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Abstract

The increasing generation of data in different areas of life, such as the environ-
ment, highlights the need to explore new techniques for processing and exploiting
data for useful purposes. In this context, artificial intelligence techniques, espe-
cially through deep learning models, are key tools to be used on the large amount
of data that can be obtained, for example, from weather radars. In many cases,
the information collected by these radars is not open, or belongs to different insti-
tutions, thus needing to deal with the distributed nature of this data. In this
work, the applicability of a personalized federated learning architecture, which
has been called adapFL, on distributed weather radar images is addressed. To
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this end, given a single available radar covering 400 km in diameter, the cap-
tured images are divided in such a way that they are disjointly distributed into
four different federated clients. The results obtained with adapFL are analyzed
in each zone, as well as in a central area covering part of the surface of each of
the previously distributed areas. The ultimate goal of this work is to study the
generalization capability of this type of learning technique for its extrapolation to
use cases in which a representative number of radars is available, whose data can
not be centralized due to technical, legal or administrative concerns. The results
of this preliminary study indicate that the performance obtained in each zone
with the adapFL approach allows improving the results of the federated learn-
ing approach, the individual deep learning models and the classical Continuity
Tracking Radar Echoes by Correlation approach.

Keywords: Federated learning, deep learning, meteorology, radar images

1 Introduction and motivation

Privacy issues and legal restrictions that apply to the field of images and their process-
ing through machine and deep learning (ML and DL) models are clear, for example,
in the medical field, where it is essential to preserve the privacy of patients. In this
case, it happens that in many cases the images taken in a certain center, such as a
hospital, cannot be centralized together with images taken by other institutions. How-
ever, this problem regarding data centralization can be due to other reasons and in
other areas, such as those related to data storage capacity, connectivity restrictions,
or even a lack of computational resources that prevent the training of models on large
amounts of data, making decentralization more convenient. In this context, federated
learning (FL) architectures allow training ML/DL models in a distributed way, with-
out having to centralize the data in a central server (McMahan et al, 2017). These
architectures achieve robustness by aggregating models trained individually by each
data owner or client.

This work is focused on images captured by weather radars. Nowadays, there is an
increasing demand for weather forecasts with high spatial accuracy, which is boosting
private weather forecasting products, e.g. through the installation of private infras-
tructure such as radars. Their distributed nature, as well as the often proprietary
nature of the data, makes it an ideal fit for the FL approach. In addition, high reso-
lution radars produce large data volumes, which are inconvenient to share in order to
train a centralized model.

In particular, weather radars are an effective tool for precipitation nowcasting,
whose frequency and intensity is expected to be affected by climate change, as well
as various other types of extreme weather events (Svoboda et al, 3916; Rajczak and
Schär, 2017; Hanel and Buishand, 2010; Hosseinzadehtalaei et al, 2020). There are
several references that provide clear evidence, such as a fatal flash flood (Svoboda
and Pekárová, 1998) and the deadliest European tornado since 2001 (Korosec, 2021;
Komjáti et al, 2022).
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In this work, we develop a novel personalized federated learning (PFL) approach
due to the inherent heterogeneous nature of radar-based precipitation data. The aim
of PFL is to address the main challenges that faces FL, like its poor convergence
on highly heterogeneous data and its lack of generalization ability beyond the global
distribution of the data (Tan et al, 2022). For this study, the images captured by
the radar are divided in four quadrants, simulating a use case in which each radar
would cover a sub-area of the total region of interest. We study the predictive and
generalization capacity of the resulting models, in order to assess the applicability
of these methods to real-world use cases, in which data comes from different radars
potentially located in different countries. The motivation for addressing this study is
two-fold: (1) to enhance collaboration between institutions handling such data without
sharing it, (2) to study if training models under a personalized federated learning
architecture provide better results than training with individual data from each radar
or area of capturing. This is of particular interest when data cannot be centralized
due to technical, computational or storage restrictions. In addition, we can mobilize
computing wherever data is available, even using isolated GPUs or compute nodes for
this task.

The remainder of this work is structured as follows: Section 2 presents the state
of the art regarding the research areas concerning artificial intelligence models and
meteorology, together with the recent state of the art concerning the application of FL
in different use cases and PFL. Section 3 summarizes the data used during this study,
as well as the distribution carried out for the purpose of applying the FL and PFL
approaches. Section 4 describes the methodology implemented for the development of
the models used to carry out the predictions, together with the proposal of a novel PFL
architecture (namely adaptive FL, adapFL). Section 5 presents the results, together
with their analysis. In Section 6 a discussion concerning different limitations of the
study and the data used is presented. Finally, Section 7 draws the conclusions together
with future lines of work.

2 State of the art

The state of the art in relation to image processing, meteorology-oriented DL, precip-
itation nowcasting using DL models, as well as FL and PFL applications is discussed
and evaluated in this section.

2.1 Deep learning techniques for meteorology

Concerning AI-based models and techniques, specifically the development of DL mod-
els, there are several fields that are relevant for the meteorological domain. First,
image processing focuses on the analysis of digital images and videos by software pro-
grams from statistically based approaches (Tanaka, 2002; Kim et al, 2005) to modern
neural networks (Gu et al, 2018). This field is further subdivided into multiple subdo-
mains, such as object detection, object tracking, object recognition, etc. The aim of
object detection is to identify and localize relevant objects from a digital image. Con-
volutional neural networks, first applied in 1988 to alphabet recognition (Zhang et al,
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1988) are especially well suited for this task. Specifically, object tracking and recogni-
tion aims to identify an object in a sequence of images and can attempt to predict its
movement. A recent paper (Kesa et al, 2022) describes how to solve both of these tasks
at the same time. Siamese neural networks (e.g., DaSiamRPN (Zhu et al, 2018), Cas-
caded SiamRPN (Fan and Ling, 2018), SiamMask (Wang et al, 2019), SiamRPN++
(Li et al, 2018), Deeper and Wider SiamRPN (Zhang and Peng, 2019)), are also useful
in object tracking.

Regarding meteorology-oriented DL, blurry predictions are a tremendous challenge
(Pavĺık et al, 2022), requiring a special treatment of loss functions. Generative Adver-
sarial Network (GAN) (Agrawal et al, 2019; Goodfellow et al, 2014) has been recently
successfully applied to solve this challenge. The approach called DGMR (Ravuri et al,
2021) is currently the state-of-the-art in the radar-based storm nowcasting.

Concerning precipitation nowcasting using DL models, several works analyze the
use of different models to better accomplish this task. In Shi et al (2017) the authors
propose the use of the Trajectory GRU model instead of the classic Convolutional
LSTM (ConvLSTM) which was used for example in Shi et al (2015). In addition,
in Chen et al (2020) the authors also propose a novel deep learning neural network
and they start presenting the COTREC method (also compared in this study) and
the ConvLSTM. They compare the performance of the different models on composite
reflectivity data concerning the critical success index (CSI) over 30 and 60 min. In Ko
et al (2022) a novel loss function is also used to mitigate the class imbalance problem
in the CSI in the case of heavy rainfall. In Han et al (2022) a Deep Transfer Learning
approach is proposed for radar nowcasting using a CNN as benchmark and two transfer
learning models with few data belonging to the target area (data from 5 days regarding
the target area for training and 3 days for testing). Finally, Cuomo and Chandrasekar
(2021) presents different DL models for weather radar nowcasting together with some
drawbacks encountered, highlight in Table 2 a review of ML models used for weather
nowcasting from the literarure.

2.2 Federated Learning and Personalized Federated Learning

With regard to the use of FL in data analysis, the use cases addressed in the state of
the art are quite broad. In particular, numerous studies have been conducted in the
medical field, due to the obvious privacy restrictions that apply in such environments
(Pfitzner et al, 2021; Rieke et al, 2020; Sáinz-Pardo Dı́az and López Garćıa, 2023).
Other applications deal with intrusion detection systems (Agrawal et al, 2022), credit
card fraud detection (Yang et al, 2019), but also applications that arise when dealing
with wireless communications applications (Niknam et al, 2020). Concerning climate
sciences and more particularly the study of water quality, the classical FL architecture
is applied in Sáinz-Pardo Dı́az et al (2023) to predict the concentration of chlorophyll
given different physico-chemical and meteorological features, using two different sites
of data gathering, specifically two tributaries of the River Thames. However, to our
knowledge, there is not any study in which FL or PFL architectures have been applied
to try to improve the predictions from classical models using meteorological radar
images.
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PFL includes a wide group of different strategies to further tailor an FL model to
better fit each client’s data, while maintaining privacy and security (Sabah et al, 2024).
According to the taxonomy proposed in Tan et al (2022), PFL approaches can be
classified in two main types: Global Model Personalization and Learning Personalized
Models. The approach presented in this work falls into the first group because, at least
initially, there is a global model. In fact, it could be considered a kind of Transfer
Learning in which the knowledge learned from a source domain (the weights from the
whole ensemble of clients) is transferred to a target domain (each particular client).
In the following, we will refer to the approach followed in this study regarding PFL
as adapFL (standing for adaptive federated learning). The idea behind this novel
approach is explained in Section 4.

3 Data

Throughout this study, we utilize compact X-band meteorological radar, used for
municipalities and in agrosector as a gap filler in large meteorological radar coverage.
It is located in the borderland between Czech and Slovak republic. The radar features
a parabolic antenna with a diameter 1160 mm which results in half power beam width
1.8°. The device sensitivity is 10 dBZ at 200km range and the central frequency of the
X-band radar is 9410 MHz. In addition, the radiometric resolution is 8bit, the spatial
resolution is 1×1km and the bandwidth is 1 MHz. An example of the captured data
is shown in Figure 1.

The radar detects precipitation as 3D volumes of high reflectivity (radar beam
reflections on water droplets, ice crystals and hail). Data are available as hdf5 files
storing each day’s information. In each file there are measurement products (ground
truth) approximately every five minutes throughout the day and forecasts from five
to forty minutes.

There are many different types of radar products generated as various 2D sections
of the 3D data, but we are focusing on vertically integrated liquid (VIL) products, i.e.
reflectivity recalculated to water content by Marshall-Palmer formula and summed
vertically. Then the VIL (kg/m2) is defined as the vertical integrated quantity of liquid
water content (LWC) (kg/m3).

Radar image data related to VIL are highly dependent on the season and the time
of the year. Therefore, in this case, having images captured every 5 minutes, we have
chosen to use data from four months of the first available year. Specifically, we have
selected the first four months available, April, May, June and July 2016, which can
also represent significant periods in terms of precipitation.

The original radar images are 400km wide square centered at the radar position.
However, since most of the information is concentrated in the center of the images, they
were cropped from 400×400km to 100×100km (centered in the middle of the original
image). Afterwards, they were used on the different models described in Section 4 to
make 5-minute predictions (nowcast) of those images. Some examples of the available
images after re-scaling the resolution to the new dimensions (100×100) are shown in
Figure 2. Note that most of the information is concentrated in the center of the image
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due to the degradation in the radar resolution caused by the conversion of measured
points coordinates from polar coordinate system to cartesian.

Fig. 2: Example of the radar images under study after reducing to 100×100 resolution
with the information on vertically integrated liquid.

From Figure 2 we can draw several conclusions. The first one is that the information
in each of the images is clearly located in the center of the images. In addition, it can
be seen that a large part of each image does not contain any precipitation (no rain
present), most of them being totally blank images (for example, the last image in the
second row). This goes hand in hand with the meteorological events that occurred at
the time the radar image was acquired.

For training and testing the models, a split has been made following the temporal
order of the images, so that the first 80% of images (28025) is used as the training
set, and the last 20% (7007 images) is used as test set. In addition, since many of the
available images are blank (no rainfall), additional processing has been performed on
them, which is explained later. In addition, the validation process was performed once
the data had been distributed, in order to apply the approach that should be followed
in a real-world scenario. This is explained in the methodology (Section 4).

Table 1 shows some relevant statistics according to the images to be predicted in
the test set, after data processing. Specifically, these statistics are those related to the
mean of the VIL in each of the images.

4 Methodology

In this section, the different models used to perform the 5-minutes nowcast of the VIL
based on radar images are described.
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Table 1: Statistics regarding the mean VIL in each of the images to be
predicted in the test set of each of the four zones under study. In the
case of the minimum and the maximum, the average of the min and max
values for each of the images are shown.

Min Max Mean Median Variance Skewness Kurtosis

Zone 1 0 4.2192 0.1201 0.0224 0.0500 3.1100 12.2513
Zone 2 0 3.1011 0.1193 0.0236 0.0592 4.0793 22.2058
Zone 3 0 3.7380 0.1133 0.0249 0.0452 3.0060 10.0654
Zone 4 0 3.2316 0.0956 0.0158 0.0316 2.8355 9.2811

4.1 Classical models

Tracking of Radar Echoes by Correlation (TREC) (Rinehart and Garvey, 1978) is
a nowcasting method that is based on a comparison of two consecutive images of
radar reflectivity. For each block of radar pixels, TREC identifies a motion vector by
maximizing the cross-correlation coefficient between the two consecutive reflectivity
images. It is an image processing algorithm, which does not include any dynamic
equations related to the motion and/or the evolution of the detected weather fields.

As (Woo and Wong, 2017) emphasizes, “while TREC is successful in tracking
the movements of individual radar echoes, in practice, it usually captures the direc-
tion of individual rain cells instead of moving the entire meteorological system on a
larger scale”. Due to this drawback of the TREC method, various alternatives such
as COTREC (Continuity Tracking Radar Echoes by Correlation) (Novak, 2007), have
been developed. A recent paper (Tang and Matyas, 2018) presents a detailed overview
of the features of the novel refined methods of the TREC concept that emerged during
the last decades.

In this paper, we will use COTREC as a baseline classical model to compare with
the resulting deep learning models and the different learning approaches.

4.2 Deep Learning and Federated Learning models

As motivated in Section 1, in view of the heterogeneous distributed nature of the radar
images under study, we address this challenge with an horizontal federated learning
architecture and a novel personalized federated learning method.

First, we divide the data artificially into 4 different zones, splitting the images into
four quadrants as shown in Figure 3, in which an example of a training image is shown.

It is important to note that, for training the deep learning models, we have pro-
cessed the input data in the following way: for predicting the image captured in the
next 5 minutes, we introduced the 3 images available immediately before. Thus, by
taking the three images we are not only be capturing the speed of the movement and
the change in the amount of vertical integrated liquid, but also the acceleration. In
addition, one important part of the processing carried out is that we have eliminated
from both the train set and the test set those records in which the three images prior to
the predictor were empty (blank, no rain). This has also been extrapolated to analyze
the results with the COTREC method, taking into account only the error obtained
when predicting with the remaining images. The motivation lies in the fact that in
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Fig. 3: Example of an image where the four quadrants into which it has been divided
to create the four zones are shown in blue.

these cases, the natural answer would be to predict that there will be no rain (as the
three previous images were without rain). Including in the neural network so many
empty images can lead to a lack of appropriate adjustment in cases where there are
heavy rain events, which as can be seen in the distribution are infrequent even after
carrying out this processing (see Appendix A), but at the same time are an important
factor that nowcasting models must predict accurately. Table 2 shows the number of
data for train and test in each of the four zones after carrying out this pre-processing.

Table 2: Number of
data after processing in
each zone for train and
test.

Train Test

Zone 1 4194 1585
Zone 2 4055 1286
Zone 3 4022 1380
Zone 4 4457 1494

In order to analyze the characteristics of the images available in each zone, Figure 4
shows the mean of the images captured during the months of April, May, June and
July 2016 in each artificially divided area once pre-processed as explained above. In
particular, the average of the images to be predicted in train and test is shown. Note
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than in each case the the color bar represents the magnitude associated with the mean
VIL in each pixel.

Fig. 4: Average of all the radar images available in April, May, June and July 2016
by zone once processed by area.

In view of Figure 4, we can note that the distribution of the images in each quadrant
are very different from each other, being quite heterogeneous zones, as will be further
explained in Section 6. Then, when training the model in a federated way, this may
difficult the model convergence, since each model would have seen data with different
statistics. However, we are interested in keeping these differences because they better
reflect real use cases, where radar images will have very distinct distributions if they
come from clearly differentiated areas, such as radars located in various countries.

In addition, in order to select the model to be used for testing purposes, we need the
carry out a validation process. In this case, we have performed k-fold cross validation
with five folds. Time Series cross-validator from scikit-learn has been used for this
purpose in order to keep the temporal order of the images. A key point here is to
decide on which dataset to perform the validation (as we would not centralize the
data). Following a real use case, the four data owners (corresponding to the four zones
involved) must agree on the model to be trained. In this case, in view of Table 2, we
have decided to carry out the validation process using the data from zone 4, as it has
the largest number of data for training after processing. Several simple convolutional
network architectures have been tested as well as different values for the batch size.
The selected one is presented in Section 4.3.

The implemented FL scheme follows the idea presented in (Sáinz-Pardo Dı́az and
López Garćıa, 2023), such that the aggregation of the models trained in each zone
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(in this use case each zone represents a client), is performed using a weighted average
according to the number of training data of each client. In addition, a novel PFL
paradigm is considered once the federated training has been carried out for each client
during a certain number of epochs (Ne) and a given number of rounds (Nr). In this
use case, the variability in each zone with respect to the others is high, as shown in
Figure 2. Therefore, it is appropriate that after conducting the federated training, in
order to achieve a more robust model by having been trained with more data, these
are trained a certain number of epochs on the data of each zone locally, which we
have called adaptive federated training (adapFL). The idea is to be able to capture in
each case the peculiarities of each zone before evaluating the results in the test set
of that area, but starting with the knowledge and generalization ability provided by
the FL model. In short, the three learning schemes (including the individual one) are
presented in Figure 5.

Fig. 5: Schema of the three learning paradigms implemented: individual, federated
and adaptive federated learning.
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In particular, in this work we are interested in analyzing the feasibility of the
adapFL approach for the case in which images from different areas are available. The
goal is to study whether this potential collaboration while maintaining the privacy
of the images by not sharing them, can allow improving the results that would be
obtained by training locally in each zone (as a greater number of data will be available
to train the models in a distributed way), or if on the contrary, it is more convenient
to carry out an individual training in each zone, respecting the differential factors of
each one of them. An intuitive idea of such implemented architecture is summarized
in the pseudocode given in Algorithm 1.

Algorithm 1 Adaptive federated training pseudocode

INPUT: clients: list with all the clients participating on the training (with x the
features and y the labels for each client).

INPUT: n: total number of training data from all clients.
INPUT: model: machine learning model to be trained.
INPUT: ne: number of epochs.
INPUT: batch size: batch size.
INPUT: nr: number of rounds of the FL training.

1: function AdaptativeFederatedTraining(clients, n, model, ne, batch size,
nr)

2: for i ∈ [1, . . . , nr] do
3: w ← [ ] ▷ empty list for saving the weights
4: for client ∈ clients do
5: model.train(client[‘x’], client[‘y’], epochs=ne, batch size=batch size)
6: w client ← model.get weights()

7: w ← w +
(

|client[‘y′]|∑
n · w client

)
▷ Add to the list

8: end for
9: w ←

∑
w

10: model.set weights(w) ▷ Update the model with the new aggregated weights
11: end for
12: j ← 1
13: for client ∈ clients do
14: model.train(client[‘x’], client[‘y’], epochs=ne, batch size=batch size)
15: model.save(f‘model ind {j}.h5’)
16: j ← j + 1
17: end for
18: end function

In this sense, as the federated training can be carried out in each zone in parallel,

it is desirable that the total number of epochs that are trained individually (N
(I)
e ) is

equal to the number of epochs that the model is trained locally in the federated scheme

(N
(FL)
e ) times the number of rounds (Nr) of the federated training plus the number

of epochs the model is trained later in each zone (N
(L)
e ) in the adapFL approach, i.e:

12



N (I)
e = Nr ·N (FL)

e +N (L)
e

In this final implemented model the following values have been fixed: N
(I)
e = 100,

N
(FL)
e = N

(L)
e = 10 and Nr = 10 for the classic FL approach and Nr = 9 for the

adapFL approach.

4.3 Convolutional neural architecture

Both in the case of individual learning in each zone and in the case of the adapFL
schema, we have developed a neural network architecture composed of the following
convolutional layers presented in Table 3 (further detailed in Figures E9 and E10 from
Appendix E):

Table 3: Convolutional neural network implemented, layers, out-
put shape, number of parameters and activation function applied.

Layer (type) Output Shape Param # Activation
conv2d 46 (Conv2D) (None, 48, 48, 128) 3584 Relu
conv2d 47 (Conv2D) (None, 46, 46, 64) 73792 Relu
conv2d 48 (Conv2D) (None, 44, 44, 32) 18464 Relu
conv2d 49 (Conv2D) (None, 42, 42, 16) 4624 Relu
conv2d 50 (Conv2D) (None, 40, 40, 16) 2320 Relu
conv2d 51 (Conv2D) (None, 38, 38, 32) 4640 Relu
conv2d 52 (Conv2D) (None, 36, 36, 64) 18496 Relu
conv2d 53 (Conv2D) (None, 34, 34, 128) 73856 Relu
conv2d 54 (Conv2D) (None, 32, 32, 1) 1153 Relu

The architecture is kept purposely simple, as the intent of this paper is to evaluate
the potential of the FL and PFL approaches for this use case, not to establish a new
SotA model in precipitation nowcasting based on radar images.

The model has been compiled with Adam (Kingma and Ba, 2014) as optimizer and
the mean squared error (MSE) as loss function and the MSE and the mean absolute
error (MAE) as quality metrics for monitoring.

Again, as previously explained, this model has been validated using the data from
zone 4. Specifically, the average MSE obtained in the five folds is 0.0326.

In addition, we have calculated other metrics such us the RMSE and the skill score
(like in Kumar et al (2024)), which can be obtained from the MSE, so the tendency
observed will be analogous, but they can be used for comparison with other cases. The
RMSE is defined as the squared root of the mean of the squared errors, and the skill
score for the model M (SkillScoreM can be defined as given in Equation 1, being
MSEM the MSE for the model M and MSEB the MSE for a baseline model. In
our study we have considered COTREC as the baseline model for calculating the skill
score.

SkillScoreM = 1− MSEM

MSEB
(1)
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4.4 Computing resources

The experiments have been carried out using the AI4EOSC platform (AI4EOSC
project, 2024). Specifically, an environment with 16 GB of RAM, 10 GB of disk, 8
CPU cores, and one GPU NVIDIA Tesla T4 has been deployed. The programming
language used was Python 3 and the TensorFlow library (Abadi et al, 2015) was used
to develop the deep learning models.

5 Results and analysis

In this section, the results obtained in each of the zones when evaluating each of the
following approaches are presented:

• The classic COTREC model as baseline,
• An individual learning model trained for 100 epochs in the same zone (IL),
• An FL model trained 10 epochs for 10 rounds (FL),
• A PFL model trained 10 epochs for 9 rounds, ending with a local training of 10
epochs on the data of the testing zone (adapFL).

Table 4 summarizes the results obtained in terms of the MSE and the MAE in the
test set of each of the four zones and with the four approaches.

In view of the results shown in Table 4, the best results are obtained with the
adapFL architecture. Moreover, all the three DL approaches achieve better results than
the COTREC model. It should be noted that with the conventional FL architecture,
the results of the COTREC model were improved substantially, but not those of the IL,
since the latter has a better capacity to adapt to the data captured in its corresponding
area. Thus, with the adaptive step of the adapFL architecture, we managed to improve
the results of the FL architecture, but also those of the IL approach. Note that the
adaptive step in adapFL can be seen as a kind of transfer learning from the FL model.
In Figures C5 and C6 of Appendix C, it can be observed for each of the four zones,
six examples of observed images together with the corresponding prediction obtained
with the best analyzed model according to the results presented in Table 4, which
corresponds to the adapFL approach. Within those figures we can observe that the
predictions obtained are very similar to the actual observed images in the six cases
shown for each of the four zones.

Note that we have calculated these metrics, both MSE and MAE, taking the mean
error in each image, and then the mean of all of them as stated in Han et al (2023)
and Jolliffe and Stephenson (2012).

Table 4: MSE and MAE (kg/m2) obtained in the test set with the different
approaches in each zone.

MSE MAE

Zone COTREC IL FL adapFL COTREC IL FL adapFL

1 0.2306 0.1399 0.2000 0.1352 0.0708 0.0618 0.0649 0.0606
2 0.1756 0.1057 0.1612 0.1005 0.0650 0.0530 0.0590 0.0517
3 0.2235 0.1220 0.1286 0.1082 0.0729 0.0607 0.0576 0.0565
4 0.1095 0.0852 0.0958 0.0815 0.0514 0.0482 0.0484 0.0464
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The idea of taking the current configuration of the adapFL approach is moti-
vated by achieving an adaptation by customizing the conditions of each specific zone,
while trying to preserve the generalization capacity of the FL architecture. How-

ever, we have sought to compare the different configurations, given by (Nr, N
(L)
e ),

∀Nr ∈ {1, . . . , 10}, and N
(L)
e = 100−(10·Nr), with Nr the number of rounds of the FL

architecture and N
(L)
e the number of epochs that the model has been trained specifi-

cally in each zone after obtaining the federated global model (note that if Nr = 10, we
are in the case of the classic FL approach). The results as a function of the MSE and
the MAE for each test set are displayed in Figures B3 and B4 from Appendix B. It can
be observed that that a lower value of Nr is related to a reduction of the MAE and the
MSE in train, which is explained as a higher adjustment to the zone under analysis.
However, this is also linked to a reduction of the generalization capability that can be
extracted from the federated architecture. Therefore, the selected configuration is (9,
10), i.e. 9 rounds of the FL architecture and 10 final epochs of personalized training
in each zone.

Finally, the RMSE and skill score for the four areas can be calculated from the
MSE pressented in Table 4, and are shown in Table 5. In view of the skill score from
Table 5 we can note that the greatest improvement of the best approach (in this case
adapFL) in relation to the baseline model (COTREC), is obtained for zone 3. As the
objective of the skill score is to observe whether the model is better than a given base
model, we have highlighted for each zone the greater one (which is adapFL in all the
four cases).

Table 5: RMSE (kg/m2) and skill score obtained in the test set with the different
approaches in each zone.

RMSE Skill Score

Zone COTREC IL FL adapFL COTREC IL FL adapFL

1 0.4802 0.3740 0.4472 0.3677 - 0.3933 0.1327 0.4137
2 0.4190 0.3251 0.4015 0.3170 - 0.3981 0.0820 0.4277
3 0.4728 0.3493 0.3586 0.3289 - 0.4541 0.4246 0.5159
4 0.3309 0.2919 0.3095 0.2855 - 0.2219 0.1251 0.2557

Finally, the distribution of the MAE and the MSE for each image of the test set
of each zone is shown in Appendix D by means of histograms.

5.1 Central area

Once we have the four individual models and the models trained in a federated way, we
are interested in seeing how the last ones perform in a different region. To do this, we
take the 50×50 central crop of the original image (so that it is of the same resolution
as the images of each of the 4 zones). An example of an image where this division is
taken is shown in Figure 6, where the central area selected is the one framed within
the red square.
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Fig. 6: Example of an image where the four quadrants into which it has been divided
to create the four zones are shown in blue and the central area is marked in red.

Let us consider all the images within this quadrant and evaluate the predictions
that would be obtained with the FL model and the four adaptive FL models for each
of the 4 initial areas. Also, we compare it with the IL model on that area and the
adapFL one with the adaptive phase performed in such zone (the central one), but
the FL model only on the first 4 zones. Since part of the images that we evaluate are
part of the training set of each individual zone, we will take the same test set as in
the previous cases, corresponding to the last 20%. Again, the same processing will be
carried out in each zone regarding the blank (empty, no-rain) images and the input
for the DL models. The results obtained in each case for the train and test set and
both for the MSE and the MAE are shown in Table 6. Note from this table that the
first three rows correspond to models that have explicitly seen data from the central
zone training set (COTREC, IL over the central zone, and adapFL with FL over the
four initial zones and personalized with the adaptive phase over the central area with
a configuration (9,10)). The rest of the models shown in Table 6 have not directly seen
training data from the central zone, although each of the four initial zones contain
part of the data from the central area.

From Table 6, we can highlight the following points: (1) it makes sense to analyze
the performance of the FL model since each initial area has part of the central zone
analyzed in this case. (2) Intuitively, the best results should be obtained with the
models trained in the same zone, in this case IL in the central zone and adapFL on
the central zone. (3) The COTREC model is largely worse than the other approaches
analyzed, so it can be extrapolated that in this scenario it is more convenient to apply
DL models. (4) In the training set the adapFL model over the central zone is the best
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Table 6: Comparison of the MSE and MAE (kg/m2)
obtained in the train and test sets of the central zone
with the different approaches analyzed.

Central zone

MSE MSE MAE MAE
Model Train Test Train Test

COTREC 0.0798 0.2547 0.0308 0.0735
IL zone central 0.0118 0.0121 0.0130 0.0207

adapFL (central) 0.0067 0.0129 0.0149 0.0199

FL (four areas) 0.0128 0.0140 0.0161 0.0195
adapFL (zone 1) 0.0111 0.0130 0.0174 0.0210
adapFL (zone 2) 0.0103 0.0134 0.0165 0.0201
adapFL (zone 3) 0.0112 0.0123 0.0169 0.0200
adapFL (zone 4) 0.0114 0.0123 0.0159 0.0187

in terms of MSE, and the individual one with respect to the MAE (followed by adapFL
over the central zone). (5) In the test set the best results for MSE are obtained with
the individual model, followed by the adapFL ones over zones 3 and 4. (6) In the test
set the best result with respect to the MAE is obtained with the adapFL model over
zone 4 followed by the basic FL model, being in this case the FL approach better than
the individual model trained over the current area of study.

Again in this case we have calculated from Table 6 the RMSE and the skill score
(with COTREC as baseline) for the prediction on the central zone. The results for
these two metrics can be found in Table 7. Note that in this case the results for the
skill score show a greater difference between the MSE for the baseline model and the
other approaches than in the previous case where the four initial zones were analyzed.

Table 7: Comparison of the MSE (kg/m2) and skill score
obtained in the train and test sets of the central zone with
the different approaches analyzed.

Central zone

RMSE RMSE Skill Score Skill Score
Model Train Test Train Test

COTREC 0.2825 0.5047 - -
IL zone central 0.1086 0.1100 0.8521 0.9525

adapFL (central) 0.0819 0.1136 0.9160 0.9494

FL (four areas) 0.1131 0.1183 0.8396 0.9450
adapFL (zone 1) 0.1054 0.1140 0.8609 0.9490
adapFL (zone 2) 0.1015 0.1158 0.8709 0.9474
adapFL (zone 3) 0.1058 0.1109 0.8596 0.9517
adapFL (zone 4) 0.1068 0.1109 0.8571 0.9517

Furthermore, Figure 7 shows three images in the conditions mentioned above (cen-
tral quadrant of resolution 50×50), and their corresponding prediction obtained using
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the FL approach applied to the four initial areas and the adapFL one (adapted to the
central area).

Fig. 7: Example of predictions of the test set of the central zone. Federated learning
approach with Nr = 10 and Ne = 10 and adapFL method with the configuration
(9,10).

Finally, it is interesting to analyze the non-independent identically distributed
(i.i.d.) nature of each of the five zones proposed. Assuming the privacy-preserving deep
learning approach (FL and adapFL) in which we do not have access to all the raw
images in order to preserve privacy, technical or legal considerations that may apply
to each image (e.g. may belong to different data owners), this analysis is carried out
on the only information that the central server that performs the federated training
would have available: the weights that define the model. In this sense, the divergence of
the weights between each pair of zones (Zhang et al, 2021) was analyzed. Specifically,
we repeated the training in the 5 zones (including the central zone) from the initial
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model when training only 10 epochs individually (as done in each round of the FL
training), and we kept the weights obtained in each case. Be ||·||F the Frobenius norm,

and w
(n)
i the weights obtained when training with the data from client i in round n,

we define the divergence in a symmetric way d
(n)
i,j as follows:

d
(n)
i,j =

||w(n)
i − w

(n)
j ||F

1
2 (||w

(n)
i ||F + ||w(n)

j ||F )
(2)

Equation 2 presents a modification regarding the divergence equation proposed in
Zhang et al (2021) in order to make it symmetric, In order to do so the norm of the
differences is divided by the mean of the Frobenius norm of each weights.

Specifically, in order to calculate the norm of the weights corresponding to each
grid, the corresponding norm of each layer has been calculated individually and then
the norm of the resulting vector has been computed. The results obtained in each case

for d
(1)
i,j are summarized in Table 8.

Table 8: di,j calculated for each combination of
zones.

i,j 1 2 3 4 Central

1 - 0.6563 0.6310 0.6413 0.5729
2 0.6563 - 0.6275 0.6296 0.5850
3 0.6310 0.6275 - 0.6055 0.5677
4 0.6413 0.6296 0.6055 - 0.5743

Central 0.5729 0.5850 0.5677 0.5743 -

In view of the values obtained for di,central ∀i ∈ {1, 2, 3, 4}, the lowest value is
obtained with respect to the third zone, which is consistent with this being the adapFL
model that gives the best results in the central zone in the test set regarding the
MSE. However, the best test result is obtained with zone 4 (for MAE and 3 and 4
for the MSE), which is the second with the greatest divergence, and is also the model
with the greatest error in the train (of the indexed ones). This high divergence in
training is reflected in the MSE of the train, while allowing a better generalization
in the test. Presumably, this is due to the rainfall levels in zone 4 during the period
incorporated in the training, which will be similar to that of the central zone test
(covering summer periods). It is evident that the divergence between the central zone
and the other four areas represents the lowest values (last row of Table 8), since each
of the 4 initial zones contains a quarter of the information of the central one. The table
above provides information on the differences between the different zones, highlighting
for example that the smallest divergence regarding the initial four areas is reached
between zones 3 and 4, so it may be reasonable to create models agreed between these
two areas, separately from the other two, making clients’ clusters. Finally, note that
zone 1 presents the greater divergence with respect to the other three initial areas, so
including this one may be damaging the performance of the overall FL model.
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6 Discussion

In this work, we have analyzed the applicability of a novel PFL approach in com-
parison with a DL model trained individually on each set of data and with a classic
FL architecture, for precipitation nowcasting based on radar images. However, it is
important to discuss the limitations of the data used in this study as a benchmark to
extrapolate the applicability of the adapFL architecture to use cases with a sufficient
number of available clients.

The first limitation is that we have information captured by a single radar. How-
ever, the coverage area of this radar is so wide and representative that it allows us to
carry out an artificial division in such a way that we distribute the captured images
into different clients, each of them composed of different parts of the original images.
It is important to note that in a real use case scenario in which we would have radars
that capture images with different resolutions, it would be necessary to perform a
careful preprocessing. In the same way, in this case, we have the advantage of all
clients having images captured with the same type of radar. This is important to take
into account because in a case where we have different radars, the sensitivity of these
as well as their measurement parameters are determining factors when it comes to
damage the accuracy of a jointly built deep learning model.

Another particularity of the data used in this study is that the information con-
tained in the images usually lies in the center of the initial full image. Therefore,
dividing them in four quadrants to have four artificial clients results in a high diver-
gence among them. In consequence, while the client with the data from the upper left
quadrant of the original image will have more information in the lower right corner,
this is reversed for the client with the images in the lower right quadrant. However,
this is convenient in order to compare this case and use it as a benchmark to extrap-
olate to different scenarios with multiple radars, since in both cases such divergences
will also be appreciated, being data captured in different regions or countries.

In addition, as shown in Figure 2, many parts of the images do not contain rel-
evant precipitation events, besides being data with a high seasonal component. This
characteristic of the data would have added more complexity during model training
and evaluation so the data have been pre-processed accordingly.

These limitations are important to understand the scope and constraints of our
study. Nonetheless, in spite of the advantages and disadvantages of using a single
client to simulate the presence of four clients to perform FL, the obtained results are
robust enough to assess the viability of the novel PFL approach adapFL. As revealed
by the skill score, this novel approach had a better performance in the four zones
under study, in comparison with the IL approach and the classical FL one. To the best
of our knowledge, it is the first time that the FL paradigm is applied to enhance the
precipitation nowcasting using radar images and this contribution may be of interest to
other researchers and practitioners that develop DL models for such purpose, including
other convolutional ANN architectures and even with the addition of more input
variables, as proposed by Kumar et al (2024). This work has demonstrated that the use
of FL and PFL techniques in regression tasks not only presents the inherent advantages
of this methods, which are mentioned in the introduction, but also it is possible to
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reach better predictions in terms of error. Therefore, even in the case that no privacy
issues affect the use of the radar images, the adapFL approach is of particular interest.

7 Conclusions

Our main objective towards this study was to analyze the feasibility of a novel PFL
architecture, in particular the so-called adapFL approach, to a use case of meteorolog-
ical radar images. Specifically, the objective was to use the available images to predict
the precipitation expressed as VIL in the next 5 minutes. The complexity of this task,
involving the use of images, invites using DL models based on convolutional neural
networks.

In particular, to analyze the applicability of the PFL technique to this case, the
results obtained in the four artificially distributed zones were compared with the
COTREC method, as well as with the training of the same convolutional network
on each of the zones individually and the training with a conventional FL architec-
ture. Specifically, for the test set, we obtained improvements in all four cases when
applying the adapFL architecture both for the MSE and MAE. Moreover, when we
extrapolated these results to the central zone, which has a part in each of the four ini-
tial ones, the optimal results for the training set regarding the MSE are also achieved
with the application of the adapFL architecture trained on all the four initial areas
and adapted to the central one. Regarding only the individual models, in this case,
the best results are achieved with the individual training on the fourth zone, which is
in contrast with the results obtained for the divergence between the different artificial
regions. This may be attributed to these regions having more in common in the test
set than in the train, e.g. due to seasonality.

The results obtained throughout this study give us a promising idea about the
applicability of this PFL architecture to this type of meteorological radar images,
since as mentioned, the results improve those of individual training in all the analyzed
cases and that of the classic COTREC method. In this sense, future work has been
drawn from the very approach of this benchmark study, and it is to extrapolate this
type of analysis to radar data distributed in different countries or regions. In that
case, the differential behavior of each zone may lead to the introduction of measures
considering these divergences, like the creation of different clusters of clients. It should
be noted that in this study one of the zones was very different regarding the data used
for training from the others on average (see Figure 4, zone 3), but the model was not
degraded. Instead, this variability in the data distribution in the different clients in
some cases may even lead to better generalization ability in the event of unseen data.
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Appendix A Data distribution

As previously stated, the main objective of this work is to predict rainfall events (given
by the VIL) 5 minutes in advance. The deep learning models used for this purpose
include as input the three available images prior to the time of the prediction. In order
to avoid over-training the models with non-rain events, we have eliminated those cases
where the predictand (the three images previously available at the time of prediction),
are empty (blank) images (no rain). Eliminating these data significantly reduces the
amount of training data. This processing has been carried out individually on the
train and test sets of each of the zones, as would be appropriate in cases where the
data are distributed. Thus, Figure A1 shows the accumulated VIL in each image to
be predicted in the train in each of the zones, and in Figure A2, the corresponding
VIL in the test set in each case. To calculate the accumulated VIL displayed in the
following images we have summed the VIL associated with each pixel of a given image
and divided it by the surface of the image (502 km2).

Fig. A1: Distribution of the VIL accumulated in the train data (y) in each zone after
processing.
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Fig. A2: Distribution of the VIL accumulated in the test data (y) in each zone after
processing.
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Appendix B AdapFL architecture: MSE and MAE

In this section we aim to compare the different configurations of the proposed

adapFL architecture. Specifically, this configurations are given by (Nr, N
(L)
e ), ∀Nr ∈

{1, . . . , 10}, and N
(L)
e = 100− (10 ·Nr), as explained in Section 5. Figures B3 and B4

show the MSE and the MAE for the test set of each zone with each proposed con-
figuration of the adapFL approach. Note than in the case in which Nr = 0, we are
displaying the results for the individual approach (IL), and when Nr = 10, those of
the classic FL approach.

Fig. B3: MSE for the test set of each zone under different adapFL configurations,
including IL and FL.

Fig. B4: MAE for the test set of each zone under different adapFL configurations,
including IL and FL.
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Appendix C Example of predictions obtained for
each area

Figures C5 and C6 show, for each of the four initial artificially distributed zones,
six images together with the corresponding predictions obtained with the adapFL
approach implemented.

Fig. C5: Example of predictions obtained with the adaptive federated learning
approach in each of the four zones (1/2).
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Fig. C6: Example of predictions obtained with the adaptive federated learning
approach in each of the four zones (2/2).

27



Appendix D MAE and MSE obtained in each
image from the test set

In order to check the robustness of the proposed PFL method, adapFL, in this section
we show an histogram for the MSE and MAE of each area for each image. We can note
that in the vast majority of the images both the MSE and the MAE are near to zero.

Fig. D7: Histogram with the MAE obtained for the images of the test set using the
adapFL method.
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Fig. D8: Histogram with the MSE obtained for the images of the test set using the
adapFL method.
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Appendix E Diagram of the neural network
implemented

The schema of the neural network implemented in this study is shown in Figures E9
and E10.

Fig. E9: Convolutional neural network implemented (1/2).
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Fig. E10: Convolutional neural network implemented (2/2).
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