ﬂ(IT \/ya\/e phenomena

Karlsruhe Institute of Technology ana I YS | San d numer | CS

The Calderon operator for the Maxwell
system in the exterior of an infinite
cylinderin R’

Andreas Kirsch

CRC Preprint 2024/20, August 2024

CRC 1173

- _

phenomena

KIT — The Research University in the Helmholtz Association -.!I:

mmmmmmmmmmmmm
nnnnnn



Participating universities

4

UNIVERSITAT

Universitat Stuttgart

EBERHARD KARLS

UNIVERSITAT
TUBINGEN

Funded by

VFG

ISSN 2365-662X



THE CALDERON OPERATOR FOR THE MAXWELL SYSTEM IN
THE EXTERIOR OF AN INFINITE CYLINDER IN R?
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Abstract: We study the Calderon operator for the time-harmonic
Maxwell system in the “exterior” Q7 of an infinite cylinder in z3-
direction. The Calderon is the analogue of the Dirichlet-to-Neumann
operator for the scalar Helmholtz equation. In the first part we study
the case where the Calderon operator corresponds to solutions v on Q%
which, together with their curls, decay along x3. In the second part we
consider the case where the solution u is assumed to be quasi-periodic
with respect to x3. In both cases we derive properties of the Calderon
operator with respect to coercivity and compactness. These properties
are useful for the investigation of problems in all of R? if one uses the
Calderon operator to reduce the problem to the “interior” of the cylinder.
The proofs rely heavily on properties of the Hankel functions which are
studied in detail in the appendix.

MSC: 35Q61

1. INTRODUCTION

We fix some R > 0 and define the infinite cylinder I' = {z € R? : 22 + 22 = R?}
and the exterior region Q" = {z € R® : 22 + 23 > R?}. It is the aim to study the
homogeneous Maxwell system

(1.1) curl B = iwpg H, curl H = —iweg E in QF

with the boundary condition ¥ x £ = h on I' and a suitable radiation condition
discussed below. Here, v = v(x), x € I', denotes the unit normal vector directed
into Q*. Eliminating H from the system and renaming u = E yields

(1.2) curl’u — k*u=0in Q", vxu=honT,
where the wavenumber £ > 0 is given by k& = w,/gopo-

In this paper we consider two cases. In the first case we search for fields u which
decay as along the cylinder, i.e. as |x3] — 0o. More precisely, we look for solutions
in the space

(1.3) H.(curl, Q%) = {u: Q" = C®:ulq, € H(cwl,Q,) for all p > R},

where Q, := {x € R*: R? < 2% + 23 < p*}, and H(curl, D) denotes the usual space
of L%-vector fields such that also their curl is in L?. As we will see in Section 2 the
boundary data have to be in suitable subspace of H~'/?(Div,I") defined below.

In the second case we look for quasi-periodic solutions wu, i.e. the solutions satisfy
u(xy, To, T3+27) = € *"u(xy, 19, 23) for all ¥ = (11, T2, x3) € QT for some parameter

The author gratefully acknowledge the financial support by Deutsche Forschungsgemeinschaft
(DFG) through CRC1173.
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a € R. Tt is clear that a a-quasi-periodic solution can only be expected if also the
boundary data h are a-quasi-periodic.

For both cases we will study the corresponding Calderon operator which is defined
as the operator which maps the tangential field A on I' to the trace v x curlu on I'
where u satisfies (1.2) and an appropriate radiation condition.

In this paper we use cylindrical coordinates (7, ¢, x3) and denote by # = (cos ¢, sin ¢, 0) ",
b= (—sing,cos¢,0)", and 2 = (0,0,1) " the coordinate unit vectors. We note that

v =7 on I'. Furthermore, we observe that the differential equation curl® u — k*u = 0

is equivalent to the pair of equations Au + k?u = 0 and divu = 0.

Studying the exterior problem (1.2) and the corresponding Calderon operator is
interesting in itself because, in contrast to the case of the exterior of a ball (see,
e.g. [7]), particular emphasis has to be put on the treatment of the so-called cut-
off values. Often (as, e.g., in [7]), the Calderon operator is used to reduce the
problem in a unbounded domain to a problem in a bounded domain with non-local
boundary conditions. For the geometry studied in this paper the quasi-periodic
problem (with respect to x3) in R? is reduced to a problem in the bounded domain
{r € R®: 22 + 22 < R?, 0 < z3 < 27} with non-local boundary conditions for
2? + 22 = R? and quasi-periodic boundary conditions for x3 € {0, 2n}. The present
paper is a necessary preparation of a forthcoming paper where the scattering problem
will treated for coefficients € and p which are periodic with respect to x3 in the
interior R? \ Q7 of the cylinder and constant in Q.

We want to mention some of the related literature. For scalar problems, i.e. the
scalar Helmholtz equation Au + k*>u = 0 in Q7F, the Calderon operator corresonds
to the Dirichlet to Neumann operator and has been studied (for this geometry) in,
e.g., [2] and [4]. The problem with the cut-off values does not occur for this case.
For the Maxwell system in the half space {z € R? : z3 > 0} the Calderon operator
on the plane z3 = 0 has been studied intensively in [8], and it is shown that for a
proper treatment weighted Sobolev spaces have to be used. Ritterbusch’s approach
has been applied to a different situation in [6].

2. THE H,(curl) CASE

Since we expect a solution of (1.2) in H,(curl, 2%) we can take the Fourier trans-
form

~ 1 I —i€x
(2.1) w(xy, x9,€) = %/U<J]1,ZL‘2,LE3)6 € Sdxs, E€ER,

with respect to x3 which has to satisfy (for every component) the two-dimensional
Helmholtz equation

(2.2) Agti(Z,€) + k(6)*u(z,£) =0 for 22 4 22 > R?

where T = (z1,22) and k(§) = /k? — &2 In addition divu = 0 translates into
0t (,€) + 0y ® (&, €) + i€ i (&, ) = 0.

Definition 2.1. A solution u € H,(curl, Q") of (1.2) satisfies the radiation condi-
tion if the Fourier transform u(-, &) satisfies the two-dimensional Sommerfeld radi-
ation condition

du(z, & e i N
ey P gaee = oW, r=lE - .
for almost all € € R.



For the definitions of the correct spaces of boundary data the cylindrical Fourier
transform plays an essential role. For g € L*(T') N Cg°(T") we define

2

20 9 = 55 [ [elme S dnds, mez, gk
0 —oo

Then this transform has an extension to L?*(T"), and the inverse is given by

gom) = Y / g€ 5 dE

meZ_*

Definition 2.2. We define the space H*'/%(T') of scalar functions and the spaces
H=Y2(Div,T) and H/?(Curl,I") of tangential vector fields by

(p:T = C :

[e.9]

Hi1/2(r) =9 Z / |pm(€)|2[1+m2+§2]i1/2d€<OO )

h¢¢3+h” D —C®:h®:=h-¢, h*:=h-2 satisfy

-1/2 . .: hz 2 h¢> 2 h? mh¢> 2
H'?(Div,T) = { Z/l O + [hy (O + [6h, () + Fhin(§)] dE <00 [
meZ_ " \% 1+m2 +£2
/
h h¢¢+hz T = C®:h®:=h-¢, h*:=h-2 satisfy )
HY?(Curl,T) := / |07, ()7 + 118, ()P + 16h8,(€) — %/ﬁn(ﬁ)lzd5 .
meZ_ " \% 1 +m2 +€2

It can be shown as in [5] that (H~"/?(Div,I'), H"/?(Curl,I")) and
(H=Y*(T'), H'/*(T')) are dual pairs with duality forms

hf) = wRY / [12,(6) Fa(€) + b2, () Ta(©)] de

mezZ_*

he H™ 1/2(D1v ), fe HY*(CulT),

(p.q) = 47932/1% &, peHVAT), ge HA(D).

meZ_*

For the proof the following identity is essential (for m # 0)

o (&) Fin(€) + R () fa(§)

m o (€) + EF2(E) om . zsh;(f) — €hg,(€)
[ Rhm) +ERE()] + e

[F () — €Fa(©)
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which yields the estimate (using the Cauchy-Schwarz inequality in the numerators
of the fractions)

VIFAOR + 1526 1mhs (¢) + ehz, (€)

B8.(€) Fia (&) + B ()2 (©)] <

[ + €/ [ + g2/
©.5) o VIOF + N 13550 ~ efa(6)
| e (maen

and thus, using again the Cauchy-Schwarz inequality,

Z/W ) Fa(€) + W () T (6] de

m#0_"
¢ 1/2 1/2
2 z mp h#
/|f |2+|f()| i Z/|R jf AGI
mﬂ) 3’%2 +&2 mA0 ’},?2 + €2
1/2
/W OF +IOF /|mfz — SR
m?fo ’;3 + & m;é(] ’gj + &2

For m = 0 one argues analogously. This proves boundedness of (-, ).

Furthermore, the trace operators u — v X u and u +— v X (u x v) are bounded and
surjective from H(curl,,) into H~*/?(Div,T) and H~/2(Curl,T'), respectively, for
every p > R which can be shown as, e.g., in [5], Section 5.1. Finally, we note that
(Divau,p) = —(u,Gradp) for all u € H~'/?(Div,I') and p € HY?(I") where Divu
and Grad u denote the surface divergence and surface gradient, respectively, defined
as

(Div h)(¢p, x3) = zz / (&) + ERE, (&) emotices e

meZ_*

(Gradp)(6,75) = i3 / 2 pn(£) &+ Epm(£) 2] emFHiEdE

meZ_*

We will see shortly that the space H~'/?(Div,T) is not quite appropriate for the
bounday data h. Before we define the correct space we formally derive the form of
the Calderon operator by solving the pair of equations

AQ(, ) + k(€)% €) = 0 and
0, (%, €) + 0,, 0P (2,€) + i€ 4P (7,€) = 0 for |F] > R,
(where again & = (1, x2)) for the Fourier transform of u. We assume that £ € R

is kept fixed with k() # 0, i.e. [£| # k, and require also the Sommerfeld radiation
condition (2.3).

To solve this boundary value problem we make an ansatz for 4 in the cartesian form
as

(2.6) W(7,6) = i€ Vaw(@) + k(E)2w(@)2 + Vau(i) x 2

where V3 denotes the three dimensional gradient. We dropped ¢ in v and w. The

scalar functions w,v : {# € R? : |Z| > R} — C are assumed to satisfy the two
4



dimensional Helmholtz equation Aqw + k(£)*w = 0 and Ayv + k(£)?v = 0 and the
Sommerfeld radiation condition (2.3). Using the product rule for the gradient and
curl(fA) = feurl A+ V f x A for vector fields A and scalar functions f we can write
@ in the equivalent form

(7, )¢ = i€ Va(w(@)e™™) + Kw(@)e 2 + curl(v(F)e’™2)

from which we observe that A(a(z,£)e™*s) + k2 (a(z, )e™s) = 0 and
div(a(z, £)e*"s) = 0. Furthermore, we compute the curl as

(2.7) curl[@(z, £)e™™] = [i§ V3u(Z) + k(€)* v(E) 2 4+ k* Vaw(E) x 2] 4"

where we used curl®> = —A + Vdiv. Since w = w(#,§) and v = v(F,§) satisfy
Sommerfeld’s radiation condition we can expand them into series of Hankel functions
in the form

Ho (K(E)r)

Hon(K(E)7) i
Hy(k(E)R)

eimdv’ U(Ta ¢7€) = Z’Um(g) 7 e\ o €

w(r, 6,6 = 3 wn(€) . (H(&)R)

mEZL

where H,, denotes the Hankel function of type one and order m. We obtain, using
rx¢p=Z2and 7 x 2Z=—¢and ¢ X Z=r,

A B () (k(E)r) im Ho (k)

i(r,6,6) = ﬂ%{@m@zg D) +vm<g>7—Hm<k(§)R))r
(2.8) T wn(©) k(f)?% ;
mé H,(k(E)r)

Let h € H~'/2(Div,T") be given by

29 hom) =3 [ M6+ 1O e, 6. e 0,20]

meZL"”

We determine w,,(£) and v,,(§) by the boundary condition # x v = h for r = R.
This gives
(2.10)

() = —

k(£)?

H(k(E)R) mg

hg,(€) and Um(g):k(é“) ! (k(&)R) | RK(E)

3 (&) = i(€)

provided k(&) # 0. Substituting this into (2.8) and re-aranging the terms (using
also k? = k(£)? + £2) yields

(211 ulréizs) = 3 / {Un(r )7 + uf(r€) é + wuyy(r ) 2hemriersde

mEZ_OO
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forr > R, ¢ € (0,27), and x5 € R where

i€ ( m*H,, (k(ﬁ)r) 'f’k(f)H;z(k(f)T)>
rk(§)* \ Rk(§)H),(k(§)R) H(k(§)R)
imR Hy(k(E)r)

U (r,€) = hi (&)

T BRe  @R)

) me (H ()  rHLKON N . kO
“%“)‘h%@<>(mxm> Rmﬁ@m>+hMQMM@M’
We need also the following form of u?, (r, £):

e ER(HLR©OY)  rHLON | m,
w8 = s (m ~ rapem) (O +€6nle)

g [0 R (Y (Jnlblen)_ rilbion ]

H, (k(§)R) (€)?) \Hm(k(§)R)  RH,(K(§)R)

Now we express curlu. Comparing the forms of 4 and curlu of (2.6) and (2.7) we
observe that they have the same form for (almost) v, and w, interchanged. We
obtain by a similar calculation

(2.12) curlu(r, ¢, z3) = > /{U (r&) 7 + V2 (r, &) ¢ + vi(r,€) 2}emPtiETagg

where
o (€)= he imk® ((rH) (k(€)r)  Hun(k(E)r)
m(r8) = W) ey (RH,;( KER) Hm(’f(@R))
. . H,, (k(&)r
(RMA@+fMA@) m(@))7
e e K (rk(©)H,(k(E)r) ( (©r)
(7€) hm(é)rk(g)z ( H,,(k(§)R) Rk( )H;, (k (f)R)>

m _ Hp (k(€))
r k(&) H, (k(E)R)

(B (€) + €h3())

)
Vi (1 €) = {(Rhf%(é)+£hm(€))€—’f2h§1(f)} k<gz<:<<;f<)§>)z~z>-
For notational reasons we define the functions G%)(T ) i=1,..., 5, as
LT mPHARE) R H (k)
(2.13a)  GW(r,&) = AGE [Rk(g) 1 (RE(E))  Ha(RK(€)) }
(213b)  GP(r,&) = ngm[gi(é?(g))»
oo Ha(rk(E) o oy Halrk(©)
(2.13¢)  GP(r, &) = H,(RE(©) Gl (r.8) = H,,(RE(€))

(2.13d) GS)(T,S) — (2){ m(rk(§)) Tan(Tk’(f))]

Hy(R (65))  RH},(RK())]



Then the coefficients of v and curlu from (2.11) and (2.12), respectively, are written
as

(€)= () il

i§

r

GT(;L) (Ta f) - hfn (f) Gg) (7“, f) )

whr€) = WO ODrE) + KO OP (0
= 4000 + e [e0eme + T go o]
u,(r,€) = —hL(GR(r¢),
w8 = 1O G0 — 1O G0,
e = O e + du© ™ 6Pne),

v (r,€) = [€dn(&) = K*RL(O] RGY(r,€),

where d,,(§) := 2h2 (£) + hZ,(€). The terms involving G5 and G are obviously
singular for & with k(§) = 0. The precise type of the singularity and the behavior
for large values of |m| 4 |£| are investigated in Lemma A.1 of the appendix. For
Im| > 2 or |k(€)| > 1/2 and r € [R, R] for any fixed R > R we obtain that all 6
coefficients are estimated by' ¢ a,, (&) pm (7, €) where ¢ in independent of r, m, and

&, and

214)  au(®) = O] + E] + [FHLO + @], Im| =2,
kPR (r—R) R\Iml .
(2.15) pin(r,€) = eXp{ —W} R
(&)™ if ¢ < &,

For |m| < 1 and |k(§)] < 1/2 we recall from Lemma A.1 that the following func-

tions are continuous (for every fixed R > R): GY. GW. (r,&) — ln;@ G((]Q)(r, £),

(r€) = migCGhr8), and (&) = k(&) Ink(€) G (r.€) for j € {1,5} and

r € [R,R)] and |k(€)| < 1/2. Therefore, we define the weight functions
1

p1(€) = |Ink(¢)| and p0<5):‘k<€>|2“nk(£)l for 0 < |k(&)] <1/2,

and estimate

uly (r, )] < e [pr()IRE (O+RL (O] (r, &), Tug(r &) < cpo(&)|hg(€)lpo(r,€)

for |k(€)| < 1/2 and r € [R, R)]. The other coefficients involving GY, GP and
GSE) for |m| < 1 are estimated in the same way. Therefore, we set

(216)  am(&) = [h () + AL + oy (&) B (E)], Iml <1, [k(€)] < 1/2,

and observe that all of the 6 coefficients are bounded by ¢ |a, (&) |pm (1, €) for |m| < 1
and k()] < 1/2.

These observations motivate the following space for the boundary data h:

H7Y2(Div,T) := {h e HY*(Div,T) : /pm(f) |he ()|? d¢ < oo for |m| < 1}

Yor uf (r, €) we take the second form



where Z = {¢ : |k(€)| < 1/2}. We equip Hy /*(Div,T) with its canonical norm

@1T) By = Iy + D [ i) RGP de.

Im|<1 3z

Theorem 2.3. For every h € H;1/2(Div,l“) the function u given in (2.11) is
the unique solution u € H,.(curl, Q%) of (1.2) satisfying the radiation condition
of Definition 2.1. Furthermore, for every R > R there exists ¢ = ¢(R) > 0 with
||u||H(Curl,QR) S c||h||H*_1/2(DlV,F)

Proof. 1t suffices to show that u,curlu € L*(Q, C?) for every R > R. Let a,,(¢)
be defined as above for |m| > 2 and for |m| < 1 by (2.14) and (2.16), respectively.
The estimate

g, (7, €)] 4 [, (7, )] 4 [, (7, ) 4 [0, (1, €) | 4+ |05, (r, ) |+ 03, (7, ) < €@ (€) pm (1, €)
for all m € Z, £ € R, r € [R, R], and (A.5) yields

oo 2w

R
///|u (r, ¢, z3)|> + | curl u(r, gb,xg)”rdgbda:gdr
R -

0

00 R
) drd
czez_l R/ Tf T£<c%/\/l+m2 52
O
From the form of curl u we obtain, using again 7 X qg =Zand 1 X Z = —gg, that
Ah = curlw x 7 is given by
(2.18) (AR) (¢, 23) = ) / [N2,(6) 2 + X8, (€) §] emtices g
meZ_
where
(2.19) NL(6) = —h&(&)k—}:Gﬁ,?(R, &) + mdn(§) GR(R,€)
_no () K {Rk(ﬁ)ﬂé@(k(ﬁ)f?) _ mPHy(k(§R)
"URE(E)? L Hin(K(S)R) RE(&)H;, (k(E)R)
5 . H, (K(§)R)
[ ©) + ) g e
(220) ML) = [F*h,(€) = £dm(O] RGD(R,€)
) — T () 4 e H,(HER)
{Eh(6) — S[FO+ Ol fom rEom
e ) - € e o] M HOR
Theorem 2.4. A, defined by (2.18) (with (2.19), (2.20)), has the following proper-

ties.
(a) A is well-defined and bounded from H{l/Z(DiV, ') into itself.

(b) Im(AR, 7 X h) > 0 for all h € H, /*(Div,T).
8



(c) The Calderon operator A, can be decomposed as A = AP + A¢ where AP and
A€ are bounded from H*_I/Q(Div,f‘) into H=/2(Div,T') and DivAPh = 0
and Curl A°h = 0 for all h € H*_l/Q(DiV, r).

(d) The operator Div A is bounded from H*_l/Q(DiV,F) into H=Y/2(T") and

(2.21) ||Ach||H71/2(Div7F) < c||DivAh| iy for all h € H-Y?(Div,T) .

Proof. (a) For |m| > 2 or |k(¢)| > 1 we have, using again the estimates (A.3a), that
A2 (€)| and |\2,(€)] are bounded by ¢ |a,,(&)| with a,, from (2.14). For |m| < 1 and

|k(€)] <1 we use that G (R, €) for |m| < 1 and pl;(é) Ggg)(R, ¢) are bounded
and thus

1
Pim|(§)

AL () ¢ [1P5.(E) Pl (€) + 1dm(§)[] . Im| <1,
P NLE] < e[p©) IKEOPIPLIE)] + pi(€) 1hL1(E)]]

cla1(§)],
Po(€) NG (€)] cpo(&) [(E)I* [h§()] p1(€) = clhi(E)],
thus [AZ, ()] 4+ pm (E)IAE(E)] < cam(§) for |m| < 1 with a,, from (2.16). Finally,

MNG(E) + ENL(E) = —h4(€) B GW (R, €) + mk?hz,(€) G (R, €), and this is esti-
mated by ca,,(§) as before.

IN

[y (E(§)R)]
RN H1(K(E)R)]

<
<

(b) Let h as in (2.9). Then # x h(¢,z3) = Y. [*_[-h )¢+ he,(€) 2] emotersqe
and thus e
(Ah,# x h) = 4n°R) /{)\Z —\2(&) hz, (&)} de.
mezZ_*

For k( ) # 0 we write the term in the bracket as, using the definitions of Gﬁ,ll)(R, ) =
G (R, €) =

222 X,(©h(E) - (O B(@)
= e G + (e + eri ) (R 9|
— [RE(§)*h,(6) = mEns, ()]G (R.€) hi, (€)
= O pemg ~ OO i PO
+ BRGNP — mé (15,0 + (5,70] - 6]
g ©F  GR(R.E)

mé h® _ 22 2
REE2GD(RE) | RREP mE RS (&) — RE(&) %, (©)|

where we used k% — k(£)? = &2

Now we consider two cases Let first & with || > k. Then k(¢) = i|k(§)| and (A.6a)

and (A.Gb) imply that G (R, &) = et — —falIMED - which is real
9




valued. Next we consider & with |¢] < k. Then k(£)? > 0 and k(£) € Ry and thus
H,(k@©R) Y, (E(R)Im(E(E)R) — Jp,(K(E) )Y (K(§) )
Hy(k(E)R) | Ho (K(E) R)|?
2
= > 0
k(&) R | Hin (K () R)[?
where we used the Wronskian of J,, and Y,,. Therefore, also Im
and the proof of part (b) is finished.
(c) We recall the form of Ah with the coefficients \?,(£) and A%, (£) from (2.19) and
(2.20), respectively. Since Ah € HIl/Z(DiV, I') we have

Z/ N (O + A (O + 16X, () + mAG () /RI”

1+ m? + &2

Im

Hm (k(E)R)

rom,eon < 0

d¢ < oo,
meZ_ "

and, in addition, [Z ppm(§) |A%(€)]*dé < oo for |m| < 1 where again = = {¢ :
|k (& )| <1/2}. We define

(ADh)((b’ 1’3) — Z m/\fn(f)/R - 5)\?;1(5) [@ 5 g(ﬂ 6im¢+i£x3d£7

o 2+ (m/R)? R
(Ach)(¢ T ) — / 5/\Z + m/\¢ (5)/R [52 + @ QE] 6im¢+i£m3d§
s . €2+ (m/R)? R '

Note that for 7 = 0 the terms in the integrands reduce to A (€) €73 ¢ and Ag(€) €673 2,
respectively.

Direct validation shows that APh + A°h = Ah and Div APh = 0 and Curl A°h =0
for all h. Furthermore, these operators are bounded because

mAz,(6)/R — EXL(6)|”

2+ (m/R)?

'w &) +mA%(€)/R|?
+ (m/R)?

(d) From the previous estimate we conclude that

z ® (€)/R|
ACHIE, . }5')\ &) +m (5)/ .

{%Hw] < c[PLEOP+ O],

2
{16\2 + e+ —\2] < elen(©) +mAL )R]

Furthermore,
(Div Ah)(¢,3) = i ) / [€02,(6) +m A2, (€)/R] emetises de
meZ_
and thus

)\z )\d: 2
I Div ARy sy = 47°RY / Al £ OIRE

meZ_ " \% 1 + m2 52

which proves the estimate. 0]
10



3. THE REGULAR QUASI-PERIODIC CASE

Every a-quasi-periodic solution of (1.2), i.e. Au + k*u = 0 and divu = 0, has a

Fourier expansion in the form u(z) = Y, _; in (21, 22)e )73 with

21

1 :
(3.1) Up (21, 29) = o w(wy, 2o, x3) €T dpy n € 7,
T
0

where 1, satisfies the two dimensional Helmholtz equation
(3.2) Aoty (%) + kn ()0, (7) =0 for 27 + 23 > R

where k,(a) = \/k? — (n + a)? and, in addition, Oy 0 + 0,087 +itn+ )il = 0.
The solution space H,(curl, Q") from (1.3) is replaced by
(3.3)

+ . _ -_ . .
H, . (curl, W) = {u\w+ L ue Hjpe(curl, Q1) x5 — u(x) is a-quasi-periodic, } ’

ulw, € H(curl,W,) for all p >0

where W ={z € Q" :0< 23 <27} and W, ={x € Q,: 0 < 23 < 2r}. Instead of
the cylindrical Fourier transform (2.4) we consider the classical Fourier expansion
with respect to ¢ and x3, i.e. we define

2m 27

Gnm = — / / g(¢, x3) e Mo AT G dy - mon €7,

472
00

where we do not indicate the dependence on « because it is fixed. The spaces
H*Y/2(I'), H-'/?(Div,T), and H~/?(Curl,T") from Definition 2.2 are replaced by

(3.4)

HEA(T) = {p L= Cr Yy Paml[L+m? + 0?12 < oo} ,

nmeZ

h:h¢q5+hZ2:F—>C3 . h? ::h-qg, h* := h - % satisfy )
H'2(Div,T) := 3 Rnl® 1R nl® + 10+ Q)NG4 R ,
| ez V1+m?+n? )
(h=h0p+h2:T—C>:h®:=h-é, h*:=h-2 satisfy )
GRS S e e R M T 8
| ez V1+m?2+n? )
respectively.

In this section we consider the regular case, i.e. the case where k,(a) # 0 for
all n € Z, i.e. |n+ a| # k for all n € Z. Using the (not only formal) similarity
between (3.1), (3.2) and (2.1), (2.2), we have the following quasi-periodic analog of
Theorem 2.3 which we state without proof.

Theorem 3.1. Let a € [—1/2,1/2] such that |n + «| # k for all n € Z. For every
h € H;l/Q(Div7 I') the function u, given by

(35)  ulrd,ws) = > {uh, ()P + ul, ()¢ + ui,(r)i}emoritels
n,mez
11



with coefficients

(3.60) wn) = 02, DG 0y, TG, ),
(3.60) W) = 1, "D G0 1) 4 h G,
(36C) uozl,m(r) = _hﬁ,mngn(r>7

is the unique solution u € H, ,.(curl, W) of (1.2) such that Fourier coefficients iy,
from (3.1) satisfy the Sommerfeld radiation condition

Oy, (T : . - -
(3.7) “a—(x) — k() i (3) = O(1/)E2), r=|i] >,

r

for everyn € Z. The functions G%Jgn(r) = GY (r,n+a) had been defined in (2.13a)—
(2.13d). Note that these functions depend also on «, i.e. G%]gn(r) = Ggf,zn(r, a). They
are well defined because k,(c) # 0 for alln € Z.

Furthermore, for every R > R there ewists ¢ = c(R) > 0 with ull e wy) <

cllhll - ) where again W, := {reR: R?< a2} +1}3 <R 0<ux3<2n}.

(Div

The Calderon operator A, which maps h € Hq Y 2(Div, I') into 7 x curlu on IT" has
the form

(38) (Aah)(¢, ZE3) — Z [/\Z,mé + )\ﬁ’m qﬂ eim¢+i(n+o¢)13
n,meZ
where
/{52
(3.9a) A, = —hﬁ,mﬁ GU(R) + mdymG2,.(R)

. R [Rk:nH{n(knR) m2H,,(knR)

"mRk2 | H,(keR)  RknH! (knR)
m H,,(k,R)
myo pe 1 Hmlfndt)

[l + (4 Q) Rk, H' (ko R)

(3.9b) XS, = [kK’h},, — (n+a)d,.] RGY,(R)

Hy(koR)
— (12— Mo hZ _—om\nt)
{ nm (7’L+Ol) [R n7m+(n+a) mm}}k‘nH{n(k’nR}
+a)m H,.(k.R)
— ]{12 | (Tl— h¢ LA S L
ot =g Mond T )

and d,, , = %h?@}m + (n + a)h; ,,. We collect a number of properties which in part
corresponds to the properties of A from Theorem 2.4.

Theorem 3.2. Let a be no cut-off value, i.e. k, = ky(a)\/k*>—&* # 0 for all
n € Z. Then A,, defined by (3.8) (with (3.9a), (3.9b)), has the following properties.
(a) Ay, is well-defined and bounded from H;l/Q(DiV, ') into itself.
(b) Im(Auh,# x h) > 0 for all h € Hy'/*(Div,T).
(¢) Im(Ayh, 7 x h) = 0 implies that the corresponding solution u, given by (3.5),
is decaying exponentially, i.e. there exist §,c > 0 with

(3.10) max  |u(r,¢,x3)] < ce™ forr>R+1.
¢,x3€(0,2m)

Furthermore, h® . and hZ . vanish for all n,m € Z with |n + o| < k.

n,m n,m
12



(d) The Calderon operator A, can be decomposed as A, = AP + A where AP
and NS are bounded from H,'*(Div,T) into itself and DivAPh = 0 and
Curl ACh = 0 for all h € Hy'/*(Div,T).

(e) The operator Div A, is bounded from H;l/Q(DiV,F) into H,;l/Q(F) and

(3.11) ARl gy < DIV AQI 2 for all h € H;Y?(Div,T).

(f) The operator AP has a decomposition into AP = AP + AKX where (b)) —
(APh, 4 x+) is hermitian on Ho_,l/z(Div, I) xH;l/Q(DiV, I') and non-negative,
i.e. (APh,hx#) >0 for all h, and AKX is compact.

(g) A, depends holomorphically on a in the following sense. Let & € [—1/2,1/2]
not be a cut-off value. Then there exists & > 0 such that the mapping o — Mg
is (strongly) holomorphic® from {a € C : |a—@&| < &} into B(H, Hyo! *(Div, I))
where Hpe!*(Div,T) denotes the space Hy 12 (Div,T) for a = 0 and Aqv =
e~ T3\, (ve™s) forv € H},_J/2(Div, ).

Proof. We omit the proof of parts (a) and (b) because they follows very much the
proofs of the corresponding parts of Theorem 2.4. We have to set £ = n+« and note
that k,(«) # 0 for all n € Z implies the existence of § > 0 such that |k, (a)| > § for
all n € Z.

(¢) The analog of (2.22) for the quasi-periodic case yields the following form of
(Aoh, 7 X h).

(Aoh,7 x h) = 47°R Z{

n,meZ

k2|0 1
RE2Gh(R)
GOh(R)

_ W‘m(n—i—a)hﬁ’m — Rkih;mf}.

Furthermore, the imaginary parts of each of the two terms in {- - - } are non-negative
for all n, m and positive for |n + «| < k. Therefore, Im(A,h, 7 x h) = 0 implies that
he ., = hi,, = 0forall m,n € Z with |n + a| < k. Therefore, the Fourier series
for u is written as w(Z,x3) = 3 -, o>k Ty (%) "+ )73 with functions , : {7 € R? :
|Z| > R} — C® which satisfy the Helmholtz equation (3.2) for every component.

Therefore, 1, (Z) can be expanded into a series of Hankel functions and thus, for any
fixed Ry > R,

Ho (ko) .
u(r, ¢, x3) = Z Z Un,m T (R (Ec ]?) gmetintales for e > Ry
n:n+a|>k mez m\fnitl

Note that ,,, € C*. By interior regularity arguments the field « is smooth and
thus >, v aisk 2omez (7] +[m)) |@nm| < 0o. Now we use the estimate

H,,(k,r)
H,.(k,Ry)

(see part (a) of Lemma 5.2 in [4]) which shows that

|U(’I“, ¢7 $3)| S 6_6(T_R1) Z Z |1A1,n7m| fOl" T 2 Rl

n:n+a|>k meZ

e~ Imky(r—R1) for m e Z and r > Rl 5

2in the sense of, e.g., [3], Section 8.5,
13



where 6 = min{y/(n + «)? —k? : |n + «| > k} > 0. Estimates of the derivatives
with respect to ¢ and z3 follow the same lines, for the derivative with respect to r
we use the estimate

knH., (k)
Hm(kan)
(see part (b) of Lemma 5.2 in [4]).

< c(Jkn| + |m|) e”kaC=ED)  for m e Z and r > Ry

Parts (d) and (e) correspond to parts (c) and (d), respectively, of Theorem 2.4 and
are proven in the same way. We just state the form of A2 as

D m)‘fz,m/R —(n+ a))\g,m m
(Aah)(@,23) = ZZ (n+a)® + (m/R)? 5

5 (n + Oé) (ZB:| eim¢+i(n+a)mg 7

where X7 | and A% are given in (3.9a) and (3.9b), respectively.
(f) We define AP by
j\n m

A m A .
ADh = ’ 5 _ imo+i(n+o)zs
( « )(Qb,l’g) mzn;Z (n+a)2+(m/R)2[Rz (n—f—oz)gb]e
where
{ m?|  Kn(Rlk.)) [m
= ||kal® + = B —h? he | if >k
o = (Il | R [ 0+ ] ol 2
5\n,m = —l—? [%hi’m + (n+ oz)hf%ml if [n+a| <k.
First we note that
; A m .
)\Dh ry = — M — 2m z
which shows that the form is hermetian. The positivity follows because Tl (R kﬁ}ﬁgﬁlil) <

0. It remains to show that A? —A? is compact. We look at the numerator of the form
of AL. Using the definitions of A; , and A? = from (3.9a) and (3.9b), respectively,
and R(n+ a)h?,,, = Rdy,m — mh,, we write

%)\Z,m - (TL + Oé))‘i,m
k*m m?

- _ (1 he (2) d
R2 C;n7 (R) n,m + R Gn,m(R> n,m

+ R(n+a)[(n + a)dym — k0%, ]G?, (R)

mk? @

2
= Do [RGAL(R) — GULR)] + Rdun [+ (n+ ) = K] G2, (R).

n, n

Using (A.3d) we estimate the first term on the right hand side by ¢/v/1 +m? + n?|h? |.

Therefore, this part in the representation of A2 results in a compact operator. For
the second term in the previous equation we consider first the case |n + of > k.

Then RGh(R) = %, and the term coincides with the definition of A,

(note that k? — (n 4+ a)* = k2 = —|k,|?).
Finally, we consider the case |n + «| < k. Then we use (A.12b) and (A.12c) and
have (h.R)
H R 1
G® (R) = ——m\*rt) .~ [ 1
EnR) = el = o [+ O m)]
14



and thus

’ [m|

R[5 + (0 + ) = K] G2, (R) = 2l dun [+ O(1/|m])]

§22) +
which again coincides with the definition of A, up to O(1/|m)).

(g) For given h € H,;%Q(Div, I')and f € Hzfe}ﬂ((}uﬂ, I') we observe that (Agh, f) is
given by the series

(Nah, f) = 47°R > (X2, (@) i + AL () fim]

nmez

with A7 () and X} (@) from (3.9a) and (3.9b), respectively, (indicating the de-
pendence on o) where h¢  h? - and f2. f¢  are the coefficients of h and f, re-
spectively, with respect to {e™®T"es . n m € Z} (which are independent of ). The
coefficients )\Z,m(a) and )\ﬁm(a) of A, depend on « through G%{%(a) and G%)n(a)
only. From part (a) of Lemma A.1 we conclude that G%{Zn(a) and G,(f}n(a) depend
holomorphically on « in a neighborhood of &. Using the estimate (2.5) (for h?,(€),
B (€), F4(€), and f2(€) replaced by A2 (@), A, (@), f2,, and £z, respectively)
and the forms (3.9a) and (3.9b) of A7, (a) and X («) and the estimate (A.3a)
we conclude that the series is uniformly (with respect to «) convergent. Therefore,
(Aah, f) is weakly holomorphic with respect to o which implies (Theorem 8.22 of
3]) that o — A, is holomorphic. O

Closely related to A, is the scalar operator D,,.

Theorem 3.3. Let a be no cut-off value. Define the operator D, from H;/2(F) into
H;1/2(F) by Dop := Div A, (7 x Grad p). Then Im(D,p,p) > 0 for all p € Hcly/2(l“),
and Im(D,p,p) = 0 implies that Re(D,p, p) > 0.

Furthermore, there is an operator Do from Hé/Q(F) into HEI/Q(F) which is her-
metian and non-negative, i.e. (Dap,p) > 0 for all p € HCI/2(F), and D, — D, is
compact.

Proof. Let p € HY?(T) have the expansion p(¢,z3) = S ez Prm €O,
From the definitions of A, and D, and (3.9a), (3.9b) we obtain (note that h :=
rx Gradp =1 [m/Ré —(n+ Ol)éﬂ P giméti(nta)es)

m,meZ

(Dap) <¢7 'T3) =1 Z |:(TL + a))\fz,m + T/\¢ eim¢+i(n+a):p3

RO
n,me”L

where

]C2
Mo = i(n—l—oz)EGS}n(R)pn,m and )\ﬁm = ikaGszn(R)pn,m,
and thus

2
(Doap)(qba 1'3) — _% [(n + Oé)2 G 1) (R) + mQG(Q) (R)} Drm 6im¢+i(n+o¢)z3.

n,m n,m
nme”Z

Set h := 7 x Grad p. Then

(Dop,p) = (DivAyh,p) = —(Ayh,Gradp) = (Ayh,7 X h)
15



and thus Im(D,p,p) > 0 by part (b) of Theorem 3.2. Furthermore, Im(D,p,p) =0
implies p,, ,, = 0 for all n with |n 4+ «| < k. Therefore, for p with Im(D,p,p) =0
the term (Dup, p) coincides with (Dyp,p) where D, is defined as

~ k2 , .
(Dap) (¢, :L‘g) = —E Z Z [(n + 04)2 Gng’zn(R) + mQGq(f}n(R)} Dn,m eiméti(nta)zs

[n+a|>k meZ

Z Z | Prom elmotintals

In+a|<k meZ
For |n + «| > k we have k2 = —|k,|? and Rk, H},(Rk,)/Hun(Rk,) = tK, (t)/Ku(t)
where we have set ¢ := |k, |R for abbreviation. Therefore,
K (t)
2) _ fm
Gy (R) tK;n(t) < 0 and
PKon(t) LK ( m? K (t)? — K7, (t)?

L (1 ) Kn(t) L, () Ko (1)
m I (t) — LK, () :
= K (t) + 1K, (¢
O R(p) ") 1)
MK (t) — tK! (t)
= — Lt Ky (t) > 0
tK,, (1) Ko(t) 1)
because K,,(t) is real and positive and K/ (t) negative. Here we used the recursion
formula t K] (t) = —tK,,_1(t) — mK,,(t), see Formula 9.6.26 of [1]. Since k2 < 0 we
conclude that also G,(llzn(R) < 0. Therefore, we have shown that (n + «)? Gq(“)n
mZGgf,?n is real and negative for |n + al > k, i.e. D, is hermitean and positive and
(Dap,p) = (Dap,p) = 0 if Im(Dyp, p) = 0.

Finally, we show that D, — D, is compact from Ha/ () into Hy Y (). The differ-
ence has the form

(Da - Da)p(qb 3)
Z Z ]m\ n —+ Oé (1) (R) mQngn(R)] Prum eim¢+i(n+a)g53

|n+a|<k meZ

Let n € Z with |n 4+ a| < k. The difference (D, — Dg)p contains only finitely
many n with this property. Then k2 > 0, and we determine the asymptotic form

of (n + a)2GY0(R) + m2GEh(R), for m — oo (for fixed n). From (A.3a) we
conclude that Gnlgn(R) behaves as O(1/m) as m — oo and (see (A.12b) and (A.12c))
ngn(R) = —L[14+0(1/m)] as m — oo and thus

(n+a)? Gﬁn(R) + m2G£f;n(R) = —m[l+0(1/m)] asm — co.
This shows compactness of D, — Da. O

4. THE CASE OF A CUT-OFF VALUE

In this section we consider the case of a cut-off value. Therefore, let & € (—1/2,1/2]
and n € Z with |+ n| = k. Then k;(a) =0, and (3.2) takes the form (for n = n)
(4.1) Ayt (21, 25) =0 for 27 + 23 > R%.

In addition we require that div (ﬂﬁ(xl, m)e““"”“) = 0 which gives an expression
of u* := 4y - 2 in terms of (the derivatives of) the r - component u" := 1y - 7 and ¢ -
16



component u® := 1, - gg of u; where we use again polar coordinates (7, ¢). In polar
coordinates the system (4.1) for (u”,u®) takes the form
T 1 T 2
Asu —ﬁu —ﬁ%u"b:O,
1 2 .,
Asu? — ﬁu‘f’—i-ﬁ&z,u =0.

Expanding v" and u® into Fourier series with respect to ¢ yields

W) = Y un(r) e, ul(rg) = Y upé(r)e™
meZ meEZL
where u”, and u?, solve the system
r[r(u;)'(r)}, — (1 +m?)ul,(r) — 2imu
r[r(ufl)'(r))]/ — (T +mHul (r) + 2imu

of ordinary differential equations. This system is easiliy solved by searching for
solutions with u¢ = +ju” . The general solution which decays as r — oo is given by

m|—1 [m|+1
u (1) = an (E) + b,, (E> . m|>1,
r r

|m|—1 |m|+1
T T

u® (r) = i(signm)

, R
ug(r) = ag ot
R
¢ — by —
Ug (’I”) 0 r
where a,,,b,, € C are arbitrary with ay; = 0. The z3-component u* := Uy - 2 is
given by u* = ﬁjra div(u"? + u¢p) = m [0,(r0,u") 4+ O5u?], ie.
2i(1 — |m|) (R\"™
) = am e () ) > 2.
unr) = am —pet oy (7 Iml 2

The boundary value problem Ayiis(x1,22) = 0 for 22 + 22 > R? and 7 x 15 = h for
2?2 + 22 = R? leads to u?,(R) = h?, and u? (R) = —h®,. Therefore, if h?, = 0 for
|m| <1 the coefficients a,, and b, are given by

R(h+a)

 — i  R(h+ «)
T2 =m)

by, = i(signm)h?, +i he  for |m| > 2,

2(1 = [m[) ™

and by, = +ihi, and by = h§. The solution is not unique because v(r, ¢) = }f
solves Aqv = 0 and dive = 0 and 7 x v = 0 for r = R. Therefore, we have shown
part (a) of the following theorem.

Theorem 4.1. Let a € (—1/2,1/2] be a cut-off value, i.e. N :={n € Z: |a+n|=
k} #0.
(a) For every h € H;lﬂ(Div,F) with him =0 for i€ N and |m| < 1 there exists

a solution u € H, ,(curl, WF) of (1.2) and u(z) = O(1/r) asr = \/a? + 13) — o0
The solutions are given by (3.5) with coefficients uj, . (r), u$ (1), ui . (r) from
17



(3.6a), (3.6b), (3.6¢), respectively, for n ¢ N and
~ m|—1
(4.2a) wj,,,(r) = j Fata) o (E)

n,m

2(1— |m|) ™ \r
+ 1 [smhgm - %hzm] (g)lmlﬂ s
Up1(r) = Fihf 4y (?)2, b o(r) = aﬁ%

R(i+a) , 1 (R\™"
B+ ot W VD) > 0,
" {” 20— ) M] () Il

[m|+1
ul (r) = I (5) , m| <1,
r

R |m|
(42¢) i, (r) — —h;ﬁim(—) D mlz2, () = 0, |ml<1,

forn € N where s, = signm and a; € C is arbitrary. The solution is unique if one
poses the extra condition f7 u(z) - 7 e )T ds = 0 for n € N where v := {x € " :
0 <z3<2rm}.

(b) The corresponding Calderon operator A, from {h € H;l/z(Div, r) : h%m =
0 for i€ N and |m| < 1} into itself is given by (3.8) where A2, and A, are de-
fined by (3.9a) and (3.9b), respectively, forn ¢ N and

RK?
)\Z,m = _Sm(ﬁ+a) h%,m» ‘m’ =1, )‘2,0 = 0,

(4.3b) Ao, = sm(Ata)hi,., |ml>2 X =0, |m[<L.
forn € N where again S, = signm.

Proof. For part (b) we compute curl([uf ,,(r)7 + uf (1) + uZ ,, (r)2]emetilitalas)
in cylindrical coordinates and evaluate its tangential components to obtain (4.3a)
and (4.3b). We omit the details. O

Comparing (4.2a), (4.2b), (4.2c) with (3.6a), (3.6b), (3.6¢), respectively, for n = n
and |m| > 2 and the definitions of Gg’zn(r, Q) = G%)(r,ﬁ + «) of (A.da), (A.4d),
(A.4f), (A.4g), and (A.4h), respectively, we obtain the continuous dependence of the
solution u = u,, on a at cut-off values.

Corollary 4.2. Let & € (—1/2,1/2] be a cut-off value with corresponding set N :=
{(AeZ:|la+n|=k}#0. Forac[—1/2,1/2] let h(e) € Hy"*(Div,T) such that
limgq b3, (@) = 7, (&) for all (n,m) € Z% and limq_g hY, () = h$ (&) for all
(n,m) € Z*\ {(A,m) : n e N, |m| < 1)}, and lim,_4 [mhgo(aﬂ =0 and
limg4[In kﬁ(a)hzil(@)} =0 for all n € N where again ky(a) = \/k2 — (1 + )2.

Then, for every R > R the unique solution u, € H, . (cur, W) of (1.2), (3.7) for

a # & (assured by Theorem 3.1) converges in H(curl, Wg) to the unique solution
18



ug € Ha(curl, W) of (1.2) with us(z) = O(1)r) as r = /23 + 13) — 0o and
f7 ug(z) - 7 e "W 0rsds — (O for i€ N (assured by the previous theorem).
Furthermore, if we define the operator T, from H;l/Q(DiV,F) into Ho_l/Q(Div, )
by (Th)(z) = e **®Nh(x) (here ]—.70_1/2(Div7 I') denotes the space H;l/Q(DiV, I) for
a=0), then T,A h(a) converges to TaAah(&) in H()_l/2(Div, ) as a — a.

Proof. First we note again that (4.2a), (4.2b), and (4.2c) coincide with form of the
coefficients wf, ., uf . and u} . from (3.6a), (3.6b), and (3.6¢c), respectively, for
Im| > 2 and n = 7 € N, if one uses the definitions Gg;fn(r, &) = Gy (r,n+ &) =
GY(r, k) for |m| > 2 and j = 1,...,5 from (A.4a), (A.4d), (A.4f), (A.4g), and
(A.4h), respectively.

Second, for large values of n?4+m?, i.e. for n?+m? > k?+4, the series for u from (3.5)
converges uniformly with respect to (r,a) € [R, R] x [~1/2,1/2] as seen from the
proof of Theorem 2.3. Furthermore, part (c) of Lemma A.1, uj, (7, a), uf, . (7, ),
and v, (r, o) converge to uj, . (r, &), ug . (r, &), and u? ,,(r, &), respectively, as v —
& for every n,m € Z, uniformly with respect to 7 € [R, R]. We recall the formulas
only for n =n and |m| < 1.

1(n+«a .
drglr) = Bo(0) P G005 1 a),
T Z(/ﬁ’ + Oé) 1 ~ z iR 2 ~
Uﬁ,il(ra Q) = hﬁil(a) - G(ii(ﬂ n+a) F hﬁ,ﬂ(a) TGBUE n+a),

= ()G (r+a),

n+a

)
)

uf o (r) = £h% (@) GOl (r i+ a) + hi () GH(ra+a),
)

= —hz,m(oz) GO (r,n+a), |m| <1,

m

and these converge to the corresponding coefficients for &« = & by the assumptions
on hg’m(a) for |m| < 1 and the singularity of Gy (part (c) of Lemma A.1). The
same holds for curl u,,.

From these two properties of the parameter-dependent coefficients of the series ele-
mentary arguments show convergence of u, to us in H(curl, Wp).

We omit the proof for the Calderon operators because it follows the same argu-
ments. U

APPENDIX A. PROPERTIES OF HANKEL FUNCTIONS

Let £ > 0 and § € (0,k/2) be fixed and k(&) = /k? —¢&2 for £ € C with
&% ¢ k?+iR. Here we take the square function z — /2 to be holomorhic in C\ ({R<),
ie. argz € (—n/2,3w/2). Then k(§) ¢ R<y. We note that for this choice of the

branch we have v/ = \/w provided Rew > 0. Furthermore, |Im /w| < Re/w if

Rew > 0 because 0 < Rew = Re([y/w]?) = [Re yw]* — [Im y/w]*.
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Define G (r,€),7=1,...,5, and p,(r,&) as in (2.13a)—(2.13d) and (2.15), respec-
tively, i.e.

(Ada) GL(r,€) = k(2)2 {ngfﬁﬂgﬁgf 1(5)( << >(>€))}’
(A1) GO(r¢) = ng;i[;ig)@)’

(Ale) GP(r&) = %’ G (r€) = IS[,;(<;];€((§£))))’
(Ald) GQ(r¢) = ké)z {gﬂ(;]?é))))—JQZZE%(&&)M

(A10) ) = {exp[%} (Bt Rele) > 2

(&)™ if Re(?) < k2,

respectively, for €2 ¢ k* + iR and r > R and m € Z. Here, H,,(z) denotes the
Hankel function of the first kind and order m € Z which is holomorphic in C \ R<,.
For some 6 > 0 define the sets Z;E by

Zf ={¢eC:|Ref|>k+25, |Im¢| <§/3},

(A-2) Zy ={¢e€C:|Re&|<k—26, |Im¢&| <4/3}.

Then &% ¢ k* + iR for £ € Z§ U Z; , and the functions G%)(r, -) are obviously well
defined and holomorphic in Z; U Z; .

Lemma A.1. (a) For every R > R there eists ¢ = c(6, R) with

Cc

(1) (2)
(A3a) |Gm (7”, §)| + |Gm (’f’, €>| S \/m Mm(r7 5) )
(A.3b) GO + 1GROl < cpm(r,6),
(5) ¢
(ASC) |Gni) (7”, €>| S 1 + mg + |§|2 Mm(r7 5)7

forallé € ZF UZ; and R<r < R and m € Z. Furthermore

(A.3d) |R*GD(R,€) — GO(R,€)| < HTCHQZ

forallé € ZF U Z; and m € Z.

(b) Let £ € R with 0 < [k(§)| < d. Then the estimates (A.3a)~(A.3d) hold for
all R <r < R and |m| > 2 where ¢ depends only on R.

(¢) The functions G'Y and GYY, restricted to (R, R)x (R\{xk}), have extensions
to continuous functions from (R, R) x R — C for all m € Z. The functions
GY) and GY) are continuous for |m| > 2, and G is continuous for |m| > 1.
Furthermore the following functions are continuous from (R, R) x R to C:
(r,€) = M 0 (r,€), (1€ = g @i (&) for j € {1,5}, and (r,€) —

k(€)?*Ink(&) G (r, €) for j € {1,5}. The limits as k(&) — 0, i.e. £ — %k,
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are given by the following expressions.

R* 41> (R\™
— D — _ (=
(Acda) Jimy GR(r€) = G k) =~ () ol 22,
(A-40) " fim, [k(£2)1nk(€)Gé”(r,£)] = -
. (r €) R r

(A-de) glgjrzlk Ink() = <?+E)’

1 (R\™
(A.4d) élﬁlkc: &) = GO(r,+k) = Tl (?) , m|>1,

(Ade) lim ( 8 _ =1

£tk lnk( ) ’
(Ad) lim G () = Gk = (?)'m', mez,
(Adg) Jim G = G k) = (?)'mlﬂ, —
(Adh) Jim GO, = G0 k) = % (?)lml, im| > 2,
(Adi)  Jim [HE) mkEECT ()] = .

. GO  .(r R
(Aad) Jim S5 = (Tf?)‘

The limits are uniform with respect to r € (R R] for every R > R. 3
(d) For all R > R and ({,m) € R x Z with |k(§)| > 0 there exists ¢ = (R, 0)
with

R /
2 C
(4-5) /R (1, 8)"dr < 1+m24+¢&2

Proof. Without loss of generality we assume that m > 0.

(a): We consider three cases: £ € Zf andm >1,£ € Z§ and m =0, and £ € Z; .
Case (al): ¢ € Z; and m > 1.

Set 2 := —ik(€), thus 22 = €2 — k? and k(§) = iz. First we show

(i) |z] = |k(&)] > c|¢] for some ¢ independent of &,
(i) [FE) = |] > Re(:?) = Re(€2) — k2 > 3,
(iii) Re(2?) > 2|Im(2%)] = 2|Im(£?)| and thus |2?] < Re(2?) + |Im(2?)] <
3 Re(2?).
2
Proofs:
(i) K = 1K = € 2 [€° = k* = | — gz (b +26)° = (1~ i) [€)° and
2 k+26)2 —k?2
ci=1- (k+k26)2 = ! &Jr%zs)Q > 0.

(ii) Re(€?) — k2 = (Re&)? — (Im €)% — k? > (k + 26)% — 62/9 — k? > 342
(i) Re(2?) — 2|Im(2%)] = (Re€)® — (Im&)* — &* — 4| Re ][ Im¢] = [Reé][| Reg] —
A Im¢|] — (Im&)? — k2 > (k + 26)[k + 26 — 46/3] — 62/9 — k* > 0.

z r
Define 2) = V1+22 + In——+—+—— and 2z = 2z = —z.
77() 1+m ,§m m
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We write H,,(rk(€)) = Hy(imz,) = 2(—i)™ K,,(mz,) where K,, is the modified
Bessel function. We note that Rez, > 0. Therefore, we can use the asymptotic
behavior of K, and K], as m tends to infinity. Formulas 9.7.8 and 9.7.10 of [1]
yield

(A60)  Ha(rk(©) = (i)™ Ky (me,)
2 / —mn(zr)
= ;(—Z) +1 %@W[l—i_ar’&m]’
(A6b) rEEOHL(HE) = i ot (=) 5K (may) = 2 (i) 2, K (me)
= IR S (e 1t ),
with

C1 C1 Co
a + |c < —— <
el Flerenl < T T R - i e

for all 7 > R, m € N, and € € Z; where ¢, is indepedent of r, m, and &.
To estimate |GS{) (r,€)] and |G,(ﬁ) (r,&)| we use the representations and write

2\ 1/4
(A.7a) Hn(rk(©) (1 + ZR) o~ m1(z)—1(zR)) { 1+ ar,g,m]
Hy (RE(E)) 1422 1+ argm
and
2\ 1/4
(A.7h) Ty (rk(E)) 1+ ) emnn () L+ crem |
RH;, (RE(S)) 1+ 25 L+ Crem
With |1+ 22> = L ([m? + r? Re(2%)]? + r*[Im(2?)]?) we write

1+ 23> [m?+ R?Re(2?)]* + R'[Im(2?)]? 1 [(m/R)? + Re(2%)]? + [Im(z?)]?

[T+ 222~ [m? + 2 Re(z)P + 4 Im(z2) — vt [(m/r)? + Re(22)]2 + [Im(=2)]?

which is less than 1 and larger than R*/r* for » > R. This yields an estimate of the
first factor on the right hand sides of (A.7a), (A.7b). For further use, we estimate

1+ 22 < cim? 4+ EP)2,
(A8)  mill+ 1422 — LA |m2+3222‘2,{ = [m? + (¢
>

1+ 24| c[m? + I¢P],

where we used |m? + R?2%| < m? + R?|z|* < ¢[m? + [¢]!] and |m? + R%*2?| >
m? + R*Re(2%) > c[m? + [£]?].

To bound the exponential term in (A.7a), (A.7b) we define (compare the definition
of 7(2))

2 2.2
f(r) == vVm?2+1r222 — vVm?2+ R?22 — mln mi_ moAre
m

m2 + R222

and compute f(R) =0 and

rz? m rz? rz?

!
r) = - =
Jr) Vm2+1222  m4+vm2+1222 Vm + 1222 m 4+ vVm?2 + r2z2
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for r > R and thus

Re f'(r) = r Re[*(m + vim? +r222)]
Im + v/m2 4 12222
Re(22)(m + Re vm?2 + r222) — Im(2?) Im v/m2 + 1232
T
|m + vVm? + r222?

Since Re(m?+1%2%) > 0 we can use the estimate | Im v/m? + r222| < Re v/m?2 + r2z2

in the numerator and also in the denominator to obtain

Re(z%)[m + Re vVm? + 122%] — 1 Re(2?) [m + Re vVm? + 122?]
.

:
Refir) = 2 1 Re vim? 1 12222
- r Re(z?) S r Re(2?)
4[m +Revm? +1222] = 4d[m+ /m?+ 2z
- |22 R|z|?

6[m+/m?+r2z]2] — 12y/m?+ R?|z|?

where we used also (iii). Therefore,

mRe[n(z,) —n(zr)] = Ref(r) —Ref(R)wLmln%
Rl (r — R) ’
12\/m? + 2] + mlnR

and thus
E(&)|? - "
(A9> e—mRe(n(zT)—n(zR)) < exp|— | (§)| R(T R) :| <§> = /Lm(r7 5)
12/m? + |k(&)2PR?] \ T
= 1+ bygm With |brem| < —~2— implies the

o

Itare,m
1+aR,£7m

Finally, the representation

estimates for G\ and G,
The estimate of |G£,3) (r,€)| is proven analogously by using (A.8).
To estimate |G£,11) (r,€)| we write
(A10) k(G (r€)

_ m 2\1/4 28\1/4 | —m(n(zr)—n(zR))

= Ty ) L ) e L 4 b
vm? +r222Vm? + R22 —m?
(m2 + 1222)4(m? + R222)1/4 €

and estimate, using (A.8),

n(zr)—n(2R)) [1 + brf m]

(1 + (R/r)*)m* + B2

Vm2 +r222v/m2 + R222 —m?| = |z|/%?
| | & m2y/ |1+ 22|\/|1 + 24| + m?
om2 + R2|+|2
S |Z’27“2 m” + ‘Z| S C‘Z|2T2
m? + ]2 4+ m?

for some constant ¢ which is independent of m, &, and r. Therefore,

2
GU(re)| < ¢

r

VT

for some constant ¢ which is independent of m, &, and r. Using (A.9) implies the
estimate of |G (r, ).

e—mRe(n(zr)—n(zr))
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The estimate of |G(5) (r,&)| follows the same way. Indeed,
Hy(rk()) — rH,,(rk(€))
Hy(RE(E))  RH,(RK(E))
(42 Q42
H 7 (L a7

—mRe(n(zr)-n(zr)) [1+ brem)

and

(L4 Y (142

)7 (1127

Vit —1+22 23— 22

()7~ (T4 B+ T8 2+ VAT 7
(R? — 12)2?

(m2 + r222)VA(m2 + R222)VA[Vm? + R22% + Vm? + 1227]

which is estimated by —22L < CIOE 44 vields (A.3c).

WP S mAeP

Finally, for showing (A.3d) we use (A.10) for r = R and 2? = —k(£)? to obtain

R2:2 R2k(€)?
OGRS = oem T e

With (A.6a) and (A. 6b) for r = R we obtain
R2G(R,€) = GL)(R,€)
R? 1 R?
= - 1+R1+(’)1/\/m2 £2)] —2+R221+Ol/\/m
= (1/(m +&%).

Case (a2): £ € Z; and m = 0.
Now we use the asymptotical form of the modified Hankel functions Ky(t) and K (t)
for large arguments (see 9.7.2 and 9.7.4 of [1]), i.e.

2 677’2

(A11a) Ho(rk(c)) — —%Ko(rz) = —iyZ =l o).
—Rz
(ALY HRE©) = ~H(RKE) = ZKi(Re) = =2 S—[1+0(1/I]).
where again z = —ik(§) = /& — k2. Therefore, |G63)(7", ¢)| and ]Gé4)(r, €)| are
written as
HO Tk?(f) _ \/Ee—(r—R)z

)
()
Ho(rk(©) _ Hi(rk(€)) R -
Hy(RE(€)) Hy(RE(€)) \/: Z[1+0(1/IkE)]] -
3

Now we use (iii) in the estimate |k ?|2 = [2?] < Re(2?) + |Im(2?)] < 2 Re(z?) <

3(Rez)? and thus e~ (" RIRez < o= k©OIC=R/12 = )0 (p €).
The estimate of |Gé5 (r,€)| is now obvious because ]G((f)(r, §)] <

c 6—(7’—R) Rez
k(€] '
The estimates of \Gél)(r, €)| and \GéQ) (r,€)| and also (A.3d) are proven analogously

by using (A.11la) and (A.11b).
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Case (a3): £ € Z;. Then |k(§)]* < k*+ (k—26)*+6%/9, i.e. the arguments in the
Hankel functions are bounded. For this case we use the asymptotics of H,,(z) and
H! (2) for z from compact subsets C' of C; := {z € C: Rez > 0}, namely

(A.12a) Ho(z) = 2 nZ+4][1+a(2)],
(A.12Db) Hn(z) = (mﬁ;@l) (g) [1+an(z)], m>1,
(A.12¢) zH (z) = —ZL—Z,! (g)m [1+b,(2)], m>1,

for z € C'\ {0} where |ag(2)| + |am(2)] + [bm(2)] <
where ¢ = ¢(C) is independent of m. Furthermore a,, and b, are continuous and

vanish for z =0, and v := lim,, [Z; 1y —In n} denotes Euler’s constant.
The estimates of |G$3) (r,€)| and |G( (r,€)| (for all m > 0) and of |Gg) (r,&)| for m >
1 follow easily from these formulas. For m = 0 we have |G(()2) (r, &) < | In(rk(€))|
which is bounded because |k(&)|* > k% — | > k* — (K — 20)? = 46(k — 6) > 0

To estimate |G(1)(7’ €)| we represent k(ﬁ)ZGg)(r, €) as

k(§)*G)(r,€)
m2H,,,(rk(€)) Ho(RE(€)) — rRE(€)?H},(
RE(§)H),(RE(€)) Hyn(RE(E)
1 [mHyn(rk(€)) — rk(¢)Hy, (rk(f)][mHmm )
2 RE(&)H,,(RE(&)) H,.(Rk(
1 [mH, (rk(€)) + rk(&) Hy, (rk(€)][mH (R(

Il
3 RE(€)H! (RE(€
Rk (¢

1 rk(§) Hpy1(rk(§)) RE(§) Hp—1 (R
2 RE(§H,(RK(E)) Hn(RE(S))

1 rk(§) Hin—1(rk(§)) RE(§) Hi1 (RE(E))

2 RE(§)H,(RE(E)) Hn(RE(S))

where we used the recurrence formulas zH, (2) = zH,,—1(2)—mHp(2) = —2H 1 (2)+
mH,,(z). Using the asymptotic forms (A.12b) and (A.12¢) for H,,(z) and zH/, (z),
respectively, we obtain for m > 2 easily that |/<:(f)2G$,11) (r,&)] < ﬁ\kz(f)lz(%)m for
some constant which is independent of £ € Z;, r > R, and m > 2. This yields the

desired estimate for m > 2. For m = 0 or m = 1 we use that |k(£)| is bounded
below.

(A13) =

+

To estimate |G’S{) (r,€)| we write

k()G (r,€)
RE(§H,,(RE(€)) Hyn(rk(€)) — rk(§)H}, (rk(€)) Hu(RE())
RE(€)H},(RK(€)) Hy(RE(€))
RE(&) Hypy1 (RE(E)) Hyn (rk(€)) — k() Hop1 (rk(€)) Hyn (RE(E))
RE()H},(RK()) Hy(RE(E))

(A14) =

3and only for these two cases
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_1(2) = mH,,(z). This

where we used again the recurrence formula ZH I (z) =
P (&)™ form>2 For m = 0 or

expression is estimated as before by —*— e
m = 1 we use that |k(£)| is bounded below

For (A.3d) we write G%)(R, €) — Rng,%)(R, €), using (A.13) for r = R and (A.12b),
(A.12¢), as

R*H m+1(Rk( ) Ho1(RE(€))  R?Hp(RE(E))
RE(E)H, (RE(E)) Hin(RE(E))  RE(§)H], (RE())

- —r (- D)asoum) - oum)

GW(R, &) — R*GY(R,¢)

(b) We observe that |k(£)| is again bounded from above. Therefore, the assertion
has been proven already in the previous part because a lower bound on |k(£)| was

only needed for the estimates of \G%) (r,&)| and |G§{) (r,€)| for m € {0,1} and for
GP(r,€)].

(c) Continuity of GY) for j = 2,3,4 and m > 0 (m > 1 for j = 2) and of & —

1nk1(5) (7" ¢) and the form of the limits in (A.4d), (A.4e), (A.4f), (A.4g) follows

directly from (A.12a), (A.12b), and (A.12c). Continuity of G4 and G5 for m > 2
and the form of the limits in (A.4a), (A.4h) follows from the representation (A.13)
and (A.14), respectively, and (A.12b), (A.12c).

For m =1 the representation (A.13) and (A.12a) — (A.12c) yields

k(€)*GY (r,€)

rk(§) 1 2 |p BE© 1 (_2 )2, 2 In(r
o Z(Tk(g)Rk(f),rl(Rk(lf))t i (mg) HOT MOKO) e

_ R [5 i %] k(€)? Ink(€) [1 + O(K(€))]

r

which shows continuity of £ — m Ggl)(r, ¢) and the form (A.4c).

For m = 0 we obtain directly from the definition that & — k(£)? In k(&) Gél)(r, €)
is continuous with (A.4b).

For G((]S) and G§5) we argue analogously using (A.14).

(d) For |k(¢)] < m (then m > 1) we estimate the first factor in the definition of
tm (7, &) by 1 and obtain

R ) R (5)2171 c
/R P (1,€)"dr < /R " dr < N e

where we used m > |k(€)| in the last estimate. For m < |k(§)| we estimate the
second factor by 1 and obtain

. . 2k(§)PR(r — R) ]
2 J—
/Rﬂm(ﬂf) dr < /Rexp{ T0v/m? 1 REPE dr
Y kIR g L ¢
<) T O S T ROT

where we used |k(§)| > m. O
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