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Abstract

In computer science, optimization methods have been studied across several subdomains
like numerical optimization or program optimization. This thesis revolves around the de-
velopment of uncertainty-aware optimization techniques for robot systems with a strong
focus on quantifying and propagating uncertainties. Especially, the main goal is to study
whether integrating the estimated uncertainty in the optimization pipeline can boost the
performance of robot systems. To this end, we employ the uncertainty definition estab-
lished in the field of metrology. This research domain provides definitions of measure-
ment units (e.g., meter, kilogram,...) and calibration methods. Importantly, these studies
are tightly linked to assessing the accuracy of measurements by evaluating whether the
measured value of a quantity corresponds to its actual value.

In robotics literature, the majority of techniques for uncertainty quantification have been
developed in an application- or task-specific manner. For example, methods for handling
the uncertainties in robot navigation or manipulation tasks often propose to first model
them heuristically to integrate these into the control architecture. So far, however, scarce
attention has been devoted to accurately quantifying the uncertainty of entire robot ap-
plications by addressing the derivation of one unambiguous uncertainty measure. This
might draw from the difficulty of unifying different uncertainty notations. Due to the fact
that the uncertainty of hardware components (e.g., sensory devices, cameras,...) differs
fundamentally from the uncertainty notation of software tools like neural network-based
components, deriving one representation for the system uncertainty is challenging.

Nevertheless, the knowledge on the system uncertainty may be critical for assessing and
optimizing robot applications. Also, being provided with the relationship between the
system uncertainty, that reflects the probability for undesired fluctuations, and the system
variables offers the possibility to adapt the system according to the minimum uncertainty.
Especially, quantifying the uncertainty of a system becomes important when quantitative
limits on system variables or parameters must be kept (e.g., for safety assurance). Obvi-
ously, the reliability on the compliance with limits directly depends on the probability for
fluctuations.

Incentivized by the need for deriving one single uncertainty measure for an entire robot
application to enable the development of uncertainty-aware optimization techniques, this
thesis provides following key contributions: After introducing methods to quantify the un-
certainty of single components and accumulating them, it is elaborated on how these can
be accounted for in the optimization of robot systems. To be specific, three applications
are considered by formalizing an optimization problem for each use case. Starting with a
distinct binary optimization problem that is developed in the context of a humanoid robot
grasp selection experiment, the advantage of integrating uncertainties is demonstrated.
Next, the metrological uncertainty notation for technical components is unified with the
robustness of neural network classifiers to one combined uncertainty representation. This
unification is complemented by sensitivity analyses to explore the validity of the derived
uncertainty notation for different system parameter regions. The experiments on an im-
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age classification task show that the uncertainty of robot systems that consist of both neu-
ral networks and sensory components is effectively captured by the proposed notation.
Third, continuous optimization problems are addressed by considering the quantified sys-
tem uncertainty and the findings from the sensitivity analyses. By mapping the results on
the probability for the occurrence of risks, uncertainty-aware safety evaluation and risk
minimization methods are derived. The experiments conducted in both simulation envi-
ronments and real-world robot applications convincingly demonstrate that the uncertainty
calculated via the proposed quantification and propagation techniques not only allows the
evaluation of quantitative safety limits (e.g., ISO standards) in online manner, but also
provides the possibility to effectively minimize risks.

Overall, the results of this thesis show that the developed methods are suitable to quantify
the uncertainty of robot systems. According to the findings of the performed experiments,
the optimization performance is improved by more than 60% on average by integrating
the uncertainty. However, the notable discrepancy in the results of the three experiments
indicate that the performance of the uncertainty-aware optimization techniques highly
depends on the application.

Keywords: Uncertainty Quantification, Uncertainty Propagation, Sensitivity Analysis,
Robot Safety, Risk Analysis
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Zusammenfassung

In der Informatik kommen Optimierungsverfahren vielfältig zum Einsatz, wie zum Bei-
spiel im Kontext numerischer Methoden oder der Optimierung von Programmlaufzeiten.
Die vorliegende Dissertation beschäftigt sich mit der Entwicklung von Optimierungsme-
thoden für Robotersysteme unter Berücksichtigung von Unsicherheiten, wobei ein starker
Fokus auf Unsicherheitsquantifizierungs- sowie propagationsmethoden gelegt wird.

So wird untersucht, wie die Integration der ermittelten Unsicherheiten zur Erhöhung der
Performanz in Robotersystemen beiträgt. Hierbei wird die Definition der Unsicherheit
aus dem Bereich der Metrologie verwendet. Dieses Forschungsfeld befasst sich mit der
Definition von Messeinheiten (z.B. Meter, Kilogram, usw.) und der Entwicklung von Ka-
librationsverfahren, die ebenfalls mit Methoden zur Bestimmung der Genauigkeit von
Messungen stark verwandt sind. Ziel dieser ist es, zu ermitteln, inwiefern der gemessene
Wert einer Größe mit dem tatsächlichen Wert übereinstimmt.

Existierende Ansätze zur Bestimmung von Unsicherheiten in der Robotik werden zumeist
auf applikationsspezifische Art hergeleitet. Insbesondere werden Methoden mit dem Ziel,
negative Konsequenzen im Systemverhalten durch das Auftreten von Unsicherheiten zu
umgehen, für Navigations- und Manipulationsaufgaben entwickelt, indem zunächst Unsi-
cherheitsmodelle aufgestellt und im Anschluss in der Roboterregelung berücksichtigt wer-
den. Allerdings wurden bisher bei der Entwicklung von Verfahren zur Quantifizierung von
Unsicherheiten, die neben der Berechnung des Umfangs der Unsicherheit auch Analysen
von Parameterabhängigkeiten mit Systemvariablen beinhaltet, vergleichbar geringe Auf-
merksamkeit gewidmet. Dies liegt möglicherweise darin begründet, dass die Berechnung
der Gesamtunsicherheit eines Systems erfordert, verschiedene Unsicherheitsnotationen
zusammenzuführen. Aufgrund von Diskrepanzen, wie beispielsweise zwischen der Unsi-
cherheitsdefinition von Hardwarekomponenten (z.B. Sensoren, Kameras) und Software-
Tools, die auf neuronalen Netzen basieren, ist die Bestimmung einer Gesamtunsicherheit
nicht ohne Weiteres möglich.

Nichtsdestotrotz ist der Kenntnis über die Gesamtunsicherheit, die das mögliche Ausmaß
von Abweichungen beschreibt, hohe Wichtigkeit im Hinblick auf die Beurteilung und Op-
timierung der Performanz in Robotersystemen beizumessen. Zudem erlaubt die Kenntnis
über die Abhängigkeiten zwischen der Unsicherheit und den Systemgrößen, die Kompo-
nenten und Parameterbereiche entsprechend der niedrigsten Auftrittswahrscheinlichkeit
für unerwünschte Abweichungen zu adaptieren. Vor allem in Fällen, in denen quantita-
tive Anforderungen wie z.B. Beschränkungen für Systemgrößen erfüllt werden müssen,
kommt der Unsicherheitsquantifizierung hohe Bedeutung zu, da die Zuverlässigkeit der
Einhaltung von Anforderungen unmittelbar mit der Auftrittswahrscheinlichkeit von Fluk-
tuationen zusammenhängt.

Die Kernbeiträge dieser Arbeit umfassen die Entwicklung von Verfahren zur Unsicher-
heitsquantifizierung und die anschließende Integration dieser in Roboteranwendungen.
Die Herleitung der Methoden erfolgt anhand von drei Beispielen, für welche jeweils ein

v



Optimierungsproblem definiert wird. Zunächst wird ein diskretes binäres Optimierungs-
problem für die Greifselektion bei einem humanoiden Roboter adressiert. Es wird de-
monstriert, dass die Berücksichtigung von Unsicherheiten zur Verbesserung der Greifse-
lektion beiträgt. Anschließend wird eine Methode erarbeitet, die ermöglicht, die Unsicher-
heitsnotation technischer Komponenenten mit der Robustheit von neuronalen Netzen zu
einer Unsicherheitsgröße zusammenzuführen. Diese Vereinheitlichung wird durch Sen-
sitivitätsanalysen ergänzt, um die Gültigkeit der hergeleiteten Notation für verschiedene
Parameterbereiche zu untersuchen. Mittels Experimenten, die sowohl Sensoren und Ka-
meras als auch Klassifikatoren mit neuronalen Netzen verwenden, wird die Gültigkeit
der Notation validiert. Im Anschluss werden die Unsicherheiten sowie Resultate aus den
Sensitivitätsanalysen in kontinuierliche Optimierungsprobleme zur Evaluation der funk-
tionalen Sicherheit und der Risikominimierung integriert. Es werden Experimente sowohl
in der Simulation als auch in der realen Welt durchgeführt. Die Ergebnisse zeigen, dass die
Integration der entwickelten Methoden zur Unsicherheitsquantifizierung und -propagation
zusätzlich zur online Evaluierung quantitativer Sicherheitsvorschriften (z.B. ISO Stan-
dards) eine effektive Minimierung von Risiken bewirkt.

Die Resultate dieser Arbeit zeigen, dass die entwickelten Methoden zur Unsicherheits-
quantifizierung für Robotersysteme geeignet sind. Gemäß der Ergebnisse der durchge-
führten Experimente ermöglicht die Berücksichtigung der Unsicherheit eine Erhöhung
der Performanz um mehr als 60 %. Allerdings lassen sich merkliche Diskrepanzen zwi-
schen den Resultaten der drei Experimente erkennen. Diese weisen darauf hin, dass die
Optimierung der Performanz von Robotersystemen unter Berücksichtigung von Unsicher-
heiten abhängig von der Anwendung ist.

Stichwörter: Unsicherheitsquantifikation, Unsicherheitspropagation, Sensitivitätsanaly-
se, funktionale Sicherheit, Risikoanalyse
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1 Introduction

The advent of technological developments has led to a growing interest in research in
the assistive and collaborative robotics domain. In a broader sense, the ultimate goal in
engineering sciences is to provide applications and technologies that can assist humans,
for example by contributing to more efficient work cycles and a higher productivity. From
an application viewpoint, a wide range of promising approaches have been developed in
robotics including control frameworks for robot manipulation and navigation tasks. While
the performance of these developments is important, the most crucial prerequisite for
facilitating the integration of robots in the everyday lives of humans (e.g., for collaboration
or close interaction tasks) is safety assurance. Specifically, the term safety refers to the
absence of unintended hazardous events that occur due to technical failures of the system.
Thus, safety is clearly distinguished from security, which addresses specifically designed
attacks on the software level of the target application.

This thesis draws upon the insight and motivation that estimating the occurrence probabil-
ity for undesired events is possible via measurement uncertainty quantification techniques.
These have been studied extensively in the domain of particle physics and may be trans-
ferred to robotics applications for safety evaluation purposes. In particular, the occurrence
probability for undesired events in the majority of particle physics experiments is com-
puted by the measurement uncertainty according to [26]. Especially, the goal in natural
sciences is to detect unseen natural phenomena with high accuracy to assess whether the
experimental results match the theoretical predictions, that are obtained on the basis of the
scientific findings from the last centuries. Here, high emphasis is laid on the detection ac-
curacy, that is often referred to by the resolution. Despite the theoretical expectations, the
resolution in the observation of the novel phenomenon is considered as a representative
measure for the reliability on the finding. Thus, achieving a sufficiently high resolution is
one of the central goals in natural sciences. Technically, this resolution in the observation
refers to the accuracy of the corresponding measurement. The higher the accuracy, the
higher the resolution, and thus the reliability on the observation. Importantly, assessing
the accuracy is performed inversely by quantifying the inaccuracies, that can be quantified
via the measurement uncertainties.

In the context of robot applications, the incorporation of inaccuracies in observations or
processes may contribute to enhanced performances. By monitoring the critical vari-
ables of a system and accounting for potential inaccuracies, a more precise representation
of the actual state can be achieved. This representation, in turn, is likely to contribute
to an improved situation understanding, thereby enhancing the reliability of action selec-
tions made by the robot. Evaluating whether considering these inaccuracies by employing
measurement uncertainty techniques according to the Guide to the Expression of Uncer-
tainties in Measurements (GUM) ([26], [13]) is beneficial for robot applications, a variety
of experiments can be conducted. However, the goal of these applications must be clearly
defined. For example, safety assurance can be formalized as a risk minimization prob-
lem. Essentially, the risk can be expressed via measurement inaccuracies that limit the
knowledge of the possible undesired system behavior. In this case, it is explored by the
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1 Introduction

respective validation experiments whether the risks can be reduced when performing the
safety assessment in an uncertainty-aware manner. Here, the risk of human-robot colli-
sions in Human-Robot Collaboration is tightly bound on the measurement accuracy of
the relative human-robot distance and velocity. In particular, inaccuracies in the mea-
surement and monitoring process of these variables result in incorrect evaluations in risk
minimization, which corresponds to an optimization problem. For instance, an underesti-
mation of the relative velocity in human-robot collaboration would directly yield a wrong
risk evaluation. Consequently, no measures to reduce the risk would be introduced; the
robot would maintain its relatively high speed, potentially resulting in severe injuries to
the human. In this context, the validation experiments performed in Section 5.3 aim to
study how considering the measurement uncertainties in the estimation of human-robot
distance and velocity contributes to a reduction of dangerous situations.

Uncertainty-aware Optimization of Robot Applications
From a broader perspective, the validation of uncertainty-aware optimization techniques
can be easily extended to further robot applications. For instance, estimating the grasp
selection performance in robot grasping with respect to the grasp success rate depends on
the perception accuracy of objects, which can be described by the respective measurement
uncertainties. Similarly, the rate of incorrect classifications in an image classification task
may be reduced by accounting for the measurement uncertainties in the image recognition
and processing step. Generally speaking, accounting for the measurement uncertainties
provides a system state representation that corresponds, in the ideal case, to an accurate
representation of the reality including the possible deviations. On the basis of this mo-
tivation, one core contribution of this thesis is given by the transfer and adaptation of
well-established uncertainty quantification and propagation methods that are employed in
other research domains, as chemistry, biology and physics to robotic applications. From a
practical viewpoint, uncertainty-aware optimization techniques for robot systems are de-
veloped and designed to improve the achievement of the application-specific optimization
goals. Specifically, this poses the challenge of formulating the goal in robot applica-
tions as optimization problems. The goal of selecting promising grasp candidates in a
humanoid robot grasping application is defined as a maximization problem regarding the
successful grasps. This, in turn, requires to identify an appropriate description of the
grasp candidates and their uncertainties in first place. Similarly, the image classification
task is referred to by the minimization problem of inaccurate classifications that necessi-
tates the derivation of an uncertainty-aware system description. While these two examples
correspond to discrete optimization problems and are thus formulated accordingly, eval-
uating safety by minimizing risks is treated by continuous optimization techniques, that
are designed specifically for this use case.

Terminology of Measurement Uncertainty
The employed terminology of measurement uncertainties follows the guidelines that have
been established in the field of metrology; a research domain concerned with the assess-
ment and evaluation of measurements and mainly used in natural sciences. To be spe-
cific, this thesis builds upon the Guide to the Expression of Uncertainties in Measurement
(GUM) in [26] and the respective supplement in [13]. Of course, this requires to describe
and formalize the robot systems and the relevant system processes accordingly. At the
same time, once these descriptions are derived, analogies between the optimization prob-
lems in physics experiments and robot application goals can be drawn, that in turn allow
to apply the methods in a straightforward fashion.

2



1.1 Research Questions and Contributions

Figure 1.1: The underlying incentive of this thesis is to transfer and adapt measurement
uncertainty quantification methods from the domain of particle physics to
robotics. In doing so, it is aimed at enabling the straightforward calculation
of the accumulated measurement uncertainty of entire robot applications. In
particular, the knowledge on this uncertainty is suitable for evaluating safety
requirements. Apart from that, the uncertainty quantification methods yield
to enhanced performances in other robotic subdomains.

In addition, the discrepancy to physics experiments is also discussed in the face of the
limited observability in robotic applications. While possible changes of the system states
(e.g., the room pressure and temperature) are continuously captured by hundreds of sen-
sors and maintained with a high accuracy in particle physics experiments, this usually
can not be realized in common robot applications. Thus, it is not clear whether the tech-
niques from the metrological domains are suitable for engineering applications, where
an observation on microscopic scale is not provided. On the other hand, the majority of
the system components are expected to be well-understood. All engineering applications
have in common that they are invented and developed by humans, meaning that the entire
system is expected to be understood in detail and can be described by accurate models.
Hence, this prior knowledge on all system components of robot systems might equal out
the missing possibility of the accurate observation, that may be a crucial prerequisite for
an accurate uncertainty determination. Incentivized by these questions, establishing ap-
proaches that are suitable for robot systems will be addressed within the scope of this
thesis, that, among above described challenges, requires to bridge the gap between the
existing discrepancies in the uncertainty notations of different subdomains in robotics and
to successfully combine them with the formalism in metrology.

1.1 Research Questions and Contributions

The contributions of this thesis are guided by the following three research questions:

1. Which requirements must be met for the description of the robot system to
enable the calculation of the accumulated uncertainty for an entire robot ap-
plication?
After describing a robot system using the metrological formalism, a technique for
quantifying the uncertainty of system parts and components with unknown uncer-
tainties is developed. In doing so, the requirements that must be met to treat the
robot system with common statistical tools are defined. On this basis, methods for
propagating the uncertainties of single components along the system pipeline are in-
troduced. In addition to transferring the techniques from the metrological domain,
it will be explored how these can be adapted to robot applications.

3



1 Introduction

2. How can established uncertainty notations from the domain of robotics and
learning be unified with the metrological uncertainty notation to enable the
derivation of one single uncertainty measure for an entire robot system?
Existing uncertainty definitions that have been established in the robotics domain
show differences to the metrological notation of uncertainties. At the same time,
analogies can be found that can be exploited to bring the metrological uncertainties
and those from the field of robotics together. Especially, the successful unification
of these enables the derivation of one unambiguous uncertainty measure for an en-
tire robotic system. This means that the formalization in above research question
1 should be complemented by a technique to combining different uncertainty nota-
tions. To this end, the second research question addresses the problem of calibrating
the different uncertainty formalizations with each other and studying the analogies
in the presence of existing discrepancies.

3. How can the quantified uncertainties on component level be incorporated in
the system to enhance the performance of robot applications?
The main goal of this thesis is to study how the incorporation of uncertainties im-
pacts the performance of robot applications. To do so, a measure that is denoted
by the term optimization performance is introduced. Shortly, this measure indicates
the optimization quality – for example with regard to the minimization of risks in
human-robot collaboration or the maximization of the number of successful grasps
in a robot grasping application. In particular, the optimization performance facili-
tates the evaluation of whether considering the uncertainties in the system pipeline
by calculating them online during run time is beneficial for robot systems.

1.2 Publications

In addressing above research questions, the developed methods and validation experi-
ments have been published in the following works:

• Woo-Jeong Baek*, Christoph Pohl*, Philipp Pelcz, Tamim Asfour, and Torsten
Kröger. "Improving Humanoid Grasp Success Rate based on Uncertainty-aware
Metrics and Sensitivity Optimization". In 2022 IEEE-RAS 21st International Con-
ference on Humanoid Robots (Humanoids), pp. 786-793. IEEE 2022 ([10])

This publication demonstrates that considering the uncertainty of system variables
yields the enhancement of the optimization performance on the example of a hu-
manoid robot grasping application. Here, the goal lies in maximizing the grasp
success rate by optimizing the grasp selection process in an uncertainty-aware man-
ner. This is achieved by formulating a binary optimization problem. The key idea
is to replace the scalar description of the grasp candidates by probabilistic models.
By doing so, an uncertainty-aware approach to grasp selection is introduced. The
experiments on the humanoid robot ARMAR-6 with more than 1000 real-world
grasps show that incorporating the uncertainty in the grasp selection improves the
grasp success rate significantly from 32.6 % to 73.8 %.
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• Woo-Jeong Baek, Christoph Ledermann, and Torsten Kröger. "Uncertainty Esti-
mation for Safe Human-Robot Collaboration Using Conservation Measures". In
Intelligent Autonomous Systems 17, pp. 85-102, Cham, 2023. Springer Nature
Switzerland ([12])

This work suggests an approach to quantifying the uncertainty of black box tools.
While the uncertainty of technical tools is usually provided by data sheets, this
might not apply to all components, for example those that employ neural networks.
This work proposes a method to determine the uncertainty by exploiting the exis-
tence of system characteristics that stay constant over a specified parameter space.
In fact, so-called conservation equations are formulated that express that the sys-
tem variables do not change. To calculate the uncertainty of a black box tool, data
on the constant system variables is recorded. By estimating the violations on the
conservation equations, the uncertainty of the black box component is calculated.
The performed experiments show that the developed method delivers reliable un-
certainty estimates.

• Woo-Jeong Baek, Christoph Ledermann, Tamim Asfour, and Torsten Kröger. "Com-
bining Measurement Uncertainties with the Probabilistic Robustness for Safety Eval-
uation of Robot Systems". In 2023 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pp. 473-480, 2023 ([11])

The third paper addresses the discrepancy between the uncertainty notation of NNs
and metrology. Especially, if the uncertainty of an entire system is of interest, suc-
cessfully unifying different definitions is required. To this end, this work aims at
combining the measurement uncertainty of technical tools with the robustness of
neural network classifiers. To be specific, the analogy between the metrological
uncertainty formalism and the robustness in the learning domain is exploited. By
performing calibration experiments, sensitive parameter regions are identified. The
validation experiments show that the derived uncertainty notation captures the sys-
tem uncertainty.

• Woo-Jeong Baek and Torsten Kröger. "Safety Evaluation of Robot Systems via
Uncertainty Quantification". In 2023 IEEE International Conference on Robotics
and Automation (ICRA), pp. 10532-10538, 2023 ([9])

In this contribution, a method to accumulating the uncertainties of single compo-
nents along the system pipeline is presented. The goal is to determine the uncer-
tainty of an entire robot application to map it on quantitative safety limits. Since
these limits are expressed in terms of the probability for the occurrence of danger-
ous failures, the uncertainty of a system is a reasonable measure to evaluate safety.
The correctness of the uncertainty propagation algorithm is verified on the basis of
both simulated data and real-world experiments.

1.3 Structure of Thesis

This thesis is structured as follows: After motivating the transfer of metrological uncer-
tainty notation into the field of robotics and engineering, Chapter 2 introduces the funda-
mentals of the statistical tools and definitions that serve as the basis for the development
of the methods in Chapter 3. In addition, existing approaches and notations to calculating
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uncertainties in robotics are described. In doing so, high emphasis is laid on the under-
standing of the term uncertainty that is tightly bound on the incentive behind developing
uncertainty determination techniques.

Generally, the motivation in robotics is to enhance the performance of the respective ap-
plication. In fact, the discrepancies to the uncertainty definition established in the metro-
logical domain are pointed out. This enables to identify a discrepancy between these
understandings that offers space and possibilities to exploring and deriving novel tech-
niques that may be beneficial for both domains. Chapter 3 intends to introduce and adapt
the established measurement uncertainty quantification methods from the metrological
domain to robotics. By specifying how the measurement uncertainty is calculated for sin-
gle components in Section 3.2.1, a technique that enables to determine the measurement
uncertainties of black box tools is developed. Afterward, this technique is extended to a
pipeline of components. In Section 3.2.2, it is explained how the uncertainties of different
components can be combined. Here, the analogy between physics and robotics is empha-
sized. While accumulating the uncertainties in one representation can be performed in
straightforward manner, unifying uncertainties of Neural Networks (NNs) with those of
technical components is challenging due to the discrepancy in the uncertainty definitions.
To address this issue, a reinterpretation of variables in the robustness definition of NNs is
suggested and combined with a calibration.

By employing these techniques, methods to derive optimization methods in robot systems
are introduced in Chapter 4. Briefly, the term optimization in this thesis describes the pro-
cess of maximizing or minimizing a property in a robot application that is expressed via
the system variables and respective constraints. The optimization techniques in this thesis
are categorized in the binary optimization in Section 5.1.3 and Section 5.2.5 and continu-
ous optimization techniques in Section 4.3. Importantly, these optimization methods are
developed in an uncertainty-aware fashion by incorporating the techniques from Chapter
3.

In order to validate the proposed methods for the quantification and propagation of mea-
surement uncertainties as well as the uncertainty-aware optimization methods, validation
experiments are performed in Chapter 5. Specifically, an application for the selection
of grasps in a humanoid robot grasping experiment serves as a use case for validating
the binary uncertainty-aware optimization technique. In a similar manner, the correct-
ness of the reinterpretation of the robustness of NNs with the metrological uncertainty
notation is verified by an image classification experiment. Since the goal here lies in
minimizing incorrect image classifications, where the image classes are categorized in
distinct classes, this experiment is suitable for validating the optimization method intro-
duced in Section 5.2.5. The third Section of Chapter 5 deals with the validation of the
continuous uncertainty-aware optimization methods presented in Section 4.3 in the con-
text of safety of robot applications. Since the central incentive of this thesis revolves
around studying the safety assessment via measurement uncertainties, a variety of exper-
iments in both real-world and simulation environments is performed. By employing the
uncertainty quantification method for black-box components in Section 3.2.1, real-world
Human-Robot Collaboration (HRC) experiments are performed. In fact, the uncertainty
on the human position tracking is computed by applying the methods in Chapter 3. The
optimization goal here lies in the minimization of risks.

In contrast, the second part of Section 5.3 deals with simulation studies, where the effect
of the measurement uncertainties is explored for the severity of accidents. In doing so,
it is aimed at providing a method that enables both the uncertainty-aware evaluation of
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quantitative safety requirements and the uncertainty-aware minimization of risks of robot
systems. Finally, Chapter 6 summarizes the findings of this thesis by referring to the re-
search questions in Section 1.1. Apart from that, the limitations of the developed methods
are clarified. The Section 6.2 intends to suggest possible directions for future research in
the context of safety evaluation methods of robot systems. In doing so, it is outlined how
further methods from the domain of natural sciences may be employed to robotics, thereby
fostering the interdisciplinary transfer between different research domains. A schematic
overview of the structure is shown in Figure 1.2.

1. Introduction
1.1 Motivation and Contribution

1.2 Structure of Thesis

2. Funda-
mentals and

State-of-the-Art

2.1 Uncertainty Definitions and Terminology

2.2 Related Work: Uncertainty Quantification in Robotics

3. Uncertainty
Quantifica-
tion (UQ)

3.1 UQ of Black
Box Tools

3.2 Uncertainty
Propagation

4. Uncertainty-
aware (UA)

Optimization

4.1 Binary
UA Opt.

4.2 Binary UA
Opt. with NNs

4.3 Continuous
UA Opt.

5. Validation
Experiments

5.1 Humanoid
Robot Grasping

5.2 Image
Classification

5.3 Safety
in HRC

6. Conclusion
and Outlook

6.1 Summary and Discussion

6.2 Outlook

Figure 1.2: Structure of Thesis: After motivating the contribution of this thesis, the neces-
sary fundamentals of uncertainty definitions and state-of-the-art literature on
uncertainty quantification methods is provided in Chapter 2. Next, methods
for the uncertainty quantification and propagation are introduced, that serve
as the basis for the uncertainty optimization, that are validated afterward by
means of three robotic applications. Finally, the contributions are summa-
rized and discussed.
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2 Fundamentals and Related Work

This Chapter introduces fundamental notions and definitions that will be referred to through-
out this thesis. In addition, existing methods to uncertainty quantification in robotics are
presented and discussed to highlight the novelty of this thesis. The underlying conjecture
of this thesis is twofold:

1. any real-world system can be fully represented by continuously measuring system
parameters with perfect (100%) accuracy

2. if one is provided with a perfectly accurate representation of the system, any opti-
mization can be carried out with maximum performance

For example, a human-robot collaboration (HRC) system can be described by means of
the human and robot positions and velocities at each time step, where these parameters
must be obtained via measurements.

Therefore, the quality of the system representation depends on the perception accuracy
of the parameters, that is restricted due to technical limitations of employed tools or the
influence of environmental disturbances. These undesired influences cause inaccuracies
in the measurement procedure that are denoted with the term measurement uncertainties.
Apart from that, a perfectly accurate representation of a system would guarantee the per-
formance of optimizations. This means that knowing all parameter relationships as well as
their exact values would allow to perfectly adapt to minimizing or maximizing parameters
to desired extent. To discuss these conjectures, we investigate the impact of uncertainties
in three robot applications.

Prior to presenting our method, we introduce the notations that are used in this work. First,
the metrological uncertainty is presented. By means of general terms that are needed for
the basic comprehension of this thesis, existing uncertainty representations in robotics lit-
erature are outlined to highlight the differences. Second, the term optimization is specified
with regard to robot applications, where the main objective of this work lies in contributing
to the optimization performance in robot systems by incorporating measurement uncer-
tainties. Furthermore, established approaches to uncertainty quantification in the domain
of robotics are discussed. Related contributions from the subdomains safety in robotics,
neural network based robot systems and humanoid robot grasping will be elaborated on
in Chapter 5 by introducing the validation experiments.

2.1 Definitions, Terminology and Notation

This thesis revolves around assessing and evaluating the accuracy of measurements to gain
an improved understanding of the system. Generally, the goal of measurements is to ob-
tain a value for a well-defined system property, that are usually represented as parameters.
Therefore, the process of a measurement involves the selection of tools and development
of methods that enable to accurately determine the parameters. These parameter values
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allow to draw conclusions regarding the system state. In the context of robot applications,
the knowledge on the current state of a system is required to identify which actions a
robot should take. Apart from that, collecting data on the system behavior by means of
measurements offers the possibility to describe the application. However, the reliability
of the obtained measurement data strongly depends on the employed tools and methods.
Particularly, a perfect accuracy of 100 % cannot be achieved in real-world environments
due to the limitations arising from the system.
Fundamentally, this thesis presents methods to quantifying these limitations in the mea-
surement process, that are denoted with measurement uncertainties. In addition, the goal
lies in studying how exploiting the knowledge on the measurement uncertainties can be
integrated in reasonable manner in different robot applications. This thesis builds upon
the metrological definition of uncertainties provided by the Guide to the Expression of
Uncertainties in Measurement (GUM) in [26]. Accordingly, the measurement uncertainty
reflects the possible dispersion around the measured quantity as will be specified in the
following.

2.1.1 Measurement Uncertainties

The uncertainty of a measurement describes to which a quantity, denoted as the mea-
surand, might deviate from the measured value. Generally, a measurement denotes the
process of estimating the value of a physical property in a system. To achieve this, tech-
nical tools and algorithms are employed. However, these devices suffer from limitations
such that a perfectly accurate measurement process can not be realized.

Error and Measurement Uncertainty

In addition, it is often not known how environmental disturbances like temperature fluctu-
ations or sudden changes of the lightning conditions affect the quality of measurements.
Basically, the measurement uncertainty captures possible deviations due to limitations
and fluctuations that might contribute to inaccuracies in the measurement procedure. One
important property of measurement uncertainties is that they cannot be entirely dimin-
ished, particularly in real-world systems. Any measurement process underlies uncertain-
ties, either due to the lack of available data or technical limitations of employed tools.
Practically, a perfect accuracy of 100% corresponds to a measurement uncertainty of
usystem = 0, which cannot be achieved in real-world systems. In contrast to errors, that
are represented by scalar values and state to which extent an obtained quantity must be cor-
rected, measurement uncertainties correspond to intervals that cover the possible values
of the measurand. These intervals usually are assigned to probability density functions.
For the remainder of this thesis, the measurement uncertainty will be referred to by the
term uncertainty. As will be elaborated in the following, uncertainties can be represented
by scalars, analytical functions or distributions. Apart from that, the uncertainty is bound
to a Confidence Level (C.L.) that is a measure for the significance of the obtained uncer-
tainty estimate referring to the considered data set.

Type A and Type B Measurement Uncertainties

The Guide in [26] distinguishes between Type A and Type B uncertainties. While Type
A uncertainties must be determined by applying analyses and combining experimental
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results with the knowledge of the system, Type B uncertainties describe those that are
known and modeled beforehand. For example, the latter ones are stated by manufacturer
specifications of technical tools or the developers of algorithms. Type A uncertainties, in
contrast, may originate from system-specific black box components or varying environ-
mental conditions that must be determined individually for each application. As will be
elaborated in Chapter 5 the type of uncertainty must be specified for the analyses. How-
ever, since both uncertainty types refer to single components, the same notation will be
used.

The Propagated Measurement Uncertainty

In most cases, estimating the value for a property of interest requires employing several
measurement devices. Specifically, the quantity of interest might depend on parameters
that must be measured separately. This often applies to robot systems as for example
in safety-critical applications, where the risk is one of the most crucial measures. How-
ever, assessing the risk of a robot system requires to specify and accurately measure the
occurrence of hazardous events in first place. Therefore, the uncertainty of the property
of interest often results from the uncertainty contributions of the respective tools. The
propagated uncertainty denotes the resulting uncertainty of an all contributing system
components with respect to the specified attribute.

2.1.2 Uncertainties and Robustness of Neural Networks

With the increasing employment of deep learning based methods in physical real-world
applications as robotic systems, studies on the uncertainties of neural networks have
gained high attention. Especially, the learning domain established specific uncertainty
definitions given by the aleatoric (data) and epistemic (network) uncertainties that differ
fundamentally from the metrological notation. However, the determination of the uncer-
tainty of an entire application, the uncertainties of hardware and software tools must be
effectively combined with each other. Therefore, the aleatoric and epistemic uncertainties
will be briefly introduced in the following. In addition, the definition for the robustness
of neural networks will be presented since this metric shows analogies to the metrological
uncertainty definition as will be further elaborated on in Chapter 3.

Aleatoric and Epistemic Uncertainties

In accordance to the metrological understanding, the motivation behind uncertainties for
neural networks (NNs) have been first introduced with the idea to provide a measure that
indicates possible deviations in the NN output. To be specific, two types of uncertainties
are introduced in the domain of NNs [43]. The aleatoric (data) uncertainties, that capture
the stochasticity in the input data are referred to as the "irreducible" uncertainties while
the epistemic (network) uncertainties that are inherent to the neural network architecture
reflect such that can be reduced by observing more data and improving the model. Due to
the growing demand of methods to assess the reliability of deep learning tools, a variety of
methods to quantifying these uncertainties have been developed reaching from sampling
techniques to Bayesian inference approaches. Details can be found in the survey of Gaw-
likowski et al. in [33]. Although a line of methods have been developed and discussed
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within recent years, one critical limitation lies in the missing absolute notions. In fact, the
distinction between epistemic and aleatoric uncertainties is only reasonable for specified
network architectures and data sets. In particular, the definition of the reducible, that is,
the epistemic uncertainty is not unambiguous. At first glance, increasing the training data
may be one efficient possibility. However, this is only valid for the specified setting of the
learning problem, that is, for an input space X , output space Y , hypothesis space H and
the joint probability P on X × Y . Particularly, if additional features are considered such
that the input space X is replaced by X ′, the epistemic and aleatoric uncertainties change.
Hence, these uncertainties are context-dependent. Especially, this context-dependency is
highly case specific. Therefore, these uncertainty definitions are not considered as useful
for practical robot applications. In order to combine the uncertainty of NNs with those
of hardware components, this thesis refers to the robustness that shares similarities with
measurement uncertainties as will be introduced in the following.

Robustness of Neural Networks

In contrast to aleatoric and epistemic uncertainties, the robustness describes the deviation
of a NNs output relative to variations in the corresponding input samples. For an input
sample x0 ∈ X , the local robustness is satisfied if the condition

∀x; ||x0 − x|| ≤ δ =⇒ f(x0) = f(x) (2.1)

holds true, where f(x0) and f(x) denote the NN output for x0 and x, respectively and
|| · || stands for an arbitrary distance metric specified for the input space X . Basically, the
global robustness requires the local robustness for all inputs in the input space, i.e.

∀x, x′; ||x− x′|| ≤ δ =⇒ f(x) = f(x′). (2.2)

Intuitively, the robustness can be imagined by a ball with radius δ, where all inputs x
and x′ yield the same outputs f(x) = f(x′). However, in real-world applications as
robotic systems, meeting the global robustness requirement often is impossible. Due to
this reason, Mangal et al. in [55] introduce the probabilistic robustness expressed as
follows:

Pr((∥f(x′)− f(x)∥ ≤ k ∗ ∥x′ − x∥) | ∥x′ − x∥ ≤ δ) ≥ 1− ϵ (2.3)

for an input distribution D. Thus, the probabilistic robustness is defined via the Lipschitz
equation and bounds the distance between the pair of outputs referring to the distance
between the respective inputs instead of requiring the same distance for all input pairs.
In addition, Equation (2.3) introduces a probability limit of (1 − ϵ), where ϵ is specified
individually, for which the robustness property must be satisfied. This means that it is
not required that all input samples must meet the condition such that the probabilistic
robustness is more suitable for real-world physical systems. In fact, the robustness is
required in certain regions such that violating the property for specific input points is
acceptable.

2.1.3 Optimization Goals

The underlying incentive of this thesis is to study whether the optimization in robot ap-
plications can be enhanced by accounting for uncertainties. Generally, an optimization
describes the process of minimizing or a maximizing a system property π(x⃗)
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max /minπ(x⃗), (2.4)

where π : Rn → R is the objective function that is supposed to be maximized or min-
imized and x denotes a vector of dimension n. In addition, there may exist additional
constraints on the space for feasible solutions given by

gi(x) ≤ 0, i = 1, ...,m

hj(x) = 0, j = 1, ..., l
(2.5)

where gi(x) ≤ 0 and hj(x) = 0 are referred to as inequality constraints and equality
constraints, respectively for m ≥ 0 and l ≥ 0. In particular, m = l = 0 yields an uncon-
strained optimization problem. Practically, the goal of an optimization is to find the best
solution for Equation (2.4) within the space of all feasible solutions. As will be elaborated
on in detail in Chapter 5, improving the performance in robot applications can be formal-
ized as optimization problems in many cases. However, identifying the optimization goals
and specifying Equation (2.4) and the constraints highly depends on the system and is not
always straightforward, especially in the presence of uncertainties. Apart from that, it is
crucial to establish a measure that allows to compare how effective the optimization is
carried out. Since the goal of this thesis is to analyze to which extent the incorporation
of uncertainties influences the optimization in different robot applications, a metric that
allows to directly assess the quality of the optimizations is required. For the remainder of
this work, the so-called optimization performance η : R+ 7→ R+ defined by

η := πt(x⃗)/πp(x⃗), (2.6)

where πt(x⃗) stands for the optimization goal πt(x⃗) = max /minπ(x⃗) and πp(x⃗) the re-
sult obtained for the system property after carrying out the optimization. Thus, η captures
how effective the optimization has been carried out. In the ideal case, the optimization
performance corresponds to η = 0. Particularly, this measure enables to compare the
optimization techniques of different applications. In robotic systems, reaching such an
optimization goal often involves adapting the system constellation such as the robot move-
ment or the selection of technical tools. However, especially in real-world robot systems,
it is mostly impossible to guarantee that an optimization goal is met for any kind of cir-
cumstances. For example, assuring a success rate of 100% in robot grasping applications
is highly desired. While this might be possible for certain system constellations, designing
the application in such a way that the maximum success rate is achieved for all real-world
circumstances is almost impossible. Basically, this draws from the missing predictability
and knowledge on the system behavior. Therefore, modifying the optimization techniques
by accounting for further knowledge on relevant parameters, including their uncertainties,
can contribute to improvements in the optimization. In order to evaluate to which extent
the incorporation of uncertainties contributes to the optimization performance, different
robot applications in both simulation and real-world environments are presented in Chap-
ter 5.

2.1.4 Statistical Tools and Terms

As explained in Section 2.1.1, computing the propagated uncertainty of a system requires
the knowledge on the system behavior. Specifically, to obtain the uncertainty arising from
an entire system, it must be determined how the variables and parameters are related to
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each other. While these relationships may be provided by the system representation in
simple cases, the interplay between the parameters of interest must be usually estimated
individually, in particular for complex (robot) applications. In order to explore how the
relevant system variables and parameters are related to each other, the corresponding data
must be thoroughly analyzed. This requires the employment of statistical tests and tools
which will be briefly outlined in the following.

Covariance and Correlation Matrix

The variance in multiple dimensions can be represented by means of a covariance matrix
that consists of the covariance values between pairs of elements. For a column vector
X⃗ = (X1, ...Xn)

T , where the entries are random variables with variances and expected
values, the entries (i, j) of the covariance matrix can be calculated via

KXi,Xj
= cov[Xi, Xj] = E[(Xi − E[Xi])(Xj − E[Xj])]. (2.7)

Here, E[·] stands for the expectation value. Any covariance matrix is positive semi-definite
and symmetric. The correlation matrix can be seen as an extension of the covariance
matrix. Specifically, the correlation matrix contains the covariances of the standardized
random variables Xi/σ(Xi) for i = 1, ..., n, i.e., 1 E[(X1−µ1)(X2−µ2)]

σ(X1)σ(X2)
...

E[(X2−µ2)(X1−µ1)]
σ(X2)σ(X1)

1 ...

... ... 1

 . (2.8)

Since the correlation values are standardized, each off-diagonal element lies between -1
and 1. In contrast to the covariance, the correlation coefficient, often denoted with ρ,
additionally captures the strength of the relationship between the element pairs. While
a negative correlation coefficient indicates that the two variables move in opposite direc-
tions, ρ ≥ 0 hints at a positive relationship. In case the two variables are independent
from each other, i.e., one stays constant while the values of the other variables vary, the
correlation coefficient amounts to ρ = 0. Importantly, the correlation does not provide
any information on causal relationships. Thus, care is needed for the interpretation of
ρ. While correlations between values can be found, the relationship may be due to other
factors that are not considered in the determination of ρ. In order to study the cause and
effects, additional analyses such as statistical tests or sensitivity analyses must be per-
formed.

2.1.5 Sensitivity Analysis

Apart from exploring the relationships between system variables and parameters, analyz-
ing how the uncertainty of a model or system can be allocated to the uncertainty sources of
the system components is crucial. The so-called sensitivity is a measure that captures this
phenomenon. Specifically, it reflects how variations of input variables affect the outcome
of the considered model. Usually, sensitivity analyses are treated separately from the
quantification and propagation of uncertainties, that are assigned to uncertainty analysis
in literature. However, in this PhD thesis, the uncertainty quantification and propagation
steps are combined with the sensitivity analysis depending on the application as will be
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discussed in detail in Chapter 5. Here, the goal is to provide a short summary of the some
representations of the sensitivity that are referred to in this thesis. Basically, the repre-
sentations differ in the type of sensitivity measure. In the following, we consider a model
Y = f(X) for the input variables X = X1, ..., Xk.

One-at-a-Time (OAT) Method

The One-at-at-time (OAT) method suggests varying one of the variables of interest while
keeping the remaining ones constant. In doing so, it is observed how this variable affects
the output of the considered system. This procedure is repeated for all variables and
parameters of interest. Hence, the sensitivity is estimated by monitoring the variations in
the output. The drawback of this technique is that simultaneous variations of variables
cannot be considered such that possible interactions might be neglected. Therefore, the
OAT method is not suitable for nonlinear models.

Derivative-based local Methods

Here, the sensitivity is measured by means of the partial derivative of the system output
Y with respect to the input Xi, i.e.,

| ∂Y
∂Xi

|x0 , (2.9)

where x0 denotes some fixed point in the input space. Thus, the sensitivity is evaluated at
specified points, aiming at examining small perturbations instead of observing the entire
input space. In particular, this derivative-based local methods allow to generate a matrix
that contains the sensitivity values of relevant input variables which is impossible with
global methods.

Variance-based Methods

Third, the sensitivity can be estimated by variance-based methods. To be specific, the
variance of the model output is decomposed and attributed to the respective input variables
as well as combinations of input variables. Practically, the sensitivity is expressed via
conditional expectations:

Var(EX∼i
(Y |Xi)), (2.10)

where X∼i denotes the set of all input variables except i. In particular, above equation
measures the contribution of Xi alone on the variance in the output Y and is usually re-
ferred to by the first-order sensitivity index or main effect index. It is worth noting that this
measure does not capture the uncertainties due to interactions of the variables. To account
for these, the calculation of the total effect index is necessary that returns the total variance
in Y caused by Xi and interactions with the remaining variables. In addition, both the to-
tal and first-order effect index can be standardized by dividing with Var(Y ). Importantly,
variance-based methods enable the full exploration of the input space by considering for
the interactions between variables and nonlinear responses. However, one disadvantage
occurs in complex applications where the calculation might not be straightforward. In
these cases, calculating the sensitivity involves the use of Monte-Carlo sampling meth-
ods.
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2.1.6 Hypothesis Tests and Confidence Interval

One possibility to assess the output of measurements and the calculation of uncertainties
is to calculate the respective confidence interval. This measure indicates the significance
of the obtained result with respect to the underlying data set. Often, collecting a suffi-
cient amount of data that allows to estimate the confidence with a reasonable accuracy is
challenging in real-world applications.

To overcome this, the bootstrap technique can be applied. According to the Central Limit
Theorem (CLT), the mean value of a data set consisting from random samples that are
identically distributed can be approximated by a standard normal distribution. The boot-
strapped distribution serves as the basis for hypothesis tests and the determination of the
confidence interval. While the confidence interval can be directly deduced, hypothesis
testing provides the possibility to study the validity of statements for the underlying data.
In practice, a null hypothesis, an alternate hypothesis and a significance value are speci-
fied. The result of hypothesis tests indicate to which extent the null hypothesis is rejected.
Therefore, hypothesis testing becomes relevant to explore whether parameter dependen-
cies exist. In case the result hints at dependencies, deeper analyses methods are employed
to study the type of relationships.

2.1.7 Monte-Carlo Sampling Methods

In general, the goal of Monte-Carlo (MC) methods [20] lies in approximating intractable
solutions by applying random sampling techniques. In particular, there exist many prob-
lems where analytical solutions cannot be directly calculated – for example, the sum of
discrete distributions or the integral of continuous distributions that are intractable to cal-
culate. This intractability may be attributed to various reasons such as the large number of
random variables, the stochastic nature of the domain or the lack of observations. Instead
of using analytical tools, defining or estimating probability distributions for the respec-
tive random variables by means of theoretical models or computational simulations and
sampling from these distributions is often more efficient.

In particular, sampling typically allows for a higher flexibility at reduced computational
costs for the approximation of integrals. With regard to the contribution of this thesis, MC
sampling is used, for example, to obtain approximates for the propagated uncertainty in
Section 2.1.1. While in the following, a brief outline will be provided for the sampling
methods employed in this thesis, details can be found in [20]. Generally, the key concept
of a MC sampling run consists of drawing multiple random samples from a set of proba-
bility distributions that are provided beforehand. These distributions can be of any kind.
Broadly, the three main steps are given by

1. Identifying all input components of the process of interest and defining the param-
eters of the distributions

2. Sampling from each of the distributions and integrating the results.

3. Repeating the process many times

Due to the effect of the Central Limit Theorem (CLT), the resultant parameter converges
toward a normal distribution for any types of source distribution. This will be further
discussed in the context of the use cases in Chapter 5. There exist different types of MC
methods depending on the sampling procedure and the constraints imposed on these. One

16



2.1 Definitions, Terminology and Notation

challenge when applying MC methods is to attain a low variance in the approximation
error (VAE). In fact, this measure enables to compare the different types of sampling
methods and their performances in literature [41]. In this thesis, we apply following two
techniques:

Direct Monte-Carlo Sampling

Direct MC Sampling describes the process of randomly drawing data samples from the
input probability distributions. The key characteristic of this technique is that no prior
information is taken into account. According to the law of large numbers, the distribu-
tion of interest can be approximated. While direct MC sampling methods are widely
applied across different domains and are immensely popular due to their simplicity, par-
ticular attention must be paid to regions with sparse probability densities. Since MC
sampling refers to randomly generating samples, only few samples are drawn in the areas
where the probability density is low. As a consequence, the statistical significance of the
corresponding approximation suffers. The quality of the approximation is measured by
so-called variance of the approximation error (VAE) that is defined by

V ar(X) = E[X2]− E[X]2. (2.11)

In the ideal case, the VAE amounts to V ar(X) = 0 that corresponds to a perfect approxi-
mation of the MC sampling procedure. However, this is often challenging to achieve. In
the context of this thesis, one limitation occurs due to low probability densities in inter-
esting parameter regions. Logically, randomly generating samples yields to lower sample
sizes in regions with sparse probability densities. Consequently, the analyses and conclu-
sions derived on the basis of these samples suffer from a low statistical significance.

Importance Sampling

One possibility to overcome the issue of high VAE values in regions with sparse prob-
ability densities is given by importance sampling. In particular, a second latent distri-
bution is introduced to increase the number of samples in regions with low probability
densities. Specifically, an additional weighting factor must be considered to perform ap-
proximations. For an input spaceX : Ω 7→ R with independent random samples x1, ..., xn
and some probability space (Ω, F, P ), the expected value of a function f(x) 7→ Rn with
x ∝ p(x) for a probability density function p(x) is calculated by

E(f(x)) =
∫
f(x)p(x)dx. (2.12)

While direct MC sampling provides accurate approximates for regions with reasonable
probability densities, the VAE value becomes large in areas where p(x) is difficult to
sample from. Specifically, the generation of a sufficient amount of samples is challenging
in regions where p(x) is very small. Here, importance sampling suggests to introduce a
so-called proposal distribution q(x), i.e.

E(f(x)) =
∫
f(x)p(x)dx =

∫
f(x)

p(x)

q(x)
q(x)dx, (2.13)

where x is sampled from q(x) and q(x) ̸= 0. The core idea behind this is to simplify the
sample generation by defining q(x) in the region of interest. Logically, the calculation
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of E(f(x)) must be modified accordingly by the fraction p(x)
q(x)

as shown in above equa-
tion. Formally, sampling from q(x) is justified by considering a random variable Y with
independent random saples y1, ..., yn such that

E(f(y)) =
∫
f(y)

p(y)

q(y)
dy. (2.14)

Practically, the sample generation can be now performed on the basis of the proposal
distribution. Afterward, the so-called importance weight p

q
is applied to perform the re-

sampling. In particular, the approximation accuracy of importance sampling depends on
the definition of the proposal density q. Referring to above Equation (2.11), the mapping
is given by X 7→ f(x)p(x)

q(x)
such that the variance increases for large fractions p(x)

q(x)
. Im-

portantly, a low variance value can be achieved for f(x)p(x)
q(x)

= const. which leads to the
thumb rule

q(x) ∝ ∥f(x)∥p(x). (2.15)

Thus, it is desired to define the latent distribution q(x) in regions, where the product
between f(x) and p(x) is large. Since importance sampling enables to reduce the VAE,
it is often referred to as a variance reduction technique. In the context of this thesis, a
technique based on importance sampling will be derived to study whether focusing on the
relevant parameter regions during the sample generation process yields improvements in
the optimization of robot systems. Specifically, a grid-based approach will be presented
in Section 4.3.6.

2.1.8 System Representation and Filtering Algorithms in
Robotics

As will be specified in the application-specific Chapters 5, robot systems in this thesis are
described by means of the notations used in [26] that rely on the metrological represen-
tation. However, in robotics, a system representation is formalized in a different manner.
In addition, uncertainties are often referred to by the term noise in engineering sciences.
In contrast to the definitions and distinction of uncertainties as presented in Chapter 3,
the noise typically describes any types of undesired fluctuations. For completeness, and
to allow the derivation of analogies, the terminology and notation used in engineering
literature will be briefly summarized as follows.

System Description

Generally, the state of a system is represented by state variables such as the robot position
or velocity in the respective parameter spaces. In most cases, this representation is given
by a real-valued vector x⃗n for a discrete time step n. Particularly, the system state plays
an essential role for developing control algorithms in localization, navigation or manipu-
lation tasks. For example, a continuous time system can be formalized by a system and
observation equation written as

ẋ := f(x(t), u(t), ω(t)) (2.16)

z(t) := h(x(t), v(t)). (2.17)
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Here, f describes the state transition function, u(t) the control input, ω(t) the process
noise, z(t) the observation and v(t) the observation noise. This set of equations is often
referred to as the state-space representation. Importantly, it is assumed that the noises
are additive by relying on Gaussian distributions for the process and the observation noise
which forms one of the main discrepancies to the understanding of uncertainties of this
thesis.

Filtering Algorithms

Filtering algorithms are employed across a wide range in robotics to avoid consequences
due to the noise in the real-world environment. Relevant filters in the context of this
thesis are given by the Kalman Filter (KFs) and Particle Filters (PFs) [75]. While both
techniques predict and correct the state estimation by referring to observations, they rely
on fundamentally different representations. The underlying principles of these two ap-
proximation methods are outlined in the following. Details can be found in [75].

Kalman Filters

Kalman Filters (KFs) are used as an essential component in many tracking or naviga-
tion applications. Basically, KFs operate in a "predict-correct" loop, where the system
state and the corresponding uncertainty of the next step are predicted. In order to predict
the future system state, that is described by a set of target parameters (e.g., position, veloc-
ity and acceleration), the KF is provided with the current state space model, the dynamic
model and the corresponding noise models (measurement and process noise), the initial
system state x̂00 and the corresponding variance p00. This step is denoted as initializa-
tion. In addition, the measured system state zn and the respective variance pn,n−1 that are
obtained via sensors, are considered. Based on this information, the state update process
computes the subsequent system state via the state update equation

x̂n,n = x̂n,n−1 +Kn(zn − x̂n,n−1) = (1−Kn)x̂n,n−1 +Knzn (2.18)

where Kn stands for the Kalman gain that weights the measurements. For a low measure-
ment uncertainty compared to the estimated uncertainty, one would obtain a high Kalman
Gain (close to 1) while a high measurement uncertainty relative to the estimated uncer-
tainty would yield a low value for Kn (close to 0).
In analogy, a state vector must be provided in case of multivariate KFs. Specifically, a cor-
responding state space representation must be identified including the state transition and
transition matrices that allow to solve the state space differential equations. Accordingly,
the state update equation in matrix form results in

x̂n,n = x̂n,n−1 +Kn(zn −Hx̂n,n−1). (2.19)

Again, the estimated system state vectors are given by x̂n,n and x̂n,n−1, respectively and
the Kalman Gain by Kn. The observation matrix H transforms the state space represen-
tation into the measurement space. The corresponding covariance update is performed
according to

Pn,n = (I −KnH)Pn,n−1(I −KnH)T +KnRnK
T
n , (2.20)

where Pn,n and Pn,n−1 stand for the covariance matrix of the current state estimation and
the prior estimate of the covariance matrix, respectively. The measurement noise covari-
ance matrix is denoted by Rn.
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While above equations are valid for linear systems with additive and independent noise
models, slight adaptations must be made in case of nonlinearities. In the nonlinear version
of the KF, denoted as the Extended Kalman Filter (EKF), the state transition and obser-
vation models do not need to follow linear functions. In fact, the EKF linearizes about an
estimate of the current mean and covariance by accounting for the first-order derivative
of the Taylor expansion. After transforming the problem into the linear space with the
Jacobian matrix, above equations can be applied.

Particle Filters

In accordance to the Kalman Filter, the goal of particle filters (PFs) is to approximate
a posterior density function of hidden variables, such as state variables, by referring to
observations. However, it is not assumed that the posterior can be modeled by Gaussian
distributions. While the representation in KFs is given by mean and covariance values that
parameterize the density, the approximation in particle filters is carried out by a weighted
set of samples that are denoted as particles. Specifically, these particles are generated ran-
domly in the first step according to an initial probability density function of the state. To
estimate the hidden variables xk by means of the provided observation variables y0, ..., yk
for any time step k, the particles are propagated according to the nonlinear system dynam-
ics. This process is denoted as the resampling step.

Importantly, the system dynamics are provided by means of an analytical function or a
probabilistic model to the PF. In contrast to KFs, PFs do not make use of local linearization
methods. In addition, no restrictions are made on the noise distributions such that PFs are
generally applicabile. However, the main disadvantage of PFs lies in the computational
burden. Since the number of necessary evaluations grows with the amount of particles, the
high computational power is required for highly nonlinear and complex systems. Thus,
PFs are suitable for cases where Gaussian approximations are not valid for the posterior
distribution and high computational costs are acceptable.

2.2 Related Work

2.2.1 Uncertainty Quantification and Propagation in Robotics

The incorporation of uncertainties in the field of robotics has been mainly addressed in
the subdomain of navigation. In 1996, Kaelbling et al. provided one of the first works in
[17] demonstrating that the consideration of uncertainties in the robot control architecture
by means of Bayesian models leads to improvements in the navigation performance. Ba-
sically, the authors develop heuristic control strategies by referring to POMDPs (partially
observable Markov decision processes). In contrast to MDPs, POMDPs do not rely on the
assumption that the state is known with certainty. Instead, the probabilistic nature of the
perception due to uncertainties is taken into account. By assuming Markovian states, the
robot pose is represented via parametric probability distributions. Specifically, these prob-
ability distributions are modeled as Gaussian functions that are supposed to fully capture
the uncertainties in the robot’s observations and actions.

In addition, a topological map is generated by means of the robot pose to obtain a belief
state. To update the belief distributions, the Bayes rule is applied. Here, the degree of
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uncertainty is captured via the entropy that is calculated over all possible belief states
and compared against a pre-defined threshold. Specifically, the MDP-based policies are
followed while this threshold is not exceeded. At the same time, the authors aim to reduce
this entropy while following these policies by selecting the action with the minimum
expected entropy. In doing so, a system architecture based on two levels is introduced.
First, a higher level navigator that uses the Bayesian representation of the environment to
select reasonable actions is described.

Next, the authors develop a low-level software to bridge the gap between the actions
and the abstract model built upon the robot observations. The validation is conducted
in both simulation and real-world environments. Here, the authors distinguish between
cases where the robot knows its starting point and those where the robot starts off without
prior knowledge on its starting conditions. By comparing their two-level control architec-
ture with further heuristic control strategies, it is demonstrated that the suggested method
outperforms state-of-the-art approaches regarding the navigation performance. However,
although the promising results in the experiments showcase the validity of the Gaussian
assumptions for the uncertainties, it is not studied in detail whether or to which extent the
uncertainty representations match the ground truth uncertainties.

Probabilistic Approaches for Robot Localization and Mapping
This work was followed by Thrun et al. in [74] where different probabilistic approaches
are suggested to account for uncertainties in localization and mapping tasks. Basically,
the authors contend that modeling parameters as probability distributions improves the
robot navigation performance compared to cases where only scalar parameter values are
considered. This conjecture aligns with the underlying motivation of this thesis. However,
one crucial difference lies in the uncertainty representation.

Generally, Thrun et al. introduce belief states that build upon the Markov assumption
to generalize the kinematics of the corresponding robot in probabilistic manner. In the
next step, the Bayes rule is applied to calculate the posterior distributions for localization
and mapping purposes. To be specific, the probabilistic models for the robot perception
and kinematics are modeled as an integral that allows to calculate the belief states for
the next steps. In order to perform the localization, the authors introduce Monte-Carlo
Localization (MCL) algorithms and derive the belief distributions by sampling uniformly
from these. In addition, three algorithms are discussed regarding the generation of maps
based on sensor measurements.

For instance, the use of particle filters is proposed, where the posterior is supposed to be
represented by samples that are drawn in a specified manner (e.g., via importance sam-
pling). In this context, the Kalman Filter (KF) as well as the Extended Kalman Filter
(EKF) are introduced that provide the robot with measurement updates under the con-
sideration of uncertainties. Apart from that, the authors present the EM algorithm that
consists of an expectation and maximization step to achieve an enhanced mapping perfor-
mance. Here, the expectation is calculated by means of the joint likelihood obtained via
the measurement data and robot poses conditioned on the k-th map of the previous step.
The maximization step then provides the most likely maps by considering these posterior
estimates.

The third algorithm presented by Thrun et al. is given by the occupancy grid mapping.
In contrast to the previous methods, the work space is modeled by means of grid cells.
Based on the assumption that the robot poses are known, it is determined which grid cells
are occupied to perform the localization and mapping procedure. In summary, Thrun
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et al. develop approaches to model the perception in probabilistic manner, allowing the
robots to handle ambiguity. In doing so, they distinguish between probabilistic perception
and probabilistic control. While the performed experiments confirm that the navigation
performance can be enhanced by modeling the robot’s kinematics and the perception in
a probabilistic fashion, the authors clearly state that the uncertainty models are crude.
Therefore, while these works aim at considering the possibility of deviations, it is not
specifically addressed how the exact amount and relationships with the system variables
can be estimated. Similar to the above mentioned contribution in [17], the uncertainties
are assumed to follow Gaussian distributions.

(a) Sampling-based calculation of robot belief
states.

(b) Gaussian density representing the robot per-
ception model.

Figure 2.1: Probabilistic robot localization approach presented by Thrun et al. in [74].
The figure on the left hand side illustrates the sample-based estimation of the
robot position belief. It can be seen that the uncertainty arises due to the
missing knowledge on the trajectory for higher distances from the starting
point. In subfigure 2.1b, the Gaussian density for the robot perception model
is shown.

Calculus-based Uncertainty Propagation for Robot State Estimation
More recent contributions build upon above techniques by adapting the sampling pro-
cesses or the selection of particles. For example, Hill et al. provide a survey on the quan-
tification and propagation of uncertainties in [42]. First, the authors introduce a general
calculus-based approach to uncertainty propagation which is given by an approximation
via Taylor series. This method is extended to the case of mutivariable functions in N di-
mensions by means of the covariance matrix. Afterward, the KF, EKF and the Unscented
Kalman Filter (UKF) are discussed regarding the state estimation problem of robots.

Basically, these techniques build upon the aforementioned calculation method of uncer-
tainties by relying on the Markov assumption. By highlighting that the EKF underesti-
mates the uncertainties for general nonlinear systems, the authors suggest the use of the
UKFs. Instead of linearized matrices, UKFs consider a fixed number of weighted sigma
points for the uncertainty propagation. Here, the mapping is performed via nonlinear
equations. However, KFs are limited to unimodal distributions such that propagating the
uncertainties of more complex systems becomes practically impossible.

Therefore, the authors propose the use of particle filters (PFs) for systems where the ap-
proximation of more complex distributions is required. In fact, they suggest to combine
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EKF approaches with PF techniques to efficiently avoid the computational burden due to
the high number of particles which allows to deal with both nonlinearities as well as multi-
modal distributions. In the experiments, Hill et al. first validate the calculus-based method
in simulation. Especially, they distinguish between full-mapping approaches, where the
state space parameters and the corresponding uncertainties are directly transferred to the
world frame, and the piecewise mapping algorithms, where the mapping of the uncertain-
ties is carried out in an iterative fashion. In all cases, the propagated uncertainty provided
by the Monte-Carlo (MC) sampling method is considered as the baseline. For the full
mapping approaches, the authors show that the first-order term in the Taylor series yields
reasonable approximations of the propagated uncertainty for negligible nonlinearities. In
the case of significant nonlinearities, the UKF outperforms the Taylor series propagation.

However, the authors find that in some cases, the UKF overestimates the uncertainty.
In contrast, the Jacobian mapping, which represents the Taylor series approximation for
multivariable systems, mostly yields an underestimated uncertainty value. Comparing
these values with the respective results obtained by the piecewise mapping approaches,
no difference can be found in the case of the Jacobian approach. To be specific, applying
the transformation in an iterative manner leads to the same results as the full mapping
Jacobian method. In contrast, the unscented transform approach yields different results
for the piecewise and the full mapping approach.

In particular, the number of sigma points is recalculated for each transformation, whereas
these sigma points are required to properly estimate a distribution for a given mean value
and covariance matrix. Due to the fact that the means and covariances of each step in-
fluence the subsequent transform, the results show significant discrepancies. In summary,
the authors of this paper elaborate on the advantages and limitations of these uncertainty
quantification techniques by focusing on robot localization problems. In doing so, they
emphasize that all of these methods rely on the assumption of normally distributed data
such that possible nonlinearities in the uncertainties are not captured.

Uncertainty Computation via Particle Filters
Another line of contributions as [35] and [30] develop adaptive particle filters. Generally,
they aim for more accurate representations of the real-world environment. For example,
the authors in [30] suggest to adapt the samples on the fly. To do so, the posterior prob-
ability density over the state space is conditioned on the measurement data. Specifically,
it is estimated to which extent the sample data matches the sensor readings to derive im-
portance weights. While low importance weights hint at unexpected features in the data
and thus suggest to collect additional data points, high weight values indicate that the
considered sample set is representative.

Here, the uncertainty arising from the sampling process is determined via the variance of
the importance sampler. In order to derive an uncertainty bound by means of the Kullback-
Leibler divergence to the posterior, the authors pose the assumption that the true posterior
can be modeled as a discrete piecewise constant distribution, represented by a discrete
density tree or multidimensional histograms. Importantly, Fox et al. demonstrate that es-
timating the number of bins which are supported during the sampling process is sufficient
to approximate the posterior. In their experiments, the authors make use of sonar scan
data and account for the odometry measurements of the robot. They show that the true
posterior can be well-approximated by applying their method. However, one of the main
limitations is that the implementation relies on discrete distributions with fixed bin sizes.
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While this assumption might be efficient regarding the computation time, it is likely to
result in significant inaccuracies in the uncertainty calculation.

A similar contribution to optimizing particle filters is presented by Grisetti et al. in [35].
The authors introduce so-called Rao-Blackwellized particle filters (RBPFs) to address
SLAM problems. In their approach, each particle represents an individual map of the
environment. To develop an efficient method, the authors deal with the question of how
to reduce the number of particles while maintaining the necessary amount of data. The
ultimate goal lies in estimating the joint posterior of the map and the robot trajectory.
Specifically, two approaches are introduced. First, a proposal distribution that accounts
for the accuracy of the robot’s sensors is generated. This computation is based on the most
likely robot pose that is obtained by combining the most recent measurement data with
the robot odometry information. Secondly, an adaptive resampling strategy is suggested
to keep the diversity of particles. Formally, the authors suggest a factorization denoted
as Rao-Blackwellization to address the SLAM problem. To obtain the proposal distribu-
tion, an observation model and a motion model are considered. In order to draw samples,
Gaussian approximations are made for the data points. After generating the sample points
within the corresponding intervals, the mean and covariance matrices are determined to
calculate importance weights. These importance weights are supposed to hint at mean-
ingful areas of the observation function.

Grisetti et al. validate their approach in real-world environments and the respective
datasets. Particularly, they demonstrate that the developed method leads to accurate maps.
Their findings show that maps generated without the odometry data suffer from inaccu-
racies which emphasizes the relevance of the suggested Rao-Blackwellization. However,
the evaluations are performed via visual inspection such that a quantitative assessment of
the suggested approach is missing.

Uncertainty Estimation in Metrological Fashion
Apart from these works that focus on navigation tasks and the optimization of traditional
methods as particle filters or Kalman filters, contributions that follow the uncertainty es-
timation methods from the field of metrology can be found. The paper [67] by NIST
(National Institute of Standards and Technology) strongly motivates the consideration of
measurement uncertainties in robot systems. Particularly, the authors agree with the basic
conjecture of this thesis by arguing that the knowledge of measurement uncertainties is
required to achieve high performances of robot applications. In this paper, the authors
highlight the relevance for determining and incorporating the uncertainty in robot appli-
cations by referring to an assembly tasks. Here, they clearly demonstrate that the how
rotational and translational uncertainties of the pose measurement affect the localization
performance. Importantly, their findings show that the correlations between critical pa-
rameters must be considered to obtain accurate uncertainty estimates.

A separate work in [71] presented by Santolaria et al. underlines the relevance of in-
corporating uncertainties for robot calibration purposes. In this contribution, a technique
to assess the uncertainties for a robot arm calibration process is developed. The authors
rely on the so-called circle point analysis (CPA) method that suggests a robot calibration
principle referring to the spatial localization of the joint axis for a specified robot configu-
ration. By representing the robot joint axis in Pluecker coordinates, Santolaria et al. show
that the kinematic parameters of the robot can be computed with the CPA method. In
order to estimate the uncertainties, the authors follow the techniques presented in GUM.
Hence, the fundamental idea to calculate the uncertainties in robot systems on the basis
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of the metrological notations aligns with the underlying motivation of this thesis.

On the other hand, Frankhauser et al. present an uncertainty-aware elevation mapping
method that efficiently handles drifts in the robot pose estimation in [67]. The main con-
tribution of this paper lies in the formulation of a mapping algorithm that considers for
the distance sensor uncertainties and the six-dimensional pose covariance of the robot.
By performing measurements relative to the robot, the elevation map is updated with the
robot motion. Specifically, regions ahead of the robot that are measured with higher fre-
quencies are assigned to low uncertainties while areas apart from the sensor’s field of view
are supposed to underlie higher uncertainties. In order to propagate the uncertainties, the
authors perform the fusion of subsequent maps based on the rule for combining standard
deviations of multiple data sets. In analogy to the above works, this paper relies on the
Gaussian assumption for the uncertainties.

Uncertainty-aware Methods for Robot Path Planning
A further publication of Van den Berg et al. in [77] proposes the optimization of robot
path planning algorithm by accounting for both motion uncertainties and imperfect state
information. To this end, the authors develop a linear-quadratic Gaussian Motion Plan-
ning (LQG-MP) to consider for all employed controllers and sensors during the execution
of the path. Their motivation arises from the assumption of noisy sensors that limit the
amount of information of the state. Specifically, Van den Berg et al. suggest a Kalman
Filter that incorporates a stochastic observation model which in turn considers for mea-
surement uncertainties of the sensors. In order to provide optimal control inputs during
the path execution, the control policy refers to a quadratic cost function that is minimized.
This method is validated by robot experiments, where the collision probability with obsta-
cles is computed. The results show that the developed method outperforms the majority
of uncertainty-aware planners in terms of the collision probability. According to the au-
thors, this notable discrepancy originates from incorporating a priori information of the
sensors in the stochastic observation model. However, it is noted that Van den Berg et al.
focus merely on Gaussian measurement uncertainties. In fact, it is not described how the
stochastic observation function, that relies on the mean and the variance, may be modified
in case of multimodal distributions or generally for uncertainties that cannot be described
by Gaussian functions.

In a similar sense, Agha-mohammadi et al. aim at developing a motion planning frame-
work that addresses the imperfection in measurements in [2]. Here, they suggest the use
of probabilistic roadmap methods on the basis of belief-spaces. In particular, the imple-
mentation of belief spaces enables to consider for uncertainties. Specifically, the roadmap
is represented as a graph, where the nodes correspond to the beliefs and the edges to the
local controllers in the belief space and operates on feedback-based information. By do-
ing so, Agha-mohammadi et al. introduce a combined method of probabilistic roadmaps
and tree-based approaches. In the context of uncertainties however, the authors neglect
uncertainties due to environmental fluctuations and solely focus on the uncertainties in
the robot motion and sensing model. While the computation of the sensor observation
model and the belief state are performed on the basis of pre-collected data sets, the exact
relationships between the system parameters are not studied thoroughly. Although the
representation in the belief space accounts for the existence of deviations that are likely to
occur according to the pre-collected history data, the authors state that studying parameter
relationships may be beneficial to obtain more accurate uncertainty models.
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Figure 2.2: Uncertainty-aware robot arm calibration developed by Santolaria et al. in
[71]: The joint axis configuration of the robot is expressed by Pluecker coor-
dinates. On this basis, a circle point analysis is performed. For uncertainty
calculation, the Santolaria et al. refer to the Monte-Carlo sampling technique
suggested in the Guide [13].

Apart from the field of navigation, several works that derive uncertainty quantification
techniques in application-specific manner exist in literature. For example, the contribu-
tion in [52] derive a safe exploration control algorithm that considers the uncertainties in
the human position estimation. In particular, the human position is modeled as a Gaussian
distribution instead of single points in the Euclidean space. Furthermore, time-varying pa-
rameters are incorporated by means of a covariance matrix. Since the suggested algorithm
is an extension of the safe set algorithm that relies on the scalar position data of the human,
the evaluation is carried out by comparing these two methods. In their simulation experi-
ments, Liu et al. implement the control algorithm on an autonomous vehicle and perform
human-robot interactions. Their findings show that the presented control architecture out-
performs the safe set algorithm. While collisions between the human and the vehicle can
be avoided in both cases, the uncertainty-aware control method yields smoother trajecto-
ries particularly for sudden environmental changes.

Uncertainties in Robot Manipulation Tasks
In the work of Nguyen et al. [60], a probabilistic framework that suggests the considera-
tion of uncertainties in robot manipulation tasks is presented. First, the manipulation task
is divided into a perception and a physical interaction part. While the perception uncer-
tainties are assumed to occur mainly due to the calibration and camera pose uncertainties,
the authors provide a detailed derivation for the physical interaction step. In fact, the per-
ception uncertainty is calculated based on separate contributions that allow to estimate the
uncertainty of the object pose with respect to the robot base by means of the covariance
matrix. With the respective object distributions, a Bayesian framework is suggested for
the planar grasping process, where a function is derived to encode the object motion in re-
sponse to the motion of the gripper. Specifically, analytical state estimators are derived to
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track the poses of objects based on gripper distances. The obtained Bayesian updates are
then used to apply a particle filter to estimate the finger widths. In particular, the authors
introduce a weighting step that assigns higher weighting factors to measurements with
higher probabilities. Here, the measurements are assumed to underlie Gaussian noise. To
perform the validation, Nguyen et al. carry out peg-in-hole experiments under real-world
conditions with the presented uncertainty-aware manipulation framework. In doing so,
they showcase that their method leads to higher performances compared to the traditional
spiral search strategy in single and double pin insertion tasks. Furthermore, uncertainty-
aware approaches have been suggested in the subdomain of robot motion planning.

For example, the work in [23] deals with developing a control algorithm that allows to
avoid collisions in dynamic and uncertain environments. To address this challenge, Du
Toit et al. build upon a probabilistic formulation that includes for disturbances in the
object model and robot control actions. By framing the problem into the belief space,
a probabilistic collision checking algorithm is derived based on so-called chance con-
straints that are linear constraints on Gaussian distributed states. The developed control
algorithm is validated in simulation experiments, where simple and complex dynamic en-
vironments are considered. The results show that the uncertainty-aware control algorithm
outperforms state-of-the-art methods particularly in uncertain locations. Although all of
these contributions clearly demonstrate that the performance and efficiency of robot ap-
plications can be significantly improved by incorporating uncertainties, they rely on the
Gaussian assumption. However, the Gaussian assumption for the uncertainty distribution
is often not justified. Especially in real-world environments, the correlations between dif-
ferent state space parameters might result in more complex uncertainty models.

Learning-based Methods for Handling Uncertainties in Robot Systems
More recent approaches aim at handling consequences of uncertainties on the system be-
havior by means of learning algorithms. Petek et al. aim at developing a robust localiza-
tion method for vehicles in dense urban scenarios in [63]. To be specific, they introduce
an uncertainty-aware perception module that is responsible for the semantic segmentation
and a bounding box detection. The uncertainty estimation is conducted by applying an
evidential deep learning algorithm. Basically, the goal of this technique lies in estimat-
ing the priors over the network output distributions by collecting evidence. These prior
distributions are used to determine the uncertainties.

Importantly, Petek et al. distinguish between aleatoric (data) and epistemic (network) un-
certainties. In doing so, they clearly note that their focus is laid on epistemic uncertainties.
Based on the results of the perception module, a differentiable cost map is generated to
optimize the error metric of the vehicle pose. Together with a distance transform algo-
rithm that delivers the Euclidean distance to the closest lane border, this cost map provides
smooth transitions between the lane segments. For evaluation purposes, the Lyft data set
is used. To evaluate the correctness of the computed uncertainty, the average values for the
accuracy and the predicted confidence are calculated. According to the results, the pro-
posed method significantly improves the localization accuracy as well as the reliability
compared to approaches that are directly applied on the semantic outputs.

Another example is given by the contribution of Nava et al. in [59], where the goal lies
in developing a self-supervised learning algorithm that efficiently handles uncertainties.
More specifically, Nava et al. focus on problems, where the robots collect their own train-
ing data to execute application-specific tasks. The data is obtained by means of sensors
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that are installed on the robot. From scientific perspective, the paper introduces modi-
fications in the loss function of the learning algorithm and proposes to model the state
estimates as Gaussian distributions. Here, the loss function is split into a task loss, that
exploits the knowledge on the robot’s odometry and ensures that the estimated prediction
for an input matches the odometry data, and a state-consistency loss that is responsible
for the consistency between the subsequent time steps.

In order to account for the uncertainty, the detected data, which equals the measurement
data of this thesis, and the odometry data is considered. In fact, all poses of robot and
objects are modeled as distributions in SE(3) group. Since the approach is formalized
as a generally applicable fashion, the authors choose three experiments to showcase the
correctness and efficacy of their method. By applying their algorithm on an object estima-
tion task with a robot arm in a simulated environment, that is, a highly accurate detector
and ground truth data of the object detection. Here, it is studied how the self-supervised
learning algorithm deals with occlusions. Next, a robot heading estimation task is per-
formed by utilizing infrared sensors. The authors corrupt the data with Gaussian noise
and explore how these are handled by the suggested method. To perform a quantitative
evaluation, the obtained predictions are compared with the exact odometry data for both
static and dynamic environments.

In the third experiment, Nava et al. address an indoor localization problem of a ground
robot, where the effect of the derived loss function is analyzed by comparing the positional
and rotational components of the predicted pose with the robot’s odometry for different
state-consistency loss values. In all of these experiments, the authors demonstrate the
ability of the self-supervised learning method to account and capture disturbances in the
input data.

Figure 2.3: Localization method on the basis of the uncertainty-aware perception network
developed by Petek et al. in [63]: The map is generated for three scenarios, to
estimate the drivable and alternative areas. The width of the bounding boxes
reflect the respective variances that are obtained via the uncertainty-aware
component.

However, one limitation is that this approach requires ground truth data and information
concerning the robot odometry. In applications where the respective data is not avail-
able, applying this algorithm might be challenging. Generally, employing learning-based
methods are effective in handling uncertainties, that is, mitigating possible negative con-
sequences due to their occurrence. Nevertheless, in systems where the knowledge of un-
certainties is required to avoid severe consequences, applying learning algorithms might
be debatable. The complexity and missing possibility to derive their uncertainty behavior
may pose difficulties for calculating the uncertainty of an entire application.

Understanding of the term "Uncertainty"
Apart from this, the terms error, noise and uncertainty are not clearly distinguished in
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above works. In fact, the majority of existing contributions in the field of robotics imply
that noise and errors can be both covered by means of probability distributions. These
probability distributions are denoted as uncertainties.

In the context of this thesis, however, the terms errors and uncertainties are clearly dis-
tinguished according to the Guide in [26]. While errors can be corrected, uncertainties
can not be fully diminished. By referring to this guide, this thesis aims at developing a
generic methodology to quantify the uncertainty of robot applications. In first place, this
requires to clearly define the goal of the respective applications. Afterward, the uncertain-
ties of single system components must be determined, including their relationships to each
other. The overall goal is to estimate the accumulated uncertainty arising from the entire
application. As can be recognized in above contributions from the robotics domain, the
uncertainty calculation and incorporation pipeline is designed individually for each appli-
cation. However, being provided with one generic method that is generally applicable for
any type of application would enable the comparison of different setups or systems.

While such a method allowing the uncertainty quantification for a broader range of use
cases has not been presented in the robotics domain yet, contributions from the field of
physics demonstrate that following the suggestions in [26] and refining these according
to the corresponding application yields promising results. As this thesis deals with trans-
ferring established uncertainty quantification techniques from physics to robotics, the fol-
lowing subsections will outline respective works to enable the identification of reasonable
analogies between those two fields.

2.2.2 Uncertainty Quantification and Propagation in Physics

The main objective in natural sciences lies in discovering phenomena in nature to derive
and validate existing theoretical models or even extend these. In a broader sense, research
in these fields aims at accurately monitoring the environment or systems to explore and
explain ongoing processes in nature. Instead of inventing and designing novel applications
as in the domain of engineering, the focus is laid on providing a deeper understanding of
the environment.

To this end, the perception accuracy plays a significant role for the respective experiments.
Since the goal is to detect unexplored phenomena that may even contradict established
theoretical models, exactly and accurately monitoring the ongoing processes is highly
important. Specifically, the act of monitoring is realized by a continuous chain of mea-
surements. However, perfectly monitoring the environment is impossible in real-world
systems. Generally, the employed technical tools are limited regarding their precision.
Therefore, one possibility to still provide an accurate interpretation of the observed phe-
nomena, that usually exist in form of recorded data sets, is to consider for the technical
limitations or in general, the probability of possible fluctuations in the entire perception
and data acquisition process.

The Relevance of the Uncertainty for Measurements on Microscopic Scales
This especially becomes critical for measurements on microscopic scales. Here, validat-
ing the accuracy of observations becomes challenging. In contrast to robot applications,
where the functionality of a robot task can be assessed in a straight-forward manner, the
observations of particle interactions on molecular scale cannot be easily verified regard-
ing their correctness. This particularly becomes difficult for entirely novel observations
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where no corresponding theoretical model exists. One possibility to still allow for reli-
able interpretations on these observations is to thoroughly study the uncertainties of the
employed hardware components as well as data processing tools prior to performing the
measurements. In the ideal case, the knowledge on the amount and the behavior of the
measurement uncertainties does not only provide a more thorough assessment of the ob-
tained findings, but also the possibility to optimize the system. For example, it can be
identified which system constellation yields to higher uncertainties in the output signal.
Based on this, the components and system parameters can be adapted to reach a reduction
of the uncertainty in the output. For example, the ATLAS collaboration aims at recon-
structing particle jets in [8]. However, to derive such a reconstruction, the experimental
data must be analyzed regarding possible uncertainty sources such as the proton-proton
collisions. In fact, the reconstructed energy of the jets, that simply describe sprays of parti-
cles, are sensitive to proton-proton interactions. This means that neglecting their influence
might result in invalid interpretations and therefore incorrect reconstruction models of the
particle jets.

Uncertainty Modeling for Particle Interactions
To address this challenge, the ATLAS Collaboration derives a analytical function that en-
ables to account for the uncertainty caused by proton-proton collisions. Particularly, the
researchers rely on the techniques provided by [26] and demonstrate that incorporating
their uncertainty models in the analysis yields results that match the corresponding the-
oretical models. Similarly, Acero et al. [1] develop a method to account for neutrino
interaction models in the uncertainty determination for the NOVA detector. In analogy
to above contribution, the physicists aim at detecting a natural phenomenon given by the
neutrino oscillations. Due to the fact that neutrinos are the lightest massive particles ac-
cording to the knowledge to date and only rarely interact with other particles, observing
interactions is highly challenging. Therefore, Acero et al. perform simulation experi-
ments to derive an uncertainty model. By performing experiments at energy ranges, they
identify where the neutrino interactions become dominant for the uncertainty of detection
performance. While the detection might be independent from the neutrino interactions in
most cases, their influence on the detected signal becomes significant for certain energy
ranges. Based on the obtained findings, this paper suggests adjustments of the experimen-
tal setup regarding the energy ranges. In doing so, the authors show that the occurrence of
particle interactions that affect the detection performance can be circumvented success-
fully. Apart from that, the obtained uncertainty model is applied to assess the validity of
the final result. A more recent work published by the KATRIN (KArlsruhe TRItium Neu-
trino) Collaboration in 2022 provides a comparison of different uncertainty propagation
techniques.

Uncertainty and Resolution of Neutrino Mass Measurement
In analogy to above experiments, the main objective of the KATRIN experiment lies in the
direct detection of neutrinos and the subsequent mass determination of these [3]. Here,
an exact quantification of the measurement uncertainty is of crucial importance for an ac-
curate evaluation of the measurement data of the neutrino mass. While the incorporation
of the measurement uncertainty is a necessary prerequisite, the missing knowledge on its
ground truth values causes a burden in identifying the most accurate uncertainty quantifi-
cation technique. In particular, the desired resolution on the neutrino mass measurement
is expressed via the light speed c = 3·108m

s
bymν ≤ 0.3 eV/c2. Obviously, achieving this
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resolution is highly challenging. In fact, it requires a measurement accuracy that corre-
sponds to at least this resolution. Reversely, this means that the measurement uncertainty
must be accordingly small, and importantly the accuracy of the uncertainty calculation
technique to be accordingly high. If the latter requirement is not met, the evaluation re-
garding the desired mass resolution is impossible. To this end, the researchers present four
uncertainty propagation strategies in [4] given by the covariance matrix method, a fitting
method based on a pull term, the Monte-Carlo (MC) propagation method and the calcula-
tion based on the Bayesian treatment of critical parameters. By applying these techniques
on the same data set, the advantages and disadvantages of each method are discussed.

In summary, the authors find that the Bayesian method performs well in cases where con-
straints can be defined for the posterior distribution. This often applies for experiments in
physics because the posterior is often naturally constrained to physically allowed values.
The fitting method based on the pull term requires separate measurements for each of
the parameters as the uncertainty is treated as a free parameter in the fit. Therefore, this
method is hardly applicable for complex systems. The idea behind the covariance matrix
is to use simulated spectra where the systematic parameters are varied within the corre-
sponding probability density functions. However, this strategy does not account for the
uncertainty propagation. In contrast, the MC propagation method distinguishes between
statistical and systematic uncertainties and allows for their propagation. While the statis-
tical uncertainty is obtained by randomizing MC spectra which are fit to a constant model,
a statistically unfluctuated spectrum is simulated with varying systematic parameters (ac-
cording to their PDFs) to estimate the systematic uncertainty. In the last step, the total
uncertainty is computed by generating a histogram of the best fit parameters, where the
best-fit value and the respective uncertainty are deduced from the resulting distribution.
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The ultimate goal in this thesis is to examine how the incorporation of uncertainties helps
to improve the optimization performance η in robotic applications. In the previous Chap-
ter 2, the focus was laid on deriving the system description under considering the uncer-
tainty from metrological viewpoint. In doing so, the definition of the term uncertainty
was discussed in the context of different domains. This chapter now builds upon these
elaborations and intends to introduce techniques to quantifying the uncertainty of single
system parts and entire applications. Importantly, the purpose lies in presenting generally
applicable methods that can be adapted to any type of robot application, where the uncer-
tainty of one or several system properties is of interest. Therefore, the following chapter
deals with the first core scientific contribution that will be followed by the development of
uncertainty-aware optimization techniques in Chapter 4. While the optimization goals and
the corresponding formalizations strongly depend on the system, this Chapter presents a
technique to uncertainty quantification and propagation in a broader sense that serves as
a generic part for the applications in Chapter 5. Prior to introducing this technique, it is
demonstrated how the problem statement is split in a reasonable manner. As discussed in
the previous Chapter, different methods to uncertainty calculation have been established
depending on the subdomain: Kalman Filters and Particle Filters that were developed and
are employed the field of robot control, the learning domain has established aleatoric and
epistemic uncertainties. In order to obtain an uncertainty representation of an entire pro-
cess that to incorporate it into the respective optimization pipeline, it is desirable to unify
the different uncertainty representations to one metric.

In the following, the problem is split in three different parts given by the uncertainty quan-
tification, the propagation along the system pipeline and the uncertainty-aware optimiza-
tion. Especially, considering these parts as separate problems enables for system-specific
adaptations. Importantly, the uncertainty propagation strongly depends on the employed
tools and the complexity of the system. Apart from that, an essential prerequisite to enable
the quantification of uncertainties is the appropriate system representation. As introduced
in Section 2.1.8, the system description of robot applications usually follows the nota-
tion in the control domain. In order to apply the established techniques in the domain
of metrology as presented in [26] however, a different form of system formalization is
necessary. In particular, the remainder of this thesis deals with the quantification of the
so-called measurand Y , that is defined by

Y (pc) := fS(X1(pc), ..., Xn(pc)). (3.1)

Here, Y can be any property, that is, either a system parameter or variable or any other
measure that can be determined via the system variables X1 via the function fS . Par-
ticularly, it is important to first specify the critical parameter space pc of Y (e.g., time,
Euclidean space,...) to identify the relevant variables X1, ..., Xn. The specification of
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Y (pc) obviously depends on the complexity of the system. In case of highly complex ap-
plications, it is recommended to define several measurands Y and to apply the uncertainty
propagation afterward. However, care must be taken in the consistency of the consid-
ered parameter space. In the following, it will be assumed that the system function fS is
available. Practically, this functional relationship can be obtained by approximating the
system dynamics by means of theoretical knowledge or by conducting simulation stud-
ies. One possibility to obtain above system Equation (3.1) from the Equation (2.16) lies
in performing simulations and monitoring the state variables X1, ..., Xn and Y over the
course of the critical parameters. In the ideal case, but not often, the measurand Y equals
the attribute a : Basically, this would mean that the uncertainty of Y is of interest. Often,
however, it must be first estimated how the attribute a can be expressed via the measurand
Y and the variables X1, ..., Xn. As will be elaborated on in the following sections how-
ever, this usually is not the case such that the attribute a is defined via a separate functional
relationship depending on fS . In particular, this applies to cases where the attribute is not
a system-inherent property.

3.1 Definitions and Problems

In order to facilitate the uncertainty-aware optimization for different types of applications,
the problem is split in several parts. This enables to consider the application-specific char-
acteristics in each of the three steps that is beneficial as will be demonstrated in Chapter
5.

3.1.1 The Attribute and Critical Parameters

So far, the uncertainty as well as the concepts concerning it were discussed in the context
of applications or system properties. However, to allow methods for the quantification,
it must be specified how these properties are formalized. To do so, the attribute a (pcrit)
is introduced. Specifically, the attribute states the property where the uncertainty is of
interest for while pcrit denotes the critical parameter. Often, yet not in all cases, the
attribute a corresponds or can be expressed via the measurand as described above. The
critical parameter specifies for which space the uncertainty of the corresponding attribute
is of interest, i.e.,:

a(pc) := fa(Yi(pc), ..., Yk(pc). (3.2)

Logically, it is possible to consider different parameter spaces: In case the attribute is
defined in different spaces, it must be considered how these depend on each others. In
particular, the knowledge on the dependency of the parameter spaces is crucial for com-
puting the propagated uncertainty entire application as will be explained in Section 3.2.2.
In order to facilitate an easily applicable uncertainty quantification and propagation mech-
anism, both the attribute and the critical parameters must be brought into the context of
the metrological system in Equation (3.1). Especially, this is required for the uncertainty
propagation, where the system equation serves as the basis. At the same time, it is de-
sired to keep the quantification and formalisms as simple as possible. In the following,
the uncertainty quantification and propagation mechanisms will be explained for both sin-
gle components and the entire system. By starting with the uncertainty quantification on
component level, the basis will be laid for more complex calculations in the second part
of this Chapter.
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3.1.2 Uncertainty Quantification in GUM

As elaborated in Section 2.1.1, the GUM suggests to distinguish Type A and Type B un-
certainties. Apart from that, quantifying the uncertainty requires to formalize the system
dynamics and to define the so-called attribute. In particular, the uncertainty regarding the
attribute critically depends on the applied perception technique, that is, by the employed
measurement devices and the environmental conditions.

Here, the attribute a can be any parameter, variable or characteristic of the system, where
the uncertainty shall be determined for. For example, in detection tasks, a reasonable can-
didate for the attribute may be the position or orientation of the object of interest. The first
step is to specify the attribute and to identify its functional relationship with the devices
in the parameter space, where the measurement is performed in (e.g., measurement over
time or space). According to this system equation, the respective uncertainty on ua(pc)
can be determined where pc denotes the critical parameter. Logically, being provided with
representations in different spaces offers more information, and thus a more precise un-
certainty estimate. Especially, the uncertainty estimate is more precise since relationships
between different parameters are likely to exist and can only be captured by considering
these representations. This will be addressed experimentally in Chapter 5.

However, estimating the amount and behavior of the uncertainty arising from one entire
system necessitates the identification of the uncertainty on component-level in first place.
Ideally, these uncertainties are provided by manufacturer specifications (e.g., data sheets
of sensory devices) or theoretical models. In case they are not available, the Guide in
[26] suggests to determine them in statistical manner. Accordingly, measurements of the
attribute a are conducted under non-changing environmental conditions. Afterward, the
approximation of the expected value µa is calculated via

µa =
1

n

n∑
k=1

ak. (3.3)

The corresponding standard deviation σ2 that captures the variability of the observed val-
ues ak allows to calculate the standard deviation around the mean s2(µa):

s2(qk) =
1

n− 1

n∑
j=1

(qj − µa)
2; s2(µa) =

s2(ak)

n
. (3.4)

Thus, the GUM proposes to compute the uncertainty ua(pc) by means of n independent
repeated measurements. While this might be possible for single hardware devices, col-
lecting reasonable amounts of data in engineering applications often is more challenging.
Particularly, system components in complex applications are compositions of single hard-
ware devices. Apart from that, the obtained uncertainty may not be valid for all system
constellations. Therefore, a technique that can evaluate the uncertainty of entire sys-
tem parts of single system components is necessary. As will be elaborated on in 3, the
uncertainty arising from system parts that consists of subcomponents can be treated as
black-box tools, where the uncertainty of a black-box tool is denoted with ũa(pc) and
ideally

ũa(pc) ∝ s2(µa). (3.5)

Therefore, the first problem lies in deriving a method to quantifying ũa(pc) that approxi-
mates the uncertainty in Equation (3.4).
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3.1.3 Uncertainty Propagation in GUM

In engineering applications, the uncertainty of entire processes or systems is usually of
interest. This means that the uncertainties on component level must be accumulated ac-
cording to the relationship stated in the system function equation in Equation (3.1). While
the uncertainty for each component and space was determined separately in the previous
step, the uncertainty propagation deals with bringing the results together. In doing so, the
relationship between the uncertainties on component level must be analysed regarding the
critical parameter space and possible dependencies between the components. The GUM
[13] provides a general technique for calculating the propagated measurement uncertainty
(PMU) ua,prop(pc) by

ua,prop(pc) =

√√√√ m∑
i=1

(
∂fS
∂i

ua,i(pc)

)2

+
n−1∑
i=1

n∑
q=i+1

∂fS
∂xi

∂fS
∂xq

u(xi, xq) (3.6)

for m system components that are characterized by i. Here, u(xi, xq) = u(xq, xi) stands
for the covariance between xi and xq. However, above equation is only valid for linear
systems. In case the system function fS is not provided or cannot be modeled analytically,
GUM refers to the general MC sampling approach to infer ua,prop(pc). Apart from that, the
sampling approach must be refined individually for each application with respect to the
number of samples and the region for the sampling process. In particular, MC algorithms
yield homogeneously distributed samples within the considered space. Depending on the
region of interest however, it may be desired to enforce the data generation in specified
areas. For example, the robot may perform movements in certain areas more frequently
such that evaluating the uncertainty and thus the generation of additional samples in this
region is desired. In addition, a specific problem in robot applications is the combination
of different uncertainty representations. As introduced in the previous Chapter, differ-
ent uncertainty representations have been introduced in the subdomains: the notation for
the metrological uncertainty of technical devices differs fundamentally from the epis-
temic and aleatoric uncertainties in the learning domain. To this end, the determination
of ua,prop(pc) involves the refinement of the propagation techniques, the identification of
appropriate sampling techniques that provide sufficient samples in the regions of interest
for nonlinear systems as well as the derivation of a mapping function Ω : Rn 7→ R with
n ∈ N that allows to estimate ua,prop(pc):

Ω : [uω1(pc), uω2(pc), ..., uωm(pc)] 7→ ua,prop(pc). (3.7)

Especially, identifying Ω highly depends on the respective robot system and might require
calibrations in case no prior information is available to determine the transfer function be-
tween the uncertainty spaces. Here, the term calibration refers to the process of exploring
how the variables of a system influence each other by observing a pre-specified output
and monitoring the variables of interest by considering the sensitivities. To be specific,
it relies on the formal definition used in the metrological domain, provided by the In-
ternational Bureau of Weights and Measures (BIPM)Apart from that, the refinement of
traditional MC sampling methods may be desired. While classical MC approaches repre-
sent a powerful technique to generating homogeneously distributed samples, regions with
sparse data occurrence may be especially interesting for the uncertainty quantification.
One possibility to address this problem is given by the importance sampling technique
that will be described in detail in Chapter 3.
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3.1.4 Uncertainty-aware Optimization

Being provided with the uncertainty of the attribute arising from the entire system, the
goal lies in exploring how this uncertainty contributes to the optimization performance η
introduced in Equation (2.6), i.e.,

η(x⃗, ux⃗) ≥ η(x⃗), (3.8)

where η(x⃗, ux⃗) stands for the optimization performance achieved after accounting for
the system uncertainty and η(x⃗) the optimization performance corresponding to the case,
where the uncertainty is neglected. Depending on the complexity of the application, this
step involves additional specifications regarding the optimization technique: While the
consideration of the system uncertainty ux⃗ may be sufficient, studying the influence of the
system components’ uncertainties on ux⃗ or environmental factors may enable to identify
further steps to reduce the system uncertainty. These uncertainty analyses can be con-
ducted by calculating the sensitivity presented in Section 2.1.5. Importantly, accounting
for the sensitivities can act as the basis for the successful selection of appropriate system
components that are acceptable regarding their uncertainty and their functionality. Apart
from that, findings from these analyses may help to adapt the environmental conditions
to attain a higher optimization performance. In order to compute η, the optimization
goal must be formulated under consideration of the system dynamics: Usually, the op-
timization goal is formalized via properties that are not unambiguously assigned to the
parameters and variables that occur in the equations for the system dynamics. There-
fore, the parameters and variables that are relevant for the optimization must be specified.
Importantly, it is required to identify the critical parameter spaces. Based on this, the
optimization function can be reformulated in an uncertainty-aware fashion. It is therefore
aimed at deriving a function that determines the optimization efficiency on the basis of an
uncertainty-aware formalization of the system, i.e.

η(x⃗) = ψ(x⃗(γi), uprop,a(γi), ...), (3.9)

where the vector x⃗ stands for the set of relevant parameters and variables and γi for the
critical parameter spaces.
From practical viewpoint, this part may be the most important, yet highly challenging
one in real-world robotic systems. While incorporating the results of the previous steps
may sound straightforward at first glance, the challenge lies in identifying an appropriate
uncertainty representation that does not only reflect the actual amount, but also can be
incorporated efficiently in the optimization pipeline without much effort, where the ef-
ficiency becomes particularly relevant for online optimization. Here, the goal would be
to develop a technique that does not entail a burdensome computation time. Obviously,
the threshold for the acceptable computational load must be specified in an application-
specific manner, as will be addressed in Chapter 5. Furthermore, evaluating Equation
(3.8) must be accompanied by a confidence value that reflects how reliable the result is.

3.2 Methods

In this Section, techniques addressing above problems are derived in a generic fashion.
As mentioned in the beginning of this Chapter, the development of the uncertainty-aware
optimization techniques is addressed separately in Chapter 4. This Section presents fol-
lowing methods:
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1. Uncertainty Quantification of black box components: First, a technique to cal-
culating the uncertainty of black box components is developed. Here, a black box
component stands for a tool where the uncertainty is not known.

2. Uncertainty Propagation: Second, it is elaborated how the uncertainty of an en-
tire system can be obtained by referring to the uncertainties of single components.
Especially, this contribution is further divided in two parts. After presenting how
the accumulation of uncertainties is performed in the metrological space, it is intro-
duced how the metrological uncertainty notation can be combined with the robust-
ness of NNs.

In the context of robot applications, the uncertainties of technical components like sensors
or cameras are mostly stated by the manufacturers’ specifications. However, this does not
necessarily apply to software tools. For example, the uncertainty of NN-based software
components is generally challenging to estimate. While, as mentioned above, black box
tools stand for any component with unknown uncertainty, it can also describe entire sys-
tem parts where the functionality is not fully tractable or not understood regarding the
behavior of the subcomponents. Logically, a missing understanding of a systems’ inner
components impedes the quantification of the uncertainty since estimating the amount of
possible deviations requires the knowledge on the sources for undesired fluctuations.

In order to derive a technique to estimating the uncertainty of black box components, the
knowledge on the invariants on system characteristics is exploited. These invariants are
referred to as conservation equations. Briefly, it is suggested to identify measures of the
system that do not change with respect to the critical parameter space. For example, static
objects can be described with a conservation equation with regard to the time and the non-
changing position of the object. The uncertainty in the respective position measurement
is estimated by evaluating these conservation equations. While this method is developed
in generic fashion in this Chapter, the validation experiments are performed in the context
of safety evaluation as will be explained in Section 5.3.3.

Next, the uncertainty propagation is addressed with the goal to calculate the total uncer-
tainty of the system by accumulating the uncertainties of the system components. Im-
portantly, the presented technique is applicable to any type of uncertainties. In contrast
to existing methods in literature, where the uncertainty of the system components follow
Gaussian distributions, the introduced uncertainty propagation method enables to deal
with uncertainties of any type. In accordance to the method to quantifying the uncertainty
of black box components, the propagation technique is also validated for robot systems in
Section 5.3.3.

In addition, techniques that enable to unify different uncertainty representations is devel-
oped. As mentioned in Chapter 2, the robustness of neural networks shows analogies to
the metrological uncertainty formulation. To this end, an approach to combining these
two notations to one uncertainty measure will be addressed by pointing out to the simi-
larities. In fact, analogies between the Lipschitz function and the metrological sensitivity
definition are drawn. In contrast to the uncertainty quantification and propagation method,
this technique to unifying the uncertainty representations is studied in the context of an
image classification experiment in Section 5.2.2.

Finally, it is motivated how these techniques can be employed for the purpose of optimiz-
ing the performance of robot systems that is addressed in the next Chapter.

38



3.2 Methods

3.2.1 Uncertainty Quantification of Black Box Components

As explained above, the GUM presents techniques to calculating the uncertainty on the
basis of measurement data. Specifically, this guide focuses on the uncertainty determi-
nation in physical systems, where the uncertainty of the components are assumed to be
known: The authors state that statistically estimating the uncertainties of single compo-
nents can be carried out in straightforward manner. To be specific, uncertainties can be
distinguished in statistical uncertainties and systematic uncertainties. While the latter
ones describe those that arise from the technical component itself, statistical uncertainties
reflect the missing knowledge due to the limited data. Obviously, being provided with an
infinite amount of data that represents all possible situations to all time steps is unrealistic
and impossible. The statistical uncertainty ustat aims at capturing the lack of information
due to this limitation by assuming that all data points are equally relevant for the data
collection, i.e.,

ustat =
1√
N
, (3.10)

where N denotes the number of data considered in the measurement.
However, in complex robotic systems, the uncertainty of single components on small
scales may not be of interest. Instead, focusing on the uncertainty of entire system parts
or tools is usually more reasonable. In addition, the uncertainty of these black box tools
may vary over time or other system parameters. The key motivation behind the following
technique is that exploiting certain characteristics of an application and quantifying the
uncertainty of entire system parts may be more efficient than attempting to investigate the
uncertainty of single system components and their relationship with each other on small
scales. In order to estimate ũa(pc), it is suggested to identify system properties that are
constant in a with respect to the critical parameter pc and can be measured by the tool of
interest. Ideally, these system invariants are known due to physical or technical constraints
and can be formalized as equations, i.e.,

∇x⃗(γi) = const. (3.11)

For example, if the objects are known to be static and not move during operation, the
respective equation may be stated by∇r⃗(t) = 0 for static objects, where r⃗(t) provides the
object position at time t. Such equations that reflect the invariant character are denoted
as conservation equations. In the next step, the data of the system invariant properties
are monitored over the course of γi with the black box tool. These measurements must
be conducted under the same environmental conditions. By analyzing the resulting data
collections, violations on the conservation equation(s) in (3.11) are determined. Impor-
tantly, since these violations are known to actually not occur due to technical limits or
physics laws, they can be directly attributed to the measurement uncertainty of the em-
ployed measurement tool. As a logical consequence, the uncertainty calculation can be
performed by determining the violations on the system-specific conservation equations.
Specifically, the violations on the conservation equation(s) are evaluated by means of the
bootstrapping technique. The steps can be summarized as follows:

1. Formulate the conservation equations according to Equation (3.11). Ideally, the
invariant is defined with respect to the critical parameter space pc of the attribute a:

∇x⃗a(pc) = zi (3.12)

In addition, the value of zi must be specified.
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2. Record the data for evaluating the conservation equation. In addition, an appropriate
time period for the data monitoring must be defined. Specifically, if the tolerated
statistical uncertainty ustat,tol is known, the minimum data recording time can be
calculated:

ustat ≤ ustat,tol → Ncrit (3.13)

By referring to the data monitoring frequency fd that is usually provided with the
frame rate of the employed data acquisition tool, the required data monitoring time
is determined. In all cases, the environmental conditions within one data set must
be constant to maximize the accuracy in the uncertainty quantification.

3. The conservation equation are evaluated on the basis of the collected data sets. Im-
portantly, possible dependencies must be considered at this stage. For example, if
the critical parameter is captured over the time, the accuracy in the data recording
frequency must be maintained. It is crucial to distinguish violations due to monitor-
ing inaccuracies from the uncertainty originating from the measurement device. To
be specific, it is expected that the conservation equation, and thus the amount of zi
is determined constantly during the data acquisition and stored in a vector z⃗i. Log-
ically, the number of elements in this vector amounts to the collected data N that
ideally equals the number of evaluations of above equation. Basically, this evalua-
tion step involves generating a bootstrap distribution for each of the sampled sets.
Next, the mean values of all bootstrapped distributions are calculated. As described
in Chapter 2, these mean values are distributed in a Gaussian fashion, where the
mean value corresponds to the uncertainty of the measurement tool:

µviol ± σviol 7→ ũa(γi), (3.14)

where the confidence level α is computed via the bootstrapping technique. a

4. The uncertainty of the measurement tool of interest is determined with respect to
the parameter relationships by referring to the Gaussian distribution. Particular,
hypothesis tests can be conducted. In online applications, the calculation can be
carried out during operation such that the user is notified with the actual uncertainty
on an attribute of interest. Here, a reduced statistical uncertainty ustat and a higher
confidence is expected to be achieved since the amount of considered data increases
with time.

As explained in Chapter 2, this method enables to calculate the mean of the occurred
violation and the corresponding confidence interval. Depending on the application, this
procedure can be performed online. The calculation can be repeated several times during
operation after specifying the required data amount for one evaluation run. Furthermore,
observing how the uncertainty on the component level behaves over time is necessary to
identify dependencies with additional system state variables. Deriving the correspond-
ing relationships by means of data fitting techniques might therefore facilitate even the
prediction of uncertainties, especially in systems with repetitive tasks. Especially, this
would mean that the existing relationships are accurately modeled which might enables
the development of uncertainty minimization techniques.

Apart from that, conservation equations can be formulated for different parameter spaces.
For example, temporal as well as spatial constraints may exist. An object may remain
its position during the entire process. Also, it may be known that its size does not vary
over time. These characteristics can be expressed by two conservation equations: one
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for the temporal and one for the spatial parameter space. Logically, the accuracy of the
uncertainty quantification is enhanced by accounting for more parameter spaces. This
particularly applies to cases where conservation equations can be formulated for corre-
lated parameter spaces. Indeed, considering for several conservation equations in parallel
enhances the accuracy of the uncertainty calculation, and thus the obtained uncertainty.
However, to verify the amount of correlation or further relationships, additional statistical
tests can be performed. For instance, these tests may enable to identify correlations as

corr(ũa(γi), ũa(γk)) for i ̸= k (3.15)

In addition, tendencies or dependencies between the state variables, environmental condi-
tions and the uncertainty behavior can be further explored by statistical hypothesis testing.
Based on the findings, the state variables or application can be adapted to enable an ap-
propriate system constellation or to achieve the optimization goal.

3.2.2 Uncertainty Propagation and Analogy to Physics

As described above, the basic approach to accumulating uncertainties is provided by the
Guide in [26]. However, the presented methods rely on the assumption that the uncertainty
on component level and the system equation are provided. Unfortunately, this usually
does not apply to robot applications. In addition to the unknown relationship among the
components, the uncertainties are usually not stated based on the metrological notation.
While the uncertainties of hardware devices as sensors or cameras are specified by follow-
ing the formalism used in metrology, the uncertainties of algorithms usually do not stand
in accordance with the metrological notation. Instead, depending on the software tool,
the understanding of the uncertainty may be domain-specific. This was described briefly
in Chapter 2. For example, the uncertainties of neural networks are defined in a differ-
ent manner. Especially, the measure that shows the highest similarity to the metrological
uncertainty is given by the robustness.

Since one of the central aims in this thesis is to enable the determination of the system’s
uncertainty that unifies different representations, one main challenge that must be ad-
dressed lies in bringing together the different uncertainty formalisms. Importantly, find-
ing an approach to unify these formalisms involves identifying existing analogies and
considering the differences in the definition thoroughly. This analysis must be performed
prior to accumulating the uncertainties in the respective spaces. Afterward, it is neces-
sary to explore how the attributes depend on each other to allow for the calculation of the
propagated uncertainty in the desired parameter space.

In the first part of the uncertainty propagation, the simplified case of propagating un-
certainties in one representation is introduced. This part is mainly concerned with the
identification of relationships between the components (sources of single uncertainty con-
tributions) regarding the critical attributes and the parameter spaces. Next, an approach to
combine the uncertainties of NN-based tools with the metrological uncertainty notation is
developed. Here, it is explained how the definition of the robustness of NNs can be inter-
preted from the metrological perspective. Finally, it is elaborated how existing analogies
can be exploited to facilitate the unification of the uncertainty of hardware components
with the robustness stated for NN-based components to one propagated uncertainty mea-
sure.
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Uncertainty Propagation in one Representation

For example, in case it is of interest to compute the uncertainty on the movement of the
robot, it is crucial to be provided with the spatial uncertainty as well as the temporal
uncertainty to correctly assess the uncertainty regarding the robot velocity. Depending
on whether the movement depends on environmental fluctuations or other restrictions, it
must additionally be considered to which extent the restrictions can be hold and whether
the conditions affect the temporal and spatial uncertainties. Here, the attribute defines the
relevant spaces for which the uncertainties must be determined.

In particular, the relationships between the parameter spaces and the environmental state
variables may enable to even predict the uncertainty. Assuming that sufficient data is
available for performing analyses, functional relationships between the parameters and
variables can be derived by means of fitting techniques. In fact, these relationships are
incorporated in the uncertainty propagation pipeline. Since the accuracy of the uncer-
tainty calculation is directly tied to the accuracy of the system model, accounting for all
dependencies between the critical parameter pc and the remaining variables is essential.
The propagated uncertainty uprop(pc) is essential for the uncertainty-aware optimization as
stated by Equation (3.9). To be specific, uprop,a that stands for the propagated uncertainty
with respect to the attribute a can be expressed by the relationship G : Rn 7→ R

uprop,a(pc) := G(fa(pc), fS(pc)), (3.16)

where fa and fS in turn depend on the measurands Yi, ..., Yk. Importantly, uprop,a(pc)
is highly dependent on the uncertainty of the measurands Yi, ..., Yk, that not necessarily
correspond to scalar values. In this case, the Equation (3.6) cannot be applied in straight-
forward manner, but must be extended by MC sampling.

The underlying idea is to consider the distributional character of the uncertainties uYi
, ..., uYk

in the propagation as explained in the Supplement of the GUM [13]. In fact, the uncer-
tainty distributions are propagated according to the system equation fS(pc)by generating
MC samples with following steps (see [13] for details):

1. Set number M of MC trials.

2. Create M vectors from the n probability density functions assigned to measurands
Yi.

3. Evaluate value for attribute a according to the model function fS(pc) for each of the
M vectors.

4. Sort the M values of a into increasing order. This enables the derivation of the
distribution G (see [13], Chapter 5.3 for details).

5. As state in above Equation (3.16), G serves as an approximation for uprop(a).

In addition, if several critical parameter spaces must be considered, it is recommended to
account for the correlation

corr(ua(pc,i), ua(pc,j)) (3.17)

with i ̸= j.

Next, the obtained propagated uncertainty distribution is assigned to a confidence measure
that reflects the reliability of the result. In the next step, the propagated uncertainty in
different spaces are combined to compute the uncertainty on the target attribute. To do so,
fitting techniques can be applied. Especially, data fitting becomes relevant in cases where
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Figure 3.1: Illustration of the uncertainty propagation for nonlinear input uncertainties
taken and adapted from [26]. In case the equation for linear and scalar uncer-
tainties is not applicable, the propagated uncertainty uprop,a(pc) is obtained
via MC sampling.

the uncertainty estimates suffer from low confidence values due to the limited amount of
data samples in the previous step. In the context of fitting techniques, the goodness of
fit is one critical metric indicating the trustworthiness of the final distribution. Therefore,
the first step serves to explore parameter relationships and correlations to compute the
propagated uncertainty in different parameter spaces. Importantly, it is required that the
metrological representation of the uncertainties are available. However, this is not always
the case as will be discussed in the following.

Uncertainty Propagation with NN based tools

So far, calculating the uncertainty ua(pc1, pc2) for an attribute awith the critical parameters
pc,i was addressed for the metrological representation. In fact, above described approaches
assume that the uncertainties on component level are provided in the metrological repre-
sentation, that is, by means of probability distributions indicating the possible deviations.
Unfortunately, a robot application may consist of tools, where the uncertainty follows
a different representation. For example, neural network classifiers or methods based on
deep learning are often employed in robot systems.

As indicated in Chapter 2, the aleatoric and epistemic uncertainties are commonly used
within the learning domain. The missing absolute notations and the context-dependency
however impede the derivation of a technique for accumulating the uncertainties correctly.
Especially, in real-world robot applications, the aleatoric uncertainty crucially depends
on the metrological uncertainties of the measurement devices that are used to capture the
input data for the learning algorithms. This dependency however has not been addressed
in existing literature. To be specific, the robustness of NN classifiers is defined by the
Lipschitz equation

Lϵ(δ) := Pr(∥fNNL(x0)− fNN(x
′)∥ ≤ k · ∥x0 − x′∥) ≥ [1− ϵ] (3.18)

for an lp-ball around an input data point x0 and the output fNN(x0). This equation will be
explained in more detail in Section 5.2.5. In fact, this notation of the robustness serves as
the basis to incorporate the possible deviations of learning algorithms into the uncertainty
propagation pipeline: In accordance to the metrological uncertainty representation, the
robustness captures the deviation of the output data by with regard to the corresponding
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input data fluctuation. Here, the input data is constrained by an lp-ball that can be specified
by the user. The robustness therefore measures the sensitivity of the output fNN(x) with
regard to the input.

As will be described in Section 5.2.4, the works in the learning domain focus on the
development of methods to preventing adversarial attacks. In doing so, several contribu-
tions as ([80], [55]) have demonstrated that the output of NN classifier that can formally
be described by a nonlinear, non-convex and usually very complex function fNN(·) with
general activation functions can be bounded by two linear functions lLt (x) : Rn0 7→ R and
lUt (x) : Rn0 7→ R such that

lLl (x) ≤ lt(x) ≤ lUt (x). (3.19)

These linear functions are formalized in terms of the input x as follows:

lLt (x) = AL
t;:x⃗+ dL ; lUt (x) = AU

t;:x⃗+ dU , (3.20)

where AL
t;:, A

U
t;: ∈ R1xn0 represent constant row vectors and dL, dU for the weights and

biases, respectively. Therefore, for NNs that can be linearized, the robustness definition is
valid in the sense that possible deviations as well as the sensitivity of the NN output with
respect to the input data is accurately captured. Especially, a probabilistic representation
of the robustness can be introduced to obtain probability density functions that carry mu-
tual information as the metrological uncertainties presented above as illustrated in Figure
3.2.

Although it requires to gather a considerable amount of data to determine a probabilis-
tic representation with reasonable confidence, this would allow to relax the robustness
requirement in certain cases. This simplifies the practicality for real-world robot applica-
tions since the robustness is not supposed to be satisfied in all cases. Apart from that, the
uncertainties inherent to the input data space depend on the measurement tools as sensory
devices or cameras that are denoted as the perception uncertainty.

In both representations (the probabilistic robustness and metrological uncertainty), the
possible deviations in the output are measured regarding the desired ground truth re-
sult. In addition, the sensitivity with respect to the input deviation is considered. While
the aleatoric and epistemic uncertainty notations do not include reference measures, the
metrological uncertainty formalism and the robustness definition are directly related to the
corresponding input data. Formally, combining the robustness of NNs with the metrolog-
ical notations of uncertainties refers to the identification of a transfer function introduced
in Equation (3.9). In the given case, the transfer function is specified by

ψNN(Lϵ(δ), uprop,a(pc), ...). (3.21)

However, the derivation of ψNN is not straightforward. Despite the fact that an anal-
ogy can be identified between Lϵ(δ) and uprop,a(pc), determining the exact relationship
between the parameters in the Lipschitz equation, the critical parameter pc and the at-
tribute a in the metrological formulation is challenging. Importantly, these relationships
between the parameters and variables do not necessarily require the derivation of an ana-
lytical function. Instead, it is sufficient to establish a calibration procedure that inherently
identifies the relationships and accounts for these.

In practical robot systems, this means that a reasonable amount of calibration data must
be recorded prior to system commissioning. This step can be performed in a simulation
environment if it is desired to consider for different system constellations due to the dif-
ficulty of accurately monitoring all parameters under real world conditions. Afterward,
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Figure 3.2: Analogy between the probabilistic robustness and the measurement uncer-
tainties: In both cases, the purpose is to capture how sensitive the output of
a measurement tool or neural network reacts on input data. Left: The input
space is represented by an lp-ball in the Lipschitz equation, that defines the
robustness. The Lipschitz-ball is symmetric. Right: The measurement uncer-
tainty is represented by a probability distribution. For technical tools, these
are provided by the manufacturer specifications and are modeled as Gaus-
sians.

the relevant regions of the assigned parameters and variables in the robustness equation
must be identified. This can be achieved by referring to a measurement tool, where the
metrological uncertainty is clearly known. Recording the calibration data with it enables
to explore the critical areas within the parameter space in the robustness equation. In or-
der to accomplish the propagation, possible relationships between the uncertainties of the
remaining technical tools and the NN input data must be considered in the calculation.
For example in vision tasks, the input deviations are directly affected by the resolution
of the employed cameras. Furthermore, the resolution of the cameras may depend on
environmental fluctuations that must be considered. In Chapter 5, the validity of the pre-
sented technique to unifying the metrological uncertainty with the NN robustness will be
demonstrated on an image classification and 3D human joint detection.

3.3 Summary of Chapter

The focus of this Chapter was laid on providing uncertainty quantification and propaga-
tion techniques. To this end, it was first described how a robot system can be described
by the metrological notation. By doing so, the necessary terms and definitions for the
development of uncertainty-aware optimization methods were introduced. Especially, the
optimization performance η was defined that serves as the basis for evaluating the perfor-
mance of the robot applications.

Afterward, a method to quantifying the uncertainty of black box components was derived.
As will be further elaborated on in Section 5.3.3, this technique enables to calculate the
uncertainty of components or system parts, where no information is provided by the man-
ufacturer. One challenge here however lies in the identification and formulation of the
conservation equations. Often, these cannot be identified in straightforward manner. The
limitations of this method will be discussed in detail in Section 6.1.1.

Third, it was shown how the uncertainty of entire applications can be calculated by in-
troducing the uncertainty propagation method. After presenting the Monte-Carlo-based
propagation algorithm that enables to accumulate the uncertainties of the system compo-
nents in the metrological notation, the second part was concerned with combining differ-
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ent notations. To be specific, it was suggested to leverage the analogy in the definition of
the robustness of NN-based classifiers with the metrological uncertainty definition. Here,
it was proposed how the calibration procedure of the parameters can be performed. How-
ever, it was not clearly specified which relationships must be exploited to enable a suc-
cessful unification. As will be explained in the following Chapter, the exact interpretation
of the parameters depends highly on the considered application.

The uncertainty quantification and propagation methods presented in this Chapter provide
the basis for the uncertainty-aware optimization techniques. In the context of robot sys-
tems, the uncertainties ideally reflect the amount of possible deviations on critical system
variables in the parameter space of interest. The knowledge of the possible amount of un-
desired fluctuations may allow the introduction of countermeasures as will be discussed
in the context of safety evaluation in Section 5.3.3.
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The central goal of this thesis is to explore how the consideration of the uncertainties of
a system contribute to higher optimization performances in robot systems. As introduced
in Section 3.1.4, the optimization performance generally measures to which extent the the
desired application-specific goal has been achieved. Practically, in the context of robot
systems, the robot is often confronted with a set of possible actions and would ideally
select those with the most promising outcome. This Chapter intends to present methods
that allow to consider for the uncertainties of single components as well as the accumu-
lated uncertainty in the system pipeline. As will be elaborated in detail, the incorporation
and uncertainty-optimization is designed individually for each optimization type. While
optimization problems and approaches to solve these are studied extensively in the do-
main of mathematics, this thesis aims at framing common goals in robot applications as
optimization problems and to derive uncertainty-aware optimization techniques for these.

In this Chapter, the thesis studies whether conducting the optimization in an uncertainty-
aware fashion yields a higher performance. Specifically, it is distinguished between dis-
crete and continuous optimization problems. While improving the decision-making pro-
cess of the robot in cases, where the goal is clearly known, is crucial, the ideal constella-
tion of the robot is often not known in more complex applications where additional system
parameters play an important role.

Especially, discrete optimization problems refer to those where the optimization is per-
formed with respect to one or several classes. Image classification tasks fall into this
category since the goal lies in assigning the correct class to the respective data. In con-
trast, the optimization in continuous optimization problems is performed on the basis of
a continuous function that ideally accounts for the relationships between the relevant sys-
tem parameters. In fact, many optimization problems in complex real-world applications,
where the goal lies in optimizing an overall measure as risk minimization, cost reduc-
tion or efficiency maximization can be seen as continuous problems. Specifically, solving
these problems require parameter adaptations on a larger scale as will be further elabo-
rated on in Section 4.3. In the following, these two types of optimization problems will be
further specified by defining the assumptions that are made in this thesis. Afterward, ap-
proaches to solving these will be derived in three steps: While the first two parts address
settings that fall into discrete optimization problems, that can be distinguished in fully
explainable systems and those employing NN-based tools, the third section focuses on
the derivation of uncertainty-aware continuous optimization methods for more complex
applications.
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4.1 Uncertainty-aware Binary Optimization

First, a method to binary optimization is developed. Practically, this method addresses
problems where the robot is confronted with two distinct choices, that can be expressed
via binary variables. To obtain the optimization performance η, it is estimated to which
degree the optimization goal is achieved, and especially whether the incorporation of
uncertainties yields a higher η value. Here, the optimization is defined via a vector x⃗B ∈
Bn, with B = {0, 1}. Obviously, the size of the vector x⃗ must be specified individually
according to the use case. The goal is to derive a cost function zQ : Bn 7→ R given by

zQ(x⃗) = x⃗TQx⃗ =
n∑

i=1

n∑
j=1

Qi,jxixj, (4.1)

where Q stands for a triangular matrix Q ∈ Rn×n that assigns weights for the entries xi
and xj of the binary vector. Then, the optimization goal is to find a vector x⃗∗ with

x⃗∗ = argmin zQ(x⃗). (4.2)

While the domain of binary optimization problems have been studied extensively in theo-
retical manner in the field of mathematics, framing optimization problems in robotics into
this formalization comes with following challenges.

Most problems need to be framed accordingly in first place which often requires a map-
ping from the input data space to the binary space Bn prior to deriving the cost function
zQ(x⃗). In particular, the aim of this thesis is to consider the uncertainties in both parts the
specification of the problem and the definition of the cost function. Here, the objective
function f : Rn 7→ R is assumed to be convex, but not necessarily smooth on a convex set
Λ and {−1, 1}n ∩ Λ ̸= ∅. Particularly, non-convexities are only assumed to occur due to
binary constraints on the optimization problem. To derive a technique that addresses this
problem in an uncertainty-aware fashion, following additional assumptions are made:

• Assumption 1: A baseline data collection that has been generated under the same
environmental conditions exists. Essentially, this data set acts as a basis for the
mapping between the system variables and parameters on the binary space Bn.

• Assumption 2: The actual system state such as state space variables and parameters
are provided and can be monitored.

• Assumption 3: The uncertainty models on the system variables and parameters
are known or can be modeled. Otherwise, it is assumed that the requirements for
applying the uncertainty quantification technique presented in Chapter 3 (presence
of conversation equations) are met.

In case the vector x⃗B, that contains the input data, corresponds to scalar values, one es-
tablished method to solving this problem lies in framing it as a quadratic unconstrained
binary optimization problem (QUBO) [47]. Generally, this method enables to calculate
the distance between the classes to perform an assignment of data points. The main incen-
tive in this thesis, however, is the derivation of an uncertainty-aware technique that results
in replacing the scalar parameter values by probability distributions. These probability
distributions reflect the uncertainty models of the system variables. Since applying meth-
ods for QUBO in a straightforward manner is challenging in this case, the thesis suggests
to develop an approach that considers the divergence between two distributions:
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To be specific, the data collection is characterized in two probability density distributions
Pb andQb, where the data corresponding to the desired class of outcomes are distinguished
from those with the class of undesired outputs for each parameter or variable, respectively.
This means that two probability distributions are assigned to each of the input variables
xB,i, ..., xB,n of the vector x⃗B. In particular, these two probability distributions result
from the addition of the single probability distributions representing the data points plus
their uncertainty models. Since the goal of the optimization is to select robot actions
that yield desired outputs, a two-stage scoring technique is introduced. Here, the goal is
to enable the rating in analogy to the cost function in Equation (4.1). Specifically, each
grasp candidate is attributed to a total score fQ(x) that is calculated by introducing a
global score fglob(x) and a local score floc(x) as follows.

4.1.1 Global Score

The global score is computed via the Kullback-Leibler divergence DKL between Pb and
Qb. As defined in Section 2.1, the Kullback-Leibler divergence, referred to by DKL in
the following, measures how two distributions differ from each other. Importantly, the
DKL is asymmetric and does not satisfy the triangle inequality such that it does not fall
into the class of metrics, but considered as a statistical distance measure. This asymmetry
is exploited for the score function that assigns higher scores to candidates that are closer
to the desired outputs. Assuming that a range of options for the selection are offered
to the robot, the rating is performed via DKL, where the Kullback-Leibler divergence
intuitively captures how influential a system parameter or state variable behaves regarding
the outcome, that is

fglob(x) := DKL(Pb||Qb). (4.3)

4.1.2 Local Score

In addition to the global score fglob(x), the probability of the each candidate to fall into
the data collection P is considered. In contrast to the global score, the local score floc(x)
computes an individual score for each grasp candidate. As a result, candidates that are
likelier to belong to the group of the desired outcome will be assigned to higher score
values. Specifically, each candidate c⃗ ∈ Rm is assumed to be defined via m features,
where m is specified individually for each application. The local score is given by the
probability fraction

floc(x) =
pk,s

pk,s + pk,f
, (4.4)

where pk,s and pk,f denote the probability for the candidate to belong to the distribution
P of desired outcomes and Q the undesired outcomes, respectively.

4.1.3 Total Score

The score for each candidate is then calculated by multiplying the global and the local
score with each other for all metrics m, i.e,:

fQ(x) =
m∑
k=1

fglob(x) · floc(x) =
m∑
k=1

DKL ·
pk,s

pk,s + pk,f
. (4.5)
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It is worth noting that the goal is to find the candidate that maximizes this score, that is

x⃗BO = argmax fQ(x) (4.6)

instead of the minimization as defined by the original QUBO. Logically, this technique
requires that the baseline data set is representative regarding the data amount and the con-
ditions of the application. Practically, this places the assumption on the data set that the
interesting regions are monitored as mentioned above. Specifically, the confidence of the
score depends on the statistical uncertainty ustat. As will be demonstrated in Section 5.1,
one advantage of this technique lies in its online applicability. While the computational
burden increases with the number of critical parameters, calculating the probability frac-
tions and the Kullback-Leibler divergence is straightforward. Therefore, this technique is
appropriate for settings, where the robot is provided with different possibilities and sup-
posed to perform a binary optimization regarding the selection. However, estimates for the
uncertainty models for all parameters that influence the optimization must be available.
While this applies to most technical components, the employment of NN based tools that
are not fully understood regarding their uncertainty behavior places a burden to framing
the optimization problem in the above presented fashion. To be specific, the difficulty lies
in estimating uncertainty models for the NN and to estimate the probability distributions
for the intrinsic NN parameters. Hence, this method is limited to use cases, where no
NN based component exists and where heuristics or theoretical uncertainty estimates are
available. In the next section, the research question of combining the definition of the
robustness of NNs with the metrological uncertainty notation will be addressed.

4.2 Uncertainty-aware Binary Optimization with
linearizable NNs

Apart from systems, where heuristics of uncertainty estimates are available, the employ-
ment of NN based tools has become attractive in robot applications. As will be elaborated
in the following, the NN robustness can be combined with the metrological uncertainty
notation to one measure. One research question in this thesis is how this unified uncer-
tainty measure contributes to the improvement in the optimization process. The key idea
behind this type of optimization lies in the uncertainty-aware parameter adaptation. In
the first step, computing the uncertainty regarding one attribute requires to combine the
uncertainty propagation for one representation with the propagation technique for differ-
ent representations. Practically, this means that after unifying the different uncertainty
representations, that is, the NN robustness with the metrological uncertainty notation, the
method for uncertainty propagation in one representation is applied. This requires to ac-
count for the correlations between the system components. To be specific, the input data
set for the NN is limited by the measurement uncertainty of the considered component
that is used for the data perception (e.g., cameras, recorders,...) and provides the data.
For example in image recognition, the accuracy in the input data directly depends on the
number of the employed cameras and their resolution limits. Specifically, the Lipschitz
equation for the robustness should be modified by specifying the parameters in a practical
context. This means that essentially, the terms in the robustness equation

Pr((∥f(x′)− f(x)∥ ≤ k ∗ ∥x′ − x∥) | ∥x′ − x∥ ≤ δ) ≥ 1− ϵ (4.7)
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are specified individually for each application. However, to remain the quantification of
the sensitivity and possible deviations, the terms ∥x′ − x∥ and ∥f(x′) − f(x)∥ are as-
signed to the input data and output data, respectively. From the perspective of uncertainty
analysis, it becomes relevant whether x represents a ground truth data point, that is, free
from uncertainties or already contains the uncertainty due to the data taking procedure.
The following Section will discuss the reinterpretation of the parameters depending on
the data quality and the available information on the uncertainty.

4.2.1 Case 1: Input Data x as Ground Truth Data

In this case, it is assumed that x is free from uncertainties and thus reflects the actual value
of the input data point, but x′ is affected by the perception uncertainty. For example, x
may be provided by a model (e.g., simulation). In this case, following assignments to the
terms in Equation (4.7) are suggested:

∥x− x′∥: This term would be subject to the uncertainty in x′. Here, it must be considered
how the uncertainty is related to the lp ball. Importantly, if the uncertainty is not
symmetric with respect to the lp ball measure, the direction between the points x
and x′ must be taken into account. Apart from that, a pointwise evaluation of the
Lipschitz equation would address the question of how the uncertainty inherent to x′

(and thus the difference between x and x′) affects the constraint on the respective
output term ∥f(x)− f(x′)∥.

δ: In this case, increasing or reducing δ simply corresponds to allowing a higher uncer-
tainty in the perception of x′.

k : Logically, k hints at how sensitive the output of the NN responds to the uncertainty in
x′.

∥f(x)− f(x′)∥: Evaluating this distance between the outputs provides insights in the
uncertainty in x′. In particular, it may be analyzed whether the uncertainty is sym-
metric by comparing ∥f(x)− f(x′)∥ of two x′ values that lie in different directions
from the ground truth data point x′.

From practical perspective, identifying the appropriate values for the control parameter
k and the radius of the Lipschitz ball δ would hint at replacing the components that are
responsible for the data acquisition. Specifically, an acceptable limit may be defined via
∥f(x)−f(x′)∥ that corresponds to the maximal radius δ. As δ reflects the tolerated spread
around the clean data point x, from which x′ is sampled, meeting this requirement would
hint at reducing the uncertainties of the components that process the input data points
accordingly.

4.2.2 Case 2: Missing Ground Truth Data

In most real-world applications, the knowledge on x is limited because the actual value of
the input data point does not necessarily correspond to the theoretical model or simulation.
In particular, the value of x may differ depending on the environmental state, where the
dependencies between x and possible undesired disturbances (e.g., temperature changes
etc.) are usually not known. In addition, the uncertainty on x is not provided such that the
ground truth value for x cannot be easily determined. As a consequence, the terms in the
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Lipschitz equation are affected by this unknown amount of uncertainty which necessitates
the modification of the parameter interpretation accordingly:

∥x− x′∥ : While this term still measures the distance between the input data points, it
does not provide any succinct information on the uncertainty. Due to the fact that
the uncertainty on x is not available, the distance to x′ captures how far these two
input points are separated from each other, including their uncertainties. Especially,
if both input data points are subject to the same uncertainty, the obtained value
would correspond to the ground truth distance. Furthermore, the symmetry of the
uncertainty plays a critical role. This means that the same distance values may yield
different values for ∥f(x)− f(x′)∥, depending on the direction of x′.

δ : Analogously, δ now specifies solely the allowed distance between x and x′. In partic-
ular, the tolerated uncertainty becomes challenging to determine for dynamic uncer-
tainty behavior, that is, for constellations, where the accuracy in the data processing
of x may differ from that of x′.

k : In contrast to above case, where the radius of the lp ball δ places the limit on the
acceptable uncertainty, the control parameter k becomes more relevant for deriving
a threshold on the absolute uncertainty. While in accordance to the previous case,
k reflects how the NN responds to the input data points x and x′, monitoring the
effect of different k-values in addition to the lp-ball radius is necessary for studying
the uncertainty threshold.

∥f(x)− f(x′)∥ : In analogy to the first case, this term allows to verify whether the
desired limit on variations in the output is met by the corresponding input data
points.

Due to the fact that the influence of the uncertainty cannot be directly determined in this
case, the collection of offline data is necessary to facilitate the development of uncertainty-
aware optimization techniques. This is especially important in real-world (robot) appli-
cations, where usually no theoretical uncertainty model exist. To be specific, it is desired
that the offline data set contains information on the system variables or parameters that
influence the uncertainty in the input data. It is preferable to conduct the data recording
under fixed conditions.

Furthermore, following cases must be distinguished:

• Symmetric Uncertainty: In case the uncertainty is symmetric, that is, that the
uncertainty amounts to the same value for all x′ with the same ∥x − x′∥-value
regardless of their orientation from x, it is sufficient to evaluate one output term
∥f(x) − f(x′)∥ for each ∥x − x′∥ . Assuming that the environmental conditions
are constant during the data recording process, monitoring how the fraction of input
data points that satisfy the Lipschitz condition develops with increasing ∥x − x′∥-
values is required for analyzing the uncertainty. Based on the results, statistical
tests and correlation studies must be applied to gain further knowledge on the rela-
tionships between the uncertainty and the system characteristics. Finally, bringing
together these findings may enable to derive a basic estimate of the uncertainty and
its dependencies.

• Non-symmetric Uncertainty: In the given context, a non-symmetric uncertainty
behavior can be concluded once two x′ that are equal in ∥x − x′∥ yield different
values for ∥f(x)− f(x′)∥. Importantly, this conclusion is valid since evaluating the
robustness with the Equation (4.7) requires that the input data points can be rep-
resented by an lp ball, which in turn necessitates the assumption of a symmetrical
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input space. If different output terms occur for same input point distances, addi-
tional studies on the dependency of the uncertainty on the orientation of x′ must be
performed to enable the development of an uncertainty-aware optimization method.
At the same time, generating input data points within the entire lp ball is tied to high
computational costs. Therefore, in the context of practical applications, specifying
the interesting directions of x′ within the lp ball is recommended. In particular, the
direction of input data points that are most likely to occur in the real-world applica-
tion can be identified to define a vector between x and x′. By generating data points
along this vector and observing the variations of ∥f(x) − f(x′)∥ enables to derive
estimates for the uncertainty inherent in x.

Apart from that, the determination of the input data uncertainty can be performed by
applying the method based on conservation equations introduced in Section 3.2.1. One
prerequisite however of this technique is that system invariants must be identified and
formulated via equations beforehand. In order to carry out the uncertainty-aware opti-
mization, the dependencies between the critical parameters of the estimated uncertainties
as well as the knowledge on the system equation fs is leveraged. Practically, this means
that the results from the uncertainty analyses, like the relationships between system pa-
rameters (e.g., lightning or temperature conditions) and the uncertainty in the input data
points allow to identify the constellation that lead to the highest fraction of the desired
output, that is, the values of X1, ..., Xn from Equation (3.1) that correspond to

η(fS) = ηmax. (4.8)

Specifically, in the case of robot applications, the dependency of the uncertainty on the
direction in the lp ball may enable to derive regions for the robot parameters and movement
that correspond to lower probabilities of undesired outcomes. In addition, this technique
can be complemented by the data collected online as will be described in Section 5.2.2.
Consequently, since the data amount for the optimization increases with the time, the
statistical significance of the uncertainty-aware optimization becomes higher. This is a
crucial advantage, especially for repetitive tasks, since the optimization becomes more
reliable and accurate. Logically, higher optimization performances ηcont are expected to
be achieved.

4.3 Continuous Uncertainty-aware Optimization

In many real-world robotic applications, an optimization with respect to the system effi-
ciency or safety is desired. While this may appear straightforward at first glance, such an
optimization requires more detailed knowledge on the system. In contrast to the discrete
optimization methods, continuous optimization addresses applications, where the objec-
tive lies in maximizing or minimizing one specified property as described in Section 2.1.3,
where the dependency with the system variables and parameters are expressed via con-
tinuous functions. In the ideal case, the relationship between the system parameters and
the optimization goal is known or available in form of an analytical function. This would
allow to identify the optimal system constellation and to adapt the state of the system
with its dynamics accordingly. Unfortunately, this is usually not the case, in particular
for complex real-world environments. In addition to the relationship between the system
parameters and the optimization, it is often not known how the environmental conditions
influence the optimization performance. While rough intuitions may be available on how
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the system components are related with the system’s efficiency or safety, incorrect ap-
proximations may result not only in a decreased optimization performance, but also in
an undesired system behavior. In this case, considering models of the parameters’ and
variables’ uncertainties are one possibility to account for the limited knowledge and pos-
sible deviations from the approximated system states. Ideally, these considerations would
enable a more accurate representation of the actual state. Specifically, estimating how
much and in which sense the system state may deviate from the anticipated values due
to possible inaccuracies in the modeled relationship between the system dynamics and
the optimization goal is of interest. In doing so, it is aimed at capturing the probability
for shifts in the output of a system due to deviations in the input data or employed tech-
nical tools. Thus, an ideal uncertainty-aware optimization would build upon an online
uncertainty quantification technique: the optimization would account for the actual un-
certainty of the system with the influence of each component and, based on this, adapt
the system dynamics to reach the optimization goal. Here, the components with dom-
inant uncertainty contributions must be monitored accurately to adapt the system once
necessary. An additional challenge occurs in tasks, that are not repetitive or are subject to
environmental changes: Logically, the statistical uncertainty in unexplored regions arises
due to the missing data. In these cases, simulation studies can be performed beforehand.
Apart from that, employing importance sampling instead of traditional MC sampling (see
Section 2.1.7) can help to enhance the generation of samples in interesting regions. To
this end, following steps are suggested for a successful uncertainty-aware optimization:

1. The relationship between the system state variables and parameters and the opti-
mization goal must be formalized or modeled in a simulation. Specifically, it is
desired to be provided with an analytical function that describes or at least approx-
imates the system.

2. The uncertainties of the system variables and parameters must be estimated regard-
ing the attribute. Here, it is required to specify the relevant parameter spaces. In
case the optimization goal is of interest for different spaces, the dependencies be-
tween these must be considered. It is assumed, that the propagated uncertainty is
obtained according to the previous Section 3.2.2.

3. The uncertainties must be incorporated in the optimization pipeline. Here, the main
challenge lies in identifying an appropriate technique: Since the goal is to improve
the optimization by considering the uncertainty, that is, by adapting the system con-
stellation (the parameter and technical components) that corresponds to the highest
η, the sensitivity is monitored in addition to the uncertainty. In doing so, two as-
pects are observed: The relationship between the uncertainty and the optimization
performance as well as the influence of each system component on the optimization
performance η.

4. The optimization is carried out by referring to the sensitivities. Practically, this
means that the uncertainty for the parameters and variables that are attributed to high
sensitivity values for η is reduced or aimed to be kept at a certain level. Depending
on the application, this may be achieved by replacing technical tools or limiting the
fluctuations of the environmental disturbances by introducing certain restrictions.
This will be discussed more thoroughly in Chapter 5.

In particular, step 3 highly depends on the application and the formalization of the opti-
mization goal. In addition to the evaluation of η that may be challenging in cases where
many parameters dependencies exist, certain parameter regions might be of higher rele-
vance. However, if not sufficient data is generated in these areas, the reliability of both
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the uncertainty quantification and the optimization will suffer from it. This chapter is
dedicated to addressing above challenges. After drawing the analogy to particle physics
and proposing the incorporation of the sensitivity as a reasonable measure for enhancing
the optimization performance in robot applications, particular emphasis will be placed on
the step 3 and step 4 to discuss the evaluation of η for robot systems.

4.3.1 Sensitivity-based Uncertainty-aware Optimization

While the entire scope of this thesis is concerned with transferring established techniques
in the domain of particle physics into robotics applications, the uncertainty-ware opti-
mization with continuous functions offers a notable set of possibilities for drawing useful
analogies. Specifically, improving the detection efficiency of particles on microscopic
scales can be expressed via optimization functions. Usually, these functions are defined
with respect to the resolution of the employed detectors. Despite the fact that the system
dynamics in robot systems is mostly described on macroscopic scales and generally for-
malized in terms of equations from the robot control domain, the experimental setups in
both particle physics and robotics share the goal of maximizing the optimization perfor-
mance η.

In the following, the similarities and discrepancies will be outlined to point out that com-
promises between the transfer and the individual adaptation in robot applications are
equally important. In addition, finding these differences and analogies will help to de-
rive appropriate optimization techniques as will be elaborated on in Chapter 5. In this
context, the sensitivity introduced in Section 2.1.5 is considered in the majority of physics
experiments to monitor the development of the uncertainty. This allows to derive counter-
measures to limiting the uncertainty to a tolerable amount or to adapt the system according
to the actual constellation.

Interestingly, although uncertainty-aware methods have been developed in the field of
robotics regarding various application scenarios, monitoring the sensitivity while analyz-
ing and interpreting the system data online has not been suggested in the context of robotic
applications. By addressing this gap, the thesis aims at exploring whether incorporating
the sensitivities in analogy to physics experiments can improve the optimization in robot
systems. In the following, the steps for establishing an uncertainty-aware optimization
technique by accounting for sensitivities are described.

4.3.2 Formulation of System Function and Optimization Goal

To perform a continuous optimization, a function describing the system in the context of
the optimization goal must be formulated. This formalization should ideally describe how
the parameters and variables are related to the optimization goal. In contrast to the discrete
optimization, continuous optimization addresses such problems where the optimization is
not carried out with respect to one desired class of outcomes, but the maximization or
minimization of one property. Therefore, the challenge lies in modeling the optimization
problem by integrating the system dynamics in a reasonable manner. First, the attribute
where the uncertainty is of interest for and the system dynamics must be specified. Im-
portantly, to enable the consideration of uncertainties, the system equations must be for-
malized accordingly with respect to the attribute and the critical parameter space, that is,
the terms introduced in Equation (2.16) must be reformulated such that the process noise
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ω(t) and the observation noise v(t) are defined with respect to the measurement. This
step stands in accordance with the formalization for the uncertainty determination of sin-
gle components as well as the propagated uncertainty in Chapter 3. Next, the optimization
goal, that is, the continuous function describing the relationship between the optimization
measure and the system parameters and variables must be defined. Usually, this formal-
ization is given by a model or must be derived. For example, if the minimization of the
system’s risk is desired, the critical parameters and variables for defining risk situations
must be specified. Importantly, it is assumed that the relevant correlations between the
parameter spaces for the determination of the accumulated uncertainty uprop have been
completed in the previous steps and are thus available.

4.3.3 Assumptions and Data Monitoring

To enable the uncertainty-aware optimization, following assumptions are made for the
remainder of this thesis:

1. The data monitoring is performed in real-time. This means that the latency in the
data acquisition process is assumed to diminish, that is, tlatency = 0 s.

2. The data flow can be monitored for all parameters and variables. As a consequence,
the state of the system can be fully described and characterized by means of the
measurement data.

3. Unless stated otherwise, all input data points are assumed to carry equal amount
of information. As a logical consequence, the absence of each data point affects
ustat equally such that the statistical uncertainty is assumed to depend solely on the
number of data points N .

4. The recorded data is available at all time steps. Particularly, unlimited data storage
is assumed.

5. Lastly, application-specific assumptions are made, which will be defined at the be-
ginning of each experiment. Particularly, these enable to justify the parameter re-
gions where the input data is sampled from as will be elaborated in Chapter 5.

Therefore, the optimization techniques that consider uncertainties are derived based on
these assumptions. While these cannot be maintained to full extent under real-world con-
ditions, the consequences of limitations will be discussed in the context of the validation
experiments.

4.3.4 Uncertainty-aware Optimization Function

The derivation of the uncertainty-aware optimization function is performed on the basis
of the equations for the system dynamics and the formalization of the optimization goal.
In particular, the first step lies in identifying the critical parameters. Usually, the opti-
mization is defined via measures that do not occur in the system function. Hence, it must
be first identified which parameters of the system function fS are related to the measures
in the optimization goal, and thus influence the optimization. In doing so, the respective
uncertainties and existing parameter dependencies must be considered. In addition, it is
crucial to define the relevant parameter spaces for evaluating η.

While the optimization goal may be stated by one equation that builds upon a limited
number of measures, monitoring them and evaluating the optimization performance might
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require the consideration of several parameter spaces. In particular, the parameter spaces
might depend on each other according to the regions that are relevant for the uncertainty
incorporation. Hence, the main challenge at this stage is the successful incorporation
of the uncertainties of the parameters and variables in the system equation into the opti-
mization function. This is essential to assess whether performing the optimization in an
uncertainty-aware fashion yields more promising results. To this end, studies that allow
to deduce the critical parameters and variables for the optimization and how they exactly
influence the optimization performance.

The main steps for deriving the uncertainty-aware optimization function can be summa-
rized as follows:

1. Identification of critical parameters and variables: First, the critical system pa-
rameters and variables for the optimization function

ηc(x⃗c) = ψx⃗c(γi, uprop(x⃗c), ...) (4.9)

must be specified. Specifically, this corresponds to the specification of the critical
parameters, the measurands and the propagated uncertainty uprop,a(pc):

ηc := fco(Y1(pc), ..., Yn(pc), uprop,a(pc)). (4.10)

Logically, the optimization function must be provided or at least approximated by
referring to the measurands Y1(pc), ..., Yn(pc). Practically, this means that it must
be specified which system characteristics must be measured to evaluate the opti-
mization goal of the respective robot application.

2. Reformulation: Based on the assignment in the previous step, the optimization
function is reformulated by using the metrological notation. To be specific, the
measurand is defined according to Equation (3.1). In doing so, the parameter spaces
γi must be considered:

fopt(a, so,1, ..., so,n) ; feng(x, u, ω), z 7→ fmetrol,system(Y1(γi), ..., Yn(γi)). (4.11)

It is worth noting that the reformulation of the optimization does not necessitate to
unify all measurands into one equation. Indeed, as described in the introduction
of this Chapter, the system equation may be split into several parts, depending on
the parameter regions and their relationships to each other. Therefore, the goal in
this step is to derive an optimization function that is defined using the metrological
formalism. In addition, the optimization performance is introduced by referring to
the desired outcome of the optimization pt(x⃗).

3. Uncertainty Specification: Logically, the uncertainties of the state variables and
parameters must be considered:

Y1(γi) 7→ Y1(γi)± uY1(γ, i), (4.12)

such that the measurand with its uncertainty uY1(γi) on the right hand side is mod-
eled via a probability distribution. In particular, it may be required to apply prop-
agation techniques to obtain uY1(γi) depending on the complexity of the system.
It is assumed that uY1(γi) has been determined via the uncertainty quantification
techniques explained in the previous Section 3.2.1 and Section 3.2.2.
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4. Critical Monitoring Step Size (Sensitivity): While calculating the optimization
performance η by accounting for the uncertainty, that is, observing the development
of η, the uncertainty values are monitored. This helps to identify dependencies. In
particular, these data must be stored and made available for the analysis in the next
step. Selecting an appropriate time window for the monitoring process is crucial
since it directly affects the accuracy of the sensitivity calculation. Furthermore, it is
highly dependent on the application and parameter space: In regions with high robot
velocities, higher monitoring rates may be desired while in regions with sparse oc-
cupancies, large time windows are sufficient. The monitoring time is denoted with
tm. In particular, the optimization performance is monitored with the sensitivity
regarding the system components:

η

(
∂fsys(γi)

∂Yj(γi)

)
. (4.13)

5. Data Evaluation/Confidence: To derive the measures to improve the performance
η, the data collected in the previous step is investigated regarding the influence of
each variable and its uncertainty. The main question is, for which set of variables the
maximum of η is achieved. The corresponding analysis is performed by sensitivity
analyses and statistical studies. In particular, when monitoring the state variables
and their fluctuations, statistical fitting methods can be applied. Thus, it is aimed to
identify following set of variables

Vopt = {Y1, ..., Yn} for η → ηmax (4.14)

Based on the amount of data considered for the analyses and the monitoring step-
size, the confidence of the derived parameter relationships is assessed. These confi-
dence values are then used to determine the optimization measures in the following
step.

6. Sensitivity-based Optimization of η : The final step of the optimization is highly
dependent on the application- specific characteristics of the robot system. Logically,
a setting with stable and minimum uncertainty is preferred. Although these states
and settings may be derived in a straightforward manner on the basis of the results
obtained in the previous step, the optimal setting may be difficult to be realized un-
der real-world conditions. For example in human-involved applications, the human
may be required to keep the walking velocity below a certain limit or the optimiza-
tion efficiency η might suffer from small disturbances in the lightning conditions.
Practically, one optimization technique here is to monitor the sensitivities simul-
taneously – that is, observing the development of the optimization performance η
for changing human velocities. Apart from that, possible steps to boost η might be
given by the adaptation of the environmental parameters or the replacement of one
technical component by such with smaller resolution uncertainties. However, deriv-
ing generally valid constellations for any type of application is impossible assuring
the maximum η. In this thesis, the derivation of optimization methods are discussed
in the context of three experiments as will be detailed in Chapter 5.

4.3.5 Uncertainty-aware Evaluation of Limits

So far, the main goal for calculating the uncertainty was the incorporation in the optimiza-
tion pipeline. However, the knowledge on the uncertainty of an entire system, that is, the
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propagated uncertainty, can help to verify quantitative requirements that are placed on the
application. This becomes particularly relevant for safety-critical systems since official
regulations exist. For example, in order to facilitate real-world human-robot collabora-
tion, these limits must be kept throughout run time. Ideally, the monitoring must be con-
ducted continuously to notify the system once essential limits are violated. While safety
limits correspond to a suitable use case where the uncertainty becomes relevant, the map-
ping on threshold is not limited. Logically, the verification of threshold can be performed
for any types of limits placed on certain parameters of the system. In the following, the
uncertainty is directly mapped on thresholds that are defined for robot applications. In
fact, these thresholds are expressed via probabilistic measures.

Here, the mapping focuses on three types that occur in safety standard literature. Accord-
ingly, the validation experiments in Chapter 5 demonstrate that the system’s safety can be
assessed via the uncertainty under certain assumptions. Formally, by referring to a limit
λ that stands for the probability of occurrence for an undesired outcome, the evaluation
is performed on the basis that the probability of a critical variable to falling below (or
exceeding) a critical limit is not larger than λ, i.e.:

Pr(a ≤ acrit) ≤ λ. (4.15)

For a real-time system, where all parameters and system variables are obtained, evaluating
this equation is straightforward. However, uncertainties in the monitoring or measurement
process of the attribute a can cause to inaccurate evaluations. In particular, above equation
must be modified to

Pr((a± ua) ≤ acrit) ≤ λ. (4.16)

In contrast to evaluating Equation (4.15), verifying whether λ holds for Equation (4.16) is
challenging since ua must be known. Especially, it is very likely that ua must be obtained
via propagating the uncertainties of all relevant components as elaborated in Section 3.2.2.

Specifically, this means that countermeasures can be directly introduced once Equation
(4.15) is violated. Therefore the probability for the occurrence of undesired happenings
is solely attributed to the uncertainties, that is∫

T

uadt 7→ λ, (4.17)

where ua is integrated over the run time T . The exact mapping depends on the definition of
the dangerous situations. For example, in Human-Robot Collaboration, dangerous events
are characterized by the human-robot distance dHR and the relative velocity vHR. Thus,
these variables would be treated as attributes. Above Equation (4.17) however is valid for
any type of robot system, where the critical variables may differ from dHR and vHR. As
will be specified in Chapter 5, the safety assessment via the mapping on the probability
limit defined by λ is suggested by

Pr

(
a±

∫
T

uadt

)
≤ acrit ≤ λ. (4.18)

In particular, the safety evaluation is conducted on the basis of the actual value of a: In
certain regions (e.g., in areas where the human is far away from the robot), a high uncer-
tainty in the attribute (e.g., the human-robot distance) may be acceptable. In these cases,
a large uncertainty would not yield a violation on λ. On the other hand, small uncertain-
ties ua may be highly influential in other cases. In the context of practical applications,
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this mapping technique should be reliable. Especially, introducing countermeasures in the
application, like the adaptation of environmental conditions or the selection of technical
tools is bound to additional efforts. This means that the reliability on these suggestions
should be sufficiently high. This reliability is given by the confidence. For example in
above mentioned use cases such as safety-critical applications or real-world systems in
general, reasonable confidence values are highly desired. Quantifying the confidence can
be performed by means of statistical tests. In addition to the confidence, specific hypothe-
ses are tested that are defined individually for each robot system in Chapter 5.

Secondly, the confidence directly depends on the amount of considered data. In addi-
tion, the aleatoric and epistemic uncertainty from the learning domain are suggested to
be treated as confidence values. Practically, this means that the aleatoric and epistemic
uncertainty, if available for the respective system, are included for the calculation of the
confidence value. While these can be generated with simulations, artificial data may be
not represent certain cases to sufficient extent. For instance, the occurrence of risk situa-
tions in real-world often originates from a lacking accuracy in the simulation. Apart from
that, theoretical models may not cover all possible situations in the real world. Especially,
constellations may be not considered that may occur due to correlation effects that were
not taken into account theoretically.

In the context of risk analyses, worst case situations are of particular interest. In addition
to their origins and the process of their evolvement, their occurrence probability is neces-
sary to develop risk minimization techniques. However, studies on worst case situations
is strongly limited due to the sparse availability of data collected under real-world condi-
tions. In addition to the variety of possible constellations leading to dangerous outcomes,
the obtained analysis results underlie low confidence values. While the first problem can-
not be solved in straightforward manner by applying statistical methods, the confidence
for the results of worst case analyses can be improved by means of importance sampling.
As will be explored in more detail in the next Sections, importance sampling enables for
dedicated generation of data points in interesting parameter regions. Although this tech-
nique has been developed and studied extensively in the domain of statistics and computer
vision, not much attention has been attributed to applying it to robot systems in existing
literature. By addressing this gap, this thesis aims at employing importance sampling
for deriving risk minimization methods with the goal of enhancing the confidence of the
uncertainty-aware optimization.

4.3.6 Interesting Regions and Importance Sampling

One assumption that must be met for enabling a reliable the uncertainty quantification,
propagation and the uncertainty-aware optimization was that the samples collected for
the calculations represent the corresponding regions with sufficient accuracy. However,
especially in real-world robot applications, this assumption may be not met. In fact, it
may be even difficult to meet this requirement as the interesting parameter regions might
exactly be those where only a sparse amount of data is generated. For example, it may
be unnecessary to generate samples in regions that will not be occupied by the robot
due to possible limitations in the configuration. On the other hand, specific areas may
be of higher interest for the optimization although they may be not occupied often: In
order to derive an effective optimization algorithm, enhancing the sampling process for
the regions of interest is recommended. Particularly, the necessity of a refined sampling
algorithm might draw from a tolerated threshold for the approximation. For example, a
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high accuracy is highly desired for the optimization techniques in safety-critical systems,
as also elaborated in the work by Gandhi et al. in [31]. In the following, we show how
this can be achieved by an algorithm based on importance sampling. As introduced in
Section 2.1.7, importance sampling differs from classical Monte-Carlo sampling in the
sample generation stage: Particularly, importance sampling enables to focus on specified
regions of interest. This helps to reduce the Variation in the Approximation Error (VAE) in
cases with low probability densities, that is, those cases that contribute to low occurrence
probabilities like risk events. In the following, a defensive version of importance sampling
that is employed to simplify the sample generation in areas with low probability densities.

Defensive Importance Sampling

In the context of this thesis, extending the uncertainty-aware optimization by means of
importance sampling is reasonable for the risk reduction. In contrast to the image clas-
sification and humanoid robot grasping experiments, high approximation errors in the
optimization algorithms for safety-critical environments can result in severe injuries on
human beings. Therefore, integrating a method in the optimization pipeline that reduces
the variance in the approximation error (VAE) is of particular interest. Formally, this is
achieved by considering a different latent probability density function q that is referred
to as the proposal density q(x). The idea behind this proposal density is to assign higher
sampling probabilities to the regions of interest. For instance, if the goal lies in the risk
minimization, the occurrence of hazardous events is very rare. Here, the introducing
q yields to enforcing the sample generation in the parameter regions corresponding to
safety-critical events or even accidents.

According to the safety regulations, the danger level in Human-Robot collaboration di-
rectly depends on the relative distance between humans and robots. Hence, q would assign
high probability occurrence values in low distance regions. Importantly, introducing q(x)
requires to weight the calculation of the VAE accordingly: Shortly, to enable the consider-
ation of q instead of the actual probability density function p necessitates the modification
in the equation for the VAE according to Equation (2.15) . Basically, following this thumb
rule enables the identification of a reasonable q as explained and mathematically formal-
ized in [61]. Obviously, the main challenge lies in the choice of the proposal density q(x).
As explained in Section 2.1.7, this can be achieved by the fraction f(x)p(x)

q(x)
. However, even

if the requirement is matched such that q(x) ̸= 0, the fact that the proposal distribution
stands in the denominator may lead to errors. Especially when it converges faster to 0
than the product f(x) · p(x), undesired errors are amplified. To prevent this, the concept
introduced in [14] suggests to generate a third probability density function by mixing the
values of p(x) and q(x). Following this concept, an importance sampling technique based
on grid partitioning is derived in the next section.

Grid-based Importance Sampling

Usually, estimating the continuous importance sampling distribution is difficult and inef-
fective in terms of the computation time. Instead, as was convincingly proven and verified
via experiments in the publications ([14], [48], [53]), grid-based importance sampling is
sufficient for most robot applications. In particular for the uncertainty-aware optimization
algorithm that was derived in the previous Sections, it is of interest to facilitate online ap-
plication. Apart from that, it has not been studied to date whether importance sampling is
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suitable for the goal of improving the analysis of cases with low occurrence probabilities
in robot systems. To this end, this thesis provides the first step by developing a grid-based
importance sampling algorithm enabling the integration of this statistical technique in the
optimization of robot applications.

Essentially, grid-based importance sampling corresponds to a simplified version of im-
portance sampling, where the work space is partitioned in 2D cells. Indeed, the grid
partitioning must be specified in terms of the number of grids and the edge size. Still, the
grid-based approach simplifies the estimation of a reasonable proposal density. In fact,
the densities are calculated separately for each cell under the assumption that the cells are
independent from each other. To be specific, a probability density qG(x) is defined for
each of the grid partitions in G, where G formally is represented as a matrix. Here, the
grid partitions correspond to 2D cells of equal size. The probability density qG(x) for any
point in the work space is calculated via

qg(x) =

∑
x∈G p(x)∑n
i=1 p(xi)

, (4.19)

where the nominator equals the sum of the probability densities of the grid cells and the
denominator the total density. Therefore, the proposal distribution for any point in the
work space is obtained by dividing the density of critical samples in one grid cell by the
total density of the entire work space. In order to estimate the number of cells for the
work space, an algorithm of two stages is developed. Inspired by the contribution in [14],
a learning phase is conducted prior to the importance sampling. In this phase, traditional
MC is applied to find the clusters with high probability densities. Here, finding the appro-
priate amount of samples that are needed to identify these high probability density clusters
is challenging. For this thesis, it is assumed that the work space is rectangular and thus can
be split in rectangular cells. To be specific, the suggested approach is split in two stages:
The learning stage and the importance sampling phase. While the goal of the learning
stage lies in the identification of appropriate parameter settings, the importance sampling
itself is conducted afterward. In the following, these two phases will be explained.

Learning Stage:Parameter Specification

First, the parameters for the grid-based importance sampling such as the number of grids,
must be found. From formal viewpoint, this step corresponds to an abstracted version of
finding an the proposal distribution q(x). First of all, the space D must be isomorphic.
This assumption must be met to ensure that the work space can be partitioned into rect-
angular grids. Usually, the model of the work space is obtained by recording data points.
However, as mentioned above, an essential limitation comes from the limited amount of
data. In the first part of this step, traditional MC sampling as introduced in Section 2.1.7
is performed along the entire work space. Here, the goal lies in finding all clusters with
high densities. Obviously, it is difficult to set the required number of samples that are
required to draw conclusions. Despite from the minimum number of samples, specifying
the parameters for the grids and importance sampling is difficult due to complex relation-
ships between the search algorithm. As will be introduced in Chapter 5, the scenarios
where importance sampling is applied to within this thesis will be limited to simulation
experiments with reasonable complexities. Particularly, the interesting regions for the risk
occurrence are not highly challenging such that an approximated version of the parameter
specification approach is sufficient. To this end, the dangerous space is assumed as a 2D
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circle. In order to perform the learning, that is, the identification of the equivalent to the
proposal distribution q(x), a fraction β of the total amount of generated samples is used.
Intuitively, this fraction grows with the sparseness of interesting regions. The need for ap-
plying importance sampling increases with the relative sparseness of generated samples
in areas of interest. In addition, the sample number in the learning distribution must be
sufficiently high to find at least one sample per cluster.

Although these issues in importance sampling have been studied extensively in the do-
main of mathematics like in [41] and [61], a generic technique to estimating the optimal
parameter setting and the number of required samples does not exist to date. Thus, the
necessary parameter relationships must be estimated and considered individually. To this
end, the following parameters are studied and specified:

1. Sample fraction β considered for the learning stage.

2. Number of edges e.

3. Amount of mixture for defensive importance sampling.

First, an approach to estimate the number of samples and grids is introduced. By referring
to the example with the circle, the variance in the approximation error was estimated for
three different values of β in Figure 4.1. Also, the dependency on the edge number is
considered as shown in Figure 4.2. From these plots, it can be recognized that the choice
of the fraction β does not affect the VAE significantly. In addition, it seems that the
number of initial samples grows with the fraction β for importance sampling.

(a) The VAE is shown vs. the sample number
for 5 edges and 10 edges. The blue line corre-
sponds to the results obtained by the method
for the self finding edges.

(b) The VAE is estimated for different fractions
β. The figure shows that the VAE decreases
with the number of edges, that matches the
expectation.

Figure 4.1: Above subfigures depict the influence of the parameter β on the VAE.

The second parameter that must be specified is the number of edges e, where the number
of grid cells can be calculated by en with the dimension n of the domain D. As demon-
strated in Figure 4.2, the VAE behaves differently for the number of samples and edges.
Obviously, an optimal number of edges cannot be estimated in straightforward manner.
However, the existing dependency can be leveraged to approximate the ideal number of
edges. To do so, a density-based edge filtering is suggested. Specifically, it is aimed at
using the learning samples that were used to initialize the grid partition G for finding the
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Figure 4.2: The relationship between the edge number and the amount of samples is
shown.

number of edges. Intuitively, the number of edges are expected to be proportional to the
amount of samples. At the same time, it is known the the number of cells is proportional
to the n-th power of the edges en such that the edges can be computed by the equation

edges ∝ n
√
density. (4.20)

Therefore, the determination of the edge number can be performed by including the frac-
tion |s|/β for the determination of the edge number, as well as the area d of the entire
work space:

e = n

√
|s|
β
· 1
d
. (4.21)

Figure 4.2 shows a logarithmic increase of the number of edges when the amount of grid
cells is increased linearly. Importantly, it was compared whether applying Equation (4.21)
yields lower VAEs than fixed grid resolution approaches. As can be seen in Figure 4.1,
estimating the edge number by above equation is leads to a smaller VAE values.
The third parameter that must be fixed is the amount of mixture. According to the con-
tribution of Owen et al. in [61], combining the importance distribution with a certain
fraction with the original probability density p(x). While Owen et al. suggest a mixture
between 10% and 50% based on theoretical derivations in [61], the exact amount of frac-
tion must be specified individually. This means that the mixture must be chosen according
to the robot application and its parameter regions of interest. Of course, the amount of
grids and edges influences the value of the fraction as well. For the experiments in this
thesis that are described in Chapter 5, the mixture is set to 25%.

Importance Sampling Stage

In the second phase, the importance sampling algorithm is designed according to above
parameter constellation. The remaining step that must be taken at this stage include the
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reweighting. Following Equation (2.14), the samples must be reweighted to equal out the
effect of the proposal density. Logically, this adjustment also depends on the application.
In terms of the grid-based importance sampling algorithm that is applied in this thesis, the
reweighting is performed by the area of the work space AG. Specifically, the fraction is
given by

|C| · AG

Ag

, (4.22)

where |C| denotes the value of the critical samples and thus corresponds to q(x).
The algorithm for the suggested importance sampling is shown in Algorithm 1.

4.4 Summary of Chapter

Building upon the uncertainty quantification and propagation methods in Chapter 3, uncer-
tainty-aware optimization techniques were presented. To be specific, the approaches to
distinct optimization were split in a binary quadratic unconstrained optimization problem
and the binary optimization with linearizable neural networks. While the first method
performs the optimization on the basis of a pre-defined cost function, the optimization
with linearizable neural networks refers to the analogy between the robustness and the
metrological uncertainty notation introduced in Section 3.2.2. In particular, it was sug-
gested to assign meanings to the parameters in the Lipschitz equation by referring to the
availability of the ground truth data points. This draws from the fact that the sensitiv-
ity analysis as well as the accuracy in the uncertainty quantification, and thus the quality
of the uncertainty-aware optimization highly depends on the amount of available ground
truth data. Importantly, in the case of neural network classifiers, the quality of the train-
ing data plays a decisive role. By considering this in the unification, it was aimed at
accounting for the data quality and amount.

In addition, continuous uncertainty-aware optimization techniques were derived in Sec-
tion 4.3. Here, high emphasis was laid on estimating and incorporating the sensitivities.
To this end, it was elaborated on the system description and the formulation of optimiza-
tion goal. Essentially, this corresponded to an extension of the basic notation provided in
the beginning of Chapter 3. In order to facilitate the application to robot systems, it was
explained how the uncertainty-aware optimization function can be described by identify-
ing the critical system parameters, reformulating the system equation and integrating both
the uncertainties and the sensitivities. Furthermore, the importance of the confidence that
basically reflects the trustworthiness of the optimization process was highlighted.

Apart from that, a technique to evaluate quantitative limits on the basis of the uncertainty
was developed in Section 4.3.5. As mentioned in the previous Chapters, this thesis aims
at providing a method to evaluate safety limits of robot systems. With regard to this goal,
a technique to mapping the uncertainty to probability limits was introduced. In fact, this
is motivated by the definition of the standards provided by the International Organization
for Standardization (ISO), that are expressed via the probability for the occurrence of
risks. Thus, the presented mapping technique showed that the derived uncertainty can be
directly employed to assess safety of robot systems.

Here, one possible challenge arises due to the low amount of data on risk events. While
assessing safety is highly important for real-world robot applications, the accuracy of the
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evaluation technique directly depends on the amount of data that reflect dangerous events.
In order to overcome this issue, and to still enable the development of a reliable safety
assessment method, an algorithm based on grid-based importance sampling was intro-
duced. In contrast to traditional Monte-Carlo sampling, where samples are generated in
random manner, importance sampling aims at enforcing the data generation in interest-
ing parameter regions. In the case of safety evaluation, more data is created in regions
where dangerous events are likely to occur. Since the focus of this thesis does not lie in
studying the quality of importance sampling techniques, a simplified grid-based version
is suggested.

In the next Chapter, the above developed uncertainty-aware optimization methods will be
applied in real-world robot experiments. By doing so, the optimization functions will be
evaluated by means of the optimization performance η. Specifically, the experiments will
explore whether incorporating the uncertainty yields improvements of the performance in
robot systems.
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Algorithm 1 Grid-based Importance Sampling
1: procedure IMPORTANCESAMPLE

2: n← number of total samples
3: β ← fraction of samples for learning phase s
4: e← number of edges per side
5: Gaussian← function to create Gaussian noise
6:
7: G← Grid partition (sample space)
8: S← sample(n ∗ β)
9: C← Critical samples in S

10: Sort critical samples into partition G:
11: for c ∈ C do
12: i← Index of cell that contains c in G
13: G[i]← G[i] + 1
14: end for
15: t← 0 ▷ Helper variable (density of all grid cells)
16:
17: Calculate total density (all cells):
18: for g ∈ G do
19: g ← g

|C|
20: g ← g + Gaussian()
21: t← (t+ g)
22: end for
23: Adjust density (account for added Gaussian noise):
24: for g ∈ G do
25: g ← g

t

26: end for
27:
28: r ← n ∗ (1− β)
29: output← 0
30: for g ∈ G do
31: S ← sampleg(r ∗ g) ▷ samples taken inside g
32: C ← critical samples in S
33: A← Area of g / Area of sample space
34: output← |C| ∗ A

g

35: end for
36: output← output

r

37: return output
38: end procedure
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This Chapter intends to explore and validate the applicability of the uncertainty-aware
optimization methods presented in the previous Chapter to robot systems. Basically, the
developed techniques can be applied to any types of robot systems, where a metrological
representation is provided. In addition, the possibility to record data on the critical system
variables must be given.

As elaborated in Chapter 1, the applicability of these methods to use cases from the do-
main of natural sciences has been proven successful. However, the question arises whether
these notations and methods can be directly applied to robot systems. While the formal-
ization may be carried out in analogous manner, studying the applicability and benefits
of uncertainty-aware approaches in robot applications may motivate a stronger use of
uncertainty-aware techniques in robotics. Therefore, three robot applications are intro-
duced that serve as examples to validate the uncertainty-aware optimization algorithms
developed in Chapter 4. In doing so, state-of-the-art literature is briefly summarized at
the beginning of each application example to point out the lack of uncertainty-aware op-
timization techniques in the respective subdomains.

1. Maximization of Successful Robot Grasps: The first application falls into the cat-
egory of robot grasping. Specifically, Section 5.1 explores how modeling the char-
acteristics of robot grasps in an uncertainty-aware manner influences the optimiza-
tion performance. Specifically, the optimization corresponds to the maximization
of the rate of succeeded grasps. A humanoid robot grasping application is intro-
duced, where heuristic uncertainty estimates are integrated into the grasp selection
pipeline. Since these heuristic estimates are provided, the uncertainty quantifica-
tion and propagation steps that were developed in Chapter 3 are not applied here.
In fact, this application intends to point out that replacing scalar representations by
uncertainty-aware models can enhance the optimization performance significantly.

2. Minimization of Inaccurate Image Classifications: Section 5.2 strongly focuses
on the determination of a system’s uncertainty by bringing together notations from
different domains. By referring to the optimization method for systems with lin-
earizable NNs in Section 5.2.5, an industrial robot application for image classifi-
cation is presented. While the goal lies in minimizing the rate of incorrect image
classifications in an uncertainty-aware fashion, this Section elaborates on the rein-
terpretation of the parameters in the Lipschitz equation in Equation (4.7).

By demonstrating that integrating the combined uncertainty into the optimization
pipeline yields an enhanced optimization performance η in the context minimizing
incorrect image classifications, the validity of the proposed unification is discussed.
Next, the experiments are extended to 3D human position detection. In particular,
the practicability of this uncertainty metric for real-world human-robot collabora-
tion is discussed.

3. Safety Evaluation and Risk Minimization in HRC: Section 5.3 is concerned with
validating the majority of the methods developed in this thesis. Specifically, the
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experiments are performed in the context of safety evaluation and risk minimiza-
tion of robot systems. First, the uncertainty quantification technique for black box
tools derived in Section 3.2.1 is validated on real-world data in Section 5.3.3. Sec-
ond, the correctness of the uncertainty propagation algorithm introduced in Section
3.2.2 is verified by experiments performed in a PyBullet simulation environment.
Afterward, the real-world applicability of the uncertainty propagation algorithm for
evaluating safety limits (e.g., standard ISO 13849) is studied in Human-Robot Col-
laboration (HRC). To this end, the mapping technique described in Section 4.3.5 is
validated.

In order to explore whether the grid-based importance sampling technique intro-
duced in Section 4.3.6 contributes to a higher accuracy in the risk analysis, simu-
lation experiments are performed in Section 5.3.4. Particularly, these experiments
explore whether the introduced grid-based importance sampling approach is suit-
able for studying risk regions by accounting for both the uncertainty and severity of
accidents.

The findings on the above applications are summarized in Section 5.4.

5.1 Binary Uncertainty-aware Optimization for
Humanoid Robot Grasp Selection

Robot Grasping is one well-studied domain in robotics. Especially, developing techniques
to robot grasping would allow to employ robots in a variety of applications reaching from
industrial systems to daily tasks. The grasping process of a robot can thereby be divided in
different steps. Also, the characterization and formal description of a robot grasp highly
depends on the application and the employed robot. Apart from the specifications of the
system, the robot is generally faced with the challenge of deciding on an action to execute.
In fact, studying this decision making step is fundamental for robot manipulation tasks.

In the context of robot grasping, possible grasp candidates are commonly generated in
first place. To do so, the robot is provided with information on the scene, for example
with point clouds. Based on this, the robot selects the most promising grasp candidate
for execution. Here, one major challenge arises from the incomplete knowledge on the
scene. Existing methods in literature focus on methods that build upon neural networks.
Essentially, the goal lies in predicting grasp poses or the classification of promising grasp
candidates. While these approaches have proven efficient , one drawback arises from
their black-box character. Especially, the missing understanding on the decision-making
process of neural-network based methods places a burden on deriving approaches that may
further enhance the grasp success rate. Particularly, it is difficult to identify the relevant
characteristics of the grasp candidates that affect the grasp success.

However, gaining knowledge on how the grasp, or more specifically the metrics that de-
fine the grasp, influence the grasp success may be beneficial on a broader scale. In par-
ticular, a detailed knowledge would enable to eliminate factors that influence the success
negatively. Following the basic motivation of this thesis, that lies in the exploration of
uncertainty-aware optimization techniques, this Section will focus on the incorporation of
uncertainties into the grasp selection process and the afterward evaluation with the grasp
success rate. In fact, the grasp will be described by so-called grasp metrics that character-
ize each grasp candidate. While several approaches in literature like [64] and [18] propose
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Figure 5.1: Experimental Setup with the humanoid robot ARMAR-6 for grasp selection.

the consideration of uncertainties for the grasp selection, the authors do not analyze the
effects on the grasp success.

In the context of the uncertainty-aware optimization techniques introduced in the previous
Chapter 4, robot grasping falls into the category of a binary optimization. Specifically,
each grasp are distinguished in either succeeded or failed, while the optimization goal
lies in attaining a maximum rate of succeeded grasps. After expressing the optimization
problem in terms of the grasp metrics and its uncertainties as suggested in Section 5.1.3,
the experimental setup of the humanoid robot grasping application will be presented. In
doing so, the incorporation of heuristic uncertainty estimates will be discussed. Based on
real-world experiments with the humanoid robot ARMAR-6 [7], the effects on the grasp
success are analyzed statistically. In a broader sense, this section intends to highlight the
effects of considering the uncertainties in a robot application, where the uncertainties are
assumed to be provided.

5.1.1 Related Work: Uncertainty-aware Robot Grasp Selection

First, a brief outline of state-of-the-art literature on uncertainty-aware robot grasp selec-
tion is provided. While development of an uncertainty-aware grasp selection technique
serves merely as an example to validate the applicability of the binary optimization, the
explicit consideration of uncertainties in the grasp selection process complements exist-
ing methods in the domain of robot grasping. Logically, all contributions share the goal
of maximizing the rate of successful grasps. Here, optimizing the grasp selection on the
basis of generated grasps plays a crucial role.

Here, several contributions suggest learning-based methods to derive ranking methods of
grasp candidates or their prediction. For example, the paper of Erkan et al in [24] in-
troduces an extension of a Kernel logistic regression training algorithm, thereby bringing
together semi-supervised and active learning methods. With that, labeled grasps, even if
extremely limited in their availability, can be referred to for calculating success probabil-
ities for unseen grasp candidates. The core idea lies in leveraging that similar grasp con-
figurations yield similar success and failure probabilities. In the context of uncertainties,
an uncertainty-based active learning approach is applied. Here, the uncertainty describes
the entropy: the algorithm queries grasps with the highest entropy to assign these with the
correct labels. Similarly, Goins et al. develop a Gaussian Process based classifier with
12 different grasp metrics in [34]. In fact, a Gaussian Process based classifier is trained
and validated with data generated in simulation. Thus, the grasp quality is predicted prior
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to the execution of a grasp: Specifically, a continuous value between 0 and 1 reflects the
success probability of the respective grasp.

While these works as well as Kappler et al in [45] present methods to predicting the grasp
success based on black box tools such as machine learning algorithms that are not fully
understood to date, Chen et al. introduce a more transparent approach in [18]. Here, four
hand-crafted metrics are suggested to describe a grasp. By combining these metrics with a
probabilistic surface representation, the likelihood for succeeding the grasp is computed.
Particularly, the surface representation is provided in an uncertainty-aware fashion, while
the authors rely on fixed values of heuristic estimates. Essentially, the uncertainties are
not updated during operation, which is a discrepancy to our technique. Apart from that,
Rubert et al. in [69] elaborate on existing machine learning methods by comparing their
performance in predicting the success probability. However, the authors refer to known
objects in simulation such that the comparison with the grasping experiments conducted
in this thesis is not reasonable. Importantly, the binary optimization presented in Section
5.1.3 is extended by heuristic uncertainty estimates of grasp metrics that define grasp can-
didates. Thereby, a technique to selecting grasp candidates with the goal of enhancing the
rate of successful grasps is developed. Importantly, it is assumed that the grasp generation
is completed such that the method focuses solely on the selection.

5.1.2 Grasp Metrics and Uncertainties

To apply the binary uncertainty-aware optimization introduced in Section 5.1.3, each
grasp candidate must be expressed by the system’s variables or metrics. Furthermore,
following assumptions will be made for the remainder of this section:

1. The robot is provided with visual information of the objects that are offered for
grasp selection.

2. Each grasp candidate g is fully described by four grasp metrics m1, ...,m4.

3. The grasp metrics m1, ...,m4 are independent.

4. All uncertainties of the grasp metrics are modeled as Gaussian distributions: umi
∝

N(µi, σ
2
i ).

5. The data set collected with the humanoid robot ARMAR-6 serves as the population
for the statistical studies. This means that this data set is assumed to contain all
possible grasp candidates.

Here, the grasp metrics are obtained from visual perception. To be specific, a method for
Probabilistic Action Extraction and Fusion (PAEF) published in [64] is applied. Briefly,
PAEF is provided with point cloud data of the scene and yields clusters that consists of
points. These clusters are denoted as Supervoxels. By referring to these Supervoxels, a
coordinate frame is established. This coordinate in turn enables to track action hypothesis
of the scene by referring to multiple observations. Apart from the PAEF, an unscented
Kalman Filter (UKF) is employed to determine the covariance of the action’s executions
pose. In addition a Hidden Markov Model tracks the number of scene observations, that
allow to estimate action hypotheses. Based on these, a further measure that is included
in the characterization is the existence certainty ϵ. Essentially, this value denotes the
probability for existence of this action.

The four grasp metrics that characterize each grasp candidate g are defined in the follow-
ing. In addition, it is specified how the respective uncertainties are derived.
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(a) Manipulability
(b) Support Graph: The support relations are obtained by

applying the PAEF.

Figure 5.2: Illustration of the manipulability and the support relations.

Grasp Height (h): The height of a grasp candidate h reflects its shortest distance to the
floor. Logically, the value of h is larger for objects that lie on the top of the clutter.
The corresponding Gaussian distribution that is defined by the mean value and the
standard deviation of the height that reflects the uncertainty is directly obtained by
the PAEF.

Distance to Object Center (d): The distance amounts to the distance between the grasp
candidate to the center of the bounding box of the object closest to the grasp pose.
For the calculation, a segmentation of the scene is combined with above described
PAEF. Here, the mean value µd corresponds to the distance while the variance σ2

d is
approximated by 10% of the bounding box.

Support Relations (s): This metric indicates the number of objects that are supported by
the point cloud segment closest to the grasping pose. It is computed by means of
the PAEF and the segmented scene. The parameters for the Gaussian distribution µs

and σ2
s are determined via the probabilistic support graph presented in [6]. Briefly, a

support graph provides the information on the support relations between the objects
in the scene. Specifically, a probabilistic support graph provides probabilities that
can be used to specify the uncertainty parameters in this thesis.

Manipulability (a):The manipulability denotes how freely the robot end-effector can
move at a given position. Details on the derivation of this quality metric are pro-
vided in [76]. Especially, a is determined by referring to the grasp pose from the
PAEF. In order to calculate the uncertainty parameters µa and σ2

a, random config-
urations of the robot joints are sampled. The manipulability is defined for a vox-
elized workspace and is updated according to the sampled parameters. Therefore,
this metric assigns higher scores to grasps that can be easily reached by the robot.

5.1.3 Optimization Function and Uncertainty Incorporation

To this end, above defined grasp metrics are expressed via Gaussian distributions accord-
ing to the respective uncertainty parameters µi and σ2

i , where i indicates the metric. The
goal in the grasp experiments lies in maximizing the rate of succeeded grasps. Here, grasp
attempts that are grasped by the humanoid robot ARMAR-6 are categorized as succeeded
while those that are not successfully completed are classified as failed grasps. Following
the optimization method presented in Section , this problem is addressed by framing it
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as an quadratic unconstrained binary optimization problem (QUBO). Due to the binary
distinction between successful and failed grasps, where the goal lies in improving the
rate of succeeded grasps, employing this optimization method is reasonable. Specifically,
it is desired to identify the most promising grasp candidate among the suggested ones.
Accordingly, the cost function is defined as

zQ,g(α,mi, β) := α ·
n∑

i=1

ftot,i (5.1)

where the optimization goal lies in finding the grasp gopt with

g⃗opt = argmax zQ,g(g⃗). (5.2)

Above equation corresponds to the specified form of Equation (4.1). Particularly, zQ,g

differs in the constants α: these are introduced for the selection of the grasp candidate
due to application-specific reasons: As described above, the existence certainty ϵ is not
modeled as a Gaussian distribution, but remains as a scalar instead. However, it states the
probability for the existence of a grasp candidate at a given position: If this probability
amounts to ϵ = 0, the grasp candidate is assumed to not exist and the calculation of the
cost function is not performed. In the given application, the cost function is referred to
by the term score since higher scores are linked to grasp candidates that are preferred,
while those with low scores should ideally be neglected by the robot. In order to perform
the experiments, a reference data set is collected under real-world conditions. This data
set serves as the basis to perform the optimization. In particular, above defined grasp
metrics h,d,s and a, that is, the respective Gaussian distributions, and the scalar values
for the existence certainty ϵ are monitored during run time and saved. Afterward, the
data set is divided in two subsets: One data set that contains all succeeded grasps and the
remaining one with all failed grasp attempts. As a result, each of the grasp metrics can
be characterized by two probability distributions (succeeded and failed grasps). These
distributions serve as the basis for the uncertainty-aware optimization.

5.1.4 Experimental Setup: Humanoid Robot Grasping with
ARMAR-6

In order to study the validity of the above suggested optimization function, grasping exper-
iments are performed with the humanoid robot ARMAR-6 [7]. As specified by assump-
tion 4.1 in Section 5.1.3, a data baseline data set that acts as a basis for the optimization
must be collected.

To this end, more than 1100 grasp attempts on unknown objects are conducted under real-
world conditions by employing ARMAR-6. Specifically, the experiment corresponds to a
box emptying experiment, where the unknown objects are given by five plastic pipes, four
boxes and two metal pipes. These objects are randomly distributed in the box as shown in
Figure 5.1. The grasp candidate extraction is performed by the PAEF method introduced
above. In addition, the reachability of the grasp candidates and its inverse kinematics
are checked prior to performing the grasp. Importantly, all of these grasps are selected
randomly. After executing the grasp, the robot placed the object is placed back into the
same box, thereby introducing random changes to the scene. In case the scene was not
changed for several attempts, for example because no object was grasped successfully
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Figure 5.3: Probability density functions (PDFs) for the succeeded (black) and failed
(red) grasp attempts performed in the random grasp selection experiments.

or the same object was grasped repeatedly, the objects were randomly rearranged by a
human operator.

For the executed grasps, above defined grasp metricsm1 tom4 as well as the existence cer-
tainty ϵ are determined. Thus, each grasp is characterized by four Gaussian distributions
and one scalar value for the existence certainty. Most importantly, it is stored whether the
grasp attempt succeeded (s) or failed (f). As mentioned above, two curves are obtained for
each grasp metric (one corresponding to the succeeded and the second one for the failed
attempts) as shown in Figure 5.3. Specifically, the curves in the Figures are obtained
by building the sum of the Gaussian distributions that represent the executed grasps and
normalizing the result to obtain the probability density functions. From 932 randomly
executed grasp attempts, 304 were successful while 628 failed. Hence, the success rate in
the random grasp selection amounts to 32.6%.

5.1.5 Uncertainty-aware Sensitivity Optimization

To validate whether the rate of successful grasp attempts increases by incorporating the
uncertainty-aware sensitivity optimization function, a second round of experiments is con-
ducted. Importantly, the experiments are performed with the same experimental setup
under the same conditions. The only difference lies in the grasp selection: Instead of ran-
domly choosing them, the robot executes the grasp with the the highest score evaluated
by Equation (4.5). To evaluate this equation, the Kullback-Leibler divergence between
the curve for the succeeded and failed curves is determined. In fact, the Kullback-Leibler
divergence reflects the sensitivity. The influence of one metric on the success of a grasp
candidate is modeled by the difference in the curves, that is captured by the KL diver-
gence.

However, in contrast to the experiments in Section 5.2, the sensitivity measure is static.
This means that it is computed one time by referring to the baseline data set such that all
grasp candidates are assigned to the same KL divergence values. Since it is desired to
consider the individual characteristics of the grasp candidates as well, the likelihood of
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Figure 5.4: The uncertainty-aware sensitivity optimization is performed on the basis of a
raw point cloud. After applying a region growing algorithm and the proba-
bilistic action extraction, above described grasp metrics are computed based
on the grasp poses and the segmented scene. In particular, these metrics are
modeled as Gaussian distributions that yield the PDFs on the right hand side.
Finally, the grasp score z is calculated. Figure taken from [10].

each grasp candidate to belong to the succeeded and failed grasps is incorporated as was
specified in Equation (5.1). This means that each grasp candidate is assigned to its z that
acts as a ranking score. The robot executes the grasp with the highest z-value.

5.1.6 Results and Evaluation

Apart from the baseline data collection, additional 187 grasps are performed by selecting
the grasps according to the uncertainty-aware sensitivity optimization in Equation (5.2).
In this setting, 138 successful grasps were carried out that corresponds to a success rate
of 73.8%. Hence, an enhancement of 43.8% was reached by selecting the grasps with
the suggested uncertainty-aware optimization function. As can be seen in Figure 5.3, the
height metric is by far most influential: Here, the discrepancy between the succeeded and
failed grasps, and thus the KL divergence is dominant which can be seen in Table 5.1. In
particular, the influence of the remaining metrics seems negligible on first sight. However,
in specific regions, the distance becomes influential. While this can be roughly recognized
in the plots, dedicated statistical analyses are performed to gain a deeper understanding
on the relationship between the metrics.

5.1.7 Evaluation and Results

Statistical Analyses: Influence of Metrics

From statistical viewpoint, the data collected by conducting 187 grasp attempts corre-
sponds to a rather low number of samples. Thus, stating the confidence of the following
analyses is reasonable. In first place, it is investigated whether the metrics are correlated
with each other. Since it is assumed that the metrics are independent, it is studied how
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Table 5.1: Kullback-Leibler divergences of the metrics obtained from random grasping.
Metric Kullback-Leibler Divergence

Height h 0.460
Distance d 0.034

Support Relations s 0.014
Manipulability a 0.010

Figure 5.5: The correlation between the Height metric h and the grasp score z for the
grasps performed via the uncertainty-aware binary optimization.

the each single metric is related to z. First, it is of interest how the metrics correlate with
the score z. This is quantified by means of the intercorrelaction value (IC). Specifically,
the IC is calculated for all four metrics. As shown in Table 5.2, the correlation between
the height and the ranking score z is dominant. In fact, the IC value amount to more than
twice of the correlation with the distance d.

In Figure 5.5, two clusters can be recognized. Especially, the IC values between the
score and the height are not linearly correlated in these clusters. Thus, the IC values
are determined for these clusters separately. According to the findings in Table 5.2, the
correlation between d and z as well as the IC value between a and z become negative.
In particular, the amount of the IC value with the distance increases significantly. This
indicates that for small differences of the height in the regions of Cluster 1 and Cluster
2, the distance to the object center d also plays a relevant role for the grasp selection.
Interestingly, the global IC value of the distance reflects that objects with larger distances
to the object center are preferred. However, the sign obviously changes in Cluster 1.

Generally, these results are not sufficient to derive conclusive statements concerning the
preferences of the metrics. This draws from the missing knowledge on the dependency
between the metrics: For example, the significant dominance of the height metric might
automatically lead to the selection of objects with larger distances to the object’s center.
In addition, the confidence of the obtained findings must be accompanied by the statistical
uncertainty since 187 grasps correspond to a relatively small data amount.
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Table 5.2: Correlation and intra-cluster correlation (IC) values between the final score
and the metrics.

Metric Corr. with z IC Cluster 1 IC Cluster 2
Height h 0.8267 0.3592 0.2236

Distance d 0.2998 -0.2967 0.1387
Support Rel. s -0.0982 -0.1424 -0.1902

Manipulability a 0.0345 -0.0749 -0.0166

Influence of the Uncertainties and the Optimization Performance

Apart from correlation studies to explore the dependency between the metrics and the
score, the explainable nature of the optimization method enables to analyze also the influ-
ence of the uncertainties. As described above, the uncertainties of all metrics are assumed
to follow the Gaussian distribution. Now, the goal is to analyze the influence of uncertain-
ties on the success rate. Of course, these analyses are limited since experiments only were
conducted by considering one uncertainty constellation. Nevertheless, rough conclusions
can be derived by applying statistical tests on the baseline data set, where the grasps were
selected randomly.

In the first step, the bootstrapping technique introduced in Section 2.1 is applied to the
set of succeeded grasp attempts. By relying on the Central Limit Theorem, 10.000 sam-
ples are drawn from the distribution of the succeeded grasps 10.000 times. This process
is performed for each metric. As a result, 10.000 histograms are obtained with 10.000
data points each for each metric. The resulting Gaussian distribution of the mean values
provides information on the mean value µs for the respective metric. Importantly, these
Gaussian distributions serve as the basis for the statistical tests to find out whether one
grasp candidate would fall into the group of succeeded or failed grasp attempts.

In the second step, the Gaussian distribution describing the single grasp candidates are
modified by varying the standard deviation σ. Logically, this leads to a different PDF
representing all grasps since this distribution is obtained by summing up and normalizing
the distributions of all single grasps as shown in Figure 5.6.

In the third step, samples are drawn from the modified distribution. By applying the
p-test explained in Section 2.1 with respect to the metrics’ distributions estimated in the
previous step, it is explored whether the grasp candidate belongs to the succeeded or failed
attempts. In doing so, the approximated success rate is determined.

Obviously, the obtained results merely correspond to approximations. Among other fac-
tors, the amount of data collected for the baseline data set affects the reliability of the
obtained result. These steps are performed for three values of σ for the height h and the
distance d since these two metrics influence the grasp selection in a dominant manner.
The results are presented in Table 5.3.

On first glance, it might seem surprising that lower uncertainty values seem to result in
lower success rates: in contrast to the obtained grasp success rate of 73.80%, the success
rate decreases to 57.63% when reducing the variance to 0.25σ. However, it must be
considered that these results must be interpreted in the context of the baseline data set.
Importantly, the table does not provide any statements on the expected success rates for
a certain uncertainty constellation in the metrics. Instead, the values for the success rate
indicate which σ-value approximates the uncertainty best: Logically, a perfectly correct
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Figure 5.6: The distribution of the height metric h for a lower uncertainty σ.

uncertainty model, regardless of whether it is Gaussian with a σ-value of 0.10σ or a more
complex behavior, would yield the maximum success rate of 100%.

To this end, the findings in Table 5.3 do not only support the uncertainty-aware optimiza-
tion, but also the heuristic uncertainty estimates. According to the second line of this
table that contains the expected success rates for difference distance values, the expected
σ value may have been slightly overestimated. Especially, the success rate for 0.25σ is
higher than the success of 73.80% that was obtained by the experiments.

Apart from the approximation of the grasp metrics’ uncertainties, it may be interesting to
study the correlations between the metrics. In particular, the knowledge on these might
simplify to study and interpret the causality between the metrics and potential disturbances
among them in more detail. Thus, it can be concluded that performing the grasp selection
in an uncertainty-aware manner by treating the grasp metrics as probability distributions
has led to a notable improvement in the grasp success rate. However, it is worth noting
that the validation, and thus the evaluation was carried out merely for one experimental
setting such that applying this optimization technique is recommended for further robot
systems with binary optimization goals.

Table 5.3: Expected success rates for modified σ.
Metric σ 0.50σ 0.25σ 0.10σ

Height h 73.80 % 64.05 % 57.63 % 60.19 %
Distance d 73.80 % 74.01 % 76.04 % 70.96 %

5.2 Uncertainty-aware Optimization with NN
Classifiers

This Section addresses the uncertainty quantification of a robot system consisting of both
hardware tools with known metrological uncertainties and NN classifiers. To this end,
an experimental setting with an industrial robot arm is considered. Here, the goal of
the robot is to correctly classify image data while performing movements. Apart from
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the NN that performs the classification, uncertainties arise from the robot’s velocity and
hardware components as for example the employed cameras. Hence, the determination
of the uncertainty of the entire system necessitates to bring together the metrological
uncertainty and such of the NN classifier(s).

Specifically, the technique explained in Section 3.2.2 is refined with respect to the appli-
cation. As will be elaborated below, the idea lies in combining the probabilistic robustness
of NN classifiers with the metrological uncertainty formalism by exploiting the analogies.
Due to the missing generality of the uncertainty definition of NNs in existing literature,
the quantification of a unified uncertainty measure is performed via the sensitivity: In
fact, the sensitivity is tightly related to the metrological uncertainty. At the same time, the
probabilistic robustness suggested by Mangal et al. in [55], shows meaningful similarities
with the sensitivity.

In the following, this analogy is drawn by referring to the definition of the robustness in
Equation (2.3) in Section 2.1.2 and the metrological uncertainty definition that was for-
malized in a generic manner in Section 3.2.2 can be refined for a robot application. As
will be explained in the following, drawing this analogy is also bound to limitations. Prac-
tically, this means that the determination of the combined uncertainty with the proposed
technique places restrictions on the application as will be specified in the next subsections.
The validation experiments are performed on two data collections MNIST [21], that con-
tains digits and GTSRB [72] with traffic signs. Specifically, it is of interest whether the
rate of correct classification results of images in a robot application can be enhanced when
adding the uncertainties into the optimization pipeline.

To this end, the optimization goal lies in the minimization of incorrect classifications

min rv :=
Nv

Ntot

, (5.3)

where Nv stands for the total number of samples and Nv the number of incorrect clas-
sifications. In actual fact, Nv can be expressed via the correct classifications Nc by
Nv = 1 − NC . However, this relationship does not contribute to the online detection
of incorrect classifications. Especially, the problem falls into the the category of binary
optimization since it is distinguished between the correct and incorrect classifications.

Prior to specifying the assumptions and formalism, a brief overview on existing uncer-
tainty notations is provided. In particular, combining the probabilistic robustness of NNs
with the metrological uncertainty is motivated by pointing out the discrepancy to the epis-
temic and aleatoric uncertainty introduced in Section 2.1.2. Afterward, the experimental
setting of the robot system is introduced. By specifying the optimization goal and de-
scribing the incorporation of the uncertainty as explained in Section 5.2.5, the calibration
step is described in detail. Finally, the correctness of the obtained and the applicability of
the presented method to robot applications is discussed on the basis of two data sets.

5.2.1 Related Work: NN Uncertainties for Robot Systems

Within recent years, employing NNs in robot systems has become attractive, especially
for data-driven applications. Due to their ability to process huge amount of data sets effi-
ciently, the use of NNs often leads to an enhanced productivity. To date, the employment
of NNs in safety-critical environments is not recommended due to the missing understand-
ing on their uncertainties: In contrast to hardware components, manufacturer specification
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that provide information on the uncertainties of NNs do not exist. However, a measure
that indicates the possible deviation of the expected outcome is crucial to facilitate the
use of NN-based tools in real-world applications, especially in those that may underlie
risks. To this end, the aleatoric and epistemic uncertainties are introduced in the learning
domain as described in Section 2.1.2. Essentially, the aleatoric uncertainty is supposed
to capture the uncertainty due to the input data while the intrinsic uncertainty of the NN
is covered by the epistemic uncertainty. However, as pointed out by Huellermeier et al.
in [43], absolute notations as equations to capture these uncertainties do not exist to date.
This makes it challenging to derive a technique to quantifying the uncertainty of an en-
tire system, that employ NNs. Specifically, it is difficult to study how the epistemic and
aleatoric uncertainties influence each other since formal descriptions do not exist.

The survey paper published by Gawlikowski et al in 2019 [33] presents a variety of un-
certainty determination techniques for DNNs reaching from ensemble methods as pub-
lished by Martinez et al. and Reich et.al ([15], [68], [56], [40]) that suggest the genera-
tion of multiple models and the subsequent combination of predictions into one output to
Bayesian methods that represent the weights of NNs as distributions to model the epis-
temic uncertainty as in the contributions ([15], [44], [46], [25], [66], [22], [73]). Briefly,
the presented uncertainty quantification methods in the survey are classified in four cate-
gories: single network deterministic methods, Bayesian methods, ensemble methods and
test-time augmentation methods. In addition, each of these categories are further divided
in subgroups as shown in Figure 5.7.

In the case of single deterministic methods, the uncertainty is quantified by performing
one single forward pass in a deterministic network and applying external techniques for
the uncertainty calculation. In contrast, Bayesian methods refer to all types of stochastic
Deep NNs, where conducting several forward passes on one sample yield different out-
puts. On the other hand, ensemble methods suggest to combine the predictions of a variety
of deterministic networks at inference. Lastly, test-time augmentation methods address to
augment the input data during test time. In doing so, several predictions are generated.
These are used to assess the prediction’s certainty, and reversely the uncertainty. While
these techniques enable to propagate the uncertainties to the NN output, they do not pro-
vide information on how these correlate with the aleatoric uncertainties in the input data.
Thus, it is not clear how distortions in the input data may affect the epistemic uncertainty,
and how possibly existing dependencies between these uncertainty types influence the NN
output.

On the other hand, the robustness of NNs has been defined and introduced by several
works as Hein et. al. in [39], Pauli et al. in [62] or Cisse et al. in [19]. In contrast to
the epistemic and aleatoric uncertainty, the robustness addresses the determination of the
metrological sensitivity. By relying on the assumption that the space of the input data can
be modeled by an lp-ball, the maximum distortion in the input data to still obtain an unal-
tered NN output is estimated. This definition equals the formalization of the metrological
sensitivity. In fact, the robustness can be seen as one specific case of the sensitivity: While
the sensitivity in metrology does not place limitations on the input data space, the robust-
ness specifically addresses NNs. Here, several contributions as [80], [62] provide methods
to quantify the lower bound on this distortion in the context of adversarial attacks. In par-
ticular, these works focus on the development of methods to effectively detect designed
security attacks.

One central goal of this thesis is to develop techniques to quantifying the uncertainty
of entire robot applications that requires to unify the uncertainty notations of employed
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Figure 5.7: Overview of uncertainty quantification methods presented and discussed in
the survey of Gawlikowski et al. in [33].

system components. As emphasized so far, this thesis builds upon the metrological under-
standing of uncertainties of the Guide [26]. Since the robustness shows similarities to the
metrological uncertainty, it is suggested to exploit this analogy. In doing so, the findings
from the above mentioned works, namely the conclusions drawn by Lyu et al. in [54],
Weng et al. in [81] and Weng et al. in [80] will be used to state requirements and limits
on the applicability of the method.

5.2.2 Experimental Setup: Combining Measurement
Uncertainties with NN Robustness

The validation of the reinterpretation of the parameters in the definition of the probabilistic
robustness explained in Section 5.2.5 is performed in a real-world experiment: An indus-
trial robot arm is equipped with an intel RealSense D435 camera device. The robot’s task
lies in performing point to point movements while detecting image data and classifying
them. Once the classification uncertainty exceeds a pre-defined threshold, the robot must
reduce its speed.

Importantly, the classification uncertainty does not depend solely on the NN classifier,
but also on the employed camera. Apart from that, the uncertainty is likely to depend
on the lightning conditions and additional environmental disturbances. It will be thus
aimed at combining the metrological uncertainty with the probabilistic robustness of NNs
to finally quantify the classification uncertainty. After monitoring how this uncertainty
develops during system run time, a parameter setting that minimizes the rate of incorrect
classifications is derived. Especially, the experiments are performed in two settings: First,
it is assumed that ground truth data points exist. In fact, this is possible for the experiments
performed in this thesis since the test and training data sets are provided for both MNIST
and GTSRB.

In the second step, this assumption is dropped such that the validation is conducted on the
basis of disturbed input images. For the remainder of this Section, x0 is referred to by the
term reference data. In contrast, the input sample corresponds to the image data that is
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actually recorded during run time. In particular, x′ is disturbed by the uncertainties of the
system components such as the camera or possible robot movements. In both experiments,
the rate of incorrect classifications given by

rv =
Nv

Ntot

(5.4)

is tracked for varying k-values and radii δ. These measurements are performed at three
speed settings of the robot and a frame rate of fp = 30 fps of the intel RealSense D435
camera. In particular, the calibration in each experiment was performed on 40 input data
points each. Figure 5.9 illustrates the obtained results. Especially, conclusions can be
drawn on the uncertainties of the employed tools and the influence of environmental dis-
turbances.

5.2.3 Assignment of Parameters in the Lipschitz Function

This Section refers to the binary optimization with linearizable NNs introduced in Sec-
tion 5.2.5. In order to facilitate the applicability to real-world systems, a proper calibra-
tion must be performed. In fact, the goal of this calibration lies in identifying a reason-
able constellation of the reinterpretated parameters. In general, it is aimed to develop
an uncertainty-aware optimization technique, that logically places the requirement on the
technique to be sensitive to uncertainties. As presented in Section 5.2.5, the dependencies
of the parameters in the Lipschitz equation on the application places a challenge in identi-
fying the ideal parameter constellation. To this end, a two-step calibration is proposed: In
the first step, the ground truth data point must be provided or given by the corresponding
data sets. In actual fact, this does not apply to the majority of applications.

However, ground truth data points may be at least partly available, which is assumed in
this Section. In the first calibration step, the Lipschitz equation is evaluated by referring
to the ground truth data points. In contrast, the ground truth data is replaced by static
recordings. Again, the evaluation of the Lipschitz equation is conducted as elaborated
below. Briefly, comparing the results of these two calibration experiments enables to infer
the uncertainties and to finally consider them in the optimization procedure. In the fol-
lowing, the reinterpreted parameters will be specified for the above described application
scenario. Afterward, the two-step calibration and the derivation of the uncertainty will
be explained in detail by referring to the respective findings. Generally, the optimization
goal in this Section lies in minimizing the rate of incorrect classifications by identifying
the optimal parameter constellation in the reinterpreted Lipschitz equation

Pr((∥f(x′)− f(x)∥ ≤ k ∗ ∥x′ − x∥) | ∥x′ − x∥ ≤ δ) ≥ 1− ϵ (5.5)

While the generic reinterpretation was provided in Section 5.2.5, it was emphasized that
the parameter specification must be performed individually for each system. For the set-
ting of the validation experiments, the reinterpretation is given as follows:

∥x− x′∥: By following the description in Section 5.2.5, this term is assigned to the
distance in the input data points, where it is assumed that the input data can be
modeled by an lp-ball. Here, the input data corresponds to the images that are
captured by the intel RealSense D435 camera device. Particularly, the assignment
of x depends on the case whether ground truth data is available or not. In the
case where the ground truth data points are available, x describes the ground truth
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data while x′ corresponds to the data points subject to uncertainties. In case the
training data of the NN is available, these can be considered as x. If no ground
truth data points exist, the data for x must be generated. In the given experiment,
static recordings of the images are a reasonable candidate for x: Especially, the
uncertainty of the camera is provided in the manufacturer specifications such that
subtracting it from static recordings enables to approximate the ground truth.

δ: This parameter is modifiable as explained in 5.2.5 and places a threshold for the neigh-
borhood of x. In this example, δ is estimated via the uncertainty of the camera de-
vice and the latency due to the limited frame rate that especially becomes relevant
for high robot speeds. The exact value of δ is determined in the calibration step.

k : Since the uncertainty of those components, where the uncertainty is provided in data
sheets or modeled in a simulation, is covered by δ, k logically captures how the NN
output reacts on the uncertainty inherent to x′. Briefly, k reflects how sensitive the
NN is with respect to the distortion in the corresponding input data point.

∥f(x)− f(x′)∥: In the application example, this this term is computed via the distance
of the NN output vectors. In the ideal case, the classifier would perform perfectly
such that the probability for a resulting top-1 score would amount to 100%. Since
this cannot be realized in real-world systems, ∥f(x)− f(x′)∥ introduces a tolerated
amount of deviation. For example, failure limits can be expressed by this term.
After each classification, evaluating the Lipschitz equation would then correspond
to checking whether a pre-defined failure limit is violated. Especially, the robot
movement can be adapted according to the obtained result.

ϵ: In the domain of adversarial attacks, ϵ is introduced to relax the requirement on the
robustness. Practically, it means that the robustness may not be achieved for all
data points within the lp-ball. Therefore, it can be used as a confidence measure
for the reinterpretation: The confidence intuitively captures the reliability of the
findings.

The system pipeline that builds upon this reinterpretation is shown in Figure 5.8. The
respective algorithm is shown in Algorithm 2.

Case 1: x0 as Ground Truth Data

In the first case, the Lipschitz equation is computed by selecting the reference data x0
from the set of the test data set. These samples are treated as undisturbed ground truth
data. Practically, this means that the uncertainty in x′ can be determined in straightforward
manner. It can be recognized in Figure 5.9, that the curve representing the rate of incorrect
classifications, specified by the Lipschitz equation, drops with increasing k-values. This
matches the expectation: since the requirement on the tolerated violations of the Lipschitz
equation becomes weaker with larger k-values, the rate of incorrect classifications auto-
matically decrease, especially for a small radius δ = 0, 1. Since the value of k does not
depend on δ, it is plausible that the curve of rv shows a steep drop at small k-values.

In particular, increasing the radii of the lp-ball, where x′ is drawn from, yields to a plateau
of rv, but only for the MNIST data set. For the traffic signs, the increase of δ from δ = 0.1
to δ = 0.2 does not seem to influence the development of rv. This observation can be
explained with the uncertainty that due to the camera, environmental disturbances and
the NN: Despite the increase of k, the rate of violations cannot be reduced for a certain
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Algorithm 2 Quantification of System Uncertainty

Input: measurement data xi; reference input x0; NN f(·);
sensor uncertainties usensor; system function usystem;
confidence level σ = 1-ϵ; safety limit λ; time steps t.

Output: probabilistic robustness check(bool); system uncertainty usystem; safety limit
check (bool).
for i ≤ t do

dev[i]← ∥x0 − xi∥
if dev[i] ≤ δ then

Check Lϵ for ∥x0 − xi∥
if Lϵ == 1 then

Calculate usystem
print usystem
map usystem on λ

else
Stop system

end if
end if

end for

area. Since x0 stands for the ground truth data, it is not clear whether it is merely due
to the uncertainty in the employed technical components. For example, the discrepancy
∥|x0 − x′∥| may be large due to the different lightning conditions during the recording of
x0.

Hence, the only valid conclusion for this plateau is that the area, where Nv is constant,
draws from a constant uncertainty value or error in the data perception and the processing.
Furthermore, comparing the curves of Nv for both data sets demonstrates that the rate of
violations can be decreased at smaller k-values for the GTSRB data set than for MNIST.
This may be attributed to the conditions, under which the test data was collected in the
case of GTSRB: Since traffic signs are supposed to be classified correctly at high robot
speeds, the classifier was likely tested against more disturbed data. Thus, the MNIST data
set is likely to behave more sensitive to disturbances.

Case 2: x0 as Static Recordings

For the second part of experiments, static recordings of the 40 image data samples serve as
x0. Importantly, the recording process is conducted with the same camera intel RealSense
D435. In addition, the recording must be completed prior to the experiments. In fact, the
Lipschitz equation is evaluated in analogy to the previous case and, as described above,
by computing the pixelwise difference to the data points collected during run time. By
doing so, the violations are determined with respect to the static recordings. Again, the
robot is stopped once the rate of violations exceeds the specified value as in the previous
Section. As can be seen in Figure 5.9, using static recordings as x0 leads to significantly
wider plateaus. Practically, this means that the violations cannot be reduced by weakening
the requirement on the Lipschitz condition. This hints at the constant uncertainty of the
camera intel RealSense D435 with respect to k: in contrast to the above case, where
x0 was represented by the static recordings, the distance ∥|x′ − x0∥| is smaller in this
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Figure 5.8: The reinterpreted Lipschitz equation is validated in two settings: First, x0
corresponds to the ground truth data. In the second case, static recordings
captured with the intel RealSense D435 camera are treated as x0. To validate
the reinterpretation of the variables, it is studied whether the rate of incorrect
classifications is reduced via considering this equation. Specifically, a robot
movement stop is initiated once the rate of violations on the probabilistic
Lipschitz equation exceeds the critical limit.

case. Since x0 was collected with the same device, the difference between x′ and x0 is
significantly smaller.

Reversely, this means that comparing the plateaus of both results with each other enables
to estimate the camera uncertainty: In the first case, the uncertainty of the camera leads
to the fact that the distance between x0 and x′ are that large that the rate of incorrect
classifications is reduced at a small k. Because the main goal of this calibration lies in
identifying an ideal parameter constellation, the region sensitive to the camera uncertainty
becomes interesting. Obviously, this region is given in the area of k ∈ [4.2; 10.3]. In
this region, the plateau is larger such that a higher value of k is necessary to satisfy the
Lipschitz requirement. By assuming a symmetrical camera uncertainty that is linear with
respect to k, it is concluded that the difference in the plateau width enables to compute
the uncertainty of the intel RealSense D435, and that above specified range for k is a
reasonable region. In fact, this region does not only reflect the sensitive region for the
camera, but also the remaining uncertainty sources that may have been different in the
first and the second calibration step. Also, the plots demonstrate that this effect is clearly
visible for both data sets.

However, the speed in the robot movement seems to influence the classifications more
significantly for the data set MNIST while the traffic signs classifications do not seem to
underlie dependencies on the velocity. Again, this may be attributed to the fact that the
traffic signs are supposed to be stable against velocity disturbances since these should be
ideally recognized at high velocities of a vehicle. Thus, it is likely that the respective test
data test contains the corresponding images, leading to no significant differences in the
curves of Nv at different robot speeds.
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Figure 5.9: The calibration experiments are performed for two settings: In the first case,
samples from the training data are treated as x0 while in the second setting,
static recordings with the intel RealSense D435 serve as the reference data
x0. In all settings, the lp-ball radius was set to δ = 0.2. In both cases, the left
plot refers to the MNIST data set while the plot on the right hand side shows
the result on the GTSRB traffic signs.

5.2.4 Validation Experiments: Classification with the
Reinterpreted Parameters

With the reinterpreted variables and the estimated region for the parameter k, it is now
aimed at studying how this suggested evaluation of the Lipschitz equation contributes to
the reduction of incorrect classifications. Therefore, a third round of experiments is per-
formed, where the radius of the lp-ball is set to δ = 0.2 and the k-value to k = 11.8.
Specifically, this region does not underlie the plateau-effect due to the camera uncer-
tainty. Thus, it is sensitive for capturing additional undesired disturbances such that it is
considered as suitable for uncertainty-aware image classification. Basically, the experi-
mental setting and the environmental conditions remain as in the calibration phase. One
difference is that the robot must detect and classify five images during its horizontal point-
to-point movement. In the ideal case, the threshold of ||f(x) − f(x′)|| can be held such
that the robot now does not stop unless external disturbances or unexpected behaviors
of the classifier occur. To explore whether the classifier reacts appropriately, occlusions
are introduced randomly: The image data is partly covered by objects. In addition, the
lightning conditions are varied. The results are shown in Table 5.4.

5.2.5 Results and Evaluation of the Binary Optimization with
NN Classifiers

In contrast to the binary optimization in Section 5.1, a technique addressing the NN clas-
sifiers was derived by reinterpretating the variables and parameters in the Lipschitz equa-
tion. According to the findings, the reinterpretation is valid such that an uncertainty-aware
optimization can be performed effectively by the derived method, especially for systems
that consist of NN classifiers. In fact, this technique can be extended to any kind of NNs
that are linearizable as elaborated by the contribution of Zhang et al. in [82]: Given
that the above stated assumptions can be held, the proofs on the validity of the Lipschitz
equation for the detection of adversarial attacks can be directly transferred to the above
described use cases. Practically, this means that the developed reinterpretation, and thus
the uncertainty-aware optimization with the respective Lipschitz condition can be applied
to robot systems that employ linearizable NNs.
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In the context of the optimization performance, the obtained results convincingly demon-
strate that the rate of incorrect classifications can be reduced: According to Table 5.4, the
detection rate of incorrect classifications can be enhanced from 50.0% to 83.3% by rein-
terpreting the variables in the Lipschitz equation, that corresponds to an improvement of
33.3%. However, this is only valid for applications where the environmental conditions
are constant: Once small unexpected changes occur, the system is stopped. Especially,
since the Lipschitz equation is very sensitive to the radius of the lp-ball δ, small fluctua-
tions in the input data may cause undesired system stops.

Due to the fact that the Lipschitz condition is evaluated online, this might yield to in-
efficient system behavior. Thus, although both the correctness and validity of the rein-
terpretation was successfully demonstrated by experiments under real-world conditions,
it is recommended to apply this technique particularly for systems with repetitive tasks,
that only underlie minor variations in the environmental conditions. In order to apply this
method to safety-critical systems, it must be accompanied by more detailed information
on the uncertainty. While the reinterpretation enables to check whether a pre-specified
limit that is defined in the output space is achieved, it may happen that dangerous situ-
ations or hazards remain undetected: Importantly, the parameter δ merely refers to the
distance to x0 and not the direction. However, as explained in Section , the asymmetric
uncertainties might exist. In this case, the representation with the lp-ball causes limita-
tions: despite the fact that the probabilistic formulation of the Lipschitz equation relaxes
the robustness requirement, the dependency on the direction is not considered. Therefore,
to expand the practicability to safety-critical robot systems, for example human-involved
applications, studies on incorporating details of the uncertainties are required.

Table 5.4: Comparison of the detection rate of incorrect classifications with the combined
uncertainty (reinterpreted) Lipschitz equation (left) and by neglecting the un-
certainty (right).

Setting Detection rate Detection rate
(with reinterpretation) (w/o uncertainties)

No occlusions 83.30% 83.30%
Occlusions 83.30% 50.0%

5.3 Continuous Uncertainty-Aware Optimization for
Safe Robot Systems

In this Section, the optimization problem will be extended to continuous cases. Instead
of distinguishing between distinct classes, like successful and failed grasps or correct
and incorrect images, it is aimed at minimizing or maximizing a continuous function.
Again, the central incentive is to study how the integration of the quantified uncertainties
contribute to the improvement in the optimization performance.

While the methods developed in Section 4.3 are generally applicable, the validation ex-
periments focus on risk minimization for safety-critical robot applications. Apart from
that, approaches to risk minimization have gained attention in the robotics domain. How-
ever, methods for online risk minimization and safety assessment that can be directly
interpreted in the context of pre-specified thresholds (e.g., ISO standards) do not exist to

88



5.3 Continuous Uncertainty-Aware Optimization for Safe Robot Systems

date. To this end, risk detection serves as a reasonable use case to validate the continuous
uncertainty-aware optimization presented in Section 4.3. Especially, the term uncertainty
is tightly related to the definition of risks in the safety domain. Ideally, the uncertainty
captures the possible deviation of a quantity of interest that can be directly interpreted to
estimate the risk, that occurs due to unexpected, but possible system behavior. Here, the
analogy between robot applications and physics experiments is emphasized. Apart from
the domain, the measurement uncertainty generally serves as a measure to estimate the
amount of undesired events due to inaccuracies in the system.

After clarifying the definition of the term safety and specifying how risks and uncertainties
are related to each other, a brief overview of the state-of-the-art literature on safety eval-
uation methods of robot systems is provided. Next, the optimization goal is formulated
by referring to the risk definition. Particularly, the optimization is split in two parts. First
the severity of events is approximated by a constant value. On this basis, it is studied how
the uncertainty affects the evolvement of risks such that the quantitative assessment of
safety requirements is conducted by means of the propagated uncertainty. In doing so, the
correctness of the uncertainty propagation method explained in Section 3.2.2 is verified.
Prior to applying the technique on a real-world robot system, the uncertainty propaga-
tion validated in a simulation scenario, where the ground truth uncertainty is provided.
This enables to study the accuracy of the uncertainty propagation algorithm introduced in
Section 3.2.2.

Afterward, the applicability of the uncertainty quantification and propagation methods are
demonstrated in real-world Human-Robot Collaboration. Specifically, the uncertainty in
the detection of the human’s pose is computed to directly map it on quantitative safety
limits. While this allows to detect hazardous events online during run time, and perform
an optimization by monitoring the sensitivity, the origins of accidents is challenging to
identify. In actual fact, the occurrence probability of hazards is too low such that the
statistical significance of the analyses on them is highly limited. To overcome this, the
second part of the optimization employs the importance sampling algorithm explained in
Section 4.3.6. With this technique, the sample generation is artificially enforced in param-
eter regions where risk events occur. By referring to the statistical analysis performed on
the increased number of samples, risk minimization methods are derived. This validation
is conducted on the basis of three simulated human-robot collaboration scenarios. Fi-
nally, it is discussed how the pipeline for uncertainty-aware optimization of robot systems
can be extended or further refined to simplify the practical applicability to more complex
real-world robot systems.

5.3.1 Safety and Security

The exact definition of the term safety is domain-specific. In the context of robot sys-
tems, it is important to clearly distinguish safety and security: While the latter one aims
at mitigating undesired and dangerous consequences due to specifically designed attacks
on the system (e.g., due to hackers), safety addresses on unintended and unexpected fail-
ures. Therefore, security is a necessary prerequisite for safety: Especially, research on
safety assurance becomes relevant for robot systems under the assumption that security
lacks do not exist. By relying on this assumption, methods to safety assurance and the
risk minimization focus on avoiding and reducing the rate of undesired happenings that
originate from inaccuracies and unexpected deviations of the system behavior. In order
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to validate the uncertainty propagation and optimization techniques in the previous Chap-
ter, the methods are employed for reducing the probability for risks, thereby evaluating
quantitative safety requirements. This means that the optimization goal is formulated with
respect to the definition of the risk.

Since the goal is to enable the practical applicability of the derived techniques in this
thesis, it is referred to standards and definitions stated in official regulations provided by
the International Organization for Standardization (ISO). At the same time, it is highly
desired to maintain the generic character of the presented uncertainty-aware optimization
algorithm such that the risk minimization is formulated with respect to critical parameters
pc in general, that must be specified to the respective application. According to the reg-
ulations of the ISO, the risk of an incident i depends on its severity and the occurrence
probability Pr(i), i.e.

risk(i) ∝ frisk(severity(i(pc)), P r(i(pc))), (5.6)

where pc stands for the critical parameter(s). Especially, this relationship can be exploited
for assessing safety since

safety ∝ 1/risk (5.7)

For example, an incident may be described in the temporal space or Euclidean coordinates
to specify where the risk has occurred. Here, the probability for the occurrence can be
approximated with the measurement uncertainty: essentially, the uncertainty introduces
a probabilistic representation of the system variables. From practical viewpoint, it thus
assigns a probability to the area of values instead of relying on a distinct representation.

Therefore, safety-critical robot applications, where the risk minimization play a decisive
role, serve as suitable use cases for the validation of continuous uncertainty optimization
techniques in Section 4.3. Of course, the probability must be further specified depending
on the application: For human-involved robot systems, the distance between humans and
robots and the relative velocities are of particular interest. While this is stated by the tech-
nical specification of robot systems in ISO 10218 [28], these variables are reasonable for
assessing the safety state in human-robot collaboration. Therefore, the optimization func-
tion is formulated with respect to the distance and velocity for the following experiments.
Especially, it is studied how the uncertainty of the distance and the velocity between hu-
mans and robots is quantified and integrated in the system function to enable an online
safety evaluation during run time.

Quantitative Safety Requirements

The safety evaluation is performed by referring to quantitative safety requirements, that
is, by aiming at developing a method that allows to

1. Estimate the risk originating from a robot system

2. map it directly on the tolerated failure rate specified by pre-defined threshold (e.g.,
ISO standards)

In particular, it is assumed that the qualitative requirements, such as the definition of safety
zones are fulfilled. As indicated above, high emphasis is devoted to probability thresh-
olds. While threshold values are specified for the safety-critical variables as the distance
or the velocity between humans and robots, that are also discussed in the context of the
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validation experiments, evaluating the probability limits in robot systems is of particu-
lar interest: In contrast to physics experiments, where the uncertainty can be computed
on the basis of large data sets gathered during measurement periods of several years, the
operating time of robot applications prior to system commissioning is rather short. There-
fore, assessing safety in robot systems must be accompanied by additional steps as will
be elaborated below.

5.3.2 Related Work: Safety Evaluation of Robot Systems

Existing literature on safety evaluation and risk mitigation methods in robotics can be
broadly classified in two categories. Since this thesis argues for the consideration of
uncertainties, risk detection and safety evaluation methods will be briefly presented in
this Section. Fault tree analysis (FTA) and Reliability Block Diagrams (RBD) represent
two categories of classical risk assessment approaches in robotics. Here, a tree graph
serves as the basis for the FTA, where the undesired events (e.g., dangerous failures as
accidents) are modeled by the root and the leafs reflect the contributing factors (e.g.,
failures of system components). Especially, probability values are specified to the events
that are accumulated over logical gates that connect the leafs with each other [70]. With
these values, the propagation of single events is modeled within a fixed time window.
Similarly, RBDs are block diagrams, where each block stands for a critical system func-
tion. While redundancy is represented via parallel blocks, dependent ones are connected
as series [38]. The analysis for RBDs is conducted via Boolean logic. Due to the sim-
plicity in the models, FTA and RBD can be converted into each other which is practically
beneficial. However, one major limitation is given by the binary representation of possi-
ble outcomes and the assignment of fixed probability values to all events. Moreover the
FTA and RBD analyses are both only applicable to events that are statistically indepen-
dent from each other. In practical real-world systems however, it is often difficult to verify
whether this requirement is met: Especially in the context of risks, it is likely that causal
relationships exist among the events which impedes the employment of FTA and RBD
analyses. Furthermore, the possibility to consider temporal aspects, such as the order of
happenings and dangerous events, is not provided. This poses a challenge to apply these
methods for real-world systems, where the temporal dependencies play crucial roles to
estimate the current risk.
Due to these limitations, these approaches were extended to dynamic fault trees (DFTs) in
[58], that account for the time dependency in failure scenarios. Furthermore, the survey
of Ruijters and Stoelinga in [70] outline how traditional FTAs are converted to Bayesian
Networks (BN). In particular, this extension allows for a more informative failure analy-
sis: In contrast to the basic event failure analysis, the Bayesian representation enables to
identify the root causes for the occurred risk events. Practically, this means that for the
top leaf, that presents the dangerous outcome, the contribution of the previous leafs can be
estimated in straightforward manner. As elaborated by Weber et al. in [79], BNs enable to
deal with statistically dependent events and are not restricted to binary outcomes. How-
ever, they also rely on graph-based representations. Also, these models consider fixed time
horizons during which each component can fail only once. Furthermore, Markov models
also offer one possibility for probabilistic risk assessment. Here, the system description
is performed by probabilistic state transitions.
A second line of safety evaluation methods deals with developing control algorithm that
inherently assess safety requirements. For example, the paper of Hadaddin et al. in [37]
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derive the relationship between the severity of injuries on pig samples with the robot ve-
locity, thereby studying the consequence of possible collisions for varying impact masses.
Next, the obtained findings are adopted in the robot control architecture by developing
a motion supervising component for collision avoidance purposes. Similarly, Zanchettin
et al. develop a controller that interprets the sensor signals directly and avoids unsafe
actions. However, this interpretation requires the exact specification of safety constraints
beforehand such that the distinction of safe and dangerous actions highly depends on the
prior knowledge on the respective application. One further publication that falls into the
control domain is given by the paper of Lasota et al. in [51], where a real-time safety
system is introduced. Especially, the robot speed and position are adapted by referring
to the human pose, that is obtained via a PhaseSpace motion capture system. However,
uncertainties are generally considered as negligible in this approach.

In addition, a long line of works that use learning methods to derive belief spaces. Briefly,
the purpose of these belief spaces is to provide the robot with a probabilistic represen-
tation of the environment to improve the selection of safe actions. However, since the
focus of this thesis lies in developing tractable techniques, these will be not presented in
detail. A third, relevant subfield in robot safety addresses the development of risk mit-
igation techniques and safety assessment techniques by directly referring to the critical
variables in the official regulations. Here, simulation-based approaches that are suitable
at the system design stage as the contributions in [5],[78], [36] proposed.

In the context of real-world safety evaluation techniques, that are more relevant for this
thesis, the literature in the robotics domain address the requirement in ISO 10218 [28],
that defines the speed and separation monitoring (SSM) mode. The goal of this mode
is to maintain a certain safety distance and speed between humans and robots. In order
to facilitate flexible human-robot collaboration by adapting the safety-critical parameters
according to SSM, Lacevic and Polverini et al. introduce the computation of kinesto-
static danger fields in [49] and [65]. In their first publication, the basic idea of capturing
possible candidates for collision objects by computing and adapting the robot velocity
in the respective direction is presented. Afterward, the authors extend their approach by
generalizing their algorithm to dynamic scenarios.

In 2017, Marvel et al. published a paper by providing a more thorough formalization of
the SSM, that is, elaborating on the quantitative requirements in [57]. Importantly, the
authors emphasize that the evaluation of the SSM criterion and the safety assessment of
robot systems necessitates not only the knowledge on the severity of possible risks, but
also the measurement uncertainty in all relevant robot tasks. Similarly, the survey on
methods for facilitating safe HRC systems provided by [50] argues for a stronger prob-
abilistic representation of critical variables that include possible deviations of outcomes.
In particular, Lasota et al. emphasize the need for a risk measure that can be directly
interpreted correctly by humans.

To address this gap by validating the continuous uncertainty-aware optimization tech-
niques introduced in the previous Chapter at the same time, it is suggested to perform the
safety evalution of robot systems by referring to the system’s uncertainty. To this end,
the correctness of the developed techniques is first validated in simulation environments,
where the ground truth uncertainties can be estimated in straight-forward manner. After-
ward, it is demonstrated how the quantified uncertainty can be directly used to assess the
risk and therefore safety of a robot application in online fashion.
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Figure 5.10: In the paper of Haddadin et al. [37], the authors study the severity of injuries
on pig samples. Here, the relationship between the robot force, velocity and
the penetration depth are analyzed. The obtained findings are integrated
in the robot control framework to circumvent the occurrence of dangerous
collisions between humans and robots. Figures taken from [37].

5.3.3 Validation Experiments: Uncertainty Quantification and
Propagation

Now, the uncertainty quantification for BB tools in Section 3.2.1 and the uncertainty prop-
agation algorithm presented in Section 3.2.2 will be validated. Next, the proportionality in
Equation (5.6) is leveraged to directly map the uncertainty of a HRC system on the prob-
ability for the risk occurrence Since the critical system variables and parameter spaces
for the risk determination highly depend on the application, these will be specified indi-
vidually for each experiment. Apart from that, following assumptions are made for the
experiments that will be introduced below:

1. Assumption 1: Real-Time Capability: The measurement data is directly accessible.

2. Assumption 2: All variables can be measured. Practically, this means that each
fluctuation in the environment and all system variables are clearly defined and can
be monitored.

3. Assumption 3: In the HRC experiments, the robot is confronted with only one
human worker. This means that it is excluded that two or more human workers will
enter the safety-critical space around the robot.

Uncertainty Quantification of Black Box Components

As motivated in Section 3.2.1, most technical components are accompanied by data sheets
that provide information on its uncertainty behavior. However, BB tools may be employed
in robot applications: For example, NN-based components have gained much attention in
recent years. At the same time, a thorough understanding on the uncertainties of NNs is
missing to date as was elaborated in the previous Sections.

While the analogies between the probabilistic robustness and the metrological uncertainty
have been exploited to calculate a unified uncertainty value, several requirements as the
linearizablity of the NN architecture must be theoretically validated. In addition, the
identified parameters are only reasonable if the environmental conditions stay constant
during system commissioning. In case these requirements cannot be met, the uncertainty
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of BB tools can be estimated via leveraging the knowledge on the conserved properties
of a system as presented in Section 3.2.1. Especially, this method can be performed
online such that variations due to possible environmental disturbances are considered in
the quantification.

Experimental Setup

The uncertainty quantification of BB tools can be estimated in straightforward manner.
Basically, the validation is performed by applying the technique explained in Section
3.2.1 on a measurement tool with known uncertainty and comparing the results with the
available manufacturer specification. Here, the SICK S3000 safety scanner serves as the
reference tool. Specifically, the 2D position (x-y plane) of static objects during the mea-
surement period is estimated via the laser scanner data. Accordingly, the conservation
equation is given by

∇⃗r⃗BB(t) = 0, (5.8)

where r⃗o,BB(t) denotes the position of the respective object at time t. As described in
Section 3.2.1, above Equation is evaluated during run time, that is, with the same data
frequency as the laser scanner. Importantly, violations on the above equation are stored.
After collecting a data set, the uncertainty quantification method for BB tools is applied.
Specifically, the distributions are bootstrapped to obtain a reasonable amount of signifi-
cance. The corresponding pseudocode is given in Algorithm 3.

Algorithm 3 Conservation based Uncertainty Estimation

Input: measurement data xa,i; conservation Eq. fC(·);
relationship betw. attribute and data a(xa,i); confidence level σ; parameter for correl.
analysis ξ; safety limit λ; time steps t.

Output: total combined uncertainty uC(a);
safety limit check (bool)
for i ≤ t do

dev[i]← fC(xa,i, ..., xn,i)
end for
for z ≤ 10.000 do

b[z]← bootstrap dev[]
end for
From b[] compute uC(a) for user-defined σ
Test H0 for given p-value and parameter ξ
if H0 rejected then

cov(uC , ξ)
print cov(uC , ξ)

end if
r ← uC · lbio
if r ≤ λ then

return 1
else

return 0
end if
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Figure 5.11: The object position of static obstacles was recorded under non-changing en-
vironmental conditions with the safety scanner SICK S3000. This figure
shows the results for the uncertainty in the distances to these objects calcu-
lated by Algorithm 3 by considering 100 recordings.

Results

The results are then saved and evaluated according to above pseudocode in Algorithm
3. The systematic uncertainty obtained by evaluating the conservation equation amounts
to uLS,exp = 0.0038m for the SICK S3000 laser scanner at a scanning range of 4.0m.
This corresponds to a relative uncertainty of

uLS,exp = 0.095% (5.9)

on a confidence level of C.L.=95%. Comparing this result with the manufacturer specifi-
cation given by

uLS,theo = 0.091% (5.10)

yields to a discrepancy of 4.0%. This fluctuation in the measurement data can be ex-
plained by the statistical uncertainty that is computed via the amount of data considered
for this calculation by means of Equation (5.8).

Correctness of the Uncertainty Propagation

Prior to performing an uncertainty-aware optimization for the purpose of minimizing risks
and assessing safety, it must be first validated whether the developed algorithm yields cor-
rect results. Logically, the uncertainty itself depends on the employed technical compo-
nents and the corresponding resolutions which poses a challenge to verifying the correct-
ness in real-world systems. In addition, the ground truth uncertainty is not accessible in
real-world applications which makes it challenging to assess the accuracy of the proposed
uncertainty propagation method in Section 3.2.2. Instead, the accuracy is studied on the
basis of a simulation environment in PyBullet. The main advantage of a simulation en-
vironment is that the environmental parameters and the impact of these on the employed
measurement tool as well as the robot parameters can be adapted and controlled with high
accuracy.
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Experimental Setup

First, proof-of-concept experiments are carried out in a PyBullet simulation environment.
Here, an industrial robot arm performs point-to-point movements between two specified
points in 2D plane with a constant velocity. The goal lies in tracking the 2D position the
robot end-effector by using a camera with a frame rate of fs = 30 fps. Here, the attribute
a and its uncertainty ua are given by

a 7→ r⃗s,R(t) = (xs,R, ys,R) and ua 7→ ur⃗s,r(t), (5.11)

where the critical parameter pc corresponds to the time t and xs, ys denote the x, y-
coordinates of the robot end-effector in Euclidean space, respectively. Specifically, 6000
frames for each robot velocity settings are considered, where v1 < v2 < v3. The un-
certainties are considered to follow Gaussian distributions for the camera and the robot
velocity. While a resolution uncertainty of 0.02% is approximated for the camera, the
robot velocity is assumed to underlie an uncertainty of 10% . The number of MC trials is
set to M = 105. It is expected that the uncertainty increases with the robot velocity since
the frame rate remains at fp,p = 30 fps. The experimental setup in PyBullet is shown in
Figure 5.12.

In the second step, the real-world applicability of the uncertainty propagation algorithm
in one representation introduced in Section 3.2.2 is studied. Thus, the position tracking
of the UR10e robot end-effector is performed under real-world conditions. In analogy to
the PyBullet simulation environment, the intel RealSense D435 camera is employed. By
using the Real-Time Data Exchange (RTDE) interface provided by Universal Robots, a
point to point trajectory for the robot is implemented in horizontal direction. Thus, the
ground truth position of the robot end-effector joint is easily accessible by RTDE.

To explore the uncertainty propagation algorithm, an ARUCO marker [32] is attached
on the robot end-effector. Therefore, the position tracking of the robot end-effector is
performed by the detecting the ARUCO marker. As in the previous case, the tracking
process is subject to uncertainties due to the robot velocity and the limited performance of
the camera. After completing the calibration of the camera intel RealSense D435 into the
world frame, the actual end-effector position provided by the RTDE framework is com-
pared with the coordinates obtained from the ARUCO marker tracking. This enables to
verify whether the ground truth value lies in the estimated range including the uncertainty,
i.e.,

r⃗A(t)± uprop,A(t) ≥ r⃗GT . (5.12)

Here, r⃗A(t) stands for the end-effector position obtained by tracking the ARUCO marker,
uprop,A(t) the corresponding PMU and r⃗GT the end-effector ground truth position provided
by RTDE. Again, the experiments are carried out at three robot velocity settings v1 < v2 <
v3. For each setting, 900 frames are collected. The number of MC trials amounts to M =
105. To obtain the ground truth uncertainty, it is referred to manufacturer specifications in
the data sheet of the intel RealSense D435 camera, that states an uncertainty of 0.02%.
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(a) The robot end-effector position is represented
by a red mask.

(b) To estimate the robot end-effector position,
the red mask is tracked.

Figure 5.12: The MC sampling based uncertainty propagation technique in Section 3.2.2
is validated on robot end-effector tracking experiments in a PyBullet simu-
lation environment. Particularly, the ground truth values for the robot end-
effector position and the uncertainties are known.

(a) The ARUCO marker is attached on the robot
end-effector to enable a 2D tracking.

(b) In case the robot speed is too high, the marker
tracking cannot be performed.

Figure 5.13: The uncertainty propagation technique in Section 3.2.2 is applied on a real-
world 2D tracking experiment.The tracking performance depends on the ve-
locity of the robot.

Results

The results are summarized in Table 5.5. As the results of the simulation experiments
seem promising, a similar experiment is conducted under real-world conditions: Here,
the industrial robot arm Universal Robot (UR10e) is equipped with an intel RealSense
D435 camera at its end-effector. The task of the robot lies in detecting ARUCO mark-
ers [32]. Importantly, the uncertainty in the detection is computed online by applying
the algorithm developed in Section 3.2.2, where the attributes and critical parameters are
defined by the position of the robot end-effector. However, one limitation of real-world
systems is that the ground truth uncertainty is not known. Especially, the knowledge on
how the environmental parameters, as lightning conditions, influence the detection, is not
available.
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Therefore, the experiments in the second round serve to studying the efficacy and applica-
bility for the evaluation safety limits. To do so, the lightning conditions are varied during
the experiments. Specifically, an external light source is employed to introduce sudden
variations. Although the ground truth value of the uncertainty that is caused by these
variations is not known, it is obvious that the uncertainty in the detection becomes larger.
Ideally, the robot would thus stop or reduce its velocity according to the sudden increase
in the detection uncertainty that is estimated by the uncertainty propagation algorithm.

Importantly, this experiment offers the possibility to observe whether the computation of
the propagated uncertainty can be used to evaluate threshold online. In fact, the toler-
ated uncertainty in the detection of the ARUCO marker is specified prior to performing
the experiments. By referring to the accumulated uncertainty calculated by the method
in Section 3.2.2, it is checked whether the threshold is exceeded by employing the map-
ping on the safety limit according to Section 4.3.5. The result of this evaluation is then
forwarded to the robot control algorithm to stop the robot movement or reduce its velocity.

Table 5.5: Discrepancy between the ground truth uncertainty and uprop.
Robot Velocity v1 v2 v3

PyBullet 6.30% 9.55% 8.70%
Real World (ARUCO) 9.05% 10.32% 11.03%

Safety Evaluation in Human-Robot Collaboration

Based on the findings in the above experiments, where the uncertainty propagation algo-
rithm was studied regarding its correctness and applicability to real-world environments,
the use case is now extended to evaluating safety in HRC.

The experimental setup consists of an industrial robot arm Universal Robot (UR10e) that
is installed on a table and performs point-to-point movements between two boxes that are
filled with random objects. The task of a human is to empty the boxes with the objects
that requires to enter the work space of the robot. In order to estimate the position of the
human, the NN-based human pose estimator OpenPose 3D presented in [16] is employed.
Briefly, this NN-based tool provides the 3D joints of the human body as shown in Figure
5.14. Here, intel RealSense D435 cameras with a frame rate of fp = 30 fps are used to
capture the image data of the human body. The human-robot distance dHR(t) is calculated
by referring to the robot end-effector position that is obtained by the robot control and the
closest human joint position among the 25 joint positions yielded by OpenPose. The
optimization goal in this experiment lies in minimizing the probability for risk by

min risk(t) ∝ minPr(i(t)) ∝ minuprop(dHR(t)), (5.13)

where the severity of accidents is approximated to be constant: In the case of HRC, the
severity of collisions with the robots is measured by the human-robot collision force. The
force tolerance on the human’s body parts are specified by distinct values in the context
of ISO standards [27]. Hence, the human-robot distance dHR(t) serves as the critical
variable for the safety evaluation. Especially, the uncertainty on the human-robot distance
uprop(dHR(t)) resulting from all system components is directly proportional to the risk.
Following uncertainty sources are considered for the uncertainty propagation algorithm:

1. intel RealSense D435 with ucamera(t) = 0.091%

98



5.3 Continuous Uncertainty-Aware Optimization for Safe Robot Systems

Figure 5.14: The NN-based human pose tracking tool OpenPose provides the positions
of the 25 human joints

.

2. uncertainty in the human detection

The uncertainty on the robot end-effector position is neglected such that

urR(t) = 0. (5.14)

While the camera uncertainty is taken from the manufacturer specification of the intel
RealSense D435 data sheet, the uncertainty in the human joint positions is obtained by
applying the uncertainty quantification method based on conservation equations in Section
3.2.1. Here, the conservation equation is defined via the constant length of the human’s
body parts:

||r⃗H,i − r⃗H,i|| = const., (5.15)

where r⃗H,i and r⃗H,j stand for the 3D position of the human joints i andj, respectively with
i ̸= j. Practically, Equation (5.15) reflects that the length between the human’s body parts
do not change during run time. Reversely, the violations on this Equation are directly as-
signed to the uncertainty of the human pose estimator. The violations of this conservation
equation are evaluated and monitored during runtime with a frame rate of fp = 30 fps.
Thus, the statistical significance of the uncertainty, and thus the confidence grows with
the run time. However, since the data amount is limited during the first minutest, the
bootstrapping technique is applied with N=10.000 for the uncertainty estimation.

As explained in Section 5.3.1, the human-robot distance is one critical variable for safety
evaluation. To this end, the assignment of the attributes given by

a 7→ {dHR 7→ r⃗R, r⃗H}. (5.16)

In particular, the critical parameter space corresponds to the time: While the exact location
of the robot and the human may be important in some applications, the focus of the risk
detection is based on the time in the performed experiments, such that

pc 7→ t (5.17)
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Figure 5.15: The uncertainty-aware safety evaluation is applied to real-world Human-
Robot Collaboration. Here, the distance between the human worker and the
robot end effector is calculated to evaluate the occurrence probability for
dangerous situations by referring to the probability threshold in ISO 13849
[29].

Mapping on Safety Limits

To perform the mapping on the safety limit, it is referred to the definitions provided by the
ISO. As described in Section 5.3.1, the risk is defined via the probability for the occur-
rence of dangerous failures. In the performed experiments, these dangerous failures corre-
spond to the violations of a specified Human-Robot distance. On the other hand, the SSM
mode specifies the tolerated distance values and a relative velocity of vHR ≤ 1.5m/s.
Regarding the tolerated failure rate, ISO 13849 states a limit of Pr ≤ 1/106, that is, one
accidents in 106 hours.

However, for practical reasons, the limit is lowered to Prev ≤ 1/103h. By applying the
mapping technique in Section 4.3.5, the uncertainty is interpreted on ISO 13849. Specif-
ically, the safety evaluation is conducted online such that the human worker is notified
once the safety requirement is violated. At the same time, this information is forwarded
to the robot control framework to initiate a system stop once dHR falls beyond the critical
limit.

Results: Detection of Collisions

To validate the applicability of the uncertainty-aware safety evaluation technique in HRC,
the above described task was performed for a run time of 6 minutes, resulting in 10800
frames for the human detection, and thus the evaluation of the human-robot distance. It
was observed whether the situations with dHR(t) ≤ dcrit can be detected. The results are
shown in Table 5.6.

Table 5.6: Averaged uprop values for different body segments
Body Segment Averaged uprop

Spine 20.2 %
Collarbones 4.2 %

Thighs 23.6 %
Arms 15.7 %
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5.3.4 Uncertainty-aware Risk Reduction via Importance
Sampling

One crucial limitation in the previous Sections is that the severity of accidents was as-
sumed to be constant. While approximating the severity with the collision force, and thus
the tolerated collision force on the human body is reasonable, the severity may depend
on the uncertainty or additional factors. Here, the main challenge arises to the missing
knowledge on the possible hazardous events. Especially, their occurrence and their pro-
cess of development is highly dependent on the application. This means, that studying the
severity necessitates a sufficient amount of data on the accidents. However, this require-
ment often cannot be met, especially in real-world applications. Ideally, the occurrence
probability of dangerous events is held low since the main goal lies in assuring a safe
system. On the other hand, data on the occurrence of hazardous events is highly desired
to derive safety measures.

One approach to address this dilemma lies in refining the traditional MC sampling to Im-
portance Sampling, that was introduced in Section 2.1.7. In the following, the grid-based
importance sampling approach developed in Section 4.3.6 is applied in three HRC sce-
narios modeled in simulation. In contrast to the above experiments where it was aimed
to validate the approaches, the main incentive lies in studying the efficacy for applying
IS to enhance the identification of hazardous events. Due to the existing risks of causing
injuries on human-beings or severe accidents, the experiments are conducted merely in
simulation environments. Especially, temporal and spatial uncertainties are both consid-
ered in the simulation studies. The obtained findings enable to address the question how
these uncertainties contribute to the occurrence of risks.

Simulation Scenarios

The grid-based IS algorithm in Section 2.1.7 is applied to three scenarios in simulation.
In all experiments, the human-robot distance is measured.

1. Scenario 1: In the first scenario, the human worker approaches an industrial robot
arm UR10e that is installed on a table. The robot arm performs a movement along
a clearly defined trajectory. This scenarios serves to explore whether the grid-based
representation is appropriate to capture the hazardous events. Here, the space of
possible hazardous events is modeled by referring to a sphere around the human
joints. Specifically, the radius of this sphere is computed via the relative velocity
between the robot and the human worker. The robot performs evasive movements
once the human-robot distance falls below a certain limits.

2. Scenario 2: Second, the experiment with the UR10e is extended to a more complex
use case: Here, the tasks of the robot and the human worker lie in detecting the color
of boxes that move with a conveyer belt. As depicted in Figure 5.16, collisions may
occur once the robot and the human reach for the same object at the same time. In
analogy to Scenario 1, the robot moves back once the distance threshold falls below
the limit.

3. Scenario 3: Finally, a basic experiment with a mobile robot is conducted: While
the mobile robot navigates in a warehouse environment, the human worker performs
independent tasks as shown in Figure 5.16. A system stop is initiated for the mobile
robot once the distance limit cannot be assured.
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(a) Scenario A (b) Scenario B (c) Scenario C

Figure 5.16: The grid-based importance sampling technique is validated by referring to
three simulated HRC scenarios. In all scenarios, the robot performs evasive
movements once the human-robot distance falls under a specified limit.

Parameter and Uncertainty Specification

For all scenarios, spatial and temporal uncertainties us and ut are considered. However, in
contrast to the above experiments, the focus is laid on studying the efficacy of the impor-
tance sampling technique. Thus, the uncertainties are modeled in a simplified manner by
adding constant, distinct values to the measured human-robot distance. In fact, two criti-
cal parameters are considered: In order to account for possible time delays to the robot’s
safety reaction, like the evasive movements or the safety stop in above scenarios, a con-
stant value is sampled from a uniform distribution. Specifically, the temporal uncertainty
ut for one simulation run is computed via

ut = Nsim · Tsim, (5.18)

where Tsim is the simulation step and Nsim sampled from a uniform distribution U0; 9
with U : N 7→ R. The spatial uncertainties reflect spatial deviations in measuring the
human-robot distance dHR:

d̃HR = dHR + us, (5.19)

where dHR and d̃HR specify the ground-truth distance yielded by the simulator and the
measured value provided to the robot, respectively. The distance uncertainty us is obtained
via

us = ∆d0 + c · vH . (5.20)

Here, ∆d0 represents a constant value sampled from a Gaussian curve, vH the human ve-
locity and c a scalar value sampled from a uniform distribution.
These two uncertainties are modeled to account for possible sensor uncertainties. Of
course, these can be extended by additional parameter dependencies or detailed knowl-
edge on environmental disturbances.

Apart from that, it is not distinguished between the uncertainty arising from the robot
position r⃗R and the human position r⃗H which is argued as follows: Obviously, both un-
certainties are linearly related to the distance dHR = ||r⃗H − r⃗R||. This means that the
amount of ud does not depend on the uncertainty source: the uncertainties from the posi-
tion measurement of the robot end-effector have the same effect on ud as the uncertainty
in the human position measurement.

Implementation of the Experiments and Results

As described in Section 4.3.6, evaluating the IS technique is performed via the VAE
value. To this end, this value is referred to for comparing the grid-based IS algorithm
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Figure 5.17: IS-based approach for uncertainty aware risk minimization. In order to ex-
plore whether a risk reduction and a safe system design can be achieved by
employing the importance sampling algorithm introduced in Section 4.3.6,
spatial and temporal uncertainties are sampled from pre-defined distribu-
tions (Step 1). In particular, the simulation scenarios described in Section
5.3.4 are run by considering the uncertainty samples (Step 2). The obtained
results logically enable to study the impact of the uncertainties on the occur-
rence of risks (Step 3). In the last step, the grid-based importance sampling
technique in Algorithm 0 is applied to study whether the findings contribute
to the reduction of risks.

with traditional MC sampling for the three simulation scenarios described above. Here,
CoppeliaSim robotics 1 is employed as the simulator. To parameterize the variables, ten
samples are drawn for the time delay T , ten samples for c and 25 samples for d0 from
the corresponding distributions that yield 2500 parameter combinations for each of the
above scenarios. In addition, the severity is computed by the fraction between the actual
collision force Fc and the tolerated collision force Fc,max for the affected human body part
collision provided in ISO TS 15066:2016 [28].

Results: Uncertainty-aware Safety Evaluation based on IS

On the basis of the simulation results, the probability for collisions was evaluated for the
spatial and the temporal uncertainties as demonstrated in Figure 5.16. At first glance, these
findings support the theoretical expectation that that probability for collisions increases
with higher uncertainties. However, it can be seen that the collision probability for us =
0.3m and ut = 0.09 s is lower than for us = 0.1m and ut = 0.08 s. This effect is likely to
be attributed to the sampling process. Specifically, it is likely that a rather low uncertainty
value was drawn during the sampling procedure. In order to analyze the relationship
between the risk probability and the uncertainty. The curves in Figure 5.18 do not hint at
causal relationships between the uncertainties and the collision probability. Hence, higher
collision probabilities may not necessarily originate from the amount of uncertainty, but
additional system characteristics that were not considered in the above analyses.

1https://www.coppeliarobotics.com/
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(a) Collision probability vs. us (b) Collision probability vs. ut

Figure 5.18: By referring to the experiments described in Section 5.3.4, the collision
probabilities p(collision) are plotted against the spatial and temporal uncer-
tainty us(m) and ut(N), respectively. While the general expected tendency
of an increasing collision probability for higher uncertainties is verified, the
collision probability obviously decreases for certain regions, as for example
in the area within the red circle. This implies that correlations with addi-
tional system variables that were not considered in the performed studies
may exist.

VAE Reduction via Importance Sampling

In addition to the safety evaluation, the aim of this Section was to assess the suitabil-
ity of IS for the analysis of hazardous events. To this end, the VAE is computed for the
experiments performed in these three simulation scenarios. By doing so, traditional MC
sampling is compared with the grid-based IS approach developed in Section 4.3.6. The
obtained findings in Table 5.7 support that IS yields more promising results for enhancing
the statistical significance in interesting regions with low probability densities. However,
this seems to be only valid for scenario 1 and scenarios 3. In the case of scenario 2, the
traditional MC sampling yields lower VAE values that is justified as follows: In contrast
to scenario 1 and scenario 3, the dangerous region is relatively large for the occurrence
of collisions. In the algorithm for the grid-based IS however, assumptions are made on
the size of the dangerous zone such that the dangerous zone is underestimated during the
learning phase. Since the learning phase serves as the basis for the grid-based IS, this
significantly affects the result of the VAE.

Table 5.7: VAE values for MC Sampling and grid-based IS
Sampling Method Scenario A Scenario B Scenario C

MC Sampling 3.4 e-05 1.3 e-04 1.6 e-03
Grid-based IS 2.8 e-05 3.8 e-04 7.4 e-04
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Figure 5.19: Histogram of severity values of hazardous events. On the y-axis, the oc-
currence probability for the severity values is shown. The deviations corre-
spond to the spread of the Gaussian distributions from which the samples
of the spatial uncertainties us are generated. Therefore, this figure depicts
the relationship between the occurrence probability for severity values for
different spatial uncertainty constellations.

5.4 Summary of Chapter

The contribution of this Chapter was twofold. In addition to the validation of the the un-
certainty quantification and propagation techniques, their applicability to robot systems
was explored in both simulation and real-world environments. To be specific, the per-
formed studies yielded following findings.

1. Maximization of Successful Robot Grasps: The grasp selection experiments with
the humanoid robot ARMAR-6 showed that modeling the grasp metrics as Gaus-
sian distributions yields to a significant increase of succeeded grasps (from 32.6 %
to 73.8 %). Hence, these results motivate to replace scalar representations by prob-
abilistic models to obtain higher optimization performances in binary optimization
problems.

2. Minimization of Inaccurate Image Classifications: The goal of the experiments
in Section 5.2 was laid on the calibration of the NN robustness defined by Equation
(4.7) and the metrological uncertainty notation. To this end, the assignment of
safety-critical measures to the parameters and the sensitive parameter regions were
thoroughly discussed. The results of the image classification experiments showed
that considering the proposed notation for unifying the uncertainties yields to the
reduction of incorrect classifications.

3. Safety Evaluation and Risk Minimization in HRC: The first part of this Section
addressed the validation of the uncertainty quantification method of black box tools.
To this end, the method introduced in Section 3.2.1 was applied to a the SICK S3000
safety scanner. The comparison of the obtained results with the manufacturer spec-
ifications led to a discrepancy of 4.0%. This deviation is attributed to the limited
amount of data.

Furthermore, the correctness of the uncertainty propagation algorithm was success-
fully verified in simulation experiments, where a 2D tracking was performed. Af-
terward, the applicability in real-world conditions was tested in an ARUCO marker
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tracking experiment. Here, the findings showed that the discrepancy between the
ground truth uncertainty and the result of the propagation algorithm are larger in
real-world settings (10.32 %).

Next, the probability for the occurrence of dangerous situations, that is defined as a
critical measure for evaluating safety by standard ISO 13849 was estimated by re-
ferring to the uncertainty mapping technique in Section 4.3.5. In particular, the on-
line safety assessment was performed in Human-Robot Collaboration experiments,
where the neural network based tool Open Pose 3D was employed for human track-
ing. The results demonstrated that the occurrence rate of dangerous events can be
reduced by calculating the uncertainty online by means of the methods derived in
this thesis.

Lastly, simulation experiments with CoppeliaSim were performed by accounting
for both the severity and uncertainty. The goal of these studies was to explore
the suitability of the grid-based importance sampling algorithm for risk detection
purposes. The obtained results indicate that no significant improvement in the VAE
is achieved compared to traditional MC sampling.
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Outlook

In this Chapter, the main findings of this thesis, including the presented methods for quan-
tifying and propagating the measurement uncertainties in robot systems and the uncertainty-
aware optimization techniques will be summarized. With the motivation to enable the
evaluation of robot systems in the context of safety by describing robot systems accord-
ingly in the state space, methods to quantifying the uncertainties of black box tools and
accumulating them along the system pipeline were presented. In particular, the thesis
analysed how integrating these uncertainties contributes to the performance of the robot
applications. In the following, the results from the validation experiments will be shortly
discussed and referred to for both deriving the limitations and emphasizing the contribu-
tions. In this context, the main findings on the questions introduced in Chapter 1 will be
provided. Finally, potential approaches to transferring methods from the physics to the
robotics domain are discussed by suggesting directions for future research.

6.1 Discussion

Prior to summarizing the main findings of this thesis, the results on the experiments of
the uncertainty quantification, propagation and uncertainty-aware optimization methods
will be shortly discussed. In doing so, the effects of the consideration of uncertainties on
the optimization performance and the applicability of the uncertainty-aware optimization
methods to robot systems will be addressed.

6.1.1 Uncertainty Quantification and Propagation

The main incentive of this work was to study whether applying the notation of measure-
ment uncertainties according to the Guide to the Expression of Uncertainty in Measure-
ment [26] to robot systems yields higher performances. After specifying the requirements
for applying the techniques stated in this Guide, a method for quantifying uncertainties
of black box tools was derived in Section 3.2.1. The key idea behind the developed tech-
nique is to leverage the knowledge of conserved properties of a system, express them
in the state-space and to evaluate them online during run time. After specifying system
variables that are known to stay constant during operation, recording data with the black
box tool regarding these constant properties enables to deduce on the measurement un-
certainty. Especially, the uncertainty of the respective black box tool can be computed
directly and online by referring to the violations on the conservation equations.

The validation of this technique was performed by means of the SICK S3000 laserscan-
ner. After applying the presented method on the measurement data of this tool, that is, by
treating it as a black box tool, the obtained results were compared with the manufacturer
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specifications of the laserscanners’ data sheet. This comparison shows a discrepancy of
merely 0.4% between the estimated uncertainty and the ground truth value. Since this dif-
ference can be explained by the statistical uncertainty, arising from the limited availability
of data, one can conclude that this technique yields reliable results. At the same time, it
is worth noting that the identification of conserved properties, that can be expressed in
terms of the measurement data from a measurement tool of interest is not always straight-
forward. In addition, it is likely that evaluating the conservation equations during run time
can cause high computational burden. Also, most importantly, the uncertainty quantifica-
tion with conservation equations is only reasonable for systems that do not underlie many
variations. Since these equations may be sensitive to sudden changes, it is recommended
to limit its employment in repetitive robot tasks with constant environmental conditions.
Thus, while the correctness of the uncertainty quantification technique of black boxes
was successfully validated, the practical applicability apart from safety-critical systems is
suggested to be studied for different use cases individually to derive more generic conclu-
sions.

Next, approaches for uncertainty propagation were developed. In addition to transferring
the sampling-based uncertainty propagation algorithm, that is applicable for systems with
non-Gaussian distributed input uncertainties, a technique to bringing the probabilistic ro-
bustness of NNs with the metrological uncertainty notation was derived. In particular, the
variables in the Lipschitz equation were reinterepreted, thereby identifying analogies to
the formalism of measurement uncertainties. Although the validity of this reinterpretation
was studied by referring to an image classification experiment with NNs, the practicability
of this approach to more complex robot systems is highly arguable. In fact, the identifica-
tion of appropriate parameter ranges, which is essential to employ the technique, is bound
to long system runs where the experimental prerequisites must be met and held during
system run time.

Apart from that, the specification of the relevant parameter ranges necessitates a refer-
ence data set for different system constellations. While this requirement was met by the
validation experiments in this thesis, it might be challenging to gather these data sets for
more complex applications. Furthermore, the reinterpreted Lipschitz equation is highly
sensitive to changes of parameter ranges. This makes it difficult to apply the suggested
method to common robot applications. On the other hand, it was also shown that moni-
toring the sensitivity can contribute to the practicability: In fact, if the computation power
of the robot system allows to constantly compute and control the sensitivity, it may re-
lax the strictness on the parameter ranges in the Lipschitz equation. Nevertheless, the
validation experiments clearly demonstrated that the proposed reinterpretation of the Lip-
schitz equation does not only enable to accumulate uncertainties of technical devices with
those of NNs, but also provides one step towards evaluating NNs with respect to safety
limits. In particular, it was shown that specifying a tolerance threshold on the incorrect
classifications was met by computing the system uncertainty on the basis of the suggested
reinterpretation.
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6.1.2 Uncertainty-aware Optimization

In addition to quantifying the uncertainty of black box tools and accumulating them along
the system pipeline, one of the central questions of this thesis was to evaluate how the
uncertainty contributes to the performance of robot applications. For this purpose, the
so-called Optimization Performance was introduced as a measure to quantitatively assess
whether the consideration of uncertainties yields an enhancement in the achievement of
the optimization goal. By deriving uncertainty-aware optimization techniques, distinct
and continuous optimization methods were distinguished from each other. To be specific,
approaches to binary optimization, minimization of inaccurate classification and continu-
ous optimization for an analytical function were presented.

In Chapter 5, each of these techniques was validated in the context of a robot application.

Binary Optimization on Humanoid Robot Grasping
First, the binary optimization was implemented and tested on a humanoid robot grasping
application with the goal of maximizing the rate of successful grasp selections. Here,
the critical metrics for the grasp selection were modeled in a probabilistic manner by in-
troducing Gaussian-distributed uncertainties. Specifically, these uncertainty models were
derived on heuristic estimates. In order to perform the grasp selection in an uncertainty-
aware fashion, a baseline data set was generated under real-world conditions. In fact,
this baseline data set served as the basis to form a cost function that enables to character-
ize grasp candidates according to their success probability. The obtained results showed
that the rate of succeeded grasps could be indeed improved from 32.1 % to more than
70 %. While this enhancement underlines the benefits of considering uncertainties, or
more specifically the possibility of fluctuations, it is worth noting that the incorporated
uncertainty models were not validated beforehand. Thus, it is recommended to first study
the exact uncertainty models and possible correlations between the considered metrics
to incorporate these in the optimization function. Apart from that, one limitation occurs
due to the limited amount of data in the baseline data set. In the performed experiments,
1000 real-world grasps were performed and used as the baseline during four days. Thus,
while compared to existing real-world humanoid grasp database, this collection contains
a high amount of data, it corresponds to a rather small data set from statistical viewpoint.
Consequently, this means that the findings on the statistical analyses that were provided
in Section 5.1.7 may be complemented by additional studies performed on a larger data
collection. In addition, varying environmental conditions or a variety on objects might be
considered.

Distinct Optimization with NN Classifier
Next, the distinct optimization problem was formulated as the minimization of inaccurate
classifications on an image classifier under real-world conditions. Importantly, the conclu-
sions drawn on the results of these experiments are twofold: In addition to the correctness
of the quantified uncertainties, that were obtained by applying the methods suggested
in Chapter 3, the optimization performance η was enhanced significantly in both appli-
cations, thereby motivating the consideration of uncertainties in the robot applications.
By performing the experiments, the reinterpreted version of the Lipschitz equation was
employed. Therefore, the respective parameter ranges were considered. This parameter
setting and the considered uncertainty notation enabled the reduction of inaccurate clas-
sification. However, one main limitation here is given by the missing generalizability.
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Due to the fact that the parameter calibration is highly dependent on the application, this
step must be performed individually for a system. Particularly in the case of the consid-
ered data bases MNIST and GTSRB, a sufficient amount of training and test data was
provided. This however does not apply in the majority of applications such that the de-
veloped method to minimize the classification inaccuracies requires efforts to collect data
on the application prior to operation. Furthermore, studying the parameter dependencies
might be bound to computational burden in more complex applications such that the on-
line uncertainty calculation may suffer from it. Here, it may be beneficial to analyse how
the computation time increases with the parameter dependencies to consider this for on-
line uncertainty calculation purposes.

Continuous Optimization for Risk Minimization in HRC
Finally, the continuous uncertainty-aware optimization was validated in safety-critical
robot applications with the goal of minimizing risks. Here, it was referred to the risk
definition provided by the International Organization of Standardization, that was consid-
ered as the basis for the safety assessment of industrial robot applications. According to
this definition, the risk depends on the severity of accidents and the probability for the
occurrence of the dangerous events. By estimating the latter one by means of the system
uncertainty, that is obtained by the uncertainty quantification and propagation algorithms
in Chapter 3, it was demonstrated how the compliance of the probability thresholds re-
garding hazardous events is evaluated. Specifically, the focus was laid on studying the
uncertainty in the human position tracking by employing OpenPose 3D. This tool was
treated as a black box with respect to its uncertainty since methods to accurately quanti-
fying neural network uncertainties do not exist to date. Thus, after quantifying the uncer-
tainty of OpenPose 3D by referring to the conservation equations, the obtained uncertainty
was incorporated in the uncertainty propagation pipeline together with the uncertainties
of the intel RealSense D435 cameras. Importantly, the rate of dangerous situations in real-
world Human-Robot Collaboration could be effectively reduced by computing the system
uncertainty online, monitoring the respective sensitivity values and mapping these results
on the probability threshold (e.g., ISO 13849).

However, it is worth noting that only one robotic application was considered for the eval-
uation. Although the experiments were conducted with different humans to study how the
accuracy of the uncertainty quantification depends on the length of the human joints, the
industrial robot arm UR10e was employed in all experiments. In addition, the environ-
mental conditions did not vary significantly during operation. Therefore, sudden changes
were not considered for the uncertainty calculation. Furthermore, more complex scenes
could be studied in future work. For example, several humans might interact with the
robot or introduce more variability and occlusions in the human tracking performance.
This, in turn, would yield higher uncertainties. In order to explore the performance and
generalizability of the uncertainty propagation method, it is recommended to consider a
higher variety of applications.

Studies on the Relationship between the Severity and Uncertainty in HRC
Next, the focus was laid on studying the dependency between the severity and the prob-
ability for the occurrence of dangerous events. As mentioned above, this probability was
obtained by referring to the propagated uncertainty. The goal here was laid on the identifi-
cation of risks. In this regard, three industrial Human-Robot Collaboration scenarios were
modeled in the simulation environment CoppeliaSim. In order to overcome the problem
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of sparse data on dangerous events that occurs due to their low occurrence probability, a
grid-based importance sampling algorithm was introduced, thereby artificially enhancing
the rate of hazardous events. On this basis, the question of how temporal and spatial un-
certainties of sensors and technical components affect the occurrence of dangerous events
was addressed. Overall, the results indicated that no analytical relationship can be derived
between these uncertainties and the probability of risks. While applying the importance
sampling algorithm yielded higher statistical significance than classical Monte-Carlo sam-
pling in the context of risk analysis, the results also showed that the advantages of applying
the importance sampling technique highly depends on the application. This leads to the
conclusion that evaluating quantitative safety requirements by means of the system un-
certainty is recommended. However, the benefits of the importance sampling technique
for risk detection purposes in robot systems are challenging to assess due to the high sen-
sitivity on the application-specific characteristics. Particularly, the considered scenarios
were generated by the same simulation framework and correspond to relatively simple use
cases. In all three scenarios, the distance between the human and the robot was observed
for constant velocities. The large variations in the results obtained by applying importance
sampling indicate the limited suitability of the proposed grid-based importance sampling
algorithm. To be specific, the suggested grid-based importance sampling method corre-
sponds to a simplification of the classical continuous version, where the derivation of the
latent distribution q requires more thorough studies. Thus, although the efficacy of the
introduced grid-based importance sampling was validated in the above simulation sce-
narios, improving the suitability for risk reduction necessitates both the refinement of the
grid-based approach and further experimental studies in more complex robot applications.

Overall, the averaged improvement in the optimization performance η that is intended
to measure how the incorporation of uncertainties contributes to the achievement of the
optimization goal in the considered robot applications, amounts to ∆η = 64.04%. To
this end, it is argued that quantifying and integrating the uncertainties along with the
sensitivity monitoring yields to desirable effects in reaching the optimization goal.

6.2 Scientific Findings and Outlook

Finally, the research questions introduced at the beginning of this thesis in Section 1.1 will
be discussed by referring to the obtained findings. Afterward, ideas for future research
directions are briefly outlined.

6.2.1 Research Questions and Scientific Findings

1. Which requirements must be met for the description of the robot system to
enable the calculation of the accumulated uncertainty for an entire robot ap-
plication?
According to the findings in this thesis, applying the technique for quantifying un-
certainties and propagating the uncertainties on the basis of the system description
in a metrological fashion yielded promising results. In particular, the considered use
cases showed that the uncertainty propagation techniques are suitable for evaluating
safety requirements online in an uncertainty-aware manner. Thus, in addition to the
correctness, the presented techniques could be successfully applied for real-world
robot systems.
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2. How can established uncertainty notations from the domain of robotics and
learning be unified with the metrological uncertainty notation to enable the
derivation of one single uncertainty measure for an entire robot system?
By developing techniques to accumulating the uncertainty of different components,
a method to bringing together the robustness of neural networks with the metrologi-
cal uncertainty notation was derived. Specifically, it was found that analogies can be
identified between these two formalisms. However, unifying them to one measure
was not performed explicitly. Instead, a reinterpretation of system variables and the
subsequent calibration of the application was conducted to quantify the accumulated
uncertainty. The respective validation experiments showed that the uncertainty of
the system can be successfully captured intrinsically by this technique.

3. How can the quantified uncertainties on component level be incorporated in
the system to enhance the performance of robot applications?
For each of the experiments performed within the frame of this thesis, a differ-
ent approach was applied: While the uncertainties for the binary uncertainty-aware
optimization were directly considered in the definition of the variables (grasp met-
rics), an implicit incorporation was proposed for the NN classifiers. In the context
of the risk minimization techniques, sampling based methods have led to promis-
ing results. In addition, the studies with the importance sampling based algorithm
showed that general relationships between the uncertainties and the optimization
performance of robot systems may be challenging to estimate. Thus, it is recom-
mended to first study the impact of the uncertainties of single components in simu-
lations or by applying further model-based techniques and to afterward monitor the
sensitivities on the most influential components experimentally under real-world
conditions. Based on the obtained results, the system components can be replaced
or adapted to boost the performance of robot systems accordingly.

6.2.2 Outlook

The central incentive of this PhD thesis was to study how established quantification meth-
ods of measurement uncertainties can be employed and adapted to robot systems. In
doing so, useful analogies could be identified, while at the same time, discrepancies must
be coped with. However, in summary, it was shown that transferring techniques can be
helpful and simplify the achievement of certain goals: Most importantly, the evaluation
of robot systems with respect to quantitative safety limits, that are usually defined in the
metrological space was enabled by describing and quantifying the uncertainties of the
applications’ components by referring to the metrological notations.

In the context of safety and risk mitigation, introducing the formalism of symmetries may
yield to more efficient, yet well-understood risk minimization methods. Especially, the
discovery of symmetries in natural phenomena is considered as highly valuable: Once
verified, they allow to derive conclusions in several regards by referring to only small
sets of data. Logically, this becomes highly useful for cases, where the availability of the
interesting data is sparse or the data acquisition is challenging. In terms of robot appli-
cations, symmetries may exist for accidents between humans and robots (e.g., collisions)
that could be exploited to derive the risk regions of additional accidents on the basis of
small data sets. Practically, this would mean that being provided with the data on a small
set on real-world accidents would allow to explore a wider area in the space of risk events,
thereby enabling a more detailed analysis on the origins of risks.
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However, the derivation and identification of these symmetries is bound on intuitively
studying the possible spaces, that underlie these symmetries, in first place. Due to the
fact that, according to the existing literature in robot safety, the risk analyses have not
been performed with regard to the search of symmetries to date, it remains an open issue
whether research in this direction may yield promising results in the long run. Apart from
this, however, it may be one approach to fostering the transfer of established methods
from the natural to the engineering sciences domain.
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Acronyms

GUM Guide to the Expression of Uncertainty in Measurement. This guide serves as a
reference to evaluating the accuracy of measurements..

HRC Human-Robot Collaboration. Mode in which humans and robot collaborate with
each other. In contrast to Human-Robot cooperation, where humans and robots
share their space, HRC refers to operation modes where both parties interact with
each other by often sharing the same goal..

IS Importance Sampling. A specification of Monte Carlo sampling with the aim of gen-
erating samples in certain regions..

ISO International Organization for Standardization. The ISO defines standards (e.g., ISO
12100, ISO 13849,...) that state limits on safety-critical parameters in robot appli-
cations..

MC Monte Carlo. Describes a random sampling method..

NN Neural Network. Refers to all types of artificial neural networks from the learning
domain..

VAE Variance in the Approximation Error. Enables to compare the accuracy of sampling
algorithms by measuring the amount of error between the result of the approxima-
tion and the ground truth..
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