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Time harmonic Maxwell’s equations

in periodic waveguides

A. Kirsch1 and B. Schweizer2

Abstract: We study Maxwell’s equations with periodic coefficients in a
closed waveguide. A functional analytic approach is used to formulate
and to solve the radiation problem. We furthermore characterize the set
of all bounded solutions to the homogeneous problem. The case of a
compact perturbation of the medium is included, the scattering problem
and the limiting absorption principle are discussed.

MSC: 35Q61

1. Introduction

Maxwell’s equations describe electromagnetic waves with the two unknown fields
E and H. When the frequency ω > 0 is prescribed, one can use the time-harmonic
equations. We regard the permittivity ε as complex-valued in order to model conduc-
tivity. With two coefficients µ = µ(x) (permeability) and ε = ε(x) (permittivity),
both depending on the spatial position x ∈ R3, the system reads

curlE = iωµH + fh ,

curlH = −iωεE + fe .
(1.1)

Here, fe = fe(x) models prescribed external currents and fh = fh(x) a right hand
side in the E-equation. We include fh for mathematical completeness and allow
div fh 6= 0 in our mathematical analysis below. This will be technically helpful at
a later point in the proofs. The inhomogeneities create the fields E = E(x) and
H = H(x). We are interested in a waveguide geometry and treat the equations on a
domain Ω = R×S ⊂ R3, where S ⊂ R2 is a bounded Lipschitz domain. We assume
that ε, µ ∈ L∞(Ω,R) are bounded from below by some constant c0 > 0 and that ε
and µ are 2π-periodic with respect to x1. Along the exterior boundary, we consider
a perfect conductor: ν ×E = 0 on ∂Ω for the exterior unit normal vector ν = ν(x).

1.1. Literature. Electromagnetic waves are described by Maxwell’s equations, we
refer to [14] for background and an overview over mathematical methods. In appli-
cations, one can often assume that the temporal frequency of solutions is fixed and
uses the ansatz u(x, t) = u(x)e−iωt. This ansatz leads from Maxwell’s equations to
the time harmonic Maxwell system (1.1), just as it leads from the wave equation
to the Helmholtz equation. Solutions of both, the time harmonic Maxwell system
and the Helmholtz equation, describe waves in a medium. When the underlying
domain in unbounded, one typically has to complement the system with a radiation
condition. The physically relevant condition is, loosely speaking, that energy should
be transported to infinity.
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The Helmholtz equation is, in some particular situation, a special case of the
Maxwell system. It is therefore not surprising that the appearing phenomena and
the analytical methods are very similar.

Of particular interest are waveguides with periodic coefficients. An analysis of the
corresponding Helmholtz problem, along with the adequate radiation conditions,
is given in [10]. We note that a more functional analytic approach for the same
problem was developed in [15, 16], simplified proofs and strengthened results can
be found in [17]. These approaches are all containing also results on a limiting
absorption principle. Even though the constructions are different, the approaches
are all based on the Floquet-Bloch transform, we refer to [18, 21] for more material
on this technique.

Some closely related publications, still for the Helmholtz equation, are the fol-
lowing: A semi-infinite waveguide is treated in [13], once more, alongside a limiting
absorption principle. An existence result that does not use the Floquet-Bloch trans-
form is given in [25] without limiting absorption principle. Another form of the
radiation condition in terms of Bloch waves is developed in [20]. A related approach
is studied in [7]. In periodic media, domain truncation can be used to derive an
equivalent formulation of the problem on a bounded domain, by using Dirichlet-to-
Neumann boundary conditions; for this powerful method we mention [9, 11] and
refer to references therein.

Regarding the Maxwell system, we are not aware of investigations of the radiation
problem in waveguides with periodic media. One subject of research are scattering
problems in the time harmonic setting, see [3, 6], or [2] for a study with Bloch
waves. Another subject are numerical methods in waveguide geometries, e.g., in
[12]. A nonlinear material (the material cannot be given simply by factors ε and µ)
is studied in a geometry (0, h)× R2 in [27].

Another topic about the Maxwell system is the regularity of solutions, we refer
to [1, 8] for related results. We mention that such topics are closely related to
compactness issues, which are very important in our approach.

Finally, there is the large topic of homogenization. In this context, one studies
periodic media in the limit that the periodicity length converges to zero. This is
an interesting limit which leads to effective theories which can have very surprising
features such as negative index materials [4, 19, 22]. A related topic is the question
whether or not waves, described by Maxwell’s equations, can pass through thin
layers of material with small holes, see [5, 26]. We note that these works study
either bounded domains or assume boundedness of the solution sequence; in this
sense, the results at hand can help to find homogenization limits in more general
situations.

1.2. Variational formulation of the problem. Let us first make clear how we
understand system (1.1). We search for E,H ∈ L2

loc(Ω̄,C3) such that the distribu-
tional rotation of H satisfies curlH ∈ L2

loc(Ω̄,C3). For the weak formulation of the
system we introduce the space of functions H1

cpt(Ω) which consists of those func-

tions ψ : Ω→ C3 of class H1(Ω) that are, for some R > 0, vanishing outside the set
ΩR := (−R,R)× S. We interpret the first equation of (1.1) as

(1.2)

∫
Ω

E · curlψ =

∫
Ω

[iωµH + fh] · ψ for every ψ ∈ H1
cpt(Ω) ,

and emphasize that this formulation encodes also the boundary condition E×ν = 0
on ∂Ω. The second equation of (1.1) is interpreted as equality of L2

loc-functions. In
order to illustrate the symmetry in the equations, we note that it is equivalent to
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demand:

(1.3)

∫
Ω

curlH · ψ =

∫
Ω

[−iωεE + fe] · ψ

for every function ψ ∈ L2(Ω,C3) with support in some bounded set ΩR. In contrast
to (1.2), the rotation in (1.3) does not act on the test-function; no boundary con-
dition for H is explicitly encoded. Nevertheless, we will see below that the coupled
system contains an implicit boundary condition for H.

The unknown E can be eliminated from the equations to obtain a single equation
for the only unknown u := H. For an arbitrary function φ ∈ H1

cpt(Ω), we use ψ :=

ε−1 curl φ̄ in (1.3); the bar over a function denotes complex conjugation. Replacing
the integral over E · curl φ̄ with the help of (1.2), we obtain the following weak
formulation of (1.1):
(1.4)∫

Ω

{
1

ε
curlu · curl φ̄− ω2µu φ̄

}
=

∫
Ω

{
1

ε
fe curl φ̄− iωfh φ̄

}
∀ φ ∈ H1

cpt(Ω) .

1.3. Function spaces. In the following, we will assume that fe and fh are vector
fields with good decay properties, more precisely,

(1.5) fe, fh ∈ L2
∗(Ω,C3) :=

{
f ∈ L2(Ω,C3)

∣∣∣∣ ∫
Ω

(1 + x2
1)2 |f(x)|2dx <∞

}
.

When we are interested in solutions to (1.4) with a decay for |x1| → ∞, we seek for

(1.6) u ∈ H(curl,Ω) :=
{
u ∈ L2(Ω,C3)

∣∣ curlu ∈ L2(Ω,C3)
}
,

and demand that (1.4) holds for all φ in the same space. When we are interested in
radiating solutions, we seek for u in the space

(1.7) Hloc(curl,Ω) := {u : Ω→ C | ∀R > 0 : u|ΩR ∈ H(curl,ΩR)} ,

where we used again ΩR = (−R,R) × S. In this setting, we demand (1.4) for all
φ ∈ H(curl,Ω) with compact support in Ω̄. The remainder of this text is devoted
to these two variants of the variational problem (1.4).

1.4. Comments on the system. The reader might be more familiar with the
strong form of system (1.1), which reads

(1.8) curl

(
1

ε
curlH

)
− ω2µH = curl

(
1

ε
fe

)
− iωfh .

We include a comment on the implied boundary conditions for H: Let us assume
that the right hand side fh is L2-orthogonal to all gradients; this encodes div fh = 0
and the boundary condition fh · ν = 0 on ∂Ω. In this case, using a gradient φ = ∇ψ
as test-function in (1.4), we find that also the function µu = µH is orthogonal to
gradients. This encodes div(µH) = 0 in the domain and µH ·ν = 0 on the boundary.
In particular: Solving the equations with fh = 0, the solution satisfies automatically
the boundary condition H · ν = 0 on ∂Ω.

On the equivalence of the two descriptions: We have shown that every solution of
the original problem solves the variational problem (1.4). Vice versa, let H = u ∈
Hloc(curl,Ω) be a solution to (1.4). We define the electric field by E := i(curlH −
fe)/(ωε) such that (1.3) is satisfied. We note that E ∈ L2

loc(Ω,C3) is satisfied and
hence the definition of E together with (1.4) implies (1.2). Additionally, because of
iωµH+fh ∈ L2

loc(Ω,C3), (1.2) also yields curlE ∈ L2
loc(Ω,C3) and we conclude that

(1.1) is also solved strongly, or, equivalently, pointwise almost everywhere.
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It is often convenient to have the boundary condition for E encoded in the function
space. With

H0(curl,Ω) :=

{
u ∈ H(curl,Ω)

∣∣∣∣ ∫
Ω

E · curlψ =

∫
Ω

curlE · ψ ∀ψ ∈ H(curl,Ω)

}
,

relation (1.2) is equivalent to: E satisfies E ∈ H0(curl,Ω) and the first equation of
(1.1).

Our main results regard existence and uniqueness of solutions to (1.4). Our ap-
proach is quite similar to the one in [17], where we treated the Helmholtz equation.
Since that article is quite detailed and contains proofs of all relevant tools (in partic-
ular Floquet-Bloch transformations and the fundamental functional analysis result),
we focus here on those aspects of the analysis that are different for Maxwell’s equa-
tions.

2. The Floquet-Bloch transformed equation

2.1. Application of the Floquet-Bloch transform. We use the Floquet-Bloch
transformation in the x1-variable. It transforms a function u = u(x), x ∈ R×S into
a function û. The transformed function has two arguments, û = û(x, α), where x
ranges in the periodicity cell, x ∈ W := (0, 2π)×S, and α ranges in a unit interval,
α ∈ I := [−1/2, 1/2]. The two arguments are related by the fact that, for every
α ∈ I, the map W 3 x 7→ û(x, α) is an α-quasiperiodic function (the definition is
given below).

The transformation is a bounded linear map

(2.1) FFB : L2(Ω)→ L2
(
W × I

)
, u 7→ û .

For smooth functions u with compact support, writing x = (x1, x̃) for the argument,
the transformation is defined by the formula

(2.2) û((x1, x̃), α) :=
∑
`∈Z

u((x1 + 2π`, x̃)) e−i`2πα .

The operator FFB is a unitary operator. We recall that [17] contains more details
of the construction and proofs.

We have to introduce function spaces that are adapted to Maxwell’s equations.
We need spaces of periodic and of α-quasiperiodic functions. In order to formulate
periodicity on W , we start from

Hper,loc(curl,Ω) := {u : Ω→ C |u is 2π-periodic in x1 ,

∀R > 0 : u|ΩR ∈ H(curl,ΩR)} .
(2.3)

This space allows to introduce periodic functions on W ,

(2.4) Hper(curl,W ) := {u|W | u ∈ Hper,loc(curl,Ω)} ,
and the space of α-periodic functions

(2.5) Hα(curl,W ) :=
{
u|W

∣∣ [x 7→ u(x)e−iαx1 ] ∈ Hper,loc(curl,Ω)
}
.

We equip the space Hα(curl,W ) with the inner product

(2.6) 〈u, φ〉Hα(curl,W ) :=

〈
1

ε
curlu, curlφ

〉
L2(W )

+ 〈µu, φ〉L2(W ) .

The Floquet-Bloch transform is an isomorphism from H(curl,Ω) to a space that
we write as L2(I,Hα(curl,W )), elements of the latter are maps w : I → H(curl,W )
with w(α) ∈ Hα(curl,W ) for almost every α ∈ I.
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For functions with decay, this allows an equivalent formulation of the variational
problem. A function u ∈ H(curl,Ω) solves (1.4) if, and only if, its transformation
satisfies û ∈ L2(I,Hα(curl,W )) and∫

W

{
1

ε
curl û(·, α) · curl φ̄− ω2µ û(·, α) · φ̄

}
=

∫
W

{
1

ε
(FFBfe)(·, α) · curl φ̄− iω(FFBfh)(·, α) · φ̄

}(2.7)

holds for every φ ∈ Hα(curl,W ) and for almost every α ∈ I. The proof is as that of
Lemma 2.1 in [17]. Let us indicate the relevant calculation with the first term, where
we use, in the first equality, the unitarity of FFB and, in the second equality, that
multiplication with a 2π-periodic function can be taken out of the Floquet-Bloch
transformation (compare the definition in (2.2)), and that differential operators
(such as curl) commute with the Floquet-Bloch transformation (here, we write φ̌ for
the test function on Ω and set φ = FFB(φ̌)):〈

1

ε
curlu, curl φ̌

〉
L2(Ω)

=

∫
I

〈
FFB(ε−1 curlu)(·, α),FFB(curl φ̌)(·, α)

〉
L2(W )

dα

=

∫
I

〈
ε−1(·) curl û(·, α), curlφ(·, α)

〉
L2(W )

dα .

Since the test-function φ(·, α) can be chosen arbitrarily, repeating the calculation
for the other terms of (1.4), we arrive at (2.7) for almost every α.

2.2. Re-writing the equation with a family of operators. We want to write
the variational problem (2.7) with the help of operators. Since we want to construct
operators that are defined on an α-independent function space, we transform all
equations to the space of periodic functions (which is the space corresponding to
α = 0). We use X := Hper(curl,W ) with the inner product of (2.6).

We note that a function x 7→ U(x) is α-periodic in x1 if, and only if, the function
x 7→ U(x)e−iαx1 is periodic in x1. Instead of using û(·, α) ∈ Hα(curl,W ) as an
unknown, we seek for v(·) := û(·, α)e−iαx1 ∈ X.

For given v, the left hand side of (2.7) (with the replacements û(·, α) = v(·)eiαx1
and φ(·, α) = ϕ(·)eiαx1) defines an anti-linear form in ϕ, a map X → C. By the
Riesz theorem on Hilbert spaces, this form can be represented by an element Lαv
via the scalar product in X. We obtain a bounded linear operator Lα : X → X,
defined by the relation

(2.8) 〈Lαv, ϕ〉X =

∫
W

1

ε
curl(veiαx1) · curl (ϕeiαx1)− ω2µ v · ϕ̄

for all v, ϕ ∈ X. Accordingly, we represent the right hand side of (2.7) with an
element yα ∈ X,

(2.9) 〈yα, ϕ〉X =

∫
W

{
1

ε
(FFBfe)(·, α) · curl (ϕeiαx1)− iω(FFBfh)(·, α) · (ϕeiαx1)

}
.

With these representations, the original problem (1.4) is solved when we find, for
almost every α ∈ I, a solution v(·, α) ∈ X of

(2.10) Lαv(·, α) = yα ,

and if this family of solution satisfies v ∈ L2(I,X). This concludes the transforma-
tion of the equation, we arrived at a representation as in (2.14) of [17].
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Since, for the existence result, we invert the order, let us outline the constructions
of the next sections:

• Solve the abstract problem (2.10) for almost every α ∈ I. This yields periodic
functions v = v(·, α). They are found with abstract functional analysis.
• Construct from v the α-quasiperiodic counterparts û(·, α). By construction

of (2.10), these counterparts solve (2.7).
• The (inverse) Floquet-Bloch transformation of û(·, α) provides a solution u

to (1.4). This was discussed above after (2.7).

Our next aim is to analyze the properties of the operator Lα. Later on, the
dependence on α will be crucial. By contrast, in this section, we study, for a fixed
α ∈ I, the operator Lα. The main result will be that Lα is a self-adjoint Fredholm
operator with index 0. We recall that ε and µ are also fixed, real, and of class
L∞(W ) with a positive lower bound.
Two equivalent operators. The space of periodic functions is X and the operator
on this space is Lα. The space of α-quasiperiodic functions is X̃α := Hα(curl,W ),
defined in (2.5). Every periodic function u ∈ X can be transformed to an α-
quasiperiodic function ũ ∈ X̃α, defined as ũ(x) := u(x)eiαx1 . This transformation
defines an isomorphism between X and X̃α.

We must check the properties of the operator Lα : X → X of (2.8). For fixed α, it
is actually easier to perform proofs in the space of α-quasiperiodic functions. Indeed,
we recall that the operator Lα was actually defined through the transformation of
a problem in the space of α-quasiperiodic functions, compare (2.7). The variational

problem 〈Lαu, ϕ〉X =
∫
W
f ·ϕ̄ is identical to 〈L̃αũ, ϕ̃〉X̃α =

∫
W
f̃ ·ϕ̃ with the functions

ũ(x) = u(x)eiαx1 and f̃(x) = f(x)eiαx1 for the operator L̃α : X̃α → X̃α defined by

(2.11) 〈L̃αũ, ϕ̃〉X̃α =

∫
W

1

ε
curl ũ · curl ϕ̃− ω2µ ũ · ϕ̃

for all ũ, ϕ̃ ∈ X̃α.
We claim that the operator Lα is a Fredholm operator if, and only if, L̃α is

Fredholm, and that the index of the two operators coincides. Indeed, when the
kernel of Lα is spanned by u1, ..., uM , then the transformed functions defined as
ũm(x) := um(x)eiαx1 span the kernel of L̃α, and vice versa. Similarly, when u1, ..., uM
span a complement of Lα(X), then the transformed functions span a complement
of L̃α(X̃α).

In Lemma B.1 of Appendix B we prove that L̃α of (2.11) is a Fredholm operator
with index 0. This implies the following result.

Proposition 2.1 (Properties of Lα). Let ε, µ : Ω → R be as described after (1.1).
For α ∈ I = [−1/2, 1/2] we consider, on the space X = Hper(curl,W ), the operator
Lα : X → X of (2.8). Then Lα is a self-adjoint Fredholm operator with index 0.

3. Existence of solutions to the Maxwell radiation problem

From now on and until the start of Subsection 3.6, we consider the homogeneous
equations, i.e., (fe, fh) = 0. We recall that ε and µ are real and have a positive
lower bound.

3.1. Physical conservation laws: Poynting vector and energy flux. For a
solution (E,H) of the Maxwell system, the Poynting vector P := 1

2
E× H̄ describes

the flow of energy. More precisely, through a cross-section Γr := {r} × S of the
waveguide with normal vector e1 = (1, 0, 0) ∈ R3, the quantity 1

2
Re
∫

Γr
(E × H̄) · e1
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is the energy flux through Γr. This motivates to study, for a position r ∈ R and a
solution H, the real valued flux quantity

(3.1) Fr := −2 Im

∫
Γr

1

ε
(curlH × H̄) · e1 .

Conservation of energy is reflected by the fact that the flux Fr is independent of the
position r.

Let us sketch the argument for smooth coefficients µ and ε and a classical solution
H of the Maxwell system (1.4) (below, we provide rigorous derivations for weak
solutions): For two positions −∞ < s < r < ∞ and the domain Ωs,r := (s, r) × S
with characteristic function χ we use the test-function φ = uχ in (1.4). The right
hand side vanishes, on the left, we integrate by parts and take the imaginary part.
The bulk term is real because of the strong equation curl(ε−1 curlH)− ω2µH = 0,
hence the imaginary part of the bulk term vanishes. There remain only boundary
terms, they coincide with the expression in (3.1). We find that the expression Fr is
independent of r.

Our next aim is to prove this fact in a generalized setting for weak solutions.

3.2. Generalization and weak description. We consider two weak solutions u
and v to the homogeneous problem, i.e., both u and v solve

(3.2)

∫
Ω

{
1

ε
curlu · curl φ̄− ω2µu φ̄

}
= 0 for every φ ∈ H1

cpt(Ω) .

We consider an arbitrary weight function, η : R→ R bounded with compact support
and with

∫
R η = 1. We interpret η also as a function on Ω by setting η(x) := η(x1).

We introduce the weighted average of the complex flux,

(3.3) Fu,v := i

∫
Ω

η
1

ε
[(curlu× v̄)− (curl v̄ × u)] · e1 .

Conservation of energy is now reflected by the fact that the expression Fu,v is in-
dependent of the weight η. Indeed, when η1 and η2 are two weight functions as
above, we use the primitive of the difference, ϑ(t) :=

∫ t
−∞(η1− η2)(s) ds, a Lipschitz

function with compact support. Once more, we interpret ϑ also as a function on Ω.
We use φ = vϑ as a test-function for the solution u of (3.2). We then use φ = uϑ

as a test-function for the solution v and take the complex conjugate of the result.
When subtracting the two expressions, terms without derivatives of ϑ cancel. There
remain only terms that contain a derivative of ϑ(x), which is∇ϑ(x) = (η1−η2)(x) e1.
The result is that, indeed, the expression of (3.3), is independent of η.

Motivated by this calculation, we introduce two sesquilinear forms on functions
u, φ ∈ H(curl,W ) for W = (0, 2π)× S:

(3.4) Q(u, φ) := i

∫
W

1

ε

[
(curlu× φ̄)− (curl φ̄× u)

]
· e1 .

The form Q is hermitean, since ε is real. We emphasize that the arguments of Q
are not necessarily periodic functions; indeed, we will typically use α-quasiperiodic
functions as arguments. Solutions u, v of (3.2) satisfy

(3.5) Q(u, v) = 2πFu,v .

3.3. Non-degeneracy of Q. We will always make the following physically mean-
ingful assumption. We recall that, for α ∈ I = [−1/2, 1/2], the operator Lα : X → X
on X = Hper(curl,W ) was defined in (2.8).
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Assumption 3.1 (Energy transport of quasiperiodic solutions). We introduce the
set of critical α-values

(3.6) A := {α ∈ (−1/2, 1/2] | ker(Lα) 6= {0}} .

We assume that, for every α ∈ A and for every 0 6= v ∈ ker(Lα), the linear form
Q(·, v) does not vanish identically on ker(Lα).

The assumption demands, loosely speaking, that there is no quasiperiodic homo-
geneous solution to the Maxwell equation that is not transporting energy.

We note that the operators Lα coincide for α = 1/2 and α = −1/2. We therefore
do not consider the value α = −1/2 in the set A.

3.4. The derivative of Lα. For the space X = Hper(curl,W ) and Lα : X → X of
(2.8), we now computate the derivative of Lα with respect to α.

Lemma 3.2 (Derivative of Lα). The derivative ∂αLα : X → X is given by Q in the
sense that

(3.7) 〈∂αLαv, ϕ〉X = Q
(
v eiαx1 , ϕ eiαx1

)
for every v, ϕ ∈ X. In particular, when Assumption 3.1 holds, the derivative ∂αLα
is non-degenerate on the kernel of Lα for every α ∈ A.

Proof. For arbitrary v, ϕ ∈ X we can calculate

〈∂αLαv, ϕ〉X = ∂α〈Lαv, ϕ〉X

= ∂α

∫
W

1

ε
curl(veiαx1) · curl (ϕeiαx1)− ω2µ v · ϕ̄

= i

∫
W

1

ε

{
curl(v x1 e

iαx1) · curl (ϕ eiαx1)− curl(v eiαx1) · curl (ϕx1 eiαx1)
}

= i

∫
W

1

ε

{
(e1 × v eiαx1) · curl (ϕ eiαx1)− (e1 × ϕ eiαx1) · curl(v eiαx1)

}
= Q

(
v eiαx1 , ϕ eiαx1

)
.

This provides (3.7). �

3.5. Functional analysis. When Assumption 3.1 is satisfied, Proposition 2.1 pro-
vides a Fredholm property of the family (Lα)α, and Lemma 3.2 implies the non-
degeneracy of the α-derivatives. These properties imply that the family (Lα)α is
a regular C1-family of operators in the sense of Definition 3.1 of [17]. For regular
C1-families of operators, the subsequent result was shown in [17]. We use the same
notation, with only one minimal change: We have to replace the variable ε > 0 by
δ > 0, because in Maxwell’s equations ε is the name of the permittivity. We use
Iδ := (−1/2 − δ, 1/2 + δ), N := ker(Lα), R := Lα(X) ⊂ X, and the projection P
onto N corresponding to X = N ⊕R. Theorem 3.2 of [17] provides:

Theorem 3.3 (Functional analysis). Let Assumption 3.1 hold. The family Lα has
the following properties.

1. The set of critical numbers is finite: For a number J ∈ N (we allow J = 0
for an empty set A) and values {αj | 0 < j ≤ J} holds

(3.8) A := {α ∈ (−1/2, 1/2] | ker(Lα) 6= {0}} = {αj | 0 < j ≤ J} .
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2. For some δ > 0, let Iδ 3 α 7→ yα be a C1-family of right hand sides with the
property that yα ∈ Lα(X) holds for every α ∈ Iδ with ker(Lα) 6= {0}. Then
the family of solutions

Iδ \ A 3 α 7→ uα := (Lα)−1(yα)

can be continued to a C0-family on Iδ. For some constant C > 0, which is
independent of the family (yα)α, there holds, with the derivative y′ = ∂αy,

(3.9) sup
α∈I
‖uα‖X ≤ C sup

α∈I

[
‖yα‖X + ‖y′α‖X

]
.

The theorem implies that there exists a finite number of quasimoments (αj)1≤j≤J ,
corresponding to propagative wave numbers. They are characterized by the fact
that the kernel ker(Lαj) = {ϕ |Lαjϕ = 0} is not trivial. The kernels are finite
dimensional. We introduce, for every 0 < j ≤ J , the space of αj-quasiperiodic
propagating modes

(3.10) Yj :=
{
φ ∈ Hαj(curl,Ω) |φ satisfies (1.4) for fh = fe = 0

}
.

There holds ker(Lαj) =
{
φe−iαjx1 |φ ∈ Yj

}
, we denote the dimension by mj :=

dimYj = dim ker(Lαj). In every space Yj we choose a basis {φ1,j, . . . , φmj ,j} ⊂ Yj
as follows: We fix an inner product 〈·, ·〉Yj and consider the self-adjoint eigenvalue
problem to find λ ∈ R and 0 6= φ ∈ Yj such that

Q(φ, ·) = λ 〈φ, ·〉Yj .
We denote the eigenvalues by λ`,j, ` = 1, . . . ,mj, and the eigenfunctions by φ`,j,
` = 1, . . . ,mj, normalized such that

〈φ`,j, φ`′,j〉Yj = δ`,`′ , `, `′ = 1, . . . ,mj .

The following lemma translates Lemma 3.4 of [17] to the Maxwell system. We
recall the short and simple proof.

Lemma 3.4 (Orthogonality). The spaces Yj are orthogonal with respect to the form
Q: There holds Q(u, v) = 0 for u ∈ Yj and v ∈ Yj′ whenever j 6= j′.

Proof. We evaluate the expression Fu,v of (3.3) for two weights η1(·) = η(·) and
η2(·) = η(·+2πe1). We evaluate Fu,v with the weight η2 by a substitution, using that
u is αj quasiperiodic and v is αj′ quasiperiodic. The fact that Fu,v is independent
of the weight η implies Fu,v = e2πiαje−2πiαj′Fu,v. This implies Fu,v = 0 and thus
Q(u, v) = 0. �

We re-arrange the basis functions into the set {φ` | ` = 1, . . . , L} where L :=∑
j∈J mj. With the corresponding eigenvalues λ` we can formulate: Assumption 3.1

is satisfied if, and only if, Q(φ`, φ`) = λ` 6= 0 for all ` = 1, . . . , L.

3.6. Solutions with decay, u ∈ H(curl,Ω). We can now formulate the existence
and uniqueness result in H(curl,Ω). This result gives the unique existence of a
decaying solution for right hand sides that satisfy an orthogonality condition.

Theorem 3.5 (Existence and uniqueness of H(curl,Ω)-solutions). Let S, ε, µ, ω
be as described after (1.1) and let Assumption 3.1 hold. We assume that the right
hand side functions fe, fh ∈ L2

∗(Ω,C3) are orthogonal to the propagating modes (φ`)`
in the following sense:

(3.11)

∫
Ω

1

ε
fe · curlφ` − iωfh φ` = 0 for every ` = 1, . . . , L .

Then there exists a unique solution u ∈ H(curl,Ω) of (1.4). There exists a constant
C > 0, independent of fe and fh, such that ‖u‖H(curl,Ω) ≤ C (‖fe‖L2

∗(Ω) + ‖fh‖L2
∗(Ω)).



10 Maxwell’s equations in periodic waveguides

Proof. Step 1: Solvability. We use Lα of (2.8) and yα of (2.9). We solve, for α ∈ I,
the family of equations Lαv(·, α) = yα of (2.10). This is done with Theorem 3.3,
Part 2., the only point that we have to verify is yα ∈ Lα(X). Once this is checked,
estimate (3.9) yields also that the solutions satisfy v ∈ L2(I,X), even v ∈ L∞(I,X).

For fixed j ≤ J and fixed ` ≤ mj, we consider the basis function ϕ`,j ∈ ker(Lαj)
and the αj-quasiperiodic function φ`,j(x) := ϕ`,j(x)eiαjx1 ∈ Yj. For notational con-
venience, we perform the calculations for the case fh = 0. Starting with the orthog-
onality information (3.11), we find

0 =

∫
Ω

1

ε
fe · curlφ`,j

=
∑
m∈Z

∫
W

ε(x)−1fe(x+ 2πme1) curlφ`,j(x+ 2πme1) dx

=
∑
m∈Z

∫
W

ε(x)−1fe(x+ 2πme1) e−i2παjm curlφ`,j(x) dx

=

∫
W

ε(x)−1(FFBfe)(x, αj) curlφ`,j(x) dx

= 〈yαj , ϕ`,j〉X ,
where the last step uses the definition of yαj . The calculation provides that yαj
is orthogonal to the kernel of Lαj . Since Lαj is a self-adjoint Fredholm operator
with index 0 by Proposition 2.1, we conclude that yαj is in the range of Lαj (kernel
and range are orthogonal for self-adjoint operators, the vanishing index implies that
kernel and range span the entire space). This yields yα ∈ Lα(X).

The result yα ∈ Lα(X) for α = 1/2 implies the same result for α = −1/2, because
the operators Lα and the right hand sides yα coincide. The calculations for fh 6= 0
are completely analogous.

Step 2: Bounds on the solution. Theorem 3.3 implies a bound (uniform in α) for
vα := v(·, α), namely supα ‖vα‖X ≤ C supα [‖yα‖X + ‖y′α‖X ]. We note that

‖yα‖X = sup {〈yα, φ〉X | ‖φ‖X = 1}
≤ C

(
‖(FFBfe)(·, α)‖L2(W ) + ‖(FFBfh)(·, α)‖L2(W )

)
and

‖y′α‖X = sup

{
d

dα
〈yα, φ〉X

∣∣∣∣ ‖φ‖X = 1

}
≤ C

∑
#∈{e,h}

(
‖(FFBf#)(·, α)‖L2(W ) +

∥∥∥∥ ∂∂α(FFBf#)(·, α)

∥∥∥∥
L2(W )

)
.

As in [17], Theorem 3.8, these terms can be estimated by
∑

#∈{e,h} ‖f#‖L2
∗(Ω); the

argument for this fact exploits that good decay properties of f# imply good regu-
larity properties of FFBf#. We can therefore define u by the inverse Floquet-Bloch
transform,

u(x+ 2π`e1) :=

∫
I

v(x, α) ei(x1+2π`)α dα , x ∈ W , ` ∈ Z .

As discussed above, u ∈ H(curl,Ω) is a solution of (1.4). Furthermore, since FFB is
an isometry,

‖u‖2
H(curl,Ω) = ‖v‖2

L2(I,X) ≤ sup
α
‖v(·, α)‖2

X ≤ C
(
‖fe‖2

L2
∗(Ω) + ‖fh‖2

L2
∗(Ω)

)
.

This provides the a priori estimate. �
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3.7. The radiation problem. In order to formulate the radiation problem, we
introduce cut-off functions ρ+ and ρ−.

Definition 3.6 (Cut-off functions ρ±). We say that ρ+, ρ− : R→ R are admissible
cut-off functions when they are Lipschitz-continuous, satisfy ρ±(x1) ∈ [0, 1] for every
x1 ∈ R, and the limiting behavior is

ρ+(x1)→ 1 for x1 →∞ , ρ+(x1)→ 0 for x1 → −∞ ,

ρ−(x1)→ 0 for x1 →∞ , ρ−(x1)→ 1 for x1 → −∞ .

Moreover, we demand specific decay properties: 1−ρ+ ∈ L2(R>0) and ρ+ ∈ L2(R<0),
and, analogously, 1− ρ− ∈ L2(R<0) and ρ− ∈ L2(R>0). Additionally, for the deriv-
ative, we demand ∂x1ρ± ∈ L2(R).

We fix admissible cut-off functions ρ± as in Definition 3.6. For every ` ≤ L
the mode φ` is called right-going when Q(φ`, φ`) > 0, it is called left-going when
Q(φ`, φ`) < 0. Note that, when Q is non-degenerate, these are the only possible
cases. For every ` such that φ` is right-going, we set ρ` := ρ+, and for every ` for
which φ` is left-going, we set ρ` := ρ−.

Definition 3.7 (Propagating part and radiation condition). For fixed cut-off func-
tions ρ` as above, we introduce the following decomposition of solutions u.

(i) Propagating part. For complex coefficients (a`)1≤`≤L, we say that

(3.12) uprop :=
L∑
`=1

a` ρ` φ`

is the propagating wave function corresponding to a ∈ CL.

(ii) Radiation condition. We say that a solution u ∈ Hloc(curl,Ω) of (1.4) satisfies
the radiation condition, when there exists a ∈ CL such that, with the corresponding
propagating wave function uprop of (3.12), there holds

(3.13) urad := u− uprop ∈ H(curl,Ω) .

Remark 3.8. The radiation condition was formulated for given functions ρ±. We
remark that, when ρ± is replaced by another admissible pair ρ̃±, the coefficients (a`)`
remain unchanged. Indeed, this follows from

∑L
`=1 a` (ρ` − ρ̃`)φ` ∈ H(curl,Ω). In

particular, we can choose ρ± such that ρ±(x1) = 1 for ±x1 > R and ρ±(x1) = 0 for
±x1 < −R for some R > 0.

Theorem 3.9 (Existence and uniqueness of solutions to the radiation problem).
Let S, ω, ε, µ be as described after (1.1) and let fe and fh be as in (1.5). Let
Assumption 3.1 be satisfied and let admissible cut-off functions (ρ`)` be chosen as
in Definition 3.6. Then (1.4) has a unique solution u ∈ Hloc(curl,Ω) satisfying the
radiation condition of Definition 3.7. With uprop, urad, and a from the radiation
condition and a constant C = C(S, ε, µ, ω, ρ±), there holds

(3.14) ‖urad‖H(curl,Ω) + ‖uprop|W‖H(curl,W ) + ‖a‖CL ≤ C
(
‖fe‖L2

∗(Ω) + ‖fh‖L2
∗(Ω)

)
.

The coefficients (a`)1≤`≤L are given by

(3.15) a` =
2πi

|Q(φ`, φ`)|
(
〈ε−1fe, curlφ`〉L2(Ω) − 〈iωfh, φ`〉L2(Ω)

)
.

Proof. The strategy of the proof is very direct: We want to apply Theorem 3.5
to find urad as described in the radiation problem. In order to apply Theorem
3.5, we must make sure that the right hand side of the urad-problem satisfies the



12 Maxwell’s equations in periodic waveguides

orthogonality condition (3.11). As mentioned in Remark 3.8, we can assume that
the cut-off functions ρ± are chosen such that they are constant outside of some
bounded interval, i.e., the functions ρ′` have compact support.

We want to find coefficients a = (a`)`, such that, with uprop defined by a, the
equation for urad has a right hand side that satisfies the orthogonality condition.
We will see that the coefficients a of (3.15) have this property.

Step 1: Equation for urad. We derive, for fixed coefficients (a`)`, the equation for

urad. Starting from (1.4), using u = urad + uprop and uprop =
∑L

`=1 a` ρ` φ`, we find
that urad should satisfy, for every φ with compact support,∫

Ω

{
1

ε
curlurad · curl φ̄− ω2µurad · φ̄

}
= −

L∑
`=1

a`

∫
Ω

{
1

ε
curl(ρ` φ`) · curl φ̄− ω2µ ρ` φ` · φ̄

}
+

∫
Ω

{
1

ε
fe · curl φ̄− iωfh · φ̄

}
.

The next step is to re-write the terms in the first integral on the right hand side.
Our aim is to exploit the homogeneous equation which is satisfied by φ`. With this
aim, we calculate∫

Ω

1

ε
curl(ρ` φ`) · curl φ̄ =

∫
Ω

1

ε
ρ` curlφ` · curl φ̄+

∫
Ω

1

ε
ρ′` (e1 × φ`) · curl φ̄

=

∫
Ω

1

ε
curlφ` · curl(ρ`φ̄) +

∫
Ω

1

ε
ρ′` e1 ·

[
φ` × curl φ̄− φ̄× curlφ`

]
.

In this expression, we can exploit that φ` solves (1.4) with vanishing right hand
side; the test function is the compactly supported function ρ`φ. This leads to the
cancelling of lower order terms and we arrive at the following equation for urad:∫

Ω

{
1

ε
curlurad · curl φ̄− ω2µurad · φ̄

}
= −

L∑
`=1

a`

∫
Ω

1

ε
ρ′` e1 ·

[
φ` × curl φ̄− φ̄× curlφ`

]
(3.16)

+

∫
Ω

{
1

ε
fe · curl φ̄− iωfh · φ̄

}
.

We note that the terms containing ρ′` are compactly supported, accordingly, the
right hand side of this equation has the property of fast decay that is required in
Theorem 3.5.1

Step 2: Orthogonality condition. It remains to choose (a`)` such that the orthog-
onality condition is satisfied. We use, for arbitrary k ≤ L, the test function φ := φk
in (3.16). The integrals containing ρ′` are equal to∫

Ω

1

ε
ρ′` e1 ·

[
φ` × curl φ̄k − φ̄k × curlφ`

]
= −iFφ`,φk sign

∫
R
ρ′`(x1) dx1

= − i

2π
|Q(φ`, φk)| ,

1The right hand side in the equation for urad contains the curl of the test-function, but it also
contains the test-function itself. This is the technical reason why we included the right hand side
fh in the original system.
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where we used (3.5) and
∫
R ρ
′
` = sign(Q(φ`, φ`)). The right hand side of (3.16) for

φ := φk is therefore

L∑
`=1

a`
i

2π
|Q(φ`, φk)|+

∫
Ω

{
1

ε
fe · curl φ̄k − iωfh · φ̄k

}
.

Using finally |Q(φ`, φk)| = |Q(φk, φk)|δk,`, we conclude that, with (a`)` chosen as
in (3.15), the right hand side of (3.16) vanishes for every φ := φk. We can apply
Theorem 3.5 to find urad. This yields a solution of the Maxwell radiation problem
together with the estimates of (3.14). �

4. Two spaces of homogeneous solutions

The space Y . Let us first recall the spaces that were used in the above construc-
tions, based on Assumption 3.1. The space Yj of (3.10) consists of αj-quasiperiodic
homogeneous solutions, we recall αj ∈ (−1/2, 1/2]. When we take the span of all
the Floquet-modes, we obtain the space

(4.1) Y :=
J⊕
j=1

Yj ⊂ H(curl,W ) , identified with Y ⊂ Hloc(curl,Ω) .

The identification is done by considering every αj-quasiperiodic function on W also
as an αj-quasiperiodic function on Ω. The space Y has the basis {φ` | ` = 1, . . . , L}
with the orthogonality property Q(φ`, φ`′) = 0 for ` 6= `′.

We observe that, by the orthogonality of Yj with Yi for i 6= j (see Lemma 3.4)
and by the choice of a basis in each Yj, the functions φ` are linearly independent.
In particular, the dimension of the space Y is L ≥ 0.

The space B. Let us consider another space, the space B of bounded solutions.
That space was extensively used in [25] (where it was named X). In order to impose
a boundedness property, we introduce the norm ‖U‖sL := supr∈2πZ ‖U |Wr‖L2(Wr)

for functions U ∈ L2
loc(Ω), where Wr = (r, r + 2π) × S. The space of bounded

homogeneous solutions is defined as

(4.2) B := {U ∈ Hloc(curl,Ω) |U solves (1.4) for fe = fh = 0 , ‖U‖sL <∞} .

It is clear that every quasiperiodic homogeneous solutions is a bounded homo-
geneous solution: Y ⊂ B. Our aim is to show that the spaces Y and B actually
coincide. When this is shown, we know that every bounded homogeneous solution
of Maxwell’s equations is a linear combination of Floquet-modes.

Theorem 4.1 (Characterization of bounded homogeneous solutions). When As-
sumption 3.1 holds, then the spaces Y of (4.1) and B of (4.2) coincide,

(4.3) Y = B .

Proof. Step 1: Preparations. The inclusion Y ⊂ B is clear, since every Floquet-mode
is bounded. We know that Y has the dimension dimY = L since Y is spanned by
(φ`)1≤`≤L. In order to show B = Y , it is therefore sufficient to show dimB ≤ L.

In this proof, we use a solution to the Maxwell radiation problem. For an arbitrary
M > 0 we choose the cut-off functions ρ± so that the support of ρ′± is contained
in (−M,M). For arbitrary R > M , we furthermore use the piecewise affine cut-off
function ϑR : R → [0, 1] with ϑR(s) = 1 for every s ∈ [−R,R], ϑR(s) = 0 for
|s| ≥ R+ 2π, and linearly affine on [−R− 2π,−R] and on [R,R+ 2π]. We interpret
ϑR also as a function on Ω by setting ϑR(x) := ϑR(x1).
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Let us recall statements of Theorem 3.9. The theorem provides, for fe, fh ∈
L2
∗(Ω,C3) of (1.5), a solution u = uprop+urad, where uprop is given by coefficients (a`)`

that are determined in (3.15). The coefficients (a`)` depend linearly and continuously
on fe and fh. We will use these facts for f = fh and fe = 0.

We consider an arbitrary element U ∈ B. Our aim is to show that U can be
written as a linear combination of the functions (φ`)1≤`≤L. When this is achieved,
we know dimB ≤ L and the proof of the theorem is complete.

Step 2: The scalar product of an element U ∈ B and a test-function f . We choose
a test-function f = fh ∈ L2

∗(Ω) with compact support. This proof is based on the
evaluation of the L2(Ω)-scalar product 〈U, f〉.

We use Theorem 3.9 and consider the solution u = uprop + urad of system (1.4),
the radiation condition introduces coefficients (a`)1≤`≤L. The right hand side of the
system is fh = f and fe = 0. Using UϑR as a test-function in (1.4), we find

(4.4)

∫
Ω

{
1

ε
curlu · curl(ŪϑR)− ω2µu · ŪϑR

}
= −iω

∫
Ω

f · ŪϑR = −iω
∫

Ω

f · Ū ,

where the last equation holds for sufficiently large R since f has compact support.
We now re-write the left hand side of (4.4). We want to exploit that it coincides,

up to a complex conjugation and terms involving derivatives of ϑR, with the weak
equation for U (which has the right hand side fe = fh = 0) for the test-function
uϑR. With a calculation as in the proof of Theorem 3.9, Step 1, we find that the
left hand side of (4.4) coincides with

1

2π

∫
WR

1

ε

[
(curlu× U)− (curlU × u)

]
· e1

− 1

2π

∫
W−R−2π

1

ε

[
(curlu× U)− (curlU × u)

]
· e1 ,

where Wr = (r, r + 2π)× S.
We recall the decomposition u = uprop + urad. In the limit R→∞, the contribu-

tions of urad in the above expression vanish by the decay of urad. The contributions of
uprop are independent of R for R > M . Inserting uprop =

∑L
`=1 a` ρ` φ`, we conclude

that the left hand side of (4.4) converges, for R→∞, to

L∑
`=1

a` signQ(φ`, φ`) lim
R→∞

1

2π

∫
W `(R)

1

ε

[
(curlφ` × U)− (curlU × φ`)

]
· e1 ,

where W `(R) = WR for ` with λ` = Q(φ`, φ`) > 0, and W `(R) = W−R−2π for ` with
λ` = Q(φ`, φ`) < 0. Our calculation provides, in particular, that the limit exists.
Altogether, we obtain from (4.4) the relation

(4.5) −iω 〈f, U〉L2(Ω) =
L∑
`=1

c` a` ,

where the complex numbers c` depend on U , but not on f . Inserting a` from (3.15)
we obtain

(4.6) 〈f, U〉L2(Ω) =
L∑
`=1

c`
2πi

|Q(φ`, φ`)|
〈f, φ`〉L2(Ω) .
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Since f was chosen arbitrarily, this relation determines U . We find

(4.7) U =
L∑
`=1

c`
2πi

|Q(φ`, φ`)|
φ` .

This shows that the arbitrarily chosen element U ∈ B can be written as a linear
combination of the functions (φ`)1≤`≤L and concludes the proof. �

5. A compactly perturbed medium

This section is devoted to more complex media, we recall that a medium is rep-
resented by the coefficients ε and µ. We assume that outside a compact subset of
Ω̄, the coefficients coincide with 2π-periodic functions (as considered above). But,
within a central region in Ω, the coefficients can be arbitrary positive functions.
We denote this situation as “a compactly perturbed medium”. Let us turn to the
concise mathematical description.

For some R > 0, we use the cylinder Z := ΩR = (−R,R)× S and assume

(5.1) εpert = ε− qε , µpert = µ− qµ , supp(qε) , supp(qµ) ⊂ Z ,

where ε and µ have a positive upper and lower bound and are 2π-periodic. We
always demand that Assumption 3.1 holds for ε and µ. Regarding the perturbed
coefficients, we also assume that εpert and µpert are of class L∞(Ω) and have a positive
lower bound. System (1.1) with the coefficients εpert and µpert can be written as

curlH + iωεE = iωqεE + fe ,

− curlE + iωµH = iωqµH − fh .
(5.2)

We seek for solutions (E,H) such that H satisfies the radiation condition of
Definition 3.7. We use the cut-off functions ρ` of Definition 3.6 and assume that the
support of ∂x1ρ is contained in Z. The propagating solutions to the homogeneous
system with periodic coefficients are denoted as (E`, H`). The radiation condition
demands that there exist coefficients (a`)1≤`≤L ∈ CL such that, decomposing the
solution (E,H) as

(5.3) (E,H) = (Erad, Hrad) +
L∑
`=1

a` ρ` (E`, H`) ,

the first part satisfies (Erad, Hrad) ∈ H0(curl,Ω)×H(curl,Ω).
Our first aim is to write this system in a compact form. In this section, we use

the notations X := H0(curl,Ω)×H(curl,Ω) and Y := L2(Ω,C3)× L2(Ω,C3) and

urad := (Erad, Hrad) ∈ X , f := (fe,−fh) ∈ Y , φ` := (E`, H`) .

We introduce the operators D : X → Y and ξ,Q : Y → Y ,

D :=

(
0 curl

− curl 0

)
, ξ :=

(
ε 0
0 µ

)
, Q :=

(
qε 0
0 qµ

)
.

With this notation, equation (5.2) takes the form

(5.4) (D + iω ξ)u = iω Qu+ f .

The propagating waves are solutions to the homogeneous system; in the new nota-
tion, this condition reads (D + iω ξ)φ` = 0 for every ` ≤ L.
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With the decomposition (5.3) of u, we can write the differential equation (5.4)
in the unknown urad. Using the abbreviation ϕ` := (D + iω ξ)(ρ`φ`), the equation
takes the form

(5.5) (D + iω ξ)urad +
L∑
`=1

a` ϕ` = iω Qurad + iω
L∑
`=1

a`Q(ρ`φ`) + f .

We note that the functions ϕ`, Qu
rad, and Q(ρ`φ`) are all supported in Z = ΩR. On

f we assume the fast decay fe, fh ∈ L2
∗(Ω,C3).

It is our first aim to show a Fredholm property: If (5.5) posesses no nontrivial
solution (urad, a) for f = 0, then (5.5) posesses a solution (urad, a) ∈ X×CL for every
right hand side f ∈ L2

∗(Ω,C3) × L2
∗(Ω,C3). Since (5.5) is equivalent to (5.2), this

shows also the Fredholm property for the original Maxwell system in a perturbed
medium.

We recall from Theorem 3.9 that, in the unperturbed case Q = 0, system (5.5)
has a unique solution pair (urad, a).

5.1. Helmholtz decompositions and reformulation. We use several Helmholtz
decompositions. In Appendix A, the decompositions H0(curl,Ω) = D(E) ⊕G(E) for
the electric field, and H(curl,Ω) = D(H) ⊕ G(H) for the magnetic field are given;
they differ in the weight (ε and µ, respectively) and in the boundary condition for
the potential. When we apply these decompositions to the product space X =
H0(curl,Ω)×H(curl,Ω), we find the decomposition

(5.6) X = XD ⊕XG :=
(
D(E) ×D(H)

)
⊕
(
G(E) ×G(H)

)
.

Accordingly, an element urad ∈ X is written as urad = urad
D + urad

G . An element

urad
G ∈ XG is of the form urad

G = (∇ψE,∇ψH) with ψE ∈ H1
0 (Ω) and ψH ∈ Ḣ1(Ω)

where we refer to Appendix A for the definition of the space Ḣ1(Ω).
Unfortunately, regarding right hand sides, we need another decomposition:

(5.7) f = (fe,−fh) ∈ Y := L2(Ω)2 = YD ⊕ YG ,

and we write an element f ∈ Y as f = fD + fG. On Y , we use the scalar prod-
uct defined by 〈f, g〉 = 〈(fe,−fh), (ge,−gh)〉 =

∫
Ω
ε−1 fe ḡe + µ−1 fh ḡh. The sub-

space YG consists of gradients, more precisely, an element fG ∈ YG has the form
fG = (ε∇ψE, µ∇ψH) with ψE ∈ H1

0 (Ω) and ψH ∈ Ḣ1(Ω). The subspace YD is the
orthogonal complement of YG in Y . In particular, fD ∈ YD has the property that
its components satisfy

∫
Ω
fDe · ∇ψE = 0 and

∫
Ω
fDh · ∇ψH = 0 for all ψE ∈ H1

0 (Ω)

and ψH ∈ Ḣ1(Ω).
In equation (5.5), we write urad = urad

D + urad
G for the unknown. Furthermore, we

project the equation to the two subspaces YD (with projection πYD) and YG (with
projection πYG). We find the following system, equivalent to (5.5):

πYD(D + iω ξ)urad
D + πYD(D + iω ξ)urad

G +
L∑
`=1

a` π
Y
Dϕ`

= iω πYDQ(urad
D + urad

G ) + iω

L∑
`=1

a` π
Y
DQ(ρ`φ`) + πYDf ,

(5.8)



A. Kirsch and B. Schweizer 17

πYG(D + iω ξ)urad
D + πYG(D + iω ξ)urad

G +
L∑
`=1

a` π
Y
Gϕ`

= iω πYGQ(urad
D + urad

G ) + iω
L∑
`=1

a` π
Y
GQ(ρ`φ`) + πYGf .

(5.9)

These equations simplify considerably when we use the following facts: (i)Durad
G =

0, since the curl of a gradient vanishes. (ii) πYD(ξurad
G ) = 0 and πYG(ξurad

G ) = ξurad
G ,

because of ξurad
G ∈ YG. (iii) πYD(ξurad

D ) = ξurad
D and πYG(ξurad

D ) = 0 because of ξurad
D ∈

YD. (iv) πYDDu
rad
D = Durad

D and πYGDu
rad
D = 0 since every curl is L2-orthogonal to

gradients. In this last point, one has to be careful: The first entry is of the form
〈curlHrad, ε∇ψE〉1/ε = 〈curlHrad,∇ψE〉L2 = 0 because of ψE ∈ H1

0 (Ω). The second
entry is of the form 〈− curlErad, µ∇ψH〉1/µ = 〈− curlErad,∇ψH〉L2 = 0 because of
the boundary condition Erad × ν = 0, encoded in Erad ∈ H0(curl,Ω).

Omitting the corresponding terms, system (5.8)–(5.9) takes the equivalent form

(D + iω ξ)urad
D +

L∑
`=1

a` π
Y
Dϕ`

= iω πYDQu
rad
D + iω πYDQu

rad
G + iω

L∑
`=1

a` π
Y
DQ(ρ`φ`) + πYDf ,

(5.10)

iω πYG(ξurad
G ) +

L∑
`=1

a` π
Y
Gϕ`

= iω πYGQu
rad
G + iω πYGQu

rad
D + iω

L∑
`=1

a` π
Y
GQ(ρ`φ`) + πYGf .

(5.11)

We will see that (5.10) is a Maxwell system, while (5.11) is a Poisson problem.

5.2. Solution of (5.11). Our aim is to solve the second equation for urad
G , assuming

that urad
D and (a`)` are given. We have to study the problem

(5.12) iω πYG((ξ −Q)urad
G ) = g ∈ YG ⊂ L2(Ω,C3)2 .

Solving (5.12) means that we want to achieve that the YG-part of the function
iω (ξ − Q)urad

G − g vanishes. This is the case if, and only if, iω (ξ − Q)urad
G − g is

Y -orthogonal to the subspace YG. Equation (5.12) is therefore identical to

(5.13)

∫
Ω

(iω(ξ −Q)urad
G ) · (∇ϕE,∇ϕH) =

∫
Ω

g · (∇ϕE,∇ϕH)

for all (ϕE, ϕH) ∈ H1
0 (Ω)×Ḣ1(Ω). Recalling urad

G = (∇ψE,∇ψH) shows that this is a
Poisson problem for (ψE, ψH), which is uniquely solvable because of strict positivity
of ξ −Q, see Lemma C.1. Note that we impose a Dirichlet boundary condition for
ψE, while we impose no boundary condition for ψH (leading to a Neumann boundary
condition).

The construction provides a solution operator for equation (5.12),

(5.14) G : YG 3 g 7→ urad
G = (∇ψE,∇ψH) ∈ XG .

This operator is linear and bounded.
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5.3. Solution of (5.10). We know that the solution of (5.11) is given by

urad
G = G

(
iω πYGQu

rad
D + iω

L∑
`=1

a` π
Y
GQ(ρ`φ`) + πYGf −

L∑
`=1

a` π
Y
Gϕ`

)
,

and can insert this expression into (5.10). Writing now ũD for the unknown, the
remaining equation reads

(D + iω ξ)ũD +
L∑
`=1

a` π
Y
Dϕ` = iω πYDQũD + iω

L∑
`=1

a` π
Y
DQ(ρ`φ`) + πYDf

+ iω πYDQG
(
iω πYGQũD + iω

L∑
`=1

a` π
Y
GQ(ρ`φ`) + πYGf −

L∑
`=1

a` π
Y
Gϕ`

)
.

(5.15)

Our next aim is to construct a map that is closely related to this equation. We
want to map a pair (uold

D , aold) ∈ L2(Z,C3)2 × CL to a new pair (unew
D , anew) ∈

L2(Z,C3)2 × CL. Let us give the construction of the map. In a first step we seek
for (ũnew

D , anew) ∈ XD × CL that solves

(5.16) (D + iωξ)ũnew
D +

L∑
`=1

anew
` πYDϕ` = f̃

in Ω, where the right hand side is defined as

f̃ := iω πYDQu
old
D − ω2 πYDQGπYGQuold

D + iω
L∑
`=1

aold
` πYDQ(ρ`φ`)

+ iω πYDQG
(
iω

L∑
`=1

aold
` πYGQ(ρ`φ`)−

L∑
`=1

aold
` πYGϕ`

)
.

(5.17)

We claim that the existence and uniqueness result of Theorem 3.9 allows to solve
equation (5.16). Theorem 3.9 provides a solution ũ = ũrad + ũprop of (D + iωξ)ũ =

f̃ (we show below that f̃ ∈ L2
∗(Ω,C3)2 is satisfied). Then (D + iωξ)ũprop =∑L

`=1 a
new
` ϕ` for some coefficients anew

` . Decomposing ũrad = ũD + ũG, the pair
(ũD, a

new
` ) solves (5.16). Indeed, (D + iωξ)ũG ∈ YG, since the curl of a gradient

vanishes and ξ maps from XG to YG. Therefore, (D + iωξ)ũD = πYD(D + iωξ)ũD =

πYD(D + iωξ)ũrad = πYDf̃ − πYD(D + iωξ)ũprop = f̃ − πYD(D + iωξ)ũprop, which shows
that (ũD, a

new
` ) solves (5.16).

The comparison of (5.16) with (5.15) shows that we added the superscripts “new”
on the left hand side and the superscripts “old” on the right hand side. Furthermore,
we have omitted the terms containing f in the definition of f̃ . The function unew

D ∈
L2(Z,C3) is defined as the restriction of ũnew

D to Z,

unew
D := ũnew

D |Z .

This concludes the construction of the iteration operator

(5.18) T : L2(Z,C3)2 × CL 3 (uold
D , aold) 7→ (unew

D , anew) ∈ L2(Z,C3)2 × CL .

We note that the definition of f̃ in (5.17) uses the input variable uold
D only with

a factor Q. This shows that the restriction of the unknown to the domain Z is not
related to a loss of relevant information for the iteration.
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Lemma 5.1 (The iteration operator). We assume, as before, that ε and µ are real,
of class L∞(W ), with a positive lower bound. Then the operator T of (5.18) is
well-defined and compact.

Proof. The fact that T is well-defined relies on a property of πYD. In the definition

of f̃ we have to evaluate the projection πYD for an argument that is a compactly
supported function. When we identify a function that is supported on Z with its
trivial extension, we can regard L2(Z,C3)2 as a subspace of L2(Ω,C3)2. With this
convention, we claim that

(5.19) πYD : L2(Z,C3)2 → L2
∗(Ω,C3)2

is a bounded linear operator. Once this is shown, by definition of f̃ in (5.17), it is
clear that T is well-defined.

In order to show (5.19), we have to recall the construction of πYD. The projection
acts on a function f = (fe, fh), and the two components are treated independent
of each other. Regarding the first component, we want to find, for fe ∈ L2(Z,C3)
with support in Z, the projection onto D(E). This projection is given by fe − ε∇ψ,
where ψ ∈ H1

0 (Ω,C) solves the problem∫
Ω

ε∇ψ · ∇φ̄ =

∫
Ω

fe · ∇φ̄ for all φ ∈ H1
0 (Ω) .

Solutions ψ of this equation have exponential decay of ∇ψ for |x1| → ∞, which is
shown in Lemma C.1 of Appendix C. In that lemma, also the Neumann problem
is treated and, hence, an analogous result holds for the projection of fh. These two
facts provide (5.19).

Compactness. In order to show the compactness of T , we have to recall the
last step in the construction of T : A function uold

D ∈ L2(Z,C3) is, in the main
part of the construction, mapped to a function ũnew

D ∈ Hloc(curl,Ω), which is the
solution of a radiation problem. When we restrict ũnew

D to any bounded subdomain
ΩR = (−R,R) × S, then the map L2(Z,C3) 3 uold

D 7→ ũnew
D |ΩR ∈ H(curl,ΩR) is

bounded.
We chooseR large such that Z̄ is contained in ΩR, and a cut-off function η ∈ C2(Ω)

depending only on x1 such that η(x) = 1 for x ∈ Z and η(x) = 0 for x ∈ Ω \ ΩR.
With this construction, the map

T ′ : L2(Z,C3) 3 uold
D 7→ ũnew

D η ∈ L2(ΩR,C3)

is bounded. Furthermore, for bounded arguments uold
D , both, the curl of the right

hand side ũnew
D η and the divergence of ξũnew

D η are bounded in L2(ΩR). This follows
from the facts that the divergence of ξũnew

D vanishes and that the curl of ũnew
D (that

is, Dũnew
D ) is bounded in L2. The first component of ũnew

D η satisfies a (tangential)
Dirichlet conditions on all boundaries of ΩR, the second component satisfies a Neu-
mann condition. Lemma A.2 can be used to obtain compactness of the second (the
magnetic) component of u, Lemma A.2 with the spaces of (c) yields compactness
of the first (the electric) component. We note that the lemma remains valid when
W = (0, 2π) × S is replaced by ΩR. This yields the compactness of T ′, and hence
also the compactness of T , which is given by the further restriction of the function
to Z. �
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In order to include the given right hand side f of (5.7) into the equation, we
finally define (ũ◦D, a

◦) ∈ X × CL as the unique solution of

(5.20) (D + iωξ)ũ◦D +
L∑
`=1

a◦` π
Y
Dϕ` = πYDf + iω πYDQGπYGf

on Ω. We refer to the discussion after (5.16) for the fact that the existence and
uniqueness Theorem 3.9 provides a solution to this equation. We set u◦D := ũ◦D|Z .

Let us not forget that we are interested in the Maxwell equations in a locally
perturbed periodic medium, i.e., in (5.2). The first part of this section was devoted
to an equivalent re-formulation of this system. The result was that (5.2) is equivalent
to equation (5.15). We now claim that (5.15) is equivalent to the following problem
for (uD, a) ∈ L2(Z,C3)2 × CL:

(5.21) (uD, a) = (u◦D, a
◦) + T (uD, a) .

Let us verify this claim. To this end, we first consider a solution (uD, a) to
(5.21). We use (ũ◦D, a

◦) as constructed in (5.20) and the function (ũnew
D , anew) from

the definition of T (uD, a) for (uold
D , aold) := (uD, a). We claim that (ũD, a) := (ũ◦D +

ũnew
D , a◦ + anew) is a solution of (5.15).
In the subsequent calculation, we use the definition of (ũD, a) in the first equation,

the definition of (ũ◦D, a
◦) and (5.16) in the second equation, and the definition of f̃

in the last equation. We obtain

(D + iωξ)ũD +
L∑
`=1

a` π
Y
Dϕ` = (D + iωξ)(ũnew

D + ũ◦D) +
L∑
`=1

(anew
` + a◦`) π

Y
Dϕ`

= f̃ + πYDf + iω πYDQGπYGf

= iω πYDQu
old
D + ω2 πYDQGπYGQuold

D + iω
L∑
`=1

aold
` πYDQ(ρ`φ`)

− iω πYDQ
L∑
`=1

aold
` G

(
iω πYGQ(ρ`φ`)− πYGϕ`

)
+ πYDf + iω πYDQGπYGf .

From (5.21) we find uold
D = ũnew

D |Z + ũ◦D|Z = ũD|Z and aold
` = anew

` + b◦` = a`. This
shows that (ũD, a) is a solution of (5.15).

Vice versa, let (ũD, a) be a solution of (5.15). By the definition of T , it is clear
that (uD, a) with uD := ũD|Z is a solution of (5.21).

We have shown that the system with a locally perturbed medium is equivalent to
(5.21), which is of Fredholm type: The operator that acts on the unknown (uD, a)
is of the form id − T (identity plus compact) by Lemma 5.1. We therefore obtain
Fredholm’s alternative for equation (5.5), and thus for (5.2). In particular, there
holds: If the homogeneous system admits only the trivial solution (urad, a) = (0, 0),
then system (5.2) has a unique solution (urad, a) ∈ X×CL for every right hand side.

In the proof of the subsequent theorem, we show that any solution (urad, a) ∈
X × CL of the homogeneous system (5.2) is necessarily radiating, i.e. a = 0. This
property implies that Fredholm’s alternative can be formulated in a strengthened
way: If the homogeneous system admits only the trivial solution in L2-spaces, then
system (5.2) has a unique solution (urad, a) ∈ X × CL for every right hand side.

Theorem 5.2 (Fredholm alternative for perturbed media). Let S ⊂ R2 be a bounded
Lipschitz domain and let ω > 0. Let the coefficients µ, ε ∈ L∞(Ω) have positive
lower bounds and let them be given as compact perturbations of periodic functions
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with positive lower bounds. We demand that Assumption 3.1 is satisfied for the
periodic medium. Furthermore, let the homogeneous perturbed system, i.e. (5.2) for
fe = fh = 0, admit only the trivial solution in H0(curl,Ω) × H(curl,Ω). (In other
words: Let ω2 be not in the point spectrum of µ−1

pert curl(ε−1
pert curl).) Then there exists

a unique radiating solution to (5.2) for every (fe, fh) as in Theorem 3.9.

Proof. We consider a solution (urad, a) ∈ X × CL of the homogeneous system (5.2)
and want to prove a = 0. In this proof, we will work again with the magnetic
field only. To avoid confusion with the pair u = (E,H), we set vrad = Hrad and

vprop =
∑L

`=1 a`ρ` φ`. It is our aim to show that vprop vanishes.
The form Q was defined in (3.4), we modify this definition and set

Q̃r(u,w) := i

∫
Wr

1

εpert

[(curlu× w̄)− (curl w̄ × u)] · e1 ,

where Wr = (r, r+ 2π)×S. Note that we made the position r variable and that we
replaced the periodic coefficient ε by the perturbed coefficient εpert. As in (3.3) for

the periodic case, one shows that Q̃r(u,w) is independent of r ∈ R for solutions u
and w of curl(ε−1

pert curlu)− ω2µpertu = 0.

We insert v = vrad + vprop in Q̃r(v, v). Because of vrad ∈ H(curl,Ω) and the
uniform (with respect to r) boundedness of ‖vprop‖H(curl,Wr) we conclude that

Q̃r(v, v)− Q̃r(v
prop, vprop) = i

∫
Wr

1

εpert

[
(curl vrad × vrad)− (curl vrad × vrad)

+ (curl vrad × vprop)− (curl vprop × vrad)

+ (curl vprop × vrad)− (curl vrad × vprop)
]
· e1

tends to zero as |r| → ∞. We consider r ≥ R such that εpert coincides with ε in Wr.
From

Q̃r(φ`,j, φ`′,j′) = ei2πr(αj−αj′ ) Q(φ`,j, φ`′,j′) = δj,j′ δ`,`′ Q(φ`,j, φ`,j)

follows

Q̃r(v
prop, vprop) =

J∑
j=1

∑
`:λ`,j>0

|a`,j|2Q(φ`,j, φ`,j) ≥ 0 .

In the same way, for r ≤ −R − 2π, we have Q̃r(v
prop, vprop) ≤ 0. Since Q̃r(v, v)

is constant with respect to r, we conclude that Q̃r(v, v) has to vanish. This also
implies a`,j = 0 for all `, j and hence vprop = 0. �

6. Concluding remarks

6.1. Limiting absorption principle. In a limiting absorption principle, one stud-
ies the original problem, in our case (1.1) with real coefficients ε and µ, and adds a
term that introduces physical absorption of energy. In our setting, a natural choice is
to replace ε by the complex (still x-dependent and 2π-periodic) parameter ε+iησ/ω,
where η > 0 is a small real number and σ ∈ L∞(Ω) is a positive 2π-periodic function
describing the conductivity of the medium. With this choice, η is a parameter for
(small) ohmic losses in the system.

The new system is solvable with the Lax-Milgram lemma, the new sesquilinear
form is coercive for positive η. Denoting the corresponding solutions by Eη and Hη,
the relevant questions are: (i) Are the fields Eη and Hη in every compact subset of
Ω̄ bounded in L2? (ii) Are all weak limits E and H solutions to the original problem
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(1.1) and do they satisfy the radiation condition? We say that a limiting absorption
principle holds, when both questions can be answered in an affermative sense.

For the Helmholtz equation in the waveguide geometry, a limiting absorption
principle has been derived in several works, we mention once more [10], [13], and
[17]. In view of the results and, moreover, the method of proof in [17], it is not
difficult to show that the limiting absorption principle holds also in the above sense
for the Maxwell system (1.1). It is interesting to note that in this case the inner
product 〈·, ·〉Yj used in the construction of the orthogonal basis {φ`,j | ` = 1, . . . ,mj}
in Yj is given by

〈u, v〉Yj =
1

ω

∫
W

σ

ε2
curlu · curl v̄ .

In particular, this inner product – and thus the radiation condition – depends on
the conductivity σ.

6.2. Scattering problem. Based on the results of Section 5, one can also study
a scattering problem. Given a mode (Einc, H inc) = (E`,j, H`,j), which is interpreted
as an incoming field, one is interested in a corresponding solution in the perturbed
medium, which is given by εpert and µpert. The problem is to determine the total
field (Etot, Htot) = (Einc, H inc) + (Es, Hs) which satisfies (5.2) for (fe, fh) = (0, 0)
such that the scattered field (Es, Hs) satisfies the radiation condition. We observe
that (Es, Hs) solves (5.2) for the (compactly supported) right hand side

(fe, fh) := (iωqεE
inc,−iωqµH inc) .

Theorem 5.2 can be applied and provides the solution (Es, Hs).
We furthermore observe that also the situation of Section 4 can be considered

for the perturbed system (5.2). By almost the same arguments as in the proof of
Theorem 4.1, one can show that the space{

(E,H) ∈ H0,loc(curl,Ω)×Hloc(curl,Ω) | (E,H) solves (5.2) for

(fe, fh) = (0, 0) , ‖E‖sL + ‖H‖sL <∞
}

of bounded solutions coincides with the space spanned by the total fields (Etot
`,j , H

tot
`,j )

of the above remark.

Appendix A. Helmholtz decompositions and compactness

A.1. The unbounded domain Ω. In this part we investigate Helmholtz decom-
positions in H(curl,Ω) and H0(curl,Ω). The letter “D” is used for the space with a
condition on the divergence, the letter “G” is used for the space that is related to
gradients. For the field E, we introduce

D(E) :=

{
E ∈ H0(curl,Ω)

∣∣∣∣ ∫
Ω

εE · ∇ψ = 0 for all ψ ∈ H1
0 (Ω)

}
,

G(E) :=
{
E ∈ H0(curl,Ω)

∣∣∃ψ ∈ H1
0 (Ω) : E = ∇ψ

}
.

The definitions are such that the spaces are orthogonal in the space L2(Ω,C3) with
the weighted scalar product 〈u, v〉 =

∫
Ω
ε u · v̄. Furthermore, since the (distribu-

tional) curl of a gradient always vanishes, curl(∇ψ) = 0, the two subspaces are also
orthogonal in H(curl,Ω) with the scalar product 〈u, v〉 =

∫
Ω
ε u · v̄+curlu ·curl v̄. By

construction, D(E) is the H(curl,Ω)-orthogonal complement of G(E), we therefore
have an orthogonal decomposition H0(curl,Ω) = D(E) ⊕G(E).
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Related to (1.3), the decomposition implies the following: Let fe ∈ L2(Ω) satisfy∫
Ω
fe · ∇ψ = 0 for all ψ ∈ H1

0 (Ω,C). In this case, since the left hand side of (1.3)

vanishes for φ = ∇ψ ∈ G(E), we find E ∈ D(E).

An analogous construction can be made for the magnetic field. We must be very
careful in the definition of G(H); the space of gradients of H1(Ω)-potentials is not
closed in H(curl,Ω). Loosely speaking, every limit of gradients is again (locally) a
gradient, but its potential may fail to be in the space L2(Ω). We therefore work
with the Hilbert space where integrability is demanded only for the derivatives,
Ḣ1(Ω) := {v ∈ L2

loc(Ω,C)|∇v ∈ L2(Ω)}, equipped with the inner product 〈u, v〉 :=
〈u, v〉L2(W ) + 〈∇u,∇v〉L2(Ω). We use the closed subspaces

D(H) :=

{
H ∈ H(curl,Ω)

∣∣∣∣ ∫
Ω

µH · ∇ψ = 0 for all ψ ∈ Ḣ1(Ω)

}
,

G(H) :=
{
H ∈ H(curl,Ω)

∣∣∣∃ψ ∈ Ḣ1(Ω) : H = ∇ψ
}
.

In the above definition, it is important to use Ḣ1(Ω) in order to achieve that G(H)

is a closed subspace. Let us verify that, indeed, G(H) is closed. With this aim,
we consider a sequence (ψj)j with ψj ∈ Ḣ1(Ω) such that (∇ψj)j is convergent in
H(curl,Ω). Upon subtracting a constant cj ∈ C and using the sequence ψj − cj, we
can assume the normalization

∫
W
ψj = 0. For this sequence and for arbitrary R > 0,

the restrictions ψj|ΩR are a Cauchy sequence in H1(ΩR) by Poincaré’s inequality.
This implies that (ψj)j converges to some ψ ∈ H1

loc(Ω) locally. Since (∇ψj) converges

in L2(Ω,C3) to some F , there holds F = ∇ψ and ψ ∈ Ḣ1(Ω). We conclude that
G(H) is closed as a subspace of H(curl,Ω) and of L2(Ω,C3).

The spaces D(H) and G(H) are orthogonal in L2(Ω,C3) with the weighted scalar
product 〈u, v〉 =

∫
Ω
µu · v̄ and in H(curl,Ω) with the scalar product 〈u, v〉 =

∫
Ω
µu ·

v̄ + curlu · curl v̄.
Let fh ∈ L2(Ω) satisfy

∫
Ω
fh · ∇ψ = 0 for all ψ ∈ Ḣ1(Ω,C); this is encoding that

fh is divergence-free with ν ·fh = 0 on ∂Ω. Since the left hand side of (1.2) vanishes
for φ = ∇ψ ∈ G(H), we find H ∈ D(H).

The condition H ∈ D(H) includes a boundary condition for H. The fact that
µH is L2-orthogonal to gradients (without condition on the boundary values of the
potential) is the weak form of ∇ · (µH) = 0 and ν · (µH) = 0 on ∂Ω. Since µ is a
scalar, we find ν ·H = 0 on ∂Ω.

A.2. The bounded domain W . We study now Helmholtz decompositions for the
bounded domain W = (0, 2π)×S, noting that all results remain valid for domains of
the form W = (r1, r2)×S. Here, we are interested in different boundary conditions.
In particular, we have to investigate the boundary condition of α-quasiperiodicity.

For fixed α ∈ R, we use the spaces Hα(curl,W ) and H0,α(curl,W ) := {u ∈
Hα(curl,W ) | ν×u = 0 on (0, 2π)×∂S}. We are interested in different pairs of func-
tion spaces (X, Y ). The four choices of interest are (a)

(
H(curl,W ), H1(W )

)
, (b)(

H0(curl,W ), H1
0 (W )

)
, (c)

(
H0,α(curl,W ), H1

0,α(W )
)

or (d)
(
Hα(curl,W ), H1

α(W )
)
.

In the following, the weight function ρ is either ε or µ. In all these cases, we have
the decomposition X = D ⊕G with

D :=

{
u ∈ X

∣∣∣∣ ∫
W

ρ u · ∇ψ = 0 for all ψ ∈ Y
}
,

G := {u ∈ X | ∃ψ ∈ Y : u = ∇ψ} .
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The decomposition is orthogonal with respect to the scalar products 〈u, v〉 =
∫
W
ρ u·

v̄ in L2(W,C3) and 〈u, v〉 =
∫
W
ρ u · v̄+curlu ·curl v̄ in H(curl,W ). In the following,

our aim is to show that, in any of these cases, the space D is compactly imbedded
in L2(W,C3).

We start by showing compactness in Case (a).

Lemma A.1 (Compactness). Let ρ ∈ L∞(W ) be bounded below by some positive
constant. Then the space

D =

{
u ∈ H(curl,W )

∣∣∣∣ ∫
W

ρ u · ∇ψ = 0 for all ψ ∈ H1(W )

}
is compactly imbedded in L2(W,C3).

Proof. Step 1: The case ρ ≡ 1. We first treat the special case ρ ≡ 1, in which the
space of interest is D = D1 with

D1 :=

{
u ∈ H(curl,W )

∣∣∣∣ ∫
W

u · ∇ψ = 0 for all ψ ∈ H1(W )

}
.

Compactness of D1 can be derived from classical results. Let (uj)j∈N be a bounded
sequence in H(curl,W ) with uj ∈ D1 for every j ∈ N. In particular, the sequence
curluj is bounded in L2(W,C3). Because of uj ∈ D1, there also holds that div uj = 0
in W and ν · uj = 0 on ∂W . The control of curluj and div uj together with
the boundary conditions imply compactness of the sequence uj in L2(W,C3) by
Theorem 3.47 of [23]. Compare also Theorem 3.1 of [24]. This shows compactness
of D1 in H(curl,W ).

Step 2: The general case. We now consider a general coefficient ρ ∈ L∞(W ) and
use further Helmholtz decompositions. Just as D and G are defined as subspaces of
X, we can analogously define subspaces in L2(W,C3),

DL2 :=

{
u ∈ L2(W,C3)

∣∣∣∣ ∫
W

ρ u · ∇ψ = 0 for all ψ ∈ H1(W )

}
,

GL2 :=
{
v ∈ L2(W,C3)

∣∣∃ψ ∈ H1(W ) : v = ∇ψ
}
.

These are closed subspaces of L2(W,C3). We observe that DL2 is the orthogonal
complement of GL2 with respect to the (ρ-dependent) inner product 〈ρu, v〉L2(W ) in
L2(W,C3). It is important to observe that the ρ-dependent norms in Hα(curl,W )
and L2(W,C3) are equivalent to the norms for ρ ≡ 1.

We will use the two different decompositions as orthogonal direct sums: X =
D ⊕G and

L2(W,C3) = DL2 ⊕ GL2 .

All corresponding projections are bounded; the boundedness of a projection is in-
dependent of the choice of the scalar product (with or without the factor ρ).

In order to show compactness, we consider once more a bounded sequence (uj)j∈N
in H(curl,W ) with uj ∈ D for every j ∈ N. We decompose uj with respect to the
decomposition that corresponds to ρ = 1, that is, using H(curl,W ) = D1⊕G, where
H(curl,W ) is equipped with the scalar product related to ρ = 1:

uj = vj + ∇ψj with vj ∈ D1 and ψj ∈ H1(W,C) .

Since uj is bounded in H(curl,W ) and since projections are bounded, the sequence
vj ∈ D1 is bounded in H(curl,W ). Step 1 yields that there exists a subsequence,
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again denoted by vj, which converges in L2(W,C3). With this knowledge, we now
read the previous decomposition in the form

vj = uj − ∇ψj ,
and note that this is a decomposition of vj in L2(W,C3) = DL2 ⊕ GL2 ; we exploit
here that D is contained in DL2 . Since vj converges in L2(W,C3) and since the pro-
jection onto DL2 is bounded in the space L2(W,C3), we conclude that uj converges
in L2(W,C3). This concludes the proof. �

The choice of function spaces that was given as (b) can be treated with exactly
the same arguments. We obtain that the space{

u ∈ H0(curl,W )

∣∣∣∣ ∫
W

ρ u · ∇ψ = 0 for all ψ ∈ H1
0 (W )

}
is compactly imbedded in L2(W,C3).

Our next aim is to generalize these result. Instead of demanding div(ρu) = 0, we
want to impose only a boundedness property.

Lemma A.2 (Improved compactness). Let ρ ∈ L∞(W ) be real with positive lower
bound. Let (uj)j be a bounded sequence in X = H(curl,W ) such that, for a sequence
(fj)j that is bounded in L2(W ), there holds

(A.1)

∫
W

ρ uj · ∇ϕ =

∫
W

fj ϕ

for every ϕ ∈ Y = H1(W ). Then there exists a subsequence j → ∞ and a limit
function u such that uj → u in L2(W,C3).

The result remains valid for other pairs (X, Y ), e.g.: (b)
(
H0(curl,W ), H1

0 (W )
)
,

(c)
(
H0,α(curl,W ), H1

0,α(W )
)
, (d)

(
Hα(curl,W ), H1

α(W )
)
.

Proof. On the two spaces H(curl,W ) and L2(W,C3) we define again inner products∫
W

curlu · curl v̄ + ρ u · v̄ and
∫
W
ρ u · v̄, respectively. Using the decomposition

H(curl,W ) = G⊕D we decompose uj as

uj = vj + ∇ψj with vj ∈ D and ψj ∈ H1(W ) .

Since vj is obtained as a projection of uj, the sequence vj is bounded in H(curl,W ).
Additionally, the sequence lies in D. Lemma A.1 provided the compactness of the
subspace D, hence we find a subsequence j → ∞ and a limit function v such that
vj → v in L2(W,C3).

The functions ψj ∈ H1(W ) solve the problem∫
W

ρ∇ψj · ∇ϕ =

∫
W

ρ (uj − vj) · ∇ϕ =

∫
W

fjϕ for all ϕ ∈ H1(W ) .

We consider the solution operator fj 7→ ∇ψj of this problem. By the Lax-Milgram

lemma, the solution operator is a bounded operator
(
H1(W )

)′ → L2(W,C3) on

the dual space
(
H1(W )

)′
of H1(W ). As H1(W ) is compactly imbedded in L2(W ),

the embedding L2(W ) →
(
H1(W )

)′
is also compact. This compactness allows to

choose a subsequence j →∞ and a limit function f ∈ L2(W,C3) such that fj → f

is a strong convergence in
(
H1(W )

)′
. The corresponding solutions ∇ψj are then

strongly convergent in L2(W,C3).
The strong convergences of vj and ∇ψj imply the strong convergence of uj. This

concludes the proof in the case (X, Y ) = (H(curl,W ), H1(W,C)).



26 Maxwell’s equations in periodic waveguides

In the case (X, Y ) =
(
H0(curl,W ), H1

0 (W )
)
, the above proof remains valid by

the remark following the preceeding lemma. The cases of functions spaces involving
quasiperiodic boundary conditions at the flat boundaries {0}×S and {2π}×S can
be reduced to the cases of homogeneous boundary conditions by choosing a function
η ∈ C∞(R) with η(x1) = 1 for x1 ∈ [0, 2π] and η(x1) = 0 for x1 /∈ [−1, 2π + 1] and
applying this result to ũj(x) = η(x1)uj(x). �

For use in Appendix B, we formulate the following special case of our results.

Corollary A.3. Let µ ∈ L∞(W ) be bounded below by some positive constant and
let α ∈ [−1/2, 1/2] be a quasimoment. Then the space{

u ∈ Hα(curl,W )

∣∣∣∣ ∫
W

µu · ∇ψ = 0 for all ψ ∈ H1
α(W )

}
is compactly imbedded in L2(W,C3).

Appendix B. Properties of the operator curl curl

In this appendix, we study an operator on a space of α-quasiperiodic functions.
The parameter α ∈ I is fixed throughout this appendix and any dependence on α is
suppressed. Correspondingly, for notational convenience, we suppress the tilde that
was used in (2.11) and write L instead of L̃α. In this appendix, we study the space
Hα(curl,W ), equipped with the scalar product

(B.1) 〈u, ϕ〉H(curl,W ) =

∫
W

{
1

ε
curlu · curl ϕ̄+ µu · ϕ̄

}
,

and the operator L : Hα(curl,W )→ Hα(curl,W ), defined by

(B.2) 〈Lu, ϕ〉H(curl,W ) =

∫
W

{
1

ε
curlu · curl ϕ̄− ω2µu · ϕ̄

}
for all u, ϕ ∈ Hα(curl,W ). As above, W = (0, 2π) × S and ε, µ ∈ L∞(Ω) are real
valued and have a positive lower bound.

The previous subsection provides with case (d) the Helmholtz decomposition
Hα(curl,W ) = D ⊕G with

D =

{
u ∈ Hα(curl,W )

∣∣∣∣ ∫
W

µu · ∇ψ = 0 for all ψ ∈ H1
α(W )

}
,

G =
{
v ∈ Hα(curl,W )

∣∣ ∃ψ ∈ H1
α(W ) : v = ∇ψ

}
.

The subspace D is the H(curl,W )-orthogonal complement of G.

Lemma B.1 (Fredholm property). The operator L is a self-adjoint Fredholm oper-
ator with index 0.

Proof. The definition of L in (B.2) is symmetric, this implies that L is self-adjoint.

Step 1: Expressing L in the decomposition Hα(curl,W ) = D ⊕G. We claim that
Lu ∈ D holds for every u ∈ D. This follows when we show that Lu is orthogonal to
G. Let therefore v = ∇ψ ∈ G be arbitrary. We calculate

〈Lu, v〉H(curl,W ) = 〈Lu,∇ψ〉H(curl,W ) = −ω2〈µu,∇ψ〉L2(W ) = 0 ,

using the definition of D. This shows L|D : D → D. The same calculation can be
performed for G: Let v ∈ G be arbitrary, we consider Lv ∈ X and a test-function
u ∈ D to calculate

〈Lv, u〉H(curl,W ) = −ω2〈µv, u〉L2(W ) = −ω2〈v, µu〉L2(W ) = 0 ,
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where we exploited that µ is real. This shows L|G : G→ G. We can therefore write
L on the space Hα(curl,W ) = D ⊕G in the form

(B.3) L =

(
L|D 0

0 L|G

)
.

Step 2: Fredholm property of L|D. We claim that L|D : D → D is a Fredholm
operator with index 0. To prove this, we show a stronger property, namely that
K := L− id is a compact operator D → D. The equation Ku = F is equivalent to
Lu = u+ F , which can be written as

〈Lu, ϕ〉H(curl,W ) = 〈u, ϕ〉H(curl,W ) + 〈F, ϕ〉H(curl,W ) for all ϕ ∈ Hα(curl,W ) .

This, by definition of L, is equivalent to∫
W

1

ε
curlu · curl ϕ̄− ω2µu · ϕ̄ =

∫
W

1

ε
curlu · curl ϕ̄+ µu · ϕ̄+ 〈F, ϕ〉H(curl,W )

for all ϕ ∈ Hα(curl,W ), and hence also equivalent to

(B.4)

∫
W

µ (1 + ω2)u · ϕ̄ = −〈F, ϕ〉H(curl,W ) for all ϕ ∈ Hα(curl,W ) .

In order to show compactness of K, we consider a bounded sequence uj ∈ D
and the images Fj := Kuj. Corollary A.3 provides compactness of D in L2(W,C3),
hence, up to the choice of a subsequence (not relabeled), we can assume uj → u in
L2(W,C3). Because of (B.4), the sequence Fj consists of the Riesz representations
of 〈−µ(1 + ω2)uj, ·〉L2(W ) in H(curl,W ). This implies the convergence Fj → F in
H(curl,W ). Since we have found a convergent subsequence of the images Fj, we
have verified the compactness of K.

Step 3: Fredholm property of L|G. Let us investigate the action of L on the
subspace G. We consider Lu = F with u ∈ G and, hence, F ∈ G. The equation is
reads 〈Lu, ϕ〉H(curl,W ) = 〈F, ϕ〉H(curl,W ) for every ϕ ∈ Hα(W ). By definition of L and
by definition of the scalar product on H(curl,W ), this is equivalent to −

∫
W
ω2µu ·

ϕ̄ =
∫
W
µF · ϕ̄. We find that, on G, the operator L is nothing but the multiplication

u 7→ −ω2 u. This operator has a continuous inverse and is therefore a Fredholm
operator with index 0.

Step 2 and Step 3 imply that L is Fredholm with index 0. �

Appendix C. Decay of solutions to the Poisson problem

The subsequent lemma is a very general statement about solutions of Poisson
problems in unbounded cylindrical domains. In this appendix, we only assume the
following: The dimension is d ≥ 2, the set S ⊂ Rd−1 is a bounded Lipschitz domain,
the unbounded domain is Ω = R × S, the coefficient is a map ρ : Ω → R of class
L∞(Ω) with a positive lower bound. In particular, we do not assume that ρ is
periodic in direction x1.

In our results on compactly perturbed media, we use the lemma with the coeffi-
cient function ρ being the permittivity ε or the permeability µ. For shorter formulas,
we use here segments of unit length instead of segments of length 2π.

Lemma C.1 (Decay of Poisson solutions). Let ρ : Ω → R be of class L∞(Ω) with
a positive lower bound. Let R > 0 be fixed, we consider right hand sides g that
are supported in ΩR = (−R,R) × S. For arbitrary r > 0 let Wr be the segment
Wr = (r, r + 1) × S. Then there exists a constant C = C(ρ,R) and a decay rate
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δ = δ(ρ,R) such that, for every function g : Ω → C that is supported in ΩR, the
following two properties holds:

Dirichlet problem: Every solution v ∈ H1
0 (Ω,C) of

(C.1)

∫
Ω

ρ∇v · ∇ϕ̄ =

∫
Ω

g · ∇ϕ̄ ∀ ϕ ∈ H1
0 (Ω)

satisfies the exponential decay estimate:

(C.2)

∫
Wr

|∇v|2 ≤ C‖g‖2
L2(ΩR) e

−δ|r| ∀r ∈ R .

Neumann problem: Every solution v ∈ Ḣ1(Ω) := {v ∈ L2
loc(Ω)|∇v ∈ L2(Ω)}

of the Neumann problem

(C.3)

∫
Ω

ρ∇v · ∇ϕ̄ =

∫
Ω

g · ∇ϕ̄ ∀ ϕ ∈ Ḣ1(Ω) .

satisfies the exponential decay estimate (C.2).

Proof. Step 1: Existence of solutions. The Dirichlet problem can be solved in stan-
dard function spaces with the Lax-Milgram lemma. On the space H1

0 (Ω) we use
the sesquilinear form b(v, ϕ) :=

∫
Ω
ρ∇v · ∇ϕ̄. This form is coercive since H1

0 (Ω)
permits a Poincaré inequality

∫
Ω
|v|2 ≤ CP

∫
Ω
|∇v|2. The right hand side of (C.1)

defines a linear form on ϕ ∈ H1
0 (Ω). We find existence and uniqueness of solutions

v ∈ H1
0 (Ω,C) together with an estimate ‖v‖H1(Ω) ≤ C‖g‖L2(ΩR).

For problem (C.3), one has to modify the function space. We use the space
Ḣ1(Ω) := {v ∈ L2

loc(Ω,C)|∇v ∈ L2(Ω)} with the squared norm ‖v‖2 :=
∫

ΩR
|v|2 +∫

Ω
|∇v|2, and consider once more the sesquilinear form b(v, ϕ) :=

∫
Ω
ρ∇v · ∇ϕ̄. In

order to find a solution v, we restrict b to a closed subspace of Ḣ1(Ω), namely to

Ḣ1
∗ (Ω) :=

{
v ∈ Ḣ1(Ω)

∣∣∣ ∫ΩR
v = 0

}
. The Poincaré inequality on ΩR for vanishing

averages of u implies that b is coercive on Ḣ1
∗ (Ω); the Lax-Milgram lemma yields a

solution v ∈ Ḣ1
∗ (Ω) of

(C.4) b(v, ψ) =

∫
Ω

g · ∇ψ for all ψ ∈ Ḣ1
∗ (Ω) .

An arbitrary function ϕ ∈ Ḣ1(Ω) can be decomposed, for some constant c ∈ C, as
ϕ = c + ψ with ψ ∈ Ḣ1

∗ (Ω). This allows to check (C.3): For arbitrary ϕ = c + ψ ∈
Ḣ1(Ω) with ψ ∈ Ḣ1

∗ (Ω) holds∫
Ω

ρ∇v · ∇ϕ =

∫
Ω

ρ∇v · ∇ψ = b(v, ψ) =

∫
Ω

g · ∇ψ̄ =

∫
Ω

g · ∇ϕ̄ .

Lax-Milgram yields also the uniqueness of∇v and, hence, uniqueness up to constants
of v. We emphasize that, in general, v will not be of class L2(Ω), for any choice of
the constant.

Step 2: Exponential decay for the Dirichlet problem. We consider a solution
v ∈ H1

0 (Ω) of (C.1). All constants in this proof will be independent of v and g, they
depend on ρ only through the upper and lower bounds of ρ.

For arbitrary r > 0, we use the domain Σr := (r,∞) × S ⊂ Ω. We perform all
arguments for r > 0, the arguments for r < 0 are analogous.

We note that the test-function ϕ = v leads to the equality
∫

Ω
ρ|∇v|2 =

∫
Ω
g · ∇v̄.

We now modify the test-function and construct ϕ as follows: ϕ(x) := v(x) for x1 < r,
ϕ(x) := v(x)(r+ 1−x1) for r ≤ x1 ≤ r+ 1, ϕ(x) := 0 for x1 > r+ 1. The definition
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implies ϕ ∈ H1
0 (Ω), hence ϕ is an admissible test-function. For r > R we find, using

that the support of g is contained in ΩR,∫
Ω

ρ |∇v|2 =

∫
Ω

g · ∇v̄ =

∫
Ω

g · ∇ϕ̄ =

∫
Ω

ρ∇v · ∇ϕ̄

=

∫
Ω\Σr

ρ |∇v|2 +

∫
Wr

ρ∇v · [(∇v̄)(r + 1− x1)− v̄ e1] .

Subtracting the first term of the right hand side, and using a Poincaré inequality
for the last integral, we find

(C.5)

∫
Σr

ρ|∇v|2 ≤ C

∫
Wr

ρ|∇v|2 .

The constant C > 1 is independent of r, it is a consequence of the Poincaré inequality
‖v‖L2(Wr) ≤ CP‖∇v‖L2(Wr) for all v ∈ H1

0 (Ω). Inequality (C.5) allows to calculate

(C.6)

∫
Σr+1

ρ|∇v|2 =

∫
Σr

ρ|∇v|2 −
∫
Wr

ρ|∇v|2 ≤
(

1− 1

C

)∫
Σr

ρ|∇v|2 .

This implies, in particular, the exponential decay (C.2).

Step 3: Exponential decay for the Neumann problem. We follow the ideas of
Step 2 and consider the solution v ∈ Ḣ1(Ω) of (C.3). Without loss of generality,
subtracting a constant, we can assume v ∈ Ḣ1

∗ (Ω); this means that we work with
the solution v that was found by solving (C.4).

For r > R, we consider the average cr := 1
|Wr|

∫
Wr
v of the function v in Wr and

define

ϕ(x) :=


v(x) for x1 ≤ r ,

cr + (v(x)− cr)(r + 1− x1) for r ≤ x1 ≤ r + 1 ,

cr for x1 > r + 1 .

We note that, for x1 = r, the expression in the middle coincides with v, while, for
x1 = r+ 1, the expression in the middle coincides with cr. In particular, there holds
ϕ ∈ Ḣ1(Ω).

Repeating the first calculation of Step 2 yields∫
Σr

ρ |∇v|2 =

∫
Wr

ρ∇v · [(∇v̄)(r + 1− x1)− (v̄ − c̄r) e1] .

The constant cr is chosen such that
∫
Wr

(v − cr) = 0. This allows to use a Poincaré

inequality on Wr: There exists CP > 0 with ‖ṽ‖L2(Wr) ≤ CP‖∇ṽ‖L2(W0) for all
ṽ ∈ H1(Wr) with

∫
Wr
ṽ = 0, the constant CP is independent of r. Using this

inequality for ṽ = v − cr, we obtain∫
Σr

ρ |∇v|2 ≤ C

∫
Wr

ρ |∇v|2

with C independent of g, v, and r. We have thus obtained (C.5) also in the Neumann
case and the exponential decay follows as in Step 2. �
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[1] G. S. Alberti. Hölder regularity for Maxwell’s equations under minimal assumptions on the
coefficients. Calc. Var. Partial Differential Equations, 57(3):Paper No. 71, 11, 2018.

[2] G. Allaire, M. Palombaro, and J. Rauch. Diffraction of Bloch wave packets for Maxwell’s
equations. Commun. Contemp. Math., 15(6):1350040, 36, 2013.

[3] H. Ammari and G. Bao. Maxwell’s equations in a perturbed periodic structure. Adv. Comput.
Math., 16(2-3):99–112, 2002. Modeling and computation in optics and electromagnetics.



30 Maxwell’s equations in periodic waveguides
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