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Rapidity distribution of pseudoscalar Higgs boson to NNLO, + NNLL
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We present the differential predictions for the rapidity distribution of pseudoscalar Higgs boson through
gluon fusion at the LHC. These results are obtained taking into account the soft-virtual (SV) as well as the
next-to-soft virtual (NSV) resummation effects to next-to-next-to-leading-logarithmic (NNLL) accuracy
and matching them to the approximate fixed order next-to-next-to-leading-order (NNLO, ) computation.
We perform the resummation in two-dimensional Mellin space by limiting ourselves to the contributions
only from gluon-gluon (gg) initiated channels. The NNLO, rapidity distribution of pseudoscalar Higgs is
obtained by applying a ratio method on the NNLO rapidity distribution of the scalar Higgs boson. We also
present the first analytical results of N3LO rapidity distribution of pseudoscalar Higgs at SV 4+ NSV
accuracy. The phenomenological impacts of NNLO, + NNLL predictions for 13 TeV LHC are studied.
We observe that for m, = 125(700) GeV the SV + NSV resummation at the NNLL level brings about
14.76% (11.48%) corrections to the NNLO, results at the central scale value of up = up = my,. Further,
we find that the sensitivity to the renormalization scale gets improved substantially by the inclusion of NSV

resummed predictions at NNLL accuracy.
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I. INTRODUCTION

Measurement of a variety of observables to very high
precision is one of the thrust areas in the physics program of
the Large Hadron Collider (LHC). Precision studies based
on these measurements provide crucial tests of the con-
sistency of the Standard Model (SM), and any significant
deviation can also hint toward new physics beyond SM.
The discovery of the Higgs boson [1,2], one of the major
milestones in particle physics, led to a better understanding
of the dynamics behind the electroweak symmetry breaking
[3-7] and, in larger picture, opened up a plenty of
opportunities to unravel hidden physics behind various
phenomena. Despite this success, the SM lacks in fronts in
not providing satisfactory explanations for phenomena
such as baryon asymmetry in the Universe, the existence
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of dark matter, the neutrino mass, etc., and hence falls short
of being a complete theory of fundamental interactions.
Unravelling these phenomena demands one to go beyond
the borderline of the SM. One of the possible extensions of
the SM is the supersymmetric theories which provide an
elegant solution to the above mentioned problems.
Supersymmetric theories generally predict a richer Higgs
sector than the Standard Model (SM). In the minimal
supersymmetric Standard Model (MSSM), for instance,
one introduces two complex Higgs doublets, which origi-
nate five physical Higgs bosons: two CP-even Higgs
bosons (h, H), two charged Higgs bosons (H*), and finally,
a CP-odd (pseudoscalar) Higgs boson (A) [8-15].

Ever since the Higgs boson was discovered at the LHC
[1,16], there exists curiosity among the high energy physics
community to understand whether it is the Higgs boson of
the SM or not. This leads to a physics program aiming at
probing its interaction with other SM particles with extreme
precision that will determine its properties. This can shed
light on whether the discovered Higgs boson is the scalar or
pseudoscalar Higgs bosons of extended models. Such a
study requires precise predictions for their production cross
sections and the decay rates. In particular, the production of
CP-odd Higgs boson/pseudoscalar at the LHC has been
studied in detail, taking into account the higher order QCD
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radiative corrections, owing to similarities with its CP-even
counter part. Among other channels, it is desirable to look
for pseudoscalar Higgs boson in the gluon fusion through
heavy fermions due to its appreciable coupling in the small
and moderate tan / in the minimal version of SUSY model,
where tanf is the ratio of vacuum expectation values
v;, i = 1, 2. Furthermore, the large gluon flux leads to
an enhancement in the cross section.

Perturbative QCD (pQCD) provides the most successful
framework to compute the observables that can be mea-
sured at the LHC. The production of a pseudoscalar Higgs
boson through gluon fusion at leading order suffers from
large theoretical uncertainties, particularly due to the
presence of renormalization scale up arising from the
strong coupling constant. It also contains mild theoretical
uncertainties which result from the factorization scale yr in
the parton distribution functions. In order to deal with these
scale uncertainties as well as to uplift the accuracy of
theoretical predictions, one has to go beyond the wall of
leading-order (LO) computations.

The QCD higher order corrections to the production of
CP-even scalar as well as CP-odd pseudoscalar bosons
through gluon fusion are known for a long time in the
literature. For the case of a scalar Higgs boson, results for
the inclusive production cross section are available up to
next-to-next-to-next-to-leading order(N°LO) QCD [17-
20], within the framework of an effective theory that results
from the integration of top quark degrees of freedom. This
leads to variety of new interactions of the Higgs boson
directly with the gluons [21-23]. On the other hand, for
the pseudoscalar case, only next-to-next-to-leading-order
(NNLO) QCD results [19,24-27] in the effective theory
[28] are known. The exact quark mass dependence for
scalar and pseudoscalar production is known to next-to-
leading-order (NLO) QCD [29,30]. For N3LO predictions
of a pseudoscalar cross section, both three-loop form
factors and real emission contributions are required. The
computation of form factors is technically cumbersome
[31] as pseudoscalar Higgs boson couples to SM fields
through two composite operators that mix under renorm-
alization due to the axial anomaly, and additionally, a finite
renormalization constant needs to be introduced in order to
restore the chiral Ward identities. Moreover, these operators
involve a Levi-Civita tensor and ys which are not very
straightforward to define in dimensional regularization. The
three-loop form factor obtained in [31] was later combined
with a suitable soft distribution function [32-34] and mass
factorization kernels for the computation of the soft plus
virtual (SV) contribution at N3LO in [35]. Later, in [36], a
new determination of an approximate N3LO pseudoscalar
boson cross section has been introduced, based on the N°LO
results of scalar Higgs boson [37].

In addition to the inclusive production cross section, the
differential rapidity distribution is among the most impor-
tant observables, which is expected to be measured in

upcoming days. This demands very precise theoretical
predictions of this observable. The computation of the
transverse momentum and rapidity distributions for the
scalar Higgs boson up to NLO has been done in [38,39] and
for the pseudoscalar Higgs boson in [40]. Both inclusive
cross section and differential rapidity distribution get large
contributions from logarithms arising from certain kin-
ematic regions, thus spoiling the reliability of the fixed
order predictions. This usually occurs at the threshold
region, namely, when the mass of pseudoscalar Higgs
boson becomes equal to the partonic center of mass energy,
due to the presence of soft gluons. Hence, the large
logarithms resulting from soft gluons in the perturbative
series need to be resummed to provide sensible predictions.
In the pioneering works of Sterman [41] and of Catani and
Trentadue [42], resummation of leading large logarithms
for the inclusive rates in the Mellin space and also to
differential xp distribution [42] using double Mellin
moments were achieved. Soft gluon resummation of the
gluon fusion cross section has been performed to next-to-
next-to-next-to-leading-logarithmic (N3LL) accuracy for the
scalar Higgs case [32,33,43-49] and to next-to-next-to-
leading-logarithmic (NNLL) accuracy for the pseudoscalar
case [50]. In [51], the resummed transverse momentum
distribution has been calculated up to NNLO, + NNLL for
the pseudoscalar Higgs boson.

A generic threshold resummation formula valid to
N3LL accuracy for color-neutral final states was derived
in [49], requiring only the virtual three-loop amplitudes as
process-dependent input. Exploiting the factorization
properties of differential cross sections as well as the
renormalization group (RG) invariance, an all order
z-space formalism was also developed in [52], to study
the threshold-enhanced contribution to rapidity distribu-
tion of any colorless particle. In [53], the same formalism
[52] was used to study the threshold resummation of
rapidity distribution of Higgs boson and later to the Drell-
Yan (DY) process [54]. For different approaches and their
applications, see Refs. [55-63].

The resummed predictions played a crucial role to
understand the experimental data in the threshold regions.
Besides the threshold enhanced logarithms which are also
called as the soft virtual (SV) logarithms, the subleading
logarithms, called the next-to-soft-virtual (NSV) loga-
rithms, are also present in the partonic channels beyond
leading order in perturbation theory. There have been a surge
of interests in the community of theoretical physicists to
understand the nature of these subleading logarithms by
using various methods [64-76]. Recently, the well-
established ideas of collinear factorization and renormaliza-
tion group invariance have been implemented to understand
the perturbative structure of NSV logarithms for inclusive
processes in [77,78]. Following the same formalism of
[77,78], in a series of articles [79-81], we studied variety
of inclusive reactions to understand the impact of NSV
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logarithms and found a systematic way to sum them up to all
orders in z as well as in the Mellin N spaces. We have also
studied the perturbative structure of the NSV logarithms in
the context of rapidity distributions of DY and Higgs
productions in [82]. In addition, for the first time, a procedure
to resum them in a systematic manner in the double Mellin
space beyond the SV accuracy has also been developed in
[82]. Further, we have studied the phenomenological rel-
evance of the NSV resummation in the context of both DY
and Higgs rapidity distributions in [83] and [84], respec-
tively. For the pseudoscalar Higgs, the resummed predictions
including both SV and NSV are recently available to
NNLO + NNLL accuracy in [85] for the inclusive cross
section case. However, similar predictions for the differential
case is not available in the literature.

In this article, we explore the role of SV and NSV
resummed contributions for the differential rapidity dis-
tribution of pseudoscalar Higgs boson in gluon fusion
channel by employing the formalism developed in [82]. In
particular, we compute the SV and NSV resummed terms to
NNLL accuracy in the double Mellin N-space. Further, we
study the phenomenological impact of adding these
resummed predictions to the fixed order results through
a matching procedure.

The paper is structured as follows: The first section deals
with the theoretical description for the interaction of a
pseudoscalar Higgs with the QCD particles. In the next
section, we discuss the computation of the rapidity distri-
bution at the fixed order level. We explicitly show the
computational steps at NLO and discuss a procedure to
obtain an approximate NNLO which is denoted as NNLO,.
In Sec. IV, we review the framework given in [82] for
computing the SV + NSV contributions to the rapidity
distribution of a pseudoscalar Higgs in gluon fusion. The
following subsections are devoted to the discussions on the
ingredients that are required to compute the rapidity dis-
tribution at SV + NSV approximation to N°LO accuracy. In
Sec. V, arelation between inclusive cross section and rapidity
distribution has been exploited to determine the unknown
coefficients of certain logarithms which contribute to the
SV + NSV rapidity distribution. The results of SV 4+ NSV
rapidity distribution for pseudoscalar Higgs in gluon fusion
at the partonic level are presented up to N°LO in Sec. VI. In
Sec. VII, we focus on the characteristic structure of the NSV
soft-collinear function along with some of its peculiar
features. In Sec. VIII, we review the formalism to resum
the NSV logarithms to NNLL accuracy followed by the
phenomenological studies of the resummed predictions in
Sec. IX. Finally, we conclude our findings in Sec. X.

II. PSEUDOSCALAR HIGGS EFFECTIVE
FIELD THEORY

We begin with setting up the theoretical framework for
our analysis. The coupling of a pseudoscalar Higgs boson

with gluons occurs only indirectly through a virtual heavy
quark loop which can be integrated out in the infinite quark
mass limit. The interaction between pseudoscalar Higgs
boson y* and the QCD particles in the infinitely large top
quark mass limit can be described by an effective
Lagrangian [28] and it is given by

1 1

E?ff :ZA(X) —§CGOG(X) _ECJOJ(X) ) (1)

where the two operators are defined as

0G<x> = G};lléﬁﬂ = 6/414)5

Ga' G’ 0y(x) = 0,(Fr"ysw)-
Here, G4, = 0,G¢ — 0,G4 + g,f***GLG¢ is the color-field-
strength tensor, and G = ¢"P?Gy; is its dual with €,,,
being the Levi-Civita tensor; Gy, are the gluon fields, g, =
VAzra; is the QCD gauge coupling, and f®°¢ are the
structure constants of the SU(N) algebra. The symbols
y and y represent fields related to quarks and antiquarks,
respectively. The Wilson coefficients C; and C; of the two
operators originate from integrating out the heavy quark
loop in effective theory. The coefficient C; does not receive
any QCD corrections beyond one loop due to Adler-
Bardeen theorem [86], whereas C; starts only at second
order in the strong coupling constant. These Wilson
coefficients are given by [28]

1
Cs = —a,2iG2 cot f,

3 HR 2(2)
C]:— aSCF 5—311'1—2 +aSCJ —+ - CG, (2)

ms;

where a; = ¢2/167*. Here, G denotes the Fermi constant,
cot /3 is the mixing angle in the Two-Higgs-Doublet model
and Cp is the quadratic Casimir in the fundamental
representation of QCD. The symbols m, and m, stand
for the masses of the pseudoscalar Higgs boson and top
quark (heavy quark), respectively. The bare strong coupling
constant in the regularized theory is denoted by a; which is
related to its renormalized counterpart by

2\ €/2
&sse = Q%) Zaxas’ (3)
R

where S. = exp(§[yg — In(47)]) with y5 being the Euler-
Mascheroni constant. In the above expression, pup is the
mass scale at which the strong coupling constant is
renormalized. The scale y is introduced to keep the
unrenormalized strong coupling constant dimensionless
in d = 4 + € space-time dimensions. The renormalization
constant Z, up to O(a3) is given by
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2 4 1
Zas =1 + ag |:_ﬁ0:| +a§ |:_2ﬂ% +_ﬁl:|
€ € €

8 14 2
+ a3 |:€_3ﬂ(3) + @ﬁo/ﬁ + gﬂz] . (4)

The coefficients of the QCD f function f3; [87] are given in
Appendix A.

III. FIXED ORDER FORMALISM

The rapidity distribution for the production of a pseu-
doscalar Higgs boson at the hadron colliders can be
computed using

—JA(T m3,Y) = O (2, m3)W(z,m3,Y),

with

W= Z /dxl/ dx>fo(x) ] xz)/ dz6(t—zx1x5)

a,.b=q.q.9

x/[dPS,+m]|/\_/lab|2x5<Y—%ln (iff,)) (5)

Here, 6(¥)(z, m3) is the born cross section correspond-
ing to the leading order (LO) process: g(pl) + g(p2) —
A(q) at the parton level. The hadronic scaling variable 7 is
defined by 7 =m?/S where S is the square of hadronic
center of mass energy, and the dimensionless variable z is
defined as z = m? /3, where 3 is the square of the partonic
center of mass energy. fa< ») are the bare parton distribution
functions (PDF) with x;(;) being the fraction of the initial
state hadronic momentum carried by the partons (a, b) that
take part in the scattering at the partonic level. M, denotes
the scattering amplitude at the partonic level, and the
overline signifies the sum and average over all the quantum
numbers for the final and initial state particles, respectively.
[dPS,,,] is the phase space element for the A + m system
where the integer m depends on the number of radiated
partons. The symbol Y in Eq. (5) stands for the rapidity of
the pseudoscalar Higgs boson, and it is defined as

1 Py-q
Y=-1
2n<P1‘Q)’ (6)

where P; (I =1, 2) is the momenta of incoming hadrons,
and ¢ denotes the momentum of pseudoscalar Higgs boson.
In order to define the threshold limit at the partonic level
and to express the hadronic rapidity distribution in terms of
the partonic one through convolution integrals, we choose
to work with the symmetric scaling variables x? and x9,

0

1
Y=>ln (i—é) and 7= x0x). (7)

In terms of these variables, the partonic contributions
arising from the subprocesses are found to depend on
the ratios

0
Z,’E—l
]

X7
, =12, 8
o (8)

which play the role of scaling variables at the partonic level.

The partonic rapidity distribution can be computed, within
the framework of perturbative QCD, order by order in strong
coupling constant. The contributions arising from beyond
leading order contain the UV, soft, and collinear divergences.
Upon performing dimensional regularization, the true nature
of the UV divergences arises as poles in g, and such
divergences go away when the renormalizations of coupling,
masses, and fields are performed in modified minimal
subtraction (MS) scheme. The UV renormalized partonic

rapidity distribution denoted by Aﬁ’uh is identified as

1

—Adab<zl’z2’ amll mA,ﬂR)
X1X2

1
:/[dPSHm]/ dZ|Mab|2
0

« 8(z — lexz)é(Y - %1“@? : Z)) (9)

The soft and collinear divergences are collectively called
as infrared (IR) divergences. The soft divergences come
from zero momentum gluons in the loops of virtual
contributions and real gluons in the gluon emission
processes. The massless or light partons are responsible
for collinear divergences. Due to the KLN theorem [88,89],
soft and collinear divergences resulting from final state
partons cancel independently after summing up contribu-
tions from all possible degenerate states. However, the
collinear singularities arising from the collinear configu-
rations involving initial state particles remain. Those are
removed at the hadronic level through the technique,
known as mass factorization. The infrared safe partonic
rapidity distribution which is also termed as the partonic
coefficient function (CF) can be obtained by using the
factorization formula given below,

AY (21,20, ag(pg). m3. uF ug)

Ldy, [1 dyz
-5 /ZZ
x AJ g <§—1,Z—27&s7ﬂ2, M, W, €>
x T 5 (a1 1 2, €), (10)
where I",;, are the Altarelli-Parisi (AP) [90] kernels which

essentially absorb the initial state collinear singularities.
The factored out initial state collinear divergences get

svﬂzvﬂ%’yhe)
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absorbed into the bare PDFs to give a finite renormalized
value at the scale ur. Using Eq. (10) and substituting it in
Eq. (5), we obtain the expression for the rapidity distribu-
tion in terms of renormalized PDFs and finite CF as given
below,

B le] lez
= > L

ab 9.9.9

xo
( ,ﬂF>fb< 2’,uF> XAdgb(Zl szmA ﬂp ﬂR)
(11)

The perturbative expansion of the infrared safe CF in
powers of strong coupling constant read as

A 2.2 2
Adc(ZhZZ’mA’ﬂF’ﬂR)
—Za

In this article, we have computed % in Eq. (11)
explicitly up to next-to-leading order (NLO) for the
production of a pseudoscalar Higgs boson in a gluon
fusion channel, which is discussed in the following

Az z0md fepid), c=q.3.9. (12)

dPSzZ

8ax;x, T'(1+45) \ 4x

1 1 (mf\)e/z 22122(1 + 2122)
(21 +22)*

subsection. We also discuss how an approximate NNLO
which is denoted as NNLO, can be obtained by using the
NNLO results of a scalar Higgs boson.

A. Fixed order results at NLO and NNLO,

Here, we begln with the computation of the rapidity
dlstrlbutlon glven in Eq. (11) at NLO accuracy. Note
that the NLO contrlbutlon arises from the one-loop virtual
corrections to born process g+ g - A and from the real
emission processes, namely, g+ g—>A+g, g +9g > A+ q,
and ¢ + g = A + g. In order to obtain d"A at NLO, the first

step is to calculate A déb given in Eq. (9) for i =1 for the

aforementioned processes. One of the ingredients to find
A%;}) is the phase space element dPS| ,,, which is relevant

for the processes at NLO. For the virtual contributions to the
born process, dPS,,, = dPS,, which is given as

:m_’;(sa —2)8(1 = 25). (13)

dPS,

and for the real emission processes, we have two body phase
space element dPS,,, = dPS,, which takes the following
form:

(1 =2})(1 = 23))2. (14)

Next, we need to determine the square of the matrix element |/\_/lab | which is averaged over spin, polarization, and color
for the NLO processes mentioned above. For the one-loop correction to the LO process, we obtain

2
o L

g+g—A—one loop

7 3 7 1 1
+§C2 +ZLQF +§LQF€2 _§L2QF _ﬁL:;QF} + 62{—

3 7 1 1 5
_as(l\ﬂi)[ {2}+ { I_LQF}+{§+ZC2__LQF_ZL2QF}+€{ C3

7 21 73 5

~ - 652 "3

-°L
8 24 320 g or

7 7 3 1 9
_ﬁLQFQ +ELQF€2+EL2QF+§L2QF€2_%L3QF}+€3{ E*’ C*"’ CZ+ gZC?
73 7, 7 21 73 5 7 7
640 0% T 16 16Lor ~gglerts —33Lerta - 640LQFC2 32 LZQF %LQFQV3 e LQFCZ
L, 7 5 219
L = 2
T3 Lor + 797 192 QF@} {16 9653 T 144 g* 42 T 52@ 1280%2 640 €2
9 7 35 73 7 7
32LQF +3 0 Lor¢s + LQFCQ B Lorlyls — 1280 Lorpls +— ol Ljr - 192LQFC3
21 73 5
2 2 2 3

iy § SR § -
128 ort2 2560 oré2 192

7 7
LQF—%L?’QFQ +ﬁL3QFCZ}:|’ (15)

where Ly = log( ) and ¢; are the Riemann zeta functions. Here, Q% = m? 4. For the real emission process g +g = A + g,

we find
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. _a, mCGE [ 1 3 2 o [ Jf_16), @
Ml sgnig = ()2 (N> — 1) [DlDz (8s7) + 0*(32) + D, (16s) +D1 (16s) + QO g + Dz( 8)

o 0° (8\  0°(8 2(8 2(_8 1 3
505 (1) 45 () om0 () 02 (=) 1605 00

2 Q2 8 Q4 Q6 4 Q6 4
2 = = 4 _ = = (_ = (_ = | = = | =
+Q(8)—|—D2(8s)—|—Dl(8s)+Q( S>+D2( 4+ 4)+D2(s>+D] <s>
2
N

+ Dy(—4) + D, 0 G) 4+ D2 <— g‘) - SS} + 62{D 102 (=25%) + Q—4) + 5-(~49) + o

1 1

+ Q4(§) g—z(z) +g—j(2) +g—j (—%) +g—f (—%) +D;(2) + D, Q? (—%) +D%<%> -|—4s}
+e3{DllD2 (s*) + 0%(6) +g—i(2s) +g—j(2s) + Q“(—%) —g—z—g—j+g—z G) +g—j G)

- D, +D,Q’ G) +Dj <—%> —2s} “4{1)111)2 (—%ﬁ) +Q%(-5) +g—z(—s) +g—j(—s)

() £ 050§ ()55 o)

+D1Q2<—2is> +D§<2is> —i—s}], (16)

with D; == (1 -z)(1 —y) and D, = %Qz(l — z)y, where

Z

(~45)

_ X _ xxp(n +ad) (g — )
= ’ = 0 0 0,0\ (17)
X1X, (1x3 4 2x2x7) (X125 — X7x3)
For the real emission process ¢ + g — A + g, we obtain
2 2
-1 a;, n°CpGy 1 5 5 , 1 4 1 1 5
- ZEPF | (—4s) +— (=8 4 — (8 —(=4) + Dy (4 — (4
Bt = s e ey [ (45) 5 (867) 4 Q260+ 07 5 (59) + @1 - (—4) 4 D) + e - (=47
1 1 1 1
2(4) + 02— (4 4 (=4) + Dy(4 20 (25) + — (282) + Q? — (=2
F Q)+ Q5 9) + 0 () + Do)+ ] (25) 4 5250 + @5 (<29}
1 1 1 1 /1 1 1
3 _ (2 2_~ 4 - 2 2~ | _= 18
e {( S>+D1( )+ DI(S)}+€ {(2S> +D1 <2S > e Dl( 2S)H’ 18)
and for g+ g — A + ¢, we have
|~A_/l|_12/+q—>A+q = |M|¢2]+g—>A+q Dy <D,* (19)

Finally, for the real emission process g + g - A + g, we find

a, m*CpG>

M2 aiy = ) N [(4s) + Q?(-8) + 0* (%) +D,(8) + D,Q? (— %) + D? G) + €{(6s) + Q?(-12)

0 (%) v+ 0 (-2) 013} efea s e ()}, (20

Now, we can compute the NLO hadronic rapidity distribution ‘fii; in Eq. (11) by performing the convolution of Ag’a , for
all the contributing processes at NLO discussed above with the corresponding PDFs. Note that A% , can be obtained by

substituting for A‘;‘ya, » 1n the factorization formula (10) which requires the phase space element as well as the matrix element
square computed above according to Eq. (9). We express the NLO rapidity distribution at the hadronic level as
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NLO A.(0) A1)
dot — A0 (g m2) doy, 0 doy,
dy dy dy
A1 Al A1)
ta daqg( : dagq( ) doyy (21)
fody fody Sody |
where
da'gg’m)
gy = HogW0 0, pt) = £y up) fy(o3omp). - (22)

The full result of d";’;w is provided in Appendix B. Here,
we mention one interesting observation of the NLO result
of pseudoscalar Higgs rapidity distribution. As already
noted in [91], the NLO result of the rapidity distribution of
the pseudoscalar is related to that of scalar Higgs at a
partonic level as follows:

AN — A 8L s(1 = 2)8(1 - 2,),

d.g9 d.g9
Al H,(1 Al H,(1
Ads) = Biags Aiy = Adays (23)

where H stands for the scalar Higgs boson. From a detailed
analysis of the above results, it has been found that the

2 4 215 20
R.AH = |:1 + aS{SCA} + a?{nfCF(—?)l + 12ert - 4Lqr) + CAnf <_§ 3 qr> C2 <7 _?

763 32
+ad {nf(—4c§2)) +n,C2 (T +4L,, + ?:3> + 1}

67094

1492
+ CAnfCF <_8—1 96 rm[ -

631 134 8

16
+CA”J2‘<_ﬁ+7LqV 9L§r+?é‘2> +C§I’lf<

68309 6028 220 208 440
{3——0

(===, +12, - =2 -
+A<81 27 ety R T

where L, = In (M )and L,,, = ln(%).

2
R

Now we ask the following question: can this ratio factor
R 47 be used for computing the rapidity distribution of
pseudoscalar from that of scalar Higgs beyond NLO
accuracy? In [36], one of the authors had studied the
applicability of this ratio method in obtaining the inclusive
cross section of pseudoscalar from that of scalar Higgs
beyond NLO. In [36], it has been established that an
approximate NNLO result can be obtained for the inclu-
sive cross section of pseudoscalar from that of scalar
Higgs by using this ratio method. In that case, the
difference between the exact and approximate results
are found to be in terms of next-to-next-to-soft

Lqr - 88Lqurmt + _Lg[r

difference in the rapidity distribution of scalar and pseu-
doscalar Higgs at NLO for a gg channel arises only from the
one-loop virtual contribution to the respective born proc-
esses which is also termed as one-loop form factor (FF).
Note that the FFs of both scalar and pseudoscalar Higgs
bosons are different due to the presence of different Wilson
coefficients corresponding to ggA (pseudoscalar) and ggH
(scalar) vertices in the Higgs effective field theory [28].
However, we note that the full hadronic NLO rapidity
distribution of pseudoscalar Higgs can be correctly
obtained from that of scalar Higgs by using the formula
given below,

daA,NLoiR A0 1 dotNLO
ay O\ Gro) e ay

with ¢/-(%) being the born cross section for scalar Higgs and
Cy is the Wilson coefficient for ggH effective vertex [92].
In the above formula, R 45; is the ratio of the modulus
square of the finite form factors (FF) corresponding to
pseudoscalar and scalar Higgs [31,93], that means

_ FE4P : : ]
Roan = FE, . We provide the expression of the ratio factor

R up to a’ below,

(24)

o)}

4520 328 8
(81 -5 ,+16Lq,ert—§L§,+16CZ)
44 224
: 753—88@
1973 838 4, 8
g1~ 27 Lertole - 16537@)

contributions which are suppressed by (1 — z)? with respect
to the leading soft terms that means they vanish in the
threshold limit z — 1. In addition, there are no log(1 — z)
terms present in the difference of exact and approximate
NNLO results. This suggests that one can compute the
inclusive cross section of pseudoscalar Higgs from that of
scalar Higgs by employing the ratio method up to next-to-
soft terms or NSV terms correctly. In addition, in [36], it has
been shown that the approximate NNLO results provide an
excellent approximation to the exact one where the dis-
crepancy is at most 2% for high mass region, whereas it is
around 1% for the low mass case.
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Drawing inspiration from the above observation for the
inclusive case at NNLO, in this article, we attempt to go
beyond NLO for uplifting the theoretical accuracy of the
predictions for pseudoscalar Higgs rapidity distribution.
We begin with computing the approximate NNLO rapidity
distribution of the pseudoscalar from the exact NNLO
result of scalar Higgs available in [94] by using a formula
which is equivalent to Eq. (24) for the NNLO case. We
denote this approximate NNLO result by NNLO,. The
analytic expression of this result is too big to be presented
in this article; nevertheless, we reserve a section for the
detailed numerical analysis of the results we computed.
Further, in principle, one can extend the same ratio method
discussed here to obtain the approximate results at N*LO
for the rapidity distribution of the pseudoscalar Higgs.
However, since the complete N>LO results for the Higgs
rapidity distribution [95] are not yet available publicly, it is
not possible to compute approximate N>LO results for the
rapidity distribution of the pseudoscalar Higgs using the
ratio method mentioned above. Needless to say, computing
the corrections beyond NNLO is not easy, and the
|

complexity level of the computation increases significantly
which often prevents us from achieving it. Hence, we resort
to an alternate method based on soft-virtual and next-to-
soft-virtual approximations [82] which essentially capture
the dominant contribution at the threshold to go beyond the
NNLO accuracy, which is the topic of the next section.

IV. SV+ NSV FORMALISM

The goal of this section is to study the rapidity distri-
bution of pseudoscalar Higgs in gluon fusion at the soft-
virtual (SV) + next-to-soft-virtual (NSV) approximations.
To be more precise, we consider the contributions to the
partonic CF corresponding to the rapidity distribution
of a pseudoscalar Higgs boson in gluon fusion in the limit
z; = 1 by keeping only SV and NSV terms; hence, we

denote them by A’ §V+NSV Since we restrict ourselves to

SV terms, namely, distributions of the kind §(1 — z;) and
Dy (z;) and NSV terms logk(1 — z;) for the CF with gluon-
gluon initiated channel, the expansion coefficients in
Eq. (12) can be expressed as follows:

Al
Ad-y Adg(géé(zl) (2 +2Ad95735z1 +ZAdaéL +2AngD (21)Di(z2)
+ ZAng 1. Dj(z1)Li(z2) + (21 < 22).
In/(1 — i
with  D;(z) = [ﬁ} .6(z) =6(1—z) and L;(z) =1log/(1-z) forl=1,2. (26)
+

In [82], it has been already shown that the SV + NSV contributions to the differential distributions arising from diagonal
partonic channels, which is the gluon-gluon channel in our case, can be factorized in terms of the overall operator UV
renormalization constant Z’;, the bare form factor F° ‘3 (FF), a function Sf}, p that is sensitive to real emission contributions,

and the collinear singular AP kernels T',,,. This is always possible as (Z4)? and |F|? are simply proportional to 5(Z,)5(Z,)

and can be factored out from these partonic channels. Hence, near threshold, we obtain, for A?"QSVJ”NSV,

ASV+HNSV
Ad.g (

20520, M3, o f€) = 6O (ud) (Z

( s’ﬂ%’ﬂz’e))2|ﬁgA(asaﬂ27 mﬁ,€)|2

xé(zz) (z1) ® Sj (ag, u*, m3, 21,22, €)
® Iy (@ p*, i 21, €)8(22) ® Ty (@ 2, s 22, €)(Z1). (27)
The symbol ® refers to convolution, which is defined for functions, f;(x;),i =1,2,---,n, as

n

(f1®f®

As long as we are interested in computing the SV +
NSV parts of the rapidity distribution, that is those resulting
from the phase space region where z;(;) — 1, we keep only
those terms that are proportional to distributions &(Z;),
D;(z;), and NSV terms log’(1 — z;) with [ =1, 2 and i =
0,1, ... and drop the rest of the terms resulting from the
convolutions. Hence, we have kept only diagonal part of

®fn)(z):H

i=1

( / dx, f,»(x,-))é(z Xk ). (28)

AP kernel I ;, in Eq. (27) and dropped the nondiagonal AP
kernels. In addition, the diagonal kernels get contributions
only from the diagonal splitting functions. The reason for
the above simplification is due to the fact that the
distributions and NSV logarithms can come only from
convolutions of two or more distributions or a distribution
with NSV logarithms. In summary, since our main focus
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here is on SV and NSV terms resulting from gluon initiated
pseudoscalar Higgs production, we have dropped contri-
butions from nondiagonal partonic channels in the mass
factorized result of A;}’ ;- All the ingredients in Eq. (27) that
are required to get a finite CF, namely, Zg‘, Fy, A, 84 d.g and 'y,
are known to satisfy certain differential equations with
respect to some mass scales [32,78,79,82]. The form of

solutions to the respective differential equations which are
discussed in the subsequent sections along with the well-

W4 (@ ik 1E 21, 200€) =

established ideas of collinear factorization lead to an all
order formula for computing A;‘:;VJ’NSV in z space,

ASV4HNSV/ 2 2 2
Ad,g (q sHRs HEs Z17Z2)

= Cexp(W4 ,(¢% k- HF+ 21, 22:€))|eor (29)
where the function ‘PQ‘. g is given by
|
(In(Z§ (@5 4> e €))* + | F (@5 4%, 0%, €)*)5(21)6(2)
+ Cln Sg.g<&swu27 qZ’ 215225 €) —Cln Fgg(&swuzvﬂ%ﬁ 21 6)5(22>
_Clnr‘gg(&svﬂz’ﬂ%vZZ’€>5<ZI)' (30)

The symbol “C” stands for the convolution whose actions
on a distribution g(z;, z,) is defined as

1
+9(2)

1
+59®9) @)+,

Ceg(zl~zz) = 5(1 — Z1)5(1 - 22)

(31)

where ® denotes the Mellin convolution. Though the
constituents of ‘Pf},q contain UV and IR divergent terms,
the sum of all these terms is finite and is regular in the variable
e. It contains the distributions such as 8(1 — z;), D;(z;)
and the logarithms of the form logi(l—zl),l: 1,2,
i=0,1,...

A. Operator renormalization constant

Besides coupling constant renormalization, the form
factor also requires the renormalization of the effective
operators in the effective Lagrangian, Eq. (1). This addi-
tional renormalization is called the overall operator renorm-
alization which is performed through the constant Zj]‘. In
Eq. (27), the overall operator renormalization Zg‘ is
determined by solving the underlying renormalization
group (RG) equation:,

Z a7y

d
—— InZj (@, ug. 1. €) (32)

d

Using the results of 72,1' given in Appendix A and solving
the above RG equation, we obtain the overall renormaliza-
tion constant up to three-loop level as

Z4 =1+ a BZCA —% ] +a? {?{%Cz 196CAnf + 196 2} —l—é{%Cf‘ —%OCAnf —2Can}]
s {1 20, -
1 {%q —%0 3(9)8 CaCrny + 2280 Cand + 596 anf}
+ = : {22?7 4 1:15 Cins — 2075 CsCpny +§Can + 89 CAnf +§3CF”]2£}:|, (33)
with the SU(N) QCD color factors,
Ca=N, Cp= N;; 1 (34)

Here, ny is the number of active light quark flavors. It is to be noted that ZA

been discussed extensively in [31].

Zsc which is given in Eq. (3.49) of [31] has
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B. Form factor

The unrenormalized form factor F4(a,, Q% u*, ) sat-
isfies the so-called K + G differential equation [96-99]
which is dictated by the factorization property, gauge, and
renormalization group (RG) invariances,

a 9 ’
T2 )
Q* ug

S’_2’_2’
Hr H

MR

A

d ., 1
de—Qzlan(as,Qz,,uz,e) :E |:K2<

+Ga (a eﬂ (35)

where all poles in the dimensional regulator € are contained
in the Q? independent function K4, and the finite terms in
¢ — 0 are encapsulated in G5. RG invariance of the form
factor implies

The cusp anomalous dimensions A’;i [42,100-103] are
given in Appendix A. Solving the above renormalization
group equation (RGE) satisfied by K4, we get

K (ay, j? p. €) =
with

D) =7 {248}

1
A2
K3 (€) = 5 (2o} + - {-ALs),
A3 1 1 (2 8
KyV(e) = 3 {—3%"‘31} +t3 {sﬁlf\‘;l +3ﬁoA2,z}

d MZ d Q2 ’u2
HR d g 2 R dﬂ%e g M% e +E _§A93 (38)
== Z aj (ﬂ%e)Ag.i- (36)
i=1 Similarly, upon solving the RGE in (36) for G4, we obtain
|
A, @ KR A 2 @ A 2 vodre o, 2,2 A 2
63 (.5 15 c) = 63 (0. &) = Gl (@) 1.0+ [ Toabla (iR = GYa (@)1,
HR H HR 0*/uy
© 2\ i€ 2\ i .
=Y sta(")(%)" 1|k )
i=1 H KR
We expand the finite function G4 (a,(Q?), 1,€) in powers of a,(Q?) as
Gi(a,(Q%).1.€) = di(0 (40)

i=1

After substituting these solutions in (35) and performing the final integration, we obtain the following solution for the form

factor:
~A DOA Q2 12,;\‘([)
InFy(a,, Q% 4. e :Za L,w (€), (41)
i=1
where
EAD = 5 (-248) + = (G4,(6))
gF T 2 g.1 g.1\€
2A~(2) _ 1 AA 1 IAA GA 1 GA
g9.F —6_3(ﬁ0 g,l)+€_2 _5 g,2_ﬂ0 g,](e) +2_€ g,2(€)
AAL3 1 8 1 /2 8 4 1 2 1
EgJ(v) =2 (‘5,5%142_1) t3 <§ﬁ1A§,1 +§ﬂoA?,z +§ﬂ%Gﬁ.1(€)> = <—§A‘33 §ﬁ1G9,1<€)
4 1/1
-G+ (5600, #2)

01

6019-10



RAPIDITY DISTRIBUTION OF PSEUDOSCALAR HIGGS BOSON ...

PHYS. REV. D 110, 016019 (2024)

One finds that Gf}"i can be expressed in terms of collinear Bf

and soft f7 anomalous dimensions through the relation
[38,104,105],

GA(e) =2(BA, —72) +fq,+Zekg’3,"- (43)

Note that the single pole term of the form factor depends on
three different anomalous dimensions, namely, the collinear
anomalous dimension Bg‘,, anomalous dimension of the
couphng constant yg.,., and the soft anomalous dimension

.. B4 can be obtained from the 5(1 — z) parts of the

gl
|

93,'11 =Ca{d+ 0}

7
92,’12 = CA{—6—§C3},

1 47
991 CA{7 56 +—C%},

11882 67 44 2534 10
A;—C,%{—+ & - 63}+CAnf{—

81 3 81

diagonal splitting function known up to the three-loop level
[100,101] which are given in Appendix A. The fA fori=1,2
can be found in [38] and in [100] for i = 3. We list them in
Appendix A. The constants gﬁ‘io are controlled by the beta

function of the strong coupling constant through renormal-
ization group invariance of the bare form factor as

Goi =0, 4,3 = =2bog,1,

gﬁfg = —2/7’192,'11 - 2,50(9?,’21 + 2/7’092,’12 )- (44)

Below, we give the expressions of g‘;; which are required to
calculate the form factor up to al,

3 mz

2827 /Jz 19 16 128 839 259 766
ggz Can{——lgln(n%)—?Cz—?C% } Cangd — —Cz Cz —753}

18

, { 223861 | 80
A

“age oot

t

671 ,, 2111
0%t 27

1 _ ) 12395 136 368
g‘y4,3 - I’lfCJ {—6} + C}ﬂ’l?{T _TCQ _EC%

&3+ Czéa
1520

39@“5}
4

——;—241n < >} Cci ~{4§+312C3—48055}

o
Ci {62231;83 N 144686677 - 547;;4 ' ﬁzz %_6727766 - 1496 e — 104 gz N 30% Cs}
+ CA”}{SZ‘237_287€2 +%§% +7§TO§3}
+ cAanf{— 102‘;95 + 1?21 »+ 1228 &+ 25784 Cy + 408,85 + 6—4“5 +1321In <m21> } (45)

After substituting the above expressions in (35) and performing the final integration, we obtain the UV renormalized

form factor up to O(a3) as

o 1 1 1 40
PP -07,0) = ()] = 3166, + Cufs 14 | + (P { 5 16Cun; - 8863 + 5 |Cuny ()

+C3 (—iﬁﬂ&gzﬂ +é {CAnf<

76 4 772 22 160
ﬁ—FBCz) <7—4C3——C2>] +Can<—T

3 81 9

12 1886 92, 50 8318 286, 335
+121n(m>+16§3>+cAnf<—— g3——52> C2(—— §3+Tc2—24g§)}

81

t

1 1408
+ G‘Y(q2)3{€—4 |:CAI’l}2c (- 8—1> + C%Vlf(

15488

3
) ra(-

9

42592\] 1 [, (1600
TR R AT
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256 31040 320
+ CACFVlf <T> + Cil’lf <W - 742) + Ci(

440 128 6176 544
+CACF”f<—— C%)‘ A < 55

27 9 "\ 243 27
704 1 5 3728 224
Cé)]‘Fz[ck”f<‘57§7*‘3:‘¢3‘

14980 1424 . 4792 656
+c§nf( + & — C2>

2187 81 3" 243

2552 1498 224 40
cz)] —nCy) + Cpn f( -SG50

9 3 9

560290 9152 296 424
+CAI’I§~< +—C3 _—é/ €2> +CACan<_

6561 243 27
368 128
+Tévz§3 §2> +C; f<

s 35421539+4444
A\ 13122 9

7335209 856

322280 . 208
R Ve __Q

C. Mass factorization kernel

The mass factorization kernels are the solutions to the
AP evolution equation which is controlled by the AP
splitting functions P, (z;, u%) as given below,

Z Paa Zl?/’tF)®Fab(Zl’ﬂF’ )’

a =4.9.9
a,b=q,3q,9, (47)

d
2 2
u—F 21, Mg, €
F!%ab(l F

where the perturbative expansion of the AP splitting
functions reads as

0

=S d@PEIE).  (48)

i=1

Zl’.“F

As discussed in the previous section, only the diagonal
parts of splitting functions P, (z, u%) in Ty (z, u%, €) need
to be kept since the convolutions of two or more non-
diagonal splitting functions give rise to terms which are of
beyond NSV type. The diagonal P,,(z;, u3.) are expanded
around z; = 1, and all those terms which do not contribute
to SV 4+ NSV are eliminated. The diagonal AP splitting
functions near z; = 1 take the following form:

ng<zl? (ﬂF))

2By (ay(pur
+ Aj (a(ui
+Ch
+ Dy |+ 0((1-2)), (49)

6561 T 9 5T

98128 | 1760 1 224 32
243 27 Cz)} [CA”f<81 27C>

416 16328 880
—ﬁé'z) +C; <—_—C3 +

80 3638 608 8 64
—1C2) - CACF”f <———C3 -6 —E§%>

1384

- %

243 27 81

81 27 3
234466 64 488 24436 160
2187 13579 BT gy 2T g 95

457
4565) + Ciny <3 — 3205 + 208§3>

623255 1216 35176 925

186 9 Sty BT g &
2216 37054 10616
ﬁ S_Wé,Z_ 104(2(:3 §2>
510619 118534 75088 3
skt 3) . 4
729 & — ngz 135 &+ 045 Cz)} (46)
|
where
Chla,(u3) =D al(u})Ch,.
i=1
D (a,(u3) =Y _ai(up)D4,. (50)
i=1

The constants C); and D/); can be obtained from the

splitting functions P, which are known to three loops in
QCD [100,101] (see Refs. [71,100,101,106—112] for the
lower order ones). We list C/; and D7, below,

ch, =0,
C), =16C%,

320 2144
Cys = Cﬁ”f{—j} + Ci{—g - 64C2},

DA - _4CA’
852}

A
40 268
D?Q:CAnf{g}—i‘C‘%{ 9
16 110
908 112 160
(- Cz}

2 e
1072 176
+Ci{ 166 + 22 C% —5 & Cz} (51)
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The RG equation in (47) can be solved by employing the perturbative expansion of the AP kernels,

=) 2\ i€
~f H 2 i
Cy(aie) =301 =) + 3 a () sirfian o) (52)
i—1
The solutions of T'\") in the MS scheme are given by
1 10
Log (21.€) == Pyg (21),
r® L (1,0 PO pO L)
99 (21, €) 2\ 31 (21) ® Pyg (21) = PoPyq (1) +g 5 a9 (z1) ),
L (4 5 0 0 0 L o 0 0
Lyg (z1.€) = = <§ﬁ(Z)P§g> (z1) = BoPly (1) ® P (21) +6P§g) (z1) ® Py (21) ® Pl (z))
1 1 0 1 1 0 4 1 1/1 2
+ (578 @ P ) - ) - SaPl @) ) + 1 (575 ). (53)
€ e \3
|
The most remarkable fact is that these quantities are , d -4 2 A
. . . ) Ur——= K5, = —1r—— G
universal, independent of the insertion of operators. duz 9 duz 9
Hence, for the process under consideration, we make use -
g = —5(1 = 20)8(1 - 2)Ad(a,(k3)).  (56)

of the existing process independent results of the AP
kernels and splitting functions.

D. Soft-collinear function
Exploiting the fact that the CF A% >V*™V is finite, the
infrared structure of Sg}.g can be studied using the AP
evolution equations of I'j; and the K+ G differential
equation of F‘; provided with the renormalization group
equation of Zj. This is possible as we find that S, also
satisfies a K + G type differential equation,

d 1 ﬂz
Z_SA _ KA N R
q qu d.g 2 |: d,g <as’ﬂ2 , €, 21,ZQ>

q2 MZ

+G4, (as,?,”—’;,e,z,,z% ®S4,. (54)
R

where the infrared singular part is contained in K% , in terms
of universal anomalous dimensions while the finite G/ , is

controlled by certain process independent but initial state
dependent functions and also certain process dependent
pieces. Since the K + G equation (54) corresponding to
S‘[} p admits a solution of convoluted exponential form, we
write

Si, = Cexp (2@ (4, 4%, 4% 21, 22.€)),  (55)

where the real emission contributions are encapsulated in the
function d>2y , Which is termed as the soft-collinear function.

Furthermore, @ , being independent of u% satisfies the RG
equation, u% dﬂ%‘b’d‘ , = 0 and consequently
2 d,

The right-hand side of the above equation is proportion to
8(1 —z1)8(1 — z,) as the most singular terms resulting from
K, should cancel with those from the form factor con-
tribution which is proportional to only pure delta functions.
To make the CF AZ,\”SV+NSV finite, the poles from @4 ,haveto
cancel with those coming from I:”_f} and I'y,. Hence, the
constants A% should satisfy A% = —A%. The RGE (56) for
G’:}Y , can be solved using the above mentioned relation to get

2 2

~A ~ 49 HR
Gd’g <as9—27_272]9Z27€)

Hr H

2

_GA a(2)q—

- d.g sluR’ 27Z],ZQ,€
HR

= Gé,g(ax(qzx 17 21,42, €)

2
—8(1—21)8(1 = 2,) l_j %Ag‘(as(ﬁzu%))

)
"R

(57)

With these solutions, it is now straightforward to solve the
differential equation (54) for obtaining the form of @Q’ g For
convenience, we decompose the soft-collinear function as
A _ A A : A
@, = Py, sv + Py, nsy 10 such a way that &y, con-
tains only the SV terms, i.e., all the distributions D;(z;) and
8(1 = z)), and @)\ contains the NSV terms, namely,
log(1 = z;),1 = 1,2,k =0, ... inthe limit z; 5y — 1. Anall
order solution for <D2. g5y 1IN powers of a, in dimensional

regularization is given in [52], and we reproduce it here for
completeness,
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0 2= = i€ . \2
(92122 \ "2 (16) AAL(D) :|
Pigsv = U\ ) Selgz = , 58
oy ;q ( IS ) {42122 Pay (€) (58)
with
A AL I A ~ A
¢d,; (o) = ie [Kd,(g) (€) + Gd,(g,)SV(e)]' (59)

The constants I_(s”;i)(e) are determined by expanding I_(Z“ , in powers of a; as follows:

2 )
> ~ M U ik
Kﬁ,g(as,ﬂ—ﬁ,zl,z2,e> =6(1-z)8(1—-2) ) &l (ﬂ’;) SIS (e, (60)

i=1

and solving the RGE (56) for K%} ,~ The constants I_(s‘m (€) are related to the constants Kﬁ’m (€) which appear in the form factor

9 9
by I_(g:;’)(e) = K;‘”é'>(e)\ At—>_as» due to the IR pole cancellation. Gi’;f;v(e) are related to the finite functions

Gy g’sv(as(qz), 1,21, 25, €). In terms of renormalized coupling constant, we find

S ai (P02 56800 = S a1 - )1 - 2B, o) (61)

u

Using K 3";") from Eq. (60) after putting the explicit values of A/} and Gﬁ}”égv from Eq. (61), we find that éﬁ;"‘;) (¢)in®y gy upto
third order in a, takes the following form:

Pie) = 58Cu+ 1T, (e),

B =s{cm(5)ra(-5) b+ a{n (%Gﬁ,g,me)) +ea(-500)
+CAnf<—?> +C3 (%-‘Kz)} gqu( €),

g;ﬁsf)(e) —61—4{CAn§-(18i18> + Cinf(—%) + C3 <3Z#)} +—= : {nf(;gf‘ (€)>
+ CA”f( 176gdq1(€)> + Qm%(—%) CyCrny <196> +C; <484gd¢;1( )>
+Ci”f<% 1227852> Ci(—%fz %472)} : {”f@ dgale ))
+ Cpny <§§73,g.1(€)> +CA< G )) + Cany (%Ogg,g,l(e)> + Cyn} <—%)
+CACpnf< 220+64C3> +C; <—94GQ.,9.1(€)) +Cﬁn,f<—1672—224§3

27

320 L(980 176 2144 352 12,
+HCZ> + CA<27 + 77 &3 31 &+ Cz) } + egdfg,f%(e)' (62)

In the above equations, Qf}’g_i(e) are parametrized as follows:
T
Tl yile) = =fh+ > e Gptt) (63)

where
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>A.(0 >A.(0
gdU:Ov 122): Zﬂogdgl’

~A,(0 ~A(1 , ~A.(2
Gy = —25,Gy ) — 280(GY +280G07). (64)
The unknown constants Qg‘gkl are determined in the next section.

Let us now study in detail the structure of ®% 4GNSV using the Eq. (54). Subtracting out the K + G equation for the SV part
@, v from Eq. (54), we find that @} \qy satisfies

2 d 4 2 174 .4 R
q d—qz@d,y,NSV(q 21,22, €) :E Gd,g,NSV Cl.g’Pt—%e’F,E,Zl,Zz ) (65)

where G} vy = Gj, — G4, sv- Now, solving the above differential equation, we obtain the following all order structure

A
for (Dd.g,NSV

o0 2= =
~i [ 4R1%2 i (i) /= ie
sy =30 (T22) 5 [l ) + L0l )| =
i=1
with
A7) /= 1 ~A, (i =
03y @) = P (Gansy(E 0] (67)

Gj’éf}vsv(zj,e) are related to the finite function G vgy(a,(q%), 1, 21,25, €) through the NSV logarithms log*(1 - z;).
Defining Gﬁjj{j(zj, ¢) through

© 2=\ i€ o
A (4% 2 i AA _ ; C\=Ag -
Z ds (/4—2]> SeGd,gg.l)\’SV(Zja €) = Z ay (qZZj)gg’Zi(zj, €). (68)
=l i=1
we find
A s A9 (=
Gd.s(z,lx)/sv(zwg) =G,1.1z.9),
~A(2) = 1 ~Aa - o
Gd,é,]z/sv(zj’ ) = E( 2ﬁ0g‘2,z.l (Z‘], g)) —+ gi;iyz(zj’ 8),

Gl (€)= 5 (B30 21, €) + 1 (~PITiL. (21 €) — 40T )
+G7 500 (69)
Using (67) and (69), we obtain
Wi (ze) = ST (2p0e)

€ 27
8 - 44 -
+e ”f<9931?2(2], )) +CF”f( 93,'21(21’ )) + CA( dLZ(Z]’ ))
10 - 34 _ 1 -
+ CA”J( gdL 1(Z/’ )> + C2 < 9 gdL 1(21" 8))} +§gfd‘.‘g.3(zj’ €). (70)
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Here, (;’;‘;Z’i(z, ¢) are expanded in powers of ¢ as
=Ag (= - kA (K) s
Gati(zpe) = 2L z) + 3 Gif ). ()
=0
with

gdLl (z;) =0, gsz (1) ~24,G5 7" (Z)),
% )

L.l
gdL3 (z j) —2p gdLl = 20 9’23 3 +2ﬂ0gdz % (Zj))- (72)

The anomalous dimensions LA can be determined by demanding finiteness of A4 dg and it turns out that it is half of NSV
part of the AP splitting functlons (see Ref. [82]), that is,

L;‘.i(as’ ZZ) = C?,i(as) IOg(l - Zl) + Dg,i(as)' (73)

The coefficients G AL (z ;) in the above equations are parametrised in terms of log*(1 — z;),k =0, 1, - - - and all the terms
that vanish as z; — 1 are dropped.

itj—1

=A,9,(]) /= =A.q,(].k
Gi(z) = Gyt logh(1 - 2)). (74)

k=0

The highest power of the log(1 — z;) at every order depends on the order of the perturbation, namely, the power of a, and
also the power of ¢ at each order in a,. Hence, the summation runs from 0 to i + j — 1.
Next, we obtain an integral representation of CIDQ" gsv Which is given by

o0 =500 ({ [ G A2 + Gl st >})

Z] +

[N )

Lo o (d\E o nai | 1 °°Ai/,42i§i.l~
#yoaae) Y at(%) sg¢;,‘,;><e>+55<z»(g) >oai (M) skt 0 + @ o ). 09

i=1 + =1

where qu = ¢*(1 - z;) and ¢}, = ¢°Z,Z,. The subscript + indicates the standard plus distribution. Similarly, we find an
integral representation of the NSV part, Cbﬂj’ sNsy Which reads as

1 21 d)? _ _
@y =306 ({ [ L4022 + oy a2} )
HE

e % K <1 >{/M:22122%L?<as<ﬂz>vfl> +¢’3,fqg<“s<‘ﬁ2)’z“8)}>+]

I _
+50(2)9i,4(21,) + (21 © ), (76)
where
> (A (i
P o, (a,(2).2 Z&2<M2> Sl (z€)  a=f.s. (77)
i=1
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is the singular part of the NSV solution. The finite
d,s,g
part qof}, fo is parametrized in the following way:

o0 (&) l A ~
gof}fq Zl; (,uz) Seq dg(' (€)In* 7,
= Z ai(2? (pdgl) Infz (78)
i=1 k=0

The upper limit on the sum over k is controlled by the
dimensionally regularized Feynman integrals that contrib-
ute to order a'’.

V. MATCHING WITH THE INCLUSIVE

The unknown coeff1c1ents of both SV and NSV solutions
of qy{‘} , namely, gd (k) and Py Ak ) can be determined using
the ﬁxed order predlctlons of Ai} g at every order in
perturbation theory. However, it can also be determined
alternatively from the corresponding inclusive cross section

using the relation

_, do*
/ dxl/ dx(xx9)N d—

where ¢4 is the inclusive cross section. This relation in the
large N limit gives

© ¥\ *? A Al
St (%) st e - e (e

£ (gt () —rif'”(e)go?*“"”(e))} 0. (80)

/1 drVN=l o, (79)
0

k=0
where
(= ()
. ie(zll\,%e)r(l + i),
tgi,k) - F(l + 12> aak (F]E,i:egv .
a=is
té(:’,k) _ a‘j; (W) L (81)

Here, we keep In* N as well as O(1/N) terms for the
determination of the SV and NSV coefficients. The con-
stants (15 7 and Py Ak
SV and NSV coefficients ¢ d’ p ) and (pd , respectively,

which are known to third order in QCD for Drell-Yan, for
Higgs production in gluon fusion and in bottom quark
annihilation (for NSV see Ref. [78]).

are the 1nclu51ve counterparts to the
(i.k)

Using the above relations in Eq. (80), the SV coefficients

QZ;]? up to second order are found to be

Gg,é.ll) = Ca(=02),

- 1

93;;,23 =Cy (g 53),
- 1
o = en(spt)

) _ 2 (242867 , 44
gl = ( = —?:2—452——53
328 10

Note that the above SV coefficients are identical to the
corresponding SV coefficients of scalar Higgs given in
Eq. (35) of [52]. This universality nature of SV coefficients

ng}kl) is expected to hold to all orders in perturbation theory

because of the fact that it originates entirely from the soft part
of the differential cross section. Further, this property has
been explicitly verified to third order in QCD perturbation
theory [33]for the case of inclusive cross section. The explicit

A(k)

expressions for NSV coefficients ¢, ; for the pseudoscalar

production in gluon fusion can be obtained from the corre-

sponding results for inclusive coefficients (p';(ik) givenin[85].

The results up to second order are provided below,
o) =2c,,
P, 5(7 ) 0,
A 136 8
f/’d; 2) Can ng ( e TS C 2

904 104
+C (— =283 = —Cz>

27
(1) 2 2
- -2,
A2
<0d,g(,2) = —4C/2x- (83)

We notice that the NSV coefficients 403(;2. of the pseudoscalar

Higgs are also identical to the corresponding NSV coeffi-
cients of scalar Higgs up to second order in a, [82,84].

VI. RESULTS OF THE SV AND NSV RAPIDITY
DISTRIBUTIONS

In this section, we present the analytlc results of the SV
and NSV rapidity distributions, A ;V and AA!I]\I , respec-
tively, at the partonic level to N3LO in QCD. By expanding
the formula in Eq. (29) in powers of a, and substituting the
explicit expressions for all the anomalous dimensions, also
the SV and NSV coefficients, we find, at a, order,
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A = L {CA(=48)} + Do{Ca(—4)} + Ca{25} + (21 © ), (84)

and at a? order,

Appa =13 {C3(-83)} +L§1{Ci(—247_70) + S{CA”J” ( i) +Ci <934>} } +LZ1{Z_)° [CAnf <_§>
+C3} (124)} + C%(—48D)) + 5{cAnf (496> +C} (—6%6 - 862)] } + DO{CA”f (532)
+C (_%—m)} {Qn,( 2) +C2<1;6>}+T32{—24Ci}

+D,
+S{CAnf< 136 ) (1336 605 — Cz>} + (21 < 22). (85)

In the above expressions, L, = 1In(z,), § = 6(%,), D; = (ln(jg)ﬁ)Jr, and {, = 1.6449 - -- and {3 = 1.20205- - -

Next at a?, the CF requires the third order NSV coefficients (pgv’g(kg with k = 0, 1, 2, 3. Since the full N3LO results for both
inclusive and rapidity distribution of pseudoscalar Higgs are not available, we could not extract these NSV coefficients
either directly from the rapidity results or by matching with the inclusive results. However, we apply the same ratio method
discussed in Sec. III A on the SV + NSV results of scalar Higgs rapidity distribution computed in [82] to obtain the third
order CF of pseudoscalar Higgs at SV + NSV accuracy. At a3, we find

- - - 616 40 - 2320
a2 ~ iz tci-so + 1t {aaong + 3] (50) +ma (-9) | 2o [c;; &
160 - - 2560 1036 16

7516 1016 16 2128 160
+L§1{DO |:(j3 (—T+ 192C2> + i’lfC2< 9 > + nj2£CA <—3):| +D1 |:C3 < 3 ) +7’lfCi <—T>:|

24982 3668 88
- C3(240D,) + 6 {63 <T —488(5 — 400(2) +n,C (— 7 T 3842) 4CACpny + n3Cy <27>] }

44800 2288 6860 224 184
+L, {Do {Cﬂ (T - 976¢5 — —Cz) + ”fczx< 57 —CZ> = 8CaCrny +n3Cy ( 27 ﬂ

14528 1960 32 1888 160
Dy (- 5 s ) G (550 +mes(-5 )| 12| () +ma (- 15) ]

- - 145670 4936 8528 920
+c§,(—1602>3)+5[cg< T 5 + 3360, +— 4“2> fcz( > —40¢, — —§2>

U 328 32 - 127114
+ C4Cpny (258 48 ln< ) 965 — §2> +n7Cy ( += Cz>:| } + Dy[C3 (— + 1400¢5
) :

81 81
t
22 4 244 232 2
+ 900 2+ 6—(3) +n,C3 (ng — 3205 — i@) + CCpny <254 —481n (”—ﬁ) - 96§3>
my
496 32 - 35044 2384 6056 224
VlfCA< 81 C2):| +D1 |:Ci <2—7—976C3 - 3 52) +nfC% <—7+TC2> —SCACI:I’lf
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208 6748 896 16 1600

9 3

- 859052 51068 64400 608
+n,CY( - ) +C( 40D4)} +5[C§( o~ 1925 TR T G+l - 128c2)
12200 88 5038 2 760 16 32
+n,C4 C3 +8—1§2 +EC%) + CuCrny <—2—7+241 (m ) +56G+70 +?C%)

232 32
729 27

( 150088 488

176@)} (21 < 22).

t

(86)

Now, using the above result of Afd‘ ;\?V at a3, we extract the NSV coefficients (pg”((]g) with k =0, 1, 2, 3, and they are
given by *
A(0) 232 32 176 ) 80860 704 11960 24 , 5 (423704
C — Cingl ——+— — (- — C 192
g3 = Can f( 720 "7 T 7 ) T Ty g S g g e ) TG g T 196
18188 55448 176 1384 2158 472 16 32
DY & - 31 O+ —CzCz‘f' CZ+CFCAnf< 7+—C3 +—Cz+?§%)

Al 56 1528 152
60,1.;,3) = CA"% (27 + Cony ( — 803 — T(z) +C; <—

81

+

176
a (- 7).

Here, we notice that the above NSV coefficients are same
for both pseudoscalar and scalar Higgs production via

gluon fusion [82]. However, the universality of (p;‘.’g(’kg at

third order can be checked only when the explicit N*LO
results are available for the pseudoscalar Higgs boson
production in gluon fusion. The results of SV rapidity
distributions to N3LO can be found in Appendix D.

VII. MORE ON THE 7z SPACE SOLUTION (I)jj"g

In the following, we discuss in detail the characteristic
structure of SV and NSV solutions given in (58) and (68),
respectively. Both the SV and NSV parts of @3, , satisty the
K + G equation, and they contain singular as well as finite
parts at every order. The pole part in the SV solution,
namely, the soft and collinear divergences which are
proportional to the distributions 5(1 — z;) and Dy(z;), get
canceled against those resulting from the FFs entirely and
the AP kernels partially. The z dependent finite part
correctly reproduces all the distributions in the SV part
of CFs A4, . The NSV part, (quNSV’ which comprises

d.g*
terms like D;(z;) In*(1 — z;) and (1 — ;) In*(1 — z;) with
(l,j=1,2), (i,k=0,1,...), removes the remaining col-
linear divergences of the AP kernels. The finite part of it
along with SV counterpart give rises to next to SV terms to

8 164 2 1432 40
o =c(57) +cins (5 5) vei (7 5)

18988 448 752 8
T+TC —Cz) +CFCAnf<4_§C2),

(87)

CFs Aj . Note that the SV part @
producing the next to SV terms for the CFs Aﬁ’ p
order, when the exponential is expanded in powers of a.
This is due to the fact that the convolutions of two or more
distributions contribute to certain next-to-SV logarithms in
addition to the distributions.

Let us now focus on a peculiar feature that the NSV
solution exhibits. Unlike in the case of SV solution, the NSV
solution has the explicit z dependency due to two pieces. One
of them is from the ansatz (1 —z;)//?(1 = z;)*/?/(1 — z),

and the other one is from the coefficient 403"_(5") (zj.€). This

plays a vital role in
at every

enables us to construct a class of solutions, a minimal class, to
the K + G equation, satisfying the correct divergent structure
as well as the dependence on lnk(l -z j) with (I, j = 1,2),

(i,k=0,1,...) [78] as given below,
* 2501 =% 5
A.j Ai(fl RS 1€ A
O sy = DAl 5. {4- "’dér)xz(zz’ )]
i—1 w)
+ (Zl < Z2)|(041—’ﬁ1-,012—>ﬁ2)’ (88)

with j = (ay, a0, f1, ) and Z; = (1 — z;) for [ = 1, 2. It is
to be noted that @; = f; = 1 for obtaining a finite Aﬁ}’g,
whereas a, and /3, can be arbitrary. The predictions from the
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solutions @2”'5’;_1\15\, are found to be independent of the choice

of a, and f, owing to the explicit z dependence of the
coefficients (pg”;z)-(zl, €) with j = a, for[ = 2 and j = f3, for
[ =1 at every order in a, and in e. It is straightforward to
show that any variation of @, and f, in the factors
(1 — z,)®¢/% and (1 — z;)%#2¢/2 can always be compensated

by suitably adjusting the z independent coefficients of
ln(l'—zl) and In(l —z,) terms in (p;‘_’;f},z(zl,e) and
(pg”;fglz(zz,e), respectively, at every order in a,. Here, the

logarithmic structure of (p‘sy’}:y p plays a crucial role. Under this
|

A.(1)

A0)  _ A(0) A.(1)
= e

Pagi1 = Pagi> Pigit = _D?J +t o,
A(1)

A,(1 = s
(pd,;,j),Z =—j(D3 - ﬁofﬂd.g,l) T Pugas

A2 1. - Al A2
%;.j).z = __JZ:BODfl1 - j(cs _ﬁofﬂd§1)> T,
0 0 Al
Gtz = Pigas  Payia = —I(D4 = Brogs) —

AB) 1
Pagj3 = Bo* 3

A(0) A0 A1)
Pagja = Paga-

A2 - (1 ,
(Pd,;,j)j = - 2<§ﬁ1D? +ﬂ0DA Bo (pdg1> _](C134] ﬂl(ﬂdg1 Zﬂo(pdgz) + @, 9.3°

- A2 ,
D7 + gy 1> + Bof(=C4T + 20 0) + o) &,

scale transformation, the expression given in (78) takes the
following form:

i i = (k _
ag (qzzlj)(pz,g(l,j),i lnk 2l (89)

o0
902:},5;(%(61221]), %) = Z

The fact that the predictions are insensitive to j relate the
coefficients ‘/’2,’;{?,1' and (p‘;‘:{gﬁ)

Jj =1, as given below,

, the solution corresponding to

A0) _ A(0)
Pagj2 = Pag2>

.9.2°

2ﬁ0¢dg2) + d;3)’

A.(2)

A.(3)

A.(0) A1)

- = A0 = A0 - s
Pagja = _DQJ +ﬂ2ﬂ/’dg(1) "‘Zﬁlﬂﬂd;z) +3ﬁ0](ﬂdg3 +(ﬂdg4v

A,(2 A,
oy, = —Clj - —ﬁzDﬁ‘ ? —piDAJ? - —ﬂoD 235 ﬂoﬂu oy + poiey ) + 360 P )

+ zmjwd:g )+ 3ﬁoj¢d:g.£ + %.’54) :

1
— PI6CH] +5poi (D}T = 37)

3
—12%((;2) ﬁoJ(C?J 2%((;3))4‘60‘124)1

4

A, (4 1 = =3 Al =
oy, = pod (— DU+ Pyl ) + po*j*(—C5

with j being a, and f3, for the coefficients of In (1 — z,) and
In(1 —z;), respectively. In the above equations,
j=(ay—1)and (8, — 1) for j = a, and S,, respectively.
The above relations are the transformations for gag:;f(]-)j that
are required to compensate the contributions resultihygy from
the change in the exponents of (1 —z;) and (1 —z,) from
(ie)/2 to (ije)/2. The function ‘I’dgNsv being insensitive
to the choice of the scales a, and f, indicates its invariance
under certain gauge like transformations on both (1 —
7,)//* and (ps”;’ ,(z1,€). Due to this invariance, these trans-
formations neither alter the divergent structure nor the finite
parts of @ snsy- However, we choose to work with a; =
p>» = 1in the NSV solution to have more resemblance with
its SV counterpart. In summary, we find a minimal class of

7+ 305%) + 38070 + i), (90)

[
solutions to the K + G equation without affecting neither
the all order structure nor the predictions for A’;‘. s We show

later that this choice will allow us to study resummation in
two-dimensional Mellin space for SV as well as NSV parts
with single O(1) term denoted by @ = afyIn (N|N,).

VIII. RESUMMATION IN THE MELLIN N SPACE

This section is devoted to the study of all order perturbative
structure of Afd‘ in the Mellin space. To find the structure of
A4 g inthe Melhn space, we use the integral representations
of both <I>d gy and <I>dg Nsy given in (75) and (76),
respectively. As a result, ¥4 4 10 (29) takes the following
form:
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qﬁs,g(qzv /’l%?’ 21 ZZ)

Bl W

_|_

73 (9l (0 (@3).2) +2¢3,f,g<as<q%>,zz>>})

_ o) ([
o[

1 _ _
<zT {Pg!,(aA\ﬂ(q%z), %)+ 2LA(a, (¢). %)

Pylay(12).22) + O (a,(g2). 2 >)+

+

+30(21)8(22) (g ol (43) + 71 < B 1)

where P, (a,.Z;) = Pyy(a,.2;)
distribution. The function QY , in (91) is given as

ng(asv Zl)

2l

—2B4(a,)8(z)), g7 = ¢*(1 — z;), and ¢3, = ¢°Z,Z,. The subscript + indicates standard plus

2
_Dg,g(as> + 2¢3,f,g<as’zl>‘ (92)

The SV coefficients D‘;‘ , are given in Appendix C. The constant gﬁ’ 40 10 (91) results from finite part of the virtual contributions

and pure §(Z;) terms of @ .

Now, we take the double Mellin transform of A{} , In N space as

1 1
N,—1 N,—1
A;‘gﬁ(qzv”%vﬂ%):A dz,z;" AdeZzz Af (21, 22) (4% s 1E)

= Nd.g,o(qz,ﬂ%e,ﬂ%) €xp (‘Pﬁ,gﬁ

(4 u7))- (93)

The N-independent constant g 40 is given in Appendix E. The resummed result for ‘ngﬁ takes the following form:

¥ = () +

g;;ql >lnN1+Z ( A gisn (@) +

NilgAz},y,wz(w))

1 X
+N—l (hﬁ},g,o(a),N]) + ; a.’yh’:},y’i(a),wl,N,)> + (N < Ny, 0 < o), (94)

with

hégO(w’Nl> = hiz‘goo(a’) + hfd‘gA,m (0)In Ny,

hdt/l w, a)l,Nl

Zhd(}lk

In the above expressions, @ = a,fyIn NyN, and w; =
apfolnN; for [ =1, 2. Here, g’:},g.i are the resummation
constants resulting from the SV contributions, and gﬁ}ql
result entirely from A%, Bg‘ coefficients of P, and from the
function D in (92). The function g}, is found to be
identically zero, and we find that none of the coefficients
7 4. contains explicit In N,. The functions hg i comprise
of CA and Dj which are present in P, as well as the pure
NSV coefficients present in (p/d" fo Wé find that coefficient
of hj o, is proportional to C; which is identically zero.

Hence, at order a?, there is no 1‘;\2’ L term. The SV

resummation constant gA has been discussed in great

lnkNl—l-hdg”(a) w;) In* N;. (95)

detail in Refs. [53,113,114], and the NSV resummation
coefficients g ;. hj,. and hj, ., are provided in
Appendixes F and G. Our next aim is to include these
resummed contributions consistently in the fixed order
predictions to understand the phenomenological relevance
of resumming the NSV contributions for the case of
psuedoscalar Higgs production in gluon fusion channel.

IX. NUMERICAL ANALYSIS

In this section, we study the impact of resummed soft-
virtual and next-to-soft-virtual (SV + NSV) contributions
for the rapidity distribution of the pseudoscalar Higgs

016019-21



RAVINDRAN, SANKAR, and TIWARI

PHYS. REV. D 110, 016019 (2024)

production in gluon fusion channel at the LHC to
NNLO, + NNLL accuracy. We use the MMHT2014
(68cl) PDF set [115] and the corresponding strong coupling
a, through the Les Houches Accord PDF (LHAPDF)
interface [116] at each order in perturbation theory with
ny =35 active massless quark flavors throughout. Our
predictions are based on Higgs effective field theory where
the top quarks are integrated out at higher orders.
Nevertheless, we retain the top quark mass dependence

at LO. The term ng) in the Wilson coefficient C; in (2) is
taken to be zero in our analysis because it is not available in
the literature yet. For simplicity, we have set cotff = 1 in
our numerical analysis. Results for other values of cot # can
be easily obtained by rescaling the cross sections with
cot> . For the fixed order rapidity distribution of the
pseudoscalar Higgs, we use the publicly available code
FEHIP [94] of the scalar Higgs by taking into account the
ratio factor discussed in Sec. III A. The resummed con-
tribution is obtained from A?qﬁ in (93) after performing

Mellin inversion which is done using an in-house
FORTRAN based code. The resummed results are matched
to the fixed order result in order to avoid any double
counting of threshold logarithms as

do™ (SVANSY)

dY dY
resum FO

Jdo FO) . (96)

do? match do™ (SV+NSV)
v (

dy

We do the analysis for center of mass energy v/S = 13 TeV
with the pseudoscalar Higgs mass my = 125 GeV and
my = 700 GeV, top quark pole mass m, = 173.3 GeV,
and the Fermi constant Gy = 4541.63 pb. The numerical
values for the aforementioned parameters are taken from
the Particle Data Group 2020 [117]. To distinguish between
the SV and SV 4+ NSV resummed results, the NSV
included resummed results have been denoted by N"LL
for the nth level logarithmic accuracy.

A. K-factor analysis

We begin our analysis by studying the higher order
effects which are quantified through the K-factors as
_ d_(;(MR = pfp = my)

= -4 .
d;’; (ug = pup = my)

(97)

We fix the central scale at up = up = my throughout our
analysis. In Table I, we present the K-factor values of fixed
order and resummed predictions at my = 125 GeV for
benchmark rapidity values. We observe that the NLO result
at the central scale is enhanced by 83.9% with respect to the
LO one around the central rapidity region. However, the
enhancement of the approximate NNLO (NNLO, ) result at

TABLE I. K-factor values of fixed order and resummed results
at the central scale ygr = up = my for my = 125 GeV.

y K Knio K Knneo,  Kynio, 4 it

LO+LL NLO+NLL
0-0.4 1.602 1.839 2.505 2.352 2.699
0.4-0.8 1.681 1.806 2.469 2.297 2.644
0.8-1.2 1703 1.792 2.472 2.285 2.643
1.2-1.6 1713 1.746 2.433 2.248 2.613
1.6-2.0 1748 1.688 2.397 2.151 2.533
TABLEII. K-factor values of fixed order and resummed results

at the central scale yp = pp = my for my = 700 GeV.

y Kioiit Kno Kyosniz Ko,  Kynio,iwnic
0-0.4 1.533  2.200 2.749 2.478 2.763
04-0.8 1547 2.199 2.755 2.414 2.703
0.8-1.2 1.579 2.200 2.769 2.315 2.613
1.2-1.6 1.653 2.212 2.819 2.266 2.592
1.6-2.0 1.797 2.238 2.947 2.370 2.781

the central scale is 27.9% in comparison to the NLO result.
For the SV + NSV resummed results, we notice an
enhancement of 60% and 36.2% when LL and NLL are
added to LO and NLO, respectively, at the central rapidity
region. The rapidity distribution increases by 14.76% when
we include NNLL to NNLO,. Further, at the central scale,
the resummed rapidity distribution at NLO 4 NLL
(25.6 pb) mimics that at NNLO, (24 pb) around the
central rapidity region. We also study the K-factor values
for the high mass region, i.e., my = 700 GeV as given in
Table II. For the fixed order results, there is a large
increment of 120% when we go from LO to NLO.
Interestingly, the higher order effects at NNLO, give rise
to only 12.6% correction to NLO around the central
rapidity region. We find that there is an enhancement of
53.3% and 24.97% by the inclusion of LL and NLL
resummed results at LO and NLO, respectively, around
the central rapidity region. At NNLO,, the rapidity dis-
tribution increases by 11.48% when we include NNLL.
From Tables I and II, it can be observed that resummed
predictions not only bring in considerable enhancement in
the fixed order results, but also improve the perturbative
convergence to NNLO, + NNLL accuracy.

B. 7-point scale variation

Next, we study the theoretical uncertainties due to the
unphysical renormalization (up) and factorization (ur)
scales in our results using the standard canonical 7-point
variation approach. Here, u = {up,ug} is varied in the
range% < % < 2, keeping the ratio ug/up not larger than 2
and smaller than 1/2. In Fig. 1, we depict the bin-integrated
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Comparison of 7-point scale variation between fixed order and SV + NSV resummed results for m, = 125 (top) and

my, = 700 (bottom) GeV. The dashed lines refer to the corresponding central scale values at each order.

rapidity distribution of the pseudoscalar Higgs boson for
the fixed order results in the left panel and the resummed
results in the right panel around the central scale pp =
urp =my for my =125 GeV (top) and m, = 700 GeV
(bottom). We have provided the fixed order as well as

TABLE IIL

SV + NSV resummed results for benchmark rapidity
values at the central scale pp =pup =my for my =
125 GeV and m, = 700 GeV in Tables IIT and IV, respec-
tively, at various perturbative orders. These tables also
contain the maximum increments and decrements from the

Values of resummed rapidity distribution at various orders in comparison to the fixed order results in

pb at the central scale up = up = my = 125 GeV for 13 TeV LHC.

y LO LO+LL NLO NLO + NLL NNLO, NNLO, + NNLL
0-0.4 102257757  16.3797508)  18.80513882  25.623193%0  24.054723% 27.6053%%
04-08 99387280 1670473712 1795113852 245431304 22.83627%8 26.28173505
0.8-1.2  9.12823% 15545333} 163624330 2257248396 20.85612%! 24.12613773
1.2-1.6 80332050 1376313170  14.03472%5  19.5467731  18.067118% 20.992*3401
1.6-20 669871714 1171175373 113114220 16.061702%  14.412+]87 16.968 135002
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TABLE IV. Values of resummed rapidity distribution at various orders in comparison to the fixed order results in
pb at the central scale yp = up = m, = 700 GeV for 13 TeV LHC.

y LO LO+LL NLO NLO + NLL NNLO, NNLO, + NNLL
004 02020 03U 0643NE  0SONGLE 072 080700
04-08 0257008 03990 0S6T0UE 07000 062005 0697100
0812 010700 03IUQMNE  043PE  0S60UY  04seltE 051500
L2006 02 0201000 04ag, 0343007 0276 031600
1620 0052088 0093700 01160 01syRM 03l o1aatpi

corresponding central scale values obtained by varying
{ug,pr} in the range {1/2,2}m,.

Let us first look at the plot with m, = 125 GeV in Fig. 1.
This plot shows that the addition of SV + NSV resummed
results to the fixed order ones increases the rapidity
distribution at each order up to NNLO, in perturbation
theory. However, the percentage enhancement in the
rapidity distribution decreases from 60% at LO to
14.76% at NNLO, by the inclusion of LL and NNLL,
respectively, at the central rapidity region. This indicates
better perturbative convergence of the truncated series at
higher orders due to the addition of the resummed pre-
dictions. We now compare the 7-point uncertainties of fixed
order and SV 4+ NSV resummed results due to pp and pp
scales. We find that the combined uncertainty due to yp and
up scales lies in the range (+25.87%, —18.60%) at LO,
while at NNLO, it gets substantially reduced to (+10.80%,
—10.35%) around the central rapidity region. We see that
the bands of resummed predictions to NNLO, + NNLL
are wider than that of the corresponding fixed order results
throughout the rapidity spectrum for my = 125 GeV.
Numerically, the combined uncertainty due to these
unphysical scales lies between (4+40.17%, —18.71%) at
LO+LL, (+36.53%, —23.92%) at NLO + NLL, and
(+21.27%, —15.72%) at NNLO, + NNLL order around
y = 0. This shows that there is a systematic decrease in the
uncertainty when we go to higher logarithmic accuracy for
SV + NSV resummed results. The plot for m, = 700 GeV
in Fig. 1 shows a similar trend of enhancement in the
rapidity distribution by the addition of SV 4+ NSV
resummed results as was depicted above. The 7-point
uncertainty values show that at lower orders the resummed
results show significantly more pr and up variation as
compared to the fixed order ones similar to the case of
my = 125 GeV. However, at NNLO, + NNLL accuracy,
the combined uncertainty of the resummed result lies in the
range (+9.11%, —7.74%) which is comparable to the
uncertainty of (48.47%, —9.73%) for the fixed order
prediction at NNLO, around the central rapidity region.
Thus, the SV 4+ NSV resummed results become more
relevant for higher values of pseudoscalar Higgs boson
mass. The above analysis suggests the need to understand

the behavior of the resummed results with respect to pz and
up scale variations in a better way. Hence, we study the
impact of each scale individually by keeping the other
fixed.

C. Uncertainties due to up and uj scales individually

We now discuss the effect of the factorization scale pp
individually by keeping the renormalization scale yp fixed.
Figure 2 shows the bin-integrated rapidity distributions for
the fixed order (left panel) as well as the SV 4+ NSV
resummed results (right panel) at various perturbative
orders for m, = 125 GeV (top) and m, = 700 GeV (bot-
tom) keeping the renormalization scale fixed at up = my,.
The factorization scale is varied in the range {1/2, 1}my,
around the central scale pup = pp = my to get the uncer-
tainty bands. The fixed order results show negligible
dependence on the up scale both at my, = 125 GeV and
my = 700 GeV. On the other hand, the resummed pre-
dictions show substantial dependence with respect to the yp
scale especially at m, = 125 GeV. The uncertainty lies in
the range (+36.53%, —23.92%) at NLO + NLL accuracy
which comes down to (+21.27%, —15.72%) at NNLO, +
NNLL accuracy around central rapidity region for
my = 125 GeV. When we compare these yy scale uncer-
tainty values with those at m, = 700 GeV, we find that it
vary in the range (414.66%, —9.88%) and (+9.11%,
—7.75%) at NLO + NLL and NNLO, + NNLL order,
respectively, around y = 0. Hence, as suggested by the
7-point scale variation analysis, the uncertainty decreases
considerably at the higher value of the pseudoscalar Higgs
Boson mass. The uncertainty due to the factorization scale
decreases at higher orders for both the cases of m,. Also,
the higher order uncertainty bands lie within the lower
order ones. These two observations hint toward improved
reliability of the perturbative results and better perturbative
convergence at higher orders.

Next, we study the variation in the fixed order and SV +
NSV resummed results wth respect to the renormalization
scale by keeping the factorization scale fixed at up = my.
The uncertainty bands are obtained by varying yp in the
range {1/2, 1}my around the central scale up = pp = my.
In Fig. 3, we observe that from the NLO level, the up scale
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FIG. 2. Comparison of y scale variation between fixed order and SV 4+ NSV resummed results for m, = 125 (top) and m, = 700
(bottom) GeV. The dashed lines refer to the corresponding central scale values at each order.

uncertainty of the fixed order results decreases by the
addition of resummed predictions for m, = 125 GeV
as well as my =700 GeV. The numerical values of
the up uncertainties lie between (+18.45%, —15.24%)
and (+4.16%, —6.69%) at NLO + NLL and NNLO, +
NNLL order, respectively, which is a considerable reduction
from (4-20.54%, —15.70%) and (410.80%, —10.35%) at
NLO and NNLO, accuracy, respectively, around y = 0 for
my = 125 GeV. Similarly, for the case of m, = 700 GeV,
they lie in the range (413.33%, —11.74%) and (+2.62%,
—5.19%) at NLO + NLL and NNLO, + NNLL, respec-
tively, whereas they vary between (4-15.48%, —12.69%) and
(+6.76%, —8.04%) for NLO and NNLO, order, respec-
tively, around central rapidity region. From the above
percentages, we also find that the uncertainty decreases as
we go to higher orders for both cases of pseudoscalar Higgs
boson masses. In addition, the uncertainty bands of

resummed results at higher orders are well within the lower
orders from NLO level onwards.

Here, we performed a comparative study between the
fixed order results and the SV 4+ NSV resummed predic-
tions for the rapidity distribution of pseudoscalar Higgs
boson in gluon fusion process. This has been done through
the K-factor analysis, 7-point variation approach, and
finally by studying the variation of ur and pg scales
individually. We did the analysis for two different cases
of pseudoscalar Higgs boson masses m, = 125, 700 GeV.
The K-factor analysis showed that the inclusion of SV +
NSV resummed predictions resulted in the enhancement of
the fixed order results at every order in perturbation theory
up to NNLO, accuracy for both the cases of m,. Also, we
observed that the percentage enhancement by adding the
resummed results decreases as we go from LO to NNLO,
accuracy. This shows that the resummed results are more
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Comparison of uy scale variation between fixed order and SV 4 NSV resummed results for m, = 125 (top) and m, = 700

(bottom) GeV. The dashed lines refer to the corresponding central scale values at each order.

reliable and have a better perturbative convergence. The
study of factorization scale variation showed that the
addition of the resummed results especially at my =
125 GeV significantly increased the uncertainty of the
fixed order results, which otherwise was almost indepen-
dent of the uj scale variation. However, the dependence of
the resummed results on the u, scale decreases consid-
erably for the case of m, = 700 GeV. The renormalization
scale dependence, on the other hand, gets improved by the
inclusion of resummed predictions. In order to understand
this behavior of SV + NSV resummed results in a better
way, we compare them with the well established SV
resummed results at various orders in the next section.

D. SV+NSV vs SV resummed predictions

In previous sections, we presented the observations on
the behavior of SV 4+ NSV resummed corrections by

comparing them with the fixed-order results at various
perturbative orders. Here, we try to understand the reasons
behind those observations by comparing the full SV +
NSV resummed predictions with the well-established SV
resummed results which would help us to infer the behavior
of resummed NSV logarithms in particular.

We begin our analysis with the K-factor values of SV and
SV + NSV resummed results. We provide the K-factor
values of SV and SV + NSV resummed results at various
perturbative orders for benchmark rapidity values for
my = 125, 700 GeV in Tables V and VI. Looking at the
values in Tables V and VI, we find that the addition of
resummed NSV logarithms enhances the SV resummed
predictions for the rapidity distribution at each order in
perturbation theory for both the values of m,. For instance,
there is an enhancement of 16.03% and 7.87% by the
inclusion of resummed NSV logarithms at NLO + NLL

016019-26



RAPIDITY DISTRIBUTION OF PSEUDOSCALAR HIGGS BOSON ...

PHYS. REV. D 110, 016019 (2024)

TABLE V. K-factor values of SV and SV + NSV resummed results at the central scale pp = pp =

my = 125 GeV.

y KrosiL Kot KnrosniL Kyro vz KNNLO, +NNLL Ky\nLo,+RNNIE
0-0.4 1.411 1.602 2.159 2.505 2.502 2.699
0.4-0.8 1.410 1.681 2.126 2.469 2.447 2.644
0.8-1.2 1.428 1.703 2.125 2.472 2.441 2.643
1.2-1.6 1.437 1.713 2.086 2.433 2.409 2.613
1.6-2.0 1.466 1.748 2.047 2.397 2.324 2.533
TABLE VI. K-factor values of SV and SV + NSV resummed results at the central scale
HR = U = My = 700 GeV.

y KrosrL Krosn Knro+niL KNLosNiT KNNLO,+NNLL K\NLO, +RNIT
0-0.4 1.375 1.533 2.530 2.749 2.630 2.763
0.4-0.8 1.388 1.547 2.536 2.755 2.571 2.703
0.8-1.2 1.416 1.579 2.550 2.769 2.479 2.613
1.2-1.6 1.480 1.653 2.596 2.819 2.451 2.593
1.6-2.0 1.6035 1.797 2.703 2.947 2.612 2.781

and NNLO, + NNLL, respectively, for m, = 125 GeV.
Similarly, for m, = 700 GeV, the rapidity distribution
increases by 8.66% and 5.06% when we go from NLO +
NLL and NNLO, +NNLL to NLO-+NLL and
NNLO, + NNLL, respectively. We also observe that the
percentage enhancement in the rapidity distribution due to
the resummed NSV logarithms decreases as we go from
NLO + NLL to NNLO, + NNLL. This suggests better
perturbative convergence of the SV 4+ NSV resummed
result which was already noticed while comparing it with
the fixed order results.

Next, we study the uncertainties of the resummed NSV
logarithms with respect to the 1 and p scale variations. We
first present the plots for canonical 7-point scale variation of
the bin-integrated rapidity distribution in Fig. 4 for the
pseudoscalar Higgs boson mass, m, = 125, 700 GeV in
the top and bottom panels, respectively. The scales y =
{ur. ug} are varied in the range § < mLA < 2, keeping the ratio

ur/up not larger than 2 and smaller than 1/2 around the
central scale pugr = pp = my.

We also provide Tables VII and VIII with the numerical
values of the SV and SV 4+ NSV resummed rapidity dis-
tributions at the central scale for benchmark rapidity values
for m, = 125, 700 GeV, respectively. These tables also
contain the corresponding maximum increments and decre-
ments in the rapidity distribution from the central scale
values. From Fig. 4, we observe that the inclusion of
resummed NSV logarithms to the SV resummed predictions
increases the 7-point scale uncertainty tremendously at m, =
125 GeV for each perturbative order till NNLO,.
Quantitatively, the uncertainty lies between (424.66%,
—18.15%) and (+10.54%, —10.2%) for NLO + NLL and

NNLO, + NNLL, respectively around y = 0. When we
include the resummed NSV logarithms to these predictions,
the uncertainty increases to (4+36.53%, —23.92%) and
(+21.28%, —15.72%) at NLO + NLL and NNLO,+
NNLL, respectively. However, for m, = 700 GeV, the
increase in the 7-point uncertainty due to the addition of
resummed NSV logarithms is not very large. For instance,
the uncertainty varies between (+14.67%, —11.74%) and
(+9.11%, —7.74%) for NLO + NLL and NNLO, + NNLL,
respectively, which is not significantly higher than
(+13.40%, —11.68%) and (+4.42%, —6.06%) at NLO +
NLL and NNLO + NNLL, respectively, around central
rapidity region. We also observe that the bands of SV +
NSV resummed results at NNLO, + NNLL are completely
within the bands of NLO + NLL results for both the values of
m,. On the other hand, this is not the case with SV resummed
results at m, = 125 GeV. This suggests that the inclusion of
resummed NSV logarithms improves the convergence of the
perturbative result especially for m, = 125 GeV.

Before moving forward to the comparison of SV and
SV + NSV resummed predictions under the variation of yp
and pp scales individually, we make few comments which
would help in the better understanding of our results. The
resummed predictions that we compute numerically for the
phenomenological analysis, when truncated to a particular
logarithmic accuracy, contain not only the distributions and
logarithms that we are resumming using the all-order
structure but also certain spurious terms. These spurious
terms arise from the “inexact” Mellin inversion of the
N-space resummed result and are beyond the precision of
the resummed quantity. For instance, the spurious terms
developed in the SV resummation are at the NSV and
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FIG. 4. Comparison of 7-point scale variation between SV and SV 4+ NSV resummed results for m, = 125 (top) and 700 (bottom)
GeV. The dashed lines refer to the corresponding central scale values at each order.

beyond NSV accuracy, and those developed through NSV
resummation are beyond NSV accuracy in perturbative
QCD. We have discussed the effect of these spurious terms
in our numerical results in great detail for the case of
inclusive cross-section and the rapidity distribution of the

TABLE VIIL

Higgs Boson production through gluon fusion in
Refs. [81,84]. The same behavior is expected to be
followed by the SV and SV + NSV resummed results of
rapidity distribution of the pseudoscalar Higgs Boson
as well.

Values of SV + NSV resummed rapidity distribution at various orders in comparison to the SV

resummed results in pb at the central scale puz = pp = my = 125 GeV for 13 TeV LHC.

y LO+LL LO+LL NLO+NLL NLO+NLL NNLO,+NNLL NNLO, + NNLL
0-0.4 1443075507 163791880 2208613446 25.623723%) 25.58313558 27.6053573
04-08 140228335 167041307 211371387 24543753 243261355 262811363
0.8-1.2 1303575055 1554138 19.402+20  22.572783%0 22.287+283 24.12613773
1.2-1.6  11.54643577 1376344820 16759350 19.5461]31 19.360412012 20.992*3401
1.6-2.0 98237330 117115543 137155381 16.061702%3 15.5711 5% 16.968 135002
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TABLE VIIL

resummed results in pb at the central scale ug = pup = my = 700 GeV for 13 TeV LHC.

Values of SV + NSV resummed rapidity distribution at various orders in comparison to the SV

y LO+LL LO+LL  NLO-+NLL NLO-+NLL NNLO,+NNLL NNLO4 + NNLL
0-04 040187505  0.12350455 0739120588 0.8031000% 07685700 0.807 55635
04-08 03577:012% 0399000 065387007 07105000 06628700 0697507
0.8-1.2 0279120505 03115008 0502610082 0.5460501" 04886205313 0.515%00375
L2-L6 01803100080 02015007 0316270085 034370007 0208550017 031670055
16-2.0  0.0831%5533)  0.093150567  0.1403506,8  0.1S35G6%T  0.1355756% 0.144205,76s

Now, let us do the comparison of SV and SV + NSV
resummed predictions by varying the factorization scale up
keeping pr fixed. In Fig. 5, we provide plots for bin-
integrated rapidity distributions for the resummed SV (left

panel) and resummed SV + NSV (right panel) corrections
for my = 125, 700 GeV keeping up = m, in the top and
bottom panels, respectively. The uncertainty bands are
obtained by varying the factorization scale in the range

40
B L0 +LL ma =125 GeV B L0+ LL
MR = Ma, Pr € [Ma/2,2my] NIT
a5 NLO + NLL T NLO + NLL
NNLOA + NNLL 13 TeV LHC NNLOA + NNLL
30
—_ 25
Qo
2
> 20
°
[
©
15
10
5 ‘
94.0 -3.5 -3.0 =25 -2.0 -15 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 35 4.0
y
14 N LO+LL ma =700 GeV B LO +LL
NLO + NLL g = m%&FHiérgfle. 2mp] NLO + NLL
. NNLOA + NNLL 13 TeV LHC NNLO + NNLL
1.0
o
o
— 0.8
>
S
S
T 0.6
0.4
0.2
0.0
-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 25
y

FIG. 5. Comparison of uy scale variation between SV and SV + NSV resummed results with the scale yz = m,. The dashed lines
refer to the corresponding central scale values at each order.
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{1/2,1}m, around the central scale uy = ur = my. The
plots given in Fig. 5 show that the inclusion of resummed
NSV corrections to the SV resummed results worsens the
variation of the result with respect to the py scale for both
my = 125, 700 GeV. This can be seen directly from the
numerical value of the uncertainty which lies between
(+36.53%, —23.92%) and (4+-21.27%, —15.72%) at NLO +
NLL and NNLO, + NNLL, respectively, around central
rapidity region for m, = 125 GeV. These values are
significantly larger than the corresponding SV resummed
uncertainties of (+24.66%, —18.15%) and (+10.54%,
—10.19%) at NLO + NLL and NNLO, + NNLL, respec-
tively. Likewise, for m, = 700 GeV, the uncertainty lies
between (414.66%, —9.88%) and (4+9.11%, —7.75%)
for SV + NSV resummed results at NLO + NLL and
NNLO, + NNLL, respectively, whereas it varies between
(+9.58%, —6.63%) and (+4.43%, —4.71%) for SV
resummed results at NLO + NLL and NNLO, + NNLL,
respectively, around y = 0. These values also suggest that
the variation with respect to the factorization scale
decreases when we go from my = 125 GeV to my =
700 GeV for both SV and SV + NSV resummed predci-
tions. We need to understand the reason behind this
considerable uy scale variation of the resummed predic-
tions. We stated in the paragraph above that our resummed
results contain the spurious terms existing due to the
“inexact” Mellin inversion. The detailed analysis done in
the Refs. [81] and [84] showed us that these spurious terms
play an important role in the pj scale variation in our
results. The study demonstrated that the up scale uncer-
tainty arising due to the NSV logarithms gets compensated
by the variation coming from the beyond NSV logarithms,
and this compensation increases with the increase in the
order of perturbation theory.

First, we try to understand the behavior of SV resummed
results under y variation. The y scale variation seen in the
SV resummed results comes mainly from the spurious
beyond SV terms arising from the inexact Mellin inversion
of the N-space SV resummed results. The plots in Fig. 5
also show us that the uncertainty decreases when we go
from NLO + NLL to NNLO, + NNLL. This confirms our
analysis mentioned above that the compensation between
up uncertainty coming from spurious NSV and beyond
NSV terms increases at higher orders thereby decreasing
the overall scale dependency for the SV resummed result.
Now, let us explore the reason for the huge dependency of
SV + NSV resummed results on the factorization scale. For
the case of SV resummed results, the spurious terms were
the main source of uy uncertainty; however, for the SV +
NSV resummed results, the NSV logarithms contribute
significantly toward up variation as well. This uncertainty
due to the resummed NSV terms can be compensated by
adding the resummed beyond NSV terms which is missing

in our calculation. In this case, as well, we have the
spurious beyond NSV terms, although now it acts as a
compensating factor and cancels the uncertainty due to the
resummed NSV logarithms. As a result, we observe that the
up variation decreases when we go from NLO + NLL to
NNLO,4 + NNLL accuracy. However, it can not compen-
sate much, and we need to resumm the beyond NSV
logarithms in order to completely cancel the uncertainty
arising from the resummed NSV logarithms.

We next move on to compare the up scale uncertainties
of SV and SV 4+ NSV resummed predictions. The plots
given in Fig. 6 illustrate the variation of uy scale in the
range {1/2, 1}my around the central scale ur = up = my
for the bin-integrated rapidity distributions of the
resummed SV (left panel) and resummed SV + NSV (right
panel) predictions keeping up =m, for my = 125,
700 GeV. The plots show that the inclusion of resummed
NSV logarithms reduces the uncertainty due to the up scale.
The uncertainty varies between (4-18.22%, —14.87%) and
(+7.22%, —8.21%) for the SV resummed predictions at
NLO + NLL and NNLO, + NNLL around the central
rapidity region for my = 125 GeV. The corresponding
uncertainty bands for the SV 4+ NSV resummed results
lie in the range (418.45%, —15.24%) and (+4.16%,
—6.69%) for NLO + NLL and NNLO, + NNLL, respec-
tively. Similar trends are observed for the case of my =
700 GeV where the pi scale variation lies in the range
(4+13.40%, —11.67%) and (+4.01%, —6.06%) for the SV
resummed results at NLO + NLL and NNLO, + NNLL,
respectively, whereas for the SV 4 NSV resummed results,
it lies between (4+13.33%, —11.74%) and (+2.62%,
—5.19%) at NLO + NLL and NNLO, + NNLL level,
respectively around the central rapidity region. We see
from these numerical values that the uncertainty remains
almost the same at the next-to-leading level for both SV and
SV -+ NSV resummed results, but at the next-to-next-to-
leading order, the up scale uncertainty decreases by the
addition of the resummed NSV logarithms to the SV
resummed results. We know that the inclusion of higher
order logarithmic corrections within a particular channel
leads to a decrease in the sensitivity of the rapidity
distribution with respect to the renormalization scale.
This suggests that the percentage contribution of the
resummed NSV logarithms is higher at the NNLO4 +
NNLL as compared to the NLO + NLL which results in the
significant reduction in the pp uncertainty at this order.

To summarize the findings of this section, we observed
that the resummed SV + NSV results are significantly
dependent on the factorization scale and have large
uncertainties related to this scale. In order to understand
this, we compared our results with the fixed order as well as
the SV resummed predictions. We found that the fixed
order corrections have negligible dependence on yuf scale,
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FIG. 6. Comparison of yy scale variation between SV and SV + NSV resummed results with the scale ur = m,. The dashed lines

refer to the corresponding central scale values at each order.

whereas for the case of SV resummed results, the main
source of up variation is the spurious beyond SV terms
arising from the “inexact” Mellin inversion of the N-space
resummed results. When we add the resummed NSV
logarithms, the pp uncertainty increases further. Our
analysis showed that the reason for this large dependency
of the SV + NSV resummed results is the absence of
resummed beyond NSV terms which are supposed to
cancel the pup variation of the NSV logarithms. This
suggests that it is important to include resummed beyond
NSV terms to get a more accurate and reliable prediction
for the rapidity distribution of pseudo-scalar Higgs boson in
gluon fusion process. We would also like to mention that
we have used the same PDF set for both fixed order and
resummed predictions. In order to understand the up
variation in a better way, resummed PDFs should be used
if they are available. For the renormalization scale, we

found that the SV 4+ NSV resummed predictions are the
least sensitive when we vary pp around the central scale
value keeping pup fixed. Also, the up scale uncertainty
decreases when we go to higher orders in perturbation
theory. Thus, as expected the up scale variation decreases
by the addition of higher order logarithmic contributions.

X. DISCUSSIONS AND CONCLUSIONS

We present the resummed rapidity distribution of pseu-
doscalar Higgs Boson production via gluon fusion at LHC
up to next-to-next-to-leading-logarithmic (NNLL) accu-
racy containing both resummed threshold SV contributions
as well as next-to-SV ones. It has been matched to the fixed
order predictions up to next-to-next-to-leading-order
(NNLO,) accuracy. Beyond NLO, the fixed order rapidity
distribution of the pseudoscalar Higgs boson has been
computed using the corresponding result for the scalar
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Higgs case by appropriately multiplying it with the ratio
factor R,y. This ratio method was first established in
Ref. [36] by one of the authors for obtaining the inclusive
cross section of pseudoscalar Higgs from that of the scalar
Higgs boson. In [36], it was shown that the approximate
result for the inclusive cross section obtained in this way
has an excellent agreement with the exact result, and the
difference is found only in terms of next-to-next-to soft
distributions which are eventually suppressed in the thresh-
old limit z — 1. The same trend is expected to follow for
the rapidity distribution as well. The resummed corrections
have been obtained by using our formalism described in
[82] where we restrict ourselves to the diagonal channel for
the production of the pseudoscalar Higgs.

We have performed a detailed numerical analysis of our
computed results around the central scale values up =
ur = my for benchmark rapidity values for two different
cases of pseudoscalar mass m, = 125, 700 GeV. The K-
factor values showed that there is a significant enhancement
in the rapidity distribution by the addition of resummed
SV + NSV corrections up to next-to-leading order. At
NNLO,, the inclusion of NNLL resummed results
increases the rapidity distribution; however, the percentage
enhancement drops substantially compared to that of lower
order results. For instance, there is an enhancement of
53.3% and 24.97% by the inclusion of LL and NLL
resummed results to LO and NLO, respectively, around
the central rapidity region which comes down to an 11.48%
increase when we include NNLL to NNLO, accuracy at
my = 700 GeV. This shows that the addition of resummed
corrections improves the perturbative convergence of the
result thereby making it more reliable. We further used
canonical 7-point variation approach to show that the
combined uncertainty due to pr and pg scales increases

by the inclusion of SV 4+ NSV resummed corrections to the
fixed order results throughout the rapidity spectrum and for
both the cases of pseudo-scalar Higgs masses. Although,
the increase in the sensitivity to the unphysical scales
decreases when we go to higher values of pseudoscalar
Higgs mass. For example, for m, = 700 GeV, the 7-point
scale uncertainty of the resummed result at NNLO, +
NNLL becomes comparable to that of the fixed order
rapidity distribution at NNLOy,.

We studied the impact of the renormalization and the
factorization scales individually on our result for the better
understanding of their behavior. We found that at higher
orders, the uncertainty of our result is mainly driven by the
factorization scale. The inclusion of the resummed NSV
logarithms to the well-established threshold SV resummed
rapidity distribution increases the sensitivity of our result
with respect to the yy scale. The main reason behind this is
the absence of resummed beyond NSV terms which is
responsible for the cancellation of the uncertainty arising
due to the resummed NSV logarithms. On the other hand,
the uncertainty due to the up scale decreases by the addition
of the resummed NSV logarithms. This is expected because
the addition of more corrections within the same partonic
channel improves the up scale uncertainties.
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APPENDIX A: QCD g FUNCTIONS

11 2
Po =5 Ca=31y.
34 10
pr = gci = 2nyCp = =1y Gy,
2857 1415 79 11 205
P =54 Ca= 5 Gy 55.Canj 5 Gy = g CrCany = Ciny. Y

APPENDIX B: NLO RESULTS

In this section, we present the analytical results of the NLO hadronic rapidity distribution for the production of the

pseudo-scalar Higgs boson via gluon fusion as follows:
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d"gg Hgg.l( l’xZ’#F)
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(x)2 &8 4N 4K}
d X, 4 P LA PO \C
+/ X1 qqxlxzﬂF){( x? + x% x1+x(1) +(1_x1
+/dx1/d H,, xl’x?)uuF) <_4(x(1)3)2+4x_3__+ > /dxl/dXZZHggIZ xl’xz,lhg)
x7) X X (x _xl (xp —x3)
(xl,xz,ﬂp) 1
d dx, Hy, 4 41800V ()30 4+ 8(x0)7 (x60)2 (x0)2
+ [ [ A A (07 ()t B () 8 (e )
+8(x) xa2(x9)%) + (16(X1) (02)7x9 + 32(x0)%(x2)*(x9)* + 24(x)) x5 (x9)? + 16(x))°(x9)*)
xi
1
+x—1(4(x(f)5(xz)4+8(X(1))5(x2)3x3+32(x?)5(x2)2(x(2))2 +48(x9) 22 (x9)? + 40(x7) (x9)*)

x1x2 xl(l) (Sx xZ(xz) +4x1(xz) )+X ((16x2x2) +4x2(x(2))3 +4(x(2))4)
(x

3,0,0

+ 23 (12x3x9%5 + 8x0x, (x9)3 + 28x9(x9)%) + x3(20(xx9x9)? + 88(x9)2(x9)>x, + 48(x9)2(x9)*)
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For the gg and gg channels, we obtain
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For the gg-channel, we find

o) 2 _
o OEZPEE [anidiatt v ) {02+ A + - 0 )
+8(x)xy(x9)? + 4(xD)3(xD*) + x (4 (x2x9)* + 42, (x9)3) + 13 (420 (x2x9)% + 8x0x, (x9) + 2V (x9)*)
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In the above equations, we have introduced the following abbreviations:

Hab,lZ(xl’XZv/’l%") = Huh(xl’x%/’l%) - Huh(x(l)’x%/’l%) - Hab(xhxg,ﬂzp) + Huh(x(f,xg,ﬂ%),

Hop 1 (X1, 2, 05) = Hap(x1, 2, 0) = Hap (XY, 2, HF ),
H 2 (2. X0, p3) = Hop (2, %0, 43 ) — Hop (2, X3, 4F),

where
H g (x1. %0, 1) = foxr i) fa (o mp) + Fo(xi i) fo (o i)
H o (1,0, 1) = [0 wg) (f o (2 i) + fa (2 1))
H g (x1, %0, i) = Hyy(x2, %1, H7),
Hgg(xl’x2 H%) fg(thF)fg(xz,ﬂ%)‘

K. :ln(zgz(l—xz)(xl—x(f)) K, <Q2 1_x2 x]_x?))

p(xy + x9)x HEXDX)

2x| l—x(l) (1—x2)
foor = ln<x] +x(1)>’ 12 < xix)

The KCy,, Ky, and K., can be obtained from &, , K} , and . by using 1 <> 2 symmetry.

APPENDIX C: ANOMALOUS DIMENSIONS
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APPENDIX D: RESULTS OF SV RAPIDITY DISTRIBUTION TO THIRD ORDER

AGSY = 85{Cy(4 +605)} + DyDo{Ca(2)} + 6D {Ca(9)} + (21 © 22). (D1)

(on((3-n(d) ) o -20)
+{ (E—zzcg + 20+ 126@)}]+bopo[{cAn,.<_%>}
AT jspaffon ()} H{a(5))]
+z>oz‘>2{c§<z4>}+1‘>lpl{c§(z4)}+5z‘>0[{cAnf< 12 8§2)}
{57 ren+Ta) f| wom [fom (-%} {a (5]

—H@J{qm<9}+{dx—%)ﬂ44Dﬂqmﬂ+@ye@y (D2)

ASV
Adgz—5

016019-35



RAVINDRAN, SANKAR, and TIWARI PHYS. REV. D 110, 016019 (2024)

749 8 112 20
a3y = o6 (26 + { e (- S - P - T ) |

57 3457 152 56
{C%nf<?—l60{,‘5+104§3>} {CAI’lf< 31 _TC4+_C3_8CZ

8 1797 2 904 3205
_EC%>}+{CACan<_T +481In (m > +805§5+ C4 53——52

t

2 56683 596 5258 188
+ 724, 111<m ) + 1445253)} + {C%nf (——+—Cs +—C0+ 583

: 81 9 27 27
-t s - a) o {a (T - e -
3 3320798 ‘it @53 40235 £y — 44000 + 2549582 24 12688 C2> }:|
+ 5D0{cAn§ ( 1782596 ;3 {3+ 160 cz) } + 52‘)0{CACan (% - 3(9)4§ -84,

729 3 381 729

40088 27560 608 - 400 32
oo+ 2R+ 00 - SR+ $a) frov (G - ) |

32 _ 86818 392 8144 16 _ 471557
—;g’%)}mpo{cinf(———c ——§2+?¢§>}+5D0{c§;<——

_ - 19940
m

64 - 103654 680 64 - 80
+ ?gz) } + 6D, {Ci( 31 - 70453 + ng - ?é:%) } + 5'D2{CAI’Z§» <_E}

_ - 2116 112 999
+ 5D2{CACFl’lf4)} + 5D2{C%nf <— - —Cz)} 5ID2{C% <—7 + 4886:3

27

616 16 656 5428
+TCQ>}+5D3{CAnf<27>}+5D3{CAnj< 27)} 5D3{C3<2——64§2>}

n 5@4{c§nf <§) } + 5134{C2 (— ?) } +6Ds{CA(8)} + @ODO{CA”JZ‘ (2% - §g2> }

- 3 - 9970
+DODO{cAanf< 125+241n< >+48¢3>}+Dopo{c§nf< o 164,
t

32 - 51827 340 32 - 160
+gcz)} +DODO{C;§ (T— 35263 + 50 —gcg)} +DlD0{CAn}<—7>}

_ - 4232 224 - 19984
+ DID(]{CACan(g)} + DIDO{Cinf (27 - 34’2) } + D]D(){Ci (— 27

160
+ D0D3{CAI’1J¢ ( 9 )

656

- 80
+plpz{cg <_8—

b
)i (52-192)} i ()

3 Dy D;3{C3(160)} + D, D,{C3(120)} + (21 < z2).

Here, D; = [l“(jl(:f)')h, D; = [ln(jl(:zzf)h 5=06(1-2z;) and 6 = 5(1 — z,).

016019-36

L1232 _ 16 656 5428
52> } + DODZ{cAn} (3> } + DODZ{C ny (— T) } + DODZ{@ (T —192¢,

D0D3{C3 ( 8§0>} + DyDy{C3(40)} + D, D, {CAnf<196>}



RAPIDITY DISTRIBUTION OF PSEUDOSCALAR HIGGS BOSON ... PHYS. REV. D 110, 016019 (2024)

APPENDIX E: THE RESUMMATION CONSTANT g;;{g,o

o0

QA&,g,o(as (ﬂ%e)) = Z aé(ﬂ%)gi},g.o,i' (El)

i=0

gﬁ,g,o,o =1, (E2)

N 4 22
92’970,1 - nj{3Lfr} + CA{S + 164:2 Ljr} + }/ECA{ 8Lqr + 8Ljr} + }’ECA{S} (E3)

160 4 82 88 160 20
gggoz nfCF{—T+12L,m,+16C3+4Lf,}+nf{3 fr}+CAnf{——— §3 g +—L

3"
32 64 44 494 308 2224
+?Lqu2+16Lfr+?LfrC2_ 3 }—I—C2{ —{+

92
379 &+ 9285 — L r+24L,, 83

224 80 8 80

176 352 121
-—1L 80Lf, —24L;, 83 ———L C - = +—L,—-L% ——L
3 qr§2 fr frz.:?: frCZ + = r} + YE Anf{ 27 + 9 qr 3 qr 9 fr

32 40 1616 1112 44 1112
——VL L L 20— _56 ——L —112L L2 —
3 L r 5 3 } veCa { 77 3 9 qu2+ + 9

176 220
R

Ly, + 112L,,8

80 16 32 1112 88

32 76
——L;, —64L L, + 32L2.,} + ngAnf{—g} ryCh { 5 —-64L,, + 64Lf,} + 75 C3{32}, (E4)

1498 16
9 9

640

B 457 224 40
93,9.0,3 = nf{—4C(J2)} -+ nfC%{T —320¢s5 + 208(3 — 2Lfr} + nfCF{ {4 — TC3 - 352 - TLq

64 662 64 28 3
o Lgls = 2o Ly 16L g L + S Lyl + 5 ;r}+ 3{ = fr}+cAnch{ 1797

1792 8660 3628 352

+ 16Lqurmt +

88
+96L + - Ly + 1605 +

3 §3 - é,Z + 192€2ert + 384(;253 + TLqr - 88Lqurmt - TLqré,?a
4049 352 154 6914 304 3344
+32Lqr§2 fr— 88Lerrmt _—Lfr§3 +64Lfré’2 _—L}r + CA”? —_—C4 +—C3
9 3 81 9 81
896 976 352 640 40 64 1 19 352 640
- —€2 Y Z.:z qr qr§3 qrz.:Z + L2 += L2r§2 fr 27 frz.:3 LfrCZ
80 128 212 64 176 113366 10516 808
t g Lirkgr + 5 LprLoGr + =5~ L3, + 5 L300 === L }+C§ f{—T+T§4+T§5
7336 50768 784 8576 13064 736 14288 404
- W 3= Té’Z - —C2C3 £2 27 —L qr qré’3 7 quZ + 120Lqré’% - TLér
704 4397 2144 14864 376 808
+16L3,¢5 - L3 +—5— 9 Lfr+7Lfr§3 +7Lfr52 Lfrfz Lerqr+32Lfr arC3
1408 2146 .. 04 , 968 | L (114568 8012 30514
o Lrbemmgn b m LG s e b g by g G Ty Ty ey

016019-37



RAVINDRAN, SANKAR, and TIWARI PHYS. REV. D 110, 016019 (2024)

3476 158620 345064 2024 6224 6080 36064
+ 9 {s— 31 &3+ 9683 + 31 $r — 3 $al3 + 3 &+ 7 & - 77 L, —160L,,Cs
21608 54256 1012 1936 13115
+ TLqrg?) - TLqu:Z + 352Lqr§2€3 - 660Lqr§2 + TLZ 88L2r§3 rCZ Lfr
8056 58288 2068 2024
+ 160Lfr€5 fr€3 Lfré.:Z 352Lfr52€3 fr€2 Lfr qr 176Lfr qr§3
3872 5390 1936 5324 3422 608
+— 9 Lfr qu2+ 9 -|—264L2 §3+ Cz L3 } +7ECA”fCF{_7+TC3

64
+ &3 +500L,, —96L,,L,,, —192L {5 — 8L2, — 500L , + 96L s, L, + 192L;,¢3 — 32L L, + 40L.2,}

e 312 6, 800,160, 32, 992L P 160
7ECany\ a9 T 6 gy Lar t gy Lir — g Lar =% 27 “Irtar T

R 416 173636 1808 . 9104 . 32
—L:L L3 Cings — - 2t
el f’}HE nf{ I A TR

2240 4328 35 52 17096 2048 2240 5920
TLqr§2 L2 ré’2 L3 Lfr_ 9 LfrC3 9 LfrC2 27

39880 704
TLqr + —Lqu'j

L L
27 81 frar

352, o 3416L2 L4 544 120+ 32 352 pr, -4 (s (043114

g Lorkir+ = ? frear =g ERAL 729
36752 64784 2336 207308 5632 23072 2752

- 27 §3 + ]1 €2 - €2§3 §2 Lqr + 9 Lqr€3 - —LquZ - ?Lqrz:%

16912 1936 68 136204 1760 23072 2752
+TL2 —192L5,¢5 + L3,6 — L3 + 31 Ly + 9 Ly s+ 9 — Lo+ 5
22448 968 13120 2992
+~—=—LyL, +384L L, {3+ 352L s, L5, — LerZ,— L}, —192L7.¢5 - 3 L&
500
81

27 9 Ir
968, 12584 ) s
3 Lerqr 4+ — 27 L + }/ECAnfCF{—SOO + 96ert + 1924’3 + 16Lqr + 32Lfr} + J/ECAI/lf
ﬁL +2L2 @L +gL L, 32 e 39880 704 224OC +9008L
77 Lo g L=y Lt g Lpky + L p + 158G =~ — 5 G- et Ly
44 92 64 1856 448 64 1696 320
Ly$——L2 +— 3 L, + TL o+ TLf,gz +64Ls L, + ?L L — 5 —— L7, - 3 =L} L,
207308 5632 23072 2752 13376 2464
+ 64L3,} + y%c;}{ TR {3+ 5 &+ s &— 5 L, + 640L,,¢; — = L,¢r +840L2,

352 16144 2464 11248 352
+384L?,r§2—? 2_2_7Lfr_640LfrC3_TLfrC2 9 —o LpLyr —768Ly, L, 0o — Ler2r

9496 1760 32 640 128
+TL2 +384L7,8 + 3 ——L7,L, —352L} } + y%cAnch{—?} + y%CAn}{ﬁ—ﬁLq,

128 3 0 16928 128 5248 , 2432 128 320 ,
‘7Lf’}”ECA”f{‘s—1 3 ety Lo m O m g by =y Lpkar 3 L

79936 704 43424 256 35680
%Cﬁ{——448:3

- L, —768L 35202, - - L3,
81 3 3% 27 b2t 3 T

- 64Lerqu2 +

+ 3845

Lf rCz

Ly, +768L;,¢

1760

704 256 64 2624
+ 5 LyLg+ 256L L2, — 3 —— L}, —256L%,L,, + TL}r} + y4ECAnf{27} +74C3 nf{ =

27

016019-38



RAPIDITY DISTRIBUTION OF PSEUDOSCALAR HIGGS BOSON ... PHYS. REV. D 110, 016019 (2024)

640 128 21712 3520 704
+ o Lot gL f,} +C5 {T +384L — =Ly + 256L2, — o Lpr=512Ls Ly, + 256L2r}
256 1408 256
+yEC2nf{ 5 —}+ y%C3{ g~ 256L, +256Lf,} +yEC*{ 3 } (ES)

APPENDIX F: NSV RESUMMATION EXPONENTS g4 , (o)

1

Tig(@) =0, g »(0)= ﬁ_OCA {2L,}, (F1)
_ ﬁ 1 20 1 134
92‘9’3( ) ﬂo CA{ZCO‘I‘ZL(H}"' CAnf +ﬁ0 C2 —Ta)+4a)§'2 +CA{_2+2Lqr_2Lfr+2Lfrw_4yE}v
(F2)
) 20 10 By . (134
92,;1.4( ) ﬁ(l)CA{ 2 Lg,}“‘ﬂoc { a)2}+ CAnf{ 9 a)‘i‘?(l)z—?Lw}‘FﬁOCA{Ta) 460(:2
67 134 1 8 4 1 55 55
— Ea)z + 2a)2§2 + TL(U - 4La)C2} +ﬁ_OCAn%{ﬁw — E(l)z} +'B—OCACFI’ZJ4{?CU - 16(0443 — Fa)z
1 418 56 80 209 28 40 1 245
+8w2{,'3}+ﬁ—0C%nf{ 27 w + — 3 é’ 9605_,’2—7602—— 25;3 +—w2¢'2}+ﬂ0C3{ 3 — @
44 536 88 245 22 268 44 s
—?wé} TCUC -= C2+T 2+— 253——6024’2 ‘|‘— 2C2}+ﬂ1 Ca{2L, -2L,L,,
116 2 O 20 40 20 40 806
+4LmyE}+CAnf{_§2_ +§Lf 9 Lfra)+ 9 Lf,a) +97/E}+C2{ 27
134 134 268 134
+ 1445 + —Cz qr — 4Ly 00 — TLfr +4Ls 8o+ TLfrCO —8Lswl, — 7Lfra)2 + 4L 0%,
268
—g et 87552} +PoCa{=C2 + 2Ly = L3y + L7, = 2L, 0 + L},0% — 4y + 4ypLy, — 41E ), (F3)
APPENDIX G: NSV RESUMMATION EXPONENTS ki, (@) AND i, ;(0.0,)
1
hg.g,OO(w) = ﬂ_OCA{_4Lu)} h/a.lx,g.OI(a)) =0, (Gl)
1 80 536
1 g 10(@) = Ww—1) p1Ca{8w + 8L, } +ﬂOCAnf{Ew} +ﬂocﬁ{—7w + 16w, — 327560}
+RCu{~4—8L;, +8L;,w+8L,, — 167/5}} : (G2)
~ C2 4w 16w
4 o) =42 - L__ , G3
bt =522 - 25 o

016019-39



RAVINDRAN, SANKAR, and TIWARI

PHYS. REV. D 110, 016019 (2024)

1
2ﬂ0(a)

+ BoB1C5

hf},g,zo () =

32

27

)?
—S—w + 16w¢, —I—ﬁw - 8w?¢, —
9 9
+ﬂ0CAn%{

1096 224
i -5

724 112
+ BC3 { ®—

320 548

{3 9

2144
[O/& —T

352

et

3 3

— 128yl —

272 32 80
_(:2 -

536
9

160
o L

1072

224
—56¢; — TCz +

1060
+ 16L ¢, + — IE

o Lprt

Lfr - 16Lfr§2 -

+ BYCA{160, — 4L3, + 8L}, 0 — 4L% @® — 4L, + 4L2, + 875 — 167;L,, + 167/%}} ,

1

hf}.g,zl (w) = 2,3(2)(T

32}’ECU + 16}’ECU2 —

172
—w +—a) } —|—ﬂ(2)CACan{—Ta) + 64wl

—CUZ:Q +7w

w3~ 2+— ZC3+—60262—— @’ +

80 1808
—L — L, ——— 3
9 fr + 9 qr 9 },E} ﬂo { 27

_— Lfr(l) + 32Lfer2

7 [ﬁlcg{—wo + 160 - 32L,,} +ﬁ0cgnf{_

80 40 80
1 |:ﬁ1CA{ —4w* 4 4L; }+ﬁoﬁ2CA{4(02}+ﬁoﬂ1CA”f{3W—gw2+§Lw}

86
+ ?602 - 32002(:3}

112 2( 160 ) 640 +320 )
— W03 ——— W) ——— VW +——Vg®
3 3 9 2 9 YE 9 YE

56 1072 176

2

4288
9

362

3 9 YE®

44
}/sz + 647Ew2€2} + ﬁ%ﬂl CA{8w — 4o - 4Lw + 8Lqur - 16Lw}/E}

80 148

536

536
+ TLfrwz - 16Lfrw2C2 — TLqr

—32yply 4+ 32ygLy, — 64ygLf0 + 32y L y,0* — 32ygL,, + 56y§5}

(G4)

640 320
w+—w

4288
5@t } ﬂoc3{—“’

9

3

2144 4 4
— 128w, — 5 w? + 64a)2C2} + f3Cun f{3} + p3C3 { —~+32L;, — 64L ;0 + 32L s, 00°

~32L,, + 48}/EH ,

)

Polw —

ﬁz,zz(wv ;) =

where y is the Euler-Mascheroni constant. Here, L, =
2 2
I=1,2, L, = ln(;‘f—%) and Ly, = ln(’;—g).

32
o (G el

In(1 — w) with @ = ya,(u%) In N N, o,

(G5)

(Go)

= Poay (/'412{) In N, with

[1] G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 716, 1
(2012).

[2] S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B
716, 30 (2012).

[3] P. W. Higgs, Phys. Lett. 12, 132 (1964).

[4] P. W. Higgs, Phys. Rev. Lett. 13, 508 (1964).

[5] P. W. Higgs, Phys. Rev. 145, 1156 (1966).

[6] F. Englert and R. Brout, Phys. Rev. Lett. 13, 321 (1964).

[7]1 G.S. Guralnik, C.R. Hagen, and T. W. B. Kibble, Phys.
Rev. Lett. 13, 585 (1964).

[8] P. Fayet, Nucl. Phys. B90, 104 (1975).

[9] P. Fayet, Phys. Lett. B 64, 159 (1976).

[10] P. Fayet, Phys. Lett. 69B, 489 (1977).

[11] S. Dimopoulos and H. Georgi, Nucl. Phys. B193, 150
(1981).

[12] N. Sakai, Z. Phys. C 11, 153 (1981).

[13] K. Inoue, A. Kakuto, H. Komatsu, and S. Takeshita, Prog.
Theor. Phys. 68, 927 (1982); 70, 330(E) (1983).

[14] K. Inoue, A. Kakuto, H. Komatsu, and S. Takeshita, Prog.
Theor. Phys. 71, 413 (1984).

[15] K. Inoue, A. Kakuto, H. Komatsu, and S. Takeshita, Prog.
Theor. Phys. 67, 1889 (1982).

016019-40


https://doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/10.1016/j.physletb.2012.08.021
https://doi.org/10.1016/j.physletb.2012.08.021
https://doi.org/10.1016/0031-9163(64)91136-9
https://doi.org/10.1103/PhysRevLett.13.508
https://doi.org/10.1103/PhysRev.145.1156
https://doi.org/10.1103/PhysRevLett.13.321
https://doi.org/10.1103/PhysRevLett.13.585
https://doi.org/10.1103/PhysRevLett.13.585
https://doi.org/10.1016/0550-3213(75)90636-7
https://doi.org/10.1016/0370-2693(76)90319-1
https://doi.org/10.1016/0370-2693(77)90852-8
https://doi.org/10.1016/0550-3213(81)90522-8
https://doi.org/10.1016/0550-3213(81)90522-8
https://doi.org/10.1007/BF01573998
https://doi.org/10.1143/PTP.68.927
https://doi.org/10.1143/PTP.68.927
https://doi.org/10.1143/PTP.70.330
https://doi.org/10.1143/PTP.71.413
https://doi.org/10.1143/PTP.71.413
https://doi.org/10.1143/PTP.67.1889
https://doi.org/10.1143/PTP.67.1889

RAPIDITY DISTRIBUTION OF PSEUDOSCALAR HIGGS BOSON ...

PHYS. REV. D 110, 016019 (2024)

[16] S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B
716, 30 (2012).

[17] C. Anastasiou and K. Melnikov, Nucl. Phys. B646, 220
(2002).

[18] R. V. Harlander and W. B. Kilgore, Phys. Rev. Lett. 88,
201801 (2002).

[19] V. Ravindran, J. Smith, and W.L. van Neerven, Nucl.
Phys. B665, 325 (2003).

[20] C. Anastasiou, C. Duhr, F. Dulat, F. Herzog, and B.
Mistlberger, Phys. Rev. Lett. 114, 212001 (2015).

[21] J.R. Ellis, M. K. Gaillard, and D. V. Nanopoulos, Nucl.
Phys. B106, 292 (1976).

[22] M. A. Shifman, A. 1. Vainshtein, M. B. Voloshin, and V. 1.
Zakharov, Sov. J. Nucl. Phys. 30, 711 (1979), https://
inspirehep.net/literature/141287.

[23] B. A. Kniehl and M. Spira, Z. Phys. C 69, 77 (1995).

[24] R. P. Kauffman and W. Schaffer, Phys. Rev. D 49, 551
(1994).

[25] A. Djouadi, M. Spira, and P. M. Zerwas, Phys. Lett. B 311,
255 (1993).

[26] R. V. Harlander and W. B. Kilgore, J. High Energy Phys.
10 (2002) 017.

[27] C. Anastasiou and K. Melnikov, Phys. Rev. D 67, 037501
(2003).

[28] K. G. Chetyrkin, B. A. Kniehl, M. Steinhauser, and W. A.
Bardeen, Nucl. Phys. B535, 3 (1998).

[29] M. Spira, A. Djouadi, D. Graudenz, and P. M. Zerwas,
Phys. Lett. B 318, 347 (1993).

[30] M. Spira, A. Djouadi, D. Graudenz, and P. Zerwas, Nucl.
Phys. B453, 17 (1995).

[31] T. Ahmed, T. Gehrmann, P. Mathews, N. Rana, and V.
Ravindran, J. High Energy Phys. 11 (2015) 169.

[32] V. Ravindran, Nucl. Phys. B746, 58 (2006).

[33] V. Ravindran, Nucl. Phys. B752, 173 (2006).

[34] T. Ahmed, M. Mahakhud, N. Rana, and V. Ravindran,
Phys. Rev. Lett. 113, 112002 (2014).

[35] T. Ahmed, M. C. Kumar, P. Mathews, N. Rana, and V.
Ravindran, Eur. Phys. J. C 76, 355 (2016).

[36] T. Ahmed, M. Bonvini, M. C. Kumar, P. Mathews, N.
Rana, V. Ravindran, and L. Rottoli, Eur. Phys. J. C 76, 663
(2016).

[37] C. Anastasiou, C. Duhr, F. Dulat, E. Furlan, T. Gehrmann,
F. Herzog, A. Lazopoulos, and B. Mistlberger, J. High
Energy Phys. 05 (2016) 058.

[38] V. Ravindran, J. Smith, and W.L. van Neerven, Nucl.
Phys. B704, 332 (2005).

[39] D. de Florian, M. Grazzini, and Z. Kunszt, Phys. Rev. Lett.
82, 5209 (1999).

[40] B. Field, J. Smith, M. E. Tejeda-Yeomans, and W. L. van
Neerven, Phys. Lett. B 551, 137 (2003).

[41] G.F. Sterman, Nucl. Phys. B281, 310 (1987).

[42] S. Catani and L. Trentadue, Nucl. Phys. B327, 323
(1989).

[43] S. Catani, D. de Florian, M. Grazzini, and P. Nason, J. High
Energy Phys. 07 (2003) 028.

[44] S. Moch and A. Vogt, Phys. Lett. B 631, 48 (2005).

[45] A. Idilbi, X.-d. Ji, J.-P. Ma, and F. Yuan, Phys. Rev. D 73,
077501 (20006).

[46] V. Ahrens, T. Becher, M. Neubert, and L. L. Yang, Eur.
Phys. J. C 62, 333 (2009).

[47] D. de Florian and M. Grazzini, Phys. Lett. B 674, 291
(2009).

[48] M. Bonvini and S. Marzani, J. High Energy Phys. 09
(2014) 007.

[49] S. Catani, L. Cieri, D. de Florian, G. Ferrera, and M.
Grazzini, Nucl. Phys. B888, 75 (2014).

[50] D. de Florian and J. Zurita, Phys. Lett. B 659, 813 (2008).

[51] N. Agarwal, P. Banerjee, G. Das, P.K. Dhani, A.
Mukhopadhyay, V. Ravindran, and A. Tripathi, J. High
Energy Phys. 12 (2018) 105.

[52] V. Ravindran, J. Smith, and W.L. van Neerven, Nucl.
Phys. B767, 100 (2007).

[53] P. Banerjee, G. Das, P. K. Dhani, and V. Ravindran, Phys.
Rev. D 97, 054024 (2018).

[54] P. Banerjee, G. Das, P. K. Dhani, and V. Ravindran, Phys.
Rev. D 98, 054018 (2018).

[55] E. Laenen and G.F. Sterman, in Proceedings of the 7th
Meeting of the APS Division of Particles Fields (World
Scientific, Singapore, 1992), pp. 987-989.

[56] G.F. Sterman and W. Vogelsang, J. High Energy Phys. 02
(2001) O16.

[57] A.Mukherjee and W. Vogelsang, Phys. Rev. D 73, 074005
(2006).

[58] P. Bolzoni, Phys. Lett. B 643, 325 (2006).

[59] T. Becher and M. Neubert, Phys. Rev. Lett. 97, 082001
(2006).

[60] T.Becher, M. Neubert, and G. Xu, J. High Energy Phys. 07
(2008) 030.

[61] M. Bonvini, S. Forte, G. Ridolfi, and L. Rottoli, J. High
Energy Phys. 01 (2015) 046.

[62] M. A. Ebert, J. K. L. Michel, and F.J. Tackmann, J. High
Energy Phys. 05 (2017) 088.

[63] M. Cacciari and S. Catani, Nucl. Phys. B617, 253 (2001).

[64] E. Laenen, L. Magnea, and G. Stavenga, Phys. Lett. B 669,
173 (2008).

[65] E. Laenen, L. Magnea, G. Stavenga, and C. D. White, J.
High Energy Phys. 01 (2011) 141.

[66] D. Bonocore, E. Laenen, L. Magnea, L. Vernazza, and
C.D. White, Phys. Lett. B 742, 375 (2015).

[67] D. Bonocore, E. Laenen, L. Magnea, S. Melville, L.
Vernazza, and C. White, J. High Energy Phys. 06
(2015) 008.

[68] D. Bonocore, E. Laenen, L. Magnea, L. Vernazza, and C.
White, J. High Energy Phys. 12 (2016) 121.

[69] V. Del Duca, E. Laenen, L. Magnea, L. Vernazza, and C.
White, J. High Energy Phys. 11 (2017) 057.

[70] N. Bahjat-Abbas, D. Bonocore, J. Sinninghe Damsté, E.
Laenen, L. Magnea, L. Vernazza, and C. White, J. High
Energy Phys. 11 (2019) 002.

[71] G. Soar, S. Moch, J. Vermaseren, and A. Vogt, Nucl. Phys.
B832, 152 (2010).

[72] S. Moch and A. Vogt, J. High Energy Phys. 11 (2009) 099.

[73] D. de Florian, J. Mazzitelli, S. Moch, and A. Vogt, J. High
Energy Phys. 10 (2014) 176.

[74] M. Beneke, A. Broggio, M. Garny, S. Jaskiewicz, R.
Szafron, L. Vernazza, and J. Wang, J. High Energy Phys.
03 (2019) 043.

[75] M. Beneke, M. Garny, S. Jaskiewicz, R. Szafron, L.
Vernazza, and J. Wang, J. High Energy Phys. 01 (2020)
094.

016019-41


https://doi.org/10.1016/j.physletb.2012.08.021
https://doi.org/10.1016/j.physletb.2012.08.021
https://doi.org/10.1016/S0550-3213(02)00837-4
https://doi.org/10.1016/S0550-3213(02)00837-4
https://doi.org/10.1103/PhysRevLett.88.201801
https://doi.org/10.1103/PhysRevLett.88.201801
https://doi.org/10.1016/S0550-3213(03)00457-7
https://doi.org/10.1016/S0550-3213(03)00457-7
https://doi.org/10.1103/PhysRevLett.114.212001
https://doi.org/10.1016/0550-3213(76)90184-X
https://doi.org/10.1016/0550-3213(76)90184-X
https://inspirehep.net/literature/141287
https://inspirehep.net/literature/141287
https://inspirehep.net/literature/141287
https://doi.org/10.1007/s002880050007
https://doi.org/10.1103/PhysRevD.49.551
https://doi.org/10.1103/PhysRevD.49.551
https://doi.org/10.1016/0370-2693(93)90564-X
https://doi.org/10.1016/0370-2693(93)90564-X
https://doi.org/10.1088/1126-6708/2002/10/017
https://doi.org/10.1088/1126-6708/2002/10/017
https://doi.org/10.1103/PhysRevD.67.037501
https://doi.org/10.1103/PhysRevD.67.037501
https://doi.org/10.1016/S0550-3213(98)00594-X
https://doi.org/10.1016/0370-2693(93)90138-8
https://doi.org/10.1016/0550-3213(95)00379-7
https://doi.org/10.1016/0550-3213(95)00379-7
https://doi.org/10.1007/JHEP11(2015)169
https://doi.org/10.1016/j.nuclphysb.2006.04.008
https://doi.org/10.1016/j.nuclphysb.2006.06.025
https://doi.org/10.1103/PhysRevLett.113.112002
https://doi.org/10.1140/epjc/s10052-016-4199-1
https://doi.org/10.1140/epjc/s10052-016-4510-1
https://doi.org/10.1140/epjc/s10052-016-4510-1
https://doi.org/10.1007/JHEP05(2016)058
https://doi.org/10.1007/JHEP05(2016)058
https://doi.org/10.1016/j.nuclphysb.2004.10.039
https://doi.org/10.1016/j.nuclphysb.2004.10.039
https://doi.org/10.1103/PhysRevLett.82.5209
https://doi.org/10.1103/PhysRevLett.82.5209
https://doi.org/10.1016/S0370-2693(02)03048-4
https://doi.org/10.1016/0550-3213(87)90258-6
https://doi.org/10.1016/0550-3213(89)90273-3
https://doi.org/10.1016/0550-3213(89)90273-3
https://doi.org/10.1088/1126-6708/2003/07/028
https://doi.org/10.1088/1126-6708/2003/07/028
https://doi.org/10.1016/j.physletb.2005.09.061
https://doi.org/10.1103/PhysRevD.73.077501
https://doi.org/10.1103/PhysRevD.73.077501
https://doi.org/10.1140/epjc/s10052-009-1030-2
https://doi.org/10.1140/epjc/s10052-009-1030-2
https://doi.org/10.1016/j.physletb.2009.03.033
https://doi.org/10.1016/j.physletb.2009.03.033
https://doi.org/10.1007/JHEP09(2014)007
https://doi.org/10.1007/JHEP09(2014)007
https://doi.org/10.1016/j.nuclphysb.2014.09.012
https://doi.org/10.1016/j.physletb.2007.11.018
https://doi.org/10.1007/JHEP12(2018)105
https://doi.org/10.1007/JHEP12(2018)105
https://doi.org/10.1016/j.nuclphysb.2007.01.005
https://doi.org/10.1016/j.nuclphysb.2007.01.005
https://doi.org/10.1103/PhysRevD.97.054024
https://doi.org/10.1103/PhysRevD.97.054024
https://doi.org/10.1103/PhysRevD.98.054018
https://doi.org/10.1103/PhysRevD.98.054018
https://doi.org/10.1088/1126-6708/2001/02/016
https://doi.org/10.1088/1126-6708/2001/02/016
https://doi.org/10.1103/PhysRevD.73.074005
https://doi.org/10.1103/PhysRevD.73.074005
https://doi.org/10.1016/j.physletb.2006.10.064
https://doi.org/10.1103/PhysRevLett.97.082001
https://doi.org/10.1103/PhysRevLett.97.082001
https://doi.org/10.1088/1126-6708/2008/07/030
https://doi.org/10.1088/1126-6708/2008/07/030
https://doi.org/10.1007/JHEP01(2015)046
https://doi.org/10.1007/JHEP01(2015)046
https://doi.org/10.1007/JHEP05(2017)088
https://doi.org/10.1007/JHEP05(2017)088
https://doi.org/10.1016/S0550-3213(01)00469-2
https://doi.org/10.1016/j.physletb.2008.09.037
https://doi.org/10.1016/j.physletb.2008.09.037
https://doi.org/10.1007/JHEP01(2011)141
https://doi.org/10.1007/JHEP01(2011)141
https://doi.org/10.1016/j.physletb.2015.02.008
https://doi.org/10.1007/JHEP06(2015)008
https://doi.org/10.1007/JHEP06(2015)008
https://doi.org/10.1007/JHEP12(2016)121
https://doi.org/10.1007/JHEP11(2017)057
https://doi.org/10.1007/JHEP11(2019)002
https://doi.org/10.1007/JHEP11(2019)002
https://doi.org/10.1016/j.nuclphysb.2010.02.003
https://doi.org/10.1016/j.nuclphysb.2010.02.003
https://doi.org/10.1088/1126-6708/2009/11/099
https://doi.org/10.1007/JHEP10(2014)176
https://doi.org/10.1007/JHEP10(2014)176
https://doi.org/10.1007/JHEP03(2019)043
https://doi.org/10.1007/JHEP03(2019)043
https://doi.org/10.1007/JHEP01(2020)094
https://doi.org/10.1007/JHEP01(2020)094

RAVINDRAN, SANKAR, and TIWARI

PHYS. REV. D 110, 016019 (2024)

[76] M. Beneke, A. Broggio, S. Jaskiewicz, and L. Vernazza, J.
High Energy Phys. 07 (2020) 078.

[77] A.H. Ajjath, P. Mukherjee, and V. Ravindran, Phys. Rev.
D 105, 1091503 (2022).

[78] A.H. Ajjath, P. Mukherjee, and V. Ravindran, Phys. Rev.
D 105, 094035 (2022).

[79] A.H. Ajjath, P. Mukherjee, V. Ravindran, A. Sankar, and
S. Tiwari, J. High Energy Phys. 04 (2021) 131.

[80] A.H. Ajjath, P. Mukherjee, V. Ravindran, A. Sankar, and
S. Tiwari, Eur. Phys. J. C 82, 234 (2022).

[81] A.H. Ajjath, P. Mukherjee, V. Ravindran, A. Sankar, and
S. Tiwari, Eur. Phys. J. C 82, 774 (2022).

[82] A.H. Ajjath, P. Mukherjee, V. Ravindran, A. Sankar, and
S. Tiwari, Phys. Rev. D 103, L111502 (2021).

[83] A.H. Ajjath, P. Mukherjee, V. Ravindran, A. Sankar, and
S. Tiwari, Phys. Rev. D 106, 034005 (2022).

[84] V. Ravindran, A. Sankar, and S. Tiwari, Phys. Rev. D 108,
014012 (2023).

[85] A. Bhattacharya, M.C. Kumar, P. Mathews, and V.
Ravindran, Phys. Rev. D 105, 116015 (2022).

[86] S.L. Adler, Phys. Rev. 177, 2426 (1969).

[87] O. Tarasov, A. Vladimirov, and A. Zharkov, Phys. Lett.
93B, 429 (1980).

[88] T. Kinoshita, J. Math. Phys. (N.Y.) 3, 650 (1962).

[89] T. Lee and M. Nauenberg, Phys. Rev. 133, B1549 (1964).

[90] G. Altarelli and G. Parisi, Nucl. Phys. B126, 298 (1977).

[91] C. Anastasiou, L. J. Dixon, and K. Melnikov, Nucl. Phys.
B, Proc. Suppl. 116, 193 (2003).

[92] K. G. Chetyrkin, B. A. Kniehl, and M. Steinhauser, Phys.
Rev. Lett. 79, 353 (1997).

[93] C. Anastasiou, C. Duhr, F. Dulat, F. Herzog, and B.
Mistlberger, Phys. Rev. Lett. 114, 212001 (2015).

[94] C. Anastasiou, K. Melnikov, and F. Petriello, Nucl. Phys.
B724, 197 (2005).

[95] F. Dulat, B. Mistlberger, and A. Pelloni, Phys. Rev. D 99,
034004 (2019).

[96] V. Sudakov, Sov. Phys. JETP 3, 65 (1956), https:/
inspirehep.net/literature/9137.

[97] A.H. Mueller, Phys. Rev. D 20, 2037 (1979).
[98] J. C. Collins, Phys. Rev. D 22, 1478 (1980).
[99] A. Sen, Phys. Rev. D 24, 3281 (1981).

[100] S. Moch, J. A. M. Vermaseren, and A. Vogt, Nucl. Phys.
B688, 101 (2004).

[101] A. Vogt, S. Moch, and J. A. M. Vermaseren, Nucl. Phys.
B691, 129 (2004).

[102] S. Catani and L. Trentadue, Nucl. Phys. B353, 183 (1991).

[103] A. Vogt, Phys. Lett. B 497, 228 (2001).

[104] T. Becher and M. Neubert, Phys. Rev. Lett. 102, 162001
(2009); 111, 199905(E) (2013).

[105] E. Gardi and L. Magnea, J. High Energy Phys. 03 (2009)
079.

[106] A. Gonzalez-Arroyo, C. Lopez, and F. Yndurain, Nucl.
Phys. B153, 161 (1979).

[107] G. Curci, W. Furmanski, and R. Petronzio, Nucl. Phys.
B175, 27 (1980).

[108] W. Furmanski and R. Petronzio, Phys. Lett. 97B, 437
(1980).

[109] R. Hamberg and W. van Neerven, Nucl. Phys. B379, 143
(1992).

[110] R. Ellis and W. Vogelsang, arXiv:hep-ph/9602356.

[111] J. Ablinger, A. Behring, J. Bliimlein, A. De Freitas, A. von
Manteuffel, and C. Schneider, Nucl. Phys. B922, 1
(2017).

[112] S. Moch, B. Ruijl, T. Ueda, J. A. M. Vermaseren, and A.
Vogt, J. High Energy Phys. 10 (2017) 041.

[113] P. Banerjee, P. K. Dhani, M. C. Kumar, P. Mathews, and V.
Ravindran, Phys. Rev. D 97, 094028 (2018).

[114] T. Ahmed, A. A. H., P. Mukherjee, V. Ravindran, and A.
Sankar, Eur. Phys. J. C 81, 943 (2021).

[115] L. A. Harland-Lang, A. D. Martin, P. Motylinski, and R. S.
Thorne, Eur. Phys. J. C 75, 204 (2015).

[116] A. Buckley, J. Ferrando, S. Lloyd, K. Nordstrom, B. Page,
M. Riifenacht, M. Schonherr, and G. Watt, Eur. Phys. J. C
75, 132 (2015).

[117] P. A. Zyla et al. (Particle Data Group), Prog. Theor. Exp.
Phys. 2020, 083C01 (2020).

016019-42


https://doi.org/10.1007/JHEP07(2020)078
https://doi.org/10.1007/JHEP07(2020)078
https://doi.org/10.1103/PhysRevD.105.L091503
https://doi.org/10.1103/PhysRevD.105.L091503
https://doi.org/10.1103/PhysRevD.105.094035
https://doi.org/10.1103/PhysRevD.105.094035
https://doi.org/10.1007/JHEP04(2021)131
https://doi.org/10.1140/epjc/s10052-022-10174-7
https://doi.org/10.1140/epjc/s10052-022-10752-9
https://doi.org/10.1103/PhysRevD.103.L111502
https://doi.org/10.1103/PhysRevD.106.034005
https://doi.org/10.1103/PhysRevD.108.014012
https://doi.org/10.1103/PhysRevD.108.014012
https://doi.org/10.1103/PhysRevD.105.116015
https://doi.org/10.1103/PhysRev.177.2426
https://doi.org/10.1016/0370-2693(80)90358-5
https://doi.org/10.1016/0370-2693(80)90358-5
https://doi.org/10.1063/1.1724268
https://doi.org/10.1103/PhysRev.133.B1549
https://doi.org/10.1016/0550-3213(77)90384-4
https://doi.org/10.1016/S0920-5632(03)80168-8
https://doi.org/10.1016/S0920-5632(03)80168-8
https://doi.org/10.1103/PhysRevLett.79.353
https://doi.org/10.1103/PhysRevLett.79.353
https://doi.org/10.1103/PhysRevLett.114.212001
https://doi.org/10.1016/j.nuclphysb.2005.06.036
https://doi.org/10.1016/j.nuclphysb.2005.06.036
https://doi.org/10.1103/PhysRevD.99.034004
https://doi.org/10.1103/PhysRevD.99.034004
https://inspirehep.net/literature/9137
https://inspirehep.net/literature/9137
https://inspirehep.net/literature/9137
https://doi.org/10.1103/PhysRevD.20.2037
https://doi.org/10.1103/PhysRevD.22.1478
https://doi.org/10.1103/PhysRevD.24.3281
https://doi.org/10.1016/j.nuclphysb.2004.03.030
https://doi.org/10.1016/j.nuclphysb.2004.03.030
https://doi.org/10.1016/j.nuclphysb.2004.04.024
https://doi.org/10.1016/j.nuclphysb.2004.04.024
https://doi.org/10.1016/0550-3213(91)90506-S
https://doi.org/10.1016/S0370-2693(00)01344-7
https://doi.org/10.1103/PhysRevLett.102.162001
https://doi.org/10.1103/PhysRevLett.102.162001
https://doi.org/10.1103/PhysRevLett.111.199905
https://doi.org/10.1088/1126-6708/2009/03/079
https://doi.org/10.1088/1126-6708/2009/03/079
https://doi.org/10.1016/0550-3213(79)90596-0
https://doi.org/10.1016/0550-3213(79)90596-0
https://doi.org/10.1016/0550-3213(80)90003-6
https://doi.org/10.1016/0550-3213(80)90003-6
https://doi.org/10.1016/0370-2693(80)90636-X
https://doi.org/10.1016/0370-2693(80)90636-X
https://doi.org/10.1016/0550-3213(92)90593-Z
https://doi.org/10.1016/0550-3213(92)90593-Z
https://arXiv.org/abs/hep-ph/9602356
https://doi.org/10.1016/j.nuclphysb.2017.06.004
https://doi.org/10.1016/j.nuclphysb.2017.06.004
https://doi.org/10.1007/JHEP10(2017)041
https://doi.org/10.1103/PhysRevD.97.094028
https://doi.org/10.1140/epjc/s10052-021-09658-9
https://doi.org/10.1140/epjc/s10052-015-3397-6
https://doi.org/10.1140/epjc/s10052-015-3318-8
https://doi.org/10.1140/epjc/s10052-015-3318-8
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104

