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Abstract
While multi-model ensembles (MMEs) of seasonal climate models (SCMs) have been used for
crop yield forecasting, there has not been a systematic attempt to select the most skillful SCMs to
optimize the performance of a MME and improve in-season yield forecasts. Here, we propose a
statistical model to forecast regional and national wheat yield variability from 1993–2016 over the
main wheat production area in Argentina. Monthly mean temperature and precipitation from the
four months (August–November) before harvest were used as features. The model was validated
for end-of-season estimation in December using reanalysis data (ERA) from the European Centre
for Medium-Range Weather Forecasts (ECMWF) as well as for in-season forecasts from June to
November using a MME of three SCMs from 10 SCMs analyzed. A benchmark model for
end-of-season yield estimation using ERA data achieved a R2 of 0.33, a root-mean-square error
(RMSE) of 9.8% and a receiver operating characteristic (ROC) score of 0.8 on national level. On
regional level, the model demonstrated the best estimation accuracy in the northern sub-humid
Pampas with a R2 of 0.5, a RMSE of 12.6% and a ROC score of 0.9. Across all months of
initialization, SCMs from the National Centers for Environmental Prediction, the National Center
for Atmospheric Research and the Geophysical Fluid Dynamics Laboratory had the highest mean
absolute error of forecasted features compared to ERA data. The most skillful in-season wheat yield
forecasts were possible with a 3-member-MME, combining data from the SCMs of the ECMWF,
the National Aeronautics and Space Administration and the French national meteorological
service. This MME forecasted wheat yield on national level at the beginning of November, one
month before harvest, with a R2 of 0.32, a RMSE of 9.9% and a ROC score of 0.7. This approach
can be applied to other crops and regions.

1. Introduction

Crop yield is expected to become more variable [1,
2] under advancing climate change [3, 4] with pos-
sible consequences for food security [5, 6]. To coun-
teract these disturbances, crop yield forecast models
are used [7]. These models assist to prepare humanit-
arian aid efforts [8] or to negotiate trade agreements
[9]. However, yield forecasts that are provided before
harvest face unknown weather conditions between

forecast issue date and harvest. When meteorolo-
gical and vegetation indices are available for machine
learningmodels, this gap of unknown weather is usu-
ally ignored [10]. Alternatively, statistical [11, 12]
or dynamical seasonal climate models (SCMs) [13–
15] are used. SCMs with prediction ranges of several
months have become increasingly skillful [16] and
can help anticipating unexpected weather. In addi-
tion, Multi-Model-Ensembles (MMEs) of individual
SCMs have improved weather forecasts [17, 18] and
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crop yield forecast [15, 19–21]. The MMEs used are
usually provided ‘out-of-the-box’ from climate cen-
ters such as the APCC-MME [20, 21] or the MMEs
are built without analyzing the accuracy of the par-
ticipating SCMs [15]. In the field of crop yield fore-
casting, no attempt has been made yet to systemat-
ically analyze SCMs to build a more accurate MME.
SCM forecast skill varies by region, forecasted quant-
ity, lead time, spatial and temporal aggregation and
forecast issue month [22, 23]. Here, we propose a lin-
ear regressionmodel to forecast regional and national
crop yield variability with a MME that is built spe-
cifically for a model use case by analyzing ten SCMs
[18]. Other assessment studies on the seasonal fore-
cast performance over South America indicatedmod-
erate to poor skill for the Argentinian Pampas [23–
25], one of the most important agricultural region
in the world. Given that Argentina is a major wheat
producer and exporter in South America, contribut-
ing around 60%–70% of total South American wheat
grain output [26, 27], we use Argentina as a test coun-
try and wheat as the model crop to analyze if sea-
sonal forecast performance can be improved and used
within a crop yield model when a MME is built sys-
tematically. Like previous studies [6, 10, 28–30], we
assess the approach on regional level across a wide
range of climate conditions and on national level.
Like several other countries in the Southern Cone,
Argentina’s cereal crops have been negatively affected
by climate change. The rise in average daily tem-
perature, mostly due to higher nighttime temper-
atures, accelerates crop phenology and diminishes
yields [31]. In that context, wheat yield forecasts
are crucial for Argentina. In our proposed approach,
we have validated both the end-of-season estimation
case using the European Centre for Medium-Range
Weather Forecasts Reanalysis data (ERA) and the in-
season forecast case using a MME.

2. Material andmethods

The data flow of this study is shown in figure 1,
including indications on the corresponding sections
with further information. Section 2.1 explains the
preparation of historical wheat data from Argentina.
Sections 2.2 and 2.3 summarize the preprocessing
steps of ERA and SCM data. Finally, section 2.4
explains the underlying model training and the val-
idation procedure for both end-of-season (ERA) and
in-season (MME) applications.

2.1. Region of study and historical wheat data
In Argentina, wheat cultivation is mainly rainfed
[32] and the season spans from June to December
[33]. Around 95% of wheat is produced in the five
provinces Santa Fe, Córdoba, Entre Rios, Buenos
Aires and La Pampa [34]. From these provinces, his-
torical wheat data was collected from 182 muni-
cipalities through the Ministry of Agriculture of

Argentina [34]. During data preparation, municip-
alities with incomplete time series from 1993–2016
were dropped (142 municipalities remaining) and
assigned to regions. The regions used in this study
were obtained from the ‘Map of Argentinian wheat
sub-regions and other winter cereals’ [35]. In this
map, municipalities form a region based on similar
soil properties as well as temperature and precipit-
ation during the winter cropping season from April
to December. The twelve regions analyzed in this
study are depicted in figure 2(a). Municipality yield
was aggregated to regional (supplementary figure S1)
and national level (black line, figure 2(b)) using a
weighted average with weights being the harvested
area.

Yield anomalies for each region and on national
level is computed as follows using absolute yield:

anomalyt =
absolutet − absolutet−2:t+2

absolutet−2:t+2

∗ 100. (1)

Yield anomaly for year t (anomalyt) was calcu-
lated by subtracting the 5 year-moving average of
absolute yields from years t− 2 to t+ 2 from the cur-
rent year’s absolute yield (absolutet) and dividing the
difference by the 5 year moving average and multiply
the result by 100 to obtain a percentage. The mov-
ing average approach to estimate expected yield has
been proposed by Iizumi et al on crop yield variab-
ility forecasts [21]. National wheat yield anomalies
are depicted in figure 2(c). Regional absolute yield as
well as the trend and anomalies can be found in the
supplementary materials (supplementary figures S1
and S2).

2.2. Temperature and precipitation data
Wheat yield (grains per unit area) is determined by
two numerical components: Spikes per unit area and
grains per spike. There is an important plasticity of
these numerical yield components depending on the
environmental conditions to which wheat is exposed.
For example, a greater initiation of tillers prior to
stem elongation (August-September) that results in
greater establishment of spikes will in part be off-
set by a reduction in the number of fertile florets
(grains) per spike at anthesis (October-November)
[36]. To account for the climate impact on yield form-
ation, we used monthly mean temperature and pre-
cipitation from the last four months before harvest
(August–November) [31]. Higher resolution climate
data were not available for SCMs coming from the
North-American-Multi-Model Ensemble (NMME)
(see section 2.3). In addition, Asseng et al [37] and
Wall et al [38] have shown a robust linear relation-
ship between wheat yield and seasonal mean temper-
ature. Other crop yield models for Argentina used
additional variables like soilmoisture [30], large-scale
climate indices like the El Niño–Southern Oscillation
index [21, 39] or remotely sensed quantities like land
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Figure 1. Data flow used in this study. The chart is divided into three parts (dashed rectangles). The section with further
information on the steps carried out are indicated on top of the dashed rectangle. Actions are denoted in rectangles with solid
rounded corners, data is indicated in rectangles with solid sharp corners.

Figure 2. Study area and wheat yield data. (a) Major wheat-cultivating municipalities and their corresponding regions from the
‘Map of Argentinian wheat sub-regions and other winter cereals’ [35]. Wheat yield on municipality level was aggregated to
regional and national level by calculating the weighted mean yield with weights being the harvested area. (b) National absolute
wheat yield (solid line) and yield trend (dashed line) estimated using a 5 year rolling average. (c) Trend-corrected national yield
variability.
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Figure 3. Climate conditions over study area. Observed mean daily temperature (a)–(d) and mean daily precipitation (e)–(h) for
August, September, October and November between 1993 and 2016 is indicated. The borders of the 12 study regions are marked
as black.

surface temperature and vegetation indices [28, 40].
Our objective here is an isolated analysis of the in-
season forecast accuracy coming from a MME (see
section 2.3). Therefore, we decided to solely use met-
eorological indices [13, 20]. The in-season forecasts
are benchmarked with the end-of season estimation,
when all indices are available as observations and crop
yield can be estimated under full knowledge. The data
for the end-of-season estimation was gathered from
the ERA5-Land reanalysis dataset (ERA) for August
to November from 1993–2016 [41], which was avail-
able at 0.1◦ spatial resolution and was subsequently
aggregated to our study regions. The monthly mean
climate conditions from 1993–2016 per variable and
region are indicated in figure 3. In addition to provid-
ing the end-of-season benchmark, ERA data was used
for model training (finding the coefficients) for the
in-season forecast validation (see section 2.4) using
MME data.

2.3. Seasonal climate forecasts
To provide wheat yield forecasts before harvest, fore-
casted monthly temperature and precipitation data
were obtained as hindcasts (retrospective forecasts)
from SCMs. Three platforms that offer access to hind-
casts of multiple SCMs are: The Copernicus Climate
Data Store from the Copernicus Climate Change
Service (C3S) [42], the Data Library of the NMME
[43] and the Climate Information Toolkit of the Asia-
Pacific Climate Center (APCC) [44]. Hindcasts from
APCCwere generally not considered, because of their

sparse spatial resolution of 2.5◦. The NMME con-
sists of six SCMs and the C3S offers access to eight
SCMs, however some SCMs were available on both
platforms and others hadmissing data for some years.
Hence, we chose 10 SCMs (table 1). For each SCM,
hindcasts from 1993–2016 across the study region at
a resolution of 1.0◦ were collected. The study period
was chosen, as it was the largest common period
where hindcasts were available for all 10 SCMs. To
validate the in-season performance of the wheat yield
model, we used hindcasts that were initialized at the
beginning (within the first week) of eachmonth from
June to November throughout the cropping season
with forecasts for the months August-November. The
highest temporal resolution across all SCMs were
monthly mean data and therefore used across all
applications. At each month of initialization (from
June to November), hindcasts of monthly mean tem-
perature and precipitation for August, September,
October and November were obtained, when these
months were in the future. Each SCM provides an
ensemble of hindcasts that are run with different ini-
tial conditions [45].Here, we took the ensemblemean
to only have one output per SCM.

The gridded hindcasts were then aggregated to the
twelve study regions. Next, regional hindcasts were
bias-adjusted with ERA data. For temperature data,
scaled distribution mapping [53] was used for bias-
adjustment and for precipitation data, linear scal-
ing was applied [54]. The structural errors of indi-
vidual SCMs in forecasting weather conditions can be
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Table 1. Seasonal climate models used in this study. From each model, monthly hindcasts were generated from June to November to
forecast monthly mean temperature and rainfall for August, September, October and November during 1993–2016. In addition to these
seasonal climate models, reanalysis data from the European for Medium-Range Weather Forecasts (ERA) provided by the Copernicus
Climate Data Store was used for model training, end-of-season estimation and to complete the feature vector for in-season forecasts
e.g. to provide August and September data for forecasts made in beginning of October. The seasonal climate models used in this study
were all obtained in grid cell resolutions of 1◦.

ID Abbreviation Country
System
name Source

1 CMCC Italy SPS3.5 C3S [46]
2 DWD Germany GCFS2.1 C3S [47]
3 ECCC Canada CANSIPSv2.1 C3S [48]
4 ECMWF European Union SEAS5 C3S [49]
5 METFR France SYS8 C3S [50]
6 UKMO United Kingdom GloSea6 C3S [51]
7 NCAR United States of America CCSM4 NMME [52]
8 GFDL United States of America CM2.5 NMME [52]
9 NASA United States of America GEOS5 NMME [52]
10 NCEP United States of America CFSv2 NMME [52]

reduced by combining their outputs to MMEs [17].
Smaller MMEs with data from the best (maximum
five) available SCMs outperform larger MMEs [18].
To identify the best SCMs, we calculated the mean
absolute error (MAE) between SCM and ERA pre-
dictors across all variables and regions, separately for
each month of initialization. Then, the ten SCMs are
filtered and only those are kept that are at least in
one month within the top five SCMs [18] with the
lowest MAE. Those SCMs that are not ranked within
the top five SCMs in any month are discarded. With
the remaining SCMs all possible MMEs of sizes 2–
5 were built, e.g. for MME size 2, all possible SCM-
pairs out of the best SCMs were built, for MME size
3, all possible MMEs with three SCMs were built and
so on. To avoid spatial and temporal overfitting, we
decided to validate the sameMME for all regions and
months of initialization. The final MME was selec-
ted based on the coefficient of determination (R2) of
national yield forecasts. IfR2 were the same, the selec-
tionwasmade using root-mean-square error (RMSE)
(see section 2.4). Since hindcasts are retrospective
forecasts and our ultimate technical objective are in-
season yield forecasts, we will align the terminology
and refer to hindcasts as forecasts from now on to
make the text clearer and easier to read.

2.4. Statistical model and analysis
Regional wheat yield variability ŷregional was modeled
as a linear combination of the eight available predict-
ors x1, . . . , x8 (monthly mean temperature and pre-
cipitation fromAugust to November)multiplied with
their corresponding learned coefficientsβ1, . . . ,β8 [2]
plus an intercept β0. We determined the coefficients
using a ridge estimator [3] to avoid overfitting [55].

ŷregional = β0 +β1x1 + · · ·+β8x8 (2)

argminβ

N∑
i=1

(yi −β ′xi)
2
+α

8∑
j=1

β2
j . (3)

In ridge regression, coefficients are found bymin-
imizing the sum of squared errors between estim-
ated and actual yield anomaly (

∑N
i=1 (yi −β ′xi)

2)

and the sumof squared coefficients (α
∑8

j=1β
2
j ), with

α being a parameter that controls the strength of
the coefficient regularization. To find the optimal
α, we used Leave-One-Year-Out Cross-Validation
(LOOCV). For each α, regional models were trained
and validated (using ERA data) and the average per-
formance metrics across all regions were calculated.
The statistics used in this study are the RMSE, R2

and the MAE [56]. The model with the lowest RMSE
across all regions was selected as the final model. In
addition to the regression analysis, we validated how
well our model discriminates between positive and
negative yield anomalies using the ReceiverOperating
Characteristic (ROC) [57]. ROC scores above 0.6
indicate skill that is better than random guessing with
1 being a perfect model [58]. For the in-season fore-
casts, the final model was validated with MME data.
To complete the feature set for yield forecastsmade at,
e.g. the beginning of October, ERA data was used for
August and September and MME data was used for
October and November. Yield estimations and fore-
casts on regional level were aggregated to national
level by using estimated harvested area as weights.
Actual harvested area is unknown before harvest, so
harvested area for each yearwas estimated as themean
harvested area from all other years.

3. Results

The best performing end-of-season model, trained
and validated with ERA features, was found with a
ridge regression regularization term α of 8. The aver-
age regional and national estimation performances
of the final model are given in figure 4. The end-
of-season model achieves a R2 of 0.24, a RMSE of
17.7% and a ROC score of 0.65 on regional level
(figure 4(a)), validated via LOOCV over all 24 years
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Figure 4. End-of-season wheat yield estimation. Estimated yield variability against the corresponding observed yield values on
regional (a) and national (b) level, including the average performance metrics. The gray dashed line corresponds to the fit of the
linear function and the black line represents the 1:1 relationship. (c) Annual estimated wheat yield variability (dashed line) and
performance metrics (legend) using Leave-One-Year-Out Cross Validation over 24 years from 1993–2016.

from 1993 to 2016. National wheat yield estimations
were possible with R2 of 0.33, RMSE of 9.8% and
a ROC score of 0.83 (figure 4(b)). The fitted line
through the data points of annual observed yield vari-
ability and the corresponding estimated yield variab-
ility (gray dashed slope, figures 4(a) and (b)) is less
steep than the black identity line. This indicates that
both regional and national estimates have a tendency
of underestimating the extent of extreme years (yield
loss and yield gain). This tendency can also be seen
in figure 4(c), where the annual yield anomaly estim-
ates (gray dashed line) are plotted against the actual
observed estimates (black solid line). The national
estimation model discriminates well between posit-
ive and negative yield anomalies (ROC score of 0.8,
figure 4(b)) but e.g. in the twomost extreme year 2008
(yield loss) and 2010 (yield gain), it failed to estimate
the magnitude (figure 4(c)).

A regional analysis of the end-of-season estima-
tion model is given in figure 5. The twelve regions
are sorted alphabetically and their annual wheat yield
estimations (gray dashed line) are shown along-
side the corresponding actual yield anomaly (black
solid line) (figures 5(a)–(l)). In Pampa deprimida
(figure 5(c)), Pampa mesopotamica (figure 5(d)) and
Pampa serrana (figure 5(j)), skillful end-of-season

estimations are not possible, indicated with a neg-
ative R2 (trivial approach of estimating mean yield
would perform better). In addition, Pampa ondu-
lada norte (figure 5(e)), Pampa semiardida norte
(figure 5(h)) and Pampa semiarida sur (figure 5(i))
have ROC scores of 0.6 or lower, indicating poor
skill in discriminating between positive and negat-
ive yield anomalies. These six regions with either
R2 ⩽ 0 or ROC score ⩽ 0.6 are not considered for
the subsequent analysis of the in-season yield fore-
cast model using MME data, since they already failed
to provide skillful estimates with ERA data. The best
wheat yield estimations are achieved in Llanos nord-
patagonicos (figure 5(b)) and in Pampas subhumeda
norte (figure 5(k)) with R2 of 0.56 and 0.59, RMSE
of 20.1% and 11.9% and ROC scores of 0.8 and 0.9,
respectively. In terms of spatial distribution, wheat
yield estimates are generally more skillful in the west-
ern regions (supplementary figure S3).

To forecast wheat yield variability in-season
before the predictors are available as observations,
forecasted features derived from SCM data were
used. For each month of initialization from June [6]
to November [11], the MAE across all years and
regions between forecasted and observed ERA fea-
tures is shown in figure 6. A spatial analysis of the
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Figure 5. Regional end-of-season wheat yield estimations. Annual estimated wheat yield variability (dashed line) and
performance metrics (legend) using Leave-One-Year-Out Cross Validation over 24 years from 1993–2016 are indicated for each of
the 12 regions (a)–(l), sorted alphabetically by name.

regional forecast skill by SCM and month of ini-
tialization can be found in supplementary figure S4.
Up until September, the performance among the
SCMs is mixed with no clear trend of improvement
(figure 6). In October and November, most SCMs
become more accurate. In November, all SCMs per-
form best across all months of initialization. The
five best SCMs with the lowest MAE per month
of initialization are indicated with a superscript
asterisk. The best SCMs in June are ECCC, NASA,
CMCC, UKMO and DWD. From July to October,
the five best SCMs are always CMCC, DWD, ECCC,
ECMWF and ECMWF. In November, the best SCMs
are CMCC, ECCC, ECMWF, METFR and UKMO.
The count of how often each SCM is within the
top five is indicated at the right next to the heat-
map. The three SCMs from NCAR, GFDL and NCEP
are never within the best SCMs and are not con-
sidered for the MME analysis. The remaining seven
SCMs were used to build all possible MMEs of sizes
2–5. None of these 120 MMEs makes skillful yield
forecasts on national level before November (sup-
plementary table S1). The best forecasts (measured
as R2 and RMSE) were achieved with a 3-member-
MME using the unweighted average of the forecas-
ted features from ECMWF, NASA and METFR (sup-
plementary table S1 and S2). This MME also out-
performs the yield forecasts made with individual
SCM data (supplementary table S1 and S2). Average
regional in-season wheat yield forecast quality of this

3-member-MME is shown in figure 7. Although fore-
casts improve from June (figure 7(a)) to November
(figure 7(f)) with lower RMSE, higher R2 and higher
ROC scores, skillful yield forecasts are never possible,
indicated through a R2 ⩽ 0 and a ROC score ⩽ 0.6
for all months (figures 7(a)–(f)). Forecasts generally
fail to anticipate the extend of extreme years, depic-
ted through the gray dashed slopes that are more flat
than the 1:1 identity lines. A regional analysis of the
forecasts quality reveals that skillful forecasts are pos-
sible in November for the two regions Llanos nord-
patagónicos and Pampa semiárida sur and in October
for Pampa semiárida central (supplementary figure
S5, supplementary table S3).

In-season wheat yield forecast quality on national
level is shown in figure 8, where forecasts are com-
pared with observed yield anomalies throughout
the cropping season. From June (figure 8(a)) until
October (figure 8(e)), national wheat yield forecasts
are not skillful, depicted through a R2 ⩽ 0 and a ROC
score ⩽ 0.6. Both R2 and RMSE improve through-
out the season. In November, the 3-member MME
(with ECMWF, NASA andMETFR data) makes skill-
ful national wheat yield forecasts with a R2 of 0.32,
RMSE of 9.9% and a ROC score of 0.7 (figure 8(f)).
In November, forecast skill has approached the end-
of-season estimation skill (figure 4(a)). The approach
could not forecast the extent of extreme low yields
(e.g. 2002, 2008) but anticipated correctly a negative
yield event in these years.

7
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Figure 6. SCM feature forecast skill. Mean absolute error (MAE) between forecasted and reanalysis features is shown per seasonal
climate model (SCM) and month of initialization. Column-wise for each month of initialization, the MAE is computed for all
features that are forecasted at this month, ignoring features from past months. The MAE values are presented in units of standard
deviation (σ), given that all features underwent standardization during preprocessing. SCMs were sorted in ascending order by
the November MAE. Each month, an asterisk indicates the five best SCMs with the lowest MAE. The number of months in which
a SCM was within the top five with the lowest MAE are shown on the right hand side.

Figure 7. Regional in-season forecast analysis. Forecasted yield anomaly against the corresponding observed yield anomaly values
on regional level is shown for each month of initialization from June (a) to November (f). The gray dashed line corresponds to the
fit of the linear function and the black line represents the 1:1 relationship. The average forecast statistics across all regions are
indicated in the legend.

4. Discussion

We proposed an approach of forecasting regional
and national wheat yield variability in Argentina
before harvest using monthly meteorological indices
from the last four months before harvest (August-
November) with a 3-member-MME consisting of
ECMWF, NASA and METFR data. This is the first
crop model study that compared as many as 10 SCMs
to build a more accurate MME for in-season yield
forecasts. On national level, the suggested approach

performed poorly from the beginning of the season
in June until October, with R2 ⩽ 0 or a ROC score
⩽ 0.6. However, at the beginning of November, one
month before harvest begins, national yield forecasts
were possible with R2 of 0.32, RMSE of 9.9% and a
ROC score of 0.7. On regional level, the approach
performed poorly with skillful forecasts in only two
regions in November and one region for October and
November.

In Argentina, grains per unit area are mostly
defined during the critical period from October to

8
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Figure 8. Seasonal national wheat yield forecasts for Argentina. Forecast of national wheat yield anomalies from June (a) to
November (f). The observed (solid black lines) and the forecasted (dashed gray lines) wheat yield anomalies with multi-model
ensemble (MME) data for each year is shown. In each plot, the R2, the root-mean-square error (RMSE) and the receiver operating
characteristic (ROC) score of the MME approach is shown.

November, through the establishment of the num-
ber of spikes per unit area and the definition of the
number of fertile florets per spike at anthesis. As the
meteorological indices for November are more accur-
ately forecasted from the MME towards the end of
the season, the crop yield model makes better fore-
casts with an increased R2 and a lower RMSE. The
end-of-season model that uses ERA features instead
of forecasted features from SCMs achieved a R2 of
0.33, a RMSE of 9.8% and a ROC score of 0.83 on
national level and a R2 of 0.24, a RMSE of 17.7% and
ROC score of 0.65 on regional level. Our approach
suggests that large MMEs are not needed to provide
more accurate national in-season wheat yield fore-
casts and is in alignment with the results from climate
studies [18]. One possible explanation on why the
best MME found in our study was a three-member-
MME with data from ECMWF, NASA and METFR is
that their forecast errors have lower model-to-model
correlations than other SCMs (supplementary figure
S6). In addition, only using weather conditions from
the last four months before harvest as predictors
were sufficient to discriminate between positive and
negative yield anomalies one month before harvest.
As outlined above, this could be because the most
important numerical yield component, the number
of grains per unit area, is defined during the final
months before harvest. It is important to clarify that
another numerical yield component, grain weight,
is also defined during the last part of the critical
period, however, the ability to explain the variations
in yield of this component is much more limited

than that of the number of grains per unit area
[36, 59]. Wheat yield estimation and forecast per-
formance increased when aggregated from regional
to national level. This has been observed in sim-
ilar studies [10] with a possible explanation being
that yield on regional level is overestimated in some
regions and underestimating in others and through
the aggregation the effects were reduced and aver-
aged out. For national November forecasts, we ana-
lyzed model uncertainty, which varies among sea-
sons, but is in general relatively small based on the
threeMMEmembers used in the study (figure S7(a)).
However, little uncertainty, i.e. small differences
between the forecasts of the two models, does not
necessarily indicate high precision, i.e. a small error
in yield forecasting (figure S7(b)). Based on hind-
casts, our results of 9.8% RMSE for national end-of-
season-estimates, 9.9% RMSE for national in-season
November forecasts and 19.8%RMSE for regional in-
seasonNovember forecasts are comparable to another
study by Franch et al for Argentinian wheat yield
with 11%, 12.4% and 22.5% RMSE, respectively [28].
The performance difference may be explained by
the fact that Franch et al [28] employed a statistical
method to forecast future vegetation indices for in-
season yield forecasts, whereas our approach is based
on forecasted weather predictors from dynamical
SCMs. Furthermore, their subnational approach uses
administrative units, while we use the regions from
the ‘Map of Argentinian wheat sub-regions and other
winter cereals’ [35] that are based on climate and soil
conditions.
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While the results are promising and encourage an
application to other crops and regions, there are some
limitations and obstacles that require further atten-
tion. To have a consistent dataset, we decided to use
reanalysis data (ERA) which is available in the same
gridded format like the SCM data [13, 21]. It has
been shown that reanalysis data can differ from in situ
observations, especially in mountainous regions [60,
61]. Although our study region is defined by flat
terrain across the Argentinian Pampas, differences
between ERA data and actual ground conditions may
have affected the model performance. The MAE was
calculated over the entire 24 years of the study period.
In the validation setting, however, when forecasting
for a specific year, the MAE would only be known for
all other 23 years except the current year. For example,
in September, the error between forecasted and ERA
precipitation for November is not known because the
ERA data is not available yet and hence, SCMs can-
not be selected on the basis of this year. We chose
this approach to show the potential in case the true
accuracy of all SCMs would be known for the target
use case. In an operational setting, we recommend
to calculate the MAE and to identify the best SCMs
using all available past years, where a true perform-
ance ranking is likely to converge to the same SCMs.
Furthermore, the SCMs from the NMME were only
available at monthly resolution, which restricted the
introduction of additional day-based indices, such as
killing degree days [62]. Future studies may attempt
to include evenmore SCMs that are currently certified
by the World Meteorological Organization [63] than
the ones studied here. Future work may use our find-
ings to propose a probabilistic yield forecast model
[64] instead of the deterministic regression approach
chosen here. This would facilitate a quantification
of reliability, which is crucial for transparent com-
munication and for the interpretation of the outputs
[65]. One possible approach to achieve this would be
the calculation of yield forecasts with each ensemble
member from the individual SCMs to obtain a yield
forecast range [64]. We used the ensembles mean
of the SCMs to obtain one output per SCMs which
may have caused a loss of signal [18]. In addition,
since each ensemble member is a physically plausible
forecast, averaging these forecasts leads to an output
that is not based on the underlying physical processes
anymore [18]. Better yield forecasts may also be pos-
sible if non-linear machine learning models are used,
such as RandomForest [66]. Lastly, vegetation indices
can be used as additional features to weather indices
and might lead to improved forecasts [67].

5. Conclusion

In-season wheat yield forecasts can help various
stakeholders to optimize their strategies and stabilize
food supply [7, 8]. To forecast wheat yield variabil-
ity in Argentina before harvest, we have shown how

a 3-member-MME can be applied. As medium and
long range weather forecasts are expected to further
improve in the near future [68, 69], in-season crop
yield forecast models that employ weather forecasts
can play a crucial role for food security.
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