., demographic data) and z is a private attribute containing
sensitive information (e.g., salary, medical condition, loans, college admission outcomes). A
recipient having a secret key corresponding to a weight function f can learn the attribute-
weighted sum f (x)z. The attribute-weighted sum functionality appears naturally in several
real life applications. For instance, as discussed by Abdalla et al. [8] if we consider the weight
function f as a Boolean predicate, then the attribute-weighted sum functionality f (x)would
correspond to the average z over all userswhose attribute x satisfies the predicate f . Important
practical scenarios include average salaries of minority groups holding a particular job (z =
salary) and approval ratings of an election candidate amongst specific demographic groups
in a particular state (z = rating).

The works of [8, 38] considered a more general case of the notion where the domain and
range of the weight functions are vectors, in particular, the attribute pair of public/private
attribute vectors (x, z), which is encrypted to a ciphertext CT. A secret key SK f generated
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for a weight function f allows a recipient to learn f (x)�z from CT without leaking any
information about the private attribute z.

The FE schemes of [8, 38] support an expressive function class of arithmetic branching
programs (ABPs) which captures non-uniform Logspace computations. Both schemes were
built in asymmetric bilinear groups of prime order and are proven secure in the simulation-
based securitymodel, which is known to be the desirable securitymodel for FE [24, 69], under
the (bilateral) k-Linear (k-Lin)/(bilateral) Matrix Diffie–Hellman (MDDH) assumption. The
FE scheme of [8] achieves semi-adaptive security, where the adversary is restricted to making
secret key queries only after making the ciphertext queries, whereas the FE scheme of [38]
achieves adaptive security, where the adversary is allowed to make secret key queries both
before and after the ciphertext queries.

However, as mentioned above, ABP is a non-uniform computational model. As such, in
both the FE schemes [8, 38], the length of the public and private attribute vectors must
be fixed at system setup. This is clearly a bottleneck in several applications of this prim-
itive especially when the computation is done over attributes whose lengths vary widely
among ciphertexts and are not fixed at system setup. For instance, suppose a govern-
ment hires an external audit service to perform a survey on average salary of employees
working under different job categories in various companies to resolve salary discrep-
ancy. The companies create salary databases (X , Z) where X = (xi )i contains public
attributes xi = (job title, department, company name) and Z = (zi )i includes private
attribute zi = salary. To facilitate this auditing process without revealing individual salaries
(private attribute) to the auditor, the companies encrypt their own database (X , Z) using an
FE scheme for AWS. The government provides the auditor a functional secret key SK f for a
function f that takes input a public attribute X and outputs 1 for xi ’s for which the “job title”
matches with a particular job, say manager. The auditor decrypts ciphertexts of the various
companies using SK f and calculates the average salaries of employees working under that
job category in those companies. Now, if the existing FE schemes for AWS [8, 38] supporting
non-uniform computations are employed then to make the system sustainable the govern-
ment would have to fix a probable size (an upper bound) of the number of employees in all
the companies. Also, the size of all ciphertexts ever generated would scale with that upper
bound even if the number of employees in some companies, at the time of encryption, are
much smaller than that upper bound. This motivates us to consider the following problem.

Open problem Can we construct an FE scheme for AWSin some uniform computational
model capable of handling public/private attributes of arbitrary length?

Our results This work resolves the above open problem. For the first time in the literature,
we formally define and construct an FE scheme for unbounded AWS (UAWS) functional-
ity where the setup only depends on the security parameter of the system and the weight
functions are modeled as Turing machines. The proposed FE scheme supports both public
and private attributes of arbitrary lengths. In particular, the public parameters of the system
are completely independent of the lengths of attribute pairs. Moreover, the ciphertext size is
compact meaning that it does not grow with the number of occurrences of a specific attribute
in the weight functions which are represented as Logspace Turing machines. As a special
case, we also obtain a FE scheme for attribute-weighted sums where the weight functions
are modelled as deterministic finite automata (DFA). The schemes are adaptively simulation
secure against the release of an unbounded (polynomial) number of secret keys both before
and after the challenge ciphertext. As noted in [24, 69], simulation security is the best possi-
ble and the most desirable model for FE. Moreover, simulation-based security also captures
indistinguishability-based security but the converse does not hold in general.
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Our FE for UAWS is proven secure in the standard model based on the symmetric external
Diffie–Hellman (SXDH) assumption in the asymmetric prime-order pairing groups. Our main
result in the paper is summarized as follows.

Theorem 1 (Informal)Assuming the SXDH assumption holds in asymmetric pairing groups of
prime-order, there exists an adaptively simulation secure FE scheme for the attribute weighted
sum functionality with the weight functions modeled as Logspace Turing machines such that
the lengths of public and private attributes are unbounded and can be chosen at the time of
encryption, the ciphertexts are compact with respect to the multiple occurrences of attributes
in the weight functions.

Viewing IPFE as a special case of FE for AWS, we also obtain the first adaptively simulation
secure IPFE scheme for unbounded length vectors (UIPFE), i.e., the length of the vectors is
not fixed in setup. Observe that all prior simulation secure IPFE [8, 10, 38, 76] could only
support bounded length vectors, i.e., the lengths must be fixed in the setup. On the other hand,
the only known construction of UIPFE [71] is proven secure in the indistinguishability-based
model.

The proposed FE construction is semi-generic and extends the frameworks of the works
of Lin and Luo [62] and Datta and Pal [38]. Lin and Luo [62] develop an adaptively secure
attribute-based encryption (ABE) scheme for Logspace Turing machines proven secure in the
indistinguishability-based model. Although the input length of their ABE is unbounded, but
an ABE is an “all-or-nothing” type primitive which fully discloses the message to a secret
key generated for accepting policies. Further, the ABE of [62] is only payload hiding secure
meaning that the ciphertexts themselves can leak sensitive information about the associated
attributes. In contrast, our FE for UAWS providesmore fine grained encryptionmethodologies
where the ciphertexts reveal nothing about the private part of associated attributes but their
weighted sums. Our FE construction depends on two building blocks, an arithmetic key
garbling scheme (AKGS) for Logspace Turing machines which is an information-theoretic
tool and a function hiding (bounded) slotted IPFE scheme which is a computational primitive.
An important motivation of [62] is to achieve compact ciphertexts for ABEs. In other words,
they get rid of the so-called one-use restriction from prior adaptively secure ABEs [19, 30, 31,
57–59, 67, 68, 75] by replacing the core information-theoretic step with the computational
primitive of function hiding slotted IPFE. The FE of [38] is able to accomplish this property
for non-uniform computations by developing a three-slot encryption technique. Specifically,
three slots are utilized to simulate the label functions obtained from the underlying AKGS
garbling for pre-ciphertext secret keys. Note that, the three-slot encryption technique is an
extension of dual system encryption methodologies [57, 58, 73]. In this work, we extend
their frameworks [38, 62] to avoid the one-use restriction in the case of FE for UAWS that
computes weights via Logspace Turing machines. It is non-trivial to implement such three-
slot techniques in the uniform model. The main reason behind this fact is that in case of
ABPs [38] the garbling randomness can be sampled knowing the size of ABPs, and hence
the garbling algorithm is possible to run while generating secret keys. However, in the case
of AKGS for Logspace Turing machines, the garbling randomness depends on the size of the
Turing machine as well as its input lengths. Consequently, it is not possible to execute the
garbling in the key generation or encryption algorithms as the information about the garbling
randomness is distributed between these two algorithms.We tackle this by developing amore
advanced three-slot encryption technique with distributed randomness which enables us to
carry out such a sophisticated procedure for Logspace Turing machines.

Our FE for UAWS is a one-slot scheme. This means one pair of public–private attribute
can be processed in a single encryption. An unbounded-slot FE for UAWS [8] enables us to
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encrypt unbounded many such pairs in a single encryption. Abdalla et al. [8] devise a generic
transformation for bootstrapping from one-slot to unbounded-slot scheme. However, this
transformation only works if the underlying one-slot scheme is semi-adaptively secure [38].
Thus, if we restrict our scheme to semi-adaptive security then using such transformations [8,
38] our one-slot FE scheme can be bootstrapped to support unbounded slots.

Current vs. preliminary versions A preliminary version [39] of this work has appeared
in Asiacrypt 2022. This paper includes a significant and considerable amount of technical
contributions compared to the preliminary version [39]. The previous version contains only
the constructions of our single key, single ciphertext secure one-slot FE scheme and the one-
slot FE scheme for Logspace without providing any formal treatment to the security analysis
of these protocols. The preliminary version presents a very high level idea about the security
analysis. Therefore, most of our technical contributions are not formalized in that version.
We emphasize that representing and formalizing a proper sequence of hybrid experiments for
the security analysis are crucial for understanding the technical challenges and their solutions
which we provide in the current version. Especially, we not only describe a proof sketch (for
each security analysis) but also depict the hybrid experiment in several tables (see Sects. 5 and
6) that clearly gives a concrete idea about the steps to prove the adaptive simulation security
of our schemes. For example, the three-slot reduction mechanism devised in this paper for
handling the pre-ciphertext keys of the one-slot FE scheme for Logspace Turing machines
are described in Tables 14, 15 and 16. Moreover, in Sect. 7 of the current version, we build
a simpler FE scheme for attribute-weighted sums for deterministic finite automata or DFA.
Note that, weight functions realized by DFA captures many real-life applications involving
computation on unbounded data (or attributes) such as network logging, tax returns and
virus scanners. Hence, our FE for DFA becomes more effective compared to the FE for
Logspace Turing machines for such potential applications.

Organization We discuss a detailed technical overview of our results in Sect. 2. We pro-
vide useful notations, related definitions, and complexity assumptions in Sect. 3. We give a
description of AKGS construction for evaluating Turing machines via a sequence of matrix
multiplications in Sect. 4. Our construction of a single key and single ciphertext secure FE
scheme for UAWS can be found in Sect. 5. We provide the complete security analysis of the
scheme in Sect. 5.2. Next, we build our full fledge 1-slot FE scheme for UAWS and prove its
security in Sect. 6. We present our FE scheme for attribute-weighted sums for DFA in Sect.
7.

2 Technical overview

We now present an overview of our techniques for achieving an FE scheme for AWS function-
ality which supports the uniform model of computations. We consider prime-order bilinear
pairing groups (G1, G2, GT, g1, g2, e) with a generator gT = e(g1, g2) of GT and denote
[[a]]i by an element gai ∈ Gi for i ∈ {1, 2,T}. For any vector z, the k-th entry is denoted by
z[k] and [n] denotes the set {1, . . . , n}.
The unbounded AWS functionality In this work, we consider an unbounded FE scheme
for the AWS functionality for Logspace Turing machines (or the class of L), in shorthand it
is written as UAWSL. More specifically, the setup only takes as input the security parameter
of the system and is independent of any other parameter, e.g., the lengths of the public and
private attributes. UAWSL generates secret keys SK(M,IM ) for a tuple of Turing machines
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denoted by M = {Mk}k∈IM such that the index set IM contains any arbitrary number of
Turing machines Mk ∈ L. The ciphertexts are computed for a pair of public–private attributes
(x, z) whose lengths are arbitrary and are decided at the time of encryption. Precisely, the
public attribute x of length N comes with a polynomial time bound T = poly(N ) and a
logarithmic space bound S, and the private attribute z is an integer vector of length n. At the
time of decryption, if IM ⊆ [n] then it reveals an integer value

∑
k∈IM

Mk(x)z[k]. Since
Mk(x) is binary, we observe that the summation selects and adds the entries of z for which
the corresponding Turing machine accepts the public attribute x. On the other hand, if IM ]
is not contained in [n] then the decryption cannot recover a meaningful information. An
appealing feature of the functionality is that the secret key SK(M,IM ) can decrypt ciphertexts
of unbounded length attributes in unbounded time/(logarithmic) space bounds. In contrast,
existing FE for AWSs [8, 38] are designed to handle non-uniform computations that can
only handle attributes of bounded lengths and the public parameters grows linearly with the
lengths. Next, we describe the formulation of Turing machines in L considered in UAWSL.

Turing machines formulation We introduce the notations for Logspace Turing machines
(TM) over binary alphabets. A Turing machine M = (Q, yacc, δ) consists of Q states with
the initial state being 1 and a characteristic vector yacc ∈ {0, 1}Q of accepting states and
a transition function δ. When an input (x, N , T , S) with length N and time, space bounds
T , S is provided, the computation of M |N ,T ,S(x) is performed in T steps passing through
configurations (x, (i, j,W , q)) where i ∈ [N ] is the input tape pointer, j ∈ [S] is the
work tape pointer, W ∈ {0, 1}S the content of work tape, and q ∈ [Q] the state under
consideration. The initial internal configuration is (1, 1, 0S, 1) and the transition function
δ determines whether, on input x, it is possible to move from one internal configuration
(i, j,W , q) to the next ((i ′, j ′,W ′, q ′)), namely if δ(q, x[i],W [ j]) = (q ′, w′,Δi,Δ j). In
other words, the transition function δ on input state q , an input bit x[i] and an work tape
bit W [ j], outputs the next state q ′, the new bit w′ overwriting w = W [ j] by w′ = W ′[ j]
(keeping W [ j ′′] = W ′[ j ′′] for all j �= j ′′), and the directions Δi,Δ j ∈ {0,±1} to move the
input and work tape pointers.

Our construction of adaptively simulation secureUAWSL depends on two building blocks:
AKGS for Logspace Turing machines, an information-theoretic tool and slotted IPFE, a com-
putationally secure tool. We only need a bounded slotted IPFE, meaning that the length
of vectors of the slotted IPFE is fixed in the setup, and we only require the primitive to
satisfy adaptive indistinguishability based security. Hence, our work shows how to (semi-
)generically bootstrap a bounded IPFE to an unbounded FE scheme beyond the inner product
functionality. Before going to describe the UAWSL, we briefly discuss these two building
blocks.

AKGS for Logspace Turing machines In [62], the authors present an ABE scheme for
Logspace Turing machines by constructing an efficient AKGS for sequence of matrix mul-
tiplications over Zp . Thus, their core idea was to represent a Turing machine computation
through a sequence of matrix multiplications. An internal configuration (i, j,W , q) is rep-
resented as a basis vector e(i, j,W ,q) of dimension NS2SQ with a single 1 at the position
(i, j,W , q). We define a transition matrix given by

M(x)[(i, j,W , q), (i ′, j ′,W ′, q ′)] =

⎧
⎪⎨

⎪⎩

1, if δ(q, x[i],W [ j]) = (q ′,W ′[ j], i ′ − i, j ′ − j)

and W ′[ j ′′] = W [ j ′′] for all j ′′ �= j;
0, otherwise;
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such that e�
(i, j,W ,q)M(x)= e�

(i ′, j ′,W ′,q ′). This holds because the ((i, j,W , q), (i ′, j ′,W ′, q ′))-
th entry of M(x) is 1 if and only if there is a valid transition from (q, x[i],W [ j]) to
(q ′,W ′[ j], i ′ − i, j ′ − j). Therefore, one can write the Turing machine computation by
right multiplying the matrix M(x) for T times with the initial configuration e�

(1,1,0S ,1)
to

reach of one of the final configurations 1[N ]×[S]×{0,1}S ⊗ yacc. In other words, the function
M |N ,T ,S(x) is written as

M |N ,T ,S(x) = e�
(1,1,0S ,1)(MN ,S(x))T (1[N ]×[S]×{0,1}S ⊗ yacc) (1)

Thus, [62] constructs an AKGS for the sequence of matrix multiplications as in Eq. (1). Their
AKGS is inspired from the randomized encoding scheme of [18] and homomorphic evaluation
procedure of [22]. Given the function M |N ,T ,S over Zp and two secrets z, β, the garbling
procedure computes the label functions

L init(x) = β + e�
(1,1,0S ,1)

r0,
for t ∈ [T ] : (Lt,θ )θ (x) = −r t−1 + MN ,S(x)r t ,

(LT+1,θ )θ (z) = −rT + z1[N ]×[S]×{0,1}S ⊗ yacc.

and outputs the coefficients of these label functions �init, �t = (�t,θ )θ where θ = (i, j,W , q)

and r t ← Z
[N ]×[S]×{0,1}S×[Q]
p . To compute the functional value for an input x, the evaluation

procedure adds �init with a telescoping sum e�
(1,1,0S ,1)

· ∑T
t=1(MN ,S(x))t−1�t and outputs

zM |N ,T ,S(x) + β. More precisely, it uses the fact that

e�
it+1, jt+1,W t+1,qt+1

r t+1

= e�
it , jt ,W t ,qt

r t + e�
it , jt ,W t ,qt

(−r t + M(x)r t+1︸ ︷︷ ︸
�t+1

)

A crucial and essential property that the AKGS have is the linearity of evaluation procedure,
meaning that the procedure is linear in the label functionvalues �s and, hence canbeperformed
even if the �s are available in the exponent of a group. Lin and Luo identify two important
security notions of AKGS, jointly called piecewise security. Firstly, �init can be reversely
sampled given a functional value and all other label values, which is known as the reverse
sampleability. Secondly, �t is random with respect to the subsequent label functions Lt ′,θ for
all t ′ > t and z, which is called the marginal randomness.

Function hiding slotted IPFE A normal IPFE computes inner product between two vectors
v and u using a secret key IPFE.SKv and a ciphertext IPFE.CTu. The IPFE is said to satisfy
indistinguishability-based security if an adversary having received many functional secret
keys {IPFE.SKv} remains incapable to extract any information about the message vector u
except the inner products {v · u}. It is easy to observe that if encryption is done publicly
then no security can be ensured about v from the secret key IPFE.SKv [36] due to the linear
functionality. However, if the encryption algorithm is private then IPFE.SKv can be produced
in a fashion to hide sensitive information about v. This is termed as function hiding security
notion for private key IPFE. Slotted IPFE [64] is a hybrid of public and private IPFE where
vectors are divided into public and private slots, and function hiding is only guaranteed
for the entries in the private slots. Further, Slotted IPFEs of [62, 64] generate secret keys
and ciphertexts even when the vectors are given in the exponent of source groups whereas
decryption recovers the inner product in the target group.
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2.1 From all-or-nothing to functional encryption

We are all set to describe our approach to extend the framework of [62] from all-or-nothing to
functional encryption for the uniformmodel of computations. In a previouswork of Datta and
Pal [38], an adaptively secure FE for AWS functionality was built for a non-uniform model of
computation, ABPs to be precise. Their idea was to garble a function fk(x)z[k] + βk during
key generation (keeping z[k] and x as variables) and compute IPFE secret keys to encode
the m labels, and a ciphertext associated to a tuple (x, z) consists of a collection of IPFE
ciphertexts which encode the attributes:

SK f = {IPFE.SKvk,t<m , ˜IPFE.SKṽk,m }k,m :
vk,t<m = �k,t , ṽk,m = �k,m where

(�k,t )t ← Garble( fk(x)z[k] + βk) s.t.
∑

k βk = 0

CTx = (IPFE.CTu, { ˜IPFE.CTũk }k) :
u = (1, x), ũk = (1, z[k])

Therefore, using the inner product functionality, decryption computes the actual label values
with x, z[k] as inputs and recovers fk(x)z[k]+βk for each k, and hence finally

∑
k fk(x)z[k].

However, this approach fails to build UAWSL because we can not execute the AKGS garbling
for the function Mk |N ,T ,S(x)z[k] + βk at the time of generating keys. More specifically,
the garbling randomness depends on parameters N , T , S, n that are unknown to the key
generator. Note that, in contrast to the ABE of [62] where z can be viewed as a payload (hence
n = 1), the UAWS functionality has an additional parameter n (length of z) the value of
which is chosen at the time of encryption. Moreover, the compactness of UAWSL necessitates
the secret key size |SK(M,IM )| = O(|IM |Q) to be linear in the number of states Q and the
ciphertext size |CT(x,T ,S)| = O(nT N S2S) be linear in T N S2S .

The obstacle is circumvented by the randomness distribution technique used in [62].
Instead of computing the AKGS garblings in key generation or encryption phase, the label
values are producedby a joint effort of both the secret key and ciphertext. Todo so, the garbling
is executed under the hood of IPFE using pseudorandomness, instead of true randomness. That
is, some part of the garbling randomness is sampled in key generation whereas the rest is
sampled in encryption. More specifically, every true random value r t [(i, j,W , q)] is written
as a product rx[(t, i, j,W)]rk, f [q] where rx[(t, i, j,W)] is used in the ciphertext and
rk, f [q] is utilized to encode the transition blocks of Mk in the secret key. To enable this, the
transition matrix associated to Mk is represented as follows:

M(x)[(i, j,W , q), (i ′, j ′,W ′, q ′)]
= δ(?)((i, j,W , q), (i ′, j ′,W ′, q ′)) × Mx[i],W [ j],W ′[ j],i ′−i, j ′− j [q, q ′]

where δ(?)((i, j,W , q), (i ′, j ′,W ′, q ′)) is 1 if there is a valid transition from the configuration
(i, j,W , q) to (i ′, j ′,W ′, q ′), otherwise 0. Therefore, every block of M(x)[(i, j,W , q),

(i ′, j ′,W ′, q ′)] is either a Q× Q zero matrix or a transition block that belongs to a small set

T = {Mτ | τ = (x, w,w′,Δi,Δ j) ∈ {0, 1}3 × {0,±1}2}

The (i, j,W , q)-th block row Mτ = Mx,w,w′,Δi,Δ j appears at MN ,S(x)[(i, j,W , ),

(i ′, j ′,W ′, )] if x = x[i], w = W [ j],Δi = i ′ − i,Δ j = j ′ − j , and W ′ is W with
j-th entry changed to w′. Thus, every label �k,t [i, q] with i = (i, j,W) can be decomposed
as inner product vk,q · uk,t,i, j,W . More precisely,
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�k,t [i, q]
= −r t−1[i, q] + Mk,N ,S(x)[(i, q), ( , , , )]r t
= −r t−1[i, q] +

∑

w′,Δi,Δ j

(Mk,x[i],W [ j],w′,Δi,Δ j r t [i′, ])[q]

(i′ = (i + Δi, j + Δ j,W ′))

= rx[t − 1, i]rk, f [q] +
∑

w′,Δi,Δ j

rx[t, i′](Mk,x[i],W [ j],w′,Δi,Δ j rk, f )[q]

= rx[t − 1, i]rk, f [q] +
∑

w′,Δi,Δ j

rx[t, i′](Mk,τ rk, f )[q] = vk,q · uk,t,i, j,W

so that one can set the vectors

vk,q = ( −rk, f [q], 0, (Mk,τ rk, f )[q] ‖ 0 ),

ut,i = ( rx[t − 1, i], 0, cτ (x; rx) ‖ 0 )

where cτ (x; rx) (a shorthand of the notation cτ (x, t, i, j,W ; rx) [62]) is given by

cτ (x; rx) =
{
rx[t, i′], if x = x[i], w = W [ j];
0, otherwise.

Similarly, the other labels can be decomposed: �k,init = (rk, f [1], βk, 0)·(rx[(0, 1, 1, 0S)], 1,
0) = βk+e�

(1,1,0S ,1)
r0 and �k,T+1[(i, q)] = ṽk,q ·ũk,T+1,i, j,W = −rT [(i, q)]+z[k] yk,acc[q]

where

ṽk,q = ( −rk, f [q], yk,acc[q] ‖ 0 ),

ũT+1,i = ( rx[T , i], z[k] ‖ 0 )

A first attempt Armed with this, we now present the first candidate UAWSL construction in
the secret key setting which supports a single key. We consider two independent master keys

imsk and ĩmsk of IPFE. For simplicity, we assume the length of the private attribute z is the
same as the number of Turing machines present in M = (Mk)k∈IM , i.e., n = |IM |. We also
assume that each Turing machine in the secret key shares the same set of states.

SKM,IM = {IPFE.SKvk,init , IPFE.SKvk,q ,
˜IPFE.SKṽk,q }k∈IM :

[[vk,init]]2 = [[( −rk, f [1], βk, 0, ‖ 0 )]]2,
[[vk,q ]]2 = [[( −rk, f [q], 0, (Mk,τ rk, f )[q] ‖ 0 )]]2,
[[̃vk,q ]]2 = [[( −rk, f [q], yk,acc[q] ‖ 0 )]]2

CTx = (IPFE.CTuinit , IPFE.CTu, { ˜IPFE.CTũk }k) :
[[uinit]]1 = [[( rx[(0, 1, 1, 0S)], 1, 0, ‖ 0 )]]1,

[[ut<T ,i]]1 = [[( rx[t − 1, i], 0, cτ (x; rx) ‖ 0 )]]1,
[[̃uk,T+1,i]]1 = [[( rx[T , i], z[k] ‖ 0 )]]1

Observe that the inner products between the ciphertext and secret key vectors yield the label
values [[�k,init]]T, [[�k,t ]]T = [[(�k,t,θ )θ ]]T for θ = (i, j,W , q). Now, the evaluation procedure
of AKGS is applied to obtain the partial values [[z[k]Mk |N ,T ,S(x)+βk]]T. Combining all this
values gives the required attribute weighted sum

∑
k Mk |N ,T ,S(x)z[k] Since∑k βk = 0.

However, this scheme is not fully unbounded, in particular, the setup needs to know the
length of the private attribute. To realise this, let us try to prove the security of the scheme.
The main idea of the proof would be to make all the label values (�k,t,θ )θ truly random and
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simulated except the initial labels �k,init so that one can reversely sample �k,init hardcodedwith
a desired functional value. Suppose, for instance, the single secret key is queried before the
challenge ciphertext. In this case, the honest label values are first hardwired in the ciphertext
vectors and then the labels are transformed into their simulated version. This is because the
ciphertext vectors are computed after the secret key. So, the first step is to hardwire the initial
label values �k,init into the ciphertext vector uinit, which indicates that the length of uinit must
grow with respect to the number of �k,init’s. The same situation arises while simulating the
other label values through ut,i. In other words, we need to know the size of IM or the length
of z in setup, which is against our desired functionality.

To tackle this, we increase the number of uinit and ut<T ,i in the above system. More
specifically, each of these vectors are now computed for all k ∈ [n], just like ũk,T+1,i.
Although this fixes the requirement of unboundedness of the system, there is another issue
related to the security that must be solved. Note that, in the current structure, there is a
possibility of mix-and-match attacks since, for example, ũk1,T+1,i can be paired with ṽk2,q
and this results in some unwanted attribute weighted sum of the form

∑
k �=k1,k2 Mk(x)z[k]+

Mk1(x)z[k2]+Mk2(x)z[k1].We employ the index encoding technique used in previousworks
achieving unbounded ABE or IPFE [68, 71] to overcome the attack. In particular, we add two
extra dimensions ρk(−k, 1) in the ciphertext and πk(1, k) in the secret key for encoding the
index k in each of the vectors of the system. Observe that for each Turing machine Mk an
independent randomness πk is sampled. It ensures that an adversary can only recover the
desired attribute weighted sum and whenever vectors from different indices are paired only
a garbage value is obtained.

Combining the ideas After combining the above ideas, we describe our UAWSL supporting
a single key as follows.

SKM,IM = {IPFE.SKvk,init , IPFE.SKvk,q ,
˜IPFE.SKṽk,q }k∈IM :

[[vk,init]]2 = [[( πk(1, k), −rk, f [1], βk, 0, ‖ 0 )]]2,
[[vk,q ]]2 = [[( πk(1, k), −rk, f [q], 0, (Mk,τ rk, f )[q] ‖ 0 )]]2,
[[̃vk,q ]]2 = [[( πk(1, k), −rk, f [q], yk,acc[q] ‖ 0 )]]2

CTx = {IPFE.CTuk,init , IPFE.CTuk,t<T ,i ,
˜IPFE.CTũk,T+1,i}k :

[[uk,init]]1 = [[( ρk(−k, 1), rx[(0, 1, 1, 0S)], 1, 0, ‖ 0 )]]1,
[[uk,t<T ,i]]1 = [[( ρk(−k, 1), rx[t − 1, i], 0, cτ (x; rx) ‖ 0 )]]1,
[[̃uk,T+1,i]]1 = [[( ρk(−k, 1), rx[T , i], z[k] ‖ 0 )]]1

Although the above construction satisfies our desired functionality, preserves the compactness
of ciphertexts and resists the aforementioned attack, we face multiple challenges in adapting
the proof ideas of previous works [38, 62, 71].

Security challenges and solutions Next, we discuss the challenges in proving the adap-
tive simulation security of the scheme. Firstly, the unbounded IPFE scheme of Tomida and
Takashima [71] is proved in the indistinguishability-based model whereas we aim to prove
simulation security which is much more challenging. The work closer to ours is the FE for
AWS of Datta and Pal [38], but it only supports a non-uniform model of computation and
the inner product functionality is bounded. Moreover, since the garbling randomness is dis-
tributed in the secret key and ciphertext vectors, we can not adapt their proof techniques [38,
71] in a straightforwardmanner. Although the ABE scheme of Lin and Luo [62] handles a uni-
form model of computation, they only consider all-or-nothing type encryptions and hence
the adversary is allowed to query secret keys which always fail to decrypt the challenge
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ciphertext. In contrast, we construct a more advanced encryption mechanism which over-
comes all the above constraints of prior works, i.e., our UAWSL is an adaptively simulation
secure functional encryption scheme that supports unbounded inner product functionality
with a uniform model of computations over the public attributes.

Our proof technique is inspired by that of [38, 62]. One of the core technical challenges is
involved in the case where the secret key is queried before the challenge ciphertext. Thus, we
focusmore on “sk queried before ct” in this overview. As noted above, in the security analysis
of [62] the adversaryA is not allowed to decrypt the challenge ciphertext and hence they com-
pletely randomize the ciphertext in thefinal game.However, sincewe are building a FE scheme
any secret key queried byA should be able to decrypt the challenge ciphertext. For this, we use
the pre-image sampleability technique from prior works [37, 38]. In particular, the reduction
samples a dummy vector d ∈ Z

n
p satisfying

∑
k Mk |N ,T ,S(x)z[k] = ∑

k Mk |N ,T ,S(x)d[k]
where M = (Mk)k is a pre-challenge secret key. To plant the dummy vector into the cipher-
text, we first need to make all label values {�k,t,i,q} truly random depending on the terms
rk, f [q]rx[t − 1, i]’s and then turn them into their simulated forms, and finally traverse in
the reverse path to get back the original form of the ciphertext with d taking place of the
private attribute z. In order to make all these labels truly random, the honest label values are
needed to be hardwired into the ciphertext vectors (since these are computed later) so that we
can apply the DDH assumption in G1 to randomize the term rk, f [q]rx[t − 1, i] (hence the
label values). However, this step is much more complicated than in [62] since there are two
independent IPFE systems in our construction and rk, f [q] appears in both vk,q and ṽk,q (i.e.,
in both IPFE systems). We design a two-level nested loop running over q and t for relocating
rk, f [q] from v’s and ṽk,q to u’s and ũk,T+1,i. To this end, we note that the case of “sk queried
after ct” is simpler where we embed the reversely sampled initial label values into the secret
key. Before going to discuss the hybrids, we first present the simulator of the ideal world.

SKM,IM = {IPFE.SKvk,init , IPFE.SKvk,q ,
˜IPFE.SKṽk,q }k∈IM : (sk queried before ct)

[[vk,init]]2 = [[( πk(1, k), −rk, f [1], βk, 0 ‖ 0 )]]2,
[[vk,q ]]2 = [[( πk(1, k), −rk, f [q], 0, (Mk,τ rk, f )[q] ‖ 0 )]]2,
[[̃vk,q ]]2 = [[( πk(1, k), −rk, f [q], yk,acc[q] ‖ 0 )]]2

CTx = {IPFE.CTuk,init , IPFE.CTuk,t<T ,i ,
˜IPFE.CTũk,T+1,i}k :

[[uk,init]]1 = [[( ρk(−k, 1), rx[(0, 1, 1, 0S)], 1, 0, ‖ 1, 0 )]]1,
[[uk,t<T ,i]]1 = [[( ρk(−k, 1), rx[t − 1, i], 0, cτ (x; rx) ‖ sx[t, i], 0 )]]1,
[[̃uk,T+1,i]]1 = [[( ρk(−k, 1), rx[T , i], d[k] ‖ sx[T + 1, i], 0 )]]1

SKM,IM = {IPFE.SKvk,init , IPFE.SKvk,q ,
˜IPFE.SKṽk,q }k∈IM : (sk queried after ct)

[[vk,init]]2 = [[( πk(1, k), 0, 0, 0 ‖ �k,init, 0 )]]2,
[[vk,q ]]2 = [[( πk(1, k), 0, 0, 0 ‖ sk, f [q], 0 )]]2,
[[̃vk,q ]]2 = [[( πk(1, k), 0, 0 ‖ sk, f [q], 0 )]]2

where �k,init ← RevSamp((Mk, x, Mk[x]z[k] + βk, {�k,t,i,q}) s.t.∑
k∈IM

βk = 0 if IM ⊆ [n]; otherwise βk ← Zp.

Security analysis We use a three-step approach and each step consists of a group of hybrid
sequence. At a very high level, we discuss the case of “sk queried before ct”. In this overview,
for simplicity, we assume that the challenger knows the length of z while it generates the
secret key.

First group of hybrids The reduction starts with the real scheme. In the first step, the label
function �k,init is reversely sampled with the value Mk[x]z[k] + βk which is hardwired in
uk,init.
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vk,init = ( · · · , 1 , 0 , 0 ‖ 0, 0 ),

vk,q = ( · · · , −rk, f [q], 0, (Mk,τ rk, f )[q] ‖ sk, f [q] , 0 ),

ṽk,q = ( · · · , −rk, f [q], yk,acc[q] ‖ 0, 0 )

uk,init = ( · · · , �k,init , 0 , 0, ‖ 0, 0 ),

uk,t<T ,i = ( · · · , rx[t − 1, i], 0, cτ (x; rx) ‖ 0, 0 ),

ũk,T+1,i = ( · · · , rx[T , i], z[k] ‖ sx[T + 1, i] , 0 )

where �k,init ← RevSamp((Mk, x, Mk[x]z[k]+βk, {�k,t,i,q}) and �k,t,i,q ’s are computed
honestly. Note that, the secret values {βk} are sampled depending on whether the queried key
is eligible for decryption. More specifically, if IM ⊆ [n], then βk’s are sampled as in the
original key generation algorithm, i.e.,

∑
k βk = 0. On the other hand, if maxIM > n then

βk’s are sampled uniformly at random, i.e., they do not necessarily be secret shares of zero.
This can be done by the function hiding property of IPFE which ensures that the distributions
{{IPFE.SK

v
(b)
k

}k∈[n+1,|IM |], {IPFE.CTuk′ }k′∈[n]} for b ∈ {0, 1} are indistinguishable where

v
(b)
k = ( πk, k · πk, 0, βk + b · rk, 0 ) for k ∈ [n + 1, |IM |], rk ← Zp

uk′ = ( −k′ · ρk′ , ρk′ , 0, 1, 0 ) for k′ ∈ [n]

Thus, the indistinguishability between the group of hybrids can be guaranteed by the piece-
wise security of AKGS and the function hiding security of IPFE.

Second group of hybrids The second step is a loop. The purpose of the loop is to change all
the honest label values �k,t,i,q to simulated ones that take the form �k,t,i,q = sx[t, i]sk, f [q]
where sx[t, i] is hardwired in uk,t,i or ũk,T+1,i and sk, f [q] is hardwired in vk,q or ṽk,q .

The whole procedure is executed in via a two-level loop with outer loop running over t and
inner loop running over q (both in increasing order). In each iteration of the loop, we move
all occurrences of rk, f [q] into the u’s in one shot and hardwire the honest labels �k,t,i,q into
uk,t,i for all i. Below we present two crucial intermediate hybrids of the loop when t ≤ T .

vk,q = ( · · · , − ✗rk, f [q] − ‖ 0 , 1 , 0 ),

ṽk,q = ( · · · , − 0 − ‖ 0, 1 , 0 ),

uk,t<T ,i = ( · · · , − ✓rk, f [q] − ‖ sx[t, i] ,
honest �k,t,i,q
= −rx[t − 1, i]rk, f [q] +· · · , 0 ),

ũk,T+1,i = ( · · · , rx[T , i], z[k] ‖ sx[T + 1, i], honest �k,T+1,i,q
= −rx[T , i]rk, f [q] +· · · , 0 )

where ✗rk, f [q] and ✓rk, f [q] indicate the presence of rk, f [q] in their respective positions.
The indistinguishability can be argued using the function hiding security of IPFE. Next, by
invokingDDH inG1, we firstmake rx[t−1, i]rk, f [q] truly random for all i and then transform
the label values into their simulated form �k,i,q = sx[t, i]sk, f [q] again by using DDH in G1

for all i. We emphasize that the labels �k,T+1,i,q are kept as honest and hardwired when the
loop runs for t ≤ T . Finally, the terms sk, f [q] are shifted back to vk,q or ṽk,q .
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vk,q = ( · · · , −rk, f [q] , 0, (Mk,τ rk, f )[q] ‖ sk, f [q] , 0 , 0 ),

ṽk,q = ( · · · , −rk, f [q] , yk,acc[q] ‖ 0, 0 , 0 ),

uk,t<T ,i = ( · · · , − 0 − ‖ sx[t, i], 0 , 0 ),

ũk,T+1,i = ( · · · , rx[T , i], z[k] ‖ sx[T + 1, i], 0 , 0 )

After the two-label loop finishes, the reduction run an additional loop over q with t fixed at
T +1 to make the last few label values �k,T+1,i,q simulated. The indistinguishability between
the hybrids follows from a similar argument as in the two-level loop.

vk,q = ( · · · , −rk, f [q], 0, (Mk,τ rk, f )[q] ‖ sk, f [q], 0, 0 ),

ṽk,q = ( · · · , −rk, f [q], yk,acc[q] ‖ sk, f [q] , 0, 0 ),

uk,t<T ,i = ( · · · , −0− ‖ sx[t, i], 0, 0 ),

ũk,T+1,i = ( · · · , − 0 − ‖ sx[T + 1, i], 0, 0 )

Third group of hybrids After all the label values �k,t,i,q are simulated, the third step uses
a few more hybrids to reversely sample �1,init and �k,init|k>1 with the hardcoded values
M(x)�z + β1 and βk |k>1 respectively. This can be achieved through a statistical transfor-
mation on {βk | ∑k βk = 0}. Finally, we are all set to insert the dummy vector d in place of
z keeping A’s view identical.

vk,init = ( · · · , 1, 0, 0 ‖ 0, 0, 0 ),

vk,q = ( · · · , − 0 − ‖ sk, f [q], 0, 0 ),

ṽk,q = ( · · · , − 0 − ‖ sk, f [q], 0, 0 ),

uk,init = ( · · · , �k,init , 0, 0, ‖ 0, 0, 0 ),

uk,t<T ,i = ( · · · , −0− ‖ sx[t, i], 0, 0 ),

ũk,T+1,i = ( · · · , −0− ‖ sx[T + 1, i], 0, 0 )

where all the label values {�k,t,i,q} are simulated and the initial label values are computed as
follows

�1,init ← RevSamp(M1, x, M(x)�d + β1, {�k,t,i,q}),
�k,init ← RevSamp(Mk, x, βk, {�k,t,i,q}), for all k > 1

From this hybrid we can traverse in the reverse direction all the way to the very first hybrid
while keeping the private attribute as d. We also rearrange the elements using the security
of IPFE so that the distribution of the ciphertext does not change with the occurrence of the
secret key whether it comes before or after the ciphertext. This is important for the public
key UAWSL. The formal security is discussed in Theorem 3.

From single key to full-fledge UAWSL The next and final goal is to bootstrap the single key,
single ciphertext secure UAWSL to a public key UAWSL scheme that supports releasing many
secret keys and ciphertexts. Observe that our secret key UAWSL already supports multiple
keys and single ciphertext. However, it fails to remain secure if two ciphertexts are published.
This is because the piecewise security of AKGS can not be guaranteed if the label functions
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are reused. Our bootstrapping procedure takes inspiration from prior works [38, 62], that is
to sample a random multiplier s ← Zp at the time of encryption, which will randomize the
label values in the exponent of G2. In particular, using IPFE security the random multiplier
s is moved to the secret key vectors where the DDH assumption ensures that s�k,t,i,q ’s are
pseudorandom in the exponent of G2. To upgrade the scheme into the public key setting, we
employ the Slotted IPFE that enables encrypting into the public slots using the public key
whereas the function hiding security still holds in the private slots. We describe below our
public key UAWSL scheme.

SKM,IM = {IPFE.SKvpad IPFE.SKvk,init , IPFE.SKvk,q ,
˜IPFE.SKṽk,q }k∈IM : α ← Zp

[[vk,init]]2 = [[( 0, α, 0, 0, 0, ‖ 0 )]]2,
[[vk,init]]2 = [[( πk(1, k), 0, −rk, f [1], βk, 0, ‖ 0 )]]2,
[[vk,q ]]2 = [[( πk(1, k), 0, −rk, f [q], 0, (Mk,τ rk, f )[q] ‖ 0 )]]2,
[[̃vk,q ]]2 = [[( πk(1, k), 0, −rk, f [q], α yk,acc[q] ‖ 0 )]]2

CTx = {IPFE.CTuk,init , IPFE.CTuk,t<T ,i ,
˜IPFE.CTũk,T+1,i}k : s ← Zp

[[upad]]1 = [[( 0, s, 0, 0, 0, ‖ ⊥ )]]1,
[[uk,init]]1 = [[( ρk(−k, 1), 0, s · rx[(0, 1, 1, 0S)], s, 0, ‖ ⊥ )]]1,

[[uk,t<T ,i]]1 = [[( ρk(−k, 1), 0, s · rx[t − 1, i], 0, s · cτ (x; rx) ‖ ⊥ )]]1,
[[̃uk,T+1,i]]1 = [[( ρk(−k, 1), 0, s · rx[T , i], s · z[k] ‖ ⊥ )]]1
The slots at the left/right of “ ‖ ” are public/private. The ciphertexts are computed using

only the public slots and the private slots are utilized only in the security analysis. At a
very high level, we utilize the triple-slot encryption technique devised in [38] to simulate
the pre-challenge secret keys with a dummy vector encoded into the ciphertext and hardwire
the functional value into the post-challenge secret keys. As mentioned earlier, the triple-slot
encryption technique [38] was devised for the non-uniform model which crucially uses the
fact that the garbling randomness can be (fully) sampled in the key generation process. This
does not hold in our setting. Thus, we design amore advanced three-slot encryption technique
that is compatible with distributed randomness of AKGS garbling procedure. More specifi-
cally, we add one additional hidden subspace in order to realize such sophisticatedmechanism
for Logspace Turing machines. This additional subspace enables us to simulate the post-
ciphertext secret keys with distributed randomness. However, shuttle technical challenges
still remain to be overcome due to the structure of AKGS for Logspace Turing machines. We
prove the security of the scheme in Theorem 4.

3 Preliminaries

In this section, we provide the necessary definitions and backgrounds that will be used in the
sequence.

Notations We denote by λ the security parameter that belongs to the set of natural number
N and 1λ denotes its unary representation. We use the notation s ← S to indicate the fact
that s is sampled uniformly at random from the finite set S. For a distribution X , we write
x ← X to denote that x is sampled at random according to the distribution X . A function
negl : N → R is said to be a negligible function of λ, if for every c ∈ N there exists a λc ∈ N

such that for all λ > λc, |negl(λ)| < λ−c.
Let Expt be an interactive security experiment played between a challenger and an adver-

sary, which always outputs a single bit. We assume that ExptCA is a function of λ and it is
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parametrized by an adversary A and a cryptographic protocol C. Let ExptC,0
A and ExptC,1

A be
two such experiment. The experiments are computationally/statistically indistinguishable if
for any PPT/computationally unbounded adversary A there exists a negligible function negl
such that for all λ ∈ N,

AdvCA(λ) = ∣
∣Pr

[
1 ← ExptC,0

A (1λ)
] − Pr

[
1 ← ExptC,1

A (1λ)
]∣
∣ < negl(λ)

We write ExptC,0
A

c≈ ExptC,1
A if they are computationally indistinguishable (or simply

indistinguishable). Similarly, ExptC,0
A

s≈ ExptC,1
A means statistically indistinguishable and

ExptC,0
A ≡ ExptC,1

A means they are identically distributed.

Sets and indexing For n ∈ N, we denote [n] the set {1, 2, . . . , n} and for n,m ∈ N with
n < m, we denote [n,m] be the set {n, n + 1, . . . ,m}. We use lowercase boldface, e.g., v, to
denote column vectors inZ

n
p and uppercase boldface, e.g.,M, to denote matrices inZ

n×m
p for

p, n,m ∈ N. The i-th component of a vector v ∈ Z
n
p iswritten as v[i] and the (i, j)-th element

of a matrixM ∈ Z
n×m
p is denoted byM[i, j]. The transpose of a matrixM is denoted byM�

such thatM�[i, j] = M[ j, i]. To write a vector of length n with all zero elements, we write
0n or simply 0when the length is clear from the context. Let u, v ∈ Z

n
p , then the inner product

between the vectors is denoted as u·v = u�v = ∑
i∈[n] u[i]v[i] ∈ Zp .We define generalized

inner product between two vectors u ∈ Z
I1
p , v ∈ Z

I2
p by u · v = ∑

i∈I1∩I2
u[i]v[i].

Tensor products Let u ∈ Z
I1
p and v ∈ Z

I2
p be two vectors, their Kronecker product w =

u ⊗ v is a vector in Z
I1×I2
p with entries defined by w[(i, j)] = u[i]v[ j]. For two matrices

M1 ∈ Z
I1×I2
p and M1 ∈ Z

I′
1×I′

2
p ,their Kronecker product M = M = M1 ⊗ M2 is a matrix

in Z
(I1×I′

1)×I2×I′
2

p with entries defined byM[(i1, i ′1), (i2, i ′2)] = M1[i1, i2]M2[i ′1, i ′2].
Currying Currying is the product of partially applying a function or specifying part of the
indices of a vector/matrices, which yields another function with fewer arguments or another
vector/matrixwith fewer indices.Weuse the usual syntax for evaluating a function or indexing
into a vector/matrix, except that unspecified variables are represented by “ ”. For example,
let M ∈ Z

([I1]×[I2])×([J1]×[J2])
p and i1 ∈ I1, j2 ∈ J2, then M[(i1, ), ( , j2)] is a matrix

N ∈ Z
[I2]×[J2]
p such that N[i2, j1] = M[(i1, i2), ( j1, j2)] for all i2 ∈ I2, j1 ∈ J1.

Coefficient vector Let f : Z
I
p → Zp be an affine function with coefficient vector f ∈ Z

S
p

for S = {const} ∪ {coefi | i ∈ I}. Then for any x ∈ Z
I
p , we have f (x) = f[const] +∑

i∈I f[coefi ]x[i].

3.1 Bilinear groups and hardness assumptions

We use a pairing group generator G that takes as input 1λ and outputs a tuple G =
(G1, G2, GT, g1, g2, e) where G1, G2, GT are groups of prime order p = p(λ) and gi is
a generator of the group Gi for i ∈ {1, 2}. The map e : G1 × G2 → GT satisfies the
following properties:

– bilinear: e(ga1 , g
b
2) = e(g1, g2)ab for all a, b ∈ Zp .

– non-degenerate: e(g1, g2) generates GT.

The group operations in Gi for i ∈ {1, 2,T} and the map e are efficiently computable in
deterministic polynomial time in the security parameter λ. For a matrix A and each i ∈
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{1, 2,T}, we use the notation [[A]]i to denote gAi where the exponentiation is element-wise.
The group operation is written additively while using the bracket notation, i.e. [[A + B]]i =
[[A]]i+[[B]]i formatricesA andB. Observe that, givenA and [[B]]i , we can efficiently compute
[[AB]]i = A · [[B]]i . We write the pairing operation multiplicatively, i.e. e([[A]]1, [[B]]2) =
[[A]]1[[B]]2 = [[AB]]T.
Assumption 1 (Symmetric external Diffie–Hellman assumption) We say that the SXDH
assumption holds in a pairing group G = (G1, G2, GT, g1, g2, e) of order p, if the DDH
assumption holds in Gi , i.e., {[[a]]i , [[b]]i , [[ab]]i } ≈ {[[a]]i , [[b]]i , [[c]]i } for i ∈ {1, 2,T} and
a, b, c ← Zp .

3.2 Turingmachine formulation

In this subsection, we describe the main computational model of this work, which is Turing
machines with a read-only input and a read-write work tape. This type of Turing machines
are used to handle decision problems belonging to space-bounded complexity classes such as
Logspace predicates. We define below Turing machines with time complexity T and space
complexity S. The Turing machine can either accept or reject an input string within this
time/space bound. We also stick to the binary alphabet for the shake of simplicity.

Definition 1 (Turing machine with time/space bound computation) [62] A (deterministic)
Turing machine over {0, 1} is a tuple M = (Q, yacc, δ), where Q ≥ 1 is the number of states
(we use [Q] as the set of states and 1 as the initial state), yacc ∈ {0, 1}Q indicates whether
each state is accepting, and

δ : [Q] × {0, 1} × {0, 1} → [Q] × {0, 1} × {0,±1} × {0,±1},
(q, x, w) �→ (q ′, w′,Δi,Δ j)

is the state transition function, which, given the current state q , the symbol x on the input
tape under scan, and the symbol w on the work tape under scan, specifies the new state q ′,
the symbolw′ overwritingw, the directionΔi to which the input tape pointer moves, and the
directionΔ j to which the work tape pointer moves. The machine is required to hang (instead
of halting) once it reaches on the accepting state, i.e., for all q ∈ [Q] such that yacc[q] = 1
and all x, w ∈ {0, 1}, it holds that δ(q, x, w) = (q, w, 0, 0).

For input length N ≥ 1 and space complexity bound S ≥ 1, the set of internal configura-
tions of M is

CM,N ,S = [N ] × [S] × {0, 1}S × [Q],
where (i, j,W , q) ∈ CM,N ,S specifies the input tape pointer i ∈ [N ], the work tape pointer
j ∈ [S], the content of the work tape W ∈ {0, 1}S and the machine state q ∈ [Q].

For any bit-string x ∈ {0, 1}N for N ≥ 1 and time/space complexity bounds T , S ≥ 1,
the machine M accepts x within time T and space S if there exists a sequence of internal
configurations (computation path of T steps) c0, . . . , cT ∈ CM,N ,S with ct = (it , jt ,W t , qt )
such that

i0 = 1, j0 = 1,W0 = 0S, q0 = 1(initial configuration)

for 0 ≤ t < T

{
δ(qt , x[it ],W t [ jt ]) = (qt+1,W t+1[ jt ], it+1 − it , jt+1 − jt ),

W t+1[ j] = W t [ j] for all j �= jt (valid transitions);
yacc[qT ] = 1 (accepting).
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Denote by M |N ,T ,S the function {0, 1}N → {0, 1}mapping x to whether M accepts x in time
T and space S. Define TM = {M | M is a Turing machine} to be the set of all Turing machines.

Note that, the above definition does not allow the Turing machines moving off the
input/work tape. For instance, if δ specifies moving the input pointer to the left/right when
it is already at the leftmost/rightmost position, there is no valid next internal configuration.
This type of situation can be handled by encoding the input string described in [62]. The
problem of moving off the work tape to the left can be managed similarly, however, moving
off the work tape to the right is undetectable by the machine, and this is intended due to the
space bound. That is, when the space bound is violated, the input is silently rejected.

3.3 Functional encryption for unbounded attribute-weighted sum for Turing
machines

We formally present the syntax of FE for unbounded attribute-weighted sum (AWS) and define
adaptive simulation security of the primitive. We consider the set of all Turing machines
TM = {M | M is a Turing machine} with time bound T and space bound S.

Definition 2 (The AWS functionality for Turing machines) For any n, N ∈ N, the class of
attribute-weighted sum functionalities is defined as

⎧
⎪⎪⎨

⎪⎪⎩

((x ∈ {0, 1}N , 1T , 12
S
), z ∈ Z

n
p) �→ M(x)�z where

M(x)�z = ∑
k∈IM

z[k] · Mk(x)

∣
∣
∣
∣

N , T , S ≥ 1,
Mk ∈ TM ∀k ∈ [n],

IM ⊆ [n] with |IM | ≥ 1

⎫
⎪⎪⎬

⎪⎪⎭

Definition 3 (Functional encryption for attribute-weighted sum) An unbounded-slot FE for
unbounded attribute-weighted sum associated to the set of Turing machines TM and the
message space M consists of four PPT algorithms defined as follows:

Setup(1λ) The setup algorithm takes as input a security parameter and outputs the master
secret-key MSK and the master public-key MPK.

KeyGen(MSK, (M, IM)) The key generation algorithm takes as input MSK and a tuple
of Turing machines M = (Mk)k∈IM . It outputs a secret-key SK(M,IM ) and makes (M, IM)

available publicly.
Enc(MPK, ((xi , 1Ti , 12

Si
), zi )i∈[N ]) The encryption algorithm takes as input MPK and a

message consisting of N number of public–private pair of attributes (xi , zi ) ∈ M such that
the public attribute xi ∈ {0, 1}Ni for some Ni ≥ 1 with time and space bounds given by
Ti , Si ≥ 1, and the private attribute zi ∈ Z

ni
p . It outputs a ciphertext CT(xi ,Ti ,Si ) and makes

(xi , Ti , Si )i∈[N ] available publicly.
Dec((SK(M,IM ), (M, IM)), (CT(xi ,Ti ,Si ), (xi , Ti , Si )i∈[N ])) The decryption algorithm

takes as input SK(M,IM ) along with the tuple of Turing machines and index sets (M, IM),
and a ciphertext CT(xi ,Ti ,Si ) along with a collection of associated public attributes
(xi , Ti , Si )i∈[N ]. It outputs a value in Zp or ⊥.

Correctness The unbounded-slot FE for unbounded attribute-weighted sum is said to be
correct if for all ((xi ∈ {0, 1}Ni , 1Ti , 12

Si
), zi ∈ Z

ni
p )i∈[N ] and for all (M = (Mk)k∈IM , IM),

we get

Pr

⎡

⎢
⎢
⎣

Dec((SK(M,IM ), (M, IM)), (CT(xi ,Ti ,Si ), (xi , Ti , Si )i∈[N ])) =
∑

i∈N

∑

k∈IM

Mk(xi )zi [k] :

(MSK,MPK) ← Setup(1λ), SK(M,IM ) ← KeyGen(MSK, (M, IM)),

CT(xi ,Ti ,Si ) ← Enc(MPK, ((xi , 1Ti , 12
Si

), zi )i∈[N ]), IM ⊆ [ni ] ∀i ∈ N

⎤

⎥
⎥
⎦ = 1
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We now define the adaptively simulation-based security of FE for unbounded attribute-
weighted sum for Turing machines.

Definition 4 (Adaptive simulation security)Let (Setup, KeyGen, Enc,Dec)be anunbounded-
slot FE for unbounded attribute-weighted sum for TM and message space M. The scheme is
said to be (�pre,�CT,�post)-adaptively simulation secure if for any PPT adversaryAmaking
at most�CT ciphertext queries and�pre,�post secret key queries before and after the cipher-

text queries respectively, we have ExptUAWS
A,real(1

λ)
c≈ ExptUAWS

A,ideal(1
λ), where the experiments

are defined as follows. Also, an unbounded-slot FE for attribute-weighted sums is said to be
(poly,�CT,poly)-adaptively simulation secure if it is (�pre,�CT,�post)-adaptively simu-
lation secure as well as �pre and �post are unbounded polynomials in the security parameter
λ.

ExptUAWS
A,real(1

λ)

1. 1N ← A(1λ);
2. (MSK,MPK) ← Setup(1λ);
3. (((xi , 1Ti , 1Si ), zi ∈ Z

ni
p )i∈[N ]) ← AOKeyGen(MSK,·) (MPK);

4. CT(xi ,Ti ,Si ) ← Enc(MPK, ((xi , 1Ti , 12
Si

), zi )i∈[N ]);
5. return AOKeyGen(MSK,·) (MPK,CT)

ExptUAWS
A,ideal(1

λ)

1. 1N ← A(1λ);
2. (MSK∗,MPK) ← Setup∗(1λ, 1N );
3. (((xi , 1Ti , 1Si ), zi ∈ Z

ni
p )i∈[N ]) ← AOKeyGen∗

0(MSK∗,·) (MPK)

4. CT(xi ,Ti ,Si ) ← Enc∗(MPK,MSK∗, (xi , 1Ti , 1Si , ni )i∈[N ],V);
5. return A

O
KeyGen∗

1(MSK∗,(xi ,1
Ti ,1Si )i∈[N ],·,·) (MPK,CT(xi ,Ti ,Si ))

OKeyGen(MSK,·)

1. input: (M, IM)

2. output: SK(M,IM )

OKeyGen∗
0(MSK∗,·)

1. input: (Mφ, IMφ ) for φ ∈ [�pre]
2. output: SK(Mφ,IMφ

)

Enc∗(MPK,MSK∗, (xi , 1Ti , 12
Si

, ni )i∈[N ], ·)
1. input: V = {(Mφ, IMφ ),

∑
i∈[N ] Mφ(xi )�zi :

φ ∈ [�pre]}
2. output: CT(xi ,Ti ,Si )

OKeyGen∗
1(MSK∗,(x∗

i )i∈[N ],·,·)

1. input: (Mφ, IMφ ),
∑

i∈N Mφ(xi )�zi for φ ∈
[�post]

2. output: SK(Mφ,IMφ
)

3.4 Function-hiding slotted inner product functional encryption

Definition 5 (Slotted inner product functional encryption) [62]LetG = (G1, G2, GT, g1, g2,
e) be a tuple of pairing groups of prime order p. A slotted inner product functional encryption
(IPFE) scheme based on G consists of 5 efficient algorithms:

IPFE.Setup(1λ, Spub, Spriv) The setup algorithm takes as input a security parameter λ and
two disjoint index sets, the public slots Spub and the private slots Spriv. It outputs the master
secret-key IPFE.MSK and the master public-key IPFE.MPK. Let S = Spub ∪ Spriv be the whole
index set and |S|, |Spub|, |Spriv| denote the number of indices in S, Spub and Spriv respectively.

IPFE.KeyGen(IPFE.MSK, [[v]]2)The key generation algorithm takes as input IPFE.MSK and
a vector [[v]]2 ∈ G

|S|
2 . It outputs a secret-key IPFE.SK for v ∈ Z

|S|
p .

IPFE.Enc(IPFE.MSK, [[u]]1)The encryption algorithm takes as input IPFE.MSK and a vector
[[u]]1 ∈ G

|S|
1 . It outputs a ciphertext IPFE.CT for u ∈ Z

|S|
p .

IPFE.Dec(IPFE.SK, IPFE.CT) The decryption algorithm takes as input a secret-key IPFE.SK
and a ciphertext IPFE.CT. It outputs an element from GT.

IPFE.SlotEnc(IPFE.MPK, [[u]]1)The slot encryption algorithm takes as input IPFE.MPK and

a vector [[u]]1 ∈ G
|Spub|
1 . It outputs a ciphertext IPFE.CT for (u||0|Spriv|) ∈ Z

|S|
p .

Correctness The correctness of a slotted IPFE scheme requires the following two properties.
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– Decryption Correctness: The slotted IPFE is said to satisfy decryption correctness if for
all u, v ∈ Z

|S|
p , we have

Pr

⎡

⎢
⎢
⎣

Dec(IPFE.SK, IPFE.CT) = [[v · u]]T :
(IPFE.MSK, IPFE.MPK) ← Setup(1λ, Spub, Spriv),
IPFE.SK ← KeyGen(IPFE.MSK, [[v]]2),
IPFE.CT ← Enc(IPFE.MSK, [[u]]1)

⎤

⎥
⎥
⎦ = 1

– Slot-Mode Correctness: The slotted IPFE is said to satisfy the slot-mode correctness if

for all vectors u ∈ Z
|Spub|
p , we have

{ (IPFE.MSK, IPFE.MPK, IPFE.CT) :
(IPFE.MSK, IPFE.MPK) ← Setup(1λ, Spub, Spriv),
IPFE.CT ← Enc(IPFE.MSK, [[u||0|Spriv|]]1)

}

≡
{ (IPFE.MSK, IPFE.MPK, IPFE.CT) :

(IPFE.MSK, IPFE.MPK) ← Setup(1λ, Spub, Spriv),
IPFE.CT ← SlotEnc(IPFE.MPK, [[u]]1)

}

SecurityLet (IPFE.Setup, IPFE.KeyGen, IPFE.Enc, IPFE.Dec, IPFE.SlotEnc)be a slotted IPFE.
The scheme is said to be adaptively function-hiding secure if for all PPT adversary A, we

have ExptFH-IPFEA (1λ, 0)
c≈ ExptFH-IPFEA (1λ, 1), where the experiment ExptFH-IPFEA (1λ, b) for

b ∈ {0, 1} is defined as follows:

ExptFH-IPFEA (1λ, b)

1. (Spub, Spriv) ← A(1λ);
2. (IPFE.MSK, IPFE.MPK) ← Setup(1λ, Spub, Spriv);
3. return AOKeyGenb (·,·),OEncb (·,·)(IPFE.MPK) if

v0j |Spub = v1j |Spub and v0j · u0i = v1j · u1i
for all {[[v0j ]]2, [[v1j ]]2} j , {[[u0i ]]1, [[u1i ]]1}i queried
by A to OKeyGenb (·, ·) and OEncb (·, ·) respectively.

OKeyGenb (·, ·):

1. input: [[v0j ]]2, [[v1j ]]2 ∈ G
|S|
2

2. output
IPFE.SK j ← KeyGen(IPFE.MSK, [[vbj ]]2)

OEncb (·, ·):
1. input: [[u0i ]]1, [[u1i ]]1 ∈ G

|S|
1

2. output
IPFE.CTi ← Enc(IPFE.MSK, [[ubi ]]1)

where v j |Spub represents the elements of v j sitting at the indices in Spub.

Lemma 1 [61, 62] Let G = (G1, G2, GT, g1, g2, e) be a tuple of pairing groups of prime
order p and k ≥ 1 an integer constant. IfMDDHk holds in both groups G1, G2, then there is
an adaptively function-hiding secure IPFE scheme based on G.

3.5 Arithmetic key garbling scheme for Turingmachines

Lin and Luo [62] introduced arithmetic key garbling scheme (AKGS). The notion of AKGS
is an information theoretic primitive, inspired by randomized encodings [18] and partial
garbling schemes [51]. It garbles a function f : Z

n
p → Zp (possibly of size (m + 1)) along

with two secrets z, β ∈ Zp and produces affine label functions L1, . . . , Lm+1 : Z
n
p → Zp .

Given f , an input x ∈ Z
n
p and the values L1(x), . . . , Lm+1(x), there is an efficient algorithm

which computes z f (x) + β without revealing any information about z and β. Lin and Luo
[62] additionally design AKGS for Turing machines with time/space bounds. Many parts of
this section are taken from the Sections 5 and 7.1 of [62]. Thus, the reader familiar with the
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notion of AKGS for Turing machines can skip this section. We define AKGS for the function
class

F = {M |N ,T ,S : Z
N
p → Zp, N , T , S ≥ 1, p prime}

for the set of all time/space bounded Turing machine computations. We refer to [62] for a
detailed discussion on the computation of Turing machines as a sequence of matrix multi-
plications, and the construction of AKGS for matrix multiplication.

Definition 6 (Arithmetic key garbling scheme (AKGS)) [62] An arithmetic garbling scheme
(AKGS) for the function class F , consists of two efficient algorithms:

Garble((M, 1N , 1T , 12
S
, p), z, β) The garbling is a randomized algorithm that takes as

input a tuple of a function M |N ,T ,S over Zp from F , an input length N , a time bound T , a
space bound S with N , T , S ≥ 1, a prime p, and two secret integers z, β ∈ Zp . It outputs a set
of affine functions L init, (Lt,θ )t∈[T+1],θ∈CM,N ,S : Z

N
p → Zp which are called label functions

that specifies how an input of length N is encoded as labels. Pragmatically, it outputs the
coefficient vectors �init, (�t,θ )t∈[T+1],θ∈CM,N ,S .

Eval((M, 1N , 1T , 12
S
, p), x, �init, (�t,θ )t∈[T+1],θ∈CM,N ,S ) The evaluation is a determinis-

tic algorithm that takes as input a function M |N ,T ,S over Zp from F , an input vector x ∈ Z
N
p

and the integers �init, (�t,θ )t∈[T+1],θ∈CM,N ,S ∈ Zp which are supposed to be the values of the
label functions at x ∈ Z

N
p . It outputs a value in Zp .

Correctness The AKGS is said to be correct if for all tuple (M, 1N , 1T , 12
S
, p), integers

z, β ∈ Zp and x ∈ Z
N
p , we have

Pr

⎡

⎢
⎣

Eval((M, 1N , 1T , 12
S
, p), x, �init, (�t,θ )t∈[T+1],θ∈CM,N ,S )

= zM |N ,T ,S(x) + β :
(�init, (�t,θ )t∈[T+1],θ∈CM,N ,S ) ← Garble((M, 1N , 1T , 12

S
, p), z, β),

where � ← L(x)

⎤

⎥
⎦ = 1

The scheme have deterministic shape, meaning that the number of label functions, m =
1 + (T + 1)NS2SQ, is determined solely by the tuple (M, 1N , 1T , 12

S
, p), independent of

z, β and the randomness in Garble. The number of label functions m is called the garbling
size of M |N ,T ,S under this scheme. For the sake of simpler representation, let us number the
label values (or functions) as 1, . . . ,m in the lexicographical order where the first two label
values are �init, �(1,1,1,0S ,1) and the last label value is �(T+1,N ,S,1S ,Q).

Linearity The AKGS is said to be linear if the following conditions hold:

– Garble((M, 1N , 1T , 12
S
, p), z, β) uses a uniformly random vector r ← Z

m
p as its ran-

domness, where m is determined solely by (M, 1N , 1T , 12
S
, p), independent of z, β.

– The coefficient vectors �1, . . . , �m produced by Garble((M, 1N , 1T , 12
S
, p), z, β) are

linear in (z, β, r).
– Eval((M, 1N , 1T , 12

S
, p), x, �1, . . . , �m) is linear in �1, . . . , �m .

For our UAWS, we consider the piecewise security notion of AKGS defined by Lin and
Luo [62]1.

1 The usual simulation-based security considered in previous works [38, 51] follows from the piecewise
security of AKGS.
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Definition 7 (Piecewise security of AKGS) [62] An AKGS = (Garble, Eval) for the function
class F is piecewise secure if the following conditions hold:

– The first label value is reversely sampleable from the other labels together with
(M, 1N , 1T , 12

S
, p) and x. This reconstruction is perfect even given all the other

label functions. Formally, there exists an efficient algorithm RevSamp such that for all
M |N ,T ,S ∈ F, z, β ∈ Zp and x ∈ Z

N
p , the following distributions are identical:

{

(�1, �2, . . . , �m) : (�1, . . . , �m) ← Garble((M, 1N , 1T , 12
S
, p), z, β),

�1 ← L1(x)

}

,

⎧
⎪⎨

⎪⎩
(�1, �2, . . . , �m) :

(�1, . . . , �m) ← Garble((M, 1N , 1T , 12
S
, p), z, β),

� j ← L j (x) for j ∈ [2,m],
�1 ← RevSamp((M, 1N , 1T , 12

S
, p), x, zM |N ,T ,S(x)+

β, �2, . . . , �m)

⎫
⎪⎬

⎪⎭

– For the other labels, each is marginally random even given all the label functions after
it. Formally, this means for all M |N ,T ,S ∈ F, z, β ∈ Zp, x ∈ Z

n
p and all j ∈ [2,m], the

following distributions are identical:

{

(� j , � j+1, . . . , �m) : (�1, . . . , �m) ← Garble((M, 1N , 1T , 12
S
, p), z, β),

� j ← L j (x)

}

,

{

(� j , � j+1, . . . , �m) : (�1, . . . , �m) ← Garble((M, 1N , 1T , 12
S
, p), z, β),

� j ← Zp

}

We now define special structural properties of AKGS as given in [62], related to the piecewise
security of it.

Definition 8 (Special piecewise security of AKGS, [62]) An AKGS = (Garble, Eval) for a
function class F is special piecewise secure if for any (M, 1N , 1T , 12

S
, p) ∈ F, z, β ∈ Zp

and x ∈ Z
N
p , it has the following special form:

– The first label value �1 is always non-zero, i.e., Eval((M, 1N , 1T , 12
S
, p), x, 1, 0, . . . , 0)

�= 0 where we take �1 = 1 and � j = 0 for 1 < j ≤ m.

– Let r ← Z
m
p be the randomness used in Garble((M, 1N , 1T , 12

S
, p), z, β). For all j ∈

[2,m], the label function L j produced by Garble ((M, 1N , 1T , 1S, p), z, β; r) can be
written as

L j (x) = k j r[ j − 1] + L ′
j (x; z, β, r[ j], r[ j + 1], . . . , r[m])

where k j ∈ Zp is a non-zero constant (not depending on x, z, β, r) and L ′
j is an affine

function of x whose coefficient vector is linear in (z, β, r[ j], r[ j + 1], . . . , r[m]). The
component r[ j − 1] is called the randomizer of L j and � j .

Lemma 2 [62] A special piecewise secure AKGS = (Garble, Eval) for a function class F
is also piecewise secure. The RevSamp algorithm (required in piecewise security) obtained
for a special piecewise secure AKGS is linear in γ, �2, . . . , �m+1 and perfectly recovers �1
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even if the randomness of Garble is not uniformly sampled. More specifically, we have the
following:

Eval((M, 1N , 1T , 12
S
, p), x, �1, . . . , �m)

= �1Eval((M, 1N , 1T , 12
S
, p), x, 1, 0, . . . , 0) + Eval((M, 1N , 1T , 12

S
, p), x, 0, �2, . . . , �m)

RevSamp((M, 1N , 1T , 12
S
, p), x, γ, �2, . . . , �m)

= (Eval((M, 1N , 1T , 12
S
, p), x, 1, 0, . . . , 0))−1(γ − Eval((M, 1N , 1T , 12

S
, p), x, 0, �2, . . . , �m))

Note that, Eq. (2) follows from the linearity of Eval and Eq. (2) ensures that RevSamp
perfectly computes �1 (which can be verified by Eq. (2) with γ = zM |N ,T ,S(x) + β).

Lemma 3 [62] A piecewise secure AKGS = (Garble, Eval) is also special piecewise secure
after an appropriate change of variable for the randomness used by Garble.

4 Construction of AKGS for the classF
We now describe the AKGS construction for the function class F given by Lin and Luo [62].
Before going to the actual construction,wefirst represent the computation ofTuring machines
as a sequence of matrix multiplications.

Transition matrix Given a Turing machine M = (Q, yacc, δ), upper bounds of time
and space T , S ≥ 1 and an input x ∈ {0, 1}N for some N ≥ 1, we consider the
length-T computation path of M with input x and space bound S. Recall that the set of
internal configuration is CM,N ,S = [N ] × [S] × {0, 1}S × [Q]. An internal configuration
θ = (i, j,W , q) ∈ CM,N ,S specifies that the input and work tape pointers are at position i
and j respectively, the work tape has content W , an the current state is q . In particular, the
initial configuration is (1, 1, 0S, 1): the input/work tape pointers point to the first cell, the
work tape is all-0, and the state is the initial state 1. An accepting configuration satisfies that
yacc[q] = 1.

We construct a transition matrixMN ,S(x) ∈ {0, 1}CM,N ,S×CM,N ,S such thatMN ,S(x)[θ, θ ′]
= 1 if and only if the internal configuration of M is θ ′ after 1 step of computation starting
from internal configuration θ . According to how the Turing machine operates in each step
depending on the transition function δ, the entries ofMN ,S(x) are defined as follows:

MN ,S(x)[(i, j,W , q), (i ′, j ′,W ′, q ′)]

=

⎧
⎪⎨

⎪⎩

1, if δ(q, x[i],W [ j]) = (q ′,W ′[ j], i ′ − i, j ′ − j)

and W ′[ j ′′] = W [ j ′′] for all j ′′ �= j;
0, otherwise;

= x[i] ×

⎧
⎪⎨

⎪⎩

1, if δ(q, 1,W [ j]) = (q ′,W ′[ j], i ′ − i, j ′ − j)

and W ′[ j ′′] = W [ j ′′] for all j ′′ �= j;
0, otherwise;

+ (1 − x[i]) ×

⎧
⎪⎨

⎪⎩

1, if δ(q, 0,W [ j]) = (q ′,W ′[ j], i ′ − i, j ′ − j)

and W ′[ j ′′] = W [ j ′′] for all j ′′ �= j;
0, otherwise;

With the transition matrix, we can now write the computation of Turing machines as
a sequence of matrix multiplication. We represent initial configurations using one-hot
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encoding—the internal configuration θ is represented by the basis vector eθ ∈ {0, 1}CM,N ,S

whose θ -entry is 1 and the other entries are 0. Observe that multiplying e�
θ on the right

by the transition matrix MN ,S(x) produces exactly the next internal configuration: if
there is no valid internal configuration of M after 1 step of computation starting from
θ , we have e�

θ MN ,S(x) = 0; otherwise, the next internal configuration θ ′ is unique and
e�
θ MN ,S(x) = e�

θ ′ . The function M |N ,T ,S(x) can be written as

M |N ,T ,S(x) = e�
(1,1,0S ,1)(MN ,S(x))T (1[N ]×[S]×{0,1}S ⊗ yacc)

where e(1,1,0S ,1) represents the initial internal configuration. The sequence of multiplication
advances the computation by T steps and test whether the final internal configuration is an
accepting state. We elaborate on the last step: The tensor product 1[N ]×[S]×{0,1}S ⊗ yacc is a
vector in {0, 1}CM,N ,S such that its (i, j,W , q)-the entry is 1 if and only if yacc[q] = 1, i.e., q
is an accepting state. Therefore, taking the inner product of e�

(1,1,0S ,1)
(MN ,S(x))T = e�

θ ′ (θ ′
is the final internal configuration) or 0 with the tensor product indicates whether M accepts
x within time T and space S.

Transition blocks We observe that the transition matrix has the following two useful prop-
erties:

– MN ,S(x) is affine in x when regarded as an integer matrix.
– MN ,S(x) has the following block structure. There is a finite set {Mτ }τ of Q × Q

matrices defined by the transition function δ, called transition blocks, such that for
every (i, j,W , q) and (i ′, j ′,W ′, q ′) in [N ] × [S] × {0, 1}S × Q, the submatrix
MN ,S(x)[(i, j,W , ), (i ′, j ′,W ′, )] is either some Mτ or 0.

Below we define the transition blocks.

Definition 9 LetM = (Q, yacc, δ) be a Turing machine and T = {0, 1}3×{0,±1}2 the set of
transition types.The transitionblocks ofM consists of 72 transitionmatricesMτ ∈ {0, 1}Q×Q

for τ = (x, w,w′,Δi,Δ j) ∈ T , each encoding the possible transitions among the states
given the following information: the input tape symbol x under scan, the work tape symbol
w under scan, the symbol w′ overwriting w, the direction Di to which the input tape pointer
moves, and the direction Dj to which the work tape pointer moves. Formally,

Mx,w,′,Δi,Δ j [q, q ′] =
{
1, if δ(q, x, w) = (q ′, w′,Δi,Δ j);
0, otherwise

In MN ,S(x), each Q × Q block is either one of the transition blocks or 0:

MN ,S(x)[(i, j,W , ), (i ′, j ′,W ′, )]

=

⎧
⎪⎨

⎪⎩

Mx[i],W [ j],W ′[ j],i ′−i, j ′− j , if i ′ − i, j ′ − j ∈ {0,±1} and
W [ j ′′] = W ′[ j ′′] for all j ′′ �= j;

0, otherwise

Observe further that inMN ,S(x)[(i, j,W , ), ( , , , )], each transition block appears at
most once.

AKGS for Turing machines. Above, we have represented the Turing machine computation
as a sequence of matrix multiplication over the integers:

M |N ,T ,S(x)

= e�
(1,1,0S ,1)

(MN ,S(x))T
(
1[N ]×[S]×{0,1}S ⊗ yacc

)
for x ∈ {0, 1}N

123



P. Datta et al.

We can formally extend M |N ,T ,S : {0, 1}N → {0, 1} to a Z
N
p → Zp function using

the same matrix multiplication formula, preserving its behavior when the input comes from
{0, 1}N . When p is clear from the context, we use M |N ,T ,S to represent its extension over
Zp . We now describe the construction of AKGS [62] for the Turing machine computations.

We consider the function class

F = {
M |N ,T ,S : Z

N
p → Zp, N , T , S ≥ 1, p prime

}

which is the set of time/space bounded Turing machine computations. The AKGS =
(Garble, Eval) for the function class works as follows:

Garble((M, 1N , 1T , 12
S
, p), z, β) It takes a function M |N ,T ,S over Zp from F and two

secrets z, β ∈ Zp as input. Suppose M = (Q, yacc, δ), the algorithm samples r as the
randomness by

for t ∈ [0, T ] : r t ← Z
CM,N ,S
p

(
CM,N ,S = [N ] × [S] × {0, 1}S × [Q]),

r ← Z
[0,T ]×CM,N ,S
p , r[t, i, j,W, q] = r t [(i, j,W , q)].

It computes the transitionmatrixMN ,S(x) as a function of x and defines the label functions
by

L init(x) = β + e�
(1,1,0S ,1)

r0,
for t ∈ [T ] : (Lt,θ )θ∈CM,N ,S (x) = −r t−1 + MN ,S(x)r t ,

(LT+1,θ )θ∈CM,N ,S = −rT + z1[N ]×[S]×{0,1}S ⊗ yacc.

It collects the coefficients of these label functions and returns them as
(�init, (�t,θ )t∈[T+1],θ∈CM,N ,S ).

Note: We show that Garble satisfies the required properties of a linear AKGS:

– The label functions are affine in x : L init and LT+1,θ for all θ ∈ CM,N ,S are constant
with respect to x. The rest are Lt,θ (x) = (−r t−1 + MN ,S(x)r t )[θ ]. Since MN ,S(x) is
affine in x and r t−1, r t are constant with respect to x, these label functions are also affine
in x.

– Shape determinism holds: The garbling size of M |N ,T ,S is 1 + (T + 1)NS2SQ.
– Garble is linear in z, β, x : The coefficients of the label functions are linear in

(z, β, x). Observe thatMN ,S(x), e(1,1,0S ,1) and yacc are constant with respect to (z, β, r),
and z, β and r t for all t ∈ [0, T ] are linear in (z, β, x). By the definition of the label
functions, their coefficients are linear in (z, β, x).

Eval((M, 1N , 1T , 12
S
, p), x, �1, . . . , �m) It takes a function M |N ,T ,S over Zp from F , an

input string x ∈ Z
N
p and the labels as input. It first computes the transition matrix MN ,S(x)

with x substituted into it and sets �t = (�t,θ )θ∈CM,N ,S for t ∈ [T +1]. The algorithm computes
and returns

�init + e�
(1,1,0S ,1)

T+1∑

t=1

(MN ,S(x))t−1�t

Correctness Plugging �t,θ = Lt,θ (x) and the formula for M |N ,T ,S into the simulation, we
find that it is a telescoping sum:
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e�
(1,1,0S ,1)

T+1∑

t=1

(MN ,S(x))t−1�t

= e�
(1,1,0S ,1)

T+1∑

t=1

(MN ,S(x))t−1(−r t−1 + MN ,S(x)r t )

+ e�
(1,1,0S ,1)(MN ,S(x))T (−rT + z1[N ]×[S]×{0,1}S ⊗ yacc)

= e�
(1,1,0S ,1)

T∑

t=1

(−(MN ,S(x))t−1r t−1 + (MN ,S(x))t r t )

− e�
(1,1,0S ,1)(MN ,S(x))T rT + zM |N ,T ,S(x)

= −e�
(1,1,0S ,1)r0 + zM |N ,T ,S(x)

The value returned by Eval is

�init + e�
(1,1,0S ,1)

T+1∑

t=1

(MN ,S(x))t−1�t

= (β + e�
(1,1,0S ,1)r0) + (−e�

(1,1,0S ,1)r0 + zM |N ,T ,S(x))

= β + zM |N ,T ,S(x).

Therefore, the scheme is correct. Moreover, Eval is linear in the labels, as seen from the
formula of Eval.

Theorem 2 [62] The above construction of AKGS is piecewise secure. More precisely, the
label functions are ordered as L init, (L1,θ )θ∈CM,N ,S , (L2,θ )θ∈CM,N ,S , . . . , (LT+1,θ )θ∈CM,N ,S ,
the randomness is ordered as r0, r1, . . . , rT , and the randomizer of Lt,θ is r t−1[θ ]. For each
t ∈ [T + 1], the ordering of the components in (Li,θ )θ∈CM,N ,S and r t−1 can be arbitrary, as
long as the two are consistent.

An exercise of algebra We note that the above construction of AKGS for the function class

F requires to sample r ← Z
[0,T ]×CM,N ,S
p . We will use “structured” element r = rx ⊗ r f for

rx ← Z
[0,T ]×[N ]×[S]×{0,1}S
p and r f ← Z

Q
p as the randomness for the AKGS garbling. We

show that MN ,S(x)r t (a central part of the label functions) can be expressed as a bilinear
function of x, rx, x ⊗ rx (known at encryption time) andMτ r f , r f ’s (known at key gener-
ation time), and hence can be computed as the inner products of vectors depending on these
two groups of variables separately.

By our choice of randomness, r t = r[t, , , , ] is a block vector with each block being
a multiple of r f . More precisely, r t [i, j,W , ] = rx[(k, t, i, j,W)]r f . We compute each
block of the productMN ,S(x)r t :

(MN ,S(x)r t )[(i, j,W , )]
(

row r of AB is
row r of A times B

)
= MN ,S(x)[(i, j,W , ), ( , , , )]r t

(
block matrix
multiplication

)
=

∑

i ′∈[N ], j ′∈[S]
W ′∈{0,1}S

MN ,S(x)[(i, j,W , ), (i ′, j ′,W ′, )]r t [(i ′, j ′,W ′, )]

=
∑

i ′∈[N ], j ′∈[S]
W ′∈{0,1}S

MN ,S(x)[(i, j,W , ), (i ′, j ′,W ′, )]rx[(t, i ′, j ′,W ′)]r f
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Recall that in MN ,S(x)[(i, j,W , ), ( , , , )], each transition block appears at most
once, and the other Q × Q blocks are 0. More specifically, Mx,w,w′,Δi,Δ j appears at
MN ,S(x)[(i, j,W , ), (i ′, j ′,W ′, )] if x = x[i], w = W [ j],Δi = i ′ − i,Δ j = j ′ − j , and
W ′ is W with j-th entry changed to w′. Therefore, we have

(MN ,S(x)r t )[(i, j,W , )]
=

∑

w′∈{0,1}
Δi,Δ j∈{0,±1}

i+Δi∈[N ], j+Δ j∈[S]

Mx[i],W [ j],w′,Δi,Δ j rx[(t, i + Δi, j + Δ j,W ′)]r f

=
∑

x,w,w′∈{0,1}
Δi,Δ j∈{0,±1}

Mx,w,w′,Δi,Δ j r f ×

⎧
⎪⎨

⎪⎩

rx[(t, i + Δi, j + Δ j,W ′)], if x = x[i], i + Δi ∈ [N ],
w = W [ j], j + Δ j ∈ [S];

0, otherwise

(2)

Here, W ′[ j] = w′ and W ′[ j ′′] = W [ j ′′] for all j ′′ �= j . Note that in the last summa-
tion formula, there are exactly 72 summands. Moreover, each summand isMx,w,w′,Δi,Δ j r f

(depending only on r f and the transition blocks) multiplied by an entry in rx or 0 (depending
only on x, rx). To simplify notations, we define transition coefficients:

Definition 10 Let T = {0, 1}3 × {0,±1}2 be the set of transition types. For all τ =
(x, w,w′,Δi,Δ j) ∈ T , N , T , S ≥ 1, and x ∈ {0, 1}N , t ∈ [T ], i ∈ [N ], j ∈ [S],W ∈
{0, 1}S, rx ∈ Z

[0,T ]×[N ]×[S]×{0,1}S
p , define the transition coefficient as

cx,w,w′,Δi,Δ j (x; t, i, j,W; rx)

=

⎧
⎪⎨

⎪⎩

rx[(t, i + Δi, j + Δ j,W ′)], if x = x[i], i + Δi ∈ [N ],
w = W [ j], j + Δ j ∈ [S];

0, otherwise

where W ′ ∈ {0, 1}S,W ′[ j] = w′, and W ′[ j ′′] = W [ j ′′] for all j ′′ �= j .

With the above definition, Eq. (2) can be restated as

(MN ,S(x)r t )[(i, j,W , )] =
∑

τ∈T
cτ (x, t, i, j,W; rx)Mτ r f . (3)

5 (1-SK, 1-CT, 1-slot)-FE for unbounded AWS in L

In this section, we build a secret-key, 1-slot FE scheme for the unbounded attribute-weighted
sum functionality in L. At a high level, the scheme satisfies the following properties:

– The setup is independent of any parameters, other than the security parameter λ. Specif-
ically, the length of vectors and attributes, number of Turing machines and their sizes are
not fixed a-priori during setup. These parameters are flexible and can be chosen at the
time of key generation or encryption.
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– A secret key is associated with a tuple (M, IM), where M = (Mk)k∈IM is a tuple of
Turing machines with indices k from an index set IM . For each k ∈ IM , Mk ∈ L, i.e., Mk

is represented by a deterministic log-space bounded Turing machine (with an arbitrary
number of states).

– Each ciphertext encodes a tuple of public–private attributes (x, z) of lengths N and n
respectively. The runtime T and space bound S for all the machines in M are associated
with x which is the input of each machine Mk .

– Finally, decrypting a ciphertext CTx that encodes (x, z) with a secret key SKM,IM that is
tied to (M, IM) reveals the value

∑
k∈IM

z[k] · Mk(x) whenever IM ⊆ [n].
We build an FE scheme for the functionality sketched above (also described in Definition 2)
and prove it to be simulation secure against a single ciphertext and secret key query, where the
key canbe asked either before or after the ciphertext query.Accordingly,wedenote the scheme
as SK-UAWSL(1,1,1) = (Setup, KeyGen, Enc,Dec), where the index (1, 1, 1) represents in
order the number of secret keys, ciphertexts and slots supported. Below,we list the ingredients
for our scheme.

1. IPFE = (IPFE.Setup, IPFE.KeyGen, IPFE.Enc, IPFE.Dec): a secret-key, function-hiding
IPFE based on G, where G = (G1, G2, GT, g1, g2, e) is pairing group tuple of prime
order p. We can instantiate this from [62].

2. AKGS = (Garble, Eval): a special piecewise-secure AKGS for the function class M =
{M |N ,T ,S : Z

N
p → Zp | M ∈ TM, N , T , S ≥ 1, p prime}

describing the set of time/space boundedTuringmachines. In our construction, theGarble
algorithm would run implicitly under the hood of IPFE and thus, it is not invoked directly
in the scheme.

5.1 The construction

We are now ready to describe the SK-UAWSL(1,1,1) = (Setup, KeyGen, Enc,Dec).

Setup(1λ): On input the security parameter, fix a prime integer p ∈ N and define the slots
for two IPFE master secret keys as follows:

S1-UAWS ={
index1, index2, init, rand, randtemp, randcomp, randtemp,comp, acc, sim, simtemp, simcomp}

∪ {
tbτ , tb

temp
τ , tbcomp

τ , tbtemp,comp
τ

∣
∣ τ ∈ T

}
, (T is defined in Definition 10)

S̃1-UAWS ={
index1, index2, init, rand, randtemp, randtemp,comp, acc, acctemp, sim, simtemp}.

Finally, it returns MSK = (IPFE.MSK, IPFE.M̃SK).
rlapKeyGen(MSK, (M, IM)): On input themaster secret keyMSK = (IPFE.MSK, IPFE.M̃SK)

and a function tuple M = (Mk)k∈IM indexed w.r.t. an index set IM ⊂ N of arbitrary
size , parse Mk = (Qk, yk, δk) ∈ TM ∀k ∈ IM and sample the set of elements

{

βk ← Zp |
∑

k

βk = 0 mod p

}

k∈IM

For all k ∈ IM , do the following:

1. For Mk = (Qk, yk, δk), compute its transition blocks Mk,τ ∈ {0, 1}Qk×Qk ,∀τ ∈ T .
2. Sample independent random vectors rk, f ← Z

Qk
p and a random element πk ∈ Zp .

3. For the following vector vk,init, compute a secret key IPFE.SKk,init ← IPFE.KeyGen(IPFE.
MSK, [[vk,init]]2):
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vector index1 index2 init rand acc tbτ
the other
indices

vk,init πk k · πk rk, f [1] 0 βk 0 0

4. For each q ∈ [Qk], compute the following secret keys

IPFE.SKk,q ← IPFE.KeyGen(IPFE.MSK, [[vk,q ]]2) and

˜IPFE.SKk,q ← IPFE.KeyGen(IPFE.M̃SK, [[̃vk,q ]]2),
where the vectors vk,q ,

ṽk,q are defined as follows:

vector index1 index2 init rand acc tbτ
the other
indices

vk,q πk k · πk 0 −rk, f [q] 0
(
Mk,τ rk, f

) [q] 0

vector index1 index2 rand acc the other
indices

ṽk,q πk k · πk −rk, f [q] yk[q] 0

Finally, it returns the secret key as

SK(M,IM ) =
(

(M, IM),
{
IPFE.SKk,init,

{
IPFE.SKk,q , ˜IPFE.SKk,q}q∈[Qk ]

}

k∈IM

)

.

Enc(MSK, (x, 1T , 12
S
), z): On input the master secret keyMSK = (IPFE.MSK, IPFE.M̃SK), a

public attribute x ∈ {0, 1}N for some arbitrary N ≥ 1 with time and space complexity
bounds given by T , S ≥ 1 (as 1T , 12

S
) respectively, and the private attribute z ∈ Z

n
p for

some arbitrary n ≥ 1, it does the following:

1. Sample a random vector rx ← Z
[0,T ]×[N ]×[S]×{0,1}S
p .

2. For each k ∈ [n], do the following:
(a) Sample a random element ρk ← Zp .
(b) Compute a ciphertext IPFE.CTk,init ← IPFE.Enc(IPFE.MSK, [[uk,init]]1) for the vector

uk,init:

vector index1 index2 init rand acc tbτ
the other
indices

uk,init −k · ρk ρk rx[(0, 1, 1, 0S)] 0 1 0 0

(c) For all t ∈ [T ], i ∈ [N ], j ∈ [S],W ∈ {0, 1}S , do the following:
(i) Compute the transition coefficients cτ (x; t, i, j,W ; rx),∀τ ∈ T using rx .
(ii) Compute the ciphertext IPFE.CTk,t,i, j,W ← IPFE.Enc(IPFE.MSK, [[uk,t,i, j,W ]]1)

for the vector uk,t,i, j,W :
vector index1 index2 init rand acc tbτ

the other
indices

uk,t,i, j,W −k · ρk ρk 0 rx[(t − 1, i, j,W)] 0 cτ (x; t, i, j,W; rx) 0

(d) For t = T + 1, compute the ciphertext ˜IPFE.CTk,T+1,i, j,W ← ĨPFE.Enc(IPFE.M̃SK,

[[̃uk,T+1,i, j,W ]]1) for the vector ũk,T+1,i, j,W :

vector index1 index2 rand acc the other
indices

ũk,T+1,i, j,W −k · ρk ρk rx[(T , i, j,W)] z[k] 0
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3. Finally, it returns the ciphertext as

CT(x,T ,S) =
(

(x, T , S) ,
{
IPFE.CTk,init, {IPFE.CTk,t,i, j,W }t∈[T ],

˜IPFE.CTk,T+1,i, j,W

}

k∈[n],i∈[N ], j∈[S],W∈{0,1}S

)

.

Dec(SK(M,IM ),CT(x,T ,S)): On input a secret key SK(M,IM ) and a ciphertext CT(x,T ,S), do
the following:

1. Parse SK(M,IM ) and CT(x,T ,S) as follows:

SK(M,IM ) =
(
(
(Mk)k∈IM , IM

)
,
{
IPFE.SKk,init,

{
IPFE.SKk,q , ˜IPFE.SKk,q}q∈[Qk ]

}

k∈IM

)

,

Mk = (Qk, yk, δk),

CT(x,T ,S) =
(

(x, T , S) ,
{
IPFE.CTk,init, {IPFE.CTk,t,i, j,W }t∈[T ],

˜IPFE.CTk,T+1,i, j,W

}

k∈[n],i∈[N ], j∈[S],W∈{0,1}S

)

, x ∈ {0, 1}N .

2. Output ⊥, if IM � [n]. Else, select the sequence of ciphertexts for the indices k ∈ IM
as

CT(x,T ,S) =
(

(x, T , S) ,
{
IPFE.CTk,init, {IPFE.CTk,t,i, j,W }t∈[T ],

˜IPFE.CTk,T+1,i, j,W

}

k∈IM ,i∈[N ], j∈[S],W∈{0,1}S

)

3. Recall that ∀k ∈ IM , CMk ,N ,S = [N ] × [S] × {0, 1}S × [Qk], and that we denote any
element in it as θk = (i, j,W , q) ∈ CMk ,N ,S where the only component in the tuple θk
depending on k is q ∈ [Qk]2. Invoke the IPFE decryption to compute all label values as:
∀k ∈ IM : [[�k,init]]T = IPFE.Dec(IPFE.SKk,init, IPFE.CTk,init)

∀k ∈ IM , t ∈ [T ], θk = (i, j,W , q) ∈ CMk ,N ,S :
[[�k,t,θk ]]T = IPFE.Dec(IPFE.SKk,q , IPFE.CTk,t,i, j,W )

∀k ∈ IM , θk = (i, j,W , q) ∈ CMk ,N ,S :
[[�k,T+1,θk ]]T = IPFE.Dec( ˜IPFE.SKk,q , ˜IPFE.CTk,T+1,i, j,W )

4. Next, invoke the AKGS evaluation and obtain the combined value

[[μ]]T =
∏

k∈IM

Eval
((

Mk, 1
N , 1T , 12

S
, p

)
, x, [[�k,init]]T,

{
[[�k,t,θk ]]T

}

t∈[T+1],θk∈CMk ,N ,S

)

5. Finally, it returns μ = DLoggT([[μ]]T), where gT = e(g1, g2). Similar to [8], we assume
that the desired attribute-weighted sum lies within a specified polynomial-sized domain
so that discrete logarithm can be solved via brute-force.

CorrectnessCorrectness follows from that of IPFE and AKGS. The first step is to observe that
all the AKGS label values are correctly computed as functions of the input x. This holds by the

2 For simplicity of notations, we enumerate the states of each Mk as 1, . . . , q, i.e., [Qk ] = [Q] for some
Q ∈ N.
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correctness of IPFE andAKGS encoding of the iteratedmatrix-vector product representing any
TM computation. The next (and final) correctness follows from the linearity of AKGS.Eval.

In more detail, for all k ∈ IM , θk = (i, j,W , q) ∈ CMk ,N ,S , let Lk,init, Lk,t,θk be the label
functions corresponding to the AKGS garbling of Mk = (Qk, yk, δk). By the definitions of
vectors vk,init, uinit and the correctness of IPFE, we have

�k,init = (−kρkπk + kπkρk) + rx[(0, 1, 1, 0S)]rk, f [1] + βk

= r0[(1, 1, 0S, 1)] + βk = eT(1,1,0S ,1)r0 + βk = Lk,init(x).

Next, ∀k ∈ IM , t ∈ [T ], q ∈ [Qk], the structures of vk,q , ut,i, j,W and the correctness of
IPFE yields
�k,t,i, j,W ,q

= (−kρkπk + kπkρk) − rx[(t − 1, i, j,W)]rk, f [q]
+
∑

τ∈T
cτ (x; t, i, j,W; rx)(Mk,τ rk, f )[q]

= −r t−1[(i, j,W , q)] +
∑

τ∈T
cτ (x; t, i, j,W; rx)(Mk,τ rk, f )[q] = Lk,t,i, j,W ,q(x)

Finally, ∀k ∈ IM , q ∈ [Qk], the vectors ṽk,q , ũk,T+1,i, j,W and the ĨPFE correctness again
yields

�k,T+1,i, j,W ,q = (−kρkπk + kπkρk) − rx[(T , i, j,W)]rk, f [q] + z[k] yk[q]
= −rT [(i, j,W , q)] + z[k] (1[N ]×[S]×{0,1}S ⊗ yk

) [(i, j,W , q)]
= Lk,T+1,i, j,W ,q(x).

The above label values are computed in the exponent of the target group GT. Once all
these are generated correctly, the linearity of Eval implies that the garbling can be evaluated
in the exponent of GT. Thus, this yields

[[μ]]T =
∏

k∈IM

Eval
((

Mk, 1
N , 1T , 12

S
, p

)
, x, [[�k,init]]T,

{
[[�k,t,θk ]]T

}

t∈[T+1],θk∈CMk ,N ,S

)

= [[
∑

k∈IM

Eval((Mk, 1
N , 1T , 12

S
, p), x, �k,init, {�k,t,θk }t∈[T+1],θk∈CMk ,N ,S )]]T

= [[
∑

k∈IM

(z[k] · Mk |N ,T ,S(x) + βk)]]T = [[
∑

k∈IM

z[k] · Mk |N ,T ,S(x)]]T = [[M(x)�z]]T

5.2 Security analysis

We describe the simulator of our (1-SK, 1-CT, 1-Slot)-FE for UAWS. The simulated setup
Setup∗ operates exactly the sameway as the honest setup works. The simulated master secret
key is MSK∗ = (IPFE.MSK, ĨPFE.MSK). The simulated key generation algorithm KeyGen∗

0
also works in the same fashion as the honest key generation proceeds. We now describe the
simulated encryption Enc∗ and the simulated key generation KeyGen∗

1 below.

Enc∗(MSK∗, (x, 1T , 12
S
), (M, IM , M(x)�z), n): On input the simulated master secret key

MSK∗, the challenge public attribute x with associated parameters T , 2S in unary, (if there is
a secret key query before the challenge ciphertext is generated then) the secret key-functional
value tuple (M = (Mk)k∈IM , IM , M(x)�z = ∑

k∈IM
Mk(x)z[k]) with IM ⊆ [n] and the

length of the private attribute n, the encryption proceeds as follows:
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1. It samples a dummy vector d ← Z
n
p such that

M(x)�z = M(x)�d =
∑

k∈[n]
Mk(x)d[k].

Note that, it can always set Mk(x) = 0 for k /∈ [n] \ IM . If there is no secret key query
before the challenge ciphertext then it chooses a random vector ν ∈ Z

n
p in place of d.

2. Sample a random vector rx ← Z
[0,T ]×[N ]×[S]×{0,1}S
p and sx ← Z

[T+1]×[N ]×[S]×{0,1}S
p .

3. For each k ∈ [n], do the following:
(a) Sample a random element ρk ← Zp .
(b) Compute a ciphertext IPFE.CTk,init ← IPFE.Enc(IPFE.MSK, [[uk,init]]1) for the vector

uk,init:

vector index1 index2 init acc sim the other
indices

uk,init −k · ρk ρk rx[(0, 1, 1, 0S)] 1 1 0

(c) For all t ∈ [T ], i ∈ [N ], j ∈ [S],W ∈ {0, 1}S , do the following:
(i) Compute the coefficients cτ (x; t, i, j,W ; rx),∀τ ∈ T using rx .
(ii) Compute the ciphertext IPFE.CTk,t,i, j,W ← IPFE.Enc(IPFE.MSK, [[uk,t,i, j,W ]]1)

for the vector uk,t,i, j,W :

vector index1 index2 rand tbτ sim the other
indices

uk,t,i, j,W −k · ρk ρk rx[(t − 1, i, j,W)] cτ (x; t, i, j,W ; rx) sx[(t, i, j,W)] 0

(d) For t = T+1, compute ˜IPFE.CTk,T+1,i, j,W ← IPFE.Enc(IPFE.M̃SK, [[̃uk,T+1,i, j,W ]]1)
for the vector ũk,T+1,i, j,W :

vector index1 index2 rand acc sim the other
indices

ũk,T+1,i, j,W −k · ρk ρk rx[(T , i, j,W)] ν[k] or d[k] sx[(T + 1, i, j,W)] 0

4. Finally, it returns the ciphertext as

CT(x,T ,S)

=
(

(x, T , S) ,
{
IPFE.CTk,init, {IPFE.CTk,t,i, j,W }t∈[T ], ˜IPFE.CTk,T+1,i, j,W

}

k∈[n],i∈[N ], j∈[S],W∈{0,1}S

)

.

KeyGen∗
1(MSK∗, (M, IM , M(x)�z)): On input the master secret key MSK∗ and the secret

key-functional value tuple (M = (Mk)k∈IM , IM , M(x)�z = ∑
k∈IM

Mk(x)z[k]) w.r.t. an
index set IM ⊂ N, the key generation process works as follows:

1. It parses Mk = (Qk, yk, δk) ∈ TM ∀k ∈ IM and sample elements β ′
k ∈ Zp for k ∈ IM

as follows:

if IM ⊆ [n] : β ′
k ← Zp and

∑
k β ′

k = 0 mod p
if (max IM > n) ∧ (min IM ≤ n) : β ′

k ← Zp

2. For Mk = (Qk, yk, δk), compute transition blocksMk,τ ∈ {0, 1}Qk×Qk ,∀τ ∈ Tk .
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3. It reversely sample the label function values as

�1,init ← RevSamp((M1, 1
N , 1T , 12

S
), x, M(x)�z + β ′

1, (�k,t,θk )t∈[T+1],θk∈CMk ,N ,S )

�k,init ← RevSamp((Mk, 1
N , 1T , 12

S
), x, β ′

k, (�k,t,θk )t∈[T+1],θk∈CMk ,N ,S ), for all k > 1

where all the other label values �k,t,i, j,W ,q = sx[(t, i, j,W)]sk, f [q] are simulated (and
known to the simulator).

4. For the following vector vk,init, compute a secret key IPFE.SKk,init ← IPFE.KeyGen(IPFE.
MSK, [[vk,init]]2):

vector index1 index2 sim the other
indices

vk,init πk k · πk �k,init 0

5. For each q ∈ [Qk], compute the following secret keys

IPFE.SKk,q ← IPFE.KeyGen(IPFE.MSK, [[vk,q ]]2), and

˜IPFE.SKk,q ← IPFE.KeyGen(IPFE.M̃SK, [[̃vk,q ]]2),
where the vectors vk,q , ṽk,q are defined as follows:

vector index1 index2 sim the other
indices

vk,q πk k · πk sx[(t, i, j,W)] 0

vector index1 index2 sim the other
indices

ṽk,q k k · πk sx[(T + 1, i, j,W)] 0

Note that, the random vector sx has already been sampled during encryption.

Finally, it returns the simulated secret key as

SK(M,IM ) =
(

(M, IM),
{
IPFE.SKk,init,

{
IPFE.SKk,q , ˜IPFE.SKk,q}q∈[Qk ]

}

k∈IM

)

.

We will use the following lemmas in our security analysis.

Lemma 4 Let IPFE = (Setup, KeyGen, Enc,Dec) be a function hiding inner product encryp-
tion scheme. For any polynomial m = m(λ) and n = n(λ) with m > n, define the following
vectors

πk, ρk, rk, r̂k ← Zp; b ← {0, 1}
vk = ( πk, k · πk, 0, 0, 0 ) for k ∈ [n]

v
(b)
k = ( πk, k · πk, 0, rk + b · r̂k, 0 ) for k ∈ [n + 1,m]
uk′ = ( −k′ · ρk′ , ρk′ , 0, 1, 0 ) for k′ ∈ [n]

Then, for any IPFE.MSK ← IPFE.Setup(1λ, 1∗), the distributions {{IPFE.SKk}k∈[n],
{IPFE.SK(b)

k }k∈[n+1,m], {IPFE.CTk′ }k′∈[n]} for b ∈ {0, 1} are indistinguishable where
IPFE.SKk ← IPFE.KeyGen(IPFE.MSK, vk) for k ∈ [n]

IPFE.SK(b)
k ← IPFE.KeyGen(IPFE.MSK, v

(b)
k ) for k ∈ [n + 1,m]

IPFE.CTk ← IPFE.Enc(IPFE.MSK, uk′) for k ∈ [n]
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Proof We prove this lemma by the transformation π̂k = πk − r̂k
ρk′ (k−k′) for k �= k′. Note that

π̂k is uniform over Zp since πk ← Zp . The lemma follows from the function hiding security
of IPFE since

v(0) · uk′ = πkρk′ · (k − k′) + rk

=
(

π̂k + r̂k
ρk′(k − k′)

)

ρk′ · (k − k′) + rk

= π̂kρk′ · (k − k′) + rk + r̂k = v(1) · uk′

Firstly, we note that the distributions of π̂k and πk are statistically close. Secondly, we note
that the inner product value v(b) · uk′ remains the same for b ∈ {0, 1}. Therefore, in the
first step, we switch πk to π̂k , where the two distributions are statistically close. Then, in the
second step, we utilize the function hiding property to switch the vector from v(0) to v(1). ��
Theorem 3 Assuming the SXDH assumption holds in G and the IPFE is function hiding secure,
the above construction of (1-SK, 1-CT, 1-Slot)-FE for UAWS is adaptively simulation secure.

Proof idea Before going for a formal proof, we discuss a high level overview of the proof.
We use a three-step approach and each step consists of a group of hybrid sequence.

– In thefirst step, the label function �k,init is reversely sampledwith the value z[k]Mk[x]+βk

and it is hardwired in either uk,init or vk,init, whichever is computed later.
– The second step is a loop. The purpose of the loop is to change all the honest label values

�k,t,i, j,W ,q to simulated ones that take the form �k,t,i, j,W ,q = sx[(t, i, j,W)]sk, f [q]
where sx[(t, i, j,W)] is hardwired in uk,t,i, j,W or ũk,T+1,i, j,W and sk, f [q] is hardwired
in vk,q or ṽk,q . The procedure depends on the order of adversary’s queries.

– After all the label values �k,t,i, j,W ,q are simulated, the third stepuses a fewmorehybrids to
reversely sample �1,init and �k,init|k>1 with the hardcoded valuesM(x)�z+β1 andβk |k>1

respectively.We also rearrange the elements so that the distribution of the ciphertext does
not change with the occurrence of the secret key whether it comes before or after the
ciphertext.

Recall that the adversary is allowed to query only a single secret key either before (SK before
CT) or after (CT before SK) the challenge ciphertext. Accordingly, we consider two different
cases depending on the occurrence of the single secret key query.

Case 1 (CT be f ore SK) : In this case, we place the reversely sampled �k,init in the vk,init in
the exponent of G2. The loop of the second step runs over (k, t, i, j,W) in lexicographi-
cal order. In each iteration, we clean uk,t,i, j,W and shift everything to vk,q in one step and
truly randomize the label values using DDH in G2 and then change these to their simulated
form �k,t,i, j,W ,q = sx[(t, i, j,W)]sk, f [q] by again using DDH in G2. Finally, the terms
{sx[(t, i, j,W)]}t∈[T+1] are shifted back to uk,t,i, j,W or ũk,T+1,i, j,W .

Case 2 (SK be f ore CT) : In this case, we place the reversely sampled �k,init in the uk,init in
the exponent of G1. The second step involves a two-level loop with outer loop running over
t in increasing order and inner loop running over q in increasing order. In each iteration of
the loop, we move all occurrences of rk, f [q] and sk, f [q] into all uk,t ′,i ′, j ′,W ′ in one shot
and hardwire the honest labels �k,t,i, j,W ,q into uk,t,i, j,W for all i, j,W . Next, by invoking
DDH in G1, we first make the honest labels �k,t,i, j,W ,q truly random for all i, j,W and

123



P. Datta et al.

then transform these into their simulated form �k,t,i, j,W ,q = sx[(t, i, j,W)]sk, f [q] again
by using DDH in G1 for all i, j,W . Finally, the terms sk, f [q] are shifted back to vk,q or ṽk,q .

We start the formal proof with the first step where both the cases can be handled together.
The next two steps are managed separately according to the occurrence of the secret key. We
also note that the advantage of the adversaryA in distinguishing any two consecutive hybrids
depends on either the computational hardness of the function hiding security of IPFE or the
harness of the DDH assumption in source groups. Moreover, there are a few hybrids that
are either identically distributed with each other or the indistinguishability follows from the
security of AKGS which is an information-theoretic tool. Since there are only a polynomial
number of hybrids the total advantage of the adversary in breaking the security of UAWS
is bounded by a polynomial (poly(nmax, T , N , S, 2S, Q)) multiplied with the advantage of
an adversary in breaking function hiding security of IPFE and the hardness of the DDH
assumptions in the source groups. We observe that the term 2S remains polynomial in the
security parameter for logspace Turing machines. Therefore, the security of our UAWS can
be reduced to the (polynomial) security of IPFE and the hardness of the SXDH assumption.

Proof LetA be a PPT adversary in the security experiment ofUAWS.We show that the advan-
tage of A in distinguishing between the experiments Expt1-UAWS

A,real (1λ) and Expt1-UAWS
A,ideal (1

λ) is
negligible. In this security analysis, we additionally assume that the adversary can query
only a single secret key for (M, IM) either before or after the challenge ciphertext. Let
((x, 1T , 12

S
), z) be the challenge message and z ∈ Z

n
p . We also assume that the single key

queried by the adversary cover all the indices of the ciphertexts, i.e., IM ⊇ [n] which is nat-
ural as the adversary gets maximum information about the ciphertext in such case. Without
loss of generality and for the simplicity of exposition, we assume that the number of states
in all Turing machines is the same and it is Q.

The first few hybrids are the same for both the cases: CT before SK and SK before CT. The
indistinguishability arguments remain unchanged in such hybrids. In Table 3, we represent
the first/last few hybrids. Let nmax be the maximum value of n, the length of z, i.e., A can
choose the private attribute whose maximum length can be nmax.

Hybrid H0. This is the real experiment Expt1-UAWS
A,real (1λ) (= Hreal in Table 3) where the cipher-

text vectors contains the challenge message (x, z) and the secret key vectors are computed
using (M, IM).

Hybrid H0.1. At the beginning of the experiment, the challenger samples an integer
n′ ← [nmax] as a guess of n. This hybrid is exactly the real experiment except the chal-
lenger aborts the experiment immediately if the vector length of z is not n′, i.e., n �= n′.
Suppose A outputs ⊥ when the experiment is aborted. Thus, it is easy to see that the advan-
tage of A in H0.1 is 1

nmax
times the advantage in H0. Thus, if the advantage ofA is negligible

in H0, then it is so in H0.1. Hence, in the remaining hybrids we simply write n′ = n.

Hybrid H0.2. It proceeds exactly the same as H0.1 except that if the queried key (M, IM) is
such that (max IM > n) ∧ (min IM ≤ n), then βk = vk,init[acc] is replaced with β̂k ← Zp

for each k ∈ IM . Thus, with high probability it holds that
∑

k∈IM
β̂k �= 0. The hybrids

H0.1 and H0.2 are indistinguishable by the function hiding security of IPFE via the Lemma
4. Note that in this hybrid, we crucially use the randomness of the positions vk,init[index1]
and vk,init[index2] (encoding the indices which are not available in the ciphertext vectors) to
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sample β̂k independently from other indices of the secret key.

Hybrid H1. It proceeds exactly the same as H0.2 except �k,init is hardwired in vk,init or

uk,init, and sk, f ← Z
Q
p , sx ← Z

[T+1]×[N ]×[S]×{0,1}S
p are embedded in vk,q , ũk,T+1,i, j,W

respectively. The first change sets the stage for �k,init to be reversely sampled in the next
hybrid and the second change prepares the �k,t,i, j,W ,q |t≤T , �k,T+1,i, j,W ,q to be simulated as
pseudorandom values in the loop hybrids. More specifically, the changes are implemented
as follows:

– For CT before SK, uk,init is set to 1 during encryption and vk,init is set to rx[(0, 1, 1,
0S)]rk, f [1] during key generation.

– For SK before CT, vk,init is set to 1 during key generation and uk,init is set to
rx[(0, 1, 1, 0S)]rk, f [1] during encryption. Note that, rk, f [1]s are known only for
k ∈ IM . Thus, uk,init[init] is unchanged in this and in the rest of the hybrids for
k ∈ [n] \ IM .

– Also, vk,q [sim] is set to sk, f [q] and ũk,T+1,i, j,W [sim] is set to sx[(T + 1, i, j,W)].
Note that, the inner products between v’s and u’s remain unchanged. Therefore, the function
hiding property of IPFE ensures that H0 and H1 are indistinguishable.

Hybrid H2. It proceeds identically to H1 except that �k,init is reversely sampled from the
other labels. By the piecewise security of AKGS, the hybrids H1 and H2 are indistinguishable
(Tables 1, 2). ��

Hybrid H4. It proceeds identically to H2 except the inner products uk,t,i, j,W · vk,q and
ũk,T+1,i, j,W · ṽk,q change from the honest to simulated labels sx[(t, i, j,W)]sk, f [q] and
sx[(T + 1, i, j,W)]sk, f [q] respectively. This is implemented by clearing the values at
rand, acc, tbτ of the vectors uk,t,i, j,W , ũk,T+1,i, j,W and embedding sk, f [q], sx[(t, i, j,W)]
at ṽk,q [sim], uk,t,i, j,W [sim] respectively. We show the indistinguishability between the
hybrids H2 and H3 in two separate claims:

Claim 1 In the case of CT before SK, H2 ≈ H4.

Claim 2 In the case of SK before CT, H2 ≈ H4.

Hybrid H5. It proceeds exactly the same as H4 except the values at rand, acc, tbτ of the
vectors vk,q , ṽk,q are cleared and uk,init[sim] is set to 1. Also, for the case of CT before SK,
�k,init is shifted from vk,init[init] to vk,init[sim]. While the former change is common for both
cases, the later prepares the ideal game for the case of CT before SK. Note that, the inner
products between v’s and u’s remain unchanged. Therefore, the function hiding property of
IPFE ensures that H4 and H5 are indistinguishable.

Hybrid H6. It is the same as H5 except the hardcoded values used in the reverse sampling
procedure while computing �k,init (for both cases). It computes �k,init as follows:

�1,init ← RevSamp((M1, 1N , 1T , 12
S
), x, M(x)�z + β1, (�k,t,θk )t∈[T+1],θk∈CMk ,N ,S )

�k,init ← RevSamp((Mk, 1N , 1T , 12
S
), x, βk, (�k,t,θk )t∈[T+1],θk∈CMk ,N ,S ), for all k > 1

where all the other label values �k,t,i, j,W ,q = sx[(t, i, j,W)]sk, f [q] are already simulated.
If the queried key satisfies the permissiveness, i.e., IM ⊆ [n], then this is accomplished by
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ũ
k,
T

+1
,i

,
j,
W

0,
0,

−
s x

[(T
+

1,
i,

j,
W

)]
H
6

v
1,
in
it

1
or

0
0,

0,
0

0
or

�
1,
in
it

←
Re

vS
am

p
(
M

(x
)�

z
+

β
′ 1
)

v
k>

1,
in
it

1
or

0
0,

0,
0

0
or

�
k,
in
it

←
Re

vS
am

p
(β

′ k
)

v
k,
q

0,
0,

0
s k

,
f
[q]

ṽ
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Table 2 The last few hybrids in the security proof of 1-UAWS

a statistical transformation on {βk : βk ← Zp,
∑

k∈IM
βk = 0}. We replace βk by newly

sampled βk :

β1 = β ′
1 − z[1]M1(x) + M(x)�z

βk = β ′
k − z[k]Mk(x) for all k > 1
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Table 3 The remaining note of the first/last few hybrids in the security proof of 1-UAWS.

where β ′
k ← Zp . Observe that it still holds that

∑
k∈IM

βk = 0. On the other hand, if the key
under consideration does not satisfy the permissiveness, i.e., (max IM > n)∧(min IM < n),
then we know that β̂k are uniform over Zp . Thus, we can replace β̂k by new β̂k :

β̂1 = β ′
1 − z[1]M1(x) + M(x)�z

β̂k = β ′
k − z[k]Mk(x) for all k > 1

where β ′
k ← Zp . Note that, the distributions of new βk or β̂k are statistically close to their

old versions and hence the two hybrids H5 and H6 are indistinguishable.

Hybrid Hideal. This hybrid is equivalent to the ideal experiment Expt1-UAWS
A,ideal (1

λ) for the case
of CT before SK. Thus, one should omit this hybrid in the case of SK before CT. In Hideal,
the positions init, rand, acc, tbτ of the vectors uk,init, uk,t,i, j,W , ũk,T+1,i, j,W are changed
back to their normal form as they were in H0 except we use an arbitrary vector ν ← Z

n
p

in place of z (for ũk,T+1,i, j,W ). This change has no effect in the inner products between
u’s and v’s since the corresponding terms in v’s are zero. The purpose of this change is to
maintain the distribution of the ciphertext vectors consistent with the case of SK before CT.
Finally,Hideal is indistinguishable fromH6 by the function hiding property of IPFE, and hence
H0 = Expt1-UAWS

A,real (1λ) ≈ Hideal.
The sequence of hybrids for the case of CT before SK ends here and the rest of the hybrids

are required only to handle the case of SK before CT.

Hybrid H7. It proceeds exactly the same as H6 except it samples a dummy vector d ← Z
n
p

such that

M(x)�z = M(x)�d =
∑

k∈[n]
Mk(x)d[k].

and reversely sample �1,init with the hardcoded value M(x)�d+β1 instead of M(x)�z+β1.
Note that, this is statistical change to the computation of �1,init, and hence the hybrids H6 and
H7 are indistinguishable to the adversary.

Hybrid H(7→0). Next, for the case of SK before CT, we traverse in the reverse direction from
H7 to all the way to H0 with the dummy vector d in place of z. This step is inspired from the
proof technique used by Datta and Pal [38]. We skip the descriptions of these hybrids as the
indistinguishability arguments would be exactly similar to what we used for reachingH7 from
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H0. We denote the new H0 as H(7→0) and the hybrids H7 and H(7→0) are indistinguishable by
the function hiding security of IPFE and the piecewise security of AKGS. After this hybrid,
observe that the reduction do not need to guess n which enables the final simulator to generate
the pre-ciphertext secret key without any information about the length of private attribute z.

Hybrid Hideal. It is exactly the same as H(7→0) except the position sim of the vectors uk,init,
uk,t,i, j,W and ũk,T+1,i, j,W are set as 1, sx[(t, i, j,W)] and sx[(T +1, i, j,W)] respectively.
Observe that this change has no effect in the inner product computation of these vectors with
their corresponding vectors in the secret key as the positions in the secret key vectors are
zero. This, however, keeps the ciphertext distribution consistentwith the case ofCT before SK.
Therefore,Hideal andH(7→0) are indistinguishable by the function hiding security of the IPFE.
We also note that Hideal is the ideal experiment Expt1-UAWS

A,ideal (1
λ) for the case of SK before CT,

and hence H0 = Expt1-UAWS
A,real (1λ) ≈ Hideal. This completes the proof. �� ��

Proof of Claim 1 For the case of CT before SK, we proveH2 ≈ H4 using a sequence of hybrids
H3,t,i, j,W ,1, . . . ,H3,t,i, j,W ,5 for (t, i, j,W) ∈ [T ] × [N ] × [S] × {0, 1}S in lexicographical
order. These hybrids are described in Table 4. Then, we use another sequence of hybrids
(dedicated for the second IPFE) H̃3, H̃3,i, j,W ,1, . . . , H̃3,i, j,W ,5 for (t, i, j,W) ∈ [T ]× [N ]×
[S]× {0, 1}S in lexicographical order. These hybrids are illustrated in Table 5. We denote by
(t, i, j,W) + 1 the next tuple of indices in increasing order. We observe that u’s are listed
before v’s since in the case of CT before SK the ciphertext appears before the secret key.

Hybrid H3,t,i, j,W ,1. It proceeds identically to H2 except that for all (t ′, i ′, j ′,W ′) <

(t, i, j,W), uk,t ′,i ′, j ′,W ′ has its values in rand and tbτ ’s cleared, and that a random value
sx[(t ′, i ′, j ′,W ′)] is embedded in uk,t ′,i ′, j ′,W ′ [sim]. This means that all the labels for
(t ′, i ′, j ′,W ′) < (t, i, j,W) are simulated, the first label �k,init is reversely sampled and
the rest are honestly computed.

Hybrid H3,t,i, j,W ,2. It proceeds exactly the same way as H3,t,i, j,W ,1 except that the values
in uk,t,i, j,W are set to zero and its inner product with vk,q ’s, i.e. the labels �k,t,i, j,W ,q for all
k, q , are hardcoded into vk,q ’s as follows:

– The positions rand and tbτ of uk,t,i, j,W are set to 0.
– The value at uk,t,i, j,W [simtemp] is set to 1.
– The honest labels �k,t,i, j,W ,q = −rx[(t − 1, i, j,W)]rk, f [q] + · · · are embed-

ded in vk,q [simtemp] for each q ∈ [Q] and k ∈ IM where “· · ·” represents∑
τ∈T cτ (x; t, i, j,W ; rx)(Mk,τ rk, f )[q].

As one can verify that the inner products between the vectors are unchanged, the indistin-
guishability between the hybrids H3,t,i, j,W ,1 and H3,t,i, j,W ,2 is guaranteed by the function
hiding security of IPFE.

Hybrid H3,t,i, j,W ,3. It proceeds similar to H3,t,i, j,W ,2 except that the labels �k,t,i, j,W ,q

are changed to truly randomized values. We can invoke DDH assumption in G2 between
the hybrids since the random values rx[(t − 1, i, j,W)] and rk, f [q]’s only appear in the
exponent of G2: for each k ∈ IM , given an MDDH1,q challenge

[[rk, f [1], . . . , rk, f [Q];Δk,1, . . . , Δk,Q]]2 :
Δk,q

{
= rx[(t − 1, i, j,W)]rk, f [q], if DDH tuple

← Zp, if truly random tuple
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Table 4 The loop hybrids for t ≤ T in the security proof of 1-UAWS for the casewhere the ciphertext challenge
comes before the secret key query

we compute the labels as �k,t,i, j,W ,q = −Δk,q + · · ·. If a DDH tuple is received, the
labels use pseudorandom randomizers r t−1[(i, j,W , )] = rx[(t − 1, i, j,W)]rk, f [q] as
in H3,t,i, j,W ,2. If a truly random tuple is received, these label values are truly random ran-

domizers r t−1[(i, j,W , )] ← Z
Q
p as in H3,t,i, j,W ,3 due to the special piecewise security of

AKGS. Note that, the values [[�k,init]]2 ← RevSamp(· · · ) can be efficiently computed in the
exponent of G2.

Hybrid H3,t,i, j,W ,4. It proceeds identical to H3,t,i, j,W ,3 except the truly random labels
�k,t,i, j,W ,q for allq ∈ [Q], k ∈ IM are replacedbypseudorandomvalues sx[(t, i, j,W)]sk, f [q]
with sx[(t, i, j,W)] ← Zp . The hybrids H3,t,i, j,W ,3 and H3,t,i, j,W ,4 are indistinguishable
due to the DDH assumption in G2 (the argument is similar to that of in the previous hybrid).

Hybrid H3,t,i, j,W ,5. It proceeds exactly the same way as H3,t,i, j,W ,4 except the pseu-
dorandom labels �k,t,i, j,W ,q = sx[(t, i, j,W)]sk, f [q] hardwired in vk,q [simtemp]’s are
split into uk,t,i, j,W [sim] (embedding the factor sx[(t, i, j,W)]) and vk,q [sim]’s (embed-
ding the factor sk, f [q]). The inner products in the hybrids H3,t,i, j,W ,4 and H3,t,i, j,W ,5 are
unchanged and hence the these two hybrids are indistinguishable due to the function hid-
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Table 5 The hybrid H̃3 followed by the loop hybrids in the security proof of 1-UAWS for the case where the
ciphertext challenge comes before the secret key query

ing security of IPFE. Moreover, it can be observed that H3,t,i, j,W ,5 ≡ H3,t ′,i ′, j ′,W ′,3 for
(t ′, i ′, j ′,W ′) = (t, i, j,W) + 1.

Therefore, in this sequence of hybrids for t ≤ T , we have H3,1,1,1,0S ,1 ≈ H3,T ,N ,S,1S ,5.
Now, we move to the next sequence of hybrids for t = T + 1 as depicted in Table 5.

Hybrid H̃3. It is identical to H3,T ,N ,S,1S ,5 except the position sim of ũk,T+1,i, j,W is zeroed
out and ṽk,q [sim] is set to sk, f [q] for all k ∈ IM . The inner products between the vectors are
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Table 6 The outer loop hybrids running from t = 1 to T in the security proof of 1-UAWS for the case where
the ciphertext challenge comes after the secret key query

unchanged in H3,T ,N ,S,1S ,5 and H̃3. Thus, the indistinguishability between these two hybrids
is ensured by the function security of IPFE.

Hybrid H̃3,i, j,W ,1. It proceeds identically to H̃3 except that for all (i ′, j ′,W ′) < (i, j,W),
ũk,T+1,i ′, j ′,W ′ has its values in rand and acc’s cleared, and that a random value sx[(T +
1, i ′, j ′,W ′)] is embedded in ũk,T+1,i ′, j ′,W ′ [sim].
Hybrid H̃3,i, j,W ,2. It proceeds exactly the same way as H̃3,i, j,W ,1 except that the values in
ũk,t,i, j,W are set to zero and its inner product with ṽk,q ’s, i.e. the labels �k,T+1,i, j,W ,q for all
k, q , are hardcoded into ṽk,q ’s as follows:
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– The positions rand and acc of ũk,T+1,i, j,W are set to 0.
– The value at ũk,T+1,i, j,W [simtemp] is set to 1.
– The honest labels �k,T+1,i, j,W ,q = −rx[(T , i, j,W)]rk, f [q] + · · · are embedded in

ṽk,q [simtemp] for each q ∈ [Q] and k ∈ IM where ”· · ·“ represents the term yk[q]z[k].
The inner products between the vectors are unchanged, and hence the indistinguishability
between the hybrids H̃3,i, j,W ,1 and H̃3,i, j,W ,2 is guaranteed by the function hiding security
of IPFE.

Hybrid H̃3,i, j,W ,3. It proceeds similar to H̃3,i, j,W ,2 except that the labels �k,T+1,i, j,W ,q are
changed to truly randomized values. We can invoke DDH assumption in G2 as before to
show the indistinguishability between the hybrids H̃3,i, j,W ,2 and H̃3,i, j,W ,3 since the random
values rx[(T , i, j,W)] and rk, f [q]’s only appear in the exponent of G2 and hence the label
functions can be truly randomized due to the special piecewise security of AKGS. Note that,
the values [[�k,init]]2 ← RevSamp(· · · ) can be efficiently computed in the exponent of G2.

Hybrid H̃3,i, j,W ,4. It proceeds identical to H̃3,i, j,W ,3 except the truly random labels
�k,T+1,i, j,W ,q for all q ∈ [Q], k ∈ IM are replaced by pseudorandom values sx[(T +
1, i, j,W)]sk, f [q]. The hybrids H̃3,i, j,W ,3 and H̃3,i, j,W ,4 are indistinguishable due to the
DDH assumption in G2.

Hybrid H̃3,i, j,W ,5. It proceeds exactly the same way as H̃3,i, j,W ,4 except the pseudoran-
dom labels �k,T+1,i, j,W ,q = sx[(T + 1, i, j,W)]sk, f [q] hardwired in ṽk,q [simtemp]’s are
split into ũk,T+1,i, j,W [sim] (embedding the factor sx[(T + 1, i, j,W)]) and ṽk,q [sim]’s
(embedding the factor sk, f [q]). The inner products in the hybrids H̃3,i, j,W ,4 and H̃3,i, j,W ,5
are unchanged and hence the these two hybrids are indistinguishable due to the function
hiding security of IPFE. Moreover, it can be observed that H̃3,i, j,W ,5 ≡ H̃3,i ′, j ′,W ′,3 for
(i ′, j ′,W ′) = (i, j,W) + 1.

Therefore, in this sequence of hybrids for t = T + 1, we have H̃3,1,1,0S ,1 ≈ H̃3,N ,S,1S ,5.
Lastly, we observe that H̃3,N ,S,1S ,5 ≡ H4 and hence H2 ≈ H4 for the case of CT before SK. ��
Proof of Claim 2 The case of SK before CT for showing H2 ≈ H4 is more involved and further
difficulties arises since we have two independent IPFEs for each Turing machine in contrast
to the security analysis of [62] where only a single IPFE was sufficient.

The overall goal of the claim is to make all the label values �k,t,i, j,W ,q simulated by
invoking DDH similar to the case of CT before SK. However, since the secret key comes
before the challenge ciphertext and �k,init ← RevSamp(· · · ) is computed while encryption,
we can only apply DDH into the ciphertext vectors which are computed in the exponent of
G1. Thus, we have to move rk, f [q] into the ciphertext vectors (Table 7). But, in this case,
rk, f [q] of vk,q may appear in (Mk,τ rk, f )[q ′] of any vk,q ′ depending on the transition block.
Moreover, rk, f [q] also presents in ṽk,q which are associated to second IPFE. Hence, in the
security analysis, we must take care of the following facts:

– The special piecewise security can only be applied in the increasing order of t for changing
�k,t,i, j,W ,q ’s to their simulated form.

– More importantly, to simulate �k,t,i, j,W ,q for t ≤ T , all occurrence of rk, f [q] must be in
the ciphertext of both the IPFE. Also, we can not simulate �k,T+1,i, j,W ,q (in the second
IPFE) while simulating �k,t ′,i, j,W ,q (in the first IPFE).

– There is not enough space in the ciphertext to embed all the rk, f [q]’s at the same time
for each k ∈ IM .

– The values rk, f [q]must not go away until all �k,t,i, j,W ,q ’s are simulated. Indeed, rk, f [q]
still resides in vk,q ′ ’s in H4, the end hybrid of the claim.
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Table 7 The inner loop hybrids in the security proof of 1-UAWS for the case where the ciphertext challenge
comes after the secret key query

To deal with all these facts, we employ a strategy inspired from the proof technique of [62]
where they use a two-level loop over t, q with t ≤ T and switch, in the increasing order
of t, q , batches of NS2S label functions. That is, for fixed t, q and all i, j,W and for all
k ∈ IM , the batches of label values �k,t,i, j,W ,q are simulated by moving rk, f [q]’s back and
forth in each iteration. More precisely, in each iteration of t, q , when moving rk, f [q] into the
ciphertext vectors, we erase all its occurrence in the secret key vectors of both the IPFE and
must compensate some �t ′,i, j,W ,q ′ ’s for their loss of rk, f [q] using the indices with superscript
comp in the case of t ′ ≤ T . Observe that, rk, f [q] only appears in the position rand of ṽk,q
of the second IPFE. Thus, it is not required to compensate the loss of rk, f [q] in any other
�T+1,i, j,W ,q ′ ’s. However, rk, f [q] is still required to shift into the ciphertext vectors of the
second IPFE. We use the indices with superscript temp to hardcode the honest label values
of �T+1,i, j,W ,q while running the loop over t, q with t ≤ T . Finally, after the two-level loop
running over t, q with t ≤ T ends, we erase rk, f [q] from vk,q and run a separate loop over q
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Table 8 The inner loop hybrids in the security proof of 1-UAWS for the case where the ciphertext challenge
comes after the secret key query

in the increasing order to simulate the labels �T+1,i, j,W ,q ’s using the indices with superscript
temp in the second IPFE.

We define modes of a label �t ′,i, j,W ,q ′ for ease of understanding the loops used in this
claim (Table 9). The definitions of modes are similar to what used by [62]. There are three
orthogonal group of nodes:

– The first group is about the value of the label. A label is honest if its value Lt ′,i, j,W ,q ′(x)

is computed using the garbling randomness r = rx ⊗ r f . It is random if its value is
sampled uniformly at random. It is simulated if its value is sx[(t ′, i, j,W)]sk, f [q ′].

– The second group is about where the terms r f and s f are placed while computing the
labels using the IPFEs. A label is normal (this is the default) if r f , s f are placed in the
secret key. It is compensated if r f [q], s f [q] are placed in the ciphertext while the other
components of r f , s f are still in the secret key (for simplicity, we note that this mode
only appears in the first IPFE). It is hardwired if the value (in its entirety) is hardwired
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Table 9 Table 5: the remaining notes

in the ciphertext (for simplicity, we note that this mode only appears to the labels with
t ′ = t, q ′ = q).

– In the last group, a label is normal (default) if it is computed without indices with super-
script temp. It is temporary if it is computed with indices having superscript temp.

As discussed above, the first loop of this claim is a two-level loop with outer loop running
over t = 1, . . . , T (provided in Table 6) and the inner loop running over q = 1, . . . , Q
(given in Table 8). We call this part 1 of the proof. The second loop runs over q = 1, . . . , Q
(described in Table 10) and it is dedicated for simulating the label values �k,T+1,i, j,W ,q for
all k ∈ IM .We call this part 2 of the proof. In this hybrids, the secret key vectors v’s appear
before the ciphertext vectors u’s.

��
Part 1 The sequence of hybrids in the two-level loop (with t ≤ T , q ≤ Q) and their
indistinguishability arguments (Table 11).

Hybrid H3,t,1. It proceeds identically to H2 except that for all t ′ < t ≤ T and all i, j,W ,
the vectors uk,t ′,i, j,W have their values at rand and tbτ ’s cleared, and that a random value
sx[(t ′, i, j,W)] is embedded in uk,t ′,i, j,W [sim]. This means that all the labels for (t < t ′ ≤
T , i, j,W) are simulated, the first label �k,init is reversely sampled and the rest are honestly
computed.

Hybrid H3,t,2. It proceeds exactly the same way as H3,t,1 except that the modes of
�k,t,i, j,W ,q ’s (for all i, j,W , q with t ≤ T ) are changed to honest and temporary, and
that a random value sx[(t, i, j,W)] is embedded in uk,t,i, j,W [simtemp] for all i, j,W . The
change is implemented as follows:

– The positions rand and tbτ of uk,t,i, j,W are copied to the positions randtemp and tbtemp
τ

respectively, and then the positions rand and tbτ are set to 0.
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ũ
k,
T

+1
,i

,
j,
W

0,
0

N
or
m
al

s x
[(T

+
1,
i,

j,
W

)]
�
k,
T

+1
,i

,
j,
W

,q
$ ←−

Z
p

H̃
3,
q
,4

ṽ
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Table 11 The notes of Table 10

– The value at uk,t,i, j,W [simtemp] is set to sx[(t, i, j,W)]. It sets the stage for the inner
loop which will make the label values �k,t,i, j,W ,q ’s as simulated and temporary.

– The positions rand and tbτ of vk,q are copied to the positions randtemp and tbtemp
τ

respectively.

As one can verify that the inner products between the vectors are unchanged, the indis-
tinguishability between the hybrids H3,t,1 and H3,t,2 is guaranteed by the function hiding
security of IPFE.

Hybrid H3,t,4. It proceeds identical to H̃3,t,2 except that the modes of �k,t,i, j,W ,q ’s (for all
i, j,W , q with t ≤ T ) are changed from honest and temporary to simulated and temporary.
This is implemented by vk,q ’s have their values cleared at rand

temp, tbtemp
τ , and vk,q [simtemp]

is set to sk, f [q]. We show that H3,t,2 ≈ H3,t,4 by a sequence of hybrids used by the inner
loop.

Hybrid H3,t,5. It proceeds identical to H̃3,t,4 except that the modes of �k,t,i, j,W ,q ’s (for all
i, j,W , q with t ≤ T ) are changed from simulated and temporary to simulated. Moreover,
some clean-up work is done in preparation of the next iteration. The change is implemented
as follows:

– The positions randtemp, tbtemp
τ and simtemp of uk,t,i, j,W are set to 0.

– The value at uk,t,i, j,W [sim] is changed from 0 to sx[(t, i, j,W)].
– The positions simtemp of vk,q is set to 0.

Since the inner products between the vectors u’s and v’s are unchanged, the indistinguisha-
bility between the hybrids H3,t,4 and H3,t,4 is ensured by the function hiding security of IPFE.
We observe that H3,1,1 ≡ H2 and H3,t,5 ≡ H3,t+1,1.

Now, we discuss the hybrids of the inner loop running over q = 1, . . . , Q, which switches
the mode of �k,t,i, j,W ,q from honest and temporary to simulated and temporary.
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HybridH3,t,3,q,1. It proceeds identical toH3,t,2, except that for q ′ < q , all the vk,q ′ have their
values at randtemp, tbtemp

τ ’s cleared, and the value sk, f [q ′] is embedded at vk,q ′ [simtemp].
This means that the labels �k,t,i, j,W ,q ′ for all i, j,W with t ≤ T and q ′ < q have been
changed from honest and temporary to simulated and temporary.

Hybrid H3,t,3,q,2. It proceeds identical to H3,t,3,q,1 except that all occurrence of rk, f [q] and
sk, f [q] are moved from vk,q ′ ’s to uk,t ′,i, j,W ,q ’s using the compensation identity (Notes of
Tables 4, 8), for all q ′ �= q . Further, to make ṽk,q free of rk, f [q], it’s positions rand, acc are
set to zero and simtemp is set to 1, and the labels �k,T+1,i, j,W ,q ’s are hardwired at simtemp of
ũk,T+1,i, j,W (hence they are in honest and hardwired mode). Thus, the labels with q ′ = q
or (T ≥)t ′ > t or q ′ > q are computed using the compensation identity on top of their
existing mode, and the labels �k,t,i, j,W ,q for all i, j,W become honest and hardwired (more
specifically, hardwired in uk,t,i, j,W [simcomp]). The inner products between u, ũ’s and v, ṽ’s
are unchanged due to thesemodifications.Hence, the indistinguishability between the hybrids
H3,t,3,q,1 and H3,t,3,q,2 follows from the function hiding security of IPFE.

Hybrid H3,t,3,q,3. It proceeds identical to H3,t,3,q,2 except the labels �k,t,i, j,W ,q (for all
i, j,W with t ≤ T ) hardwired in uk,t,i, j,W [simcomp] become random and hardwired. The
hybrids H3,t,3,q,2 and H3,t,3,q,3 are indistinguishable by the DDH assumption in G1.

Hybrid H3,t,3,q,4. It proceeds identical to H3,t,3,q,3 except the labels �k,t,i, j,W ,q (for all
i, j,W with t ≤ T ) hardwired in uk,t,i, j,W [simcomp] become simulated and hardwired,
i.e. �k,t,i, j,W ,q = sx[(t, i, j,W)]sk, f [q]. The hybrids H3,t,3,q,3 and H3,t,3,q,4 are again
indistinguishable by the DDH assumption in G1.

Hybrid H3,t,3,q,5. It proceeds identical toH3,t,3,q,4 except that all occurrences of rk, f [q] and
sk, f [q] are moved back to vk,q ’s, and in the second IPFE, all the vectors are restored back to
their initial form, i.e. rk, f [q] is moved back to ṽk,q . Further, some clean-up work is done in
order to prepare the vectors for the next iteration. The values at the position simcomp of the
vectors vk,q and uk,t,i, j,W are cleared, which means that the labels lose their compensation
mode and the labels �k,t,i, j,W ,q (for all i, j,W with t ≤ T ) become simulated and temporary.
Also, the values at the position simtemp of ṽk,q and ũk,T+1,i, j,W are cleared, which in turn
ensures that the labels �k,T+1,i, j,W ,q ’s are changed from honest hardwired to honest mode.
It is easy to see that inner products between u, ũ’s and v, ṽ’s are unchanged, and hence the
indistinguishability between the hybrids H3,t,3,q,4 and H3,t,3,q,5 follows from the function
hiding security of IPFE. We observe that H3,t,3,q,5 ≡ H3,t,3,q+1,1, and hence H3,t,2 ≈ H3,t,4

in the outer loop hybrids of Table 6.
Note that, the two-level loop ends with the hybrid H3,T ,5 where the labels �k,t,i, j,W ,q for

all t ≤ T and for all i, j,W are simulated. We now go to the part 2 of the proof.

Part 2The sequence of hybrids in the second loop running over q = 1, . . . , Q (for simulating
the labels associated to t = T + 1) with two additional hybrids and their indistinguishability
arguments.

Hybrid H̃3. It is identical to H3,T ,5 except the positions rand, tbτ of vk,q are set to zero
(in the first IPFE), and the positions rand, acc of the vectors ṽk,q ’s and ũk,T+1,i, j,W ’s are
copied to their counterparts with superscript temp. Moreover, the positions rand, acc of
ũk,T+1,i, j,W ’s are cleared, which means that the labels �k,T+1,i, j,W ,q ’s are in honest and
temporarymode. The inner products between u, ũ’s and v, ṽ’s are unchanged, and hence the
indistinguishability between the hybrids H3,T ,5 and H̃3 is guaranteed by the function hiding
security of IPFE.
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Hybrid H̃3,q,1. It proceeds identical to H̃3 except that for q ′ < q , all the ṽk,q ′ have their
values at randtemp, acctemp’s cleared, and the value sk, f [q ′] is embedded at ṽk,q ′ [sim]. This
means that the labels �k,T+1,i, j,W ,q ′ for all i, j,W and q ′ < q have been changed from
honest and temporary to simulated.

Hybrid H̃3,q,2. It proceeds identical to H̃3,q,1 except that the positions rand, acc, randtemp,

acctemp of ṽk,q are cleared and ṽk,q [simtemp] is set to 1. Further, the labels �k,T+1,i, j,W ,q (for
all i, j,W ) are hardwired at simtemp of ũk,T+1,i, j,W , which means the labels are in honest
and hardwired mode. The inner products between ũ’s and ṽ’s are unchanged due to these
modifications. Hence, the indistinguishability between the hybrids H̃3,q,1 and H̃3,q,2 follows
from the function hiding security of IPFE.

Hybrid H̃3,q,3. It proceeds identical to H̃3,q,2 except the labels �k,T+1,i, j,W ,q (for all i, j,W )
hardwired in ũk,T+1,i, j,W [simtemp] become random and hardwired. The hybrids H̃3,q,2 and
H̃3,q,3 are indistinguishable by the DDH assumption in G1.

Hybrid H̃3,q,4. It proceeds identical to H̃3,q,3 except the labels �k,T+1,i, j,W ,q (for all i, j,W )
hardwired in ũk,T+1,i, j,W [simtemp] become simulated and hardwired, i.e. �k,T+1,i, j,W ,q =
sx[(T +1, i, j,W)]sk, f [q]. The hybrids H̃3,q,3 and H̃3,q,4 are again indistinguishable by the
DDH assumption in G1.

Hybrid H̃3,q,5. It proceeds identical to H̃3,q,4 except that all occurrences of rk, f [q] and
sk, f [q] are moved back to ṽk,q ’s, and some clean-up work is done in order to prepare the
vectors for the next iteration. The values at the position simtemp of the vectors ṽk,q and
ũk,T+1,i, j,W are cleared, which means that the labels �k,T+1,i, j,W ,q (for all i, j,W ) become
simulated. It is easy to see that inner products between ũ’s and ṽ’s are unchanged, and hence
the indistinguishability between the hybrids H̃3,q,4 and H̃3,q,5 follows from the function
hiding security of IPFE. We observe that H̃3,q,5 ≡ H̃3,q+1,1.

Hybrid H̃4. It is identical to H̃3,Q,5 except rk, f [q]’s are put back to vk,q ’s and the positions
randtemp, acctemp of ũk,T+1,i, j,W are set to zero. The inner products between u, ũ’s and
v, ṽ’s are unchanged, and hence the indistinguishability between the hybrids H̃3,Q,5 and H̃4

is guaranteed by the function hiding security of IPFE.
Lastly, we note that H3,1,1 ≡ H2 and H̃4 ≡ H4 (cf. Table 3). Therefore, H2 ≈ H4 in the

case of SK before CT. ��

6 1-Slot FE for unbounded AWS for L

In this section, we construct a public key 1-slot FE scheme for the unbounded attribute-
weighted sum functionality for L. The scheme satisfies the same properties as of
the SK-UAWSL(1,1,1). However, the public key scheme supports releasing polynomially
many secret keys and a single challenge ciphertext, hence we denote the scheme as
PK-UAWSL(poly,1,1).

Along with the AKGS for Logspace Turing machines we require a function-hiding slotted
IPFE = (IPFE.Setup, IPFE.KeyGen, IPFE.Enc, IPFE.SlotEnc, IPFE.Dec) based on G, where
G = (G1, G2, GT, g1, g2, e) is pairing group tuple of prime order p.

6.1 The construction

We now describe the PK-UAWSL(poly,1,1) = (Setup, KeyGen, Enc,Dec).
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Setup(1λ): On input the security parameter, fix a prime integer p ∈ N and define the slots
for generating two pair of IPFE master keys as follows:

Spub =
{
index1, index2,pad, initpub, randpub, accpub

}
∪ {tbpubτ |τ ∈ T },

Scopy = {
initcopy, randcopy

} ∪ {tbcopyτ |τ ∈ T },
Spriv = Scopy ∪ S1-UAWS ∪ {padcopy,padtemp, accperm, simcopy},
S̃pub ={index1, index2, randpub, accpub},

S̃1,copy ={randcopy1 , acccopy1 }, S̃2,copy = {randcopy2 , acccopy2 },
S̃priv = S̃1,copy ∪ S̃2,copy ∪ S̃1-UAWS ∪ {simcopy}

It generates (IPFE.MPK, IPFE.MSK) ← IPFE.Setup(Spub,Spriv) and (IPFE.M̃PK, IPFE.M̃SK)

← IPFE.Setup(S̃pub, S̃priv) and returns MSK = (IPFE.MSK, IPFE.M̃SK) and MPK =
(IPFE.MPK, IPFE.M̃PK).

KeyGen(MSK, (M, IM)): On input the master secret key MSK = (IPFE.MSK,

IPFE.M̃SK) and a function tuple M = (Mk)k∈IM indexed w.r.t. an index set IM ⊂ N

of arbitrary size , it parses Mk = (Qk, yk, δk) ∈ TM ∀k ∈ IM and samples the set of
elements

{

α, βk ← Zp | k ∈ IM ,
∑

k

βk = 0 mod p

}

.

It computes a secret key IPFE.SKpad ← IPFE.KeyGen(IPFE.MSK, [[vpad]]2) for the following
vector vpad:

vector index1 index2 pad initpub randpub accpub tbpubτ in Spriv
vpad 0 0 α 0 0 0 0 0

For all k ∈ IM , it proceeds as follows:

1. For Mk = (Qk, yk, δk), compute transition blocksMk,τ ∈ {0, 1}Qk×Qk ,∀τ ∈ Tk .
2. Sample independent random vector rk, f ← Z

Qk
p and a random element πk ∈ Zp .

3. For the following vector vk,init, compute a secret key IPFE.SKk,init ← IPFE.KeyGen(

IPFE.MSK, [[vk,init]]2):
vector index1 index2 pad initpub randpub accpub tbpubτ in Spriv
vk,init πk k · πk 0 rk, f [1] 0 βk 0 0

4. For each q ∈ [Qk], compute the following secret keys

IPFE.SKk,q ← IPFE.KeyGen(IPFE.MSK, [[vk,q ]]2) and

˜IPFE.SKk,q ← IPFE.KeyGen(IPFE.M̃SK, [[̃vk,q ]]2)
where the vectors vk,q , ṽk,q are defined as follows:

vector index1 index2 pad initpub randpub accpub tbpubτ in Spriv
vk,q πk k · πk 0 0 −rk, f [q] 0 (Mk,τ rk, f )[q] 0
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vector index1 index2 randpub accpub in S̃priv
ṽk,q k k · πk −rk, f [q] α · yk[q] 0

Finally, it returns the secret key as

SK(M,IM ) =
(

(M, IM), IPFE.SKpad,
{
IPFE.SKk,init,

{
IPFE.SKk,q , ˜IPFE.SKk,q}q∈[Qk ]

}

k∈IM

)

.

Enc(MPK, (x, 1T , 12
S
), z): On input the master public key MPK = (IPFE.MPK, IPFE.M̃PK),

a public attribute x ∈ {0, 1}N for some arbitrary N ≥ 1 with time and space complexity
bounds given by T , S ≥ 1 (as 1T , 12

S
) respectively, and the private attribute z ∈ Z

n
p

for some arbitrary n ≥ 1, it samples s ← Zp and compute a ciphertext IPFE.CTpad ←
IPFE.Enc(IPFE.MPK, [[upad]]1) for the vector upad :

vector index1 index2 pad initpub randpub accpub tbpubτ in Spriv
upad 0 0 s 0 0 0 0 0

Next, it does the following:

1. Sample a random vector rx ← Z
[0,T ]×[N ]×[S]×{0,1}S
p .

2. For each k ∈ [n], do the following:
(a) Sample a random element ρk ← Zp .
(b) Compute a ciphertext IPFE.CTk,init ← IPFE.SlotEnc(IPFE.MPK, [[uk,init]]1) for the

vector uk,init:

vector index1 index2 pad initpub randpub accpub tbpubτ in Spriv
uk,init −k · ρk ρk 0 s · rx[(0, 1, 1, 0S)] 0 s 0 ⊥

(c) For all t ∈ [T ], i ∈ [N ], j ∈ [S],W ∈ {0, 1}S , do the following:
(i) Compute the transition coefficients cτ (x; t, i, j,W ; rx),∀τ ∈ T using rx .
(ii) Compute IPFE.CTk,t,i, j,W ← IPFE.SlotEnc(IPFE.MPK, [[uk,t,i, j,W ]]1) for the

vector uk,t,i, j,W :

vector index1 index2 pad initpub randpub accpub tbpubτ in Spriv
uk,t,i, j,W −k · ρk ρk 0 0 s · rx[(t − 1, i, j,W)] 0 s · cτ (x; t, i, j,W; rx) ⊥

(d) For t = T + 1, and for all i ∈ [N ], j ∈ [S],W ∈ {0, 1}S , compute
˜IPFE.CTk,T+1,i, j,W ← IPFE.SlotEnc(IPFE.M̃PK, [[̃uk,T+1,i, j,W ]]1) for the vector
ũk,T+1,i, j,W :

vector index1 index2 randpub accpub in S̃priv
ũk,T+1,i, j,W −k · ρk ρk s · rx[(T , i, j,W)] s · z[k] ⊥

3. Finally, it returns the ciphertext as

CT(x,T ,S) =
(

(x, T , S) , n, IPFE.CTpad,
{
IPFE.CTk,init, {IPFE.CTk,t,i, j,W }t∈[T ],

˜IPFE.CTk,T+1,i, j,W

}

k∈[n],i∈[N ], j∈[S],W∈{0,1}S

)

.
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Dec(SK(M,IM ),CT(x,T ,S)): On input a secret key SK(M,IM ) and a ciphertext CT(x,T ,S), do
the following:

1. Parse SK(M,IM ) and CT(x,T ,S) as follows:

SK(M,IM ) =
(
(
(Mk)k∈IM , IM

)
, IPFE.SKpad,

{
IPFE.SKk,init,

{
IPFE.SKk,q , ˜IPFE.SKk,q}q∈[Qk ]

}

k∈IM

)

, Mk = (Qk, yk, δk),

CT(x,T ,S) =
(

(x, T , S) , n, IPFE.CTpad,
{
IPFE.CTk,init, {IPFE.CTk,t,i, j,W }t∈[T ],

˜IPFE.CTk,T+1,i, j,W

}

k∈[n],i∈[N ], j∈[S],W∈{0,1}S

)

.

2. Output ⊥, if IM �⊂ [n]. Else, select the sequence of ciphertexts for the indices k ∈ IM
as

CT(x,T ,S) =
(

(x, T , S) ,
{
IPFE.CTk,init, {IPFE.CTk,t,i, j,W }t∈[T ],

˜IPFE.CTk,T+1,i, j,W

}

k∈IM ,i∈[N ], j∈[S],W∈{0,1}S

)

.

3. Use IPFE decryption to obtain [[μpad]]T ← IPFE.Dec(IPFE.SKpad, IPFE.CTpad).
4. Recall that ∀k ∈ IM , CMk ,N ,S = [N ] × [S] × {0, 1}S × [Qk], and that we denote any

element in it as θk = (i, j,W , q) ∈ CMk ,N ,S where the only component in the tuple θk
depending on k is q ∈ [Qk]. Invoke the IPFE decryption to compute all label values as:

∀k ∈ IM : [[�k,init]]T = IPFE.Dec(IPFE.SKk,init, IPFE.CTk,init)
∀k ∈ IM , t ∈ [T ], θk = (i, j,W , q) ∈ CMk ,N ,S :

[[�k,t,θk ]]T = IPFE.Dec(IPFE.SKk,q , IPFE.CTk,t,i, j,W )

∀k ∈ IM , θk = (i, j,W , q) ∈ CMk ,N ,S :
[[�k,T+1,θk ]]T = IPFE.Dec( ˜IPFE.SKk,q , ˜IPFE.CTk,T+1,i, j,W )

5. Next, invoke the AKGS evaluation procedure and obtain the combined value

[[μ]]T =
∏

k∈IM

Eval
((

Mk, 1
N , 1T , 12

S
, p

)
, x, [[�k,init]]T,

{
[[�k,t,θk ]]T

}

t∈[T+1],θk∈CMk ,N ,S

)

6. Finally, it returns μ′ such that [[μ]]T = ([[μpad]]T)μ
′
, where gT = e(g1, g2). Similar to

[8], we assume that the desired attribute-weighted sum lies within a specified polynomial-
sized domain so that μ′ can be searched via brute-force.

The correctness of our PK-UAWSL(poly,1,1) can be shown similarly to our secret key scheme
of the previous section.

Correctness The first step is to observe that all the AKGS label values are correctly computed
for the Turing machines Mk with the fixed input x. This holds by the correctness of IPFE and
AKGS encoding of the iterated matrix-vector product representing any TM computation. The
next (and final) correctness follows from the linearity of AKGS.Eval.

First, by the correctness of IPFE, the decryption recovers [[μpad]]T = [[sα]]T from
IPFE.SKpad and IPFE.CTpad. Next, for all k ∈ IM , θk = (i, j,W , q) ∈ CMk ,N ,S ,
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let Lk,init, Lk,t,θk be the label functions corresponding to the AKGS garbling of Mk =
(Qk, yk, δk). By the definitions of vectors vk,init, uinit and the correctness of IPFE, we have

�k,init = (−kρkπk + kπkρk) + s · rx[(0, 1, 1, 0S)]rk, f [1] + s · βk

= s · (r0[(1, 1, 0S, 1)] + βk)

= s · (eT(1,1,0S ,1)r0 + βk) = s · Lk,init(x).

Next, ∀k ∈ IM , t ∈ [T ], q ∈ [Qk], the structures of vk,q , ut,i, j,W and the correctness of
IPFE yields

�k,t,i, j,W ,q

= (−kρkπk + kπkρk) − s · rx[(t − 1, i, j,W)]rk, f [q]
+∑

τ∈T s · cτ (x; t, i, j,W ; rx)(Mk,τ rk, f )[q]
= −s · r t−1[(i, j,W , q)] + s · (∑τ∈T cτ (x; t, i, j,W ; rx)Mk,τ rk, f

) [q]
= s · Lk,t,i, j,W ,q(x)

When t = T + 1, ∀k ∈ IM , q ∈ [Qk], the vectors ṽk,q , ũk,T+1,i, j,W and the ĨPFE
correctness again yields

�k,T+1,i, j,W ,q

= (−kρkπk + kπkρk) − s · rx[(T , i, j,W)]rk, f [q] + αs · z[k] yk[q]
= −s · (rT [(i, j,W , q)] + αz[k] (1[N ]×[S]×{0,1}S ⊗ yk

) [(i, j,W , q)])
= s · Lk,T+1,i, j,W ,q(x).

The above label values are computed in the exponent of the target group GT. Once all
these are generated correctly, the linearity of Eval implies that the garbling can be evaluated
in the exponent of GT. Thus, this yields

[[μ]]T =
∏

k∈IM

Eval
((

Mk, 1
N , 1T , 12

S
, p

)
, x, [[�k,init]]T,

{
[[�k,t,θk ]]T

}

t∈[T+1],θk∈CMk ,N ,S

)

= [[
∑

k∈IM

Eval((Mk, 1
N , 1T , 12

S
, p), x, �k,init, {�k,t,θk }t∈[T+1],θk∈CMk ,N ,S )]]T

= [[s ·
∑

k∈IM

(αz[k] · Mk |N ,T ,S(x) + βk)]]T

= [[sα ·
∑

k∈IM

z[k] · Mk |N ,T ,S(x)]]T = [[sα · M(x)�z]]T

Finally, since M(x)�z is in polynomial range the decryption recovers it by solving the
equation [[μ]]T = ([[μpad]]T)μ

′
for μ′ through exhaustive search over the specified range.

6.2 Security analysis

We first describe the simulator of our public key 1-slot UAWS scheme. The Setup∗ works
exactly the same as honest Setup in the original scheme. Let the simulated master keys are

MSK∗ = (IPFE.MSK∗, IPFE.M̃SK
∗
) and MPK∗ = (IPFE.MPK∗, IPFE.M̃PK

∗
). We assume that

there are total � number of secret key queries and �pre be the number of secret keys appears
before the challenge ciphertext is computed. Without loss of generality, we assume that the
number of states is the same for all the Turing machine in a particular secret key. Let nmax
be the maximum length of z allowed to the adversary A. We assume nmax = polyλ as A
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is a polynomial time algorithm. The simulator guesses n which is the length of the private
attribute z. The remaining algorithms are as follows:

KeyGen∗
0(MSK∗, (Mφ, IMφ )):On input the simulatedmaster secret keyMSK∗ = (IPFE.MSK∗, IPFE.M̃SK

∗
)

and a function tuple Mφ = (Mφ,k)k∈IMφ
indexed w.r.t. an index set IMφ ⊂ N of arbitrary

size , it parses Mφ,k = (Qφ, yk, δk) ∈ TM ∀k ∈ IM and proceeds as follows:

1. Sample the set of elements
{

αφ, α̂φ, βφ,k, β̂φ,k ← Zp | k ∈ IM ,
∑

k

βφ,k = 0 mod p,
∑

k

β̂φ,k = 0 mod p

}

2. Compute IPFE.SKφ,pad ← IPFE.KeyGen(IPFE.MSK, [[vpad]]2) for the vector vφ,pad
defined as

vector pad padcopy
other
indices

vpad αφ α̂φ 0

3. For each k ∈ IM , do the following:

3.1 ForMφ,k = (Qφ, yk, δk), compute its transition blocksMφ,k,τ ∈ {0, 1}Qφ×Qφ ,∀τ ∈
Tk .

3.2 Sample independent random vector rφ,k, f ← Z
Qφ
p and a random element πk ∈ Zp .

3.3 Compute IPFE.SKφ,k,init ← IPFE.KeyGen(IPFE.MSK, [[vk,init]]2) for the vector
vφ,k,init defined as

vector index1 index2 initpub accpub initcopy acccopy
other
indices

vφ,k,init πφ,k k · πφ,k rφ,k, f [1] βφ,k r̂φ,k, f 1 β̂φ,k 0

3.4 For each q ∈ [Qφ], compute IPFE.SKφ,k,q ← IPFE.KeyGen(IPFE.MSK, [[vφ,k,q ]]2)
and ˜IPFE.SKφ,k,q ← IPFE.KeyGen(IPFE.M̃SK, [[̃vφ,k,q ]]2) where the vectors vφ,k,q ,

ṽφ,k,q are defined as

vector index1 index2 randpub tbpubτ randcopy tbcopyτ

other
indices

vφ,k,q πk k · πφ,k rφ,k, f [q] (Mφ,k,τ rφ,k, f )[q] r̂φ,k, f [q] (Mφ,k,τ r̂φ,k, f )[q] 0

vector index1 index2 randpub accpub randcopy2 acccopy2
other
indices

ṽφ,k,q k k · πφ,k −rφ,k, f [q] αφ · yk[q] −r̂φ,k, f [q] α̂φ · yk[q] 0

Finally, it returns the secret key as

SK(Mφ,IMφ
) =

(

(Mφ, IMφ ), IPFE.SKφ,pad,
{
IPFE.SKφ,k,init,

{
IPFE.SKφ,k,q , ˜IPFE.SKφ,k,q}q∈[Qφ ]

}

k∈IMφ

)

.

Enc∗(MPK∗,MSK∗, (x, 1T , 12
S
),V, n): On input the master public key MPK = (IPFE.MPK,

IPFE.M̃PK), a public attribute x ∈ {0, 1}N for some arbitrary N ≥ 1 with time and
space complexity bounds given by T , S ≥ 1 (as 1T , 12

S
) respectively, a set V =

{(Mφ, IMφ ), Mφ(x)�z}φ∈�pre and the length of the private arbitrary n ∈ N, it proceeds
as follows:
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1. samples s ← Zp and compute a ciphertext IPFE.CTpad ← IPFE.Enc(IPFE.MPK, [[upad]]1)
for the vector upad :

vector in Spub padcopy
other
indices

upad 0 1 0

2. Sample vectors rx ← Z
[0,T ]×[N ]×[S]×{0,1}S
p and sx ← Z

[T+1]×[N ]×[S]×{0,1}S
p .

3. For each k ∈ [n], do the following:
(a) Sample a random element ρk ← Zp .
(b) Compute a ciphertext IPFE.CTk,init ← IPFE.SlotEnc(IPFE.MPK, [[uk,init]]1) for the

vector uk,init:

vector index1 index2 initcopy acccopy simcopy other
indices

uk,init −k · ρk ρk rx[(0, 1, 1, 0S)] 1 1 0

(c) For all t ∈ [T ], i ∈ [N ], j ∈ [S],W ∈ {0, 1}S , do the following:
(i) Compute the transition coefficients cτ (x; t, i, j,W ; rx),∀τ ∈ T using rx .
(ii) Compute the ciphertext IPFE.CTk,t,i, j,W ← IPFE.SlotEnc(IPFE.MPK, [[uk,t,i, j,W ]]1)

for the vector uk,t,i, j,W :

vector index1 index2 randcopy tbcopyτ simcopy other
indices

uk,t,i, j,W −k · ρk ρk rx[(t − 1, i, j,W)] cτ (x; t, i, j,W ; rx) sx[(t, i, j,W)] 0

(d) It finds a dummy vector d ∈ Z
n
p such that

Mφ(x)�z =
∑

k∈IMφ

Mφ,k(x)z[k] = Mφ(x)�d =
∑

k∈IMφ

Mφ,k(x)d[k]

holds for all φ ∈ [�pre].
(e) For t = T + 1, and for all i ∈ [N ], j ∈ [S],W ∈ {0, 1}S , compute the cipher-

text ˜IPFE.CTk,T+1,i, j,W ← IPFE.SlotEnc(IPFE.M̃PK, [[̃uk,T+1,i, j,W ]]1) for the vector
ũk,T+1,i, j,W :

vector index1 index2 randcopy2 acccopy2 simcopy other
indices

ũk,T+1,i, j,W −k · ρk ρk rx[(T , i, j,W)] d[k] sx[(T + 1, i, j,W)] 0

4. Finally, it returns the ciphertext as

CT(x,T ,S) =
(

(x, T , S) , n, IPFE.CTpad,
{
IPFE.CTk,init, {IPFE.CTk,t,i, j,W }t∈[T ],

˜IPFE.CTk,T+1,i, j,W

}

k∈[n],i∈[N ], j∈[S],W∈{0,1}S

)

.

KeyGen∗
1(MSK∗, (Mφ, IMφ , Mφ(x)�z)): On input the simulated master secret keyMSK∗ =

(IPFE.MSK∗, IPFE.M̃SK
∗
) and a function tuple Mφ = (Mφ,k)k∈IMφ

indexed w.r.t. an index

set IMφ ⊂ N of arbitrary size and it’s functional value Mφ(x)�z, it parses Mφ,k =
(Qφ, yk, δk) ∈ TM ∀k ∈ IM and proceeds as follows:
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1. Sample the set of elements
{

αφ, α̂φ, βφ,k, β̂φ,k ← Zp | k ∈ IM ,
∑

k

βφ,k = 0 mod p, β̂φ,k satisfies (∗)

}

where the condition (∗) is given by

if IMφ ⊆ [n] : ∑
k β̂φ,k = 0 mod p

if (max IMφ > n) ∧ (min IMφ ≤ n) : β̂φ,k ← Zp

2. Compute IPFE.SKφ,pad ← IPFE.KeyGen(IPFE.MSK, [[vpad]]2) for the vector vφ,pad
defined as

vector pad padcopy
other
indices

vpad αφ α̂φ 0

3. For all k ∈ IM , do the following:

3.1 ForMφ,k = (Qφ, yk, δk), compute its transition blocksMφ,k,τ ∈ {0, 1}Qφ×Qφ ,∀τ ∈
Tk .

3.2 Sample independent random vectors rφ,k, f , sφ,k, f ← Z
Qφ
p and a random element

πk ∈ Zp .
3.3 Compute IPFE.SKφ,k,init ← IPFE.KeyGen(IPFE.MSK, [[vk,init]]2) for the vector

vφ,k,init defined as

vector index1 index2 initpub accpub simcopy other
indices

vφ,k,init πφ,k k · πφ,k rφ,k, f [1] βφ,k �φ,k,init 0

3.4 For each q ∈ [Qφ], compute IPFE.SKφ,k,q ← IPFE.KeyGen(IPFE.MSK, [[vφ,k,q ]]2)
and ˜IPFE.SKφ,k,q ← IPFE.KeyGen(IPFE.M̃SK, [[̃vφ,k,q ]]2)where thevectorsvφ,k,q , ṽφ,k,q

are defined as

vector index1 index2 randpub tbpubτ simcopy other
indices

vφ,k,q πk k · πφ,k rφ,k, f [q] (Mφ,k,τ rφ,k, f )[q] sφ,k, f [q] 0

vector index1 index2 randpub accpub simcopy other
indices

ṽφ,k,q k k · πφ,k −rφ,k, f [q] αφ · yk[q] sφ,k, f [q] 0

where �φ,k,init for φ > �pre are computed as

�φ,1,init ← RevSamp((Mk, 1
N , 1T , 12

S
), x, α̂φMφ(x)�z + β̂φ,1, (�φ,k,t,θk )t∈[T+1],θk∈CMk ,N ,S )

�φ,k,init ← RevSamp((Mk, 1
N , 1T , 12

S
), x, β̂φ,k, (�φ,k,t,θk )t∈[T+1],θk∈CMk ,N ,S )

and the other label values (�k,t,θk )t∈[T+1],θk∈CMk ,N ,S are given by �k,t,θk =
sx[(t, i, j,W)]sφ,k, f [q].

Finally, it returns the secret key as

SK(Mφ,IMφ
) =

(

(Mφ, IMφ ), IPFE.SKφ,pad,
{
IPFE.SKφ,k,init,

{
IPFE.SKφ,k,q , ˜IPFE.SKφ,k,q}q∈[Qφ ]

}

k∈IMφ

)

.
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Theorem 4 Assuming the SXDH assumption holds in G and the IPFE is function hiding secure,
the above construction of 1-Slot FE for UAWS is adaptively simulation secure.

Proof idea We discuss a high level idea of the proof. We use a two-step approach to show
the indistinguishability between the real and the ideal world. Let � be the total number of
secret keys queried by the adversary.

– In the first step, we move everything from the ciphertext vectors from Spub, S̃pub to the
private slots Spriv, S̃priv. Specifically, we use the Scopy to compute the inner products
between the secret key and ciphertext vectors. To enable this computation, the entries
of secret key vectors are copied to Scopy. Note that, the slots of Spub, S̃pub of the secret
key vectors must be kept as it is as this will facilitate the decryption of adversarially
computed ciphertexts.

– The second step is more technically involved and challenging. We go through a loop
of � iteration similar to the proof technique of [62], however, unlike their work we
can not fully randomize the ciphertext since it should lead to a successful decryption
by all the queried keys. We crucially apply the three slot encryption technique used by
[38, 62]. To handle all the pre-ciphertext secret key queries, we first embed a dummy
vector into the ciphertext and then restore it to its original form (copied in S̃2,copy) with
the dummy vector in place of the challenge (private) attribute. Additionally, we use the
private slot simcopy to handle the post-ciphertext secret key queries where we embed the
functional values directly into the secret keys. In a nutshell, each iteration of the loop
takes care of one particular key and uses two independent randomness—r̂ x in S1-UAWS,
which interacts with that particular key and rx in Scopy, S̃1,copy, S̃2,copy, which interacts
with all other keys—so that the security of (1-SK, 1-CT, 1-Slot)-FE can be invoked for
each key one-by-one in the loop.

We now illustrate the formal indistinguishability arguments of all the hybrids in the proof
below.

Proof Let A be a PPT adversary in the security experiment of UAWS. We show that
the advantage of A in distinguishing between the experiments Expt1-Slot-UAWS

A,real (1λ) and

Expt1-Slot-UAWS
A,ideal (1λ) is negligible by a sequence of hybrid games played between A and the

challenger. Let ((x, 1T , 12
S
), z) be the challenge message and z ∈ Z

n
p . Suppose A makes �

number of secret key queries and out of which the first �pre are the pre-ciphertext queries.
Let nmax be the maximum value of n, the length of z, i.e., A can choose the private attribute
whose maximum length can be nmax. We assume that ∪φ∈[�]IMφ ⊇ [n], i.e., the union of all
the index sets associated to the secret key queries of A covers the indices of the ciphertext
vectors. This is natural to assume sinceA would always want to have maximum information
about the encoded message.

In the reduction, we use the shorthand “∝ a” to indicate that such components are linear
in a and efficiently computable given a in the exponent, and that there is only one natural
way of computing them. We now proceed to describe the hybrids. ��

HybridH0. It is identical to the real experiment Expt1-Slot-UAWS
A,real (1λ) of 1-Slot−UAWS scheme

where the ciphertexts are generated using SlotEnc of IPFE.

Hybrid H0.1. This is exactly the real experiment except the challenger aborts the experiment
immediately if the vector length of z is not n′, i.e., n �= n′. Suppose A outputs ⊥ when the
experiment is aborted. Thus, it is easy to see that the advantage ofA in H0.1 is 1

nmax
times the
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advantage in H0. Thus, if the advantage of A is negligible in H0, then it is so in H0.1. Hence,
in the remaining hybrids we simply write n′ = n.

Hybrid H1. It is identical to H0.1 except the vectors of ciphertext are encrypted using normal
Enc of IPFE, i.e. using the master secret key and the positions u|Spriv , ũ|S̃priv

of the vectors u’s,
ũ’s are changed from⊥ to zero. More specifically, all slots of Spriv for upad, uk,init, uk,t,i, j,W
and all slots of S̃priv for ũk,T+1,i, j,W are changed from ⊥ to zero. The hybrids H0 and H1 are
indistinguishable by slot-mode correctness of the slotted IPFE.

Hybrid H2. It is identical to H1 except the way we compute the inner products between the
secret key and ciphertext vectors. Specifically, the ciphertext randomness s is moved to the
secret key, and 1 is placed into the ciphertext vectors in the positions of s. We implement this
as follows:

– The ciphertext and secret key vector elements are first copied to padcopy and the indices
initcopy, randcopy, tbcopyτ , acccopy of Scopy and S̃1,copy.

– Then, the randomness s is shifted from the ciphertext to the secret key vectors. In partic-
ular, the position padcopy of vφ,pad and upad are set to sαφ and 1 respectively. Similarly,
the randomness s is moved to all the indices such as initcopy, tbcopyτ , randcopy, acccopy

of the secret key vectors.

The hybrids are depicted in Table 13. Since the inner product between the secret key and
ciphertext vectors are unchanged, the indistinguishability between the hybrids H1 and H2

follows from the function hiding security of IPFE. This change prepares the secret key ran-
domness to randomized in the next hybrid.

Hybrid H3. It proceeds identical to H2 except that the private slots of the secret key vectors
are generatedwith an independent set of randomnesses: randompad α̂φ , garbling randomness
r̂k, f [φ, k, f ] and random secret shares β̂φ,k of zero.
The main difference is that in H2, the randomnesses used in the secret key vectors at Spub
and Spriv are the same, but in H3, the slots of Spub and Spriv are filled with independent sets
of randomnesses. We can invoke the DDH assumption in G2:

{[[αφ, βφ,k, rφ,k, f ; sαφ, sβφ,k, srφ,k, f ]]2
︸ ︷︷ ︸

DDH tuple

}φ∈[�],k∈IMφ

≈ {[[αφ, βφ,k, rφ,k, f ; α̂φ, β̂φ,k, r̂φ,k, f ]]2
︸ ︷︷ ︸

random tuple

}φ∈[�],k∈IMφ

If the DDH tuples is used to compute the secret key vectors, then H2 is simulated, and if the
random tuples are used to compute the secret key vectors then H3 is simulated. Therefore,
the indistinguishability between the hybrids H2 and H3 is ensured by the DDH assumption in
G2 (Table 12).

Hybrid H4. It is identical to the hybrid H3 except we change the ciphertext vectors to prepare
for the second step of the loop. More specifically, the changes are implemented using the
following steps:

– Sample a random vector sx ← Z
[T+1]×[N ]×[S]×{0,1}S
p and set the simcopy position of the

vectors uk,init, uk,t,i, j,W as 1, sx[(t, i, j,W)] respectively.
– The position simcopy of ũk,T+1,i, j,W is set as sx[(T + 1, i, j,W)].
– The reduction finds a dummy vector d ∈ Z

n
p such that Mφ(x)�z = Mφ(x)�d =∑

k∈[n] Mφ,k(x)d[k] ∀φ ∈ [�pre].
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Table 12 The first few hybrids in the proof of IND-CPA security of our 1-slot UAWS scheme for L

Then, in ũk,T+1,i, j,W , all the elements of S̃1,copy are copied to S̃2,copy with d in place of
z.

We will change all the pre-ciphertext secret keys (in the second step) in such a way that
they only interact with S̃2,copy of ũk,T+1,i, j,W , instead of S̃1,copy.

Observe that, the inner products of the vectors u’s, ũ’s with the vectors v’s, ṽ’s are
unchanged due to these changes because the corresponding positions of v’s and ṽ’s are zero.
Therefore, the indistinguishability between the hybrids H3 and H4 is ensured by the function
hiding security of IPFE.
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Table 13 The last few hybrids in the proof of IND-CPA security of our 1-slot UAWS scheme for L

We have completed the first step of the security analysis. Now, wemove toward the second
step with the hybrids H5,1∼�,1∼15 which is a loop (running over all secret keys) where we
handle each secret key in each iteration. Before going to the description of the loop, we
present the last hybrid of the loop and the hybrid that is equivalent to the ideal world.

Hybrid H6. It is identical to H4 except the pre-ciphertext secret keys now interacts with
S2,copy and in the post-ciphertext secret keys, the functional values are hardwired. These
changes are implemented as follows:

– In the pre-ciphertext secret keys, everything from the positions in S̃1,copy of ṽφ,k,q (for
φ ∈ [�pre]) are copied to S̃2,copy, and then the positions in S̃1,copy are set zero.

– In the post-ciphertext secret keys, the positions in Scopy of vφ,k,init, vφ,k,q are set to zero,
and the positions vφ,k,init[simcopy] is set as �φ,k,init and both of vφ,k,q [simcopy], ṽφ,k,q

[simcopy] are set as sφ,k, f [q]. The label values �φ,k,init’s are computed as follows:

�φ,1,init ← RevSamp((Mk, 1
N , 1T , 12

S
), x, α̂φMφ(x)�z + β̂φ,1, (�φ,k,t,θk )t∈[T+1],θk∈CMk ,N ,S )

�φ,k,init ← RevSamp((Mk, 1
N , 1T , 12

S
), x, β̂φ,k, (�φ,k,t,θk )t∈[T+1],θk∈CMk ,N ,S )
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where φ > �pre and the other label values (�k,t,θk )t∈[T+1],θk∈CMk ,N ,S are given by
�k,t,θk = sx[(t, i, j,W)]sφ,k, f [q].

Also, the reduction ignores the guessing step of all previous hybrids, meaning that it is not
required to guess the length of z. We show the indistinguishability between the hybrids in
the Claim 3 given below.

Hybrid H7. It is identical to H6 except it clears the positions in S̃1,copy of ũk,T+1,i, j,W . Since
the corresponding terms in ṽφ,k,q are already zero, the inner products are unaffected. There-
fore, the indistinguishability between the hybrids H6 and H7 is guaranteed by the function
hiding security of IPFE. We observe that H7 is the ideal experiment Expt1-Slot-UAWS

A,ideal (1λ).
The remaining is the proof of the above claimwhichwill complete the proof of the theorem.

��
Claim 3 The hybrids H4 and H6 are indistinguishable, i.e., H4 ≈ H6.

Proof We prove the claim through a loop of hybridsH5,1∼�,1∼15 running over all secret keys.

Hybrid H5,φ,1. It is identical to H4 except the first φ −1 secret keys are modified so that they
either interact with the dummy vector d (if they are pre-ciphertext keys) or the functional
values are hardwired into them (if they are post-ciphertext keys). In other words, the first
φ − 1 secret keys are changed as in H6. The hybrid is shown in Table 14.

Hybrid H5,φ,2. It is identical to H5,φ,1 except that a random multiplier ŝ ← Zp is multiplied
with the values in padcopy,Scopy, S̃1,copy. Since ŝ is uniform over Zp , the probability that
ŝ = 0 is negligible. Therefore, the hybrids H5,φ,1 and H5,φ,2 are identically distributed
(including the case of ŝ = 0).

Hybrid H5,φ,3. It is identical to H5,φ,2 except that the inner product between the φ-th secret
key vectors and the ciphertext vectors are now computed via the slots in {padtemp}∪S1-UAWS.
This change is implemented as follows:

– The position padcopy of vφ,pad set to zero and pad
temp is set to α̂φ . Also, upad[padtemp]

is set to ŝ.
– The positions in Scopy of the vectors vφ,k,init, vφ,k,q are first copied to S1-UAWS without

the random multiplier ŝ and then Scopy is set to zero. Similarly, S̃1,copy of the vectors
ṽφ,k,q are copied to S̃1-UAWS without the random multiplier ŝ and then S̃1,copy is set to
zero.

– The positions Scopy of the vectors uk,init, uk,t,i, j,W are copied to S1-UAWS and the random
multiplier ŝ is multiplied with the newly copied terms. Similarly, the positions S̃1,copy of
the vectors ũk,T+1,i, j,W are copied to S̃1-UAWS and the random multiplier ŝ is multiplied
with the newly copied terms.

We can verify from the Table 15 that the inner products between the vectors are unchanged,
hence the indistinguishability between the hybrids holds due to the function hiding security
of IPFE.

Hybrid H5,φ,4. It is identical to H5,φ,3 except that in the ciphertext vectors, the term ŝrx in
S1-UAWS, S̃1-UAWS is replaced by an independent and uniformly chosen random vector ŝ. We
can invoke the DDH assumption in G1:

[[rx, ŝ, ŝrx]]1︸ ︷︷ ︸
DDH tuple

≈ [[rx, ŝ, ŝ]]1︸ ︷︷ ︸
random tuple

for ŝ, rx ← Z
[0,T ],×[N ]×[S]×{0,1}S
p , ŝ ← Zp
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Table 14 The first two hybrids of the loop H5,1∼φ,1∼15 which continues to the next page...

to show the indistinguishability between the hybrids H5,φ,3 and H5,φ,4.

Hybrid H5,φ,5. It is identical to H5,φ,4 except that in the ciphertext vectors, the term ŝ in
S1-UAWS, Ŝ1-UAWS is replaced by ŝ r̂ x where we note that rx of Scopy is independent of this
newly sampled r̂ x . We invoke the DDH assumption in G1:

[[̂rx, ŝ, ŝ]]1︸ ︷︷ ︸
random tuple

≈ [[̂rx, ŝ, ŝ r̂ x]]1︸ ︷︷ ︸
DDH tuple

for ŝ, r̂ x ← Z
[0,T ],×[N ]×[S]×{0,1}S
p , ŝ ← Zp

to show the indistinguishability between the hybrids H5,φ,4 and H5,φ,5.

Hybrid H5,φ,6. It is identical to H5,φ,5 except that the random multiplier ŝ is moved back to
the secret key vectors vφ’s from the ciphertext vectors u’s. The indistinguishability between
H5,φ,6 and H5,φ,5 follows from the function hiding property of IPFE.

Hybrid H5,φ,7. It is identical to H5,φ,6 except that the random multiplier ŝ is removed from
the secret key vectors. The hybrids H5,φ,6 and H5,φ,7 are identically distributed.

Hybrid H5,φ,8. It is identical to H5,φ,7 except the φ-th secret key (if it is a pre-ciphertext
query, i.e. φ ∈ [�pre]) now interacts with the dummy vector d or the functional value is
hardwired into it (if it is a post-challenge query, i.e. φ > �pre). This change is implemented
as follows:

– If φ ∈ [�pre], then there is no change required in the secret key, but z is replaced by d
in the ciphertext vector ũ’s.
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ŝ

u
k,
in
it
,
u
k,
t,
i,
j,
W

∝
(1

,
r x

)
1
or

s x
[(t

,
i,

j,
W

)]
∝

(̂s
,
ŝr
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ṽ
φ
,k

,q
α

φ
,
r φ

,k
,
f
’s

0
0

0
∝

(̂r
φ
,k

,
f
,
α̂

φ
)

ũ
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ŝr̂

x
)

in
S̃ p

ub
in

S̃ 1
,c
op

y
in

S̃ 2
,c
op

y
si
m

co
p
y

in
S̃ 1

-U
A
W
S

ṽ
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ũ
k,
T

+1
,i

,
j,
W

∝
(r

x
,
z)

∝
(r

x
,
d)

s x
[(T

+
1,
i,

j,
W

)]
∝

(̂r
x
,
z)

123



Compact FE for unbounded attribute-weighted sums

Table 16 The intermediate hybrids H5,φ,8 and H5,φ,9 of the loop H5,1∼φ,1∼15

– Also, in the ciphertext, the position sim of the vectors uk,init, uk,t,i, j,W and ũk,T+1,i, j,W
are set to 1, sx[(t, i, j,W)] and sx[(T + 1, i, j,W)] respectively.

– If φ > �pre, then everything in S1-UAWS and S̃1-UAWS of the secret key vectors are cleared
except the sim position. More specifically, the positions rand, acc, tbτ of S1-UAWS and
S̃1-UAWS are set to zero for v’s and ṽ’s, and vφ,k,init[sim] is set as the label values �φ,k,init,
and both of vφ,k,q [sim], ṽφ,k,q [sim] are as sφ,k, f [q].
Tomake the change as shown inTable 16,we invoke the security of the (1-SK, 1-CT, 1-Slot)-FE

scheme. In particular, Theorem 3 is applied for the φ-th key and the single challenge cipher-
text. Observe that the guessing step is already done in this security proof (i.e.,H0.1), hence this
step is skipped while we apply the security of (1-SK, 1-CT, 1-Slot)-FE scheme. This makes
the reduction more efficient and reduces the security loss incurred due to guessing. Also,
we emphasize that in this hybrid we utilize the slots index1 and index2 of S1-UAWS, S̃1-UAWS
through the security reduction of (1-SK, 1-CT, 1-Slot)-FE scheme, which indeed depends on
the Lemma 4. Thus, the hybrids H5,φ,7 and H5,φ,8 are indistinguishable.

Hybrid H5,φ,9. It is identical to the hybrid H5,φ,8 except that everything is copied from the
position sim of S1-UAWS to the corresponding position simcopy, and then the position sim is
cleared from all u’s, ũ’s and vφ’s, ṽφ’s. The hybrid is described in Table 16. The purpose of
this change is to compute the label values for post-ciphertext secret keys utilizing the position
simcopy instead of using the slots of S1-UAWS and prepare it for handling the next key. Note
that, if φ-th key is a pre-ciphertext secret key then there no change takes place in vφ’s and
ṽφ’s, however, the sim position of u’s and ũ’s are cleared. We observe that the inner products
are unchanged and, hence the indistinguishability between the hybrids H5,φ,8 and H5,φ,9 is
ensured by the function hiding property of IPFE.
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Table 17 The intermediate hybrids H5,φ,10 to H5,φ,13 of the loop H5,1∼φ,1∼15

Hybrid H5,φ,10. It is identical to H5,φ,9 except that a random element ŝ ← Zp is multiplied
to the secret key vectors vφ’s and ṽφ’s if φ ≤ �pre, i.e. the φ-th key under consideration
is a pre-challenge secret key. On the other hand, if φ > �pre then the position padtemp of
vφ,pad is first copied to padcopy and then padtemp is cleared. Since ŝ is uniform over Zp ,
the probability that ŝ = 0 is negligible. The hybrid is described in Table 17. Therefore,
the hybrids H5,φ,9 and H5,φ,10 are identically distributed (including the case of ŝ = 0) if
φ ≤ �pre. On the other hand, if φ > �pre then the hybrids are indistinguishable due to
function security of IPFE.

Hybrid H5,φ,11. It is identical to H5,φ,10 except that the random multiplier ŝ is moved to the
ciphertext vectors u’s, ũ’s from the secret key vectors vφ’s, ṽφ’s. The indistinguishability
between H5,φ,10 and H5,φ,11 follows from the function hiding property of IPFE.
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Table 18 The final two hybrids H5,φ,14 and H5,φ,15 of the loop H5,1∼φ,1∼15

Hybrid H5,φ,12. It is identical to H5,φ,11 except that in the ciphertext vectors, the term ŝrx
in S1-UAWS, S̃1-UAWS is replaced by an independent and uniformly chosen random vector ŝ.
We can invoke the DDH assumption in G1:

[[̂rx, ŝ, ŝ r̂ x]]1︸ ︷︷ ︸
DDH tuple

≈ [[̂rx, ŝ, ŝ]]1︸ ︷︷ ︸
random tuple

for ŝ, r̂ x ← Z
[0,T ],×[N ]×[S]×{0,1}S
p , ŝ ← Zp

to show the indistinguishability between H5,φ,11 and H5,φ,12.

Hybrid H5,φ,13. It is identical to H5,φ,12 except that in the ciphertext vectors, the term ŝ in
S1-UAWS, S̃1-UAWS is replaced by ŝrx where we note that the rx is the same as that of used in
the other slots such as Scopy. We invoke the DDH assumption in G1:

[[rx, ŝ, ŝ]]1︸ ︷︷ ︸
random tuple

≈ [[rx, ŝ, ŝrx]]1︸ ︷︷ ︸
DDH tuple

for ŝ, rx ← Z
[0,T ],×[N ]×[S]×{0,1}S
p , ŝ ← Zp

to show the indistinguishability between the hybrids H5,φ,12 and H5,φ,13.

Hybrid H5,φ,14. It is identical toH5,φ,13 except that the inner product between the φ-th secret
key vectors and the ciphertext vectors are now computed via the slots in {padcopy} ∪Scopy ∪
S̃2,copy. This change is implemented as follows:

– The random multiplier ŝ is moved back to the secret key vectors, i.e. vφ’s and ṽφ’s. The
positions in S1-UAWS of the vectors vφ,k,init, vφ,k,q are first copied to Scopy, and then
S1-UAWS is set to zero. Similarly, the positions in S̃1-UAWS of the vectors ṽφ,k,q are first
copied to S̃2,copy, and then S̃1-UAWS is set to zero.
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– The position padtemp of vφ,pad is copied to padcopy, and then padtemp is cleared.
– The positions padtemp, S1-UAWS and S̃1-UAWS of the ciphertext vectors u’s and ũ’s are

cleared.

We can verify from the Table 18 that the inner products between the vectors are unchanged,
hence the indistinguishability between the hybrids holds due to the function hiding security
of IPFE.

Hybrid H5,φ,15. It is identical to H5,φ,14 except that the randommultiplier ŝ is removed from
the secret key vectors. The hybrids H5,φ,6 and H5,φ,7 are identically distributed.

We observe that H5,φ,15 ≈ H5,φ+1,1. Also, the guessing of the length of z is not required
from the hybrid H5,�pre+1,15. This is because the reduction knows the length of z while
simulating all the post-challenge secret keys. Thus, H5,�,15 ≡ H6. Therefore, by a hybrid
argument we can show that H4 ≡ H5,1,15 ≈ H5,�,15 ≡ H6. This completes the proof of the
claim. ��

7 FE for UAWS for DFA/NFA

In this section, we present the construction of FE for UAWS for deterministic finite automata
(DFA).We know that a DFA can be viewed as a Turing machine with space complexity 1 and
time complexity N which is the input length. Thus, our FE for UAWS for DFA is a special
case of the UAWS for L and NL. We first describe the AKGS construction for DFA from [62]
and then present a simplified construction of FE for UAWS for DFA.

Definition 11 A deterministic finite automata is a tuple (Q, yacc, δ), where Q ≥ 1 is the
number of states (we use [Q] as the set of states and 1 the initial state), yacc ∈ {0, 1}Q indicates
whether each state is accepting, and δ is a (state transition) function between [Q]×{0, 1} and
[Q]. For x ∈ {0, 1}N for some N ≥ 1, the DFA accepts x if there exits q0, . . . , qN ∈ [Q]
(called an accepting path) such that

q0 = 1, ((qi−1, x[i]), qi ) ∈ δ, yacc[qN ] = 1.

Transition matrix and blocksWe use eq ∈ {0, 1}Q to represent the current state of a DFA.
For a DFA M = (Q, yacc, δ), its transition matrix is

M(x)[q, q ′] =
{
1, if ((q, x), q ′) ∈ δ

0, otherwise.

For all q ∈ [Q] and x ∈ {0, 1}, consider c�e�
q M(x) —we have c ∈ {0, 1}Q and c[q ′] = 1 if

and only if q ′ is a valid state after the DFA reads x in state q . Inductively, e�
q M(x1) · · ·M(xn)

is a vector that counts the number of computation paths reaching each state starting from
state q after reading x1, . . . , xn . Let the transition blocks be Mx = M(x) for x ∈ {0, 1}, the
M(x) = (1 − x)M0 + xM1. We arithmetize the computation of DFA by defining

M |N (x) = e�
1

N∏

i=1

((1 − x[i])M0 + x[i]M1) · yacc over Zp for x ∈ Z
N
p .

AKGS for DFA Similar to the AKGS construction used in our FE scheme for Turing machines,
the recursive mechanism for garbling the matrix multiplication yields a piecewise secure
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AKGS forDFA.Let us consider the function classF = {(M, 1N , p)|M is an DFA, p is prime},
i.e., M |N is a function overZp and is represented as (M, 1N , p). The AKGS = (Garble, Eval)
for F works as follows:

Garble((M, 1N , p), z, β) It takes input theDFA (M, 1N , p) and two secret integers z, β ∈
Zp . It computes the transition blocks M0 and M1 for M , sample r0, . . . , rN ← Z

Q
p , and

defines the label functions:

L init(x) = β + e�
1 r0,

for i ∈ [N ] : (Li,q)q∈[Q](x) = −r i−1 + ((1 − x[i])M0 + x[i]M1)r i
(LN+1,q)q∈[Q] = −rN + z yacc.

It collects the coefficients of these label functions and returns themas (�init, (�i,q)i∈[N+1],q∈[Q]).
Eval((M, 1N , p), x, �init, (�i,q)i∈[N+1],q∈[Q]) The evaluation procedure takes input string

x ∈ Z
N
p and the labels as input. It computes the transition blocks M0,M1 of M , sets �i =

(�i,q)q∈[Q] for i ∈ [N + 1], and outputs the value

�init + e�
1

N+1∑

i=1

i−1∏

j=1

((1 − x[i])M0 + x[i]M1) · �i

We can similarly verify the correctness of the evaluation process and easily verify that the
AKGS construction described above satisfies the linearity property and piecewise security as
required.

Theorem 5 [62] The AKGS construction for DFA described above is special piecewise secure
with L init being the first label function, the other label functions sorted in increasing order
i , and the randomness sorted in the same order as the label functions.

7.1 The construction

In this section, we only present the construction of our public key FE scheme for DFA that
supports polynomial number of secret keys.We omit the description of the 1-key 1-ciphertext
secure version of the scheme since it is a simpler variant of the public key counter part.

Wenowdescribe the construction of public key FE forUAWS forDFAPK-UAWSDFA(poly,1,1) =
(Setup, KeyGen, Enc,Dec). The Setupworks similar to that of FE for UAWS for L (see Sect.
6.1). For the security analysis, we require some extra hidden subspaces the number of which
can be determined while proving the security of the scheme similar to our public key FE for
UAWS for L (see Sect. 6.2).

KeyGen(MSK, (M, IM)): On input the master secret key MSK = (IPFE.MSK, IPFE.M̃SK)

and a function tuple M = (Mk)k∈IM indexed w.r.t. an index set IM ⊂ N of arbitrary
size , it parses Mk = (Qk, yk, δk) ∀k ∈ IM and samples the set of elements

{

α, βk ← Zp | k ∈ IM ,
∑

k

βk = 0 mod p

}

.

It computes a secret key IPFE.SKpad ← IPFE.KeyGen(IPFE.MSK, [[vpad]]2) for the fol-
lowing vector vpad:

vector index1 index2 pad initpub randpub accpub tbpub0 tbpub1
the other
indices

vpad 0 0 α 0 0 0 0 0 0
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For all k ∈ IM , do the following:

1. For Mk = (Qk, yk, δk), compute transition blocksMk,0,Mk,1 ∈ {0, 1}Qk×Qk .
2. Sample independent random vector rk, f ← Z

Qk
p and a random element πk ∈ Zp .

3. For the following vector vk,init, compute a secret key IPFE.SKk,init ← IPFE.KeyGen(

IPFE.MSK, [[vk,init]]2):
vector index1 index2 pad initpub randpub accpub tbpub0 tbpub1

the other
indices

vk,init πk k · πk 0 rk, f [1] 0 βk 0 0 0

4. For each q ∈ [Qk], compute the following secret keys

IPFE.SKk,q ← IPFE.KeyGen(IPFE.MSK, [[vk,q ]]2) and

˜IPFE.SKk,q ← IPFE.KeyGen(IPFE.M̃SK, [[̃vk,q ]]2)
where the vectors vk,q , ṽk,q are defined as follows:

vector index1 index2 pad initpub randpub accpub tbpub0 tbpub1
the other
indices

vk,q πk k · πk 0 0 −rk, f [q] 0 (Mk,0rk, f )[q] (Mk,1rk, f )[q] 0

vector index1 index2 randpub accpub the other
indices

ṽk,q k k · πk −rk, f [q] α · yk[q] 0

Finally, it returns the secret key as

SK(M,IM ) =
(

(M, IM), IPFE.SKpad,
{
IPFE.SKk,init,

{
IPFE.SKk,q , ˜IPFE.SKk,q}q∈[Qk ]

}

k∈IM

)

.

Enc(MPK, x, z): On input the master public key MPK = (IPFE.MPK, IPFE.M̃PK), a public
attribute x ∈ {0, 1}N for some arbitrary N ≥ 1, and the private attribute z ∈ Z

n
p for

some arbitrary n ≥ 1, it samples s ← Zp and compute a ciphertext IPFE.CTpad ←
IPFE.Enc(IPFE.MPK, [[upad]]1) for the vector upad :

vector index1 index2 pad initpub randpub accpub tbpub0 tbpub1
the other
indices

upad 0 0 s 0 0 0 0 0 0

Next, it does the following:

1. Sample a random vector rx ← Z
[0,N ]
p .

2. For each k ∈ [n], do the following:
(a) Sample a random element ρk ← Zp .
(b) Compute a ciphertext IPFE.CTk,init ← IPFE.SlotEnc(IPFE.MPK, [[uk,init]]1) for the

vector uk,init:

vector index1 index2 pad initpub randpub accpub tbpub0 tbpub1
the other
indices

uk,init −k · ρk ρk 0 s · rx[0] 0 s 0 0 ⊥
(c) For all i ∈ [N ], do the following:

(i) Compute IPFE.CTk,i ← IPFE.SlotEnc(IPFE.MPK, [[uk,i ]]1) for the vector uk,i :
vector index1 index2 pad initpub randpub accpub tbpub0 tbpub1

the other
indices

uk,i −k · ρk ρk 0 0 s · rx[i − 1] 0 s · rx[i](1 − x[i]) s · rx[i]x[i] ⊥
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(d) For i = N + 1, compute ˜IPFE.CTk,N+1 ← IPFE.SlotEnc(IPFE.M̃PK, [[̃uk,N+1]]1) for
the vector ũk,N+1:

vector index1 index2 randpub accpub the other
indices

ũk,N+1 −k · ρk ρk s · rx[N ] s · z[k] ⊥
3. Finally, it returns the ciphertext as

CTx =
(

x, n, IPFE.CTpad,
{
IPFE.CTk,init, {IPFE.CTk,i }i∈[N ], ˜IPFE.CTk,N+1

}

k∈[n]

)

.

Dec(SK(M,IM ),CTx): On input a secret key SK(M,IM ) and a ciphertextCTx , do the following:

1. Parse SK(M,IM ) and CT(x,T ,S) as follows:

SK(M,IM ) =
(
(
(Mk)k∈IM , IM

)
, IPFE.SKpad,

{
IPFE.SKk,init,

{
IPFE.SKk,q , ˜IPFE.SKk,q}q∈[Qk ]

}

k∈IM

)

, Mk = (Qk, yk, δk),

CTx =
(

x, n, IPFE.CTpad,
{
IPFE.CTk,init, {IPFE.CTk,i }i∈[N ], ˜IPFE.CTk,N+1

}

k∈[n]

)

.

2. Output ⊥, if IM �⊂ [n]. Else, it proceeds to the next step.
3. Use the IPFE decryption to obtain [[μpad]]T ← IPFE.Dec(IPFE.SKpad, IPFE.CTpad).
4. For k ∈ IM , i ∈ [N ], invoke the IPFE decryption to compute all label values as:

∀k ∈ IM : [[�k,init]]T = IPFE.Dec(IPFE.SKk,init, IPFE.CTk,init)
∀k ∈ IM , i ∈ [N ] : [[�k,i ]]T = IPFE.Dec(IPFE.SKk,q , IPFE.CTk,i )

∀k ∈ IM , i = N + 1 : [[�k,N+1]]T = IPFE.Dec( ˜IPFE.SKk,q , ˜IPFE.CTk,N+1)

5. Next, invoke the AKGS evaluation procedure and obtain the combined value

[[μ]]T =
∏

k∈IM

Eval
((

Mk, 1
N , p

)
, x, [[�k,init]]T,

{
[[�k,i ]]T

}

i∈[N+1]

)

6. Finally, it returns μ′ such that [[μ]]T = ([[μpad]]T)μ
′
, where gT = e(g1, g2). Similar to

[8], we assume that the desired attribute-weighted sum lies within a specified polynomial-
sized domain so that μ′ can be searched via brute-force.
The correctness of our PK-UAWSDFA(poly,1,1) can be shown similarly to our public key FE

scheme for L. We state the following corollary about the adaptive simulation security of the
scheme. The corollary can be proved similar to the proof of the Theorem 4.

Corollary 1 Assuming the SXDH assumption holds in G and the IPFE is function hiding secure,
the above construction of 1-Slot FE for UAWS for DFA is adaptively simulation secure.
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