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Abstract: We study the Calderon operator for the time-harmonic
Maxwell system in the “exterior” Ω+ of an infinite cylinder in x3-
direction. The Calderon is the analogue of the Dirichlet-to-Neumann
operator for the scalar Helmholtz equation. In the first part we study
the case where the Calderon operator corresponds to solutions u on Ω+

which, together with their curls, decay along x3. In the second part we
consider the case where the solution u is assumed to be quasi-periodic
with respect to x3. In both cases we derive properties of the Calderon
operator with respect to coercivity and compactness. These properties
are useful for the investigation of problems in all of R3 if one uses the
Calderon operator to reduce the problem to the “interior” of the cylinder.
The proofs rely heavily on properties of the Hankel functions which are
studied in detail in the appendix.

MSC: 35Q61

1. Introduction

We fix some R > 0 and define the infinite cylinder Γ = {x ∈ R3 : x2
1 + x2

2 = R2}
and the exterior region Ω+ = {x ∈ R3 : x2

1 + x2
2 > R2}. It is the aim to study the

homogeneous Maxwell system

(1.1) curlE = iωµ0H , curlH = −iωε0E in Ω+

with the boundary condition ν × E = h on Γ and a suitable radiation condition
discussed below. Here, ν = ν(x), x ∈ Γ, denotes the unit normal vector directed
into Ω+. Eliminating H from the system and renaming u = E yields

(1.2) curl2 u− k2u = 0 in Ω+ , ν × u = h on Γ ,

where the wavenumber k > 0 is given by k = ω
√
ε0µ0.

In this paper we consider two cases. In the first case we search for fields u which
decay as along the cylinder, i.e. as |x3| → ∞. More precisely, we look for solutions
in the space

(1.3) H∗(curl,Ω+) :=
{
u : Ω+ → C3 : u|Ωρ ∈ H(curl,Ωρ) for all ρ > R

}
,

where Ωρ := {x ∈ R3 : R2 < x2
1 + x2

2 < ρ2}, and H(curl, D) denotes the usual space
of L2-vector fields such that also their curl is in L2. As we will see in Section 2 the
boundary data have to be in suitable subspace of H−1/2(Div,Γ) defined below.

In the second case we look for quasi-periodic solutions u, i.e. the solutions satisfy
u(x1, x2, x3+2π) = eiα2πu(x1, x2, x3) for all x = (x1, x2, x3) ∈ Ω+ for some parameter
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(DFG) through CRC 1173.
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α ∈ R. It is clear that a α-quasi-periodic solution can only be expected if also the
boundary data h are α-quasi-periodic.

For both cases we will study the corresponding Calderon operator which is defined
as the operator which maps the tangential field h on Γ to the trace ν × curlu on Γ
where u satisfies (1.2) and an appropriate radiation condition.

In this paper we use cylindrical coordinates (r, φ, x3) and denote by r̂ = (cosφ, sinφ, 0)>,

φ̂ = (− sinφ, cosφ, 0)>, and ẑ = (0, 0, 1)> the coordinate unit vectors. We note that
ν = r̂ on Γ. Furthermore, we observe that the differential equation curl2 u−k2u = 0
is equivalent to the pair of equations ∆u+ k2u = 0 and div u = 0.

Studying the exterior problem (1.2) and the corresponding Calderon operator is
interesting in itself because, in contrast to the case of the exterior of a ball (see,
e.g. [7]), particular emphasis has to be put on the treatment of the so-called cut-
off values. Often (as, e.g., in [7]), the Calderon operator is used to reduce the
problem in a unbounded domain to a problem in a bounded domain with non-local
boundary conditions. For the geometry studied in this paper the quasi-periodic
problem (with respect to x3) in R3 is reduced to a problem in the bounded domain
{x ∈ R3 : x2

1 + x2
2 < R2, 0 < x3 < 2π} with non-local boundary conditions for

x2
1 + x2

2 = R2 and quasi-periodic boundary conditions for x3 ∈ {0, 2π}. The present
paper is a necessary preparation of a forthcoming paper where the scattering problem
will treated for coefficients ε and µ which are periodic with respect to x3 in the
interior R3 \ Ω+ of the cylinder and constant in Ω+.

We want to mention some of the related literature. For scalar problems, i.e. the
scalar Helmholtz equation ∆u + k2u = 0 in Ω+, the Calderon operator corresonds
to the Dirichlet to Neumann operator and has been studied (for this geometry) in,
e.g., [2] and [4]. The problem with the cut-off values does not occur for this case.
For the Maxwell system in the half space {x ∈ R3 : x3 > 0} the Calderon operator
on the plane x3 = 0 has been studied intensively in [8], and it is shown that for a
proper treatment weighted Sobolev spaces have to be used. Ritterbusch’s approach
has been applied to a different situation in [6].

2. The H∗(curl) Case

Since we expect a solution of (1.2) in H∗(curl,Ω+) we can take the Fourier trans-
form

(2.1) û(x1, x2, ξ) :=
1

2π

∞∫
−∞

u(x1, x2, x3) e−iξx3 dx3 , ξ ∈ R ,

with respect to x3 which has to satisfy (for every component) the two-dimensional
Helmholtz equation

(2.2) ∆2û(x̃, ξ) + k(ξ)2û(x̃, ξ) = 0 for x2
1 + x2

2 > R2

where x̃ = (x1, x2) and k(ξ) =
√
k2 − ξ2. In addition div u = 0 translates into

∂1û
(1)(x̃, ξ) + ∂2û

(2)(x̃, ξ) + iξ û(3)(x̃, ξ) = 0.

Definition 2.1. A solution u ∈ H∗(curl,Ω+) of (1.2) satisfies the radiation condi-
tion if the Fourier transform û(·, ξ) satisfies the two-dimensional Sommerfeld radi-
ation condition

(2.3)
∂û(x̃, ξ)

∂r
− ik(ξ) û(x̃, ξ) = O

(
1/|x̃|3/2

)
, r = |x̃| → ∞ ,

for almost all ξ ∈ R.
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For the definitions of the correct spaces of boundary data the cylindrical Fourier
transform plays an essential role. For g ∈ L2(Γ) ∩ C∞0 (Γ) we define

(2.4) gm(ξ) :=
1

4π2

2π∫
0

∞∫
−∞

g(φ, x3) e−imφ−iξx3 dx3 dφ , m ∈ Z , ξ ∈ R .

Then this transform has an extension to L2(Γ), and the inverse is given by

g(φ, x3) =
∑
m∈Z

∞∫
−∞

gm(ξ) eiξx3 dξ eimφ .

Definition 2.2. We define the space H±1/2(Γ) of scalar functions and the spaces
H−1/2(Div,Γ) and H−1/2(Curl,Γ) of tangential vector fields by

H±1/2(Γ) :=


p : Γ→ C :∑
m∈Z

∞∫
−∞

|pm(ξ)|2[1 +m2 + ξ2]±1/2 dξ <∞

 ,

H−1/2(Div,Γ) :=


h = hφφ̂+ hz ẑ : Γ→ C3 : hφ := h · φ̂, hz := h · ẑ satisfy∑
m∈Z

∞∫
−∞

|hzm(ξ)|2 + |hφm(ξ)|2 + |ξhzm(ξ) + m
R
hφm(ξ)|2√

1 +m2 + ξ2
dξ <∞

 ,

H−1/2(Curl,Γ) :=


h = hφφ̂+ hz ẑ : Γ→ C3 : hφ := h · φ̂, hz := h · ẑ satisfy∑
m∈Z

∞∫
−∞

|hzm(ξ)|2 + |hφm(ξ)|2 + |ξhφm(ξ)− m
R
hzm(ξ)|2√

1 +m2 + ξ2
dξ <∞

 .

It can be shown as in [5] that
〈
H−1/2(Div,Γ), H−1/2(Curl,Γ)

〉
and〈

H−1/2(Γ), H1/2(Γ)
〉

are dual pairs with duality forms

〈h, f〉 = 4π2R
∑
m∈Z

∞∫
−∞

[
hφm(ξ)fφm(ξ) + hzm(ξ)f zm(ξ)

]
dξ ,

h ∈ H−1/2(Div,Γ) , f ∈ H−1/2(Curl,Γ) ,

〈p, q〉 = 4π2R
∑
m∈Z

∞∫
−∞

pm(ξ) qm(ξ) dξ , p ∈ H−1/2(Γ) , q ∈ H1/2(Γ) .

For the proof the following identity is essential (for m 6= 0)

hφm(ξ)fφm(ξ) + hzm(ξ)f zm(ξ)

=
m
R
fφm(ξ) + ξf zm(ξ)

m2

R2 + ξ2

[m
R
hφm(ξ) + ξhzm(ξ)

]
+

m
R
hzm(ξ)− ξhφm(ξ)

m2

R2 + ξ2

[m
R
f zm(ξ)− ξfφm(ξ)

]
3



which yields the estimate (using the Cauchy-Schwarz inequality in the numerators
of the fractions)

∣∣hφm(ξ)fφm(ξ) + hzm(ξ)f zm(ξ)
∣∣ ≤

√
|fφm(ξ)|2 + |f zm(ξ)|2

[m
2

R2 + ξ2]1/4
|m
R
hφm(ξ) + ξhzm(ξ)|
[m

2

R2 + ξ2]1/4

+

√
|hzm(ξ)|2 + |hφm(ξ)|2

[m
2

R2 + ξ2]1/4
|m
R
f zm(ξ)− ξfφm(ξ)|
[m

2

R2 + ξ2]1/4
,(2.5)

and thus, using again the Cauchy-Schwarz inequality,∑
m 6=0

∞∫
−∞

∣∣hφm(ξ)fφm(ξ) + hzm(ξ)f zm(ξ)
∣∣ dξ

≤

∑
m 6=0

∞∫
−∞

|fφm(ξ)|2 + |f zm(ξ)|2√
m2

R2 + ξ2

dξ

1/2 ∑
m 6=0

∞∫
−∞

|m
R
hφm(ξ) + ξhzm(ξ)|2√

m2

R2 + ξ2

dξ

1/2

+

∑
m 6=0

∞∫
−∞

|hzm(ξ)|2 + |hφm(ξ)|2√
m2

R2 + ξ2

dξ

1/2 ∑
m 6=0

∞∫
−∞

|m
R
f zm(ξ)− ξfφm(ξ)|2√

m2

R2 + ξ2

dξ

1/2

.

For m = 0 one argues analogously. This proves boundedness of 〈·, ·〉.
Furthermore, the trace operators u 7→ ν × u and u 7→ ν × (u× ν) are bounded and
surjective from H(curl,Ωρ) into H−1/2(Div,Γ) and H−1/2(Curl,Γ), respectively, for
every ρ > R which can be shown as, e.g., in [5], Section 5.1. Finally, we note that
〈Div u, p〉 = −〈u,Grad p〉 for all u ∈ H−1/2(Div,Γ) and p ∈ H1/2(Γ) where Div u
and Gradu denote the surface divergence and surface gradient, respectively, defined
as

(Div h)(φ, x3) = i
∑
m∈Z

∞∫
−∞

[m
R
hφm(ξ) + ξhzm(ξ)

]
eimφ+iξx3dξ ,

(Grad p)(φ, x3) = i
∑
m∈Z

∞∫
−∞

[m
R
pm(ξ) φ̂+ ξpm(ξ) ẑ

]
eimφ+iξx3dξ .

We will see shortly that the space H−1/2(Div,Γ) is not quite appropriate for the
bounday data h. Before we define the correct space we formally derive the form of
the Calderon operator by solving the pair of equations

∆û(x̃, ξ) + k(ξ)2û(x̃, ξ) = 0 and

∂x1û
(1)(x̃, ξ) + ∂x2û

(2)(x̃, ξ) + iξ û(3)(x̃, ξ) = 0 for |x̃| > R ,

(where again x̃ = (x1, x2)) for the Fourier transform of u. We assume that ξ ∈ R
is kept fixed with k(ξ) 6= 0, i.e. |ξ| 6= k, and require also the Sommerfeld radiation
condition (2.3).

To solve this boundary value problem we make an ansatz for û in the cartesian form
as

(2.6) û(x̃, ξ) = iξ∇3w(x̃) + k(ξ)2w(x̃) ẑ + ∇3v(x̃)× ẑ
where ∇3 denotes the three dimensional gradient. We dropped ξ in v and w. The
scalar functions w, v : {x̃ ∈ R2 : |x̃| > R} → C are assumed to satisfy the two
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dimensional Helmholtz equation ∆2w + k(ξ)2w = 0 and ∆2v + k(ξ)2v = 0 and the
Sommerfeld radiation condition (2.3). Using the product rule for the gradient and
curl(fA) = f curlA+∇f×A for vector fields A and scalar functions f we can write
û in the equivalent form

û(x̃, ξ)eiξx3 = iξ∇3

(
w(x̃)eiξx3

)
+ k2w(x̃)eiξx3 ẑ + curl

(
v(x̃)eiξx3 ẑ

)
from which we observe that ∆

(
û(x̃, ξ)eiξx3

)
+ k2

(
û(x̃, ξ)eiξx3

)
= 0 and

div
(
û(x̃, ξ)eiξx3

)
= 0. Furthermore, we compute the curl as

(2.7) curl
[
û(x̃, ξ)eiξx3

]
=
[
iξ∇3v(x̃) + k(ξ)2 v(x̃) ẑ + k2∇3w(x̃)× ẑ

]
eiξx3

where we used curl2 = −∆ + ∇ div. Since w = w(x̃, ξ) and v = v(x̃, ξ) satisfy
Sommerfeld’s radiation condition we can expand them into series of Hankel functions
in the form

w(r, φ, ξ) =
∑
m∈Z

wm(ξ)
Hm(k(ξ)r)

Hm(k(ξ)R)
eimφ , v(r, φ, ξ) =

∑
m∈Z

vm(ξ)
Hm(k(ξ)r)

Hm(k(ξ)R)
eimφ

where Hm denotes the Hankel function of type one and order m. We obtain, using
r̂ × φ̂ = ẑ and r̂ × ẑ = −φ̂ and φ̂× ẑ = r̂,

û(r, φ, ξ) =
∑
m∈Z

{(
wm(ξ) iξ

k(ξ)H ′m(k(ξ)r)

Hm(k(ξ)R)
+ vm(ξ)

im

r

Hm(k(ξ)r)

Hm(k(ξ)R)

)
r̂

+ wm(ξ) k(ξ)2 Hm(k(ξ)r)

Hm(k(ξ)R)
ẑ(2.8)

−
(
wm(ξ)

mξ

r

Hm(k(ξ)r)

Hm(k(ξ)R)
+ vm(ξ)

k(ξ)H ′m(k(ξ)r)

Hm(k(ξ)R)

)
φ̂

}
eimφ.

Let h ∈ H−1/2(Div,Γ) be given by

(2.9) h(φ, x3) =
∑
m∈Z

∫ ∞
−∞

[
hφm(ξ) φ̂+ hzm(ξ) ẑ

]
eimφ+ξx3dξ , φ, x3 ∈ [0, 2π] .

We determine wm(ξ) and vm(ξ) by the boundary condition r̂ × u = h for r = R.
This gives
(2.10)

wm(ξ) = − 1

k(ξ)2
hφm(ξ) and vm(ξ) =

Hm(k(ξ)R)

k(ξ)H ′m(k(ξ)R)

[
mξ

Rk(ξ)2
hφm(ξ)− hzm(ξ)

]
provided k(ξ) 6= 0. Substituting this into (2.8) and re-aranging the terms (using
also k2 = k(ξ)2 + ξ2) yields

(2.11) u(r, φ, x3) =
∑
m∈Z

∞∫
−∞

{
urm(r, ξ) r̂ + uφm(r, ξ) φ̂ + uzm(r, ξ) ẑ

}
eimφ+iξx3dξ
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for r > R, φ ∈ (0, 2π), and x3 ∈ R where

urm(r, ξ) = hφm(ξ)
iξ

rk(ξ)2

(
m2Hm(k(ξ)r)

Rk(ξ)H ′m(k(ξ)R)
− rk(ξ)H ′m(k(ξ)r)

Hm(k(ξ)R)

)
− hzm(ξ)

imR

r

Hm(k(ξ)r)

Rk(ξ)H ′m(k(ξ)R)
,

uφm(r, ξ) = hφm(ξ)
mξ

rk(ξ)2

(
Hm(k(ξ)r)

Hm(k(ξ)R)
− rH ′m(k(ξ)r)

RH ′m(k(ξ)R)

)
+ hzm(ξ)

H ′m(k(ξ)r)

H ′m(k(ξ)R)
,

uzm(r, ξ) = −hφm(ξ)
Hm(k(ξ)r)

Hm(k(ξ)R)
.

We need also the following form of uφm(r, ξ):

uφm(r, ξ) =
ξR

rk(ξ)2

(
Hm(k(ξ)r)

Hm(k(ξ)R)
− rH ′m(k(ξ)r)

RH ′m(k(ξ)R)

)(m
R
hφm(ξ) + ξhzm(ξ)

)
+ hzm(ξ)

[
H ′m(k(ξ)r)

H ′m(k(ξ)R)
+
R

r

(
1− k2

k(ξ)2

)(
Hm(k(ξ)r)

Hm(k(ξ)R)
− rH ′m(k(ξ)r)

RH ′m(k(ξ)R)

)]
.

Now we express curlu. Comparing the forms of û and curlu of (2.6) and (2.7) we
observe that they have the same form for (almost) vm and wn interchanged. We
obtain by a similar calculation

(2.12) curlu(r, φ, x3) =
∑
m∈Z

∞∫
−∞

{
vrm(r.ξ) r̂ + vφm(r, ξ) φ̂ + vzm(r, ξ) ẑ

}
eimφ+iξx3dξ

where

vrm(r, ξ) = hφm(ξ)
imk2

rk(ξ)2

(
rH ′m(k(ξ)r)

RH ′m(k(ξ)R)
− Hm(k(ξ)r)

Hm(k(ξ)R)

)
− i
(m
R
hφm(ξ) + ξhzm(ξ)

) H ′m(k(ξ)r)

H ′m(k(ξ)R)
,

vφm(r, ξ) = hφm(ξ)
k2

rk(ξ)2

(
rk(ξ)H ′m(k(ξ)r)

Hm(k(ξ)R)
− m2Hm(k(ξ)r)

Rk(ξ)H ′m(k(ξ)R)

)
+
m

r

Hm(k(ξ)r)

k(ξ)H ′m(k(ξ)R)

(m
R
hφm(ξ) + ξhzm(ξ)

)
,

vzm(r, ξ) =

[(m
R
hφm(ξ) + ξhzm(ξ)

)
ξ − k2hzm(ξ)

]
Hm(k(ξ)r)

k(ξ)H ′m(k(ξ)R)
.

For notational reasons we define the functions G
(j)
m (r, ξ), j = 1, . . . , 5, as

G(1)
m (r, ξ) :=

1

k(ξ)2

[
m2Hm(rk(ξ))

Rk(ξ)H ′m(Rk(ξ))
− rk(ξ)H ′m(rk(ξ))

Hm(Rk(ξ))

]
,(2.13a)

G(2)
m (r, ξ) :=

Hm(rk(ξ))

Rk(ξ)H ′m(Rk(ξ))
,(2.13b)

G(3)
m (r, ξ) :=

Hm(rk(ξ))

Hm(Rk(ξ))
, G(4)

m (r, ξ) :=
H ′m(rk(ξ))

H ′m(Rk(ξ))
,(2.13c)

G(5)
m (r, ξ) :=

1

k(ξ)2

[
Hm(rk(ξ))

Hm(Rk(ξ))
− rH ′m(rk(ξ))

RH ′m(Rk(ξ))

]
.(2.13d)
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Then the coefficients of u and curlu from (2.11) and (2.12), respectively, are written
as

urm(r, ξ) = hφm(ξ)
iξ

r
G(1)
m (r, ξ) − hzm(ξ)

imR

r
G(2)
m (r, ξ) ,

uφm(r, ξ) = hφm(ξ)
mξ

r
G(5)
m (r, ξ) + hzm(ξ)G(4)

m (r, ξ)

= dm(ξ)
ξR

r
G(5)
m (r, ξ) + hzm(ξ)

[
G(4)
m (r, ξ) +

R[k(ξ)2 − k2]

r
G(5)
m (r, ξ)

]
,

uzm(r, ξ) = −hφm(ξ)G(3)
m (r, ξ) ,

vrm(r, ξ) = −hφm(ξ)
imk2

r
G(5)
m (r, ξ) − i dm(ξ)G(4)

m (r, ξ) ,

vφm(r, ξ) = −hφm(ξ)
k2

r
G(1)
m (r, ξ) + dm(ξ)

mR

r
G(2)
m (r, ξ) ,

vzm(r, ξ) =
[
ξ dm(ξ)− k2hzm(ξ)

]
RG(2)

m (r, ξ) ,

where dm(ξ) := m
R
hφm(ξ) + ξhzm(ξ). The terms involving G

(1)
m and G

(5)
m are obviously

singular for ξ with k(ξ) = 0. The precise type of the singularity and the behavior
for large values of |m| + |ξ| are investigated in Lemma A.1 of the appendix. For
|m| ≥ 2 or |k(ξ)| ≥ 1/2 and r ∈ [R, R̃] for any fixed R̃ > R we obtain that all 6
coefficients are estimated by1 c am(ξ)µm(r, ξ) where c in independent of r, m, and
ξ, and

am(ξ) := |hφm(ξ)| + |hzm(ξ)| +
∣∣m
R
hφm(ξ) + ξhzm(ξ)

∣∣ , |m| ≥ 2 ,(2.14)

µm(r, ξ) :=

 exp

[
− |k(ξ)|2R (r−R)

12
√
m2+|k(ξ)|2R2

] (
R
r

)|m|
if |ξ| > k ,(

R
r

)|m|
if |ξ| < k ,

m ∈ Z .(2.15)

For |m| ≤ 1 and |k(ξ)| ≤ 1/2 we recall from Lemma A.1 that the following func-

tions are continuous (for every fixed R̃ > R): G
(3)
m , G

(4)
m , (r, ξ) 7→ 1

ln k(ξ)
G

(2)
0 (r, ξ),

(r, ξ) 7→ 1
ln k(ξ)

G
(j)
±1(r, ξ), and (r, ξ) 7→ k(ξ)2 ln k(ξ)G

(j)
0 (r, ξ) for j ∈ {1, 5} and

r ∈ [R, R̃)] and |k(ξ)| ≤ 1/2. Therefore, we define the weight functions

ρ1(ξ) = | ln k(ξ)| and ρ0(ξ) =
1

|k(ξ)|2 | ln k(ξ)|
for 0 < |k(ξ)| ≤ 1/2 ,

and estimate

|ur±1(r, ξ)| ≤ c
[
ρ1(ξ)|hφ±1(ξ)|+|hz±1(ξ)|

]
µ1(r, ξ) , |ur0(r, ξ)| ≤ c ρ0(ξ)|hφ0(ξ)|µ0(r, ξ)

for |k(ξ)| ≤ 1/2 and r ∈ [R, R̃)]. The other coefficients involving G
(1)
m , G

(2)
m , and

G
(5)
m for |m| ≤ 1 are estimated in the same way. Therefore, we set

(2.16) am(ξ) := |hφm(ξ)|+ |hzm(ξ)|+ ρ|m|(ξ) |hφm(ξ)| , |m| ≤ 1 , |k(ξ)| ≤ 1/2 ,

and observe that all of the 6 coefficients are bounded by c |am(ξ)|µm(r, ξ) for |m| ≤ 1
and |k(ξ)| ≤ 1/2.

These observations motivate the following space for the boundary data h:

H−1/2
∗ (Div,Γ) :=

h ∈ H−1/2(Div,Γ) :

∫
Ξ

ρ|m|(ξ) |hφm(ξ)|2 dξ <∞ for |m| ≤ 1


1for uφm(r, ξ) we take the second form
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where Ξ = {ξ : |k(ξ)| ≤ 1/2}. We equip H
−1/2
∗ (Div,Γ) with its canonical norm

(2.17) ‖h‖2

H
−1/2
∗ (Div,Γ)

:= ‖h‖2
H−1/2(Div,Γ) +

∑
|m|≤1

∫
Ξ

ρ|m|(ξ) |hφm(ξ)|2 dξ .

Theorem 2.3. For every h ∈ H
−1/2
∗ (Div,Γ) the function u given in (2.11) is

the unique solution u ∈ H∗(curl,Ω+) of (1.2) satisfying the radiation condition
of Definition 2.1. Furthermore, for every R̃ > R there exists c = c(R̃) > 0 with
‖u‖H(curl,ΩR̃) ≤ c‖h‖

H
−1/2
∗ (Div,Γ)

.

Proof. It suffices to show that u, curlu ∈ L2(ΩR̃,C3
)

for every R̃ > R. Let am(ξ)
be defined as above for |m| ≥ 2 and for |m| ≤ 1 by (2.14) and (2.16), respectively.
The estimate

|urm(r, ξ)|+ |uφm(r, ξ)|+ |uzm(r, ξ)|+ |vrm(r, ξ)|+ |vφm(r, ξ)|+ |vzm(r, ξ)| ≤ c am(ξ)µm(r, ξ)

for all m ∈ Z, ξ ∈ R, r ∈ [R, R̃], and (A.5) yields

R̃∫
R

∞∫
−∞

2π∫
0

[
|u(r, φ, x3)|2 + | curlu(r, φ, x3)|2

]
r dφ dx3 dr

≤ c
∑
m∈Z

∞∫
−∞

am(ξ)2

R̃∫
R

µm(r, ξ)2 dr dξ ≤ c′
∑
m∈Z

∞∫
−∞

am(ξ)2√
1 +m2 + ξ2

dξ .

�

From the form of curlu we obtain, using again r̂ × φ̂ = ẑ and r̂ × ẑ = −φ̂, that
Λh = curlw × r̂ is given by

(2.18) (Λh)(φ, x3) =
∑
m∈Z

∞∫
−∞

[
λzm(ξ) ẑ + λφm(ξ) φ̂

]
eimφ+iξx3dξ

where

λzm(ξ) = −hφm(ξ)
k2

R
G(1)
m (R, ξ) + mdm(ξ)G(2)

m (R, ξ)(2.19)

= hφm(ξ)
k2

Rk(ξ)2

[
Rk(ξ)H ′m(k(ξ)R)

Hm(k(ξ)R)
− m2Hm(k(ξ)R)

Rk(ξ)H ′m(k(ξ)R)

]
+ m

[m
R
hφm(ξ) + ξhzm(ξ)

] Hm(k(ξ)R)

Rk(ξ)H ′m(k(ξ)R)

λφm(ξ) =
[
k2hzm(ξ)− ξ dm(ξ)

]
RG(2)

m (R, ξ)(2.20)

=
{
k2hzm(ξ) − ξ

[m
R
hφm(ξ) + ξhzm(ξ)

]} Hm(k(ξ)R)

k(ξ)H ′m(k(ξ)R)

=
[
k(ξ)2 hzm(ξ)− ξm

R
hφm(ξ)

] Hm(k(ξ)R)

k(ξ)H ′m(k(ξ)R)
.

Theorem 2.4. Λ, defined by (2.18) (with (2.19), (2.20)), has the following proper-
ties.

(a) Λ is well-defined and bounded from H
−1/2
∗ (Div,Γ) into itself.

(b) Im〈Λh, r̂ × h〉 ≥ 0 for all h ∈ H−1/2
∗ (Div,Γ).
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(c) The Calderon operator Λα can be decomposed as Λ = ΛD+ΛC where ΛD and

ΛC are bounded from H
−1/2
∗ (Div,Γ) into H−1/2(Div,Γ) and Div ΛDh = 0

and Curl ΛCh = 0 for all h ∈ H−1/2
∗ (Div,Γ).

(d) The operator Div Λ is bounded from H
−1/2
∗ (Div,Γ) into H−1/2(Γ) and

(2.21) ‖ΛCh‖H−1/2(Div,Γ) ≤ c ‖Div Λh‖H−1/2(Γ) for all h ∈ H−1/2
∗ (Div,Γ) .

Proof. (a) For |m| ≥ 2 or |k(ξ)| ≥ 1 we have, using again the estimates (A.3a), that
|λzm(ξ)| and |λφm(ξ)| are bounded by c |am(ξ)| with am from (2.14). For |m| ≤ 1 and

|k(ξ)| ≤ 1 we use that 1
ρ|m|(ξ)

G
(1)
m (R, ξ) for |m| ≤ 1 and 1

ρ1(ξ)
G

(2)
0 (R, ξ) are bounded

and thus

|λzm(ξ)| ≤ c
[
|hφm(ξ)| ρ|m|(ξ) + |dm(ξ)|

]
, |m| ≤ 1 ,

ρ1(ξ) |λφ±1(ξ)| ≤ c
[
ρ1(ξ) |k(ξ)|2|hz±1(ξ)|+ ρ1(ξ) |hφ±1(ξ)|

] |H1(k(ξ)R)|
|k(ξ)||H ′1(k(ξ)R)|

≤ c |a±1(ξ)| ,
ρ0(ξ) |λφ0(ξ)| ≤ c ρ0(ξ) |k(ξ)|2 |hz0(ξ)| ρ1(ξ) = c |hz0(ξ)| ,

thus |λzm(ξ)| + ρ|m|(ξ)|λφm(ξ)| ≤ c am(ξ) for |m| ≤ 1 with am from (2.16). Finally,
m
R
λφm(ξ) + ξλzm(ξ) = −hφm(ξ) k2ξ

R
G

(1)
m (R, ξ) + mk2hzm(ξ)G

(1)
m (R, ξ), and this is esti-

mated by c am(ξ) as before.

(b) Let h as in (2.9). Then r̂ × h(φ, x3) =
∑
m∈Z

∫∞
−∞

[
−hzm(ξ) φ̂ + hφm(ξ) ẑ

]
eimφ+ξx3dξ

and thus

〈Λh, r̂ × h〉 = 4π2R
∑
m∈Z

∞∫
−∞

{
λzm(ξ)hφm(ξ)− λφm(ξ)hzm(ξ)

}
dξ .

For k(ξ) 6= 0 we write the term in the bracket as, using the definitions of G
(1)
m (R, ξ) =

m2

k(ξ)2
G

(2)
m (R, ξ)− 1

k(ξ)2G
(2)
m (R,ξ)

,

λzm(ξ)hφm(ξ)− λφm(ξ)hzm(ξ)(2.22)

=

[
−hφm(ξ)

k2

R
G(1)
m (R, ξ) +m

(m
R
hφm(ξ) + ξhzm(ξ)

)
G(2)
m (R, ξ)

]
hφm(ξ)

−
[
Rk(ξ)2hzm(ξ)−mξhφm(ξ)

]
G(2)
m (R, ξ)hzm(ξ)

= |hφm(ξ)|2 k2

Rk(ξ)2G
(2)
m (R, ξ)

− G(2)
m (R, ξ)

[
k2m2

Rk(ξ)2
|hφm(ξ)|2

+ Rk(ξ)2|hzm(ξ)|2 − mξ
[
hzm(ξ)hφm(ξ) + (hφm(ξ)hzm(ξ)

]
− m2

R
|hφm(ξ)|2

]
=

k2 |hφm(ξ)|2

Rk(ξ)2G
(2)
m (R, ξ)

− G
(2)
m (R, ξ)

Rk(ξ)2

∣∣mξ hφm(ξ) − Rk(ξ)2 hzm(ξ)
∣∣2

where we used k2 − k(ξ)2 = ξ2.

Now we consider two cases. Let first ξ with |ξ| > k. Then k(ξ) = i|k(ξ)| and (A.6a)

and (A.6b) imply that G
(2)
m (R, ξ) = Hm(k(ξ)R)

Rk(ξ)H′m(k(ξ)R)
= Km(R|k(ξ)|)

R|k(ξ)|K′m(R|k(ξ)|) which is real
9



valued. Next we consider ξ with |ξ| < k. Then k(ξ)2 > 0 and k(ξ) ∈ R>0 and thus

Im
H ′m(k(ξ)R)

Hm(k(ξ)R)
=

Y ′m(k(ξ)R)Jm(k(ξ)R)− J ′m(k(ξ)R)Ym(k(ξ)R)

|Hm(k(ξ)R)|2

=
2

πk(ξ)R |Hm(k(ξ)R)|2
> 0

where we used the Wronskian of Jm and Ym. Therefore, also Im Hm(k(ξ)R)
k(ξ)H′m(k(ξ)R)

< 0,

and the proof of part (b) is finished.

(c) We recall the form of Λh with the coefficients λzm(ξ) and λφm(ξ) from (2.19) and

(2.20), respectively. Since Λh ∈ H−1/2
∗ (Div,Γ) we have

∑
m∈Z

∞∫
−∞

|λzm(ξ)|2 + |λφm(ξ)|2 + |ξλzm(ξ) +mλφm(ξ)/R|2√
1 +m2 + ξ2

dξ < ∞ ,

and, in addition,
∫

Ξ
ρ|m|(ξ) |λφm(ξ)|2 dξ < ∞ for |m| ≤ 1 where again Ξ = {ξ :

|k(ξ)| ≤ 1/2}. We define

(ΛDh)(φ, x3) :=
∑
m∈Z

∞∫
−∞

mλzm(ξ)/R− ξλφm(ξ)

ξ2 + (m/R)2

[m
R
ẑ − ξ φ̂

]
eimφ+iξx3dξ ,

(ΛCh)(φ, x3) :=
∑
m∈Z

∞∫
−∞

ξλzm(ξ) +mλφm(ξ)/R

ξ2 + (m/R)2

[
ξ ẑ +

m

R
φ̂
]
eimφ+iξx3dξ .

Note that form = 0 the terms in the integrands reduce to λφ0(ξ) eiξx3φ̂ and λz0(ξ) eiξx3 ẑ,
respectively.

Direct validation shows that ΛDh+ ΛCh = Λh and Div ΛDh = 0 and Curl ΛCh = 0
for all h. Furthermore, these operators are bounded because∣∣∣∣mλzm(ξ)/R− ξλφm(ξ)

ξ2 + (m/R)2

∣∣∣∣2 [m2

R2
+ |ξ|2

]
≤ c

[
|λzm(ξ)|2 + |λφm(ξ)|2

]
,∣∣∣∣ξλzm(ξ) +mλφm(ξ)/R

ξ2 + (m/R)2

∣∣∣∣2 [|ξ|2 +
m2

R2
+
∣∣ξ2 +

m2

R2

∣∣2] ≤ c
∣∣ξλzm(ξ) +mλφm(ξ)/R

∣∣2 .
(d) From the previous estimate we conclude that

‖ΛCh‖2
H−1/2(Div,Γ) ≤ c

∑
m∈Z

∞∫
−∞

∣∣ξλzm(ξ) +mλφm(ξ)/R
∣∣2√

1 +m2 + ξ2
dξ .

Furthermore,

(Div Λh)(φ, x3) = i
∑
m∈Z

∞∫
−∞

[
ξ λzm(ξ) +mλφm(ξ)/R

]
eimφ+iξx3dξ

and thus

‖Div Λh‖2
H−1/2(Γ) = 4π2R

∑
m∈Z

∞∫
−∞

|ξ λzm(ξ) +mλφm(ξ)/R|2√
1 +m2 + ξ2

dξ

which proves the estimate. �
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3. The Regular Quasi-Periodic Case

Every α-quasi-periodic solution of (1.2), i.e. ∆u + k2u = 0 and div u = 0, has a
Fourier expansion in the form u(x) =

∑
n∈Z ûn(x1, x2)ei(n+α)x3 with

(3.1) ûn(x1, x2) :=
1

2π

2π∫
0

u(x1, x2, x3) e−i(n+α)x3 dx3 , n ∈ Z ,

where ûn satisfies the two dimensional Helmholtz equation

(3.2) ∆2ûn(x̃) + kn(α)2ûn(x̃) = 0 for x2
1 + x2

2 > R2

where kn(α) =
√
k2 − (n+ α)2 and, in addition, ∂x1û

(1)
n +∂x2û

(2)
n + i(n+α)û

(3)
n = 0.

The solution space H∗(curl,Ω+) from (1.3) is replaced by
(3.3)

Hα,∗(curl,W+) :=

{
u|W+ :

u ∈ Hloc(curl,Ω+), x3 7→ u(x) is α-quasi-periodic,
u|Wρ ∈ H(curl,Wρ) for all ρ > 0

}
,

where W+ = {x ∈ Ω+ : 0 < x3 < 2π} and Wρ = {x ∈ Ωρ : 0 < x3 < 2π}. Instead of
the cylindrical Fourier transform (2.4) we consider the classical Fourier expansion
with respect to φ and x3, i.e. we define

ĝn,m :=
1

4π2

2π∫
0

2π∫
0

g(φ, x3) e−imφ−i(n+α)x3 dx3 dφ , m, n ∈ Z ,

where we do not indicate the dependence on α because it is fixed. The spaces
H±1/2(Γ), H−1/2(Div,Γ), and H−1/2(Curl,Γ) from Definition 2.2 are replaced by

H±1/2
α (Γ) :=

{
p : Γ→ C :

∑
n,m∈Z

|p̂n,m|2[1 +m2 + n2]±1/2 <∞

}
,

H−1/2
α (Div,Γ) :=


h = hφφ̂+ hz ẑ : Γ→ C3 : hφ := h · φ̂, hz := h · ẑ satisfy∑
n,m∈Z

|hzn,m|2 + |hφn,m|2 + |(n+ α)hzn,m + m
R
hφn,m|2√

1 +m2 + n2
<∞

 ,

H−1/2(Curl,Γ) :=


h = hφφ̂+ hz ẑ : Γ→ C3 : hφ := h · φ̂, hz := h · ẑ satisfy∑
n,m∈Z

|hzn,m|2 + |hφn,m|2 + |(n+ α)hφn,m − m
R
hzn,m|2√

1 +m2 + n2
<∞

 ,

(3.4)

respectively.

In this section we consider the regular case, i.e. the case where kn(α) 6= 0 for
all n ∈ Z, i.e. |n + α| 6= k for all n ∈ Z. Using the (not only formal) similarity
between (3.1), (3.2) and (2.1), (2.2), we have the following quasi-periodic analog of
Theorem 2.3 which we state without proof.

Theorem 3.1. Let α ∈ [−1/2, 1/2] such that |n + α| 6= k for all n ∈ Z. For every

h ∈ H−1/2
α (Div,Γ) the function u, given by

(3.5) u(r, φ, x3) =
∑
n,m∈Z

{
urn,m(r) r̂ + uφn,m(r) φ̂ + uzn,m(r) ẑ

}
eimφ+i(n+α)x3

11



with coefficients

urn,m(r) = hφn,m
i(n+ α)

r
G(1)
n,m(r) − hzn,m

imR

r
G(2)
n,m(r) ,(3.6a)

uφn,m(r) = hφn,m
m(n+ α)

r
G(5)
n,m(r) + hzn,mG

(4)
n,m(r) ,(3.6b)

uzn,m(r) = −hφn,mG(3)
n,m(r) ,(3.6c)

is the unique solution u ∈ Hα,∗(curl,W+) of (1.2) such that Fourier coefficients ûn
from (3.1) satisfy the Sommerfeld radiation condition

(3.7)
∂ûn(x̃)

∂r
− ikn(α) ûn(x̃) = O

(
1/|x̃|3/2

)
, r = |x̃| → ∞ ,

for every n ∈ Z. The functions G
(j)
n,m(r) := G

(j)
m (r, n+α) had been defined in (2.13a)–

(2.13d). Note that these functions depend also on α, i.e. G
(j)
n,m(r) = G

(j)
n,m(r, α). They

are well defined because kn(α) 6= 0 for all n ∈ Z.

Furthermore, for every R̃ > R there exists c = c(R̃) > 0 with ‖u‖H(curl,WR̃) ≤
c‖h‖

H
−1/2
α (Div,Γ)

where again WR̃ := {x ∈ R3 : R2 < x2
1 + x2

2 < R̃2, 0 < x3 < 2π}.

The Calderon operator Λα which maps h ∈ H−1/2
α (Div,Γ) into r̂ × curlu on Γ has

the form

(3.8) (Λαh)(φ, x3) =
∑
n,m∈Z

[
λzn,m ẑ + λφn,m φ̂

]
eimφ+i(n+α)x3

where

λzn,m = −hφn,m
k2

R
G(1)
n,m(R) + mdn,mG

(2)
n,m(R)(3.9a)

= hφn,m
k2

Rk2
n

[
RknH

′
m(knR)

Hm(knR)
− m2Hm(knR)

RknH ′m(knR)

]
+ m

[m
R
hφn,m + (n+ α)hzn,m

] Hm(knR)

RknH ′m(knR)

λφn,m =
[
k2hzn,m − (n+ α) dn,m

]
RG(2)

n,m(R)(3.9b)

=
{
k2hzn,m − (n+ α)

[m
R
hφn,m + (n+ α)hzn,m

]} Hm(knR)

knH ′m(knR)

=
[
k2
n h

z
n,m −

(n+ α)m

R
hφn,m

] Hm(knR)

knH ′m(knR)
,

and dn,m := m
R
hφn,m + (n+ α)hzn,m. We collect a number of properties which in part

corresponds to the properties of Λ from Theorem 2.4.

Theorem 3.2. Let α be no cut-off value, i.e. kn = kn(α)
√
k2 − ξ2 6= 0 for all

n ∈ Z. Then Λα, defined by (3.8) (with (3.9a), (3.9b)), has the following properties.

(a) Λα, is well-defined and bounded from H
−1/2
α (Div,Γ) into itself.

(b) Im〈Λαh, r̂ × h〉 ≥ 0 for all h ∈ H−1/2
α (Div,Γ).

(c) Im〈Λαh, r̂×h〉 = 0 implies that the corresponding solution u, given by (3.5),
is decaying exponentially, i.e. there exist δ, c > 0 with

(3.10) max
φ,x3∈(0,2π)

|u(r, φ, x3)| ≤ c e−δr for r ≥ R + 1 .

Furthermore, hφn,m and hzn,m vanish for all n,m ∈ Z with |n+ α| < k.
12



(d) The Calderon operator Λα can be decomposed as Λα = ΛD
α + ΛC

α where ΛD
α

and ΛC
α are bounded from H

−1/2
α (Div,Γ) into itself and Div ΛD

α h = 0 and

Curl ΛC
αh = 0 for all h ∈ H−1/2

α (Div,Γ).

(e) The operator Div Λα is bounded from H
−1/2
α (Div,Γ) into H

−1/2
α (Γ) and

(3.11) ‖ΛC
αh‖H−1/2

α (Div,Γ)
≤ c ‖Div Λαh‖H−1/2

α (Γ)
for all h ∈ H−1/2

α (Div,Γ) .

(f) The operator ΛD
α has a decomposition into ΛD

α = Λ̂D
α + ΛK

α where (h, ψ) 7→
〈Λ̂D

α h, ψ×r̂〉 is hermitian on H
−1/2
α (Div,Γ)×H−1/2

α (Div,Γ) and non-negative,

i.e. 〈Λ̂D
α h, h× r̂〉 ≥ 0 for all h, and ΛK

α is compact.
(g) Λα depends holomorphically on α in the following sense. Let α̂ ∈ [−1/2, 1/2]

not be a cut-off value. Then there exists δ > 0 such that the mapping α 7→ Λ̂α

is (strongly) holomorphic2 from {α ∈ C : |α− α̂| < δ} into B
(
H
−1/2
per (Div,Γ)

)
where H

−1/2
per (Div,Γ) denotes the space H

−1/2
α (Div,Γ) for α = 0 and Λ̂αv =

e−iαx3Λα

(
v eiαx3

)
for v ∈ H−1/2

per (Div,Γ).

Proof. We omit the proof of parts (a) and (b) because they follows very much the
proofs of the corresponding parts of Theorem 2.4. We have to set ξ = n+α and note
that kn(α) 6= 0 for all n ∈ Z implies the existence of δ > 0 such that |kn(α)| ≥ δ for
all n ∈ Z.

(c) The analog of (2.22) for the quasi-periodic case yields the following form of
〈Λαh, r̂ × h〉.

〈Λαh, r̂ × h〉 = 4π2R
∑
n,m∈Z

{
k2 |hφn,m|2

Rk2
nG

(2)
n,m(R)

− G
(2)
n,m(R)

Rk2
n

∣∣m(n+ α)hφn,m − Rk2
n h

z
n,m

∣∣2} .
Furthermore, the imaginary parts of each of the two terms in {· · · } are non-negative
for all n,m and positive for |n+α| < k. Therefore, Im〈Λαh, r̂× h〉 = 0 implies that
hφn,m = hzn,m = 0 for all m,n ∈ Z with |n + α| < k. Therefore, the Fourier series

for u is written as u(x̃, x3) =
∑

n:|n+α|>k ûn(x̃)ei(n+α)x3 with functions ûn : {x̃ ∈ R2 :

|x̃| > R} → C3 which satisfy the Helmholtz equation (3.2) for every component.
Therefore, ûn(x̃) can be expanded into a series of Hankel functions and thus, for any
fixed R1 > R,

u(r, φ, x3) =
∑

n:|n+α|>k

∑
m∈Z

ûn,m
Hm(knr)

Hm(knR1)
eimφ+i(n+α)x3 for r ≥ R1 .

Note that ûn,m ∈ C3. By interior regularity arguments the field u is smooth and
thus

∑
n:|n+α|>k

∑
m∈Z(|n|+ |m|) |ûn,m| <∞. Now we use the estimate∣∣∣∣ Hm(knr)

Hm(knR1)

∣∣∣∣ ≤ e− Im kn(r−R1) for m ∈ Z and r ≥ R1 ,

(see part (a) of Lemma 5.2 in [4]) which shows that

|u(r, φ, x3)| ≤ e−δ(r−R1)
∑

n:|n+α|>k

∑
m∈Z

|ûn,m| for r ≥ R1

2in the sense of, e.g., [3], Section 8.5,
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where δ = min{
√

(n+ α)2 − k2 : |n + α| > k} > 0. Estimates of the derivatives
with respect to φ and x3 follow the same lines, for the derivative with respect to r
we use the estimate∣∣∣∣knH ′m(knr)

Hm(knR1)

∣∣∣∣ ≤ c (|kn|+ |m|) e− Im kn(r−R1) for m ∈ Z and r ≥ R1

(see part (b) of Lemma 5.2 in [4]).

Parts (d) and (e) correspond to parts (c) and (d), respectively, of Theorem 2.4 and
are proven in the same way. We just state the form of ΛD

α as

(ΛD
α h)(φ, x3) :=

∑
n,m∈Z

mλzn,m/R− (n+ α)λφn,m
(n+ α)2 + (m/R)2

[m
R
ẑ − (n+ α) φ̂

]
eimφ+i(n+α)x3 ,

where λzn,m and λφn,m are given in (3.9a) and (3.9b), respectively.

(f) We define Λ̂D
α by

(Λ̂D
α h)(φ, x3) :=

∑
m,n∈Z

λ̂n,m
(n+ α)2 + (m/R)2

[m
R
ẑ − (n+ α) φ̂

]
eimφ+i(n+α)x3

where

λ̂n,m =

[
|kn|2 +

m2

R2

]
Km(R|kn|)
|kn|K ′m(R|kn|)

[
m

R
hφn,m + (n+ α)hzn,m

]
if |n+ α| > k ,

λ̂n,m = −|m|
R

[
m

R
hφn,m + (n+ α)hzn,m

]
if |n+ α| < k .

First we note that

〈λ̂Dα h, ψ × r̂〉 = −
∑
m,n∈Z

λ̂n,m
(n+ α)2 + (m/R)2

[m
R
ψφn,m + (n+ α)ψzn,m

]
which shows that the form is hermetian. The positivity follows because Km(R|kn|)

|kn|K′m(R|kn|) ≤
0. It remains to show that ΛD

α−Λ̂D
α is compact. We look at the numerator of the form

of ΛD
α . Using the definitions of λzn,m and λφn,m from (3.9a) and (3.9b), respectively,

and R(n+ α)hzn,m = Rdn,m −mhφn,m we write

m

R
λzn,m − (n+ α)λφn,m

= −k
2m

R2
G(1)
n,m(R)hφn,m +

m2

R
G(2)
n,m(R) dn,m

+ R(n+ α)
[
(n+ α)dn,m − k2hzn,m

]
G(2)
n,m(R)

=
mk2

R2
hφn,m

[
R2G(2)

n,m(R)−G(1)
n,m(R)

]
+ Rdn,m

[m2

R2
+ (n+ α)2 − k2

]
G(2)
n,m(R) .

Using (A.3d) we estimate the first term on the right hand side by c/
√

1 +m2 + n2|hφn,m|.
Therefore, this part in the representation of ΛD

α results in a compact operator. For
the second term in the previous equation we consider first the case |n + α| > k.

Then RG
(2)
n,m(R) = Km(|kn|R)

|kn|K′m(|kn|R)
, and the term coincides with the definition of λ̂n,m

(note that k2 − (n+ α)2 = k2
n = −|kn|2).

Finally, we consider the case |n + α| < k. Then we use (A.12b) and (A.12c) and
have

G(2)
n,m(R) =

Hm(knR)

RknH ′m(knR)
= − 1

|m|
[
1 +O(1/|m|)

]
14



and thus

Rdn,m
[m2

R2
+ (n+ α)2 − k2

]
G(2)
n,m(R) = −|m|

R
dn,m

[
1 +O(1/|m|)

]
which again coincides with the definition of λ̂n,m up to O(1/|m|).

(g) For given h ∈ H−1/2
per (Div,Γ) and f ∈ H−1/2

per (Curl,Γ) we observe that 〈Λ̂αh, f〉 is
given by the series

〈Λ̂αh, f〉 = 4π2R
∑
n,m∈Z

[
λzn,m(α)f zn,m + λφn,m(α)fφn,m

]
with λzn,m(α) and λφn,m(α) from (3.9a) and (3.9b), respectively, (indicating the de-

pendence on α) where hφn,m, h
φ
n,m and fφn,m, f

φ
n,m are the coefficients of h and f , re-

spectively, with respect to {eimφ+inx3 : n,m ∈ Z} (which are independent of α). The

coefficients λzn,m(α) and λφn,m(α) of Λ̂α depend on α through G
(1)
n,m(α) and G

(2)
n,m(α)

only. From part (a) of Lemma A.1 we conclude that G
(1)
n,m(α) and G

(2)
n,m(α) depend

holomorphically on α in a neighborhood of α̂. Using the estimate (2.5) (for hφm(ξ),
hzm(ξ), fφm(ξ), and f zm(ξ) replaced by λφn,m(α), λzn,m(α), fφn,m, and f zn,m, respectively)

and the forms (3.9a) and (3.9b) of λzn,m(α) and λφn,m(α) and the estimate (A.3a)
we conclude that the series is uniformly (with respect to α) convergent. Therefore,

〈Λ̂αh, f〉 is weakly holomorphic with respect to α which implies (Theorem 8.22 of

[3]) that α 7→ Λ̂α is holomorphic. �

Closely related to Λα is the scalar operator Dα.

Theorem 3.3. Let α be no cut-off value. Define the operator Dα from H
1/2
α (Γ) into

H
−1/2
α (Γ) by Dαp := Div Λα(r̂ ×Grad p). Then Im〈Dαp, p〉 ≥ 0 for all p ∈ H1/2

α (Γ),
and Im〈Dαp, p〉 = 0 implies that Re〈Dαp, p〉 ≥ 0.

Furthermore, there is an operator D̃α from H
1/2
α (Γ) into H

−1/2
α (Γ) which is her-

metian and non-negative, i.e. 〈D̃αp, p〉 ≥ 0 for all p ∈ H
1/2
α (Γ), and Dα − D̃α is

compact.

Proof. Let p ∈ H
1/2
α (Γ) have the expansion p(φ, x3) =

∑
m,n∈Z pn,m e

imφ+i(n+α)x3 .

From the definitions of Λα and Dα and (3.9a), (3.9b) we obtain (note that h :=

r̂ ×Grad p = i
∑

m,m∈Z
[
m/R ẑ − (n+ α)φ̂

]
pn,m e

imφ+i(n+α)x3),

(Dαp)(φ, x3) = i
∑
n,m∈Z

[
(n+ α)λzn,m +

m

R
λφn,m

]
eimφ+i(n+α)x3

where

λzn,m = i(n+ α)
k2

R
G(1)
n,m(R) pn,m and λφn,m = ik2mG(2)

n,m(R) pn,m ,

and thus

(Dαp)(φ, x3) = −k
2

R

∑
n,m∈Z

[
(n+ α)2G(1)

n,m(R) +m2G(2)
n,m(R)

]
pn,m e

imφ+i(n+α)x3 .

Set h := r̂ ×Grad p. Then

〈Dαp, p〉 = 〈Div Λαh, p〉 = −〈Λαh,Grad p〉 = 〈Λαh, r̂ × h〉
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and thus Im〈Dαp, p〉 ≥ 0 by part (b) of Theorem 3.2. Furthermore, Im〈Dαp, p〉 = 0
implies pn,m = 0 for all n with |n + α| < k. Therefore, for p with Im〈Dαp, p〉 = 0

the term 〈Dαp, p〉 coincides with 〈D̃αp, p〉 where D̃α is defined as

(D̃αp)(φ, x3) := −k
2

R

∑
|n+α|>k

∑
m∈Z

[
(n+ α)2G(1)

n,m(R) +m2G(2)
n,m(R)

]
pn,m e

imφ+i(n+α)x3

+
k2

R

∑
|n+α|<k

∑
m∈Z

|m| pn,m eimφ+i(n+α)x3 .

For |n + α| > k we have k2
n = −|kn|2 and RknH

′
m(Rkn)/Hm(Rkn) = tK ′m(t)/Km(t)

where we have set t := |kn|R for abbreviation. Therefore,

G(2)
n,m(R) =

Km(t)

tK ′m(t)
< 0 and

k2
nG

(1)
n,m(R) =

m2Km(t)

tK ′m(t)
− tK ′m(t)

Km(t)
=

m2Km(t)2 − t2K ′m(t)2

tK ′m(t)Km(t)

=
mKm(t)− tK ′m(t)

tK ′m(t)Km(t)

[
mKm(t) + tK ′m(t)

]
= −mKm(t)− tK ′m(t)

tK ′m(t)Km(t)
tKm−1(t) > 0

because Km(t) is real and positive and K ′m(t) negative. Here we used the recursion
formula tK ′m(t) = −tKm−1(t)−mKm(t), see Formula 9.6.26 of [1]. Since k2

n < 0 we

conclude that also G
(1)
n,m(R) < 0. Therefore, we have shown that (n + α)2G

(1)
n,m +

m2G
(2)
n,m is real and negative for |n + α| > k, i.e. D̃α is hermitean and positive and

〈Dαp, p〉 = 〈D̃αp, p〉 ≥ 0 if Im〈Dαp, p〉 = 0.

Finally, we show that Dα − D̃α is compact from H
1/2
α (Γ) into H

−1/2
α (Γ). The differ-

ence has the form

(Dα − D̃α)p(φ, x3)

=
k2

R

∑
|n+α|<k

∑
m∈Z

[
|m| − (n+ α)2G(1)

n,m(R)−m2G(2)
n,m(R)

]
pn,m e

imφ+i(n+α)x3 .

Let n ∈ Z with |n + α| < k. The difference (Dα − D̃α)p contains only finitely
many n with this property. Then k2

n > 0, and we determine the asymptotic form

of (n + α)2G
(1)
n,m(R) + m2G

(2)
n,m(R), for m → ∞ (for fixed n). From (A.3a) we

conclude that G
(1)
n,m(R) behaves as O(1/m) as m→∞ and (see (A.12b) and (A.12c))

G
(2)
n,m(R) = − 1

m

[
1 +O(1/m)

]
as m→∞ and thus

(n+ α)2G(1)
n,m(R) +m2G(2)

n,m(R) = −m [1 +O(1/m)] as m→∞ .

This shows compactness of Dα − D̃α. �

4. The Case of a Cut-off Value

In this section we consider the case of a cut-off value. Therefore, let α ∈ (−1/2, 1/2]
and n̂ ∈ Z with |α + n̂| = k. Then kn̂(α) = 0, and (3.2) takes the form (for n = n̂)

(4.1) ∆2ûn̂(x1, x2) = 0 for x2
1 + x2

2 > R2 .

In addition we require that div
(
ûn̂(x1, x2)ei(n̂+α)x3

)
= 0 which gives an expression

of uz := ûn̂ · ẑ in terms of (the derivatives of) the r - component ur := ûn̂ · r̂ and φ -
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component uφ := ûn̂ · φ̂ of ûn̂ where we use again polar coordinates (r, φ). In polar
coordinates the system (4.1) for (ur, uφ) takes the form

∆2u
r − 1

r2
ur − 2

r2
∂φu

φ = 0 ,

∆2u
φ − 1

r2
uφ +

2

r2
∂φu

r = 0 .

Expanding ur and uφ into Fourier series with respect to φ yields

ur(r, φ) =
∑
m∈Z

urm(r) eimφ , uφ(r, φ) =
∑
m∈Z

urmφ(r) eimφ

where urm and uφm solve the system

r
[
r(urm)′(r)

]′ − (1 +m2)urm(r)− 2imuφm = 0 ,

r
[
r(uφm)′(r)

)
]′ − (1 +m2)uφm(r) + 2imurm = 0 ,

of ordinary differential equations. This system is easiliy solved by searching for
solutions with uφm = ±iurm. The general solution which decays as r →∞ is given by

urm(r) = am

(
R

r

)|m|−1

+ bm

(
R

r

)|m|+1

, |m| ≥ 1 ,

uφm(r) = i (signm)

[
am

(
R

r

)|m|−1

− bm
(
R

r

)|m|+1
]
, |m| ≥ 1 ,

ur0(r) = a0
R

r
,

uφ0(r) = b0
R

r
,

where am, bm ∈ C are arbitrary with a±1 = 0. The x3-component uz := ûn̂ · ẑ is

given by uz = i
n̂+α

div(urr̂ + uφφ̂) = i
(n̂+α) r

[
∂r(r∂ru

r) + ∂φu
φ
]
, i.e.

uzm(r) = am
2i(1− |m|)
R(n̂+ α)

(
R

r

)|m|
, |m| ≥ 2 .

The boundary value problem ∆2ûn̂(x1, x2) = 0 for x2
1 + x2

2 > R2 and r̂ × ûn̂ = h for
x2

1 + x2
2 = R2 leads to uφm(R) = hzm and uzm(R) = −hφm. Therefore, if hφm = 0 for

|m| ≤ 1 the coefficients am and bm are given by

am = i
R(n̂+ α)

2(1− |m|)
hφm , bm = i(signm)hzm + i

R(n̂+ α)

2(1− |m|)
hφm for |m| ≥ 2 ,

and b±1 = ±ihz±1 and b0 = hz0. The solution is not unique because v(r, φ) = 1
r
r̂

solves ∆2v = 0 and div v = 0 and r̂ × v = 0 for r = R. Therefore, we have shown
part (a) of the following theorem.

Theorem 4.1. Let α ∈ (−1/2, 1/2] be a cut-off value, i.e. N̂ := {n̂ ∈ Z : |α+ n̂| =
k} 6= ∅.

(a) For every h ∈ H−1/2
α (Div,Γ) with hφn̂,m = 0 for n̂ ∈ N̂ and |m| ≤ 1 there exists

a solution u ∈ Hα,∗(curl,W+) of (1.2) and u(x) = O(1/r) as r =
√
x2

1 + x2
2)→∞

The solutions are given by (3.5) with coefficients urn,m(r), uφn,m(r), uzn,m(r) from
17



(3.6a), (3.6b), (3.6c), respectively, for n /∈ N̂ and

urn̂,m(r) = i
R(n̂+ α)

2(1− |m|)
hφn̂,m

(
R

r

)|m|−1

(4.2a)

+ i

[
smh

z
n̂,m +

R(n̂+ α)

2(1− |m|)
hφn̂,m

](
R

r

)|m|+1

, |m| ≥ 2 ,

urn̂,±1(r) = ±ihzn̂,±1

(
R

r

)2

, urn̂,0(r) = an̂
R

r
,

uφn̂,m(r) = −sm
R(n̂+ α)

2(1− |m|)
hφn̂,m

(
R

r

)|m|−1

(4.2b)

+

[
hzn̂,m + sm

R(n̂+ α)

2(1− |m|)
hφn̂,m

](
R

r

)|m|+1

, |m| ≥ 2 ,

uφn̂,m(r) = hzn̂,m

(
R

r

)|m|+1

, |m| ≤ 1 ,

uzn̂,m(r) = −hφn̂,m
(
R

r

)|m|
, |m| ≥ 2 , uzn̂,m(r) = 0 , |m| ≤ 1 ,(4.2c)

for n̂ ∈ N̂ where sm = signm and an̂ ∈ C is arbitrary. The solution is unique if one
poses the extra condition

∫
γ
u(x) · r̂ e−i(n̂+α)x3ds = 0 for n̂ ∈ N̂ where γ := {x ∈ Γ :

0 < x3 < 2π}.
(b) The corresponding Calderon operator Λα from

{
h ∈ H

−1/2
α (Div,Γ) : hφn̂,m =

0 for n̂ ∈ N̂ and |m| ≤ 1
}

into itself is given by (3.8) where λzn,m and λφn,m are de-

fined by (3.9a) and (3.9b), respectively, for n /∈ N̂ and

λzn̂,m = hφn̂,m

(
Rk2

|m| − 1
− |m|

R

)
− sm(n̂+ α)hzn̂,m , |m| ≥ 2 ,(4.3a)

λzn̂,m = −sm(n̂+ α)hzn̂,m , |m| = 1 , λzn̂,0 = 0 ,

λφn̂,m = sm(n̂+ α)hφn̂,m , |m| ≥ 2 , λφn̂,m = 0 , |m| ≤ 1 .(4.3b)

for n̂ ∈ N̂ where again sm = signm.

Proof. For part (b) we compute curl
(
[urn̂,m(r)r̂ + uφn̂,m(r)φ̂+ uzn̂,m(r)ẑ]eimφ+i(n̂+α)x3

)
in cylindrical coordinates and evaluate its tangential components to obtain (4.3a)
and (4.3b). We omit the details. �

Comparing (4.2a), (4.2b), (4.2c) with (3.6a), (3.6b), (3.6c), respectively, for n = n̂

and |m| ≥ 2 and the definitions of G
(j)
n̂,m(r, α) := G

(j)
m (r, n̂ + α) of (A.4a), (A.4d),

(A.4f), (A.4g), and (A.4h), respectively, we obtain the continuous dependence of the
solution u = uα on α at cut-off values.

Corollary 4.2. Let α̂ ∈ (−1/2, 1/2] be a cut-off value with corresponding set N̂ :=

{n̂ ∈ Z : |α + n̂| = k} 6= ∅. For α ∈ [−1/2, 1/2] let h(α) ∈ H−1/2
α (Div,Γ) such that

limα→α̂ h
z
n,m(α) = hzn,m(α̂) for all (n,m) ∈ Z2 and limα→α̂ h

φ
n,m(α) = hφn,m(α̂) for all

(n,m) ∈ Z2 \ {(n̂,m) : n̂ ∈ N̂ , |m| ≤ 1)}, and limα→α̂
[

1
kn̂(α)2 ln kn̂(α)

hφn̂,0(α)
]

= 0 and

limα→α̂
[
ln kn̂(α)hφn̂,±1(α)

]
= 0 for all n̂ ∈ N̂ where again kn̂(α) =

√
k2 − (n̂+ α)2.

Then, for every R̃ > R the unique solution uα ∈ Hα,∗(curl,W+) of (1.2), (3.7) for
α 6= α̂ (assured by Theorem 3.1) converges in H(curl,WR̃) to the unique solution
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uα̂ ∈ Hα̂,∗(curl,W+) of (1.2) with uα̂(x) = O(1/r) as r =
√
x2

1 + x2
2) → ∞ and∫

γ
uα̂(x) · r̂ e−i(n̂+α̂)x3ds = 0 for n̂ ∈ N̂ (assured by the previous theorem).

Furthermore, if we define the operator Tα from H
−1/2
α (Div,Γ) into H

−1/2
0 (Div,Γ)

by (Th)(x) = e−iαx3h(x) (here H
−1/2
0 (Div,Γ) denotes the space H

−1/2
α (Div,Γ) for

α = 0), then TαΛαh(α) converges to Tα̂Λα̂h(α̂) in H
−1/2
0 (Div,Γ) as α→ α̂.

Proof. First we note again that (4.2a), (4.2b), and (4.2c) coincide with form of the
coefficients urn,m, uφn,m, and uzn,m from (3.6a), (3.6b), and (3.6c), respectively, for

|m| ≥ 2 and n = n̂ ∈ N̂ , if one uses the definitions G
(j)
n̂,m(r, α̂) := G

(j)
m (r, n̂ + α̂) =

G
(j)
m (r,±k) for |m| ≥ 2 and j = 1, . . . , 5 from (A.4a), (A.4d), (A.4f), (A.4g), and

(A.4h), respectively.

Second, for large values of n2+m2, i.e. for n2+m2 ≥ k2+4, the series for u from (3.5)
converges uniformly with respect to (r, α) ∈ [R, R̃] × [−1/2, 1/2] as seen from the
proof of Theorem 2.3. Furthermore, part (c) of Lemma A.1, urn,m(r, α), uφn,m(r, α),

and uzn,m(r, α) converge to urn,m(r, α̂), uφn,m(r, α̂), and uzn,m(r, α̂), respectively, as α→
α̂ for every n,m ∈ Z, uniformly with respect to r ∈ [R, R̃]. We recall the formulas
only for n = n̂ and |m| ≤ 1.

urn̂,0(r, α) = hφn̂,0(α)
i(n̂+ α)

r
G

(1)
0 (r, n̂+ α) ,

urn̂,±1(r, α) = hφn̂,±1(α)
i(n̂+ α)

r
G

(1)
±1(r, n̂+ α) ∓ hzn̂,±1(α)

iR

r
G

(2)
±1(r, n̂+ α) ,

uφn̂,0(r) = hzn̂,0(α)G
(4)
0 (r, n̂+ α) ,

uφn̂,±1(r) = ±hφn̂,±1(α)
n̂+ α

r
G

(5)
±1(r, n̂+ α) + hzn̂,±1(α)G

(4)
±1(r, n̂+ α) ,

uzn̂,m(r) = −hφn̂,m(α)G(3)
m (r, n̂+ α) , |m| ≤ 1 ,

and these converge to the corresponding coefficients for α = α̂ by the assumptions

on hφn̂,m(α) for |m| ≤ 1 and the singularity of G
(j)
m (part (c) of Lemma A.1). The

same holds for curluα.
From these two properties of the parameter-dependent coefficients of the series ele-
mentary arguments show convergence of uα to uα̂ in H(curl,WR̃).
We omit the proof for the Calderon operators because it follows the same argu-
ments. �

Appendix A. Properties of Hankel functions

Let k > 0 and δ ∈ (0, k/2) be fixed and k(ξ) =
√
k2 − ξ2 for ξ ∈ C with

ξ2 /∈ k2+iR. Here we take the square function z 7→
√
z to be holomorhic in C\(iR≤0),

i.e. arg z ∈ (−π/2, 3π/2). Then k(ξ) /∈ R≤0. We note that for this choice of the

branch we have
√
w̄ =

√
w provided Rew > 0. Furthermore, | Im

√
w| ≤ Re

√
w if

Rew > 0 because 0 < Rew = Re
(
[
√
w]2
)

= [Re
√
w]2 − [Im

√
w]2.
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Define G
(j)
m (r, ξ), j = 1, . . . , 5, and µm(r, ξ) as in (2.13a)–(2.13d) and (2.15), respec-

tively, i.e.

G(1)
m (r, ξ) :=

1

k(ξ)2

[
m2Hm(rk(ξ))

Rk(ξ)H ′m(Rk(ξ))
− rk(ξ)H ′m(rk(ξ))

Hm(Rk(ξ))

]
,(A.1a)

G(2)
m (r, ξ) :=

Hm(rk(ξ))

Rk(ξ)H ′m(Rk(ξ))
,(A.1b)

G(3)
m (r, ξ) :=

Hm(rk(ξ))

Hm(Rk(ξ))
, G(4)

m (r, ξ) :=
H ′m(rk(ξ))

H ′m(Rk(ξ))
,(A.1c)

G(5)
m (r, ξ) :=

1

k(ξ)2

[
Hm(rk(ξ))

Hm(Rk(ξ))
− rH ′m(rk(ξ))

RH ′m(Rk(ξ))

]
,(A.1d)

µm(r, ξ) :=

 exp

[
− |k(ξ)|2R (r−R)

12
√
m2+|k(ξ)|2R2

] (
R
r

)|m|
if Re(ξ2) > k2 ,(

R
r

)|m|
if Re(ξ2) < k2 ,

(A.1e)

respectively, for ξ2 /∈ k2 + iR and r ≥ R and m ∈ Z. Here, Hm(z) denotes the
Hankel function of the first kind and order m ∈ Z which is holomorphic in C \R≤0.
For some δ > 0 define the sets Z±δ by

Z+
δ :=

{
ξ ∈ C : |Re ξ| > k + 2δ , | Im ξ| < δ/3

}
,

Z−δ :=
{
ξ ∈ C : |Re ξ| < k − 2δ , | Im ξ| < δ/3

}
.

(A.2)

Then ξ2 /∈ k2 + iR for ξ ∈ Z+
δ ∪ Z

−
δ , and the functions G

(j)
m (r, ·) are obviously well

defined and holomorphic in Z+
δ ∪ Z

−
δ .

Lemma A.1. (a) For every R̃ > R there exists c = c(δ, R̃) with

|G(1)
m (r, ξ)| + |G(2)

m (r, ξ)| ≤ c√
1 +m2 + |ξ|2

µm(r, ξ) ,(A.3a)

|G(3)
m (r, ξ)| + |G(4)

m (r, ξ)| ≤ c µm(r, ξ) ,(A.3b)

|G(5)
m (r, ξ)| ≤ c

1 +m2 + |ξ|2
µm(r, ξ) ,(A.3c)

for all ξ ∈ Z+
δ ∪ Z

−
δ and R ≤ r ≤ R̃ and m ∈ Z. Furthermore

(A.3d)
∣∣R2G(2)

m (R, ξ)−G(1)
m (R, ξ)

∣∣ ≤ c

1 +m2 + |ξ|2

for all ξ ∈ Z+
δ ∪ Z

−
δ and m ∈ Z.

(b) Let ξ ∈ R with 0 < |k(ξ)| ≤ δ. Then the estimates (A.3a)–(A.3d) hold for
all R ≤ r ≤ R̃ and |m| ≥ 2 where c depends only on R̃.

(c) The functions G
(3)
m and G

(4)
m , restricted to (R, R̃)×(R\{±k}), have extensions

to continuous functions from (R, R̃)× R→ C for all m ∈ Z. The functions

G
(1)
m and G

(5)
m are continuous for |m| ≥ 2, and G

(2)
m is continuous for |m| ≥ 1.

Furthermore, the following functions are continuous from (R, R̃) × R to C:

(r, ξ) 7→ 1
ln k(ξ)

G
(2)
0 (r, ξ), (r, ξ) 7→ 1

ln k(ξ)
G

(j)
±1(r, ξ) for j ∈ {1, 5}, and (r, ξ) 7→

k(ξ)2 ln k(ξ)G
(j)
0 (r, ξ) for j ∈ {1, 5}. The limits as k(ξ) → 0, i.e. ξ → ±k,
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are given by the following expressions.

lim
ξ→±k

G(1)
m (r, ξ) = G(1)

m (r,±k) := − R2 + r2

2 (|m| − 1)

(
R

r

)|m|
, |m| ≥ 2 ,(A.4a)

lim
ξ→±k

[
k(ξ2) ln k(ξ)G

(1)
0 (r, ξ)

]
= −1 ,(A.4b)

lim
ξ→±k

G
(1)
±1(r, ξ)

ln k(ξ)
= −R2

(
R

r
+
r

R

)
,(A.4c)

lim
ξ→±k

G(2)
m (r, ξ) = G(2)

m (r,±k) := − 1

|m|

(
R

r

)|m|
, |m| ≥ 1 ,(A.4d)

lim
ξ→±k

G
(2)
0 (r, ξ)

ln k(ξ)
= 1 ,(A.4e)

lim
ξ→±k

G(3)
m (r, ξ) = G(3)

m (r,±k) :=

(
R

r

)|m|
, m ∈ Z ,(A.4f)

lim
ξ→±k

G(4)
m (r, ξ) = G(4)

m (r,±k) :=

(
R

r

)|m|+1

, m ∈ Z ,(A.4g)

lim
ξ→±k

G(5)
m (r, ξ) = G(5)

m (r,±k) :=
r2 −R2

2|m|(|m| − 1)

(
R

r

)|m|
, |m| ≥ 2 ,(A.4h)

lim
ξ→±k

[
k(ξ2) ln k(ξ)G

(5)
0 (r, ξ)

]
= ln

r

R
,(A.4i)

lim
ξ→±k

G
(5)
±1(r, ξ)

ln k(ξ)
= R2

(
r

R
− R

r

)
.(A.4j)

The limits are uniform with respect to r ∈ [R, R̃] for every R̃ > R.
(d) For all R̃ > R and (ξ,m) ∈ R × Z with |k(ξ)| ≥ δ there exists c′ = c′(R̃, δ)

with

(A.5)

∫ R̃

R

µm(r, ξ)2 dr ≤ c′√
1 +m2 + ξ2

.

Proof. Without loss of generality we assume that m ≥ 0.
(a): We consider three cases: ξ ∈ Z+

δ and m ≥ 1, ξ ∈ Z+
δ and m = 0, and ξ ∈ Z−δ .

Case (a1): ξ ∈ Z+
δ and m ≥ 1.

Set z := −ik(ξ), thus z2 = ξ2 − k2 and k(ξ) = iz. First we show

(i) |z| = |k(ξ)| ≥ c|ξ| for some c independent of ξ,
(ii) |k(ξ)|2 = |z2| ≥ Re(z2) = Re(ξ2)− k2 > 3δ2,
(iii) Re(z2) > 2| Im(z2)| = 2| Im(ξ2)| and thus |z2| ≤ Re(z2) + | Im(z2)| ≤

3
2

Re(z2).

Proofs:

(i) |k(ξ)|2 = |k2 − ξ2| ≥ |ξ|2 − k2 = |ξ|2 − k2

(k+2δ)2
(k + 2δ)2 ≥

(
1 − k2

(k+2δ)2

)
|ξ|2 and

c := 1− k2

(k+2δ)2
= (k+2δ)2−k2

(k+2δ)2
> 0.

(ii) Re(ξ2)− k2 = (Re ξ)2 − (Im ξ)2 − k2 ≥ (k + 2δ)2 − δ2/9− k2 > 3δ2.

(iii) Re(z2) − 2| Im(z2)| = (Re ξ)2 − (Im ξ)2 − k2 − 4|Re ξ|| Im ξ| = |Re ξ|
[
|Re ξ| −

4| Im ξ|
]
− (Im ξ)2 − k2 > (k + 2δ)[k + 2δ − 4δ/3]− δ2/9− k2 > 0.

Define η(z) :=
√

1 + z2 + ln
z

1 +
√

1 + z2
and zr = zr,ξ,m :=

r

m
z .

21



We write Hm(rk(ξ)) = Hm(imzr) = 2
π
(−i)m+1Km(mzr) where Km is the modified

Bessel function. We note that Re zr > 0. Therefore, we can use the asymptotic
behavior of Km and K ′m as m tends to infinity. Formulas 9.7.8 and 9.7.10 of [1]
yield

Hm(rk(ξ)) =
2

π
(−i)m+1Km(mzr)(A.6a)

=
2

π
(−i)m+1

√
π

2m

e−mη(zr)

(1 + z2
r )

1/4
[1 + ar,ξ,m] ,

rk(ξ)H ′m(rk(ξ)) = i
2m

π
(−i)m+2 zrK

′
m(mzr) =

2m

π
(−i)m+1 zrK

′
m(mzr)(A.6b)

= −2m

π
(−i)m+1

√
π

2m
(1 + z2

r )
1/4 e−mη(zr) [1 + cr,ξ,m] ,

with

|ar,ξ,m|+ |cr,ξ,m| ≤
c1

m
√

1 + |zr|2
=

c1√
m2 + r2|k(ξ)|2

≤ c2√
m2 + ξ2

for all r ≥ R, m ∈ N, and ξ ∈ Z+
δ where c2 is indepedent of r, m, and ξ.

To estimate |G(3)
m (r, ξ)| and |G(4)

m (r, ξ)| we use the representations and write

(A.7a)
Hm(rk(ξ))

Hm(Rk(ξ))
=

(
1 + z2

R

1 + z2
r

)1/4

e−m(η(zr)−η(zR))

[
1 + ar,ξ,m
1 + aR,ξ,m

]
and

(A.7b)
rH ′m(rk(ξ))

RH ′m(Rk(ξ))
=

(
1 + z2

r

1 + z2
R

)1/4

e−m(η(zr)−η(zR)) ,

[
1 + cr,ξ,m
1 + cR,ξ,m

]
.

With |1 + z2
r |2 = 1

m4

(
[m2 + r2 Re(z2)]2 + r4[Im(z2)]2

)
we write

|1 + z2
R|2

|1 + z2
r |2

=
[m2 +R2 Re(z2)]2 +R4[Im(z2)]2

[m2 + r2 Re(z2)]2 + r4[Im(z2)]2
=
R4

r4

[(m/R)2 + Re(z2)]2 + [Im(z2)]2

[(m/r)2 + Re(z2)]2 + [Im(z2)]2

which is less than 1 and larger than R4/r4 for r ≥ R. This yields an estimate of the
first factor on the right hand sides of (A.7a), (A.7b). For further use, we estimate

(A.8) m4|1 + z2
R||1 + z2

r | =
|1 + z2

r |
|1 + z2

R|
|m2 +R2z2|2 ·

{
≤ c r2

R2 [m2 + |ξ|2]2 ,

≥ c [m2 + |ξ|2]2 ,

where we used |m2 + R2z2| ≤ m2 + R2|z|2 ≤ c[m2 + |ξ|2] and |m2 + R2z2| ≥
m2 +R2 Re(z2) ≥ c[m2 + |ξ|2].
To bound the exponential term in (A.7a), (A.7b) we define (compare the definition
of η(z))

f(r) :=
√
m2 + r2z2 −

√
m2 +R2z2 − m ln

m+
√
m2 + r2z2

m+
√
m2 +R2z2

and compute f(R) = 0 and

f ′(r) =
rz2

√
m2 + r2z2

− m

m+
√
m2 + r2z2

rz2

√
m+ r2z2

=
rz2

m+
√
m2 + r2z2
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for r ≥ R and thus

Re f ′(r) = r
Re
[
z2(m+

√
m2 + r2z̄2)

]
|m+

√
m2 + r2z2|2

= r
Re(z2)(m+ Re

√
m2 + r2z̄2)− Im(z2) Im

√
m2 + r2z̄2

|m+
√
m2 + r2z2|2

Since Re(m2 +r2z2) > 0 we can use the estimate | Im
√
m2 + r2z̄2| ≤ Re

√
m2 + r2z2

in the numerator and also in the denominator to obtain

Re f ′(r) ≥ r
Re(z2)[m+ Re

√
m2 + r2z2]− 1

2
Re(z2) [m+ Re

√
m2 + r2z2]

2[m+ Re
√
m2 + r2z2]2

=
r Re(z2)

4 [m+ Re
√
m2 + r2z2]

≥ r Re(z2)

4 [m+
√
m2 + r2|z|2]

≥ r |z|2

6 [m+
√
m2 + r2|z|2]

≥ R |z|2

12
√
m2 +R2|z|2

where we used also (iii). Therefore,

mRe[η(zr)− η(zR)] = Re f(r)− Re f(R) +m ln
r

R

≥ R|z|2 (r −R)

12
√
m2 +R2|z|2

+ m ln
r

R

and thus

(A.9) e−mRe(η(zr)−η(zR)) ≤ exp

[
− |k(ξ)|2R (r −R)

12
√
m2 + |k(ξ)|2R2

] (
R

r

)m
= µm(r, ξ) .

Finally, the representation
1+ar,ξ,m
1+aR,ξ,m

= 1 + br,ξ,m with |br,ξ,m| ≤ c′√
m2+ξ2

implies the

estimates for G
(3)
m and G

(4)
m .

The estimate of |G(2)
m (r, ξ)| is proven analogously by using (A.8).

To estimate |G(1)
m (r, ξ)| we write

k(ξ)2G(1)
m (r, ξ)(A.10)

=

[
− m

(1 + z2
r )

1/4(1 + z2
R)1/4

+m(1 + z2
r )

1/4(1 + z2
R)1/4

]
e−m(η(zr)−η(zR)) [1 + br,ξ,m]

=

√
m2 + r2z2

√
m2 +R2z2 −m2

(m2 + r2z2)1/4(m2 +R2z2)1/4
e−m(η(zr)−η(zR)) [1 + br,ξ,m]

and estimate, using (A.8),

|
√
m2 + r2z2

√
m2 +R2z2 −m2| = |z|2r2 |(1 + (R/r)2)m2 +R2z2|

m2
√
|1 + z2

r |
√
|1 + z2

R|+m2

≤ |z|2r2 2m2 +R2|z|2

m2 + |ξ|2 +m2
≤ c|z|2r2

for some constant c which is independent of m, ξ, and r. Therefore,∣∣G(1)
m (r, ξ)

∣∣ ≤ c
r2√

m2 + |ξ|2
e−mRe(η(zr)−η(zR))

for some constant c which is independent of m, ξ, and r. Using (A.9) implies the

estimate of |G(1)
m (r, ξ)|.
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The estimate of |G(5)
m (r, ξ)| follows the same way. Indeed,

Hm(rk(ξ))

Hm(Rk(ξ))
− rH ′m(rk(ξ))

RH ′m(Rk(ξ))

=

[
(1 + z2

R)1/4

(1 + z2
r )

1/4
− (1 + z2

r )
1/4

(1 + z2
R)1/4

]
e−mRe(η(zr)−η(zR))[1 + br,ξ,m]

and

(1 + z2
R)1/4

(1 + z2
r )

1/4
− (1 + z2

r )
1/4

(1 + z2
R)1/4

=

√
1 + z2

R −
√

1 + z2
r

(1 + z2
r )

1/4(1 + z2
R)1/4

=
z2
R − z2

r

(1 + z2
r )

1/4(1 + z2
R)1/4[

√
1 + z2

R +
√

1 + z2
r ]

=
(R2 − r2)z2

(m2 + r2z2)1/4(m2 +R2z2)1/4[
√
m2 +R2z2 +

√
m2 + r2z2]

which is estimated by c|z|2
m2+|z|2 ≤

c′|k(ξ)|2
m2+|ξ|2 and yields (A.3c).

Finally, for showing (A.3d) we use (A.10) for r = R and z2 = −k(ξ)2 to obtain

k(ξ)2G(1)
m (R, ξ) =

R2z2

√
m2 +R2z2

= − R2k(ξ)2

√
m2 +R2z2

.

With (A.6a) and (A.6b) for r = R we obtain

R2G(2)
m (R, ξ)−G(1)

m (R, ξ)

= −R
2

m

1√
1 + z2

R

[1 +O(1/
√
m2 + ξ2)] +

R2

√
m2 +R2z2

[1 +O(1/
√
m2 + ξ2)]

= O
(
1/(m2 + ξ2)

)
.

Case (a2): ξ ∈ Z+
δ and m = 0.

Now we use the asymptotical form of the modified Hankel functions K0(t) and K1(t)
for large arguments (see 9.7.2 and 9.7.4 of [1]), i.e.

H0(rk(ξ)) = −2i

π
K0(rz) = −i

√
2

π

e−rz√
rz

[
1 +O(1/|z|

]
,(A.11a)

H ′0(Rk(ξ)) = −H1(Rk(ξ)) =
2

π
K1(Rz) = −

√
2

π

e−Rz√
Rz

[
1 +O(1/|z|

]
,(A.11b)

where again z = −ik(ξ) =
√
ξ2 − k2. Therefore, |G(3)

0 (r, ξ)| and |G(4)
0 (r, ξ)| are

written as

H0(rk(ξ))

H0(Rk(ξ))
=

√
R

r
e−(r−R)z

[
1 +O(1/|k(ξ)|

]
,

H ′0(rk(ξ))

H ′0(Rk(ξ))
=

H1(rk(ξ))

H1(Rk(ξ))
=

√
R

r
e−(r−R)z

[
1 +O(1/|k(ξ)|

]
.

Now we use (iii) in the estimate |k(ξ)|2 = |z2| ≤ Re(z2) + | Im(z2)| ≤ 3
2

Re(z2) ≤
3
2
(Re z)2 and thus e−(r−R) Re z ≤ e−|k(ξ)|(r−R)/12 = µ0(r, ξ).

The estimate of |G(5)
0 (r, ξ)| is now obvious because |G(5)

0 (r, ξ)| ≤ c
|k(ξ)|2 e

−(r−R) Re z.

The estimates of |G(1)
0 (r, ξ)| and |G(2)

0 (r, ξ)| and also (A.3d) are proven analogously
by using (A.11a) and (A.11b).
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Case (a3): ξ ∈ Z−δ . Then |k(ξ)|2 ≤ k2 + (k− 2δ)2 + δ2/9, i.e. the arguments in the
Hankel functions are bounded. For this case we use the asymptotics of Hm(z) and
H ′m(z) for z from compact subsets C of C+ := {z ∈ C : Re z ≥ 0}, namely

H0(z) =
2i

π

[
ln
z

2
+ γ
]

[1 + a0(z)] ,(A.12a)

Hm(z) =
(m− 1)!

πi

(
2

z

)m[
1 + am(z)

]
, m ≥ 1 ,(A.12b)

z H ′m(z) = −m!

πi

(
2

z

)m[
1 + bm(z)

]
, m ≥ 1 ,(A.12c)

for z ∈ C \ {0} where |a0(z)| + |am(z)| + |bm(z)| ≤ c
1+m
|z| for m ≥ 1 and z ∈ C

where c = c(C) is independent of m. Furthermore, am and bm are continuous and
vanish for z = 0, and γ := limn→∞

[∑n
p=1

1
p
− lnn

]
denotes Euler’s constant.

The estimates of |G(3)
m (r, ξ)| and |G(4)

m (r, ξ)| (for all m ≥ 0) and of |G(2)
m (r, ξ)| for m ≥

1 follow easily from these formulas. For m = 0 we have |G(2)
0 (r, ξ)| ≤ c| ln(rk(ξ))|

which is bounded because |k(ξ)|2 ≥ k2 − |ξ|2 ≥ k2 − (k − 2δ)2 = 4δ(k − δ) > 0.

To estimate |G(1)
m (r, ξ)| we represent k(ξ)2G

(1)
m (r, ξ) as

k(ξ)2G(1)
m (r, ξ)

=
m2Hm(rk(ξ))Hm(Rk(ξ))− rR k(ξ)2H ′m(rk(ξ))H ′m(Rk(ξ))

Rk(ξ)H ′m(Rk(ξ))Hm(Rk(ξ))

=
1

2

[mHm(rk(ξ))− rk(ξ)H ′m(rk(ξ)][mHm(Rk(ξ)) +Rk(ξ)Hm(Rk(ξ))]

Rk(ξ)H ′m(Rk(ξ))Hm(Rk(ξ))

+
1

2

[mHm(rk(ξ)) + rk(ξ)H ′m(rk(ξ)][mHm(Rk(ξ))−Rk(ξ)Hm(Rk(ξ))]

Rk(ξ)H ′m(Rk(ξ))Hm(Rk(ξ))

=
1

2

rk(ξ)Hm+1(rk(ξ))Rk(ξ)Hm−1(Rk(ξ))

Rk(ξ)H ′m(Rk(ξ))Hm(Rk(ξ))
(A.13)

+
1

2

rk(ξ)Hm−1(rk(ξ))Rk(ξ)Hm+1(Rk(ξ))

Rk(ξ)H ′m(Rk(ξ))Hm(Rk(ξ))

where we used the recurrence formulas zH ′m(z) = zHm−1(z)−mHm(z) = −zHm+1(z)+
mHm(z). Using the asymptotic forms (A.12b) and (A.12c) for Hm(z) and zH ′m(z),

respectively, we obtain for m ≥ 2 easily that |k(ξ)2G
(1)
m (r, ξ)| ≤ c

m−1
|k(ξ)|2

(
R
r

)m
for

some constant which is independent of ξ ∈ Z−δ , r ≥ R, and m ≥ 2. This yields the
desired estimate for m ≥ 2. For m = 0 or m = 13 we use that |k(ξ)| is bounded
below.

To estimate |G(5)
m (r, ξ)| we write

k(ξ)2G(5)
m (r, ξ)

=
Rk(ξ)H ′m(Rk(ξ))Hm(rk(ξ))− rk(ξ)H ′m(rk(ξ))Hm(Rk(ξ))

Rk(ξ)H ′m(Rk(ξ))Hm(Rk(ξ))

=
Rk(ξ)Hm−1(Rk(ξ))Hm(rk(ξ))− rk(ξ)Hm−1(rk(ξ))Hm(Rk(ξ))

Rk(ξ)H ′m(Rk(ξ))Hm(Rk(ξ))
(A.14)

3and only for these two cases
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where we used again the recurrence formula zH ′m(z) = zHm−1(z) −mHm(z). This
expression is estimated as before by c

m(m−1)
|k(ξ)|2

(
R
r

)m
for m ≥ 2. For m = 0 or

m = 1 we use that |k(ξ)| is bounded below.

For (A.3d) we write G
(1)
m (R, ξ)−R2G

(2)
m (R, ξ), using (A.13) for r = R and (A.12b),

(A.12c), as

G(1)
m (R, ξ)−R2G(2)

m (R, ξ) =
R2Hm+1(Rk(ξ))Hm−1(Rk(ξ))

Rk(ξ)H ′m(Rk(ξ))Hm(Rk(ξ))
− R2Hm(Rk(ξ))

Rk(ξ)H ′m(Rk(ξ))

= −R2

(
1

m− 1
− 1

m

)
(1 +O(1/m)) = O(1/m2)

(b) We observe that |k(ξ)| is again bounded from above. Therefore, the assertion
has been proven already in the previous part because a lower bound on |k(ξ)| was

only needed for the estimates of |G(1)
m (r, ξ)| and |G(5)

m (r, ξ)| for m ∈ {0, 1} and for

|G(2)
0 (r, ξ)|.

(c) Continuity of G
(j)
m for j = 2, 3, 4 and m ≥ 0 (m ≥ 1 for j = 2) and of ξ 7→

1
ln k(ξ)

G
(2)
0 (r, ξ) and the form of the limits in (A.4d), (A.4e), (A.4f), (A.4g) follows

directly from (A.12a), (A.12b), and (A.12c). Continuity of G
(1)
m and G

(5)
m for m ≥ 2

and the form of the limits in (A.4a), (A.4h) follows from the representation (A.13)
and (A.14), respectively, and (A.12b), (A.12c).
For m = 1 the representation (A.13) and (A.12a) – (A.12c) yields

k(ξ)2G
(1)
1 (r, ξ)

=

rk(ξ)
2

1
πi

(
2

rk(ξ)

)2
Rk(ξ)2i

π
ln(Rk(ξ)) + Rk(ξ)

2
1
πi

(
2

Rk(ξ)

)2
rk(ξ)2i

π
ln(rk(ξ))

1
π2

(
2

Rk(ξ)

)2

[
1 +O(k(ξ))

]
= R2

[
R

r
+
r

R

]
k(ξ)2 ln k(ξ)

[
1 +O(k(ξ))

]
which shows continuity of ξ 7→ 1

ln k(ξ)
G

(1)
1 (r, ξ) and the form (A.4c).

For m = 0 we obtain directly from the definition that ξ 7→ k(ξ)2 ln k(ξ)G
(1)
0 (r, ξ)

is continuous with (A.4b).

For G
(5)
0 and G

(5)
1 we argue analogously using (A.14).

(d) For |k(ξ)| ≤ m (then m ≥ 1) we estimate the first factor in the definition of
µm(r, ξ) by 1 and obtain∫ R̃

R

µm(r, ξ)2 dr ≤
∫ R̃

R

(
R

r

)2m

dr ≤ c√
1 +m2 + |k(ξ)|2

where we used m ≥ |k(ξ)| in the last estimate. For m ≤ |k(ξ)| we estimate the
second factor by 1 and obtain∫ R̃

R

µm(r, ξ)2 dr ≤
∫ R̃

R

exp

[
− 2|k(ξ)|2R(r −R)

10
√
m2 + |k(ξ)|2R2

]
dr

≤
∫ ∞
R

e−c|k(ξ)|(r−R) dr =
1

c|k(ξ)|
≤ c′√

1 +m2 + |k(ξ)|2

where we used |k(ξ)| ≥ m. �
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