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A B S T R A C T

Visual inspection in remanufacturing, despite technological progress, is still mainly performed by humans.
A rough assessment of the product’s general condition and the dedicated inspection of individual product
features or defects is necessary to identify the typically unknown product variant and assess the reusability of
a used product and its components. Therefore, a system for automated visual inspection must be flexible and
runtime-adaptive, as defects to be inspected in detail may occur anywhere on the product. In the present
work, this problem is framed as a view planning problem solved by means of supervised learning and
reinforcement learning using a specially developed simulation environment. Three variants of neural networks
(PointNet, PointNet++, and Point Completion Network) are compared in the supervised learning case, whereas
a deep learning SAC algorithm using the Point Completion Network as network structure is evaluated in
the reinforcement learning case. Considering the specific boundary conditions prevailing in remanufacturing,
the results are obtained from the use case of electric starter motor remanufacturing. The results show that
supervised learning and reinforcement learning are suitable for determining the poses of an acquisition system
at system runtime to react to an initially unknown inspection task. Our proposed framework is available open
source under the following: https://github.com/Jarrypho/View-Planning-Simulation.
1. Introduction

Artificial intelligence is becoming increasingly relevant in
production-related applications [1,2]. These include applications in
logistics and the supply chain, maintenance management, production
planning, and control, as well as quality management [3]. Research in
the latter, for example, in robotics, presents an additional possibility
for creating productivity in the context of production technology [4].
To realize this, robots’ flexibility and versatility can be combined with
intelligent approaches to enable self-learning and autonomous behav-
ior [5]. Thus, the increase of automation of tasks originally performed
by humans is enabled. This allows for counteracting the constantly
growing shortage of skilled workers, the associated cost pressure in
high-wage countries, and the subsequent migration of production ca-
pacities to low-wage countries. Furthermore, the automation of human
visual inspection, which is error-prone, can reduce the number of
misclassifications [6].

Such autonomous systems are particularly relevant in applications
where information is incomplete and an incomplete information ba-
sis prevails. An example is remanufacturing, where uncertainty exists
about the quality state and type of returned used products. This is why
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many remanufacturing processes, such as disassembly, reconditioning,
and reassembly, are carried out manually. This also applies to the visual
inspection process that precedes the actual remanufacturing [7].

The in-depth visual inspection takes place at a core dealer, an actor
preceding the actual remanufacturer in the reverse value chain [8] or at
the inbound acceptance in the remanufacturing plant [7]. Automating
these inspection steps is still difficult due to the prevailing uncertainty.
A reason for this is their highly variable quality condition and the
fact that it is difficult to predict the type, amount, location, and
severity of defects that will occur. Furthermore, additional informa-
tion accompanying the product, such as its three-dimensional product
model, is often unavailable [9]. This applies to the core dealers, and
the remanufactures themselves. Independent remanufacturers that are
not Original Equipment Manufacturers (OEM) often only have product
information that was acquired through reverse engineering [10]. But
even within the inbound acceptance in the remanufacturing plant of
an OEM, when potentially using automated visual inspection, product
identification would have to be carried out as the first step to decide on
the specific inspection routines for the product at hand. This, in turn, is
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a research subject currently being investigated, as a distinction usually
has to be made between several hundred different variants [11].

Due to the introduced challenges, it is, therefore, challenging to plan
inspection routines in advance [9]. In contrast to existing approaches
in the state of research, inspection routines must be defined at system
runtime using the adaptive capabilities of robot-based visual inspection
systems in combination with intelligent planning techniques [12,13].

The present work addresses the acquisition planning of a robot-
guided inspection system to enable a decision regarding the reman-
ufacturability of a returning used product. This acquisition planning
must be realized under the initial uncertainty of the existing three-
dimensional product model and the occurring defects. Within this work,
no evaluation of the image and geometry data collected during the
acquisition is intended. Instead, this work lays the foundation for
solving the relevant acquisition planning problems so that further work
can be devoted to the evaluation.

The work is structured as follows. First, the foundations relevant to
this work are presented, and the research deficit concerning adaptive
visual acquisition planning is derived in Section 2.

In Section 3, a formalization of the human visual inspection process
of returning used products is conducted. Afterward, the framework
presented in this work for solving visual acquisition problems with
approaches based on machine learning for autonomous and adaptive
visual inspection is described. Results of the work are presented in
Section 4.

2. State-of-the-art

Two basic problems of visual planning exist in the literature. An
overview of existing work in visual planning is given in the recently
published article by [14]. First, the Next-Best-View problem (NBV) is
the task of determining the next viewpoint that provides the highest
possible information gain with respect to the given task (e.g., the com-
plete surface coverage of an object) [15]. Secondly, the View Planning
Problem (VPP) aims to find a minimum sequence of viewpoints that
covers the entire surface of an object to be acquired [16].

Using machine learning, the NBV is mostly formulated and solved as
a supervised learning (SL) problem in the literature (cf. [17–22]). The
goal of SL is to approximate a function 𝑔 ∶ 𝑋 → 𝑌 , where 𝑋 is the input
pace and 𝑌 is the output space, given a set of 𝑁 training examples
(𝑥1, 𝑦1),… , (𝑥𝑁 , 𝑦𝑁 )} [23]. A model trained by SL thereby predicts �̂�𝑖
iven an input 𝑥𝑖, where, ideally, the prediction �̂�𝑖 equals the true label
𝑖 (�̂�𝑖 = 𝑦𝑖). In existing work dealing with the NBV, the input space is
ostly represented by some form of geometric object information. The

unction to be learned then corresponds to mapping the input space to
he output space, which is formed from a continuous or discrete set of
oses to be taken by the acquisition system. In most works using SL,
he true label 𝑦𝑖 given an input 𝑥𝑖 is thereby determined by choosing
he pose as label 𝑦𝑖 from the set of all possible poses that maximizes
he information gain regarding the objective of the task.

When using machine learning methods, the VPP is mostly modeled
s a sequential pose estimation problem and solved with reinforcement
earning (RL) (cf. [24–28]). In contrast to SL, RL is concerned with
inding a problem-solving strategy 𝜋 to solve a sequential problem [29].
n agent acts at time 𝑡 with an action 𝑎𝑡 in an environment represented

hrough state 𝑠𝑡. This action triggers the environment to transform into
subsequent state 𝑠𝑡+1 based on its environment dynamics. The agent

eceives a reward 𝑟𝑡 based on the quality of the action in fulfilling a
redefined goal. The goal of RL is then to learn the optimal strategy
∗. This strategy maximizes the Return 𝐺𝑡, which is the estimation of
he sum of all future rewards received in a state through optimal action
election, and, thus, enables the fulfillment of the predefined goal in
he best possible way [29]. In works to solve the VPP using RL, the
ction space is mostly modeled similarly to the SL problem. In contrast,
he state space definition offers more degrees of freedom. Like in SL,
eometric object information can be passed as state 𝑠 to determine
𝑡
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the next pose of the acquisition system as action 𝑎𝑡. However, passing
information of past states 𝑠0,… , 𝑠𝑡−1 or previous poses of the acquisition
system 𝑎0...𝑎𝑡−1 of a state–action sequence is possible.

Analyzing the state-of-the-art shows that works addressing the NBV
problem are simplified with respect to the input, e.g., by using vox-
elization (see [17–20]) or the output, e.g., in form of classification on
predefined viewpoints (see [17,19–22]). A general problem solution
where point clouds as the direct unprocessed output of a 3D sensor are
directly mapped to a sensor pose by machine learning does not exist in
the literature so far. The use of simplifications of the input space, such
as a voxelization or of the output space, by discretizing the continuous
set of possible poses of the acquisition system, allows a proof-of-concept
of the presented approaches but offers only approximate solutions for
real problems.

Deficits can also be identified with regard to the specific require-
ments in remanufacturing. Existing approaches for determining sequen-
tial poses by means of RL currently only address the view-planning
problem with explicit knowledge of the object model (e.g., triangle
mesh, see [24,25,28]). However, knowledge of an object model cannot
be assumed in remanufacturing since remanufacturers are often not
manufacturers of the original product and, thus, have no or only
difficult access to such information. Therefore, deriving the sequen-
tial order of poses must not depend on a three-dimensional object
model at runtime. Similarly, no approach currently allows the se-
quential determination of poses for inspecting defects or flaws that
are variably located on an object. To summarize, no work currently
provides a general approach to solving the problem of visual acquisition
planning problems, especially considering the specific requirements in
remanufacturing.

The research questions that have to be answered are as follows:

1. How can the visual inspection of the worker be characterized?
How can the characteristics of a worker’s visual inspection with-
out prior knowledge of the product to be inspected be formalized
in a sequence of visual planning tasks?

2. How can artificial intelligence approaches be used and modeled
to solve a formalized sequence of visual planning problems as
generically as possible without simplifying and automating an
initial visual inspection?

The research questions are answered using the proposed methodol-
ogy using a real remanufacturing product, the starter motor. The visual
planning problem in the initial visual inspection of a returning used
product in remanufacturing is considered for the first time. The novelty
of this work is based on the general formalization and solution of the
inspection problem in remanufacturing by methods of supervised and
reinforcement learning without an available geometry model of the
inspection object. The advantage of choosing a starter motor is that
it represents a real remanufacturing product and is often available in
a wide range of variants and sizes. Nevertheless, the basic structure
of the different variants is similar, which initially makes it somewhat
easier to evaluate the intelligent visual planning approaches developed.
Therefore, the starter motor is the ideal demonstrator product for
applying intelligent visual planning processes.

The insights gained from the general formalization of the problem
can also be transferred to other problems in industrial production.

3. Methodology - Modeling of the view planning simulation frame-
work

In the following, the challenges of inspection planning in reman-
ufacturing are transferred to known problems of vision planning (see
Section 3.1). This is followed by a detailed description of a simple,
generic, and modular simulation environment that can be used to solve
the derived problems of vision planning using both supervised and
RL-based approaches (see Section 3.2 and Sections 3.3 and 3.4 for
details).
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Fig. 1. Overview of the two distinct inspection problems addressed in this work. (a)
Overall inspection of a product. (b) Individual inspection of components and defects.

3.1. Derivation of vision planning problems based on human inspection

The visual planning tasks relevant to the automation of visual
inspection in remanufacturing can be derived from manual inspection
by a worker. The so-called core acceptance criteria provide guidance
on the relevant quality criteria to which particular attention is paid
during the inspection [30]. Two types of occurring defects can be
distinguished. First, the core acceptance criteria include defects that
can be identified by overall surface inspection. Thereby, an object’s
whole surface must be examined to find all defects on the product.
These include excessive corrosion and mechanical defects such as dents
or broken and missing parts. Secondly, defects that require a detailed
inspection are listed. These include overheated drive shafts, corroded
pulleys, or burnt-out electrical connections and are only found on
certain components. Based on these acceptance criteria, an inspector
decides on the suitability of a product with regard to its reusability in
a second life cycle after remanufacturing. The two types of inspection
problems can be seen in Fig. 1.

Therefore, two fundamentally different visual planning problems
can be derived from the inspection task of humans. First, (a) overall
inspection of the product with full surface coverage is necessary to
detect all possible defects on the entire product. In addition, an (b) indi-
vidual inspection of components and defects, which represent Regions
of Interest (RoI) that have been determined to be further examined by
surface inspection, may be necessary.

The problem of overall surface inspection, as outlined in subproblem
(a), can be modeled as a classical VPP. In this model, the solution
comprises a sequence of viewpoints selected to enable the complete
acquisition of an object’s surface by an acquisition system. This process
must satisfy certain constraints, such as minimizing the number of
acquisitions and reducing the length of the robot’s trajectory. This
problem can be formulated as a sequential pose estimation problem and
can be solved with RL.

The problem of individual inspection of single components or de-
fects (subproblem (b)) can be solved using SL or RL. The problem to be
solved is to find a pose of an acquisition system to inspect a certain
RoI. In the case of several RoIs on one object, this task can again
be converted into a sequential pose estimation problem, which can
be solved with RL. Another possibility is to solve the entire problem
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by combining the solution of individual solutions. For each RoI to be
inspected, a SL problem can be formulated, where the set of estimated
poses covering all RoIs must be transformed into a trajectory of the
robot to obtain the overall solution to cover all RoIs.

Considering both sub-problems, an inspection sequence looks as
follows. First, subproblem (a) is solved. Assuming a missing geometry
model of the inspection object (starter motor), the acquisition system’s
poses must be selected to cover the inspection object’s surface com-
pletely. A suitable acquisition system is an RGBD system that acquires
image data as well as geometry data (point clouds) of the inspection
object. Defects that occur (corrosion, mechanical defects, etc.) can be
evaluated in the image data, but components of the inspection object
(e.g., pinion) can also be detected. Individual defects or components
may need to be specifically inspected. Subproblem (b) must be solved
for this. A geometric model of the inspection object on which the object
areas to be inspected are mapped can be assumed as the starting point.
Such a model can be generated with the help of semantic mapping
methods [31] using the information generated in subproblem (a). A
semantic map augments spatial information by additional information
about entities that are located in space [31]. This is out of scope for
this work but will be briefly explained for the sake of understanding.

The geometry data (point clouds) captured in subproblem (a) can
be used to build a three-dimensional object model, as the entire surface
of the inspection object has been covered. Furthermore, the captured
image data can be analyzed with (intelligent) image processing al-
gorithms to detect RoI and map it to the geometry model of the
object (e.g., semantic segmentation or object detection methods). It
is important to mention that these intelligent detection algorithms
for specifying the RoI must be designed in advance, and therefore, a
process engineer must also determine which components or defects
always require detailed inspection. This can be done, e.g., based on
prior knowledge or core acceptance criteria.

In summary, the solution of subproblem (a) thus provides an initial
information basis (semantic geometry model) for subproblem (b), since
in (a) defects or product features (RoI) to be inspected more closely can
be identified and by means of (b) a dedicated inspection fine planning
of the poses of the inspection system is enabled to inspect these RoI.

3.2. Overview of the proposed view planning framework

The framework presented in this paper consists of a scan simulation
environment with uniform interfaces to which exchangeable modules
can be attached. A simplified overview can be seen in Fig. 2. A pose 𝑝𝑡
is passed to the scan simulation environment. The scan simulation envi-
ronment then performs a virtual acquisition and passes an observation
𝑜𝑡 to the module currently in use. In the scope of this work, the RL
agent module and the SL framework module are presented. However,
integrating other modules, such as a module for solving the derived
problems with heuristics or analytical methods, is possible due to the
uniform interfaces of the scan simulation environment.

3.3. Scan simulation environment

The scan simulation environment consists of a scan module into
which a sensor and object model is loaded at the beginning of each
acquisition task. The sensor model is used to replicate a real existing
optical acquisition system. The relevant parameters for this are

• the resolution of the camera (acquisition system resolution),
• the aperture angles of the frustum (field of view) and
• the near and far bounds of the frustum (operating range of the

acquisition system),

which are freely configurable and visualized in Fig. 3. For the opening
angle, 27◦ and 25◦ in 𝑥 and 𝑦 axis are chosen while the resolution is
set to 430 × 300 pixels. These parameters were deduced according
to an existing acquisition system, Zivid One+ S. Using the mentioned
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Fig. 2. Structure of the view planning simulation framework.
resolution, a good compromise between the computing time required
to process the point cloud and the level of detail of the captured surface
can be obtained. The near bound is set to 30 cm while the far bound is
set to 50 cm. The object model is specified via the STL (stereolithogra-
phy) format. Using said data format, the object is represented only by
its surface in the form of triangular facets.

The scanning module uses the sensor and object models to simulate
a three-dimensional acquisition process of the object using an optical
coordinate acquisition system. The principle of ray tracing is used for
this purpose. Depending on the camera parameters’ aperture angle and
resolution, rays emanating from the focus point, which is defined as
the pose 𝑝𝑡 given to the scan simulation environment, are simulated.
The first intersection of each ray with a triangle of the object model
defines the coordinates of a point on the object that may be captured.
The (𝑥, 𝑦, 𝑧)-coordinates are calculated for each intersection point in the
global coordinate system. Additionally, the distance between the cam-
era origin and the point at which the ray hits the object is determined
for each intersection point in order to take into account the permissible
working range of the 3D camera. This point is classified as not acquired
if this distance is greater or smaller than the permissible working range,
defined through the near and far bounds of the frustum.

The point cloud 𝑃𝑡 acquired at the acquisition step 𝑡 consists of
all intersection points in the acquisition system’s permissible working
range. 𝑃𝑡 is then used for an observation update from the last acqui-
sition at step 𝑡 − 1 to step 𝑡. The total point cloud 𝑃𝑐𝑜𝑣,𝑡−1 is then
calculated as the sum of all acquired point clouds 𝑃1,… , 𝑃𝑡−1 up until
step, 𝑡 − 1 with the point cloud 𝑃𝑡 acquired at step 𝑡. Since the scan
simulation directly calculates points in the global coordinate system, no
registration algorithm is needed to perform the merging of the separate
point clouds. In addition to updating the already acquired point cloud,
further information is extracted and saved during the observation up-
date. These serve as an information basis that can be utilized to extract
training data for SL algorithms and state representation and reward
calculation of RL agents. These are as follows:

1. Object model (triangle mesh) of the current episode.
2. Ground truth point cloud 𝑃𝐺𝑇 with predefined number of points.

𝑃𝐺𝑇 is generated by evenly sampling 𝑛𝐺𝑇 points on the object
model using a voxel grid approach.

3. Number of acquisitions 𝑡 in the current episode.
131 
Fig. 3. Visual representation of the processes within the scan simulation environment.

4. List of camera poses 𝑝1,… , 𝑝𝑡 of the current episode as well as
the corresponding acquired point clouds 𝑃1,… , 𝑃𝑡.

5. Total point cloud 𝑃𝑐𝑜𝑣,𝑡 captured in an episode up to interaction
step 𝑡. This point cloud is obtained by registering the single point
clouds 𝑃1,… , 𝑃𝑡 and subsequent voxel downsampling to obtain
a uniformly distributed point cloud 𝑃𝑡.

6. Total point cloud 𝑃𝑐𝑜𝑣,𝑡−1 acquired up to interaction step 𝑡 − 1.
7. Inverted point cloud 𝑃𝑖𝑛𝑣,𝑡−1 at interaction step 𝑡 − 1 which is

calculated based on the ground truth point cloud 𝑃𝐺 subtracting
the point cloud 𝑃𝑐𝑜𝑣,𝑡−1 acquired up until interaction step 𝑡 − 1
(see Fig. 3).
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Table 1
Values of 𝑑 when generating state 𝑠𝑡,𝑉 2.

Description Value of d
‘‘Point on ground truth point cloud ...’’

... does not need to be inspected 0

... needs to be inspected but has not been seen −1

... needs to be inspected and has been seen 1

3.4. Modeling and implementation of the supervised learning framework
and RL agent

In the following Section, the modules considered in this work and
shown in Fig. 2, the SL Framework and the RL Agent, are discussed in
more detail.

3.4.1. Reinforcement learning agent
State modeling
The state module is used to encode an acquired point cloud in

a way that the RL agent can process. In the presented work, two
state encodings are implemented. In the first variant, in the following
referred to as 𝑠𝑡,𝑉 1, the agent is given the combined total point cloud
𝑃𝑐𝑜𝑣,𝑡 from all acquisitions until step 𝑡 after each acquisition. This state
encoding thus represents the information state of a worker for the
solution of the overall inspection (subproblem (a)), in which the worker
must inspect the overall surface of the product and choose its next
acquisition to inspect additional surfaces that have not been observed
so far. Since the RL agent’s policy is approximated by a neural network
(see 3.4.3) and therefore requires a fixed number of input variables, the
point cloud is reduced to a constant number of points 𝑚 using voxel
downsampling. In our preliminary tests, 𝑚 = 2048 has proven to be
an adequate dimension of 𝑚. With this number of points, a suitable
compromise is obtained that accounts for both the level of detail with
which an object is represented and the size of the point cloud which
directly correlates to the computational effort needed.

𝑠𝑡,𝑉 1 =
⎡

⎢

⎢

⎣

𝑥𝑡,1 𝑦𝑡,1 𝑧𝑡,1
... ... ...

𝑥𝑡,2048 𝑦𝑡,2048 𝑧𝑡,2048

⎤

⎥

⎥

⎦

(1)

To solve the problem of individual inspection of RoIs, an additional
dimension 𝑑 is introduced in the modeling of the state. This encodes
whether a point on the object should be inspected more closely and
whether it has already been seen in a previous acquisition step. The
logic behind the encoding is depicted in Table 1. At the beginning
of the acquisition process, points that lie within the RoI are encoded
with the value −1 in column 𝑑. Points that are not to be acquired are
initialized with 0. If a point to be acquired within the RoI is detected
during the acquisition process, its coding changes to 1 for the following
acquisitions. Thus, the agent’s goal is to set all points originally encoded
with −1 to the value 1 by appropriately choosing the poses of the 3D
camera system. The coordinates of these 𝑚 points with the additional
column 𝑑 are stored in the matrix 𝑠𝑡,𝑉 2.

𝑠𝑡,𝑉 2 =
⎡

⎢

⎢

⎣

𝑥𝑡,1 𝑦𝑡,1 𝑧𝑡,1 𝑑𝑡,1
... ... ... ...

𝑥𝑡,2048 𝑦𝑡,2048 𝑧𝑡,2048 𝑑𝑡,2048

⎤

⎥

⎥

⎦

(2)

The matrix 𝑆𝑉 2 contains 𝑚 points on the object which have been
uniformly sampled on the object surface. These points are points of the
ground truth point cloud 𝑃𝐺𝑇 . To determine which of the 𝑚 points were
acquired during an acquisition, the acquired point cloud 𝑃𝑡 is compared
with the ground truth point cloud 𝑃𝐺𝑇 . In this process, a point of 𝑃𝐺𝑇 is
registered as seen if the Euclidean distance of this point to its neighbor
in the acquired point cloud 𝑃𝑡 is smaller than a defined threshold value.

Action module
The action module handles the actions specified by the agent. The
agent outputs an action vector whose values are constrained in the t
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interval of [−1, 1]. Each entry corresponds to a parameter for determin-
ing the position of the 3D camera for the next acquisition step. These
entries represent the parameters 𝜙, 𝜃, and 𝑟 in spherical coordinates.
The three remaining Euler angles 𝛼, 𝛽 and 𝛾 define the rotational
egrees of freedom. However, they are not output by the agent but
re determined with a heuristic that automatically orientates the 3D
amera system to the object’s center. The Euler angle 𝛾 is set to the
alue 0 in all cases due to its low influence. This is the reason why
he degrees of freedom of the pose of the 3D camera system in space
re reduced from six to three. Since the output of the RL agent is
imited to an interval of [−1, 1] based on tangens hyperbolicus chosen
s the activation function of the last layers of the neural networks used
see Section 3.4.3), the action is mapped to parameters’ real interval
oundaries (e.g., [0, 2𝜋] for angle 𝜃). This can be achieved by mapping

the agent’s output range onto the real interval boundaries. The action
encoding can then be used to calculate the pose of the 3D camera for
the next acquisition.

Reward module
A mixture of so-called dense and sparse rewards is used for the

reward function. A dense reward is a reward that is given to the agent
after each individual action. A sparse reward, on the other hand, is
received by the agent only at the end of an episode. In the reward
function (3) used, the dense reward 𝑅1 is given at each time step, which
is dependent on 𝛥𝛹 . If a target state 𝑠𝐺 is reached, the agent receives
the sparse reward 𝑅2.

𝑅𝑡 = 𝑅1 + 𝑅2

𝑅1 =

{

𝑎, 𝛥𝛹 > 0
𝑏, else

𝑅2 =

{

𝐸, 𝑠 = 𝑠𝐺
0, else

(3)

𝛹 corresponds to the surface area of the object in percent that has
been acquired so far. 𝛥𝛹 corresponds to the newly acquired surface area
in percent between the previous time step 𝑡 − 1 and 𝑡. If 𝛥𝛹 = 0, the
egative reward 𝑏 can also motivate the agent’s learning behavior to
osition itself to increase surface coverage. Furthermore, when a target
tate 𝑠𝐺 is reached, the agent receives a fixed sparse reward 𝐸 that
s chosen, so it is greater than the sum of all possible positive dense
ewards it receives when reaching full object coverage (𝛹 = 100%). 𝑠𝐺

is reached as soon as 𝛹 ≥ 𝛹∗, where 𝛹∗ corresponds to a threshold
alue of the desired surface coverage in percent. To reduce the process
ime, the acquisition task should be performed with the minimum
ossible number of acquisitions. However, the reward function does not
xplicitly consider minimizing the number of acquisitions. Instead, by
hoosing the discount factor 𝛾 < 1, the agent is implicitly motivated
o reduce the number of steps until a target state 𝑠𝐺 is reached.
iscounting reduces the estimated rewards at later time steps. Since the
gent maximizes the return, reaching states with high rewards becomes
ore profitable after fewer steps.

gent
Since the environment used in this work uses continuous action

pose) and observation space (point clouds), the Proximal Policy Op-
imization (PPO) and Soft Actor-Critic (SAC) learning algorithms are
sed. These are implemented in the RL library stable-baselines by [32]
nd offer easy compatibility with OpenAI Gym environments. Both
lgorithms use an actor-critic policy. The actor is responsible for action
election, while the critic estimates the state value function. In the SAC
lgorithm, a target critic is also used, updated asynchronously to the
ritic, and stabilizes the training process. The network architectures
valuated in this work are described in detail in Section 3.4.3, since

hey are also used for SL.
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3.4.2. Supervised learning framework
SL has already been applied successfully to the VPP. Thereby, only

the NBV problem was addressed. To solve subproblem (b) of individual
inspection, however, the task to be solved is to estimate the pose of a
3D camera which led to the acquisition of a specific set of points on
the object’s surface.

Dataset generation
A data set consists of the data 𝑥 and the labels 𝑦. To obtain 𝑥𝑖, a

andomly generated pose is used to acquire a point cloud in the scan
imulation environment. The 2048 × 4 coded point cloud returned as
n observation corresponds to 𝑥𝑖, the associated pose corresponds to
𝑖. In this case, the fourth column 𝑑 is binary coded. Points acquired
ased on the pose 𝑦𝑖 are coded 1, and other points are coded 0. The
alue range of the output of the neural network lies in the interval
−1, 1] and is mapped to the value ranges of the representation of the
ampled poses (value ranges of spherical coordinates and Euler angles)
or comparison with the sampled pose 𝑦𝑖 in analogy to the procedure
n the action module of the RL agent.

valuation metrics
In order to compare the pose �̂�𝑖 predicted by the network with the

rue pose 𝑦𝑖 of the dataset, comparison metrics are needed. A pose 𝑦𝑖
onsists of the position 𝑇 and the rotation matrix R, which is built of
he Euler angles 𝛼, 𝛽, 𝛾. A pose can be transformed into a homogeneous
ransformation matrix  using these parameters.

=
[

𝑇 3𝑥3
𝑟 𝑇 1𝑥3

𝑡
0 1

]

(4)

Based on this transformation matrix, quantitative comparison met-
ics can be derived to compare the pose �̂�𝑖 determined by the network
ith the true value 𝑦𝑖. These are used to provide a quantified measure
f the network’s performance.

The error of the position 𝑒𝑡 is described by the Euclidean distance
f the translation vectors, where 𝑡𝑘 corresponds to the network output
nd 𝑡𝑘 to the ground-truth translation vector.

𝑡 =

√

√

√

√

3
∑

𝑛=1
(𝑡𝑘 − 𝑡𝑘)2 (5)

One approach to compare the rotation of two camera positions,
similar to translation, is to determine the Euclidean distance of the
Euler angles. However, the rotations are interdependent and performed
sequentially, so this metric is not meaningful. In contrast, as described
by Huynh, a rotation matrix 𝑇𝑟,1→2 can be calculated, which determines
he necessary rotation that aligns a rotation matrix 𝑇𝑟,1 to 𝑇𝑟,2 [33]. This
an be calculated using Eq. (6). To derive a general metric describing
he rotation, the angle of the necessary rotation 𝑇𝑟,1→2 is determined as
rror metric 𝑒𝜉 according to Eq. (7). The smaller the angle 𝜉, the more
imilar the rotation matrices are, and the deviation of the predicted
ose from the ground truth is correspondingly smaller.

𝑟,1→2 = 𝑇𝑟,1 ∗ 𝑇 𝑇
𝑟,2 (6)

𝜉 = 𝑐𝑜𝑠−1(
𝑠𝑝𝑢𝑟(𝑇𝑟,1→2) − 1

2
) (7)

3.4.3. Network architectures
Complex neural networks are needed to process point clouds since

point clouds are usually unordered and spatial relationships must be
detected in them. The state encodings 𝑠𝑡,𝑉 1 or 𝑠𝑡,𝑉 2 serve as inputs for
the neural network architectures using RL investigated in this work. In
the case of SL, the modified version of 𝑠𝑡,𝑉 2 with binary encoding is
used. Three different approaches to feature extraction from the input
data are evaluated and described briefly in the following. Please refer to
the original work for more detailed information regarding the internal
structures.

On the one hand, PointNet by [34] is used, which enabled point
cloud processing for the first time. The layer structure of the encoder
133 
of the PointNet for feature extraction used in this work includes an
input transformation layer, a Multi-Layer Perceptron (MLP) and a max-
pooling layer for the final output of the feature vector. The input
transformation layer takes the raw point cloud data and applies pose
normalization by multiplying the original point cloud by a 3 × 3
transformation matrix, which is output by a subnetwork called T-net.
The MLP processes each point of these transformed points indepen-
dently to learn local feature representations. Followed by a feature
transformation of the local feature representations by another T-Net,
the max-pooling layer then aggregates the transformed local features
of all points into a global feature vector.

Furthermore, the Point Completion Network (PCN) encoder devel-
oped by [35] is used as feature extractor. The PCN is a PointNet
variant designed specifically for completing partial point clouds. The
encoder of the PCN extends the PointNet architecture by a multi-scale
feature fusion, combining local and global point cloud features. The
layer structure involves feeding the input point cloud through the MLP
to extract local point features. A pooling layer follows this to obtain
a global feature vector. The multi-scale feature fusion step combines
the local and global features across multiple scales to capture both
fine-grained and coarse-grained information.

In addition, a more sophisticated network was implemented, the
PointNet++, which was developed by [36]. This further develops
the PointNet model and improves the processing of 3D point clouds
through hierarchical data processing. It enables more accurate capture
of local and global information and is more versatile in its application
to different 3D datasets. Overall, it provides a more effective method
for processing 3D point clouds for segmentation and object recognition
tasks.

Due to the more complex structure and the higher number of layers,
the number of parameters of the PointNet and PointNet++ used is
higher than the PCN. The respective network architectures for feature
extraction are extended by adding an MLP to obtain the complete
networks. The output dimension of the MLP corresponds to the number
of free parameters, which always output values in the interval [−1, 1].
In the case of RL, three free parameters are considered (𝜃, 𝛾, 𝑟), whereas
n the case of SL the number of free parameters is five (𝜃, 𝛾, 𝑟, 𝛼, 𝛽).

Note that in the case of SL, only one neural network is required, while
the RL approach (SAC) requires three different networks (actor, critic,
and target critic).

4. Results

In the following, the results of the modeling alternatives proposed
in this paper for solving the two subproblems (a) and (b) derived in
Section 3.1 are presented. After giving an overview of the dataset and
standard agent configurations, the solution and results of the VPP using
RL are discussed (Section 4.3). Subsequently, Section 4.4 assesses how
SL can be used to regress the pose given an acquired point cloud.
Finally, Section 4.5 presents the results where RL is used to determine
sequential poses of the acquisition system to acquire RoIs located
arbitrarily on the object.

4.1. Used dataset

Our study uses a dataset of starter engines that are automatically
generated based on examining real remanufacturing starter engines,
thereby addressing the properties of the remanufacturing use case
under consideration. The synthetically generated geometric motor mod-
els, for which the RL-agent generates poses of the acquisition system,
exhibit varying geometric properties. This is due to the vast number of
different starter motor variants from diverse manufacturers in the field
and the possibility of damaged or missing parts, leading to significant
variations. The approach utilized in this study is based on an existing
pipeline approach from [37], which has been tailored to generate
starter engines.
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Fig. 4. Illustration of STL models of real existing starter motors (Figure left) and
synthetically generated STL models based on the real starter motors (Figure right).

Table 2
Parameters and chosen default values for the sensor model.

Sensor model parameters Values

Near and far bounds [30, 50] cm
Resolution (430 × 300)𝑥𝑦
Opening angles (27◦ , 25◦)𝑥𝑦

Table 3
Parameters and chosen default values for the SL model.

Supervised model parameters Chosen setup

Number of epochs 150
Batch size 32
Loss function  Huber loss
Learning rate 𝜂 0.001a

Optimizer Adam
MLP structure 256-128-64-Output

a Linear decay with a final value of 0.

The starter engines consist of nine randomly generated components,
such as a solenoid, gear housing, connector, and flange, with a total of
28 different parameters, including height and diameter. An illustration
of the starter engines is shown in Fig. 4. The parameters are subject to
parameter limits and clearly defined relationships with each other to
ensure that they remain within a realistic range. This approach leads
to a diverse and realistic dataset. For the present study, 100 motors
with random parameters were generated and saved in STL format for
training the agents.

4.2. Default agent configuration

Unless otherwise specified, fixed parameters are used for the follow-
ing evaluations. These concern the parameters of the sensor model (see
Table 2), those of the SL approach (see Table 3), as well as those of the
RL approach (see Table 4).

The parameters for the sensor system used were derived from the
data sheets of a recording system available in the lab. The number
of epochs of the SL approach was estimated so that convergence is
guaranteed. A batch size of 32 and a learning rate of 0.001 were chosen
for stable learning behavior. In addition, a linear decay of the learning
rate was introduced. The Huber loss, a modified variant of the mean
squared error, was used as the loss function. Preliminary tests have
shown the Adam Optimizer to be the most promising candidate.

The default values for the termination of an episode of the RL agent
were defined on the basis of the surface coverage achieved or the
exceeding of a maximum number of acquisitions. For both the overall
inspection and the specific inspection of individual RoIs, a surface
coverage of 90% was selected. Likewise, an episode is terminated if
the agent has taken ten scans or the termination criterion of surface
coverage has been met. The length of the entire training cycle was
set to 75 000 steps, i.e., interactions of the agent with the simulation
environment. The value 0.9 was chosen as the discount factor, while
the learning rate was 0.000078 and was determined by preliminary
tests. SAC was set as the default agent, while PCN was chosen as the
feature extractor. Unless otherwise specified, 𝑠𝑡,𝑉 2 was chosen as the
state encoding.
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Table 4
Parameters and configuration, as well as the respective default values and default
modeling choices of the RL agent.

Training cycle design Values

Required object coverage 90%
Maximum number of acquisitions 10
Number of steps 75 000

Learning parameters Values

Learning rate 0.000078a

Discount rate 0.9

Modeling configuration Chosen setup

Algorithm SAC
Encoder PCN
MLP structure 256-128-64-Output
State 𝑠𝑡,𝑉 2

a Linear decay with final value of 0.

4.3. Results for the solution of the view planning problem with RL

Through the interaction of the agent with the simulation framework,
the agent has to learn a strategy that sequentially outputs poses of
the acquisition system that maximize 𝛹 . An initial acquisition with a
constant pose is carried out. The observation of this pose is used to
deduce the initial state for the further selection of poses by the agent.
The values 𝑎 = 𝛥𝛹

100 and 𝑏 = 0 as well as 𝐸 = 1 were determined for the
reward function defined in Section 3.4.1 to work best with the present
planning problem. Punishing the agent via negative reward 𝑏 < 0 did
not result in a different agent behavior. This can be attributed to the
fact that in this case, the agent quickly learned to perform only acqui-
sitions that entailed at least a minimal gain of not yet covered surface,
and thus, the case of punishment by a negative reward never occurred.
Fig. 5 shows the comparison of agents with state encodings 𝑠𝑡,𝑉 1 or
𝑠𝑡,𝑉 2 compared to a benchmark agent. The benchmark agent, which
chooses random actions, achieves 𝛹 = 60% on average. The initial
acquisition is included in the total number of acquisitions. According
to the workspace of the acquisition system, it is set 47 cm away from
the origin and, on average, acquires 46% of the total surface area for
the starter motors considered.

Results show that both agents using SAC agents and one of the re-
spective state encodings converge to strategies that reach a target state
of 𝛹 ≥ 𝛹∗ = 90% after only 4–6 acquisitions and 2000 epochs. The state
encoding 𝑠𝑡,𝑉 2 performed better than 𝑠𝑡,𝑉 1 when considering the number
of acquisitions needed to reach the required surface coverage for ending
an episode. Additionally, the learning behavior of the agent with state
encoding 𝑠𝑡,𝑉 2 shows higher stability with regard to fluctuation in the
required number of acquisitions as well as the collected reward. In-
depth analyses have shown that since the reward at each step directly
depends on 𝛥𝛹 , the agent tries to exploit this and successively increases
the radius 𝑟 of the chosen pose to position itself further away from the
object. This leads to the frustum capturing much more of the surface of
the objects to be inspected, and thus more reward. Thereby, the agents
also learn not to exceed the cutoff distance of 50 cm where the far
bound of the frustum ends, and thus, no point cloud would be acquired,
leading to no collection of reward.

Fig. 6 shows the visualization of the poses issued by an agent with
the state coding 𝑠𝑡,𝑉 1 to solve the VPP over several episodes. It is
evident that there are clusters of certain positions in space that the
agent frequently outputs. Brighter areas show positions in space that
the agent issues more frequently. More detailed analyses have shown
that individual, distinct bright areas correspond to individual poses
issued by the agent in the first, second, or third acquisition. Later
acquisitions (fourth, fifth or sixth) are much less clustered in space
and correspond to the rather dark point clusters in Fig. 6. These results
suggest that the agents output specific positions in space in the early

stages of the acquisition process, while in later stages of the acquisition
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Fig. 5. Comparison of agents with the different state encodings 𝑠𝑡,𝑉 1 and 𝑠𝑡,𝑉 2 using coverage, the required number of acquisitions, and obtained reward.
Fig. 6. Visualization of the poses output by the agent with state encoding 𝑠𝑡,𝑉 1 over the course of several episodes for the VPP after the training process. The position of the
initial acquisition is shown with a red marker. The inspection object is marked with a green marker. The six subplots each show the accumulation of poses output by the agent
from different perspectives.
Table 5
Tabular representation of the position and angle deviations for the investigated feature
extractors.

Feature extractor 𝑒𝑡 𝑒𝜉 𝑡𝑡𝑟𝑎𝑖𝑛 [s]

PCN 𝜇 = 17.203
𝜎 = 0.845

𝜇 = 25.452
𝜎 = 0.601

𝜇 = 381.41
𝜎 = 6.494

PointNet 𝜇 = 17.173
𝜎 = 0.408

𝜇 = 25.050
𝜎 = 0.914

𝜇 = 585.17
𝜎 = 1.012

PointNet++ 𝜇 = 21.978
𝜎 = 2.042

𝜇 = 31.891
𝜎 = 3.068

𝜇 = 6342.8
𝜎 = 7.745

process, poses are chosen to acquire the then remaining surface of the
inspection object. It can also be observed that the agent learns to choose
poses that are always distant from the initial acquisition pose (red). This
is due to the fact that poses close to the initial acquisition pose would
most likely provide little or no additional coverage of the surface of the
inspection object.

In summary, the suitability of the chosen reward function can be
derived from the agent being able to increase 𝛹 and learn a strategy to
fulfill the inspection goal. Additionally, the number of exposures can be
implicitly minimized by setting the discount rate 𝛾 to 0.9. The reason is
that a relatively low discount rate pushes the agent to learn a strategy
that acts rather greedily. The agent has to output a short pose sequence
that achieves a high surface coverage 𝛹 since longer sequences lead to
a lower estimated return for the agent since 𝛾 is chosen relatively low.
Additionally, longer acquisition sequences increase the chance of the
agent not acquiring additional surface areas, which in return leads to
negative rewards. Subsequently, a separate parameter to control the
number of acquisitions is unnecessary for the reward function.

4.4. Results for supervised learning of acquisition system poses

The results for training using SL are shown in Table 5. The metrics
of position deviation 𝑒𝑡, angular deviation 𝑒𝜉 and the training duration
for using the networks with PCN, PointNet and Pointnet++ as feature
extractors, are shown.
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Three training runs were conducted for each feature extractor.
From these runs, the mean value 𝜇 and the standard deviation 𝜎 are
determined for the metrics used 𝑒𝑡 and 𝑒𝜉 , as well as for the training
duration 𝑡𝑡𝑟𝑎𝑖𝑛. The learning curve, which is shown in Fig. 7, depicts the
progression of the model error over the number of epochs performed.
Due to the convergence of the training curve, it can be concluded
that regressive learning of the sensor pose given an input point cloud
augmented with the encoding of the object surface to be detected in the
fourth column is possible. Furthermore, the results from Table 5 show
that the PCN achieves almost the same position prediction accuracy as
the PointNet. The results of both networks are also the same for the
deviation of the rotation 𝑒𝜉 . Pointnet++, on the other hand, shows a
significantly higher deviation in the prediction, a 28.8% higher position
accuracy, and 25.3% for the angular deviation. A major difference can
be seen in the training duration of the networks used. While the dura-
tion of a training run with the PCN as a feature extractor is 381 s, the
PointNet requires almost 53% more time at 585 s. This can be explained
by the number of weights, which is 3 times higher with the Pointnet
than with the PCN. However, Pointnet++, which has fewer weights
than the original Pointnet, takes almost 10 times as long, which is
significantly longer due to complex functions (e.g., point aggregation).
Therefore, we use PCN as the feature extractor for the remaining RL
experiments, as the calculation time is significantly shorter.

However, detailed analyses have shown that the position and angle
deviations should not be used as the sole metrics for evaluating the
regression quality. This is because an acquired point cloud is not always
acquirable by only one viewpoint in the pose of an acquisition system.
Fig. 8 shows a visual example of this. For instance, when introducing
a translation 𝛥𝑡 of the viewpoint in space, finding a rotation 𝛥𝜉 may
be possible so that a similar or, in extreme cases, the same object
surface is acquired with these two different viewpoints. This may result
in the trained network still having positional and angular deviations
in the form of the metrics 𝑒𝑡 and 𝑒𝜉 in the learned state but still
acquiring the same or a similar point cloud since the network learned
to average over the many examples provided in the learning phase. In
further work, these results will be verified with the introduction of a
metric that compares the ground truth point cloud and the point cloud
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Fig. 7. Learning curve of the Huber loss of the model over the number of epochs of
the SL approach.

Fig. 8. Problem of SL regarding the ambiguity of an acquired point cloud with respect
to the origin pose. Both viewpoint 1 and viewpoint 2 acquire the same object surface
(marked with the red line) which lies in the field of view of the acquisition system
(dashed line), although viewpoint 1 has a translational 𝛥𝑡 and rotational 𝛥𝜉 deviation
from viewpoint 1.

acquired with the estimated viewpoint of the trained network given the
ground truth point cloud (e.g., using the Chamfer distance of both point
clouds).

4.5. Results for the individual inspection with reinforcement learning

The parameters of the reward function used for the individual
inspection deviate from the ones used for the overall inspection. The
parameters are set to +𝑎 = (𝛥𝛹 )3 and 𝑏 = −0.25 as well as 𝐸 = 5. In
this case, preliminary experiments showed that penalizing by negative
reward 𝑏 < 0 for not providing additional surface coverage after a view
was helpful to quickly teach the agent to perform only acquisitions
that cover a RoI. In addition, the dense reward was extended by a
potentiating factor, which also seems to have a positive effect on the
agent quickly learning to choose views that fully or almost fully cover
the RoI. In Section 4.3, it was shown that for a camera working range
of [30, 50] cm, depending on the underlying object model, three to
five acquisitions can be sufficient to capture 90% of the entire object
surface. For the evaluations of individual inspection capabilities of
RL agents, the working area was reduced to make the problem more
difficult to solve. The smaller the near and far bounds as well as
opening angles of the sensor model, the lower the maximum possible
percentage surface gain per acquisition. At the same time, this also cor-
responds to a human’s intuitive approach to closely examine a detected
defect. Positioning an acquisition system closer to the object makes
the detected surface or image section smaller, but a greater resolution
of this RoI can be achieved. This is advantageous for detecting and
evaluating small defects and flaws, especially in remanufacturing. Thus,
the working range is reduced to [15, 30] cm for evaluating the problem
of individual inspection. Furthermore, to reduce the exploration time of
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the agent, the interval boundaries of the coordinates the agents’ action
outputs are mapped to are adapted to the reduced working range. In
particular, the radius is limited to 𝑅 = [0, 50] for spherical coordinates.
A RoI is generated by randomly selecting a surface segment consisting
of 150 points of the ground truth point cloud 𝑃𝐺𝑇 on the object. The
maximum episode length is set to 6 acquisitions. This is to observe to
what extent the agent is able to minimize the number of acquisitions
to reach the inspection goal.

The following experiments evaluate the influence of the design of
the RoIs to be inspected. For this purpose, the number of generated
RoI on the surface of the object and the number of points per RoI is
varied. To examine the influence of the number of RoIs, a training
run is performed in which 𝑛 RoIs are generated on the object surface
each episode. Each RoI consists of 150 points and agents were trained
to either inspect one, two or three RoI (see Fig. 9). For 𝑛 = 1 RoIs,
the episode length is limited to 4 acquisitions. For each additional RoI
generated, 2 additional acquisitions are allowed. In the course of the
training runs shown in Fig. 9, it can be shown that the agent constantly
reaches a target state regardless of the number of RoIs and is able
to reduce the number of acquisitions required to fulfill the inspection
goal. Noticeably, the agent’s strategy converges later, the lower the RoI
number 𝑛 is. This can be attributed to the fewer points of the total
surface being encoded as RoIs when 𝑛 = 1. Therefore, the problem is
more complex, and exploration is more costly than when the number
of RoIs is larger. Furthermore, the maximum exposure allowed depends
on the RoI number 𝑛. For 𝑛 = 1, only half the number of exposures
is allowed in an epoch as for 𝑛 = 3. Accordingly, the agent has
fewer opportunities for exploration for the same number of epochs. The
number of exposures required to reach a target state, on the other hand,
corresponds to the expectations. The lower 𝑛, the lower the number
of shots required. For 𝑛 = 1, the agent requires an average of 1.6
exposures. For 𝑛 = 2, 2.8 acquisitions are needed on average. A third
RoI with 𝑛 = 3 needs 3.3 acquisitions on average. Since at 𝑛 = 3 already
20% of the total surface has to be inspected, the probability of two RoIs
overlapping during generation increases. Therefore, the difference from
𝑛 = 2 to 𝑛 = 3 is smaller than to 𝑛 = 1.

In a further experiment, the size of the RoIs varied. Two RoIs with
one of 𝑚 = 50, 150, 250 points each are generated in each training run.
The fraction of the total surface coded as RoI corresponds to 4.8% for
𝑀 = 50, 14.6% for 𝑀 = 150, and 24.4% for 𝑀 = 250. The results
of this comparison are shown in Fig. 10. It can be concluded that the
influence of the size of the RoIs is negligible. Only for 𝑀 = 50 does the
agent need 0.4 acquisitions less on average to reach a target state.

5. Conclusion

This paper presents a modular simulation framework to solve ac-
quisition planning problems using SL and RL. Relevant problems of
acquisition planning are derived from the use case of remanufacturing.
Standardized interfaces of the simulation environment and the modules
connected to it allow for the exchange and evaluation of the modules.

The results have shown that RL can be applied to the task of general
inspection of returning used products. The agent configurations con-
sidered solved the problem of view planning and reduced the number
of acquisitions needed to achieve the required surface coverage by
sequential acquisitions of the object. Furthermore, it could be shown
that SL approaches are able to learn which pose of an acquisition system
has to be chosen in order to detect specific surface areas of a product.
Such trained models can be used in the future to plan poses of an
acquisition system in such a way that specific features or defects on the
product surface, so-called RoI, can be inspected in a targeted manner.
Sequential planning of poses of the acquisition system for inspecting
several RoI of different sizes could also be accomplished using RL.

Even though the present approaches have consistently shown good
results in terms of applicability in the simulation, they must be tested
in a real inspection environment in further work. This requires further
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Fig. 9. Comparison of coverage, the required number of acquisitions and obtained reward when varying the number of RoI to be inspected on the product.
Fig. 10. Comparison of coverage, the required number of acquisitions and obtained reward when varying the size of two RoI to be inspected.
steps that exceed the scope of this work. On the one hand, detection
algorithms have to be implemented, which, in a preliminary step, detect
the RoI to be inspected more closely on the returned used product.
Possible approaches are segmentation algorithms (e.g., variants of U-
Nets) or object detectors (e.g., Mask-RCNN). For application in a real
inspection environment, further constraints should also be considered
and integrated into the proposed simulation framework in order to
increase the realism of this framework. This includes, among others,
the reachability analysis of the poses proposed by the machine learning
methods to verify whether they can be approached by a robot-guided
visual acquisition system at all.

It is also necessary for further work to deal with the interplay be-
tween the depth of inspection (and the associated inspection time) and
the profitability of the entire remanufacturing process. As developed
by Ridley et al. [38], there is a correlation between the economic
profitability of the entire remanufacturing process and the time spent
on the initial inspection, which must also be considered if the process
is successful in the field.
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