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Abstract
This paper introduces two new identificationmethods for linear quadratic (LQ) ordinal poten-
tial differential games (OPDGs). Potential games are notable for their benefits, such as the
computability and guaranteed existence of Nash Equilibria.While previous research has ana-
lyzed ordinal potential static games, their applicability to various engineering applications
remains limited. Despite the earlier introduction of OPDGs, a systematic method for iden-
tifying a potential game for a given LQ differential game has not yet been developed. To
address this gap, we propose two identification methods to provide the quadratic potential
cost function for a given LQ differential game. Both methods are based on linear matrix
inequalities (LMIs). The first method aims to minimize the condition number of the poten-
tial cost function’s parameters, offering a faster and more precise technique compared to
earlier solutions. In addition, we present an evaluation of the feasibility of the structural
requirements of the system. The second method, with a less rigid formulation, can identify
LQ OPDGs in cases where the first method fails. These novel identification methods are
verified through simulations, demonstrating their advantages and potential in designing and
analyzing cooperative control systems.

Keywords Potential games · Nash equilibrium · LMI optimization · Linear-quadratic
differential games · Ordinal potential differential games

Mathematics Subject Classification 91A80 - Applications of game theory (or alternative
49N90 - Applications of optimal control and differential games)

1 Introduction

Game theory is commonly used to model the interactions between rational agents (Başar and
Olsder 1998; Engwerda 2005; Lã et al. 2016), which arises in a wide range of applications,
such as modeling the behavior of companies in the stock market (Chatterjee and Samuelson
2001), solving routing problems in communication networks (Nie and Comaniciu 2006),
and studying human–machine cooperation (Flad et al. 2014). Utilizing game theory’s sys-
tematic modeling and design techniques, effective solutions for various applications have
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Fig. 1 The illustration of the general idea of the potential games, where the original game is replaced by a
(fictitious) potential function. The optimum of this potential function provides the NE of the original game

been analyzed and designed, see e.g. Inga et al. (2021). These applications often hinge on
the strategic decisions of participants, making the equilibrium concepts crucial for predicting
and understanding the outcomes of such interactions.

One of the core equilibrium concepts of game theory is the so-called Nash Equilibrium
(NE), cf. Başar and Olsder (1998). In an NE of a game, each player reaches their optimal util-
ity, taking the optimal actions of all other players into account. If the players find themselves
in a Nash Equilibrium, there is no rational reason for them to change their actions.

The very first idea of a fictitious function replacing the original structure of a non-
cooperative strategic game with N players was given by Rosenthal (1973). Based on this
idea, the formal definitions of potential games were first introduced by Monderer and
Shapley (1996). The general concept of potential games is presented visually in Fig. 1:
The original non-cooperative strategic game1 with N players and with their cost functions
J (i), i = 1 . . . N are replaced with one single potential function. This potential function
provides a single mapping of strategy space U = U (1) × · · · × U (N ) of the original game to
the real numbers

J (p) : U → R, (1)

instead of N mappings of the combined strategy set of the players to the set of real numbers

J (i) : U → R,∀i ∈ P, (2)

where U (i) represents the strategy space of player i . Therefore, the potential function serves
as a substitute model for the original game, while retaining all essential information of the
original game. Intuitively, the Nash equilibrium (NE) of the non-cooperative strategic game
can bemore easily computed using the potential function (1) than the coupled optimization of
(2) of the original game. A further beneficial feature of potential games is that they possess at
least one NE. Furthermore, if the potential function is strictly concave and bounded, the NE
is unique. These advantageous properties make potential games a highly appealing tool for
strategic game analysis, which leads to advantages in engineering application with multiple
decisionmakers, cf.González-Sánchez andHernández-Lerma (2016), Lã et al. (2016, Section

1 Note it is assumed that the original game is given, therefore the term given game is used interchangeably to
emphasize this property of the original game.
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2.2). These properties and application domains make further research on potential games
interesting for the research community.

Potential games have been extensively analyzed in the literature (Voorneveld and Norde
1997; Kukushkin 1999; Marden 2012). However, the focus of these works is primarily on
potential static games, see e.g. Cheng and Liu (2018), which do not incorporate underlying
dynamical systems. In contrast, differential games are particularly valuable for modeling and
controlling cooperative systems in engineering applications, as they account for dynamic
systems, see e.g. Inga et al. (2021). However, the existing literature on potential differential
games exclusively deals with exact potential differential games, which have such a definition
which limits their general applicability.

As a result, exact potential differential games can only describe games with specific
system structures or utility functions for the players. For instance, the cost functions of the
players are symmetric (González-Sánchez and Hernández-Lerma 2016; Fonseca-Morales
and Hernández-Lerma 2018). Consequently, a general usage of exact potential differential
games can be limited.

To allowabroader usage, the subclass of linear quadratic (LQ)ordinal potential differential
games (OPDGs) has been previously introduced in literature (Varga et al. 2021). An OPDG
can be used to model various engineering problems, like resources management of power
networks (Sun et al. 2019; Ta et al. 2024) andmulti-agent interactions (Bhatt et al. 2023;Varga
et al. 2023). The class of ordinal potential static games has been explored in the literature,
including verification and identification methods for finite potential static games in Cheng
(2014) and Li et al. (2018). However, a systematic identification method for OPDGs is still
absent from the literature. The identification2 is a crucial step in the analysis and design of
potential games, as it enables us to derive the potential function for a given game structure.
The absence of a systematic identification method for OPDGs limits their applicability in
engineering and other fields. Therefore, there is a need for a new identification method that
can provide a potential function for a given differential game structure and extend the reach
of OPDGs to various applications.

Therefore, the contribution of this paper is the development of two identification methods
to find the potential function of an OPDG: A potential function is identified for a given
LQ differential game using linear matrix inequalities (LMI). Using an LMI provides a fast
and accurate solution. The first identification method requires only the cost functions of
the players and no information about the system state trajectories of the differential game is
needed to determine the potential function.However, in some cases, the solution is not feasible
since the constraints of the LMI are violated. Therefore, a further identification method is
proposed, in which the constraints are softened. In order to construct the potential function
using the second identification method, the system state trajectories of the differential game
must be available. This has the disadvantage that the identification method is less robust
against measurement noise of the trajectories compared to the first identification method.

The paper is structured as follows: Sect. 2 provides an overview of LQ differential games.
Then, the identificationmethods, are given in Sect. 3. Section 4 presents the application of the
proposed identification methods to two examples using simulations. Finally, Sect. 5 offers a
brief summary and outlook.

2 In this paper, the term identification refers to determining whether a given differential game can be classified
as a potential differential game.
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2 Preliminaries - differential games

First, this section provides a short overview of linear-quadratic (LQ) differential games. Then,
the core idea of potential games and the class of the exact potential differential games are
presented. Finally, the core notion of OPDGs is provided and the limitations of the state of
the art are discussed.

2.1 Linear-quadratic differential games

The general idea of a game is that numerous players interact with each other and try to
optimize their cost function.3 If the players also interact with a dynamics system, the game
is called differential game, see Başar and Olsder (1998) and Başar et al. (2016). In this case,
the players have to carry out dynamic optimizations.

Numerous practical engineering applications can often be characterized sufficiently with
such LQ models, e.g. Åström and Murray (2021), Inga Charaja (2021), and Andebili (2022).
An LQ differential game (�LQ) is defined as a tuple of:

• a set P of players i = 1 . . . N with their cost functions J (i),
• inputs of the players u(t) = [

u(t)(1), . . . , u(t)(N )
]
,

• a dynamic system f (t, x(t), u(t)) = ẋ(t),
• the system states x(t) ∈ R.

The linear dynamic system is

ẋ = Ax +
N∑

i=1

B(i)u(i),

x(t0) = x0, (3)

where A and B(i) are the system matrix and the input matrices of each player, respectively.4

Furthermore, the cost function of each player i is given in a quadratic form:

J (i) = 1

2

∫ ∞

t0
xTQ(i)x +

N∑

j=1

u( j)TR(i j)u( j)dt, (4)

wherematricesQ(i) andR(i j) denote the penalty factor on the state variables and on the inputs,
respectively. The matrices Q(i) are positive semi-definite and R(i j) are positive definite. A
common solution concept of games is the NE, see e.g. Engwerda (2005), which is defined in
the following:

Definition 1 (Nash Equilibrium) The solution of

u∗(i) = argmin
u(i)

J (i)
(
u(1)∗, . . . ,u(i), . . . ,u(N )∗) , ∀i ∈ P, s.t. (3) (5)

is called the Nash Equilibrium of the differential game composed by (3) and (4).

3 In literature of game theory, the formulation as a minimization problem is usual (Nisan 2007, Chapter
1–3). Since optimal control theory, and minimization problems are prevalent (Papageōrgiu et al. 2015), the
optimization problems in this paper are formulated as minimization.
4 Note that for the sake of simplicity, the time dependency of x(t) and u(t) are omitted in the following.
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The NE is a stable solution of the game, i.e. if the players deviate from this equilibrium
solution, they face higher costs. In LQ games, the NE can be computed by the coupled
algebraic Riccati equations of the differential game. Therefore, the NE of the game can be
characterized by the resulting players’ inputs u(i). In case of a feedback structure, the control
law u(i) = −K (i)x can be assumed. This feedback gain is computed by the algebraic Riccati
equation (see e.g. Engwerda 2005.)

0 = ATP(i) + P(i)A + Q(i) −
∑

j∈P
P(i)S( j)P( j)

−
∑

j∈P
P( j)S( j)P(i) +

∑

j∈P
P( j)S(i j)P( j), ∀i ∈ P, (6)

where the following simplifications are applied

S( j) = B( j)R( j j)−1
B( j)T j ∈ P

S(i j) = B( j)R( j j)−1
R(i j)R( j j)−1

B( j)T j ∈ P, i �= j .

From the solution P(i), the feedback gain of the players are computed

K(i) = R(i i)−1
B(i)TP(i). (7)

Note that for LQ Differential Games, the solution P(i) and consequently the feedback gain
K(i) are unique.

2.2 Potential differential games

As mentioned in the introduction, potential games have a very useful property: The com-
putation of the NE can be reduced to a single optimization problem of one cost (fictitious)
function J (p). Such a potential game can be considered as a substituting optimal controller of
the associated LQ differential game �LQ. The potential function is assumed to be quadratic

J (p) = 1

2

∫ ∞

t0
xTQ(p)x + uTR(p)u dt (8)

where the matrices Q(p) are positive semi-definite and R(p) are positive definite, respec-
tively. The vector u = [

u(1), . . . , u(N )
]
involves all the players’ inputs. In an LQ case, the

Hamiltonian of the potential function is

H (p) = 1

2
xTQ(p)x + 1

2
uTR(p)u + λ(p)T ẋ (9)

and the Hamiltonian of the player i of �LQ is

H (i) = 1

2
xTQ(i)x + 1

2

N∑

j=1

u( j)TR(i j)u( j) + λ(i)Tẋ ∀i ∈ P. (10)

Definition 2 (Exact Potential Differential Game (Monderer and Shapley 1996)) An exact
potential differential game is a game, in which

∂H (p)

∂u(i)
= ∂H (i)

∂u(i)
∀i ∈ P, (11)

holds, where H (p) and H (i) are given in (9) and in (10), respectively.
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A valuable property of an exact potential differential game that if (11) holds, then opti-
mization

u = argmin
u

J (p),

s.t. (3), (12)

yields the NE of �LQ. Thus, the computation of the NE can happen by the (8) instead of (6).
InGonzález-Sánchez andHernández-Lerma (2016) and Fonseca-Morales andHernández-

Lerma (2018), exact potential differential games are analyzed, and their identification
methods are provided on how to find the exact potential function of a given differential
game. Using the optimization (12), the stabilizing feedback control law

u = K(p)x (13)

of the potential games is obtained. The feedback gain is

K(p) = R(p)−1
B(p)P(p), (14)

where B(p) = [
B(1),B(2), . . . ,B(N )

]
. P(p) is the solution of the Riccati equation obtained

from the optimization of (8).

2.3 Ordinal potential differential games

The main drawback of exact potential differential games is their limited applicability for
general engineering problems, see e.g. Zazo et al. (2016). Due to its definition, exact potential
differential games can be solely applied to games

• with special system dynamics (e.g. u(i) has only impact on xi , see Assumptions Theo-
rem 1 and Corollary 1 from Fonseca-Morales and Hernández-Lerma 2018) or

• for which the cost functions of the players have a particular structure: E.g. elements in
main diagonal are identical for all players, see González-Sánchez and Hernández-Lerma
(2016) or Example 4 in Fonseca-Morales and Hernández-Lerma (2018).

To allow a broader usage, the subclass of OPDGs has been introduced in Varga et al. (2021).

Definition 3 (Ordinal Potential Differential Game (Varga et al. 2021)) If there exists an
ordinal potential cost function J (p) for a given �LQ, for which

sgnv

(
∂H (p)

∂u(i)

)

= sgnv

(
∂H (i)

∂u(i)

)

∀i ∈ P, (15)

holds, then the game is an OPDG. In (15), sgnv of the vector a = [a1, a2, a3]T is defined
such as

sgnv (a) :=
⎡

⎣
sgn(a1)
sgn(a2)
sgn(a3)

⎤

⎦

the element-wise sign function of the vector elements.

While the core idea of the subclass of OPDGs has been presented, still, a systematic
identification method for OPDGs is still absent from the literature, which is a crucial step in
the analysis and design of potential games. Thus, Problem 1 is defined as follows:
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Problem 1 Let an LQ differential game �LQ be given. How can be identified an OPDG for
this associated LQ differential game, which is characterized by a quadratic potential function
J (p), as given in (8)?

3 Identification of OPDG

In this section, the main results of the paper are presented: Two novel identification methods
to identify an OPDG for a given LQ differential game.

3.1 Trajectory-free LMI optimization

The identification method presented in this section is referred to as Trajectory-Free Opti-
mization (TFO). The TFO identifies an ordinal potential LQ differential game by solving an
LMI optimization problem based on the idea from Priess et al. (2015). This has the advantage
that the ordinal potential cost function can be computed without determining the trajectories
of the original game. This makes the optimization robust against measurement noise and
disturbance. According to Varga et al. (2021), the condition for an OPDG, cf. (15), can be
reformulated, leading to Lemma 1.

Lemma 1 (Sufficient Condition of an OPDG Varga et al. 2021) If for a two-player linear-
quadratic game,

(
B(i)TP(p)x

)T �
(
B(i)TP(i)x

)
≥ 0 (16)

holds ∀i ∈ P, and ∀x, then it is an ordinal potential differential game with the potential
function given by (8). The operation � is the Schur product, defined as

⎡

⎣
a1
a2
a3

⎤

⎦ �
⎡

⎣
b1
b2
b3

⎤

⎦ =
⎡

⎣
a1 · b1
a2 · b2
a3 · b3

⎤

⎦

Proof See Varga et al. (2021). 
�
To verify whether the differential game is an OPDG, condition (16) has to be checked for

all possible trajectories x of the original game. Consequently, using (16) as the constraints of
an optimization problem indicate a trajectory dependency of the identification. Therefore, in
the following, the elimination of this trajectory dependency is discussed. First, the following
notation is introduced:

V(p) := B(i)T P(p) and V(i) := B(i)T P(i),

where B(i) ∈ R
pi×n , P(i),P(p) ∈ R

n×n consequently V(i),V(p) ∈ R
pi×n . Using this nota-

tion, (16) can be rewritten as
(
V(p)x

)T �
(
V(i)x

)
≥ 0. (17)

In order to drop x in the constraint, we recall that (17) must hold ∀x, which means both terms
in (17) have the same sign regardless of the actual x leading to the new condition

ω(i)V(p) − V(i) = 0, (18)
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Fig. 2 A schematic representation of the trajectory independency of the optimization in a three-dimensional

space, where
(
e1, e2, e3

)
are the basis vectors of the coordinate system. The vectors v(p) and v(i) show in the

same direction and thus are linearly dependent. This means that the condition (17) is automatically fulfilled
at t1 as well as at any other time t2

where ω(i) = diag
[
ω

(i)
1 , ω

(i)
2 , . . . , ω

(i)
n

]
is a arbitrary scaling matrix, in which ω

(i)
i > 0

holds. Note that (18) is a sufficient condition for (17) and not necessary, therefore, (18) is
more restrictive than (17).

Figure 2 represents the system state vector x in two different time instances t1 and t2.
Furthermore, the matricesV(i) andV(p) are given cf. (18). In this three-dimensional example
with scalar inputs (x ∈ R

3×3 and B(i) ∈ R
1×3), ω is a single scalar value and V(i),V(p)

are vectors such as v(i), v(p), see Fig 2. In this example, v(i), v(p) have to show in the same
direction in order to fulfill condition (18) for all time instances. In this example, intuitively,
if x has a lower dimension than v(i), v(p) have, there are more possible combinations of v(p)

and v(i), which fulfill condition (18). For instance, if x is scalar and coincides with e1, then
any arbitrary vectors in the plane e2 − e3 fulfill condition (18). This consideration holds for
higher dimensions.

To construct an LMI optimization for finding OPDG, the idea from Priess et al. (2015)
is applied. This leads to a reformulation of the original problem statement (cf. Problem 1)
such as:

Problem 2 Let a stabilizing feedback control K (p) and the system dynamics (3) are given.
Find (at least) one cost function (8) whose minimization with respect to the system dynamics
leads the optimal control law K (p), such that (15) holds.

Remark 1 Problem 2 raises the uniqueness question: If parameters of (8), [Q̃(p), R̃(p)] solve
Problem 2 then [γ · Q̃(p), γ · R̃(p)] solve Problem 2 as well since they lead to the same
optimal control law K(p), where γ > 0 is a scalar. To overcome this issue and to ensure a
unique solution further criteria must be provided.

To achieve a unique solution for the associated inverse problem,weminimize the condition
number α of the weighting matrices

I �
[
Q(p) 0
0 R(p)

]
� αI, (19)

thereby resolving the ambiguous scaling issue. The main difference to other inverse control
problems (see e.g. Priess et al. 2015 or El-Hussieny and Ryu 2019) is that (16) or the reformu-
lated condition (18) need to hold additionally. By summarizing, the following optimization
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problem is constructed:

P̂(p), Q̂(p), R̂(p), ω̂
(i) = arg min

P(p),Q(p),

R(p),ω(i)

α2 (20a)

s.t. ATP(p) + P(p)A − P(p)BK(p) + Q(p) = 0 (20b)

BTP(p) − R(p)K(p) = 0 (20c)

ω(i)B(i)TP(i) − B(i)TP(p) = 0 ∀i ∈ P (20d)

I �
[
Q(p) 0
0 R(p)

]
� αI (20e)

P(p)  0, (20f)

whereB = [B(1), . . . ,B(N )]. The constraints (20b), (20c) and (20f) are necessary that K (p) is
optimal for the identified quadratic cost function. The constraint (20e) ensures the uniqueness
of the solution, see (19). The constraint (20d) restricts the identified cost function to an ordinal
potential function. Thus, if (20) is feasible, then Problem 2 is solved and the original game is
anOPDG.Note sinceω(i) contains arbitrary values, it provides additional degrees of freedom
for the optimization (20).

3.2 Feasibility analysis

This section provides a feasibility analysis of (20) for �LQ with two players. Due to the
constraints in (20), there are differential games, for which (20) does not yield a feasible
solution, since the constraints are violated: the solution is called non-feasible. Thus, in the
following,we discuss conditions for the feasibility of the proposedLMI optimization problem
(20).

Without loss of generality, it is assumed that the system has n states and that the input
matrices of player 1 and player 2, B(i), i = {1, 2} have the dimensions n × p1 and n ×
p2, respectively. The TFO can provide feasible solutions if the following requirements are
satisfied:

Lemma 2 (Necessary Condition for the feasibility of the TFO for OPDGs) The TFO (20)
for two players can be feasible, only if

(A) the columns of the input matrices B(i), ∀i ∈ P are linearly independent and
(B) the system dimensions satisfy

1

2
(1 + n) − (p1 + p2) > 0, (21)

where p1 and p2 are the dimensions of the inputs vectors B(1) ∈ R
n×p1 , B(2) ∈ R

n×p2

of player 1 and 2, respectively.

Proof To prove the conditions, constraint (20d) is rewritten as

ω(i)V(i) − B(i)TP(p) = 0,∀i ∈ P,

which can be vectorized such that

vec
(
ω(i)V(i)

)
− vec

(
B(i)TP(p)

)
= 0,∀i ∈ P, (22)
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and rearranged to
(
En ⊗ B(i)T

)

︸ ︷︷ ︸
Ã

vec
(
P(p)

)

︸ ︷︷ ︸
x̃

= vec
(
ω(i)V(i)

)

︸ ︷︷ ︸
b̃

,∀i ∈ P, (23)

where vec(·) represents the column vectorization of a matrix, ⊗ is the Kronecker product of
two matrices and the matrix En is a identity matrix with an appropriate dimension. In (23),
the classical form of a system of linear equations Ãx̃ = b̃ is given in the underbraces.

Condition A is necessary for the consistency of the system of linear equations (23), for
which

rank
(
En ⊗ B(i)T

)
= rank

(
En ⊗ B(i)T

∣
∣
∣ vec

(
ω(i)V(i)

))
, ∀i ∈ P

must hold, since inconsistency of (20d) leads to an infeasible LMI.
Condition B is necessary for the following reasons. If (23) yields a single solution for a

given vec
(
ω(i)V(i)

)
, then (23) completely determines vec(P(p)). Therefore, it is not possible

to modify P(p) to satisfy (20b) and (20c), and as a result, (20) cannot be feasible. On the
other hand, if (23) has multiple solutions, the constraints of the optimization problem (20)
have additional degrees of freedom. This consideration requires a rank analysis of (23) to
show that Condition B holds, see e.g. Banerjee and Roy (2014, Chapter 5). Due to the fact
that the columns of the input matrix B(i), ∀i ∈ P are linearly independent,

rank
(
En ⊗ B(i)T

)
< dim

(
vec

(
P(p)

))
, ∀i ∈ P (24)

must hold, where the dimension of a vector is denoted by dim. Condition (24) means that
the number of rows of the coefficient matrix of (23) need to be smaller than the number of
columns, cf. Wardlaw (2005) and Banerjee and Roy (2014). For two players, (23) leads to

Ã =
[
En ⊗ B(1)T

En ⊗ B(2)T

]

and b̃ =
[
ω(1)V(1)

ω(2)V(2)

]
. (25)

The dimension of Ã is n(p1 + p2) × n · n, where p1 and p2 are the dimension of the input
variables of player 1 and 2, respectively. If P(p) was not a symmetric matrix, the condition
for a manifold of solutions would be n · n > n(p1 + p2). Due to the symmetric structure of
P(p), the degrees of freedom of vec

(
P(p)

)
are reduced to 1

2 (1 + n)n, see Banerjee and Roy
(2014, Chapter 14). Thus, condition (24) is changed to

1

2
(1 + n) > (p1 + p2), (26)

which completes the proof. 
�
Remark 2 The constraint (20d) is more restrictive as condition (15) from the definition of an
OPDG. Therefore, it is possible that the solution of (20) is infeasible while the original game
admits being an OPDG.

3.3 Weakly trajectory-dependent optimization

If not all constraints of (20) are fulfilled, the TFO yields an infeasible solution. This can be
the case, even if a potential function exists for the given differential game cf. Remark 2. To
overcome this issue and to identify the potential game still, a second identification method is
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introduced, which uses only the relevant parts of the trajectory information for the constraints
of the LMI. The optimization is calledWeakly Trajectory-Dependent Optimization (WTDO),
since the constraints for an OPDG (20b–20f) are reformulated and the constraint on an exact
solution to the Riccati equation (6) is softened. Instead of optimizing the condition number,
the WTDO minimizes the remaining error of (20b). The constraints are reformulated such
that the closest points around the zero crossing of B(i)TP(i)x, are computed, for which

B(i)T P(i)x∗+ > 0 ∀i ∈ P, (27)

B(i)T P(i)x∗− < 0 ∀i ∈ P (28)

hold, where x∗+ and x∗− represent the limit points at the zero crossing of the trajectory
x(t). This is a reasonable reformulation of constraints (20b), since the zero crossings—the
points, where the signs of (15) change—are the points of interest to fulfill condition (16).
The constraint (20b) from the TFO is softened and used for minimization.5 The WTDO is
formulated as an LMI optimization,

P̂(p), Q̂(p),R̂(p) = arg min
P(p),Q(p),R(p)

η2 (29a)

s.t. (20c), and (20 f ) (29b)

I �
[
Q(p) 0
0 R(p)

]
(29c)

B(i)T P(p)x∗+ > 0 ∀i ∈ P, (29d)

B(i)T P(p)x∗− < 0 ∀i ∈ P, (29e)

where

η = tr
(
ATP(p) + P(p)A − P(p)BK(p) + Q(p)

)
. (30)

Thus, the constraint (20d) is changed to the optimization objective of the WTDO. Further-
more, (29d) and (29e) ensure the condition of theOPDGs. Since theWTDO is also formulated
as an LMI, therefore an efficient calculation is guaranteed. Note that the usage of the trace
(30) ensures the soft-constrained NE of the original game.

4 Applications

This section provides an academic and an engineering example to demonstrate the applica-
bility of the proposed identification methods. Furthermore, the results are compared to the
state-of-the-art solution.

4.1 Input dependent optimization

To establish a baseline for the analysis, we utilize the identificationmethod proposed in Varga
et al. (2021) and compare it with the two novel approaches. This state-of-the-art identification
is referred to as Input-Dependent Optimization (IDO). The IDO approach involvesmeasuring

5 Note that reformulating hard constrained in a soft-constrained identificationmethod is also used in literature,
see e.g. Molloy et al. (2020).
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the error between the inputs from the potential function and those from the original game
(x∗), which corresponds to its NE

eu = u(p)(t, x,Q(p),R(p)) − u(t, x∗). (31)

To identify the parameters of the OPDG, this error is minimized, which is happens through
the following optimization:

Q̂(p), R̂(p) = arg min
Q(p),R(p)

|eu |2 (32a)

s.t. ATP(p) + P(p)A + Q(p) − P(p)S(p)P(p) = 0 (32b)
(
B(i)TP(p)x

)T ·
(
B(i)TP(i)x

)
≥ 0 ∀i ∈ P, (32c)

where S(p) = B(p)R(p)−1B(p)T . The minimization of (32a) ensures that the necessary condi-
tion OPDG cf. Varga et al. (2021). The constraint (32b) is necessary for the optimum of J (p)

meaning that u(p) is the result of the optimal control problem. The constraint (32c) guarantees
the sufficient condition of Lemma 16. The optimizer is an interior-point optimizer algorithm
provided by MATLAB (The Mathworks 2019).

In the next section, two examples are presented. The first one is a general example:
Neither the players’ cost functions nor the system dynamics are special in contrast the the
state-of-the-art examples. The second one is a specific engineering application, in which a
human–machine interaction is modeled as an OPDG.

4.2 General example

4.2.1 The LQ differential game

In the first example, a linear time-invariant model is used, in which the system and input
matrices are the following:

A=

⎡

⎢⎢⎢⎢⎢⎢
⎣

−1.20 0.00 0.00 0.00 0.00 1.75
0.00 2.10 0.00 0.00 0.00 0.00

−1.00 0.00 2.95 0.00 0.00 0.00
0.00 0.00 0.00 2.05 0.00 1.50
2.00 0.00 0.00 0.00 1.00 −4.15
0.00 0.00 0.00 0.00 0.00 1.85

⎤

⎥⎥⎥⎥⎥⎥
⎦

, B(1) =

⎡

⎢⎢⎢⎢⎢⎢
⎣

1.0 1.0
3.0 0.0
2.1 4.0
0.0 0.0
0.1 2.0
1.0 0.9

⎤

⎥⎥⎥⎥⎥⎥
⎦

andB(2) =

⎡

⎢⎢⎢⎢⎢⎢
⎣

1.3 1.0
1.0 −1.1
0.0 0.0
2.0 −1.0
0.0 −2.0
4.0 2.1

⎤

⎥⎥⎥⎥⎥⎥
⎦

.

Note that the system and input matrices Both players have a quadratic cost function, cf. (4).
The penalty factors of the first player are

Q(1) = diag([10, 4, 2, 3, 4, 4]),
R(11) = diag([1.5, 1.0]), R(12) = diag([0, 0])

and the factors of the second player are

Q(2) = diag([8, 1, 5, 1, 3, 2]),
R(21) = diag([0.1, 0]), R(22) = diag([1, 1]).

The initial values of the simulation are x0 = [−0.5, −1.9, 0.8, −0.6, 2.9, −0.1]T. The
control laws of the players are computed by the coupled optimization of (4), with i = 1, 2,
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in which the coupled algebraic Riccati equation is solved iteratively. The obtained feedback
gains of the players are

K1 =
[−0.90 2.26 1.03 −0.55 −0.80 0.40
−2.94 −1.04 3.91 1.43 −0.81 0.89

]
,

K2 =
[−0.92 −0.25 0.69 2.71 −1.44 2.04
−0.45 −0.55 0.65 −0.78 −1.53 1.31

]
.

4.2.2 Results

For the evaluation and comparison of the identification methods, the error in the state trajec-
tory is defined as

ex = max
{
ex1 , ex2 . . . , exn

}
,

exi =

∥
∥
∥
∥
∥
∥
∥

x(p)
i∥

∥
∥x(p)

i

∥
∥
∥
max

− x∗
i∥

∥
∥x(p)

i

∥
∥
∥
max

∥
∥
∥
∥
∥
∥
∥
max

, ∀i ∈ {1, . . . , n}, (33)

where x∗
i and x

(p)
i are the trajectories generated by the original game (OG) and by the OPDG,

respectively. Furthermore, the computation time necessary for the identification is used for
the evaluation. The OG means that the inputs of the LQ differential game are computed by

u(i)(t) = −K (i)x(t),

where K (i) is obtained from (7).
The numerical results of Q(p) and R(p) using (20) are

Q(p) =

⎡

⎢⎢⎢⎢⎢⎢
⎣

16.75 −1.26 −2.62 −3.88 0.73 4.11
−1.26 5.16 1.17 0.70 0.56 0.85
−2.62 1.17 6.10 0.43 −0.26 −0.15
−3.88 0.70 0.43 6.72 0.56 1.91
0.73 0.56 −0.26 0.56 11.21 −1.02
4.11 0.85 −0.15 1.91 −1.02 2.87

⎤

⎥⎥⎥⎥⎥⎥
⎦

R(p) =

⎡

⎢⎢
⎣

2.12 0.39 0.32 −0.08
0.39 2.06 −0.07 −0.10
0.32 −0.07 3.22 −0.87

−0.08 −0.10 −0.87 6.84

⎤

⎥⎥
⎦

Figure 3a, b show the resulting trajectories of the original game, with two players (solid
lines), and of the substituting potential game (dashed lines), which are the result of (29). It
can be seen that the trajectories from the controller designed via the potential cost function
deviate insignificantly.

Figure 4 shows the value of the derivatives of the Hamiltonian

∂H (p)

∂u(i)
j

and
∂H (i)

∂u(i)
j

.

It can be seen that all the zero-crossing points for the OG and the identified OPDG occur at
the same time. This verifies the ordinal potential structure of �LQ meaning that (15) holds
∀t .
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Fig. 3 Comparison of the system state trajectories of the original game (solid lines) and the trajectories of the
potential game (dashed lines)

Fig. 4 The derivatives of the Hamiltonian functions of the two players in accordance to (15)
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Table 1 The trajectory error and
the computational times of the
three identification methods

TFO WTDO IDO

ex [–] 0.019 0.077 0.076

tcomp in s 0.15 28.15 212.1

Table 1 compares the results of TFO and WTDO with IDO: It can be seen that the fastest
and most accurate results are generated by the novel TFO. The trajectory errors ex are not
different from IDO and WTDO. On the other hand, WTDO requires less computation time
compared to state-of-the-art IDO. The two novel identification methods outperform the state-
of-the-art solution.

4.3 Engineering example

The second simulation example is an engineering application with practical relevance, which
presents the longitudinal model of a vehicle manipulator (Varga et al. 2019). Such systems
are used for road maintenance works, in which a human operator and the automation control
the system. This human–machine interaction can be formulated as a differential game �LQ

with a linear system and two players enabling a systematic controller design, which enables
the interaction between humans and machines.

4.3.1 The two-player differential game

The model of this engineering example for the longitudinal motion of a vehicle manipulator
has the following system and input matrices

A =
⎡

⎣
0.0 1.0 0.0
0.0 0.0 0.0
0.0 1.0 0.0

⎤

⎦, B(h) =
⎡

⎣
0.00
0.00
0.14

⎤

⎦ andB(a) =
⎡

⎣
0.0
1.0
0.0

⎤

⎦ .

The initial states are x0 = −1.2, −0.95, 0.5]. The penalty factor Q(i) and R(i) in the cost
function (4) of each player are

Q(h) = diag([1, 1, 5]),
R(h) = 1, R(ha) = 0.25

Q(a) = diag([0.344, 0.076, 1.409]),
R(ah) = 0.19, R(a) = 1.

The feedback control law of the original game is calculated (4), leading to the feedback gains
of the human and automation

K (h) = [−0.78 0.26 1.42
]
, K (a) = [

0.42 1.59 0.83
]
. (34)

Since, (21) does not hold for this model, the TFO cannot be applied. Thus, WTDO and IDO
are used to compute the potential function of the game.

In order to analyze the robustness of the WTDO, white Gaussian noise

x̃(t) = x∗(t) + σ (t)
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is added to the state signal. Enabling analysis in scenarios resembling real-world setups,
this modification involves the inclusion of signal noises in the system states Note that this
procedure does not aim to provide a stochastic game analysis, since that would require
different mathematical tools and methods. The results obtained from WTDO, identifying
noise states, are compared with the IDO results

4.3.2 Results

The identification with (29) lead to the following matrices of the potential function

Q(p) =
⎡

⎣
0.82 0.24 −0.48
0.24 0.59 −1.01

−0.48 −1.01 2.15

⎤

⎦ and R(p) =
[
1.00 −0.05

−0.05 1.60

]
(35)

To compare the performance and the robustness of the WTDO with IDO, their error indices
(33) are computed at different noise levels. The results are shown in Table 2. Upon closer
inspection of the results, it becomes apparent that the novel WTDO demonstrates superior
performance compared to the state-of-the-art IDO at all signal noise levels. Figure 5 shows
the system trajectories with 10 dB SNR. It can be seen that theWTDO still provides a reliable
solution, even at the noise level of 10 dB.

Table 2 Results with different
white Gaussian noise levels

SNR in dB 10 20 30 40 ∞
exWTDO [−] 0.314 0.107 0.029 0.027 0.002

exIDO [−] 0.603 0.265 0.104 0.047 0.026

Fig. 5 Comparison of the system state trajectories of the original game (solid lines) and the trajectories of the
potential game (dashed lines)
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4.4 Discussion

As the first simulation example showed, the TFO outperforms both WTDO and the state-
of-the-art IDO. Both novel methods can provide an OPDG for the given differential game
faster and more accurately compared to IDO. Furthermore, the second example explores the
robustness of WTDO under varying noise levels. The findings demonstrate its potential for
practical applications, such as modeling human–machine interaction as an OPDG, thereby
indicating its suitability for real-world scenarios.

However, a theoretical analysis of TFO regarding its computational complexity is not
provided in this paper. Lemma 2 provides only the necessary condition for the existence of
an OPDG. Furthermore, the limitations of WTDO are not investigated in this work. Thus,
these open research questions need to be addressed in further research.

5 Conclusion and outlook

This paper has presented two systematic identification methods for finding an ordinal poten-
tial differential game corresponding to a given LQ differential game, addressing a gap in the
existing literature. Both identification methods utilize linear matrix inequality optimization
techniques. The first method—referred to as trajectory-free optimization—leverages only the
cost functions of the original differential game to identify the ordinal potential game. In cases
where trajectory-free optimization is infeasible, the second method, referred to as weakly
trajectory-dependent optimization, is proposed as an alternative. Simulation results demon-
strate that both identification methods effectively reconstruct the trajectories of the original
game while satisfying the conditions of an ordinal potential differential game. Moreover,
they exhibit superior speed, accuracy, and robustness compared to a previously proposed
identification method from the literature.

In futurework,we plan to employ the proposed algorithms for designing cooperative learn-
ing controllers, see e.g. Varga et al. (2023). Additionally, we aim to validate the effectiveness
of the proposed identificationmethods throughmeasurements obtained fromhuman–machine
interactions.
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